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ABSTRACT

The Particle Finite Element Method is a numerical tool that has been introduced more
than a decade ago for the solution of engineering problems involving large deformations.
The method falls under the category of mesh-based particle methods, meaning that all
information is stored on moving particles that represent the domain under analysis and
a computational mesh is used for the solution of the governing equations. Although
the method was initially developed for simulating fluid-structure interaction problems,
owing to its versatility in handling large deformation and constant changes in domain
boundaries and contact interfaces, it has been recently employed for solid mechanics
applications. However, the lack of a consistent framework for this kind of problems has
lead to different implementations of the method presented in the literature, each with
its own special features. The main objective of this thesis is to implement a variation of
the Particle Finite Element Method and investigate the efficiency of the different features
available in literature.

Initially, the meshing procedure of the method was developed, which consists of a
Delaunay triangulation for assessing the connectivity of the particles and the α-shape
method for detection of the boundaries of the different domains. This was followed by
an investigation on the influence of the related parameter αl i m on the outcome of the
analysis; it appears that this choice has an impact on the results, in terms of the recov-
ered domain volumes and the simulation response; this parameter has to be selected
with care, with respect to the nature of the examined problem. Volume variations are
also observed, caused by element deletion and/or addition during remeshing, which,
eventually, lead to mass oscillations. These effects can be mitigated by either adjust-
ing the value of the αl i m parameter, refining the particle distribution or prescribing the
boundary surface during remeshing, by using a constrained Delaunay triangulation.

Another important feature of the PFEM is the treatment of contact, which is, typi-
cally, done in literature via employment of an interface mesh. This mesh is generated
during remeshing, using the same scheme as for the regular domain meshes, i.e. a
Delaunay triangulation and the α-shape method, and the generated contact elements
are then used to enforce the contact constraints, with a variety of methods. In this
work, a simple algorithm that disallows inter-penetration and allows free separation
and free movement perpendicular to the contact surfaces was formulated and validated
against benchmark solid mechanics problems. The automatic contact detection and
interface mesh generation allows for the incorporation of more advanced contact treat-
ment schemes.

Transference of information between successive meshes is important in PFEM for
solid mechanics, especially when the history of elemental variables, e.g. stresses, is re-
quired for capturing the solid material behavior accurately. The most popular technique
is the nodal smoothing technique, where the values are mapped back and forth between
the integration points and the particles at each time step; other schemes have been also
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vi ABSTRACT

presented in literature. This scheme has been shown to introduce some smoothing of
information, which can be reduced by refining the particle distribution and, in general,
does not seem to affect the overall system response significantly.

The developed method was, finally, compared with the available in-house implicit
Material Point Method code, which shares the same formulation, on some benchmark
quasi-static and dynamic solid mechanics problems. The PFEM demonstrates a more
stable behavior in terms of capturing the evolution of stresses and kinematic variables,
despite some inaccuracies caused by the smoothing of information and the use of sim-
ple, constant-strain triangles. On the other hand, the MPM -in its standard form- ex-
hibits some instabilities in the assembly of equations and stress recovery, which is in-
tensified when cell-crossing occurs, i.e. jumping of material points between elements.
Regarding the computational cost of the two methods, the MPM seems to be faster and
require less computer memory for the same number of information points, i.e. parti-
cles, with the simulation times, however, increasing exponentially with the number of
degrees of freedom.
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1
INTRODUCTION

1.1. PROBLEM CONTEXT
The Finite Element Method (FEM) is being used in most engineering fields for the nu-
merical simulation of any kind of physical problem. However, there are inherent lim-
itations in this powerful tool, which emerge when dealing with large deformations, as
the high geometric non-linearity tends to compromise the accuracy and efficiency of
the method. The main issues occur from the change in the problem geometry. The pri-
mary cause of concern is mesh tangling, which leads to loss of accuracy or numerical
breakdown of the solution, due to a possibly infinite rate of deformation. A second ge-
ometry related issue is the constant change of the domain boundaries, even from one
computational step to the next. This issue is usually disregarded in practice, with the
same boundaries being maintained throughout the whole simulation, even for large de-
formations.

Although a great deal of geotechnical structures is subjected to deformations within
the “small deformation range”, there are several situations where the deformations are
large enough to alter the problem geometry significantly. Some examples are slope fail-
ures, landslides, debris flows, and object penetration in the ground. Especially in ma-
terial flow situations, knowledge of the rapid velocities and long run-out distances in-
volved is essential for performing a risk assessment, especially in cases where the earth
structure is situated close to an inhabited area – a typical scenario in the Netherlands. In
common practice, most slope stability designs are limited in predicting the initiation of
failure (e.g. limit equilibrium methods or strength reduction factor method in conven-
tional FEM), ignoring the post-failure behavior of the structure, which is also crucial in
evaluating the outcome of such a catastrophic event.

In this context, a need arises for the development of a tool capable of operating be-
yond the small deformation domain and efficiently predicting both failure initiation and
capturing post-failure behavior of any given geotechnical structure, particularly slopes.
To this end, several numerical simulation methods have been employed, including mesh-
based (adaptations of the conventional FEM; Arbitrary Lagrangian Eulerian - [39], Cou-
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pled Eulerian-Lagrangian - [20]) and particle techniques (Smoothed Particle Hydrody-
namics - [33], Material Point Method - [54], Element Free Galerking methods - [4], Parti-
cle Finite Element Method - [47]), all demonstrating both advantages and shortcomings.
Among these, the mesh-based particle methods, the MPM and the PFEM, recently de-
veloped, have gained popularity for the simulation of large deformation problems.

The latter, developed initially for fluid-structure interaction, has been recently used
in solid mechanics applications [11, 43, 45], including slope failure simulations [65, 70],
and is proving to be a promising tool for the future of numerical simulations of physi-
cal problems involving large deformations. The fundamental principles of the method,
which are the storage of information on particles that are allowed to move freely and
the constant update of their connectivity by means of frequent remeshing, have been
the basis for several implementations in literature, each with different specifications,
customized to the needs of the simulated problem. The last part refers to the various
approaches used by researchers to tackle the special features of the method, which in-
clude, among others, the treatment of contact and the handling of internal information
[11, 35]. The promising results published so far and the increasing popularity of the
method, combined with its proved versatility, make the Particle Finite Element Method
an attractive tool for further consideration.

1.2. PROBLEM STATEMENT
The Particle Finite Element Method described previously is a new tool, lately adopted
for solid mechanics by various research teams. It is based on the Finite Element Method,
with certain additional features that allow it to deal with large deformation problems.
Despite several research teams exploring the capabilities of the method for solid (and
soil) mechanics applications, there is inadequate documentation and published investi-
gation on the specific features of the method, that differentiate it from the variation for
fluid-structure interaction applications.

In this context, the main objective of this thesis is to develop an implementation of the
Particle Finite Element Method and investigate its special characteristics for simulation of,
initially, solid and, potentially, soil mechanics applications.

Based on the above, the research questions of this project are formulated as follows:

• How is the domain discretization, including particle connectivity and domain bound-
aries, updated to handle large deformation problems in PFEM and how is the out-
come of the analysis affected?

• How is contact treated in the Particle Finite Element Method and how can such an
algorithm be implemented?

• How is internal information handled in the Particle Finite Element Method and
what is the impact on the results?

• How is mass conservation affected by the frequent remeshing employed in PFEM?

• How does the Particle Finite Element Method compare with other recently devel-
oped numerical tools, like the Material Point Method, on benchmark solid me-
chanics problems?
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1.3. REPORT STRUCTURE
The focus of the present thesis project is to implement the Particle Finite Element Method
for solid mechanics and provide a preliminary evaluation of its various features.

In chapter 2, an overview of the background of numerical tools for large deforma-
tion problems is given, with emphasis on the Particle Finite Element Method. The first
part includes a brief literature review on the various numerical tools in literature. In the
second part, the basic principles of the PFEM are presented, along with some published
applications. Finally, the derivation of the governing equations of the tool is given, based
on standard FEM procedures and similar to the MPM code already available in the Geo-
engineering section of TU Delft [27, 57].

Chapter 3 involves a thorough presentation of the tools used to arrive at a discretiza-
tion of high quality, on which the governing equations are solved, at each time step. Em-
phasis is put on the schemes used for the triangulation of the set of points, the identifi-
cation of the boundaries and the dynamic evolution of the number and position of par-
ticles in the domain, in order to improve accuracy. The investigation on those aspects is
based partially on literature review and simulations with the developed code.

The main features of the method, besides the remeshing procedure, are examined
in chapter 4. In the first part, different ways of imposing contact treatment in literature
are presented, followed by the derivation and a brief validation of the implementation
adopted in this work. Moving on, the various schemes used for transferring information
between old and new discretizations are presented, with some of them being further
examined. The chapter closes with a discussion on mass conservation issues caused by
the frequent remeshing in PFEM and proposed mitigation measures.

Chapter 5 involves a comparison between the Particle Finite Element Method with
the Material Point Method. After a brief description of the standard Material Point Method
procedures and the in-house MPM code, the two methods are compared on benchmark
solid mechanics problems. The comparison is carried out in terms of the yielded re-
sults, e.g. developed stress state, energy conservation and the required computational
resources, e.g. memory and time.

A summary of the work, conclusions on the main findings of the project and recom-
mendations for future research are included in chapter 6.





2
BACKGROUND AND FORMULATION

In this chapter, a general overview of numerical tools for dealing with large deformation
problems in engineering is presented. The first part encloses a brief literature review
on the various schemes developed throughout the years, through classification of the
methods and presentation of the basic principles behind the most popular ones. In the
second part of the chapter, emphasis is put on the Particle Finite Element Method, which
is the tool developed and studied in the current thesis. The fundamental principles of
the method are initially presented and the various applications found in the literature
are mentioned. The chapter closes with the derivation of the implicit formulation of the
method, which is similar to the available in-house Material Point Method code.

2.1. LARGE DEFORMATION NUMERICAL SIMULATION TOOLS
The numerical simulation of large deformation problems in engineering has been a topic
of research for many years, giving birth to a number of different approaches. The vari-
ous techniques can be categorized based on their different features, such as the repre-
sentation of the problem (discrete, continuum), the selected description of motion (La-
grangian, Eulerian) and the adopted connectivity (mesh-based, meshless).

The problem under examination can be modelled using either a discrete or a con-
tinuous approach. In the former, the problem is represented by a number of particles,
e.g. grains, powder, etc., each one of which moves according to its own mass and exter-
nal/internal forces applied to it, according to Newton’s law; external forces are the result
of interaction with neighboring particles. The most typical example of discontinuous
methods is the Discrete Element Method (DEM). On the other hand, in the continuum
approach, the medium under consideration is viewed as a continuum body, the motion
of which is formulated based on conservation laws (e.g. momentum, mass, energy) and
a suitable stress-strain constitutive relation. Generally, continuum approaches are more
suitable compared to discrete approaches for modelling practical problems, including
soil mechanics problems, because of the easier material parameter calibration and faster
simulation times [69].

5
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Figure 2.1: Lagrangian, Eulerian and ALE descriptions of motion for mesh-based techniques [21].

Further on, continuum approaches are classified into mesh-based and mesh-free (or
meshless), depending on the use of a computational mesh.

2.1.1. MESH-BASED METHODS

The most common mesh-based tool is the standard Finite Element Method (FEM), widely
employed for simulations of geotechnical applications. When using FEM, a very impor-
tant feature for the formulation of any problem, especially ones involving large defor-
mations, is the selection of a suitable kinematic description for the continuum. The two
basic descriptions are the Eulerian and the Lagrangian.

In the Eulerian (or spatial) approach, the movement of a material through a fixed
space is observed. This is particularly attractive when there is no free boundary and is
most commonly used to model flow problems. However, the convective terms present
in the equations cause instabilities, while difficulties also occur when trying to model
changing boundaries and history-dependent materials [53].

On the other hand, the Lagrangian approach is used -either in its Total or Updated
form- when there are large displacements, rotations and strains of solids. In the former,
the reference configuration is the initial one, while, in the latter, the configuration in the
previous time step is used as a reference, which means that it is being constantly up-
dated. The Total Lagrangian (TL) is considered useful only when the displacements are
large but the strains are small. This is why the Updated Lagrangian (UL), which is suit-
able for large strains, is more popular nowadays. Despite their suitability for capturing
history-dependent material behavior and free surface evolution, the Lagrangian formu-
lations are dysfunctional when large deformations result in severe mesh distortion [40],
unless frequent remeshing is employed (adaptive techniques).

In an attempt to overcome the limitations of each description and exploit their mer-
its, combinations of the two have been proposed. One approach is the Arbitrary La-
grangian-Eulerian. In the ALE technique, the computational (background) mesh from
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the Eulerian approach is employed. The difference is that this grid is not fixed, instead it
is now free to move, decoupled from the material motion (Fig. 2.1); however, if this mesh
was made to follow the movement of the material particles, then a typical Lagrangian
formulation would be obtained. This is why the velocity fields of the two grids are sepa-
rated, minimizing the possibility of severe mesh distortion. Nevertheless, the convective
term is still present, new surfaces cannot be created, mesh tangling is still encountered
and the method is limited to the case where material deformations are relatively pre-
dictable [53, 67].

Another technique, which was originally introduced [28] as an ALE variation, is the
Remeshing and interpolation technique with small strain (RITSS). The two features that
were added by the creators was the refinement in areas of high gradients, based on a De-
launay triangulation, and the linear interpolation of the stress values at the Gauss points
of the new mesh from values at the nodes of the old mesh. The RITSS technique has been
mostly used in offshore geotechnical applications with large deformations, mainly ones
involving penetration [61, 63]. Despite the encouraging results, the RITSS method still
suffers from some of the ALE issues that were already mentioned, e.g. when the original
boundaries change, in case a one-piece solid gets split into more than one parts [67].

Another combination of the two descriptions is the Coupled Eulerian Lagrangian
(CEL), which is, however, more suitable for soil-structure interaction. In this technique,
the mesh is fixed (Eulerian) and the soil is modelled as an Eulerian material that flows
through the mesh. Rigid bodies, such as penetrating piles or rock blocks, are consid-
ered as a Lagrangian domain. The Eulerian Volume Fraction (EVF) concept is employed,
where every (fixed) Eulerian element is characterized by a percentage indicating the por-
tion of the element that is filled with actual material. An empty (void) element has EVF
= 0 and a cell completely filled with material has EVF = 1. The Lagrangian elements
can move through the Eulerian mesh freely, until they encounter an element with EVF
> 0. Then, the contact between the Lagrangian and Eulerian material is controlled via
a contact algorithm, e.g. a penalty or kinematic contact algorithm. The technique can
be incorporated in commercial FEM software, such as ABAQUS, and was used [20] to
model progressive clay slope failure. The main drawback of the method is located in
the great computational times, the mesh-related variable mapping and the mesh refine-
ment dependence [53], with the last one, however, which was overcome with the use of
an element size scaling rule in the constitutive relations [20].

2.1.2. MESHLESS PARTICLE METHODS

In meshless particle methods, information is carried by nodes (or particles) and node
connectivity is evaluated through a certain domain of influence defined for each node
(particle). Every particle interacts with the particles that are within its domain of influ-
ence, which is controlled by a smoothing or weight function. This eliminates the need for
a mesh and, subsequently, the problem of mesh distortion vanishes. The different ap-
proximations between mesh-based methods and meshless particle methods are shown
in Fig. 2.2.

The Smoothed Particle Hydrodynamics (SPH) method is the oldest meshfree particle
method, first introduced [25, 33] to solve gas dynamics problems in astrophysics and is a
truly meshless Lagrangian numerical technique. The domain is discretized into particles
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Figure 2.2: Approximations in the (a) FEM and (b) Meshfree Particle methods [66].

that have material properties and a spatial distance, called the smoothing length, over
which the material properties are “smoothed” by a kernel function, which is the integral
(continuous) approximation of a function or a derivative. These integrals are discretized
in terms of contributions from other particles within the domain.

SPH can model large deformation problems without mesh distortion and is able to
handle governing equations and constitutive models of geomaterials, since it is based
on continuum approximation. This has led to its use for several soil mechanics applica-
tions, including slope stability [5, 6, 42]. However, among other drawbacks, SPH exhibits
spatial instabilities, as a consequence of pointwise integration, and the fact that insuffi-
cient neighboring particles can cause inconsistencies [53]. Moreover, most existing SPH
simulations of granular flows suffer from significant stress oscillation during the post-
failure process [41].

Additionally, a general disadvantage of meshless methods is that node connectivity
depends on the particle positions, which, often, are updated at each time step, leading
to a high demand for CPU usage. Other meshless particle methods, such as Moving
Least Squares (MLS) and Element Free Galerkin (EFG), exhibit the same, fundamental,
drawback.

Figure 2.3: Background grid, material points and domain for the Material Point Method [15].
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2.1.3. MESH-BASED PARTICLE METHODS
A new category of numerical techniques has been developed in the last decades, labeled
Mesh-based Particle methods. These methods enjoy the flexibility of the particle meth-
ods in handling large deformations and the robust mathematical foundation of the tra-
ditional FEM.

The most popular one is the Material Point Method (MPM), which was born as a sim-
ple ALE method and was initially presented [54] as an expansion of the Particle-in-cell
(PIC) method, for flow modelling initially, and, later on, for application in solid mechan-
ics [55]. In PIC, materials are represented by particles, to which a mass and position
are assigned. The differentiation of MPM and the base idea is that the particles are also
given momentum and energy (Fig. 2.3). A fixed Eulerian grid is used for computations
based on an Updated Lagrangian description; after the variable mapping and the cal-
culation step (Updated Lagrangian phase), the material points are moved to their new
positions (convective phase) and the mesh is reset to its initial state. The Material Point
Method code developed in the geoengineering section of TU Delft has been proven to be
a useful tool for capturing pre- and post-failure slope behavior [58–60], despite some ex-
isting limitations, e.g. cell crossing noise, lowered accuracy due to constant forward and
backward mapping etc. While effort is being devoted on optimizing the current in-house
MPM code [26, 27], attention is also set on exploring the capabilities of other available
numerical techniques proposed in literature, through comparison with the already avail-
able MPM code.

Figure 2.4: Typical solution scheme in the Particle Finite Element Method [65].

Another promising tool of this category is the Particle Finite Element Method (PFEM)
[47], which uses constant mesh regeneration for dealing with large deformations. The
basic features of the method [12] are transmission of information by particles, which are
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used as the FEM mesh nodes, the constant update of the analysis domain, the instant,
implicit identification of domain boundaries and contact treatment during mesh gen-
eration. A typical solution scheme for the method is shown in Fig. 2.4. Although the
method was initially developed for Fluid-structure interaction (FSI), adaptations have
been made for use in solid mechanics problems and the encouraging results already
published, along with the relatively straightforward implementation, make this an at-
tractive alternative for numerical analysis of large deformation problems in soil mechan-
ics, including slope stability assessment.

2.2. THE PARTICLE FINITE ELEMENT METHOD

2.2.1. INTRODUCTION
The Particle Finite Element Method started out as an attempt to overcome the limita-
tions of existing Fluid-Structure Interaction (FSI) numerical modelling methods, espe-
cially the Arbitrary Lagrangian-Eulerian (ALE), which is considered as the most popular
one. The authors [47] managed to bypass most of the issues posed by ALE, by using a
Lagrangian description for the motion of both the solid and the fluid, able to capture
the constantly changing domain geometry and contact interfaces in problems of such
nature. The resulting formulation allows for tracking of the motion of all individual par-
ticles, which, in the work of the authors, are used as the nodes in a finite element mesh.
These “nodes” are allowed to move freely and even separate from the analysis domain,
resembling, e.g., water drops. The motion of separated particles is determined by their
initial velocity and the body force they are subjected to. This means that the analysis
domain and its boundaries are allowed to evolve, which is easily captured via frequent
remeshing.

A typical solution scheme in the PFEM, as presented in Fig. 2.4, involves the following
steps:

1. A cloud of particles, labeled C n , is given at time n.

2. The analysis domain, V n , is identified.

3. The domain is discretized into a finite element mesh, M n .

4. The state variables from the previous mesh M n−1 are mapped to the new mesh,
M n .

5. The discrete governing equations are solved in a standard FEM manner.

6. The positions of the particles are updated, based on (5), and a new cloud C n+1 is
obtained.

7. The procedure is repeated until the end of analysis time.

The main differences from classical FEM are the update of the analysis domain and
the boundary identification procedure at each time step; the rest of the computation
steps are identical to FEM.
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The main advantages of the method are its ability to capture large deformations with
accuracy, while automatically imposing boundary conditions and contact laws, enabling
the simulation of multiple body interaction. The primary drawback of the method is
the need for increased computational resources [53, 57], compared to other alternatives,
due to the frequent remeshing. However, the CPU time required during the remeshing
process is lower than the times needed for assembly and equation solving [46], and this
downside is expected to diminish as computer hardware becomes more powerful.

PFEM FOR SOLID MECHANICS

Despite being a young numerical method, the Particle Finite Element Method has al-
ready been used in many different applications. Although PFEM was initially developed
for tackling fluid-structure interaction problems, its features made it attractive for solid
mechanics applications, soon after it was first introduced [10, 43, 45]. The main differ-
ence between fluid and solid modelling in PFEM is the need for mapping of internal
variables between the old and new mesh in the latter, due to the use of history-depen-
dent materials. Constitutive laws that are evaluated at the integration points of elements
would be hard to incorporate into PFEM [17]; the constant mapping of stresses (and
other related variables) between Gauss points and particles, given that the latter are the
information carriers, would compromise the method‘s accuracy. Other differences be-
tween fluid and solid modelling are found in the way that the contact between various
domains and rigid boundaries is modelled and the enforcement of mass conservation.

Having employed various solutions for tackling the arising concerns, researchers have
been able to model a number of solid mechanics problems, including some of geotech-
nical nature. Only a few years after being introduced, PFEM has already been employed
to simulate problems involving material flows, e.g. granular flows and landslides [3,
16, 68], slope stability [65, 70], consolidation [36, 37], undrained object insertion, e.g.
CPT [35–37], tunneling and excavation [11, 13], etc. More particularly, on the topic of
slope stability, a variation of the method has been employed [70] to simulate progressive
failures of horizontally-based, sensitive clay slopes; they used a rate dependent com-
bination of viscous and elastoplastic constitutive models, to capture both the undis-
turbed and remoulded phases of the material, and transformed the mixed (displacement
-stress) formulation into a min-max optimization problem. The results, including failure
initiation and post-failure behavior, enhance the reliability of the method for modelling
such problems in soil mechanics, with use of advanced constitutive laws.

2.2.2. FORMULATION

The scope of this thesis is to compare the efficiency of the already built implicit MPM
code available in the Geo-Section of TU Delft with a similar PFEM formulation. There-
fore, the formulation of the PFEM will follow the derivation of the implicit material point
method (IMPM) [57], which is the basis for the aforementioned standard MPM code.
Moreover, the derivation of the implicit MPM code has been carried out using standard
FEM procedures [2], and because, as already discussed, PFEM essentially uses an FEM
technique for solution of the governing equations, the correspondence between the for-
mulation for the two methods should be straightforward.

The derivation [57] starts from the conservation of momentum
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ρa =∇σ+ρb (2.1)

where ρ is the material density, a is the acceleration, σ is the Cauchy stress tensor
and b are body forces (e.g. gravity forces).

For convenience, in the derivations provided below, the dynamic term is initially
omitted, meaning that the quasi-static formulation of the conservation of momentum
is used.

∇σ+ρb = 0 (2.2)

By application of the virtual displacement principle, the equilibrium at the next time
step for a given element of the spatial discretization can be expressed as∫

Ωt
e

S t+∆tδεt+∆t dΩ= R t+∆t
ext (2.3)

Where S is the second Piola-Kirchoff stress tensor, δε is the small strain tensor, Ω is
the domain under investigation, and Rext is the virtual work equal to the external forces
applied multiplied by the corresponding virtual displacement. Superscript (·)t+∆t refers
to the end of the time step and subscript e refers to the element being examined.

For large strain analysis, an objective strain tensor, such as the Green-Lagrange, could
be used and the higher order terms should be considered in the derivation of the govern-
ing equations. This is also the case for the original MPM formulation [57]. However, in
the MPM code under comparison the extra terms are neglected, under the assumption
of operating in small deformations, which is ensured by the constant mesh reset. The
same assumption is followed in this work, as, additionally, infinitesimal strains in the
elements in PFEM can be ensured by the frequent mesh regeneration employed.

The stress at time t +∆t can be calculated, considering an incremental solution pro-
cedure, as the stress at time t plus a stress increment.

S t+∆t = S t +∆σ (2.4)

Where, the stress at the current state is the Cauchy stress,

S t =σt (2.5)

The strain at time t +∆t is the incremental strain

δεt+∆t =∆ε (2.6)

Where, the incremental strain for infinitesimal strains is given by

∆ε= 1

2
(∇u + (∇u)T ) (2.7)

Where u is the displacement increment.
Substituting Eqs. 2.4 and 2.6 in Eq. 2.3, and expressing the product of the external

force with the virtual displacement at the current configuration as R t+∆t
ext , the following

expression is derived
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∫
Ωt

e

∆σδ∆εdΩ= F t+∆t
ext −

∫
Ωt

e

σtδ∆εdΩ (2.8)

SPATIAL DISCRETIZATION

The virtual displacement terms on both sides of Eq. 2.8 are eliminated, so a simple equa-
tion of force equilibrium is obtained. In order to solve this equation, it must be spatially
discretized. In PFEM, this is done in the same way as in traditional FEM, i.e. with use
of shape functions to approximate displacement within the element (continuum field)
with the nodal displacements.

[K ]t {u} = F t+∆t
ext −F t

i nt (2.9)

where vector F t
i nt holds the internal forces, calculated from the stresses at the beginning

of the time step,

F t
i nt =

∑
[B ]σdet (J )w (2.10)

For simple, constant strain triangles (CST), with one integration point, the stiffness
matrix of each element is calculated as

[k] = [B ]T [D][B ]det (J )w (2.11)

where [B] is the standard strain-displacement transformation matrix, holding the deriva-
tives of the shape functions, which are constant for the CST, [D] is the constitutive matrix,
[J] is the Jacobian matrix and w is the weighting of the integration point. All the quanti-
ties are evaluated at the position of the single integration point within each element.

DYNAMIC FORMULATION

The dynamic governing equation can be obtained by introducing an intertial term in
Eq. 2.9

[K ]t u + [M ]t at+∆t = F t+∆t
ext −F t

i nt (2.12)

where [M ]t is the mass matrix at time t. Using Newmark’s time integration scheme,
the velocity and displacement at the end of the time step can be computed by

v t+∆t = v t + [(1−γ)at +γat+∆t ]∆t (2.13)

ut+∆t = ut + v t∆t + [(
1

2
−β)at +βat+∆t ]∆t 2

u = v t∆t + [(
1

2
−β)at +βat+∆t ]∆t 2

(2.14)

The solution of Eq. 2.14 for at+∆t , after some manipulations, yields

at+∆t = u

β∆t 2 − v t

β∆t
− (

1

2β
−1)at (2.15)
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Eq. 2.15 is substituted in Eq. 2.12, which becomes

[K ]t u + [M ]t (
u

β∆t 2 − v t

β∆t
− (

1

2β
−1)at ) = F t+∆t

ext −F t
i nt

[K ]t u + [M ]t (
u

β∆t 2 ) = F t+∆t
ext −F t

i nt − [M ]t (− v t

β∆t
− (

1

2β
−1)at )

[K ]t u + [M ]t (
u

β∆t 2 ) = F t+∆t
ext −F t

i nt + [M ]t (at )

([K ]t + [M ]t

β∆t 2 )u = F t+∆t
ext −F t

i nt + [M ]t (at )

(2.16)

where, at has been defined as

at = v t

β∆t
+ (

1

2β
−1)at (2.17)

Finally, the final expressions for the stiffness matrix and the external force vector are
taken by

[K ]
t = [K ]t + [M ]t

β∆t 2 (2.18)

F
t+∆t
ext = F t+∆t

ext + [M ]t (at ) (2.19)

Eventually, the final dynamic equilibrium of the system can be written as

[K ]
t
u = F

t+∆t
ext −F t

i nt (2.20)

Eq. 2.20 is solved in every time step on the mesh nodes and the displacement of each
particle is obtained.

If the displacements are known, then, using Newmark’s scheme, the velocities and
accelerations of the particles can be also calculated. The new acceleration can be found
by Eq. 2.15. Then, the velocity can be found by Eq. 2.13.

The selected values for the Newmark’s scheme’s parameters in the analyses are β=
0.25 and γ= 0.5.

The mass matrix initially introduced in Eq. 2.12 is in a diagonal form:

[M ]t =



M11 0 . . . . . . 0
0 M22 0 . . . 0
...

...
. . .

...
...

...
...

...
. . . 0

0 . . . . . . 0 Mnn

 (2.21)

where n is the total number of equations. A lumped mass matrix is used, which is
straightforward for a low order element, such as the 3-noded triangle used in this work.
The contribution of each Gauss point g (hence, element, for CST) in the formation of
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the mass matrix for every degree of freedom k of node i associated with the element el is
given by [52]

mk
g = (ρAr ea)g

number o f nodesel
(2.22)

The density ρ of the integration point is calculated from the density of the particles,
using standard shape functions.





3
DOMAIN DISCRETIZATION

The Particle Finite Element Method can be crudely described as a conventional Finite
Element Analysis scheme, where the quality of the computational mesh is ensured by
performing constant remeshing. In this context, the analysis domain is of utmost im-
portance and is inextricably related with the efficiency of the method. The remeshing
procedure serves not only as a means for assessing the particle connectivity, but also for
identifying the domain boundaries, in order to impose the necessary boundary condi-
tions. Considering the need for frequent remeshing, sometimes performed in each time
step or even between iterations within the same time step, a fast and efficient meshing
procedure is required. Moreover, the importance of correct boundary definition for the
outcome of the analysis highlights the sensitivity of the method on the selected algo-
rithm. In this chapter, first an introduction on mesh classification and quality is per-
formed, followed by the presentation of the Delaunay triangulation, which is the tool
used for generating the mesh in all PFEM variations in literature. Then, the remeshing
procedure, which involves first the triangulation of the domain and then the boundary
identification via the α-shape method, are discussed. The influence of the latter pro-
cedure on the simulation is also demonstrated. Finally, the chapter closes with a pre-
sentation of the different schemes for improving the quality of the analysis domain, by
dynamically altering the number of particles throughout the course of the simulation.

3.1. BACKGROUND

In simple terms, the Particle Finite Element Method can be described as a conventional
FEM tool where the requirement for a quality mesh is satisfied by frequent remeshing.
Depending on the mesh type, different quality metrics are being used. Although the use
of simplicial meshes (triangles and tetrahedra) is predominant in PFEM in literature and
is also adopted in this work, a brief presentation of all the different types of FEM meshes
is done at this point, followed by a discussion on the criteria and the metrics used for
assessing their quality.

17
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3.1.1. MESH CLASSIFICATION

ELEMENT TYPES

A set of points in a 2D space can be joined either by simplicial (triangles) or non-simpli-
cial (quadrilaterals) elements; the simplicial element in three dimensions is the tetrahe-
dron and the non-simplicial the hexahedron. Non-simplicial elements are usually pre-
ferred when more accurate interpolations and approximations are needed. Considering
the simplest 2D elements in each case, a bi-linear quadrilateral (4 nodes) can produce a
linear strain/stress distribution within an element, which is, in general, preferable than
the constant strain field given by the 3-noded triangle. On the other hand, simplicial
meshes are easier -and faster- to generate; the generation of triangular meshes from a
given set of points is a much simpler procedure and a fine discretization can be em-
ployed to overcome their inherent disadvantage for handling areas of high stress/strain
gradients.

STRUCTURE

The structure of a mesh concerns the way that the element connectivity information is
stored. In a structured mesh, such as a regular orthogonal grid in 2D, the nodes are num-
bered in such a way that their connectivity can be recovered using simple operations.
Typically, every node is appointed corresponding i and j index values which are unique.
Then, the neighbours of node (i , j ) consist of all the combinations of (i ±1, j ±1). This
approach reduces the required computer storage significantly, shows better convergence
and can achieve higher resolution, but limits the versatility of the mesh topology. On the
other hand, unstructured meshes are more popular, owing to their ability to model more
complex shapes and provide better element shapes and the possibility to create quality
graded meshes. Usually, quadrilaterals are used for structured meshes, while triangles
are the elements of choice for unstructured grids.

GRADING

The element size in a computational mesh must be small enough to ensure accuracy
in the solution. The areas of interest in the numerical simulation of a physical phe-
nomenon, however, are usually limited to certain regions of the total domain. However,
in order to improve the accuracy at regions of interest and still maintain a relatively low
amount of unknowns, the distribution of points can be adjusted accordingly. This points
towards the use of smaller elements only where high accuracy is desired, reducing, in this
way, the computational cost of the simulation. Based on this, meshes are categorized as
graded or ungraded.

CONFORMALITY

Grid conformality comes into play when a graded mesh is selected. In such cases, tran-
sition zones are present between regions of different refinement and if all the nodes are
connected with each other, i.e. there are no “hanging” nodes, then the mesh is said to
be conforming. Zones of intense transition from coarse to finer parts of the mesh may
compromise the accuracy of the solution, especially when wave propagation is exam-
ined [31]. On the other hand, a non-conforming mesh may decrease the sparseness of
large linear systems and allow the use of higher-order elements in areas of interest; it
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requires, however, a different formulation and special treatment compared to the con-
ventional Finite Element approach. Typically, conforming meshes are used in practice,
as they are easier to generate and more general formulations are applicable.

3.1.2. MESH QUALITY
In general, a FEM mesh must cover some basic requirements; it has to conform as strictly
as possible with the object or simulation domain under consideration; ideally the size of
elements should adapt regarding the local response of the system, i.e. smaller elements
in places of interest and larger elements where no much “action” is expected; and the
shapes of the elements should be “acceptable”, e.g. skinny triangles are usually not pre-
ferred. This subsection presents some of the general conditions that a good Finite Ele-
ment mesh should meet, along with indexes that can be employed for the assessment of
the quality of the generated mesh.

REQUIREMENTS

The elements that comprise a mesh used in the Finite Element Method should fulfill
some requirements, regarding their geometrical properties, which are directly or indi-
rectly associated with the accuracy of the outcome of the analysis and the computational
cost. Focus will be put on two-dimensional elements.

The first two constraints regard the angles of the element. In general, too small or too
large angles should be avoided. Large angles lead to increase in the discretization error,
which is typically associated with the error in the gradient approximation. On the other
hand, small angles may lead to discrepancies in the calculation of the stiffness matrix of
an element; as an angle approaches zero, the largest eigenvalue of the stiffness matrix
approaches infinity.

The third condition comes into play when the computational cost of the simulation is
of high importance. In general, a finer discretization, i.e. smaller elements, is required at
points of interest, e.g. where high stresses are anticipated, while larger elements can be
used in other areas. Using small elements everywhere will increase the need for compu-
tational resources, while using large elements universally will compromise the accuracy
of the solution. The obvious way to meet this condition is using a graded mesh, placing
large and small elements accordingly.

The last requirement solely concerns dynamic simulations where an explicit time in-
tegration scheme is employed. The stability of such a scheme is governed by the Currant-
Friedrichs-Lewy (CFL) condition, according to which the time step used in the analysis
must be small enough, so that a disturbance of any kind, e.g.a wave, can not travel across
more than one element at one time step. This implies that, for explicit time integra-
tion, short-edged elements should be avoided, otherwise very small time steps would
be needed, resulting in large computational times, or spurious energy will accumulate,
compromising the performance of the numerical scheme. Apparently, this condition is
deemed irrelevant when an implicit time integration scheme is used, as in the present
thesis (see 2.2.2).

ELEMENT QUALITY METRICS

Different metrics are used for evaluating the quality of elements with different geome-
tries. Elements can be categorized as simplicial and non-simplicial; the former include
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Figure 3.1: Characteristic circles of a triangle. Left: Circumcircle. Right: min-containment circle.

triangles in two and tetrahedra in three dimensions and the latter consist of quadrilater-
als and hexahedra, correspondingly.

Regarding triangles, the two circles associated with a triangle are depicted in Fig. 3.1
and are unique for each triangle. The circumcircle is the circle that passes through all of
its vertices and the min-containment circle is the smallest circle passing through two of
the vertices and including the third and always has an edge as the diameter.

A simple, common metric for triangles is the radius-edge ratio, which is the ratio of
the radius of the circumcircle, i.e. the circumradius, over the length of the shortest edge.

α2D = Rc

lmi n
(3.1)

The lower bound of α value is 1p
3

and corresponds to an equilateral triangle. Smaller

values of α indicate better element quality.
Another representative index of a triangle’s shape (slenderness) is the ratio between

the radii of the circumscribed and the inscribed circles, Rc and Ri , respectively;

f = Rc

Ri
(3.2)

This ratio is 2 for equilateral triangles and greater than 2 for all other triangles. If any
of the angles of the triangle is greater than the other two, the ratio f increases, showing
that it comprises an efficient indicator of element distortion.

In three dimensions, the equivalent of the circumcircle for a tetrahedron is the cir-
cumsphere. However, the criterion in Eq. 3.1 is not suitable for tetrahedra, as the com-
putation of the circumradius in 3D is quite expensive and its value is highly sensitive to
even minor vertex perturbations. Instead, a different metric has been proposed [48], the
volume-length ratio

α3D = V

l 3
r ms

(3.3)

where lr ms is the root-mean-squared length of the six edges of the element. The maxi-
mum and optimal value of α3D , computed for an equilateral tetrahedron, is 1

6
p

2
, while
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a value of 0 corresponds to a degenerate tetrahedron; this means that higher values are
generally preferred.

3.1.3. DELAUNAY TRIANGULATION

BACKGROUND

Given a set of points N = {n1,n2,n3, . . . ,nn} in R3 (or R2 in 2D), the following definitions
can be given.

The Voronoi diagram is the partition of the space (R3 or R2) into regions Vi (Voronoi
cells), which may be either closed and convex or unbounded, with each region Vi being
associated with point ni and having the property that every point inside it is closer to ni

than any other point nk in the distribution. For each set of points N there is a unique
Voronoi diagram.

The Voronoi circle (or sphere in 3D) or simply empty circle is a circle inside which
there is no point belonging to N .

The convex hull of N is the minimum convex area that encloses all the points of N .
The dual graph of a plane graph, as the Voronoi diagram, is the graph that has a vertex

for each face of the plane graph. The different ways of connecting those vertices define
various types of dual graphs.

Considering the set of points N , a triangle is considered to be a Delaunay triangle,
if its vertices belong in N and no other points of N is inside the circumcircle of the
triangle; there is no limitation on the number of points on the circumcircle. If the only
points on the circumcircle are the vertices of the triangle, then the triangle is considered
to be strongly Delaunay.

The Delaunay Triangulation (DT) is the convex hull of the points of N in the Voronoi
diagram, in which every triangle is a Delaunay triangle, i.e. having an empty circumcir-
cle. The Delaunay Triangulation is the straight line dual graph of the Voronoi diagram,
i.e. the points on which the Voronoi diagram is constructed are connected with straight
lines. In other words, the correspondent of a Voronoi polygon is a Delaunay vertex, a
Voronoi edge corresponds to a Delaunay edge and a Voronoi vertex to a Delaunay tri-
angle. This duality is exploited for improvement of the initial Delaunay tessellation for
mesh generation.

PROPERTIES

Optimality The Delaunay Triangulation, in its original form, ensures some qualities of
the generated triangulation. More particularly, the minimum angle of all the triangles in
the tessellation is maximized. This property is related with the requirement for avoiding
small angles in the domain, as discussed in 3.1.2.1. Secondly, the largest circumcircle
of all the triangles is minimized. This means that the radius-edge ratio (Eq. 3.1) of the
triangles is decreased, approaching the value of the equilateral triangle; this leads to
better quality meshes. Finally, the largest mid-containment circle is minimized, which
also improves the triangle quality of the generated grid.

Uniqueness A Delaunay Triangulation is unique if and only if there are no more than
three points on a common empty circle. If there are, in example, four points on a cir-
cumcircle, then a degeneracy is generated and different combinations can be made, as
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Figure 3.2: Four points in an empty circle leading to two different triangulations.

seen in Fig. 3.2. This phenomenon can have an implication during remeshing, as minor
relative movement of adjacent vertices may lead to what is called a “flip”, i.e. the change
of the common edge of two adjacent triangles, with repercussions in the course of the
analysis (see 4.2).

CONSTRAINED DELAUNAY TRIANGULATION

In some cases, given a set of points for triangulation, there may be a requirement for a
prescribed connection between some of those points, which the original DT might miss.
This can be, for example, the boundary of a non-convex object. A constrained Delaunay
triangulation is used to impose the existence of those specified edges, which would not
be constructed by the original triangulation, without introducing new vertices. The ef-
fect of performing a constrained Delaunay triangulation is that the “Delaunay property”
of triangles, as described in 3.1.3, is relaxed, meaning that there may be points of the
given data set inside one of the circumcircles of the newly specified triangles. However,
the quality of the generated triangulation still remains high, enjoying similar optimality
properties to that of the original Delaunay Triangulation, in the sense that, among all tri-
angulations of the given data point set and the specified edges, the constrained Delaunay
triangulation will maximize the minimum angle and minimize the largest circumcircle
and the largest mid-containment circle of the triangulation (see 3.1.3.2).

3.2. MESHING PROCEDURE
The first step for (re)generating the computational mesh involves an initial assessment
of nodal connectivity with a Delaunay Triangulation (3.1.3). During the second step, any
irregular triangles that may be created from the DT have to be eliminated, in order to
enhance the quality of the mesh and determine the boundaries; this is done with the α-
shape method [22]. After the mesh is created and the incorrect elements are discarded,
separated particles and particles lying on the boundaries of the domain can be iden-
tified, so the boundary conditions and contact constraints can be imposed. In order
to showcase the meshing procedure, which is, typically, performed at each time step, a
demonstration is performed on the cloud of points C shown in Fig. 3.3.

3.2.1. INITIAL PARTITION

In the original form of the PFEM [47], the authors used a so-called Extended Delaunay
Tessellation (EDT) [9], which allows the combination of elements of different shapes, i.e.
polygons (or polyhedra in 3D) of different number of vertices. Such a choice increases
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Figure 3.3: Cloud of points C .

the implementation difficulty of the meshing procedure and the complexity of the nu-
merical method, as the EDT algorithm is not readily available online and special Mesh-
less Finite Element (MFEM) shape functions are required. This alternative did not enjoy
much popularity among researchers in the following years, who showed a preference for
the conventional DT. Thanks to its popularity, the algorithm for the simple DT used in
the thesis was found available online [7], with some manipulation needed to make the
code compatible with modern FORTRAN 90 compilers.

Figure 3.4: Initial Delaunay Triangulation.

As already mentioned, the Delaunay Triangulation is a popular technique for gen-
erating simple, two-dimensional, triangular meshes. The result is a conforming, un-
structured, ungraded, triangular mesh (3.1.1). The generated mesh consists of low-order
three-node triangles, with one integration point (Constant Strain Triangles – CST). This is
expected to introduce numerical instabilities, i.e. volumetric locking in incompressible
materials, therefore, either a stabilization treatment for FSI problems [17, 29] or mixed
formulations for solid mechanics problems [35, 67] have been proposed. However, such
issues were neglected in the present work. Moreover, the stress discontinuities between
elements caused by the low-order interpolation can be mitigated by reducing their size
in areas of interest, which, however, will unavoidably increase the times for meshing, as-
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sembly and solution. In any case, the drawbacks of using CST are counterbalanced by
the reduced computational times required for performing DT. This allows for generat-
ing adequately fine meshes, on which the performance of CST approaches that of higher
order, six-noded Linear Strain Triangles (LST).

In its simplest form, the algorithm creates all the possible connections between the
points of the cloud. Fig. 3.4 shows the results of the initial Delaunay Triangulation on the
initial cloud of points C in Fig. 3.3, where it is apparent that some unwanted elements
are also present. These include both the slender elements on the outer boundary on
the domain and the large – compared to the average element size - elements formed in
the internal cavity of the domain. These irregular triangles have to be discarded, for the
boundaries to be identified and for a final quality mesh, representative of the problem
domain, to be obtained. The next subsection discusses the required procedure.

3.2.2. α - SHAPE METHOD
In a numerical simulation, an important aspect for the consistency and the accuracy of
the solution is the correct determination of the analysis domain. This matter becomes
progressively important in fluid or flow-like simulations, e.g. a landslide; in this kind of
simulations, the boundary conditions are critical for the physical problem under consid-
eration, e.g. free surface (atmospheric) pressure in fluids, frictional (or any other contact
behavior) in solids, and the domain boundaries are prone to frequent change, even from
one step to the next. Moreover, the boundary identification must take into account both
the boundary of the domain and any particles separating or re-entering the domain. The
correct -and consistent - definition of the boundary surface of the domain is also an im-
portant step towards mass conservation throughout the analysis.

Sometimes, the external boundaries of a domain are explicitly defined, usually at the
beginning of the simulation, and the boundary nodes – or particles – are distinguished
from the internal nodes. However, in other situations, the only available information is
the cloud of points, based on which the domain boundaries must be determined. This
is also the case in the Particle Finite Element Method, where the boundary identification
is performed every time the mesh is “destroyed” and rebuilt, i.e. during remeshing.

In most of the implementations of the Particle Finite Element Method in literature,
the alpha-shape method is employed for defining the boundaries of the domain. Ac-
cording to a simple variation of the method [17] which is also employed in this thesis,
for every element generated by the initial Delaunay Triangulation, a geometrical index
similar to the one in Eq. 3.1, is calculated, based on

α= Rc

hav g
(3.4)

where Rc is the circumradius of the element and hav g the characteristic spacing of the
particle distribution. The procedure can be sped up if all the generated empty (Voronoi)
circles from the Delaunay Triangulation algorithm are stored. Then, the computed α

value is compared with a threshold value αl i m and, if the value is exceeded, the element
is discarded. After the incorrect triangles are removed, the domain boundary can be
determined. For a point in the cloud, if an empty circle (or sphere in 3D) of radius R
= αl i mhav g can be drawn that passes through it, then the point is considered to be on
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Figure 3.5: Boundary recognition based on cloud of points.

the boundary of the domain. The αl i m is the one used in the α-shape method. The
recovered boundary particles from the cloud of points C in Fig. 3.3 and αl i m = 1.2 are
shown in Fig. 3.5, indicated by blue stars.

The boundary surface in 2D is, then, defined by all the polygons (or polyhedral sur-
faces in 3D) having all their nodes on the boundary and belonging to just one polygon.
The error in the identification of the boundary surface using the α concept is propor-
tional to h [47], which is considered acceptable. The boundary surface determination
can only be made more precise by decreasing h, i.e. increasing the particle distribution
refinement.

The choice of αl i m is up to the user, a fact which introduces a subjectivity in the final
form of the domain and has a direct impact on mass conservation and, sometimes, the
overall result of the analysis, as will be shown later on (3.2.2.1, 4.3). Fig. 3.6 shows the
outcome of the alpha-shape method for different values of the αl i m value. It should be
noted that for the “ideal”, equilateral triangle, the value of α2D is 1/p3. For αl i m values
closer to 1/p3, more elements will be deleted, while as αl i m tends to infinity, the initial DT
is recovered. Typically, a value slightly higher than 1 is expected to return a representative
domain. However, a “correct” value of the parameter cannot be determined a priori, as
it the exact choice is case-specific, i.e. dependent on the problem being modelled. As
an example, for static and dynamic simulations on purely cohesive or purely frictional
solids, a value of αl i m in the range of 1.4-1.6 is suggested [67]; a value around 1.3 is
proposed [23] for fluid modelling.

EFFECT OF SELECTED αl i m

The effect of the choice of the αl i m parameter in the outcome of a simulation is show-
cased in a simple example. A specimen with dimensions 10 cm by 20 cm and a notch
on its left side, shown in Fig. 3.7, is subjected to an upward displacement on its top side.
The bottom particles are completely fixed and the horizontal movement of the top side
particles is also restricted. An upward prescribed displacement is imposed at the top in
steps of 0.75 mm, with remeshing taking place at the end of each loading step. The same
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Figure 3.6: Outcome of α-shape method for different values of αl i m .

problem is analyzed for three different values of αl i m , namely 1.1, 1.2 and 1.4, and the
developed reaction force at the bottom is plotted in Fig. 3.10.

As shown in the top row of Fig. 3.8, the impact of the choice of αl i m begins from
the initial mesh, as it appears that the initial triangulation at the notch is different; for
α= 1.1, the elements on the inside of the notch are deleted during the α−shape step,
while for larger values, they are preserved. The saw-like edges of the notch angle are a
result of the α−shape method as well. As the simulation proceeds, a new mesh is con-
structed at every step, with the Delaunay triangulation, followed by the α−method for
deletion of incorrect elements. In the top row of Fig. 3.8, the result of the remeshing
procedure after 48 mm of displacement at the top is shown, where it appears that the
α−method for α = 1.1 has “decided” to delete the outer element at the notch, while for
higher values these elements are preserved. This is typical for the rest of the simulation.
The particle positions at different times in the analysis for the different values of the pa-
rameter are shown in Fig. 3.9.

In general, the value of αl i m can be seen as an index of the maximum distortion
allowed in the elements, with lower values allowing less distortion. This governs the
node topology connecting the top and bottom side of the specimen, i.e. above and below
the notch, i.e. higher values ofαl i m allow the connecting elements to be more stretched.
In Fig. 3.10, it appears that the higher values of αl i m result in the connection of the
two parts lasting longer, resulting in a higher reaction force at the base. This trend is in
qualitative agreement with publications investigating a similar application [51]. From
this example, it becomes apparent that the choice of αl i m can be crucial in the overall
response of the system.
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Figure 3.7: Specimen with notch on one side subjected to upward extension.

Figure 3.8: Closeup of the mesh at the notch of the generated mesh at the beginning of the analysis (top) and
at an intermediate step (bottom), for two values of αl i m .

The α-shape method described is directly applicable to ungraded meshes and can
be adapted for graded meshes as well. This can be done by introducing a local hav g

to different areas of the domain, even to each particle separately. In this way, for each
element, the ratio α is computed using the averaged hmi n of all the particles/nodes of
the element and compared to the limit value αl i m defined by the user. The extension to
graded meshes is, however, beyond the scope of the project.

Fluctuations of the domain boundary between time steps may introduce volume and
mass errors in the system. Researchers have acknowledged the negative impact that
the dynamic boundary surface during remeshing has on the conservation of the system.
To this end, the use of a constrained DT (3.1.3.3) to mitigate volume oscillations dur-
ing boundary reconstruction has been proposed [19, 49]. This can be done using the
boundary surface defined at the initial stage or at previous time steps. However, enforc-
ing a constrained DT is not always possible, especially in cases where complex material
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Figure 3.9: Snapshots during stretching of notched specimen for different values of αl i m .
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Figure 3.10: Basal reaction force during stretching of notched specimen for different values of αl i m .

flow takes place and in some 3D applications. To overcome this, a combination of a
non-constrained DT with the alpha shape technique and other techniques to preserve
the boundary contour has also been proposed [49].

3.2.3. SEPARATED PARTICLES

During the α-shape method (3.2.2), the particles separating from the domain are also
identified. If all the elements to which a particle belonged to where destroyed during the
α-shape algorithm, then the particle is considered to be “separated”. The particle main-
tains its properties and state and is, also, assigned the total mass of the deleted elements
to which it belonged, in order to preserve the total system mass [17]. After separation, the
particle moves based on the body force and the initial velocity it had at the end of pre-
vious step. At each subsequent mesh regeneration, the separated particle will become a
vertex during the initial Delaunay Triangulation and, if the generated elements are not
eliminated during theα-shape algorithm, then the particle will re-enter the domain. The
separation and re-incorporation of particles in the domain introduce some oscillations
in the system volume and, thus, mass, which will be discussed later on section 4.3.

For thermal diffusion and convection modelling in fluids with PFEM, two possible
ways for treating a particle that has separated from the main computational domain
have been recovered [1]; one choice is to conserve the same temperature as in the end
of the previous step, while the second is to assign to it the temperature of the external
medium on which it now lies. In both cases, it is suggested that the particle should move
according to gravity forces, maintaining a constant temperature.

3.2.4. REMESHING CRITERION

In its original form [47], the authors of PFEM suggested that the remeshing procedure
should be performed at every time step. The rapid motion of fluids, which was the pri-
mary material type under consideration in the early implementations of the method,
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leads to faster and more severe mesh distortion, compared to solids. Later on, however,
in order to save on computational time and limit the inaccuracies caused by information
mapping (see 4.2), the idea of using remeshing criteria was proposed. However, such cri-
teria have not been defined explicitly in literature, with one exception [17]. A criterion
based on the global mesh distortion has been proposed, making use of the quality metric
for triangles of Eq. 3.1. According to this criterion, which is, however, proposed for fluid
simulations, at the end of each time step, after the particle positions are updated, the in-
dex of distortion is computed for each element and, then, a global average is calculated
for the whole mesh, based on

β= 1

Nel

Nel∑
e=1

βe (3.5)

This is compared to a threshold value, βl i m , and if the limit is exceeded, the remesh-
ing procedure is performed. The choice of βl i m is up to the user and, should be selected
with respect to the adopted αl i m value. The use of an averaged global index may not be
very efficient in solid (and, specifically, soil) mechanics applications, where local mesh
distortion, usually due to shearing, may appear. To overcome this limitation, without
resorting to constant remeshing at every time step, different remeshing criteria can be
useful.

3.3. DYNAMIC PARTICLE DISCRETIZATION
In PFEM, particles are allowed to move freely, increasing the possibility of two parti-
cles occupying the same space or the development of regions of sparsely located par-
ticles. The numerical instabilities arising from these phenomena, e.g. high gradients,
have been observed by researchers working on both fluid and solid mechanics problems.
Some of the introduced criteria, either geometrical or mechanical, for the addition, re-
moval or reposition of “problematic” particles and proposed ways of handling their in-
formation. Nonetheless, this phenomenon of particle superposition is more likely to
happen in a closed domain, where the particles are not allowed to move completely
freely and cover a different, larger area.

3.3.1. PARTICLE ADDITION AND REMOVAL
For simulation of fluid-structure interaction, it has been suggested [30] that every body
(domain) under consideration could be macro-discretized in areas of variable h = h(x),
where h is an index of the magnitude of the generated gradients of the continuum field.
This concept is similar to the concept of graded meshes used in conventional FEM, and
can be introduced in particle methods via “joining”, i.e. turning two particles into one,
or “breaking”, e.g. splitting one particle into two, based on their spacing and the required
gradient. More particularly, considering a variable h(x) distribution inside the analysis
domain, during every remeshing procedure, the following check is performed:

1. If there is an empty sphere (circle in 2D) of radius r>Λh(x), a new particle is in-
troduced at the center of the sphere (circle) and its variables and properties are
interpolated from surrounding particles. Λ is a parameter depending on the di-

mensions of the analysis, and is given by Λ= 1.1
p

ndi m
2 . It is also noted that the
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Figure 3.11: Particle distributions at two different times during a fluid-structure interaction simulation, using
the joining and breaking particles concept for the fluid domain (after [30]).

parameterΛ should be selected with respect with the α parameter from the alpha
shape method, in order to avoid implications.

2. If there is a point x in the domain with h(x) with at least a particle closer than d <
λh(x), where λ = 0.5, then there is no need to insert a particle in position x.

An example of the application of this technique is shown in Fig. 3.11, where the par-
ticle distribution during two different times of the simulation of a sinking tanker are
shown. At the beginning of the analysis, particles are accumulated close to the surface of
the fluid, where the focus is. As the ship sinks, particles are inserted deeper in the fluid
to capture the response of the system.

Regarding solid mechanics, the first mention of the possibility of dynamically chang-
ing the number of particles in the domain in order to increase the stability of the solution,
through mitigation of the instabilities caused by perturbations in the generated bound-
aries during remeshing was done in [18]; the suggestions were based on geometrical
criteria introduced in [32].

The insertion of particles is determined in elemental level and uses different criteria
for interior and boundary elements. Initially, for all elements, a reference (triangular)
element of area w is used. Based on that, for each element i of area αi a size index is
calculated by

τsi ze = α

w
(3.6)

Specifying a related tolerance τi ns
l i m , if τsi ze

i > τi ns
l i m then a particle must be added in

element i. For interior elements, the new particle is inserted at the barycenter of the
element, as shown in Fig. 3.12. For boundary elements, an additional criterion is used
for the position of the new particle; after deciding if a particle must be inserted inside
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Figure 3.12: Addition of particles in internal (top) and boundary (bottom) elements, after [18].

a boundary element j, based on the size criterion presented above, the exact position of
insertion must be decided. This decision is made based on the geometry of the element,
taking into account that elements with large aspect ratios are undesirable, based on the
criterion of Eq. 3.2. Again, a relative tolerance ftol must be determined; boundary el-
ements that pass the first criterion are subjected to the second criterion, to decide on
the final position of the newly inserted particle. If the calculated f j is smaller than the
tolerance, then a particle is added in the barycenter of the boundary element, similarly
to the interior elements; otherwise, the particle is inserted in the middle of the longest
side of the triangle, i.e. opposite of the largest angle (Fig. 3.12).

In contrast to the criteria for particle addition, which were element-related, the check
for particle removal is nodal-based. Again, a discrimination is done between internal
and boundary particles. The two criteria are shown in Fig. 3.13.

For interior particles, after the size indexes αi for all elements have been calculated,
according to Eq. 3.6, an average value is assigned to each particle, based on its neigh-
bouring elements, per

τsi ze
nod al =

1

nnb

nnb∑
i=1

αi

wi
(3.7)

Where nnb is the number of neighboring particles of each examined point. This value
is compared for each particle with a user-determined tolerance value, i.e. f r em

tol , and, if
greater, then the particle is removed.

On the other hand, if the distance between two boundary particles is less than a spec-
ified tolerance, i.e. l < l r em

tol , then the two particles collapse into one particle, which in-
herits their averaged information, including among other their coordinates.

Another approach is proposed [50] for simulation of metal chip formation in steel
cutting, a process associated with plastic shear bands. The authors realized adding or
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Figure 3.13: Criteria for internal (a) and boundary (b) particle removal, after [18].

removing particles and, therefore, information points inside the domain based solely
on geometric criteria could introduce instabilities in the numerical scheme, especially
when the history of the domain is important. To overcome problems with mesh dis-
tortion, they are the only researchers, to the author‘s knowledge, who introduced me-
chanical criteria, along with geometrical, for addition and removal of particles form the
domain.

The geometrical criteria are related to the characteristic distance h of the particles,
with a similar principle as the solutions presented in [18], except for the fact that all of
them are nodal-based. Regarding particle insertion, a particle is added at the center of an
internal element’s circumsphere or at its sides and on the middle of a boundary segment
that is larger than a prescribed tolerance. The deletion of elements is based on similar
criteria, i.e. removing closely spaced internal or boundary particles.

The mechanical criteria apply on both particle insertion and removal. For the first
case, the distribution of mechanical power is used as a metric. Based on this, the me-
chanical power over an element is computed and compared with its neighbours. If it
exceeds a certain threshold, then a new particle is inserted at the center of the element,
so that the power is more evenly distributed (see left of Fig. 3.14). Newly inserted parti-
cles acquire their information through an interpolation procedure. On the other hand,
the authors based their mechanical criterion for particle removal on error estimators
of plastic strain values or the norm of isochoric stress; low values of error indicate that
there is not something “interesting” taking place at a certain region, meaning that the
mesh can be coarsened, as seen on the right part of Fig. 3.14. When a particle is removed
from the domain, its information is lost for the rest of the analysis, but not before the
required interpolations during remeshing have taken place, so as to maintain a certain
degree of accuracy. The authors also suggest that the refinement procedure can either be
applied to the whole domain or in certain areas of interest, which would be the vicinity
of the cutting tool in a cutting simulation, or the failure plane in a slope instability anal-
ysis. An example of the outcome of the dynamic discretization of the domain is shown
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Figure 3.14: Mechanical criteria for the addition (left) and removal (right) of particles during remeshing, after
[50].

Figure 3.15: Example of particle refinement during a steel cutting simulation, taken from [50].

in Fig. 3.15, during a simulation of metal cutting.

3.3.2. PARTICLE REPOSITION
The particle reposition was addressed in [1] for modelling thermal convection-diffusion
in a fluid, and was suggested that when two particles get too close to each other, at the
point of superposition, then their information may be lost or smoothed and the mesh
quality will deteriorate. The proposed solution was to keep track of the relative positions
between all particles using a backround grid, which would increase computational cost,
and if the distance between a pair of them falls below a certain threshold, then one of the
two should be repositioned in another area of the domain with lower particle density,
where the problem variables will be interpolated based on a standard linear projection.
Supposedly, this reintroduction -instead of deletion- of the particle is proposed in order
to maintain the same number of particles.
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Figure 3.16: Laplacial smoothing procedure (after [34]).

Once the domain is reconstructed through remeshing, the quality of the new mesh is
examined in a second phase, in order to avoid remaining distortion of the new elements
[18]. The check is performed on the basis of an algebraic quality metric given in [32] and
takes into account both the size and the shape of each element. This metric is computed
for each element and, then, transferred to the nodes in an averaged sense. If the com-
puted nodal value is lower than a specified tolerance, then the particle is repositioned,
based on Laplacian smoothing (Fig. 3.16).

Correct application of dynamic particle discretization can be crucial in reducing the
computational requirements of the simulation significantly and increasing the accuracy
of the solution. The study of this sophisticated, albeit rarely documented, feature of the
Particle Finite Element Method is not extended in this thesis beyond a literature investi-
gation. However, it is highly recommended that it is examined in more depth by future
research on PFEM.
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As already mentioned, the PFEM was initially developed for modelling fluid-structure
interaction problems and its early-stage features were tailor-made for this kind of prob-
lems. After the encouraging results in this field, it was not long before the method caught
the attention of researchers from other disciplines, mainly solid mechanics. However,
this meant that the method had to be adapted in order to be able to handle the dif-
ferent nature of each problem. These adjustments are mainly associated with the way
that body-body and body-boundary interaction is treated, the handling of information
throughout the simulation and the special treatment needed for conserving mass in the
analysis.

Despite being a quite young numerical scheme, interestingly, even a brief litera-
ture investigation will reveal the numerous different implementations adopted by re-
searchers, depending on the problem to be simulated and the focus of the analysis.
From the above it becomes apparent that there is not one single variation of the method
which can be studied and, subsequently, implemented and investigated further. In this
chapter, the various approaches used in literature for different types of problems are in-
vestigated. For each one, first, a literature review is performed to highlight the various
approaches, with special remarks on the differences between fluid and solid modelling.
Then, the ones deemed most suitable and applicable on this project are implemented
and assessed.

4.1. CONTACT TREATMENT

4.1.1. BACKGROUND
A main differentiation of PFEM from conventional FEM, which is also considered an
attractive feature that adds versatility, is its ability to automatically track contact inter-
faces between domains during each remeshing step and, thus, apply contact laws in a
straightforward manner. Among the techniques used in the literature for the different
possible contact scenarios, the most popular one is the generation of contact elements.
These contact elements are used either as special elements that participate in the system
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Figure 4.1: Generation of contact elements for fluid modelling (after [17]).

of equations, e.g. through contributions in the stiffness matrix, or as indicators of which
particles might interact with another domain. The enforced boundary restrictions typ-
ically involve denying penetration and allowing separation in the normal direction and
friction, slip or stick behavior in the tangential direction.

The idea of using interface elements is common for both fluid and solid modelling.
However, they are being employed in a different fashion. When fluids are modelled, any
generated contact elements automatically become fluid elements, as shown in Fig. 4.1,
with the same properties and behavior as the elements of the main domain. The incom-
pressibility condition in the governing equations of the fluid ensures no-penetration in
the normal direction and a stick or slip condition is applied in the tangential direction.
However, the creation or deletion of fluid elements at the interface introduce volume
and, thus, mass variations in the system, as will be discussed later on, in section 4.3.

On the other hand, when solids are modelled, the contact elements are used in a
different way. The interface between bodies or between a body and a rigid boundary
is treated as a continuum itself, with elements of special properties contributing in the
system of equations. As an example, elements with density ρ = 0 and Poisson‘s ratio v =
0, that are only activated when compressed have been used [12]. The interface has the
same dimensions as the domains under consideration; this contradicts the conventional
approaches, where the interface is of one dimension lower than the domains, e.g. for a
2D analysis, the contact interface is treated as one-dimensional (line).

4.1.2. IMPLEMENTATION
In this project, a simple adaptation of a contact algorithm based on different imple-
mentations available in literature is developed, for a number of reasons. First of all,
the main scope of the project is to compare the basic features of PFEM and MPM and
contact treatment is not of outmost importance. Moreover, at this stage, contact is con-
sidered only between the solid domain and the rigid boundaries, which remain con-
stant throughout the analysis. Additionally, only normal contact, i.e. no penetration and
free separation, is considered adequate. Finally, the lack of extensive documentation
on the matter available in literature and time limitations for completion of the project
suggested that a simple, yet effective contact algorithm should suffice at this point.

The adopted implementation for contact treatment is presented in the next subsec-
tions, starting with the interface mesh generation, followed by the formulation and a
brief validation on some simple benchmark problems.
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Figure 4.2: Interface mesh generation and contact detection at each time step [30].

INTERFACE MESH GENERATION

In order to treat contact, the contact elements are automatically generated during the
remeshing procedure. After the steps of section 3.2 are completed and the boundary
particles of each domain are identified, another meshing procedure is carried out, using
these boundary particles and any nodes on the rigid boundaries of the model. Identically
to what is the case for the analysis domains, first a Delaunay Triangulation and then the
alpha-shape method for deletion of distorted elements are performed; any elements that
are preserved after this sequence constitute the “interface mesh”. An example of contact
anticipation is shown in Fig. 4.2. The created contact elements can be used either for
contact detection or be incorporated in the solution domain.

FORMULATION

The main concept of the developed contact technique is to disallow movement towards
the rigid boundary in the normal direction of contact. This is done by increasing the
stiffness in said direction. As shown in Fig. 4.3, the contact face of a contact element is
defined as the segment between the two nodes of the element belonging to the same
“body”, i.e. the domain or the rigid boundary surface at this case. Then, the normal vec-
tor is defined at the projection of the third node on the face. Essentially, the method im-
poses a “zero” prescribed displacement in the direction normal to the interface, which,
in the cases examined herein, coincides with the rigid boundaries.

In order to calculate the contact element stiffness, the displacement field u for each
contact element is projected on the direction of the normal to the contact faces. This can
be written as

un = (u ·n1) ·n1 = Pu (4.1)

where n1 is the unit normal vector to the contact surface. Following the notation
proposed in [62] and adopted in [11], the superscript (·)1 denotes the body on which the
unit normal vector is found and the overline (·) indicates that it is calculated at the “min-
imum distance point”. This last term is more applicable to curved interfaces; however,
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Figure 4.3: Sketch of contact elements in the interface between the domain and a rigid boundary surface.

here, the contact surfaces are divided into linear segments. For the 2D case, the unit
normal vector is given by

n1 = {nx ny }T (4.2)

and

P = n1 ⊗n1 =
{

nx

ny
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The projected displacement can be written as
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The 2D displacement field for a point inside an element with m nodes, using linear
shape functions, is approximated as
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where vector e holds the nodal displacements. The projection of the approximated dis-
placement field can be written as
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(4.6)

The stiffness matrix of the contact element is constructed in the same way as the
stiffness matrix for a usual, domain element (Eq. 2.11). The only difference is that a
modified strain-displacement matrix constructed with the derivatives of the terms in
[Sn] and a special constitutive matrix Dcont , which is constructed with v = 0 and the
Young‘s modulus of the contact element, are used.

[k]cont = [B n]T [Dcont ][B n]det (J )w (4.7)

The above relationships “distribute” the stiffness of the contact element to the x and y
components accordingly. As an example, a contact element with a completely horizontal
contact face, e.g. element 4 in Fig. 4.3, will contribute only in the stiffness along the y
degree of freedom of the associated domain particle; similarly, element 2 will contribute
only in the x direction.

The stiffness of the contact elements needs to be significantly higher than that of the
domain elements, in order to ensure no-penetration. Several approaches were tested,
but

Econt act = (Edomai n)v (4.8)

with v ≥ 2, proved to be the most efficient.
Despite the limitation of implicit time integration schemes for dealing with impact

problems, the contact treatment algorithm can be adjusted to address these phenom-
ena. More specifically, an adaptive time step may be introduced, which will take into
account the velocities in the domain and a characteristic contact dimension, e.g. the
“contact detection clearance”. Then, during the simulation, an iterative procedure may
be utilized for examining whether impact is about to happen and decrease the time step
accordingly for as long as collision takes place. Furthermore, in order to take into ac-
count the relative velocity and the different stiffness of the colliding bodies, a different
relationship for the stiffness of the contact elements can be used [11]. This adaptive stiff-
ness modulus can also help as a means of damping for the dynamic oscillations that may
occur during the highly non-linear event of body impact.
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Figure 4.4: Flowchart for Active Contact Loop.

ACTIVE CONTACT LOOP

In order to utilize the contact elements and enforce the contact constraints, a so-called
“active contact loop” is performed, based on the concept presented in [11]. The flowchart
of the scheme is shown in Fig. 4.4 and a sketch of the concept in Fig. 4.5. The two subsets
of elements will be explicitly referred to as “domain” and “contact” elements.

Initially, at the beginning of each time step, the global stiffness matrix is assembled
for the domain elements and the interface mesh is generated, as already described. At
first, all contact elements are marked as “active”, meaning that they contribute in the
global stiffness matrix and are included in the A set. At the beginning of each contact
iteration, the stiffness contribution of all active contact elements from A is calculated
and added to the global stiffness matrix. Then, the system of equations can be solved,
in a standard manner. After the solution is obtained, the stresses at all the contact el-
ements are retrieved and the ones under tension are flagged and sent to the subset T
(red in Fig. 4.5). As the contact elements used in this method are only allowed to work
under compression, i.e. to block penetration, any contact elements belonging to T are
discarded for the next contact iteration and they do not contribute in the global stiff-
ness; only the green elements will be considered. The procedure is repeated until the
compressed contact elements are above a limit percentage, here taken as 95%.
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Figure 4.5: Sketch for Active Contact Loop

VALIDATION

At this point, the proposed contact implementation is validated against some simple
benchmark problems, for which either analytical or numerical solutions are available.
The scope of this step is to prove that the presented formulation for contact treatment
is suitable for normal and tangential movement with respect to the rigid boundaries.
These examples will be also used for validating the implicit formulation of the governing
equations presented in section 2.2.2.

1D Column Compression The first problem concerns the one-dimensional compres-
sion of a column and compared to a UL-FEM solution [57], that is considered capable of
providing good results for large deformations, albeit small strains. Replicating the sim-
ulation parameters of the benchmark solution, so that a direct comparison may be pos-
sible, the column is 10 meters high and 1 m wide, plane strain conditions are assumed
and the material of the column is taken to be linear elastic, with a Young’s modulus of 10
MPa and a Poisson‘s ratio v = 0.3. Moreover, a total load of 10 MPa is applied at the top,
in 40 increments of equal load, i.e. 0.25 MPa per step.

The initial configuration of the particles is shown on the left in Fig. 4.6. A total of 800
particles are used in the analysis, a discretization coarse enough to facilitate the demon-
stration of the movement of the domain boundaries and interface and fine enough to
not lead to severe distortion in the contact elements. In the center and right of the same
figure, snapshots of the column at different times in the simulation are given, with close-
ups of the interface elements. It should be noted that the results are depicted at the end
of the respective load step, which is why the contact elements appear distorted. In gen-
eral, the interface mesh is reconstructed at the end of each step. The configuration of
the column at the end of the analysis is shown on the right, where the column height
has been reduced by more than half and the particles are densely positioned close to the
fixed end.

The agreement of the load-displacement curve in Fig. 4.7 with the UL-FEM results
proves the ability of contact elements to allow particles to move freely perpendicular to
their face, while disallowing any normal movement.
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Figure 4.6: Different snapshots during 1D compression of a column, using the implemented contact
formulation of PFEM. Closeups of the contact elements that allow free tangential movement are also shown.

Figure 4.7: Load displacement curve for 1D compression of a column, using the implemented contact
formulation of PFEM.
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Figure 4.8: Sketch of the axisymmetric cylinder submitted to outward displacement at its inner wall.

Axisymmetric Cylinder The second quasi-static problem examined is the axisymmet-
ric cylinder with a fixed outer wall subjected to outward displacement at its inner wall
(Fig. 4.8). The analytical solution is available for this problem; for a given displacement

u =C1r +C2
1

r
(4.9)

The radial stresses can be recovered by

σr r =+A
1

r 2 +2C (4.10)

where

A =− EC2

1+ v
(4.11)

C =− EC1

2(1+ v)(1−2v)
(4.12)

An outward prescribed displacement is applied at the inner wall of the cylinder in
20 steps of 0.0226 m, summing up to a total of 0.47 m. The initial particle distribution
inside the cylinder is shown on the top part of Fig. 4.9; half of the total displacement is
applied at the middle snapshot and the bottom one shows the accumulation of particles
towards the outer wall, at the end of the analysis. In all three cases, the red points indi-
cate the fixed boundary nodes, on the basis of which the interface elements (green) are
constructed. The stress evolution inside the cylinder for this two moments in the simula-
tion is plotted in Fig. 4.16, in terms of the radial stress across a cross section at the middle
height of the body. The retrieved stresses show a very good agreement with the analytical
solution, indicating that the contact elements do not interfere with the outcome of the
analysis at all.
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Figure 4.9: Snapshots during the compression of a thick wall axisymmetric cylinder.

Figure 4.10: Comparison of numerical and analytical radial stresses at a cross section across the cylinder, for
two different displacements at the inner wall.



4.1. CONTACT TREATMENT

4

47

Axial Vibration of a Continuum Bar The first two cases concerned quasi-static appli-
cations. The free vibration of a continuous bar is considered at this point. The bottom
end of the bar (x = 0) is fixed, the top end (x = L) is free and an initial velocity is prescribed
in the bar. The eigenvalue for normal modes of oscillation is given by

βn = (2n −1)π

2L
, n = 1,2,3, . . . (4.13)

The frequency of oscillation is related to the eigenvalue and is given by

fn = βn

2π
cv (4.14)

where cv is the wave speed and is a function of the material stiffness E and density ρ

cv =
√

E

ρ
(4.15)

The initial velocity along the bar is given by

v(x,0) = v0si n(βn x) (4.16)

Then, the analytical solutions for the displacement and the velocity are given in the
next two equations, respectively

u(x, t ) = v0

ωn
si n(ωn t )si n(βn x) (4.17)

v(x, t ) = v0cos(ωn t )si n(βn x) (4.18)

The first mode of oscillation is examined here, for which the eigenvalue and fre-
quency are given (for n = 1) by

β1 = π

2L
(4.19)

f1 = c

2ρL
(4.20)

A sketch of the examined problem and the initial velocity distribution for the 1st
mode are depicted in Fig. 4.11.

The height of the bar is L = 1 m and its width is b = 0.1 m. The bar has a Young‘s modu-
lus E = 100 kPa and a densityρ = 1 tn/m3. An initial downward velocity of v0 = 0.25 m/sec
is prescribed at the top. The simulation is run for three different time steps, ∆t = 0.1 sec,
∆t = 0.01 sec and ∆t = 0.001 sec. Regarding contact elements, the bottom elements are
not considered in the active contact loop (4.1.2.3), and, are, instead, taken to be active
throughout the simulation.

A total of 100 particles are distributed in the domain. Focus is put on the velocity at
particle A (free end) of the bar, which is compared with the available analytical solution,
and at the stress evolution at an integration point B (fixed end) of the bar, with the two
points shown in the sketch of Fig. 4.11.
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Figure 4.11: Sketch of the bar under axial vibration and distribution of the initial velocity for the 1st mode of
vibration.

Figure 4.12: Velocity over time at point A.

Figure 4.13: Axial stress evolution at point B.
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From Fig. 4.12, it appears that the velocity for∆t = 0.01 sec and∆t = 0.001 sec agrees
with the analytical solution perfectly. For the largest time step, the velocity at the free end
of the bar shows a completely different frequency from the analytical solution. Similar
behavior is observed for the stresses at point B, shown in Fig. 4.13. Even though there
is not an analytical solution available for the stresses, the results for ∆t = 0.01 sec and
∆t = 0.001 sec demonstrate an agreement with each other, while for∆t = 0.1 sec the fre-
quency and amplitudes of the oscillation are in disagreement. Nonetheless, it appears
from the above results that the developed contact algorithm is suitable for dealing with
simple dynamic problems.

The results from the three problems examined in this subsection indicate that the
implicit formulation presented in 2.2.2 and the adopted contact implementation are ca-
pable for simulating linear elastic system responses for simple applications, encouraging
their use for other applications in the report. More advanced contact models can also be
formulated to capture more complex interaction scenarios and be used on the basis of
the constructed interface mesh; additionally, the contact algorithm can be manipulated
to consider body-body interaction as well, which is not, however, in the scope of this
work.

4.2. INFORMATION MAPPING

4.2.1. INTRODUCTION

Another main differentiation between modelling of fluids and solids in the Particle Fi-
nite Element Method can be found in the way that the information is handled. In the
early implementations of the method, where fluid motions were mainly simulated, the
interest was on nodal variables, such as velocity, pressure, etc. These are computed at
the nodes of the FEM mesh, which coincide with the particles, therefore, storing them
and transferring between meshes is straightforward.

For solid mechanics problems, however, when usually non-linear material behavior
is modelled, the handling of elemental variables becomes also relevant. This is because
the history of stresses, strains, constitutive variables and material properties, which are
computed inside the element, hence, termed internal, is important for correctly cap-
turing the behavior of solid materials. Therefore, a proper technique for storage and
transference of this information that minimizes the errors in the accuracy of the method
is required. This is a crucial and controversial matter for the PFEM, judging by the lack of
a unique operation in literature. At this point, a study on the most popular information
handling schemes used by researchers is performed, along with a brief investigation on
the efficiency of some of them.

4.2.2. NODAL SMOOTHING

The first [10] approach, which stills remains the most popular [11, 13, 44, 45, 51], was to
stay in the spirit of PFEM and follow the convention used typically in particle methods,
where all the information is stored in the particles. According to this technique, termed
nodal smoothing, the stresses (and all other internal variables) are calculated at every
step in the Gauss points and the values are mapped back to the particles, in an averaged
sense, in order to generate a continuous stress field. The scheme is shown left in Fig. 4.14.
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Figure 4.14: Flowchart of the nodal smoothing operation (particles - elements - particles). Left: original
scheme. Right: modified scheme.

This is expected to introduce some smoothing in the information, trimming extremely
low or high values.

Researchers identified that this high degree of smoothing can be reduced by modify-
ing the initial scheme. After the initial mapping of the nodal stresses to the integration
points, assembly and solution of equations, instead of transferring the newly computed
stresses at the elements to the particles, only the averaged increments of the stresses
(or any other relative variable) are mapped back to the particles. The flowchart for this
modified transfer scheme is shown on the right of Fig. 4.14. The error that accumulates
through the analysis is limited to the smoothing of the stress (or any other variable) in-
crement. Another drawback of the method, besides smoothing, is that the mapping is
performed everywhere, even in regions where the mesh does not change, leading to the
equilibrium previously achieved being disturbed.

In order to showcase the smoothing of information, the axisymmetric cylinder com-
pression problem is examined. A total displacement of 0.0226 m is applied at the free
side of the cylinder, either in one step or in 10 equal increments. The problem is simu-
lated with two different discretizations, one with 39 particles and one with 137, shown
in Fig. 4.15, on the left and right, respectively. In each case, focus is put on the evolution
of the radial stress σr r on a cross section in the center of the cylinder and on two Gauss
points, the one closest to the fixed wall and the one closest to the inner wall, labeled A
and B.

The radial stresses at the mid-height cross section for the 1-step scenario are plotted
in Fig. 4.16, for both discretizations. The blue curve shows the calculated stress right
after solution and the purple curve corresponds to the recovered stresses after two-way
mapping, i.e. the increments are mapped to adjoint particles and then mapped back to
the Gauss points.

The stresses at the free end (point A), which are the highest in the domain, show a
significant decrease, as a result of the smoothing taking place during the mapping pro-
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Figure 4.15: Two different discretizations for the axisymmetric cylinder compression.

Figure 4.16: Radial stresses at the integration points after solution and after nodal smoothing, for two
different discretizations for the axisymmetric cylinder compression. Left: 39 particles. Right: 137 particles.

cedure, increasing the error compared to the analytical solution. More specifically, for
the coarser mesh, the recovered stress shows a decrease of -5.3% from the computed and
a difference from the analytical of -11.8%. Close to the fixed end, the respective values
are 1.3% and 2.5%, indicating an increase in the minimum stress.

For the finer discretization, at the right graph, the smoothing effect is partly reduced,
but still evident, especially where stresses are higher. After the displacement is applied in
one step, the recovered radial stress at the free end is 3.3% lower than the initially com-
puted value and -6.9% from the analytical solution. Close to the fixed end (point B), the
recovered stress is increased by 0.6% compared to the initial one and is 1.1% higher than
the analytical. However, in both cases, the smoothed line shows a better approximation
to the analytical solution towards the middle of the cylinder

The plot in Fig. 4.17 shows the development of the deviation of the computed stresses
from the analytical solution close to the free end (point A), for the case of constant map-
ping and the case where no mapping takes place, i.e. the historical stresses are stored
at the Gauss points. In the latter case, the accumulated radial stress is underestimated
with a constant rate around 3.5%, which can be attributed to the use of constant strain
triangles and a rather coarse mesh; the former case shows a greater error in the built-up
stresses, as a result of the smoothing of extreme values during nodal mapping. It should
be noted that although the percentage remains constant for higher values of stress, the
difference in absolute terms increases.
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Figure 4.17: Deviation of the computed radial stresses from the analytical solution with and without nodal
smoothing.

From the example presented above, it becomes apparent that a certain amount of
information smoothing takes place when the stresses are stored in the particles, which
is expected to have further implications in the solution when the recovered stresses are
used to compute the internal forces. However, the smoothing effect is mitigated for finer
discretizations, making the “nodal smoothing” scheme the most preferable in solid me-
chanics applications with PFEM. Nonetheless, the impact of this operation will be fur-
ther studied in this work.

4.2.3. MESH PROJECTION

The “nodal smoothing” scheme presented in the previous subsection has been the most
popular in the implementations of PFEM for solid mechanics. However, in recent pub-
lications [19, 24, 35, 36, 49], a different approach has emerged, aiming in reducing the
unavoidable perturbation of equilibrium and the computational cost; the latter refers to
the fact that more computer memory space is required for storing the additional particle
information.

According to this mapping rule, termed either mesh projection or centroid transfer,
the computed information at the integration points is not related with the particles at
all, but is, instead, transferred between integration points of the old and the new mesh
directly. Every integration point of the new mesh inherits the information from the ele-
ment of the old mesh with the nearest centroid to it. In contrast with the particle storage
technique, the information in this approach is preserved for elements that have not been
altered during remeshing, minimizing the introduced disturbance of equilibrium, as the
transfer of information is limited only in areas of large deformation.

The computational cost of this method comes from the tool used for finding the clos-
est centroid to a new integration point. Optimized algorithms, instead of a brute force
approach, can reduce the required times significantly. In any case, if the “mesh projec-
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Figure 4.18: Example of edge flip during remeshing, causing perturbation in the previously achieved
equilibrium.

tion” technique is used, the transference needs to take place every time a new mesh is
created, which may not occur at every time step, making this scheme more attractive in
computational resources terms.

An issue with the method is the handling of information for deleted or newly in-
serted integration points. As an example, in the notch problem examined in 3.2.2.1,
when the elements close to the notch are deleted during remeshing because of the α-
shape method, the stresses (and any additional information) at the integration points of
these elements will be wiped from the analysis. On the opposite case, if the specimen
was under compression instead of extension, which would lead to the notch closing,
then new elements would be inserted in the domain. These elements would inherit in-
formation based on their closest existing elements of the previous mesh, which would
lead to disturbance in the equilibrium.

Another common occurrence observed in the “mesh projection” scheme is the edge
flip, depicted in Fig. 4.18, where a two-triangle configuration is examined. After the so-
lution of the equations, the derived deformed state is seen in the middle of the figure,
with the node connectivity defined at the beginning of the time step. If a remeshing pro-
cedure takes place, the Delaunay triangulation will flip the internal edge of the triangles,
in order to maximize the minimum angles of the mesh (3.1.3.2). Then, the history of the
variables in the new integration points is inherited from the close centroid of the two
deformed, old elements. Subsequently, this flip of edges and information will disturb
the equilibrium that was achieved at the end of the previous time step and will be mani-
fested in the calculation of internal forces. This phenomenon cannot be avoided, but its
effect is strictly local and can be reduced, if the remeshing frequency is moderated.

4.2.4. OTHER METHODS

LEAST INTERPOLATION TECHNIQUE

Besides the “mesh projection” technique presented above, [35] proposed another trans-
fer operator, which makes use of a least interpolation procedure. According to this ap-
proach, the value of a certain variable at a new integration point in the new mesh is
computed based on the values at elements of the previous mesh which overlapped the
same area. In other words, the new value is the average of the elements that overlapped
its position, averaged in terms of the overlapping area. This method has two drawbacks;
firstly, the newly calculated stresses may be outside the yield surface, which would re-
quire a yield correction algorithm, increasing the complexity and computational cost
of the scheme; the second disadvantage is, as in “mesh projection”, that the equilib-
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rium reached at the previous time step is violated, which, however, the authors explicitly
choose to ignore.

UNIQUE ELEMENT METHOD

The Unique Element Method (UEM), initially proposed in [28], has been employed for the
transfer operation in [66]. For this method, first, for each new integration point the host
element of the old mesh is found. Then, the information is transferred from the Gauss
points of that element in terms of distance-based weighted contributions. This method
is reported to have quite good accuracy, but requires more than 1 integration points to
be effective. For the single-integration point elements used in the PFEM formulation of
this work, the UEM essentially degenerates to the “mesh projection” operation (4.2.3).

SMOOTHED PARTICLE FINITE ELEMENT METHOD

The principles of the PFEM and the Smoothed Finite Element Method (SFEM) [64], were
combined in [65] to develop the Smoothed Particle Finite Element Method (SPFEM). In
SFEM, the strain (and, consequently, the stress) field is recovered by splitting the domain
into so-called smoothing domains and applying a strain smoothing technique, i.e. after
partition of the domain into “smoothing” subdomains and with introduction of the di-
vergence theorem, a (constant) strain is computed for each smoothing domain based on
the values of the shape functions (not their derivatives or gradients) and the displace-
ment on points on the boundaries of the smoothing domains. This means that Gauss
integration and stress recovery are redundant and that lower quality mesh and severe
mesh distortion are allowed. Thanks to the use of smoothing sub-domains in this tech-
nique, all the information is calculated in the particles, meaning that there is no need
for any mapping of information that reduces the accuracy of the results. However, given
that it is a very young implementation, there is not enough evidence further supporting
the efficiency of the method in large deformation problems.

4.3. MASS CONSERVATION

4.3.1. INTRODUCTION
As in every numerical tool for simulation of physical problems, the conservation of mass
throughout the analysis is a fundamental issue and must be considered with care. As op-
posed to other particle methods, such as the Material Point Method, were a fixed mass
is assigned to the particles at the beginning of the simulation and, thus, conserved nat-
urally, in the Particle Finite Element Method, the particles are given a density at the start
of the analysis. Then, the total mass is evaluated at each time by integrating the density
over the domain

M =
∫
ρdV (4.21)

This allows for constructing areas with different particle refinement, in contrast with
MPM, where the material points must be positioned with care in order for the mass to be
distributed evenly inside the domain. On the downside, in its original form, the PFEM
scheme does not guarantee mass conservation exactly, as mass variations are introduced
by unwanted oscillations in the computed density or changes in the domain volume,
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Figure 4.19: Causes of mass oscillation during re-meshing (after [23]).

either by numerical reasons or generated during remeshing. At this point, focus is put
on the latter.

When all the elements that are associated with a certain particle are deleted during
a remeshing step, then all the mass of these elements is assigned to the particle, which
is let to move based on its current velocity and subject to body forces. When the particle
rejoins the domain, the mass that is added to the main domain is not precisely the mass
of the particle, but is, instead, the mass of the newly created elements that connect the
particle with the domain; these two phenomena compensate each other in such a way
that the total mass variation is insignificant [17]. However, these variations have a toll on
the conservation of momentum as well, as the momentum that is added to the system
when the particle re-attaches is not the same the particle had when moving on its own.

In the following, the differences between FSI and solid mechanics problems regard-
ing mass conservation are presented.

4.3.2. FLUID MECHANICS
In fluid mechanics modelling with PFEM, there are three main causes of mass conser-
vation violations. Firstly, as usually incompressible fluids are modelled, ρ is kept con-
stant. However, the way of enforcing the incompressibility constraint for fluid flows may
contribute to mass conservation violations, usually mass reduction [14]. In view of over-
coming this discrepancy, stabilization terms may be introduced in the equation of mass
conservation [71].

Moreover, the main reasons that introduce volume variations in PFEM during remesh-
ing have been listed in [23], some of which are displayed in Fig. 4.19. The volume varia-
tions practically occur due to element creation and deletion and are directly related with
the choice of the αl i m value for the alpha-shape method (3.2.2), as was mentioned. As
can be seen in Fig. 4.19, volume and, hence, mass is increased when new elements are
created as cavities close and particles re-enter the domain. On the other hand, mass is
lost when particles separate from the domain or from local distortion of the free sur-
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face. The average of these fluctuations results in volume increase most of the times, as
reported by the authors.

Finally, in fluids, as already discussed, contact is treated by introducing fluid ele-
ments at the contact interface. These elements behave as regular fluid elements, with
mass, which means that, when a fluid and a solid body come close enough to generate
contact elements, mass will be added to the system; on the opposite, when the bod-
ies drift away and the contact elements are discarded during interface mesh generation,
the system mass will be decreased. These oscillations in the system mass can affect the
solution, but monitoring and filtering them throughout the simulation is quite straight-
forward. However, the authors conclude that these problems tend to decrease with finer
meshes and a correct selection of the αl i m parameter.

4.3.3. SOLID MECHANICS
In solid mechanics, the density is updated based on the mass conservation law, which in
Lagrangian description is given by

ρ = ρ0

det (F )
(4.22)

where

F = I + (∇u)T (4.23)

is the deformation gradient. After the equations are solved and the displacements are
obtained, the deformation gradient at each integration point can be computed and used
to update the Gauss point density. In this context, the choice of the transfer process
of Gauss points variables, including density, (see 4.2) could play an important role in
mass conservation [38]. This factor, however, becomes less crucial for soil mechanics
applications, since the highest degree of mesh distortion occurs when shearing takes
place and the material reaches incompressible critical state conditions, thus, changes in
density are less evident.

Overlooking the effects of density, the emphasis here is put on volume variations.
Although the examples in Fig. 4.19 refer to fluid modelling, similar phenomena may oc-
cur in solid modelling. However, these phenomena are more intense in fluid modelling,
which is logical as it is more possible for “water drops” to separate and re-enter in the
domain, and cavities to be created. In solid mechanics, volume variations are mainly
caused by changes in the domain boundaries during remeshing, as in the example at
the bottom left of Fig. 4.19. As already mentioned in 3.2, a constrained Delaunay tri-
angulation has been proposed [19, 49] in order to eradicate such changes in the domain
boundaries. Overall, the mass conservation issue is merely addressed by the authors that
use PFEM for solid mechanics. As an exception, a reference is made in [66], where the
author suggests that the volume oscillations due to changes in the free boundaries can
be mitigated by updating theαl i m accordingly at each remeshing step. More particularly,
the proposed relationship is

αn
l i m = m0

mn α
0
l i m (4.24)
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where, m is the total mass in the domain and the superscripts (·)0 and (·)n denote the
values are assessed at times t0 and tn , respectively. The author employed this scheme
for the numerical simulation of a real-case landslide and reports that the total mass did
not demonstrate a variation greater than 2% throughout the analysis.

Figure 4.20: Volume variations during stretching of the notched specimen, for different αl i m values.

The effect of the αl i m parameter in the system volume during remeshing can be wit-
nessed in the notched specimen extension examined in 3.2.2.1. The plot in Fig. 4.20
indicates the different evolution of the domain volume throughout the analysis, based
on the selection of the mesh distortion threshold value.

The evolution of the domain volume follows a similar trend with the reaction force
(Fig. 3.10). Initially, for alphaαl i m = 1.2 andαl i m = 1.4, the volume is slightly higher, due
to the elements on the notch, which are deleted for αl i m = 1.1 at the initial triangulation
at step 0. The higher values ofαl i m lead to a prolonged extension of the specimen, which
results in a higher degree of volume increase, for a longer period. When the specimen
starts splitting, the domain volume starts to decrease, due to the deletion of those highly
distorted elements. When all of the connecting elements are gone, the volume suddenly
drops and is stabilized at a value slightly lower than the initial; this is due to the volume
of the elements at the notch being removed from the domain during the simulation.
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COMPARISON WITH THE MATERIAL

POINT METHOD

The Material Point Method and the Particle Finite Element Method are the two most
popular mesh-based particle methods, going through their 3rd and 2nd decade, respec-
tively, since they were first introduced. Ever since, they have been employed for various
applications, with MPM, however, being more widely used. The two methods share two
common, fundamental features. First and foremost, the information is assigned, stored
and tracked in certain points, labeled particles or material points, the motion of which is
followed throughout the analysis. The second feature is that a typical Finite Element for-
mulation is employed and a standard FE mesh is used to solve the equations of motion
and update the positions and other, relevant variables of these particles. On the other
hand, there are some crucial differences between them, mainly concerning the com-
putational cycle at each time step, the computation of derivatives and the treatment of
information. These special characteristics are the main topic of discussion in this chap-
ter.

The first part of the chapter includes a brief presentation of the Material Point Method,
with some brief comments on its advantages and drawbacks. Then, the implementation
of MPM that is available in the Geo-Section of TU Delft and was used in this work is pre-
sented. This is based on a standard MPM formulation, but some modifications are also
examined. In the main part of the chapter, a comparison between the two methods is
performed. This concerns a brief discussion on the fundamental processes of the two
methods, followed by a comparison on the results yielded by the two methods for ba-
sic solid mechanics applications. Finally, an investigation on the computational cost of
each method is performed and some suggestions are made.
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5.1. MATERIAL POINT METHOD

5.1.1. GENERAL
A brief presentation of the Material Point Method was done in 2.1. The method can
be described as a hybrid Eulerian–Lagrangian approach, which uses moving material
points to represent the material under investigation and the nodes on a background
mesh for computations. At the beginning of the analysis, initial values of position, ve-
locity, mass, volume and stress (and any other required internal variable) are assigned to
the material points and are updated throughout the analysis. Moreover, depending on
the nature of the simulated problem and material, additional parameters, such as tem-
perature, pressure and others, can be also appointed to the particles. The background
Eulerian grid covers the solid in its initial configuration and must be dimensioned to
sufficiently include the whole region where the solid is expected to move. Moreover, the
background grid also allows interaction of the body with other solid bodies or fluids.

Typically, every time step of the method involves the following processes, as shown
in Fig. 5.1.

1. The variables are mapped from the material points to the background mesh grid.

2. The equations are solved in an Updated-Lagrangian fashion.

3. The material points are moved to their new positions and the mesh is reset back
to its original form.

Figure 5.1: Computational cycle of MPM [56].

The Material Point Method has gained a lot of popularity in recent years, which can
be easily justified by its significant merits. The primary advantage of MPM is that it can
easily handle large deformation problems without any mesh tangling or distortion is-
sues, thanks to the continuous reset of the background grid. Another important aspect
is the implicit satisfaction of mass conservation, as the mass is appointed to the material
points and remains constant throughout the analysis. Additionally, different material
properties and constitutive models can be assigned to each material point, allowing for
investigation of problems involving heterogeneity. Regarding contact treatment, inter-
penetration between different domains is excluded in the standard MPM formulation,
since the velocity of each material point is single-valued. Moreover, during analysis, the
discretization of the domain can be adjusted by adding or removing material points, as
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there is no coupling between the particles and the Eulerian grid. Finally, the implemen-
tation of the method is not very burdensome, owing to the adoption of features from
conventional FEM.

On the downside, the MPM lacks in efficiency compared to the FEM, due to the con-
tinuous backward and forward mapping between particles and nodes and the decreased
accuracy of particle quadrature, i.e. evaluation of the integrals at the positions of the ma-
terial points, compared to the Gauss quadrature in FEM. Additionally, stress oscillations
are introduced during cell crossing of material points. This issue is partially mitigated by
employing the Generalized Interpolation Material Point (GIMP) or the Composite MPM
(CMPM) [27], which use special shape functions for assembly and stress recovery.

5.1.2. ADOPTED IMPLEMENTATION
The available implementation of the Material Point Method, which will be used for com-
parison with the PFEM, uses an implicit integration scheme [60]. In the available imple-
mentation, the initial geometry is generated based on the input from the user. In each
element of the background grid, four material points are inserted in the positions of the
Gauss integration points. Moreover, at the beginning of the analysis, a second set of el-
ements is generated adjacent to the active mesh; this is done for covering the area on
which the material points may migrate throughout the simulation.

FORMULATION

The formulation used for the general MPM is based on the Implicit FEM, presented in
2.2.2. The difference between the conventional FEM and the MPM is the way that the
stiffness and mass matrices are assembled, where in the latter, the material points con-
tribute in terms of a particle quadrature, instead of the standard Gaussian quadrature.

More specifically, a consistent mass matrix is assembled using the material points
masses and standard FEM shape functions. Regarding the stiffness matrix, instead of
Eq. 2.11, the contribution for each element in MPM is given by

[k] =
Sp∑

p=1
[B(xp )]T [D]p [B(xp )]WpVp (5.1)

where xp is the particle position, at which the strain-displacement matrix B is evaluated,
Wp is the integration weighting of the particle, Vp the particle volume and Sp the total
number of material points within the element. As the stiffness matrix is obviously de-
pendent on Sn , overly stiff or soft elements may appear in cases of element crossing. In
order to avoid such phenomena, a modification in the weighting coefficient [26] of the
material points, based on the number of particles inside each element, is examined. The
modified coefficients are given as

Wp = V∑ep

p=1 Vp

(5.2)

where, V is the element volume and ep is the number of material points inside the el-
ement. In the following analyses, both the standard MPM with unmodified weighting
coefficients and the modified version will be considered.
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STRESS UPDATE

Based on the calculated velocity, the material points are moved to their new positions,
where the new stresses are calculated. This is called the Update Stress Last (USL) [8]
approach. The alternative is the Update Stress First (USF) technique, in which the nodal
velocities are first used to update the particle stresses, which are then used to compute
the internal force vector and solve the equations of motion, before updating the particle
positions. In general, USL shows a loss of energy in the system over time, while USF leads
to energy increase.

5.2. COMPARISON

5.2.1. PRINCIPLES

The two mesh-based particle methods, MPM and PFEM, share a common trait, which
differentiates them from the conventional FEM; the material properties are not attached
to the elements, but are, instead, associated with the material points in the former and
the particles in the latter. Another difference with the classical FEM is the way the mesh
is treated; in MPM, the mesh is reset at the end of each calculation cycle, while in PFEM
the nodal connectivity is reset and reassembled during each remeshing step.

A main differentiation between the Material Point Method and the conventional FEM
is the location at which the (standard FEM) shape functions and their derivatives are
computed, for calculations of the stiffness matrix and the internal load vector and re-
covery of the stresses. In the latter, this is done in the optimized Gauss point locations,
while in the standard MPM formulation the sub-optimal current positions of the mate-
rial points are used, using the same weighting coefficients for all points. This leads po-
tentially to severe stress oscillations and discontinuities, and becomes crucial especially
in cases where advanced constitutive models are used, related with variables sensitive to
this kind of phenomena. These effects are intensified when loading is applied in incre-
ments and material points cross between cells.

Additionally, in dynamic applications with MPM, variables such as mass, velocity
and momentum are mapped from the material points to the grid nodes at every time
step and the computed solutions are transferred back to the material points, using the
shape functions. This two-way mapping taking place in each time step is expected to
cause some problems in the accuracy of the method.

On the other hand, the Particle Finite Element Method adopts the standard FEM pro-
cedures on this matter, so any inaccuracies in the assembly of the stiffness matrix and
the stress recovery are avoided. However, the accuracy of the solution might be compro-
mised during stress mapping between different meshes, where a perturbation of equilib-
rium is caused and may be manifested during the assembly of the internal loads vector.
Considering the frequency of this mapping, which takes place either every time step or
every a few time steps, depending on the chosen method (see 4.2), the error in the so-
lution of the system may accumulate in a higher or lower degree during the analysis.
Moreover, the recovered stress distribution in the domain is deteriorated by the stress
discontinuities caused between elements, due to the use of simple, linear triangles, but
can be improved by refining the mesh, especially in areas of high stress gradients.
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5.2.2. NUMERICAL RESULTS
At this point, the matters discussed in the previous section are put to the test, as the
two methods are compared on simple quasi-static and dynamic problems. Two bench-
mark problems, in which the internal forces play an important role in the outcome, are
the 1D column compression and the axial bar vibration, that were already examined
in section 4.1.2. These problems are simulated with the PFEM and the MPM. For the
Particle Finite Element Method scheme, remeshing is performed at every step and the
nodal smoothing (see 4.2.2) scheme is used for storing the stresses. As already discussed
(4.2.2), this mapping operation is expected to introduce some smoothing on the recov-
ered stresses in the system. On the other hand, both the standard and modified MPM
5.2 are used.

1D COLUMN COMPRESSION

In a 1D compression problem, a uniform stress field is expected, i.e. the axial stresses
in the whole column must be equal to the applied load on top. The stress development
at a particle on the bottom and one at the top of the column are shown in Fig. 5.2. For
the PFEM, the recovered stresses are in perfect agreement with the applied pressure at
the top. On the other hand, the results with the original MPM are problematic. More
specifically, the stresses at the top of the column are constantly overestimated, while the
opposite is the case for the material points close to the fixed end. As soon as the sec-
ond from top row of material points crosses over the element below, the stiffness in the
domain is distributed disproportionally, leading to the formation of overly stiff or soft
elements, which results in erroneous calculations of stresses (left at Fig. 5.4). As a result,
the load-displacement response for the standard MPM does not agree with the UL-FEM
results (red dashed line in Fig. 5.3). This issue can be overcome for this simple type of
problem by employing the modified MPM, through adjustment of the weighting coeffi-
cients of the material points according to Eq. 5.2. The results are drastically improved
in this case, both in terms of stress evolution (Fig. 5.2) and load-displacement response
(yellow line in Fig. 5.3). The difference in the computed stiffness and the recovered
stresses for the two MPM schemes is shown in Fig. 5.4, while Fig. 5.5 depicts the final
deposition of particles at the end of loading for the three methods.

Figure 5.2: Axial stress development for the 1D column compression problem, with different numerical
methods. Left: topside (free end). Right: bottom (fixed end).
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Figure 5.3: Load-displacement curves for the 1D column compression problem, with different numerical
methods.

Figure 5.4: Impact of cell crossing on the stiffness and recovered stresses for MPM. Left: standard MPM. Right:
modified MPM.
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Figure 5.5: Final deposit of particles for column compression.

AXIAL VIBRATION OF CONTINUUM BAR

At this point, the dynamic problem of a bar vibrating freely along its axial direction is
examined. The bar is given an initial velocity, i.e. kinetic energy, based on which is de-
formed; the kinetic energy, then, is transformed into strain energy, which forces the bar
to return to its original state. In this kind of problem, the calculation of internal forces
plays an important role in capturing the response of the system. Both the 1st and 2nd
mode of vibration are considered.

Emphasis is put on the developed velocities and stresses both at the free end and
close to the fixed end of the bar, and on the total energy conservation in the system. The
last one is computed at each time as

E t+∆t
tot al = E t+∆t

ki n +E t+∆t
str ai n (5.3)

Where the kinetic energy of the system is given by

E t+∆t
ki n = 1

2

np∑
i=1

mt+∆t
p v t+∆t

p (5.4)

Where p refers to the particle; the strain energy of the system at any point in the simula-
tion is calculated at the Gauss points, according to

E t+∆t
str ai n = E t

str ai n +
tot al i .p.∑

i=1
Vi
σt+∆t

i +σt
i

2
: δεi (5.5)

After the shortcomings of standard MPM where demonstrated in the 1D compres-
sion problem, in the following, only the modified MPM will be considered and compared
with the PFEM results.
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Figure 5.6: Comparison of velocity evolution between modified MPM and PFEM and the analytical solution,
for the 1st mode of oscillation and v0 = 0.25m/s. Left: close to the fixed end. Right: free end.

Figure 5.7: Axial stress evolution with modified MPM and PFEM, for the 1st mode of oscillation and
v0 = 0.25m/s. Left: full time scale. Right: beginning of vibration.

1st Mode of Vibration Two scenarios were tested, one with an initial velocity of -0.25
m/s and one with -0.5 m/s. A time step of ∆t = 0.001 sec is chosen for output visual-
ization purposes, even though both methods have proven to be effective for larger time
steps (see [57], 4.1.2.4).

Focus is put on the velocity at particle A (free end) of the bar, which is compared
with the available analytical solution, and at the stress evolution at an integration point
B (fixed end) of the bar, with the two points shown in the sketch of Fig. 4.11.

First, the bar is given an initial velocity of -0.25 m/sec, with the minus sign indicating
a downward initial velocity. The initial velocity distribution in the bar for the first mode
is given in Fig. 4.11. The results in terms of velocity, plotted for both points in Fig. 5.6,
are in perfect agreement between the two methods and the analytical solution.

Regarding stress evolution, as a comparison, the PFEM without information map-
ping is also plotted (Fig. 5.8). The two methods show a very good agreement for point B
at the bottom of the bar. However, in point A, there is serious deviation in the calculated
stresses with PFEM, shown in Fig. 5.7 with the blue curve, not only in the magnitude, but
also in the direction, i.e. tension and compression; a phase drift is evident. To elaborate,
it appears that for PFEM with “nodal smoothing”, as already discussed, the extreme val-



5.2. COMPARISON

5

67

Figure 5.8: Axial stress evolution at the fixed end of the bar with modified MPM and PFEM, for the 1st mode of
oscillation and v0 = 0.25m/s.

ues of internal variables are smoothed during the two-way mapping. This means that
the equilibrium previously achieved at the top elements is disturbed and the internal
forces are now off-balance. The internal forces acting on the top nodes are higher after
mapping the historic stresses from the particles to the integration points, which results
in the top row of particles moving slightly less than the particles immediately below; this
results in the top element being extended, instead of compressed. This anomaly in the
internal forces goes on until the end of the analysis, with the same period as in the vibra-
tion of the system. Despite this phenomenon not affecting the outcome of the analysis in
terms of kinematic variables, as the top row of particles, i.e. A, shows perfect agreement
with the analytical solution, it might influence the credibility of the method in applica-
tions where stress recovery is of utmost importance. On the other hand, MPM does not
oscillate around 0, meaning that when the bar returns at its original shape, the stresses
at the top row of elements do not go back to zero, indicating a residual tension.

Finally, the total energy oscillation curves are plotted in Fig. 5.9; the blue line, corre-
sponding to PFEM, shows a noteworthy loss of energy, amounting up to 2.5% by the end
of the analysis, while the MPM shows a very small decrease in energy, less than 0.3%.

When the initial velocity at the top is -0.5 m/sec, the system response in MPM be-
comes unstable, as shown in Fig. 5.10. The difference between the two scenarios is that
in the second one the initial velocity is enough to cause in MPM the second row of mate-
rial points from the top to cross over to the element below. This occurrence seems to be
causing an instability in the system, which is manifested in the spikes in the velocity at
both the free and fixed end, with the former showing more intense deviations; however,
the frequency of the vibration is captured. Moreover, in dynamic problems, information
associated with the mass of the material points is also mapped to the grid nodes, besides
the internal forces and the stiffness, inflicting further accumulation of error.

In terms of stresses at the free end of the bar (Fig. 5.11), the stresses predicted by
the modified MPM become very unstable, with the frequency being hardly captured and
the unrealistic extremes, especially in the first cycles. The PFEM with nodal smoothing



5

68 5. COMPARISON WITH THE MATERIAL POINT METHOD

Figure 5.9: Total energy oscillations observed in the bar with the modified MPM and PFEM with nodal
smoothing, for the 1st mode of oscillation and v0 = 0.25m/s.

Figure 5.10: Comparison of velocity evolution between modified MPM and PFEM and the analytical solution,
for the 1st mode of oscillation and v0 = 0.5m/s. Left: close to the fixed end. Right: free end.

Figure 5.11: Axial stress evolution at the free end of the bar with modified MPM and PFEM, for the 1st mode of
oscillation and v0 = 0.5m/s.
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Figure 5.12: Total energy oscillations observed in the bar with the modified MPM and PFEM with nodal
smoothing, for the 1st mode of oscillation and v0 = 0.5m/s.

exhibits a similar phase drift as was observed for v0 = -0.25 m/sec in Fig. 5.7.
The total energy loss percentage is plotted in Fig. 5.12. The PFEM response is al-

most identical with the results in Fig. 5.9, while the modified MPM curve (in red) demon-
strates a quite unstable behavior, with unrealistic energy gains and losses in the system
throughout the analysis. This comes to show that the PFEM is expected to demonstrate
a rather stable response, regardless of the initial conditions of the problem, while the
modified MPM is highly dependent on the initial state of the system, in this case, the
initial velocity.

2nd Mode of Vibration For the second mode of vibration, the eigenvalue and eigen-
frequency of the oscillation are computed by substituting n = 2 in Eq. 4.13. Again, two
different scenarios were tested, one with v0 = -0.25 m/s and one with v0 = -0.75 m/s,
with the latter being selected in such a way to cause cell-crossing in MPM. In Figs. 5.13
and 5.14, the energy loss in the system for the two scenarios is plotted. For v0 = -0.25
m/s, in Fig. 5.13, the dashed red curve shows that the energy loss in MPM is less intense
compared to the PFEM solution with the same discretization (dashed blue curve). Refin-
ing the discretization (same colors, dotted lines) reduces the energy losses significantly,
with MPM still showing a better behavior.

For higher initial velocity, i.e. v0 = -0.75 m/s, the general PFEM behavior does not
change significantly (Fig. 5.14); the loss of energy observed for coarse discretization
(blue dashed curve) is drastically improved by increasing the number of particles (blue
dotted curve). On the other hand, the response of the system for the modified MPM is
sub optimal. Although the system energy losses are reduced when the number of mate-
rial points is increased in the domain, an increase in the total system is observed, which
is evident by the spikes of the red dotted curve that at points exceed +5%. The total en-
ergy in the system for the coarser and finer MPM discretizations are shown in Figs. 5.15
and 5.16, respectively. Correspondingly, the energy for the coarse and fine PFEM cases
are shown in Figs. 5.17 and 5.18.
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Figure 5.13: Total energy oscillation for the 2nd vibration mode, with v0 = 0.25m/s, for two different
discretizations with PFEM and the modified MPM.

Figure 5.14: Total energy oscillation for the 2nd vibration mode, with v0 = 0.75m/s, for two different
discretizations with PFEM and MPM.

Figure 5.15: Energy in the system for the 2nd vibration mode, with v0 = 0.75m/s, for modified MPM for 40
material points.
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Figure 5.16: Energy in the system for the 2nd vibration mode, with v0 = 0.75m/s, for modified MPM for 160
material points.

Figure 5.17: Energy in the system for the 2nd vibration mode, with v0 = 0.75m/s, for modified PFEM for 40
material points.

It is interesting to observe the cause of oscillation in the total system energy for the
two methods, for which the focus will be put on the coarser configurations, i.e. in Figs.
5.15 and 5.17, and more specifically in the right, zoomed plots. In MPM, the kinetic
energy in the system does not return to zero as it should when the vibration amplitudes
are reached. This leads to residual kinetic energy in the system, which is not transformed
to strain energy, that would force the bar to return to its exact original shape. The cause
of this phenomenon can be located in the mapping of velocity and momentum between
the material points and the grid nodes at every time step, which, unavoidable, causes
trimming of extreme values. In contrast, for PFEM, the energy losses are triggered by
the smoothing induced by the mapping of stresses; this is manifested by the residual
strain energy always present in the system, which is not converted into kinetic energy to
drive the bar to its initial state. The total energy loss is similar for both cases. In PFEM,
however, this effect diminishes to a high degree when the discretization is refined (Fig.
5.18), which is not the case for the modified MPM (Fig. 5.16).
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Figure 5.18: Energy in the system for the 2nd vibration mode, with v0 = 0.75m/s, for modified PFEM for 160
material points.

5.2.3. COMPUTATIONAL COST
After the evaluation of the performance of the two methods in terms of the accuracy on
their results, the focus at this point is put on their need for computational resources.
These are mainly associated with both computer memory space and the time needed
for running a simulation. These factors can become more crucial when larger problems
are simulated, both in terms of space (discretization) and time.

At this point, a brief investigation on the computational times of each method was
conducted; analyses with both methods were run in the same computer system. More
specifically, the bar vibration problem with 1000 time steps was simulated. For MPM, the
modified version was used, which should not cause, however, any difference in the com-
putational times, compared to the standard version. For PFEM, constant (at each time
step) remeshing was performed, and the information mapping was performed with the
“nodal smoothing” scheme. Given the differences between the two methods, a direct
correspondence in the discretization of each one cannot be made. More specifically, if
a one-to-one comparison between the two methods was required, this could be done
either in terms of same number of information points (particles - material points), same
number of degrees of freedom in the system (particles - computational grid nodes), same
number of stress recovery points (elements - material points). To avoid such misconcep-
tions, the results are presented and discussed for each method separately takes place.

The main procedures taking place during each time step for each method are dis-
cussed in the following. First, the tasks that are common in both methods are presented
and, then, some commentary on the special processes of each one.

ASSEMBLY

This step involves assembling the stiffness and mass matrices and load vectors. In the
MPM, the node connectivity is more or less constant throughout the simulation and can
be predetermined in such a way that the bandwidth of the stiffness matrix remains rela-
tively low. On the other hand, in PFEM, even if the particle distribution and numbering
is done efficiently at preprocessing, the possibility of particles moving freely inside the
solution domain can alter the nodal connectivity significantly along the course of the
simulation. This can potentially trigger a severe increase in the matrix bandwidth, in-
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Figure 5.19: Computational time of every procedure in PFEM. Top: Average time for each cycle. Bottom:
Cumulative cost throughout of the analysis.

Figure 5.20: Cumulative computational time of every procedure in PFEM for 1000 cycles and different particle
discretizations.
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creasing the overall memory required for PFEM, for similar discretizations. However,
this is the fastest process in MPM and the second fastest in PFEM.

SOLUTION

In both methods, an implicit solution scheme is employed (2.2.2, 5.1.2.1), which means
that the stiffness matrix must be inverted in each time step for the solution of the sys-
tem of equations. Using a modified Newton-Raphson iterative procedure instead of a
regular Newton-Raphson for the convergence of the solution decreases significantly the
required time at each step, because the stiffness matrix needs to be inverted only once.
In both methods, the system of equations is solved for the displacements at the nodes
and, then, the strains, stresses and other variables of interest are calculated, which is
expected to require about the same running time.

However, if the active contact loop scheme (4.1.2.3) is used for treating the contact
constraints in the PFEM, then the system of equations needs to be solved more than
once. This means that the relative time of the solution step for the PFEM may be higher
compared to the MPM. In any case, different contact implementations can result in
faster simulation times.

REMESHING (PFEM)
One of the main arguments [53, 57] against the use of the Particle Finite Element Method
for numerical simulation of complex physical problems is the great computational de-
mand, especially time-wise, which is mainly attributed to the frequent remeshing re-
quired for maintaining a quality mesh. The remeshing procedure involves the mesh
generation, boundary identification and interface mesh creation steps. In Fig. 5.19, the
computational times for each procedure for a simulation of 10,000 particles with 1,000
steps are plotted, while, in Fig. 5.20, the total computational times of each process for
different discretizations are shown. The Delaunay triangulation is the fastest process in
each step, costing almost half of the assembly and about 25% of the solution step. The
boundary identification process seems to be taking the longest in each simulation; this
is due to the linear search (brute force) approach used for finding the neighbours of each
particle in order to perform the check for boundary detection (3.2.2). This process can be
made faster by employing a different nearest neighbour search algorithm, such as space
partitioning. Nevertheless, this step may become redundant if a constrained DT (3.1.3.3)
is used for construction of the domain at each remeshing step.

If additional features of the PFEM, such as the dynamic particle discretization (3.3)
for improving the quality of the solution, are incorporated in the scheme, then the total
remeshing times may be increased significantly.

MAPPING (PFEM)
This process takes place only in PFEM for solid mechanics applications where the history
of the internal variables is essential information for the analysis. As discussed (4.2), there
are various ways to perform this task and the choice can affect the computational needs.
If the “nodal smoothing” technique is used, then the transfer time can be limited, but
there will be need for extra arrays to store the information on the particles. On the other
hand, if the “mesh projection” scheme is employed, there will be no need for additional
computer memory, but the search for the closest centroid to each point will increase the
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Figure 5.21: Computational time of every procedure in MPM. Top: Average time for each cycle. Bottom:
Cumulative cost throughout of the analysis.

computational times heavily; nonetheless, as mentioned, more optimized algorithms
for the “nearest neighbour search” can significantly reduce this cost.

Figure 5.22: Cumulative computational time of every procedure in PFEM for 1000 cycles and different
number of material points
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Figure 5.23: Total computation times with the MPM and the PFEM for different number of degrees of freedom
(left) and information points (right).

ELEMENT CROSS CHECK (MPM)
Besides assembly and solution, the extra procedure employed in MPM compared to con-
ventional FEM is to check if any material points have moved to new elements, update
the local coordinates of the material points, activate the new elements and initialize -if
needed- the new equation arrays. In Fig. 5.21, this procedure seems to be by far the most
time-consuming, amounting for more than 80 % of the computational time for an anal-
ysis involving 10,000 material points. Also, in Fig. 5.22, it appears that the cost of this
step increases exponentially as the number of material points in the system rises. As was
commented for the PFEM procedures involving heavy duty spatial searches, the check
for finding if any material points have crossed over from one element to another can also
be sped up, by employing a more efficient algorithm.

In Fig. 5.23, a direct comparison between the computational times of the two meth-
ods is performed. As was already discussed, the comparison can be done on the basis of
the same number of either degrees of freedom, information points (particles - material
points) or stress recovery points (elements - material points). The comparison in terms
of degrees of freedom is done in the left plot and the comparison based on information
points in the right plot of the same figure. It is apparent that the Particle Finite Element
Method is much faster for the same system dimensions, i.e. degrees of freedom. How-
ever, for the same system size, the Material Point Method offers many more information
points, since - for the adopted implementation - there are, initially, four material points
inside each element for the MPM, leading to a more refined solution. When increasing
the refinement in PFEM, the computer storage requirements become significantly high,
reaching a level that the used computer system cannot handle. This explains why, in the
right graph, the most refined discretization in PFEM includes 10,000 particles, while for
MPM the same number is greater than 40,000. Overall, the computational requirements
for the Material Point Method are much lower.



6
SUMMARY AND DISCUSSION

6.1. CONCLUSIONS
The conclusions of this thesis are presented with respect to the research questions posed
in chapter 1.

How is the domain discretization, including particle connectivity and domain bound-
aries, updated to handle large deformation problems in PFEM and how is the outcome
of the analysis affected?

In PFEM, the solution domain is frequently disassembled and regenerated on basis
of the new positions of the particles, in order to maintain a quality discretization. This
procedure is done in two steps. First, a Delaunay triangulation is employed to provide
an initial particle connectivity, which enjoys some optimal properties, such as the mini-
mization of the smallest angle in all elements. However, the DT does not respect the in-
ternal and external boundaries of the domain, which means that an additional scheme
is needed for identification of the boundaries. In most implementations of PFEM, this
was done via the α-shape method, which deletes incorrect elements and offers a crite-
rion for detecting particles lying on the boundary. However, the subjectivity introduced
through the choice of the αl i m parameter seems to have an impact on the final form of
the domain and, subsequently, on the outcome of the analysis; special care is needed
when selecting an appropriate value. Finally, in some published variations of the PFEM,
the quality of the discretization and the computational efficiency of the method are en-
hanced by utilizing a dynamic particle discretization, by adding, removing or reposition-
ing particles.

How is contact treated in the Particle Finite Element Method and how can such an
algorithm be implemented?

In most implementations of PFEM, contact detection and, subsequently, treatment
is performed with the use of an interface mesh. The interface mesh is constructed at ev-
ery step in a straightforward manner; given the particles lying on the boundary of each
body, including rigid boundaries, the same meshing procedure as for the domain is used.
First, as previously described, a Delaunay triangulation is performed, followed by the α-
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shape method. Any elements that “survive” from the latter serve as indicators of possi-
ble contact. On the basis of this interface mesh, the contact constraints can be enforced
by means of various conventional schemes, including Lagrange multipliers, the penalty
method, Nitsche methods and others. In this project, the contact interface generation
algorithm was implemented and a simple contact algorithm was formulated and vali-
dated against benchmark quasi-static and dynamic problems. The automatic contact
detection and contact element generation allows for the use of more advanced contact
techniques and adaptations for handling multi-body interaction.

How is internal information handled in the Particle Finite Element Method and
what is the impact on the results?

In contrast with fluid mechanics, the simulation of solid mechanics problems with
PFEM requires the storage and transfer of internal variables between meshes. There are
several techniques to do this, each one with its one limitations and advantages; the se-
lection is up to the user. The most popular so far are the nodal smoothing and the mesh
projection techniques. The first one introduces some smoothing, which causes errors in
the computed values of, e.g., stresses close to the boundaries of the problem by trim-
ming of extreme values; however, the overall response of the system is not significantly
impacted, as was seen in the dynamic applications. Moreover, with this technique, the
computational cost of the analysis is increased in terms of required storage, as extra ar-
rays are needed to store the projected elemental variables at the particles. On the other
hand, the mesh projection operation is expected to cause some loss of information in
case elements are deleted, but equilibrium is preserved in areas where elements are not
altered; in this case, no extra storage is needed, but the increase of the computational
time in the analysis from this method comes from the spatial search required for finding
the nearest neighbours of each element.

How is mass conservation affected by frequent remeshing employed in PFEM?
Due to the remeshing and boundary identification taking place several times through-

out an analysis with the Particle Finite Element Method, there may be variations in the
domain volume which may lead to mass oscillations. These can be triggered by fluc-
tuations in the domain boundaries, separation and re-entering of particles, closing and
opening of internal cavities, and generation and deletion of contact elements in fluid
simulations. All of these occurrences are directly associated with the choice of the αl i m

value for the α-shape method. In solid mechanics, however, only the first phenomenon
seems to be of importance and its effect can be mitigated by refining the particle dis-
tribution and calibrating the value of αl i m to the specific problem under investigation,
even adjusting it during the course of the simulation. Despite this workaround, argu-
ments are still being raised against the subjectivity of the method and the use of a con-
strained Delaunay triangulation, where the external boundaries of the domain are pre-
determined during remeshing, is being proposed as a countermeasure; this solution,
however, is not always applicable and may lead to significantly distorted elements in the
boundaries.

How does the Particle Finite Element Method compare with other recently devel-
oped numerical tools, like the Material Point Method, on benchmark solid mechanics
problems?

Both the PFEM and the MPM use particles to store information and make use of a
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Finite Element mesh on which the governing equations are solved. However, their main
differences lie on the way the necessary mapping of this information takes place and the
way the system of equations is assembled. In PFEM, information must be mapped be-
tween the old and new mesh and the assembly is done using standard FEM procedures;
in MPM information is constantly mapped between the material points and the nodes
of the computational grids and assembly is performed using the suboptimal positions of
the material points. In both cases, some loss of accuracy is expected.

The standard Material Point Method fails to produce accurate results even for simple
quasi-static problems like the 1D compression, due to cell-crossing taking place, indi-
cating the need for modifications, either in the weighting coefficients of the material
points or the shape functions. However, cell crossing effects are still unavoidable and
become evident in dynamic applications, where erroneous estimations of the stresses
and significant losses in system energy are observed. On the other hand, the smoothing
of stresses caused by information mapping with the nodal smoothing tool in PFEM is
not impactful for quasi-static applications, but can cause some anomalies in the stress
field and energy loss in dynamic problems. These effects can, in any case, be mitigated
by increasing the number of particles in the domain. In any case, the inaccuracies in the
results for PFEM can be improved by refining the discretization, which, however, can not
be said for MPM, where finer meshes result in more intense cell-crossing taking place.

In contrast to what is reported in literature regarding the computational cost of PFEM
[53, 57], the method is not significantly limited by its computational speed. The remesh-
ing step can be quite fast and optimization of certain procedures and introduction of
remeshing criteria can further reduce simulation times; however, adding more features,
such as particle addition, may increase it. On the other hand, the most time costly pro-
cedure in each MPM cycle is the search for any potential element crossing of material
points; this, too, can be sped up by employing a more efficient searching algorithm.
Nonetheless, MPM can offer better accuracy for much smaller computational cost, both
time- and storage-wise, as for the same number of degrees of freedom more integration
points are present in the domain.

6.2. RECOMMENDATIONS FOR FURTHER RESEARCH
• Assess the developed PFEM code in more advanced problems, including large

deformations. For the needs of this thesis, a PFEM implementation for solid me-
chanics was developed and was tested on simple applications, where the main ob-
jective was to preliminary assess the efficiency of the method. Simulation of more
complex problems that will involve large deformations and comparison with pub-
lished results would be interesting for further evaluation of this new numerical
tool.

• Incorporate constitutive model for simulation of more complex problems, i.e.
slope failure. In this work, simple applications with linear elastic material models
were examined. Although the PFEM did perform well in these cases, incorpora-
tion of more advanced constitutive models for capturing complex (soil) material
behavior would be an interesting approach, given that the method has not been
extensively used for soil mechanics in literature. In any case, since it is based on
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the FEM framework, the method should be capable of handling any kind of con-
stitutive models.

• Compare the efficiency of “nodal smoothing” and “mesh projection” transfer
operators, where applicable. Given the nature of the examined applications, the
efficiency of only the “nodal smoothing” technique could be investigated for the
transference of elemental variables between successive meshes. The “mesh pro-
jection” operation, which has been lately introduced and is gaining popularity, is
mostly applicable when high mesh distortion takes place, which is not the case
for the applications in this work. For future considerations, if problems involving
large deformation and extreme mesh tangling are examined, then a comparison
between these two schemes should yield interesting results and lead towards bet-
ter understanding and improved efficiency of the PFEM.

• Investigate the mass conservation of PFEM in large deformation solid mechan-
ics problems with respect to the remeshing procedure. The conservation of mass
during the analysis with PFEM was only examined in this work in the basis of a
literature research; in any case, this is a topic not thoroughly addressed in bibliog-
raphy, especially for solid mechanics applications. As a recommendation, future
research on the efficiency of the method could also focus on how the conservation
of mass is affected by the various procedures, especially the remeshing steps, and
investigate potential remedies.

• Implement a more advanced contact method, making use of the interface mesh
generation tool. For the needs of this thesis, an interface mesh generation algo-
rithm was developed, on the basis of which a simple contact treatment scheme
was formulated and implemented. Nevertheless, the proposed scheme is a rather
simple one, focusing only on normal contact and validated only against some sim-
ple problems. By making use of the contact mesh generation scheme developed,
more advanced contact treatment approaches can be incorporated in the method,
that would facilitate modelling of frictional contact and multi-body interaction.

• Investigate the potential and efficiency of dynamic particle discretization. A fea-
ture of the Particle Finite Element Method that was merely addressed in this work
based on a desk study is the possibility to dynamically alter the number and posi-
tion of particles in the domain. Although this option is not examined extensively
in literature, it could prove to be essential in improving the accuracy and minimiz-
ing the computational costs of the analysis. Considering the added complexity in
the implementation of the method, this could still be a feature worth exploring in
future work.
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