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ABSTRACT

We propose a novel method to determine the average wa-
ter depth from shallow, weakly nonlinear water waves that are
approximated by the Korteweg-de Vries equation. Our identifi-
cation method only requires free-surface measurements from two
wave gauges aligned in the direction of wave propagation. The
method we propose is based on comparing solitonic components
in wave packets, which are computed using the nonlinear Fourier
transform (NFT) (typical time-series data often contains at least
some solitonic components, even when these components are not
directly visible). When the correct water depth is used for the
normalisation of the wave, the solitonic components found by the
NFT remain constant as the wave packet propagates, whereas
any other water depth will result in solitonic components that do
not remain constant. The basic idea is thus to iteratively deter-
mine the water depth that leads to a best fit between the solitonic
components of time series measurements at two different gauge
positions. We present a proof-of-concept on experimental bore
data generated in a wave flume, where the identified water depth
is within 5% of the measured value.

1 INTRODUCTION

The Korteweg-de Vries (KdV) equation closely models the
propagation of progressive free-surface waves in shallow water
with depth-to-wavelength ratio /L < 0.22 [1,2], and finds many
applications in coastal engineering [3]. The water depth is the
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essential governing parameter in the KdV equation. However,
the water depth may not always be known, as it may be hard to
measure, or is slowly changing over time. This is for example
the case in wave flumes with moving-bed experiments, where
the average water depth may change due to sediment transporta-
tion [4, p.108-111], or water losses due to overtopping [5, p.4].
Another example occurs for arrays of buoys in front of the coast,
where the average water depth can slowly vary due to drifting of
the buoys over an uneven bottom, sediment transportation, or the
changing tidal elevation [6,7].

Existing methods for water depth measurement at the coast,
in waterways, and in flumes usually rely on direct measurement
of water depths, using sound or light [8]. Alternatively, statis-
tical properties such as wavelength and period may be derived
from aerial photographs, which may be related to water depth
as well [9]. However, the mentioned examples use very spe-
cialised devices to determine the depth, whereas these are not
always present or accessible. In contrast, buoys at the coast
and in waterways measuring the free surface amplitude are of-
ten already installed for more general purposes, and wave flumes
are often already equipped with wave gauges, providing plenti-
ful free surface measurements at certain fixed locations in both
cases. We investigate the possibility to identify the average wa-
ter depth from this type of data. It has already been shown that
the bathymetry can be roughly estimated from space-time series
free-surface data, given that the average water depth is approxi-
mately known [10]. However, this method used space-time data
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(two-dimensional data), as opposed to just time series at two lo-
cations, and would therefore not be applicable on buoy or gauge
data. A final approach for identifying the water depth is through
the constants of motion of the KdV equation, analogous to a
method discussed in [11]. The water depth can directly be ex-
tracted as the ratio of certain global quantities of the wave at
two different positions, as shown in Appendix D. However, this
method strongly depends on the pre-processing method, and is
sensitive to noise and distortion.

In this paper, we propose a simple method to use the free-
surface elevation data at just two locations aligned in the direc-
tion of wave propagation to determine the water depth, under
the assumption that the wave propagates in constant depth and
is approximately governed by the Korteweg-de Vries equation.
Neither the exact distance between the gauges (e.g., in the case of
buoy data) nor precisely time-synchronised measurements are re-
quired in our proposed method, as long as the measurements are
of the same progressive free-surface waves. The method we pro-
pose is based on the nonlinear Fourier transform (NFT) for the
KdV equation (KdV-NFT) [12]. In this paper, we will demon-
strate a proof-of-concept by focussing on wave packets, so that
the NFT with vanishing boundary conditions can be applied.

The NFT decomposes a wave packet into a discrete spectrum
and a continuous spectrum, representing two types of waves. The
discrete spectrum represents translatory stable waves (solitons),
while the continuous spectrum represents dispersive oscillatory
wave components (radiation). If a free-surface wave in constant
depth evolves perfectly according to the KdV equation, both the
solitonic components and the amplitudes of the continuous spec-
trum remain constant during propagation. As the water depth
governs the propagation of a wave packet, the water depth is
also the governing parameter in the NFT and its resulting spec-
tra. Therefore, the basic idea is to iteratively determine the water
depth that leads to a best fit between the nonlinear Fourier spec-
tra of time series measurements at two different gauge positions.
For our measurements, most of the energy was contained in the
solitonic components, and we will therefore focus on matching
the discrete spectra in this paper. The value at which the NFT
spectra fit best is then identified as the optimal water depth, un-
der the assumption that the water depth between the gauges is
constant.

Although NFT-based identification has not been applied for
water depth identification as of yet to the best of our knowledge,
we already showed in earlier work that NFT-based parameter
identification is possible for optical fibre systems [11, 13]. Light
propagation through optical fibres is governed by the nonlinear
Schrodinger equation (NLSE), which also allows for an (NLSE-
based) nonlinear Fourier transform. Similar to the KdV-NFT, the
NLSE-NFT decomposes a signal into solitonic components and
dispersive components, allowing us to use similar approaches
from [11] in this research.

The structure of this paper is as follows. First, we present

the KdV model and its nonlinear Fourier transform. Second, we
propose our novel water-depth identification algorithm, based on
comparing solitonic components. Third, we validate the identi-
fication method on simulated and experimental data. Finally, we
conclude the paper.

2 THE KDV EQUATION AND THE NONLINEAR
FOURIER TRANSFORM
The development of long unidirectional progressive free-
surface waves in shallow water is modelled by the time-like
Korteweg-de Vries equation [14],

N +coNe+ o' NNe+ B Neer =0, (1)

where 1(¢,s) [m] denotes the free-surface elevation compared to
the still-water level, / [m] the position, 7 [s] the time, c6 [s/m] the
inverse wave celerity, &' [s/m?] the nonlinearity coefficient and
B’ [s*/m] the dispersion coefficient. Subscripts denote partial
derivatives. For progressive free-surface waves, the governing
coefficients depend only on the water depth [15]:

3 3
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where ¢y [m/s] is the shallow water wave celerity, c{, [s/m] the
inverse wave celerity, g [m/ s2] the gravitational acceleration, and
h [m] the still-water depth.

The idea of this paper is to identify the still-water depth at
which the KdV equation best relates free surface measurements
at consecutive wave gauges. One option would be to numerically
propagate the signal at the first gauge to the second gauge using
Eqn. (1) for different water depths, and keep the water depth at
which the simulated and measured signal at the second gauge fit
best. However, we instead consider the nonlinear spectrum of
the signals, which has the advantage that it does not depend on
the distance travelled by the wave or the time synchronisation of
the signals. This property is especially useful when the distance
between measurement devices is not known. Finally, this method
has the advantage that the equation does not have to be solved
with time-stepping methods, which increase in computation time
as the distance increases.

2.1 Normalisation
The nonlinear Fourier transform is often determined from
the normalised and dimensionless KdV equation:

qx +69q: + g1 = 0, 3)
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in which ¢(z,x) is the normalised free-surface elevation, ¢ the nor-
malised time and x the normalised location. To obtain the nor-
malised KdV in Eqn. (3) from the dimensional one in Eqn. (1),
we apply the following change of variables:

1 1
= 70(7_0/01)7 X = ?gcxl7 q([7x> = Tochn(’fal)a (43)

\/fl o 3g
th = ! = — = —_— =, 4b
w1 Cy ﬁ 6g3/27 Cq 6B/ 2]’12 ( )

The amplitude-normalisation coefficient ¢, and space-
normalisation coefficient ¢, both only depend on the water
depth. Note that the amplitude normalisation coefficient ¢,
represents the ratio of the nonlinearity &’ versus the dispersion
B’. The time normalisation Tp [s] is entirely free to choose, and
will only linearly scale the signal, its linear Fourier spectrum
and its NFT spectrum. For simplicity, we will use Tp = 1. We
also note here that the value of c{, is not strictly necessary for the
normalisation: using a wrong ¢, only translates the signal with-
out influencing its shape, and therefore does not influence the
solitonic components or amplitudes of the continuous spectrum
of the NFT (see Property 3 in Appendix B). Throughout this
paper, we will therefore use c{, = 0 for the normalisation step.
In this paper, we will first identify the amplitude normalisation
coefficient ¢, (i.e., the ratio between nonlinear and linear
effects), and then extract & from c,:

_ /3
=5 (5)

2.2 Solitons and the nonlinear Fourier transform

It is well known that the KdV equation supports both dis-
persive waves and waves of translation, so called solitons. The
energy of dispersive wave components will spread out more and
more over time, but each soliton remains localised, and will
be visible indefinitely. More specifically, any normalised wave
packet ¢(¢) will evolve into a train of N > 0 solitons after suffi-
ciently long time [16, p. 83]:

N
qlt,x) = Y 2kisech® (ky(t — 4kpx—17)) , (6)
n=1

in which #0 is a time shift depending on the initial conditions.
Most importantly, the height (2k2), the width (1/k,) and the
celerity (4k2) of a soliton are all determined by a generalised
wave number k,,.

Although the detection of solitons and their k,, is straight-
forward when all solitons have separated, it is not clear which

solitons will come out of some arbitrary wave packet. However,
the NFT is able to precisely determine which solitons are present
in any wave packet. If we normalised the KdV equation cor-
rectly, the same solitonic components will remain present in a
wave packet during propagation. All solitons present in a signal
are represented by the discrete spectrum of the NFT, which is a
set of pairs of purely imaginary eigenvalues A, = ik, (directly
related to the generalised wave number of each soliton in Eqn. 6)
and residues r,, (indirectly related to the location of each soliton):

Ads:{(lmrn);n:l,...,N}, @)

Assuming propagation according to Eqn. (3), the eigenvalues re-
main constant, and the residues grow exponentially with the trav-
elled distance

We used the FNFT-software library [17] to determine the eigen-
values and residues from the normalised signal. Further details
on the exact definition and calculations of the NFT may be found
in Appendix A. Some relevant properties of the NFT are dis-
cussed in Appendix B.

The NFT can also extract the oscillatory wave components
from a wave packet, represented by a continuous spectrum. How-
ever, we will only focus on the discrete spectrum, as we find
that the experimental signals considered in this paper are strongly
soliton-dominated.

3 SPECTRAL MATCHING ALGORITHM

As stated in the previous section, the eigenvalues in the non-
linear Fourier spectrum of a KdV-governed signal remain con-
stant, given that the correct amplitude normalisation constant ¢,
was applied. As ¢, relates directly to the water depth £, our strat-
egy is to consider a wave packet at two consecutive wave gauges
(an ‘input’ and an ‘output’ gauge), normalise both signals with
a certain c,(h) and compare the eigenvalues of their NFT spec-
trum. The value of ¢, is iteratively adapted until one is found at
which the NFT eigenvalues at the two wave gauges match op-
timally. This identified normalisation constant cf{D is then con-
verted to the identified water depth 2'® using Eqn. (4b).

To quantify the error between the NFT eigenvalues of the
two signals, we first sort the eigenvalues in each spectrum from
largest to smallest imaginary part, k; > kp > --- > ky > 0. We
then match the highest input eigenvalue llin to the highest output
eigenvalue A", the second highest to the second highest, and so
on. If either spectrum contains more eigenvalues than the other
(N £ N°U), the remaining (lowest) eigenvalues are matched to
artificial ‘O-eigenvalues’ at the origin. We finally considered two
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possibilities for the error-norm: p = 1, corresponding to the ab-
solute difference between input and output eigenvalues; or p = 3,
proportional to the absolute difference between the energy &, of
input and output eigenvalues (&, o< k;’l, see Eqn. (23b) in Ap-
pendix B). Precisely, we define the error as

y o Ea|(R)” = Gy

B T ()7, (k)

pe{1,3}. €))

The error is normalised, such that the maximum possible error
is 1. Due to the observed continuity of the eigenvalues as ¢, is
varied, and the fact that eigenvalues can only (dis)appear at the
origin (see Appendix B), the error is also continuous in c;.

We finally identify the optimal CEID and corresponding water
depth A'P by applying local minimisation over ¢, using Eqn. (9)
as cost function. To obtain an initial starting position, we perform
a rough grid search over realistic values of &, and take the one
with lowest error.

This concludes the spectral matching algorithm that we will
apply in this paper. We note that the spectral matching algorithm
is somewhat similar to the identification method from global con-
served quantities in Appendix D, as the eigenvalues can also be
considered as conserved quantities. As shown in Appendix D,
the method of conserved quantities can give good results, while
being easy to implement. However, it should be kept in mind that
the estimate of the method is not complemented by an error, so it
cannot be deduced how reliable the estimate is. The method may
also be sensitive to noise and pre-processing, and can give biased
results in some cases [11]. The NFT-based algorithm is therefore
often the more reliable choice.

Finally, we mention here that other parts of the NFT spec-
trum can also be taken into account for identifying the water
depth, namely the continuous spectrum and the residues of the
discrete spectrum. The moduli of the continuous spectrum of
the NFT (representing oscillatory wave components) also remain
constant during propagation, and could therefore be compared
as well. As mentioned before however, the continuous spec-
trum of our experimental data contained too little energy to test
continuous-spectrum-based identification. On the other hand, the
residues of the discrete spectrum can be of use, as discussed be-
low.

3.1 Extension using residues

Although the proposed spectral-matching algorithm only
uses the eigenvalues, each eigenvalue is complemented by a
residue containing information relating to its position. As each
soliton moves with its own speeds, so too do the residues grow
with different speeds as the wave packet propagates, as shown
in Eqn. (8). We may thus check how well the solitons match
by checking if their residues indeed grew proportionally to the

distance between the wave gauges (if known). Alternatively, af-
ter the water depth was identified using only the eigenvalues, we
may estimate the distance between the input and output gauges
using the residues, and compare how well this matches the mea-
sured distance.

Instead of considering the residues directly, we will convert
each residue to a ‘soliton (time-)location’, t,,, which we define as
the position of the soliton peak in the case the wave packet was a
pure single-soliton (the presence of multiple solitons and contin-
uous spectrum cause shifts, as well as that no clear peak may be
distinguishable when multiple solitons are close [18, 19]). The
propagation speed of this soliton location is equal to the soliton
celerity ¢, = 4k2:

_L rn(X)
ty(x) = T In ( 2k, ) , (10)

(x4 X) =t1,(x) + 4k> X.
-~

(propagation relation) (11)

=cp

Recall that the normalised position is given by x = Ti(;cxl , thus

the normalised travelled distance is given by X = #CXL, with L
the physical distance between the wave gauges. ’

Finally, the normalised frames of the wave packets at input
and output will experience some (unknown) time shift #o due to
the wave celerity ¢{, and due to a possible synchronisation mis-
match. The influence of this fq is the same for all soliton loca-
tions, and may thus be taken into account with one ¢ for all pairs
(kn,ytn):

n

1O — 10 — 4 (kM) T—;;L—i—to. (12)

The propagated distance L may thus be identified by fitting both
L and 1y simultaneously in a least-squares approach to the shifts
in soliton locations of all solitons, when there are at least two
solitons present.

4 RESULTS

Within this section, we demonstrate the proposed water-
depth identification algorithm using free-surface measurements
from a wave flume at two different wave gauges. Further-
more, we also test the identification algorithm on simulation data,
where the wave packet at one wave gauge was taken as input, and
then numerically propagated with the KdV equation to the posi-
tion of a consecutive wave gauge.

4.1 Experimental setup
The experimental data used in this study was measured at the
Hydraulic Engineering Laboratory at the National University of
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Singapore (NUS). The data was originally generated for a differ-
ent study [19], and shared with us for the analysis in this paper.
The experimental setup is shown in Fig. 1. The flume is 0.9m
wide, 0.9m deep, and 36 m long. At the left-end side is a mov-
able piston-type wave maker. After 28.7 m, the flume bottom
slopes upward. Four wave gauges marked CG1 to CG4 (Capac-
ity Gauge) are present, with respective positions x; = 5.193 m,
xy = 9.886m, x3 = 14.882m, and x4 = 18.869m. The wave
gauges consist of two thin metal wires, which measure the water-
height dependent voltage difference. The voltage is then linearly
converted to the wave height. Measurements were taken every
0.05 s, for a duration of 90s. Initially, the water was at rest with
measured depth 4 = 9.80 cm. Then, the wave maker was moved
from x = Om to x = 4.0m in approximately 3s to generate a
trapezoidal-shaped wave with a relative height of 2.0 cm. Note
that the wave maker remained at x = 4.0 m, so the filled part of
the flume became shorter, and the still water level would increase
after all waves have died out. This takes a very long time, and for
the course of the experiment, we took the initial still water level
1’ = 9.80 cm as reference level.

The measurements of the free-surface elevation are shown in
Fig. 1. Initially, we observe the initial trapezoidal-shaped wave
at CGl1, right behind the wave maker. As the wave travels, its
fastest solitons start to separate from the bore, and reach the next
gauges first. Travelling at approximately c¢o = 1m/s, the front
of the wave reaches the right end of the flume around r = 28 s,
reflects imperfectly from the sloped end, and propagates to the
left, reaching the gauges in opposite order. Around ¢t = 51s, the
(now left-going) wave reflects nearly perfectly at the piston at the
left side of the flume, and starts moving to the right again. The
second reflection and first reflection interfere at most of the wave
gauges, contradicting the assumption of unidirectional waves in
the KdV approximation.

We will compare only the incoming waves at the wave
gauges to identify the water depth, as these measurements are
not affected by interference. We compare several combinations
to investigate the influence of the travelled distance on the identi-
fied water depth: if two gauges are very close, the waves are very
similar, and thus the influence of the water depth will be small,
making it harder to identify; for longer distances, the accumu-
lated effect of the water depth will be greater, and thus the water
depth should be easier to identify.

4.2 Pre-processing

For the pre-processing of the data, we extracted a time win-
dow as large as possible without being distorted by the reflected
wave. We truncated the signals measured at CG1 to CG4 to the
time interval ¢ € [0,34]. We note here that the NFT assumes
zero-boundary conditions at the left and right of the signals. Al-
though the signal smoothly goes to zero at ¢ = 0, this is not the
case at t = 34, where the new steady water level was measured

piston
movement

| ] [ }h = 9.8cm
I am L 24.7m I
® Right-moving % | ® [ CGlx=52m
Al ® Lef(tg—)rg)vmg : QH —CG2:x=99m
: CG3:x=14.9 m
E (T) ’ | ——CG4:x=189 m
S22 %4l ‘ 1 ]
= | | i W it
|
0 J : VMJ\/\-OAOcm
; ‘ | = -0.72cm

FIGURE 1. TOP: A SIDE VIEW OF THE EXPERIMENTAL
SETUP, WITH THE POSITIONS OF THE FOUR WAVE GAUGES.
BOTTOM: THE MEASURED WAVE HEIGHT WITH RESPECT TO
INITIAL STILL-WATER LEVEL AT THE FOUR WAVE GAUGES.
THE VERTICAL DASHED LINE MARKS THE TIME UP TO
WHICH THE WAVE GAUGES ARE NOT AFFECTED BY THE RE-
FLECTED WAVE. RE-MADE AFTER [19].

to be —0.40cm. The block signal is followed by a trough, which
does not seem to go back to the initial still-water level within the
time frame of the experiment (in fact the water level seems to
decrease further down to —0.72cm after the reflected wave has
passed over). Fortunately, it was observed in [19] that the pres-
ence or absence of a trough mainly influences the continuous
spectrum, while leaving the discrete spectrum nearly unchanged.
We confirmed that this is indeed the case, by comparing the dis-
crete spectra of the signal at CG1 with and without trough (see
Appendix C).

As the trough influences the discrete spectrum only
marginally, we cut off the right part of the signal at the time
that the tail of the wave packet reaches zero for the first time,
and replace the trough with zeros, following the method of [19].
This ensures that the vanishing boundary conditions are satisfied
without a jump in water level at the right hand side.

Finally, we perform a small rescaling of the data, similar to
the pre-processing in [19]. We rescale the data by comparing
the first moment [*_ndt and the second moment [~ _nZ?dt of
the wave packets. These two integrals are conserved quantities
of the KdV equation [20], and thus should be equal at all four
wave gauges. Cutting off the trough is important for this recal-
ibration, as both moments would otherwise have depended on
the considered length of the trough. We rescaled the data such
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that the second moment (proportional to the wave energy) of all
signals are equal to the one at the first wave gauge, resulting in
the following rescaling factors for the free-surface elevation for
CGl to CG4: [1,0.990,0.989, 1.013]. Although these changes
are small, we found that they significantly improve the matching
of the discrete spectra and the estimation of 4.

After the pre-processing of the data, we calculated the en-
ergy in the discrete and the continuous NFT spectrum for the
signal at CG1, to check our assumption that the signal is soli-
ton dominated. Using 4™ = 9.80cm for the normalisation in the
NFT, we found from Eqn. (23b) in Appendix B that the discrete
spectrum contained 99.9% of the signal energy, satisfying our
assumption.

4.3 Numerical validation of the algorithm

Before considering the experimental data, we first validate
the spectral matching algorithm on simulated data, generated us-
ing the KdV equation. We took the pre-processed data at wave
gauges CG1, CG2 and CG3 as input data, and numerically prop-
agated each input signal to the position CG4, using the dimen-
sional KdV equation in Eqn. (1) with A for all coefficients.
For this numerical case, the eigenvalues should remain constant
when normalising the signal with 4™f, and the spectral matching
error should be zero up to numerical errors. Fig. 2 shows from
top to bottom the input-output data (the blue and black lines),
the corresponding eigenvalues as function of 4, and the spectral
matching error as function of 4. From the normalised eigenval-
ues we observe that as i decreases (i.e., higher nonlinearity), the
number of detected solitons increases, while the eigenvalues all
drift upwards. We observe consistently that eigenvalues of the
input signal (blue) and the eigenvalues of the simulated output
(black) exactly coincide at & = 1, while drifting apart for other
values of . As a result, the spectral matching errors E! and E>
show a clear minimum at A*f for the simulated data set, while the
errors increase as £ is further from the reference value. This val-
idates that the spectral-matching algorithm performs well when
the considered data is exactly governed by the KdV equation.

However, we observe from the pre-processed signals in
Fig. 2 that the numerical output signals (black) differ somewhat
from the experimental signals (red). The KdV only models the
wave propagation approximately, and the model mismatch be-
comes apparent here. In particular, the KdV seems to develops
the shape of the input wave too fast, which can also be visually
deduced from the fact that the highest numerical soliton arrives
earlier than the experimental soliton, and the distance between
the solitons is larger than in the measured wave. Also the right
tail of the numerical wave packet flattens faster than the tail the
measured output.

Although the KdV does not perfectly describe the wave
propagation of our experimental data, it was shown in [19] that
the solitonic components predicted by the KdV-NFT were indeed

present. Therefore, our proposed method of comparing solitonic
components at different gauges may still perform well despite
the observed model mismatch.

4.4 Experimental results of NFT-based water-depth
identification

We now consider the spectral matching algorithm for the
pre-processed experimental data. First, we determined the E'-
error and E3-error over a grid, as shown in Fig. 2. We ob-
serve that the E3-error seems to be much smoother than the E'-
error. This is due to the appearance of new eigenvalues, that can
quickly grow in amplitude and contribute significantly to the er-
ror. The energy-based error E3 overcomes this drawback, as the
energy of these new eigenvalues is only very small. Due to the
smoothness of E3, we will use this error norm for determining
our final estimation of the water depth for each of the data sets.
After the grid search, we apply local minimisation of E* to iden-
tify the water depth 4'® at which E3 is minimised.

For the experimental data, the optimal matching with the
input eigenvalue is close to the reference value for all consid-
ered cases. In particular, the minimum error for the CG2-CG4
case was extremely low, and corresponds very well to the refer-
ence value. The largest error observed (for the CG1-CG4 case,
hP = 9.34cm) was less than 5% off the reference value. When
using the reference water depth, we found that for all signals the
highest eigenvalues matched well, except for CG1-CG4. Our hy-
pothesis is that the wave at CGl is still influenced by the decel-
eration of the piston, as it is only 119 cm behind the piston. This
deceleration may have caused a larger mismatch with the KdV
equation during the first few meters of propagation, causing the
spectra at the first gauge to be different from the other gauges.

Next, we also observe that the identified water depth for the
CG3-CG4 case (h'° = 10.10cm) is also relatively far off (3%).
This is probably due to the fact that these gauges are very close,
so the total influence of the water depth on the propagation be-
comes harder to measure. This may also be observed from the
fact that the error well for the CG3-CG4 case is less steep than
in the other cases.

The CG2-CG4 case provides the best setup: it features a suf-
ficiently long distance, while not being influenced (too much) by
the start-up interference due to the piston. As a result, we observe
that the minimum observed E? is very close to 0, indicating an
excellent match between input and output eigenvalues. The iden-
tified water depth (4'® = 9.70cm) is only 1% off the reference
depth. This validates that the water depth can be identified very
accurately when using suitable data. However, even when our
data contained more distortion or was measured at close gauges,
we still managed to get estimates with less than 5% error.
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FIGURE 2. THE USED DATA FOR THE IDENTIFICATION ALGORITHM. TOP: THE PRE-PROCESSED DATA AT VARIOUS WAVE
GAUGES, AND THE THEORETICAL OUTPUT WHEN THE INPUT SIGNAL WAS PROPAGATED ACCORDING TO THE KDV AT THE REF-
ERENCE WATER DEPTH. MIDDLE: THE NORMALISED EIGENVALUE ENERGIES (~ k) FOR VARIOUS WATER DEPTHS. BOTTOM: THE
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FIGURE 3. THE BORE FRONT OF THE MEASURED OUTPUT
AT CG4, COMPARED TO THE KDV-PROPAGATED SIGNAL FROM
CG2 FOR VARIOUS COMBINATIONS OF DISTANCE L AND WA-
TER DEPTH h, WHILE TIME-SYNCHRONISING AS WELL AS
POSSIBLE. THE SECOND CURVE USES THE REFERENCE VAL-
UES FOR /1 AND L, THE THIRD CURVE IS THE RESULT OF LO-
CAL OPTIMISATION FOR THE TRAVELLED DISTANCE, AND
THE FOURTH CURVE FOR SIMULTANEOUSLY OPTIMISING
FOR BOTH THE DISTANCE AND THE WATER DEPTH.

4.5 Validation of NFT-based identification using nu-
merical propagation

To further validate the NFT-based water depth identification
method, we compare it to an approach based on numerically for-
ward propagating the input wave to the position of the output
gauge, using the dimensional tKdV from Eqn. (1) for various
values of h. Although this method lacks the benefits from NFT-
based identification (solution depends on numerical space-step
size, propagation distance must be known or has to be identi-
fied as well, time synchronisation is often required), it is one of
the most straightforward approaches to find the governing water
depth in the KdV equation.

This method propagates the input signal for a distance L
(space step size Al = 0.02m) to the position of the output wave
gauge using the dimensional KdV in Eqn. (1), for different val-
ues of h. We then identify the water depth as the /& at which the
forward-propagated input signal 7™ PP (¢; i, L) matches 1n°"(z)
as well as possible. As it may often occur that the time mea-
surements at wave gauges are not properly synchronised, we will
only consider the shapes of the wave packets, and allow for a hor-
izontal time-translation #y. Our error-norm for this propagation-
based matching is

* | g Prop (¢ b L) — nOU(r —10) | dr
Epmp(h’L):minf_mln (t:h.L) — 1 0)|
o S e (e)| de

. (13)

From Fig. 2, we have already observed that the simulated out-
put using 7' is already quite different form the measured out-
put. We observed that this was caused by a model mismatch,
where the KdV equation would develop the shape of the wave
faster than the measured wave. Therefore, we will optimise
over both the water depth and the travelled distance L. We con-
sider the case with CG2-CG4, as this gave the best fit for the
eigenvalue-matching, and we thus expect that this dataset fits
KdV-propagation best, although probably for a different prop-
agation distance.

The result is shown in Fig. 3. As observed before, the mea-
sured signal and the signal propagated with /s = 9.8cm and
L = 9m do not fit well, as the solitons have already separated
too much, indicating that the simulated wave has indeed devel-
oped too much. The third line was optimised only for the trav-
elled distance, and shows a good fit, but an effective propagation
distance of only L = 5m. Optimising over both the depth and
the propagation distance results in the fourth line, and we iden-
tify # =9.57cm and L = 5.68 m. This identified water depth is
only 2% off the measured value, and in close correspondence
with the identified value of NFT-based matching (A = 9.70cm).
For CG1-CG4 we identified & = 9.33 cm, which is also in close
correspondence with the value from NFT-based identification
(h = 9.34cm), which shows that NFT-based matching indeed
gives similar results as the propagation-based method. Only
for the CG3-CG4 case, the identified values were further apart,
h =9.20cm for the propagation-based method, and 2= 10.10cm
for the NFT-based method. This difference may be explained due
to the short distance between the wave gauges, so the effects of
the underlying mechanics are hard to measure.

All together, KdV-propagation-based water depth identifica-
tion indeed gives similar results as NFT-based water-depth iden-
tification, when also allowing the distance and the time-offset
as parameters in the propagation-based matching. However,
we did observe that the NFT-based estimates were all slightly
closer to the measured water depth, as well that the propagation-
based method required careful considerations regarding the nu-
merical instabilities and the space-step size. Although we did
not pay special attention to computation time, we do mention
here that the NFI-based method was somewhat faster than the
propagation-based method using the KdV-solver from the soft-
ware Chebfun [21].

4.6 Validation of NFT-based identification using dis-
crete spectrum residues

The NFT-based method managed to identify the water depth
with at most 5% error by only using the eigenvalues. However,
it did not take the soliton location into account. In this section,
we show that the soliton locations can be used for validation pur-
poses as well, for example to identify the travelled distance with
the propagation relation in Eqn. (12). During the propagation-
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based identification, we observed that the identified propagation
distance was about 30% lower than expected when only consid-
ering the wave shape. We show here that the soliton locations
indicate a similar result.

We consider here only the case CG2-CG4, as this data
showed the closest agreement with the KdV model. Fig. 4 shows
the calculated soliton locations at the input (CG2) and at the out-
put (CG4). As expected, the solitons arrived later at the output
gauge than at the input gauge, and thus their ¢, are higher. The
right figure shows the difference in soliton locations between the
input and output gauge. We observe that the solitons with higher
k, moved faster in general, as their soliton locations required less
time to cover the distance between CG2 and CG4 (the fastest
required only 7.8, the slowest 9.15s). Against expectation how-
ever, we observe that the theoretically fastest (with the largest k;,)
has not moved faster than some other solitons. This could be due
to random effects or a slight model mismatch. However, the gen-
eral trend looks in correspondence with Eqn. (12): each soliton
location should have moved ahead of the wave packet quadrati-
cally in its generalised wave number k;,.

We fitted the difference in soliton location for L and 7y ac-
cording to Eqn. (12), using all soliton locations except for those
of the lowest three solitons, as these contain little energy and are
prone to noise. We identified a propagation distance of L = 6.4m,
which is significantly lower than the actual wave gauge distance
of 9.0m for the CG2-CG4 case. We emphasise that this dis-
tance takes only takes into account how much the shape of the
packet has developed, which is unrelated to the wave speed cg
or inverse wave speed (. We note that the identified value of
L = 6.4m is close to value identified by the propagation based
method (L = 5.68m). Also, upon performing a similar analy-
sis for CG1-CG4, and for CG3-CG4, we find that the identified
propagation distance is systematically about 30% lower than the
measured gauge distance. Apparently, the KdV equation does
provide the correct solitons, but overestimates the wave develop-
ment speed.

5 CONCLUSION

We proposed a method to identify the water depth from wave
packets approximately governed by the KdV equation, based on
the nonlinear Fourier transform of free-surface measurements.
By comparing the solitonic wave components in a wave packet
in a wave flume at two consecutive locations, we were able to
determine the water depth with at most 5% error, and only a 1%
error under the most suitable circumstances. Furthermore, when
using simulated data, the identified water depth matched the ref-
erence value almost exactly for all considered cases, and outper-
formed a method based on numerical propagation of the KdV
equation. We finally demonstrated that the residues of the NFT
spectrum could also be used to extend the identification method.
Further research could focus on validation and application of the
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0 : 7.5 ‘ :
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FIGURE 4. THE SOLITON LOCATIONS ACCORDING TO
EQS. 10, AND THE QUADRATIC FIT BETWEEN THE DIFFER-
ENCE (ZOOMED IN AT THE RIGHT).

method outside a lab environment, such as water-depth identifi-
cation from coastal buoy data.
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Appendix A: Definition and calculation of the NFT
spectrum

Given a system governed by the normalised KdV equation
from Eqn. (3), we may determine the NFT while assuming van-
ishing boundary conditions for the wave packet, g(¢) — 0 as t —
oo fast enough. The NFT is defined through the Schrédinger
eigenvalue problem, which uses the wave packet as potential
[22-24]:

S +q(t)d = (i1)*9, (14)

where ¢ is the eigenfunction and A € C the spectral parame-
ter. For a real signal ¢(¢), the Schrodinger eigenfunction problem
only allows two types of solutions such that the eigenfunctions
¢ do not blow up. The first type of solutions ¢ correspond to
A € R\ {0}, which result in oscillatory eigenfunctions of infinite
energy, but finite power. These solutions relate to the so-called
continuous spectrum, and represent dispersive wave components
in the signal ¢(¢). The second type of solutions consist of a finite
number of discrete, purely-imaginary eigenvalues in the upper-
half plane A, = ik,, 0 <k € R, n=1,...,N. The correspond-
ing eigenfunctions ¢, decay exponentially in both tails and are
finite-energy. It is well known that these discrete eigenvalues

Copyright © 2022 by ASME



correspond to the solitonic wave components present in the sig-
nal ¢(¢), which remain stable during propagation of ¢(z) [22,24],
and eventually separate into the train of solitons from Eqn. (6).

One of the most convenient ways of solving the Schrédinger
eigenvalue problem is by rewriting Eqn. (14) as a system of two
first order differential equations. We do so by switching to the
basis from [18], in which the Schrodinger scattering problem is
given as follows:

vi| _ 1 [id— .
LJ =57 LA N a’f] 9, (change of basis) (15a)
d vl(t,l)} —if 44 4l {vl(t x)} |
— = i i 5b
dr [vz(h?t) gl — g [na(A))” (13b)
eiib t——oo V] l ), t—>+°° ( _1}“
{ 0 } <—q_>0 [ ] [ b(1) +1M]. (BCs) (15¢)

Here, Eqn. (15b) corresponds with the Schrodinger eigenvalue
problem, and Eqn. (15¢) are the boundary conditions (BCs) that
we impose to obtain the so-called scattering coefficients a(A)
and b(1).

The full nonlinear Fourier transform spectrum consists of a
discrete spectrum and a continuous spectrum. The discrete spec-
trum (ds) A%, contains all purely imaginary eigenvalues A, = ik,
in the upper-half plane such that the eigenfunction [v{,v;]7 is
finite energy. This can only occur if a(A,) = 0. To complete
the discrete spectrum, the eigenvalues are supplemented by their
residues r,,, which relate to the locations of the solitons:

A% = { (l,, = iky,rp = b(/l,,)) :a(ik,) =0, and
ap

da(A)
oA

(16)

0<k, € R}7 with ay (A,) =
A=A,

The continuous spectrum (cs), A, consists of the so-called re-
flection coefficient b/a on the real line:

ACS;:{Z@),geR\o}. a7

As the wave packet evolves over x according to the nor-
malised KdV equation, the eigenvalues remain constant, and the
scattering coefficients a and b evolve trivially [15,24]:

An(x) =2A,(0), (18a)
a(A,x) =a(A,0), (18b)
b(A,x) =b(A,0)e8Hx. (18¢)
As the A, remain constant, so do the k;,.
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Appendix B: Properties of the NFT
Property 1 (Scattering coefficients codomain). The
scattering coefficients a(A) and b(A) satisfy [24]:

la(A)| € [1,), |b(A)|€[0,0), |2(1)|€[0,1), (19a)
la()? = [b(A)]? = 1. (19b)
Property 2 (Linear Fourier transformas ¢ —0). In the

small amplitude limit, q(t) — 0, the Fourier transform degen-
erates to the linear Fourier transform. No eigenvalues will
be present, and the continuous spectrum and linear Fourier
spectrum relate as follows [15, Eqn. (4.7)]:

27 (6) = 7} 0 =26).

lim (20)
q(t)—0,|b/a|—0
with Z{q}(® / q(1)e " dr  the Fourier transform,

in which @ denotes the linear angular frequency.

Property 3 (Time translation). Ler {a(A),b(A)} =
NFT{q(t)} be the scattering coefficients of the NFT corre-
sponding to the signal q(t). Then a time translation t — t — 1y

in the signal results only in an exponential term in the
b-coefficient [24]:

{a(x),b(x)ﬂﬂfﬂ} = NFT{q(t —1o)}. @1

Note that, the eigenvalues A, (i.e., the zeros of a(L)) remain un-
changed, as a(A) remains unchanged.

Property 4 (Energy in the KAV-NFT). Let the energy of a
normalised KdV-governed signal be defined as

&= /w q(t)*dr =

then the energy of the discrete spectrum &% and of the continu-
ous spectrum & are given as follows [25, p.286], [26, 1.6.21b]:

1 oo
o | 17l )P de, @)

E1=EC+ 8P, (23a)
No16

gdsi 103
; 3 K (23b)
n=1-

En
CS _l e _ 2 _ Q 2
¢ _77:/700 48 1n<1 ’a(é)’ )dév (23¢)
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where &, is the energy of solitonic component A, = ik,.
We note here that for the low signal-amplitude case, the
continuous-spectrum energy reduces to the energy in the lin-

b/al—0 o
ear Fourier spectrum: & el =0, 1=, 482 ’g(é) ’2 d¢ =
= = FlaH o= 28)|* do, aligning with Property 2

Conjecture 5 (Continuity of NFT in ¢, (unproven)). Let
q(t:cq) = cgn (1), and {An(cq), n=1...N(cq)} = NFT{cqn (1)}
denote the eigenvalues of a signal 1(t) as a function of the nor-
malisation coefficient c,. Then the position of each eigenvalue
MAi(cq) is a continuous function of ¢, over the imaginary axis.
Moreover, eigenvalues can only (dis)appear at the real axis.
Increasing cy increases the signal energy, and most often causes
existing eigenvalues to drift upwards, while new eigenvalues
appear from the real axis.

Appendix C: The influence of a trough on the discrete
spectrum

We validate that the presence or absence of a trough after
a signal has little influence on the discrete spectrum, which was
also mentioned (although not shown) in [19]. We show here that
indeed the trough has little influence on the eigenvalues for the
incoming signal at wave gauge 1. We consider three different
cut-off points: 1) at 18s, when the bore reaches the still-water
level for the first time again; 2) at 34 s, the time frame considered
in all experiments; 3) at 48 s, the largest time possible before the
reflected wave reaches wave gauge 1 again. The three signals
with different cut-off point are shown in Fig. 5. The eigenvalues
were determined for the reference water depth 2™ = 9.80cm. All
eigenvalues are visually identical, except for the lowest eigen-
value (which has very little signal energy). This confirms that
the trough indeed has very little influence on which solitons are
present in the discrete spectrum.

Appendix D: Identification using conserved quantities

It is well known that the normalised KdV equation in
Eqgn. (3) has an infinite number of conserved quantities or con-
stants of motion. These quantities are conserved during propaga-
tion for tKdV-governed experimental data, given that the correct
amplitude normalisation coefficient ¢, was used. It is thus pos-
sible to identify ¢, as the value for which these quantities are
indeed equal at input signal and output. A similar method has
also been demonstrated for NLSE-governed signals in [11].

The first two constants of motion of the KdV are related to
conservation of mass and conservation of energy. The consec-
utive constants are less intuitive, and will be referred to as the
third moment, fourth moment, etc. The first conservation laws
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FIGURE 5. SIGNALS WITH DIFFERENT CUT-OFF POINTS FOR
THEIR TROUGHS, AND THEIR CORRESPONDING EIGENVAL-
UES FOR THE REFERENCE WATER DEPTH. THE EFFECT OF
THE TROUGH IS ONLY VISIBLE FOR THE LAST (LOWEST-
ENERGY) SOLITON.

for KdV in Eq. 3 are given as follows [20,27]:

G Z/(—2q3+%2) dz,

(24)
c4:/(9q4—18qq3+§q,%) dr.

When we equate CI" = C", and substitute ¢ () = TZc,n™ ((t—
col)/Tp), and ¢°'(t) = T c,n°"((t — col)/Ty), we will find that
Tp always drops out. However, ¢, also drops out if only a single
power of g is present, as is the case for C' and C?. Therefore, C*
is the first quantity for which ¢, does not drop out upon equating
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Cn = C§"* (we set Ty = 1 to simplify the demonstration):

/:C -2 (anin(f))S + (anitn(r))z dr

- /_i -2 (cqn"“‘(r))3 + (cqnﬁ‘“('l:))2 dr,

e in 2 out 2
Ly = A= (2(D) — ("(2)) dr. o3

207 (nin(n))’ — (new(r))’ de

This relation provides a fast and easy method to obtain estimates
for ¢,;. Although all conserved quantities except for C; and C;
can be used to find ¢, in a similar fashion, the higher conserved
quantities contain higher derivatives and powers, which are in-
creasingly sensitive to noise. Furthermore, we can see that in
Cy4 three different orders of ¢, will pop up (order 4, 3 and 2),
which will lead to an underdetermined system if we only have
measurements at two wave gauges. Even when three gauges are
considered, a system of equations will have to be solved, which
is probably more prone to noise. We will therefore only use Cs.
Using this method on the simulated data from CG2-CG4,
and converting ¢, to h, we successfully recovered the correct wa-
ter of & = 9.8 cm, validating the method for ideal KdV-governed
data. Also when applying this method to the pre-processed ex-
perimental data, we identified depths close to the measured water
depth, as shown in Table. 5. Although this method is very fast
and can yield good results, it can be sensitive to noise and offsets
due to its dependence on derivatives and high powers in g. Also
due to the fact that only a single number is given as output, it is
unknown how reliable this number is. By itself, this method is
therefore often not suitable for application in practice, but may
in many cases provide initial estimates or additional validation.

TABLE 1. THE IDENTIFIED WATER DEPTHS FROM THE PRE-
PROCESSED WAVE GAUGE DATA.

Data set ‘ Measured CG1-CG4 CG2-CG4 CG3-CG4
h ‘ 9.80cm 9.40cm 9.59cm 9.90cm
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