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Global fine-scale changes in ambient NO2 
during COVID-19 lockdowns

Matthew J. Cooper1,2 ✉, Randall V. Martin1,2,3, Melanie S. Hammer1,2, Pieternel F. Levelt4,5,6, 
Pepijn Veefkind4,7, Lok N. Lamsal8,9, Nickolay A. Krotkov8, Jeffrey R. Brook10,11 & 
Chris A. McLinden12

Nitrogen dioxide (NO2) is an important contributor to air pollution and can adversely 
affect human health1–9. A decrease in NO2 concentrations has been reported as a result 
of lockdown measures to reduce the spread of COVID-1910–20. Questions remain, 
however, regarding the relationship of satellite-derived atmospheric column NO2 
data with health-relevant ambient ground-level concentrations, and the 
representativeness of limited ground-based monitoring data for global assessment. 
Here we derive spatially resolved, global ground-level NO2 concentrations from NO2 
column densities observed by the TROPOMI satellite instrument at sufficiently fine 
resolution (approximately one kilometre) to allow assessment of individual cities 
during COVID-19 lockdowns in 2020 compared to 2019. We apply these estimates to 
quantify NO2 changes in more than 200 cities, including 65 cities without available 
ground monitoring, largely in lower-income regions. Mean country-level 
population-weighted NO2 concentrations are 29% ± 3% lower in countries with strict 
lockdown conditions than in those without. Relative to long-term trends, NO2 
decreases during COVID-19 lockdowns exceed recent Ozone Monitoring Instrument 
(OMI)-derived year-to-year decreases from emission controls, comparable to 15 ± 4 
years of reductions globally. Our case studies indicate that the sensitivity of NO2 to 
lockdowns varies by country and emissions sector, demonstrating the critical need 
for spatially resolved observational information provided by these satellite-derived 
surface concentration estimates.

Nitrogen dioxide (NO2) is an important contributor to air pollution as a 
primary pollutant and as a precursor to ozone and fine particulate matter 
production. Human exposure to elevated NO2 concentrations is associ-
ated with a range of adverse outcomes such as respiratory infections2–4, 
increases in asthma incidence5,6, lung cancer7 and overall mortality8,9. 
NO2 observations indicate air quality relationships with combustion 
sources of pollution such as transportation6,21. Initial investigations found 
substantial decreases in the atmospheric NO2 column from satellite 
observations10–16 and in ambient NO2 concentrations from ground-based 
monitoring17–20 during lockdowns enacted to reduce the spread of COVID-
19. However, questions remain about the relationship of atmospheric 
columns with health- and policy-relevant ambient ground-level con-
centrations, and about the representativeness of sparse ground-based 
monitoring for broad assessment. Thus, there is need to relate satellite 
observations of NO2 columns to ground-level concentrations. It is also 
important to consider the effect of meteorology on recent NO2 changes22 
and to quantify NO2 changes due to COVID-19 interventions in the context 
of longer-term trends23. Furthermore, air quality monitoring sites tend 
to be preferentially located in higher-income regions, raising questions 

about how NO2 changed in lower-income regions where larger num-
bers of potentially susceptible people reside. Estimates of changes in 
ground-level NO2 concentrations derived from satellite remote sensing 
would fill gaps between ground-based monitors, offer valuable informa-
tion in regions with sparse monitoring, and more clearly connect satellite 
observations with ground-level ambient air quality.

Previous satellite-derived estimates of ground-level NO2 used infor-
mation on the vertical distribution of NO2 from a chemical transport 
model to relate satellite NO2 column densities to ground-level concen-
trations24–26. Recent work improved upon this technique by allowing 
the satellite column densities to constrain the vertical profile shape, 
allowing for more accurate representation of sub-model-grid variabil-
ity, reducing the sensitivity to model resolution and simulated profile 
shape errors, and improving agreement between the satellite-derived 
ground-level concentrations and in situ monitoring data27. Applying 
this technique to examine changes in NO2 during lockdowns bridges 
the gap between previous studies focusing on either ground monitors 
or satellite column densities, thus providing a more complete and reli-
able picture of the changes in exposure.
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Since 2005, the gold standard for satellite NO2 observations has 
been the Ozone Monitoring Instrument (OMI) on board NASA’s Earth 
Observing System Aura satellite28,29. The newest remote sensing spec-
trometer, the European Space Agency’s TROPOspheric Monitoring 
Instrument (TROPOMI)30 on the Copernicus Sentinel 5p satellite, 
has been providing NO2 observations with finer spatial resolution 
and higher instrument sensitivity since 2018. These attributes allow 
the generation of TROPOMI NO2 maps at 100 times finer resolution 
(approximately 1 × 1 km2) with a one-month averaging period31,32, an 
improvement over the spatial and temporal averaging needed for accu-
rate OMI maps (typically approximately 10 × 10 km2 over one year)24. 
Concurrently, the excellent stability of the OMI instrument over the 
last 15 years provides an ideal dataset for long-term trend analysis28,33 
that offers context for recent TROPOMI data.

Lockdown restrictions act as an experiment about the efficacy of 
activity reductions on mitigating air pollution. The Oxford COVID-19 

Government Response Tracker (OxCGRT, https://www.bsg.ox.ac.uk/
research/research-projects/coronavirus-government-response-tracke
r#data) has been monitoring government-imposed restrictions, and 
studies have indicated that NO2 decreases were larger for cities in coun-
tries with strict lockdowns34. However, there is limited information on 
lockdown stringency on sub-national levels or on how various emis-
sion sectors respond to lockdowns. An observation-based metric for 
lockdown intensity could provide useful information for examining 
lockdowns on city-level scales or for examining the effects on air qual-
ity that are associated with lockdowns in different emission sectors.

Here we leverage the high spatial resolution of TROPOMI to infer 
global ground-level NO2 estimates at, to our knowledge, an unprec-
edented spatial resolution sufficient to assess individual cities 
worldwide, and to examine changes in ground-level NO2 occurring 
during COVID-19 lockdowns from January–June 2020. Case studies 
presented here demonstrate how the satellite-based estimates provide 
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Fig. 1 | Satellite-derived ground-level NO2 concentrations. a, TROPOMI- 
derived 2019 annual mean ground-level NO2 concentrations at approximately 
1 × 1 km2 resolution. b, Trend in OMI and TROPOMI-derived annual mean 
ground-level concentrations from 2005–2019. The colour intensity represents 
the statistical significance of the trend. c–e, Population-weighted mean NO2 
from ground monitors and from satellite-derived NO2 sampled at ground- 
monitor locations in China (c), Europe (d) and North America (e), normalized by 
the mean concentration during the period where ground-monitor data are 
available. The black (ground-derived) and red (satellite-derived) values give the 

trends for the period where ground-monitor data are available. Only monitors 
with data available over the entire time period are included. Error bars represent 
population-weighted standard deviations. f, Population-weighted mean 
satellite-inferred ground-level NO2 concentrations in South America, Africa and 
the Middle East, and Oceania. Trends during the given time periods are given at 
top. Time periods were chosen to reflect the most recent years where a 
consistent trend is observed. Error bars represent uncertainties in population- 
weighted means using a bootstrapping method.
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information on important spatial variability in lockdown-driven NO2 
changes, and in the NO2 response to lockdowns in various emissions 
sectors. We also use TROPOMI to provide fine-scale structure to the 
long-term record of OMI observations (2005–2019), which provides 
an opportunity to examine trends in ground-level NO2 over the last 
15 years to provide context for the recent changes.

Global NO2 concentrations and trends
Global annual mean TROPOMI-derived ground-level NO2 concentra-
tions for 2019 provide an initial baseline (Fig. 1). The excellent resolution 
(~1 × 1 km2) of ground-level NO2 concentrations reveal pronounced 
heterogeneity (Supplementary Figs. 1–7). NO2 enhancements are appar-
ent over urban and industrial regions. TROPOMI-derived ground-level 
concentrations exhibit consistency with in situ observations (r = 0.71, 
N = 3,977, in situ versus satellite slope = 0.97 ± 0.02), as shown in Sup-
plementary Fig. 8. Neglecting the spatial and temporal variability in 
the NO2 column-to-surface relationship degrades the consistency with 
ground monitors (slope = 0.78 ± 0.01), demonstrating the importance 
of relating satellite columns to surface concentrations for exposure 
assessment.

Examination of long-term changes in air pollution offers context for 
changes during COVID-19 lockdowns (Fig 1, Supplementary Figs. 1–7).  
Satellite-derived NO2 concentrations decreased from 2005–2019 in 
urban areas across most of the USA and Europe, eastern China, Japan, 
and near Johannesburg, South Africa, largely reflecting emission con-
trols on vehicles and power generation. NO2 increases are observed in 
Mexico, the Alberta oil sands region in northern Canada, and through-
out the Balkan peninsula, central and northern China, India and the 
Middle East, broadly consistent with reported trends in ground-monitor 
data35–37. Trends in China can be separated into three regimes: 
ground-level concentrations increased in China from 2005–2010,  
plateaued from 2010–2013, and decreased from 2013–2019. This change 
was driven by stricter vehicle and power generation emission stand-
ards38 and is consistent with observed changes in NO2 columns39,40. 
Similarly, concentrations increased in urban and industrial areas of 

South America from 2005–2010, and in South Africa and the Middle East 
from 2005–2015, and decreased in more recent years. Maps of trends in 
these regions for these time periods are shown in Supplementary Fig. 9. 
Concentrations in India increased across both time periods owing to 
increasing coal-powered electricity demands and growing industrial 
emissions41. Trends in population-weighted NO2 concentrations, used 
to represent population NO2 exposure, were calculated using ground 
monitors and coincidently sampled satellite observations in North 
America, Europe and China. Satellite-derived concentrations exhibit 
decreasing trends (−2.8 ± 0.2% yr−1 in Europe 2005–2019, −4.3 ± 0.7% yr−1 
in North America 2005–2019, and −6.0 ± 0.7% yr−1 in China 2015–2019) 
that agree well with trends in the ground-monitor data (within 0.7% yr−1 
in North America, 0.3% yr−1 in Europe, and 1.2% yr−1 in China).

Regional NO2 changes during lockdowns
Figure 2 shows the April 2020 to April 2019 difference between mean 
ground-level NO2 concentrations derived from TROPOMI observa-
tions. NO2 concentrations are lower in most regions in 2020 than in 
2019, particularly over urban areas, with global population-weighted 
mean concentrations decreasing by 16% in 2020 relative to 2019. Fig. 3 
shows regional maps focusing on the month with the largest change 
in population-weighted regional mean concentration for each region, 
with an additional period included for China, as lockdown restrictions 
occurred earlier than in other countries. Regional population-weighted 
mean concentrations decreased by 17–43%. The largest decreases 
occur in China in February with concentration decreases exceeding 
10 parts per billion by volume (ppbv) and substantial decreases persist-
ing in eastern urban areas through April. Thus these lockdown measures 
temporarily bolstered the decreasing trends across North America42 
and Europe25 over the last two decades and in China since 201243, owing 
to technological advances in vehicles and power generation, while tem-
porarily buffering changes from increasing energy demands in India 
and the Middle East40,44,45. NO2 increases in April 2020 in central China 
(Chengdu and Chongqing) because lockdowns began lifting during 
this time.

–5 –4 –3 –2 –1 0 1 2 3 4 5
 ΔNO2 April 2020–2019 (ppbv)

Fig. 2 | Differences in April mean ground-level NO2 from 2020 to 2019. Concentrations derived using TROPOMI observations gridded at approximately 1 × 1-km2 
resolution.



Nature | Vol 601 | 20 January 2022 | 383

Figure 3 shows maps of long-term NO2 trends for context. In 
most regions, the observed changes during COVID-19 restrictions 
exceed the expected year-to-year differences observed in the 
long-term trends (Table 1). 2020–2019 population-weighted mean 

concentration changes are lower than long-term trends by factors 
of 17 ± 7 in North America, 19 ± 2 Europe, of 2.9 ± 0.6 in Africa and 
the Middle East, of 3.6 ± 0.6 in Asia, 8 ± 7 in South America, and 2 ± 2 
in Oceania.
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Fig. 3 | Changes in ground-level NO2 during lockdowns. Left in each pair of 
images, TROPOMI-derived monthly mean NO2 differences from 2020–2019 at 
approximately 1 × 1 km2. Right, OMI+TROPOMI-derived NO2 trends. Annual 
mean long-term trends are corrected for seasonal variation. The time periods 

for trend calculations in each region were chosen to reflect the most recent 
years where a consistent trend is observed and are indicated above the maps. 
Value under each panel represents population-weighted mean difference for 
the given region.
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Meteorological differences are calculated with the GEOS-Chem 
chemical transport model using emission inventories that do not include 
changes that occurred owing to COVID-19 lockdown policies but do reflect 
meteorological changes. Supplementary Fig. 10 shows TROPOMI-derived 
changes at 2.0° × 2.5° resolution for comparisons with simulated values 
at the same resolution. Population-weighted NO2 concentration changes 
due to meteorology in Asia, Europe, South America, Africa and the Middle 
East are a factor of 2–6 smaller than observed; thus, meteorology alone 
cannot explain the observed decreases. Concentration increases in the 
central USA, as noted in other studies10, do not appear to be meteorologi-
cally driven and may be due to changes in biogenic NOx sources.

Supplementary Fig. 11 shows the ratio of population-weighted  
January–June monthly mean NO2 concentrations in 2020 to 2019 across 
selected regions. Most regions have the largest decrease in NO2 in April 
when lockdown conditions were strongest (the global mean COVID 
restriction stringency index (defined in Methods) reached a maximum 
of 0.79 on 18 April), apart from China, where lockdowns were initiated 
in January. In most regions, 2020 NO2 concentrations return towards 
pre-lockdown values in May or June owing to relaxing travel restrictions 
(30 June global mean stringency index, 0.60) as well as increasing soil, 
lightning and biomass-burning emissions that lessen the sensitivity of 
ambient NO2 to anthropogenic emissions.

Table 1 | TROPOMI-derived, population-weighted ground-level NO2 data

Country/region Month with 
greatest 
2020–2019 
change

Monthly 
population-weighted 
mean NO2 
concentration 2019 
(ppbv)

Monthly 
population-weighted 
mean 2020–2019 
difference (ppbv)

Expected 2020–
2019 change from 
meteorology (ppbv)

Long-term trend in 
population-weighted 
NO2

a (ppbv/year)

Ratio of 2020–
2019 difference 
to long-term 
trend (years)

Chinab January 9.5 ± 0.3 −2.7 ± 0.3 0.057 ± 0.03 −0.8 ± 0.1 3.4 ± 0.6

Indiab June 0.96 ± 0.06 −0.29 ± 0.03 −0.062 ± 0.002 0.017 ± 0.005 na

USA March 3.0 ± 0.1 −0.40 ± 0.08 −0.12 ± 0.01 −0.119 ± 0.009 3.4 ± 0.7

Indonesiab June 1.24 ± 0.04 −0.3 ± 0.3 −0.031 ± 0.007 −0.016 ± 0.006 20 ± 20

Brazilc April 1.01 ± 0.04 −0.3 ± 0.3 −0.15 ± 0.01 −0.064 ± 0.007 5 ± 4

Bangladeshb April 0.82 ± 0.05 −0.24 ± 0.09 −0.18 ± 0.01 0.026 ± 0.006 na

Mexico May 2.75 ± 0.06 −0.68 ± 0.07 0.01 ± 0.01 0.095 ± 0.006 na

Russia April 4.18 ± 0.07 −1.4 ± 0.2 −0.39 ± 0.02 −0.074 ± 0.003 19 ± 3

Japanb April 4.0 ± 0.3 −1.9 ± 0.2 −0.19 ± 0.02 −0.24 ± 0.04 8 ± 2

Egyptd May 3.1 ± 0.1 −0.4 ± 0.2 −0.03 ± 0.01 −0.25 ± 0.09 1.4 ± 0.9

Irand April 2.76 ± 0.07 −0.5 ± 0.7 0.080 ± 0.008 −0.12 ± 0.02 4 ± 6

Turkeyd April 4.23 ± 0.08 −1.5 ± 0.7 0.17 ± 0.03 0.135 ± 0.007 na

Germany March 7.95 ± 0.3 −2.7 ± 0.4 −0.77 ± 0.01 −0.12 ± 0.01 23 ± 4

Thailandb March 1.34 ± 0.08 −0.25 ± 0.03 −0.052 ± 0.008 −0.003 ± 0.008 100 ± 200

France April 4.76 ± 0.03 −3.1 ± 0.1 −0.117 ± 0.008 −0.168 ± 0.009 19 ± 1

United Kingdom April 6.42 ± 0.03 −2.8 ± 0.1 −0.19 ± 0.02 −0.43 ± 0.01 6.7 ± 0.3

Italy February 10.9 ± 0.3 −2.8 ± 0.3 −2.84 ± 0.05 −0.37 ± 0.02 8 ± 1

South Africad May 7.7 ± 0.1 −2.7 ± 0.3 −0.06 ± 0.02 −0.4 ± 0.2 7 ± 3

Spain April 3.16 ± 0.04 −2.1 ± 0.1 −0.113 ± 0.006 −0.169 ± 0.009 12.6 ± 0.9

Argentinac April 1.63 ± 0.07 −0.8 ± 0.7 −0.32 ± 0.02 −0.08 ± 0.01 11 ± 10

Africad May 0.66 ± 0.02 −0.15 ± 0.02 −0.012 ± 0.001 −0.051 ± 0.007 2.9 ± 0.6

Asiab March 3.0 ± 0.1 −0.70 ± 0.05 0.002 ± 0.001 −0.19 ± 0.03 3.6 ± 0.6

East Asiab February 6.4 ± 0.1 −1.86 ± 0.02 −0.068 ± 0.001 −0.55 ± 0.06 3.4 ± 0.4

South Asiab June 0.98 ± 0.06 −0.28 ± 0.03 −0.044 ± 0.001 0.015 ± 0.006 na

Europe April 3.87 ± 0.02 −1.67 ± 0.08 −0.096 ± 0.001 −0.090 ± 0.007 19 ± 2

West Europe April 4.52 ± 0.02 −2.08 ± 0.07 −0.115 ± 0.001 −0.163 ± 0.009 12.8 ± 0.9

Central Europe April 2.86 ± 0.05 −1.0 ± 0.2 0.013 ± 0.001 0.053 ± 0.005 na

East Europe April 3.43 ± 0.03 −1.40 ± 0.06 −0.167 ± 0.001 −0.049 ± 0.004 29 ± 2

North America April 2.41 ± 0.07 −0.5 ± 0.1 −0.105 ± 0.001 −0.029 ± 0.008 17 ± 7

Oceania May 1.59 ± 0.09 −0.2 ± 0.1 −0.024 ± 0.001 −0.086 ± 0.005 2 ± 2

South Americac April 1.11 ± 0.05 −0.4 ± 0.4 −0.022 ± 0.001 −0.056 ± 0.007 8 ± 7

Global (country level) April 1.5 ± 0.2 −0.53 ± 0.06 −0.050 ± 0.010 −0.04 ± 0.01 15 ± 4

Global (population-weighted) April 2.2 ± 0.5 −0.52 ± 0.08 −0.06 ± 0.04 −0.10 ± 0.05 5 ± 3

Countries with largest populations and annual mean population-weighted NO2 concentrations greater than 1 ppbv are shown for months with the greatest 2020–2019 difference and strict 
lockdown conditions (stringency index >20), sorted by population. Regional and global data also shown. 
aSatellite-inferred annual mean ground-level NO2 trends are scaled by the ratio of the 2019 monthly mean to the annual mean to account for seasonality. 
Long-term country-level trends are calculated for 2005–2019, except for countries/regions in: 
bAsia: 2013–2019. 
cSouth America: 2011–2019. 
dAfrica and the Middle East: 2015–2019. 
na, Ratio of 2020–2019 difference to long-term trend not calculated when one value is positive and one is negative.
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City- and country-level NO2 changes
The fine resolution of our satellite-derived ground-level NO2 data-
set enables the assessment of larger changes in NO2 concentrations 
from 2020–2019 evident at the city level. We calculate changes in 
TROPOMI-observed monthly mean ground-level NO2 from 2020–2019 
over 215 major cities (the ten most populous cities in each country with 
a population greater than 1 million) for the month with the greatest 
monthly mean lockdown stringency index, compared with expected 
changes due to meteorology and long-term trends (Supplementary 
Table 1). Most cities have TROPOMI-derived NO2 decreases that can-
not be explained by changes due to meteorology alone. For example, 
satellite-derived NO2 concentrations in Beijing decreased by 45% in 
March, despite meteorological conditions favourable to increased NO2. 
Jakarta, Manila, Istanbul, Los Angeles and Buenos Aires among others 
had decreased NO2, despite similarly unfavourable meteorological 
conditions. Some cities, including Moscow, Tokyo, London, New York, 
Toronto and Delhi, had meteorological conditions that would have 
led to NO2 decreases regardless of emission changes, but observed 
concentration changes exceeded the expected meteorological change.

Consistent analysis of individual cities as enabled by this dataset 
reveals a mean observed decrease of 32 ± 2% for these 215 cities. The 
mean expected meteorologically driven change was −1 ± 1% and the 
mean expected change owing to long-term trends was a decrease of 
1.4 ± 0.4%. Supplementary Fig. 12 shows these reductions to be con-
sistent with those found in 381 ground-monitor values from 79 stud-
ies34 (32 ± 2%). Of the 215 cities included here, 65 are in countries that 
did not have ground-monitoring data available for previous studies. 
Notably, the 65 cities without monitors are largely in lower-income 
countries of Africa and southeast Asia. The average gross national 
income per capita for unmonitored countries is US$7,100, compared 
to US$25,000 for monitored countries, illustrating the potential of 
satellite-derived ground-level concentrations for providing informa-
tion about lower-income regions. In summary, the observed decreases 
in NO2 across more than 200 cities worldwide were generally driven by 
COVID-19 lockdowns, with locally varying modulation by meteorology 
and business-as-usual changes.

Table 1 shows monthly mean country-level population-weighted NO2 
concentrations, changes during COVID-19 lockdown restrictions, mete-
orological effects and long-term trends for the month with the greatest 
2020–2019 change. Meteorological effects were generally minor at 
the national and regional scale. Multi-year trends provide context for 
the scale of the changes observed during COVID-19 lockdowns. The 
decrease in March NO2 concentrations in the USA from 2019 to 2020 
was equivalent to four years of long-term NO2 reductions. Similarly, 
changes in NO2 during COVID-19 lockdowns were equivalent to greater 
than three years of reductions in China, and up to 23 years in Germany. 
Globally, the April 2020 population-weighted NO2 concentration was 
0.53 ± 0.06 ppbv lower than in April 2019, equivalent to 15 ± 4 years of 
global NO2 reductions.

NO2 as a lockdown indicator
The relationship between this satellite-derived ground-level NO2 
dataset and lockdown stringency provides supporting evidence for 
the impact of travel restrictions (Supplementary Fig. 13). The ratio 
of population-weighted mean observed NO2 in 2020 to 2019 was cal-
culated for each country and each month from January to June. The 
2020/2019 NO2 ratio in countries with the strictest lockdown (monthly 
minimum stringency indices greater than the 75th percentile) was 
29 ± 3% lower than for countries with the weakest lockdowns (monthly 
median stringency indices less than the 25th percentile). Maximum 
and median ratios were also lower for countries with strict lockdowns. 
Both distributions have similar variability (standard deviations 0.02 
and 0.03) which demonstrates similar interannual variability due to 

meteorology for both sets. When focusing on only the month with the 
strictest lockdown for each country, changes in population-weighted 
NO2 are correlated with lockdown intensity, with changes in countries 
with strict lockdowns (average decrease 43% if lockdown index >80) 
more than three times as large as in those with weaker lockdowns (12% 
if lockdown index <40).

This relationship suggests that changes in satellite-derived NO2 
concentrations offer observational information on the spatial distri-
bution of lockdown effects that is not available through policy-based 
stringency indices. For example, although the policy-based stringency 
index in most cases provides a single value for a country, city-level NO2 
concentration decreases in India are in the range 30–84%, reflecting 
variability in local mobility restrictions, emissions sources, and their 
sensitivity to lockdowns. Supplementary Fig. 14 explores the sensitivity 
of NO2 concentrations to emissions from the transportation and elec-
tricity sectors in India, China and the USA by examining the distribution 
of changes in NO2 concentration at the 20 largest population centres 
and 20 largest fossil fuel-burning power plants in each country. All 
countries have substantial NO2 decreases in cities, but the sensitivities 
vary in areas associated with the electricity sector, with decreasing 
concentrations near power plants in India (mean change −35 ± 4%) 
and China (−28 ± 8%) but insignificant changes in the USA (−4 ± 8%). 
Observed NO2 changes at these power plants exceed expected changes 
from meteorology alone (−8 ± 2%, −1 ± 4% and −1 ± 3% in India, China 
and the USA, respectively). Although variability between power plants 
reflects a mix of regionally varying factors, including meteorology, 
electricity demand, fuel type and plant-specific emission controls, 
as well as changes in nearby emissions from other sectors including 
transportation, these differences indicate a sensitivity of local air qual-
ity to activity restrictions affecting the energy sector.

Examining geographic differences in satellite-derived NO2 concentra-
tions within metropolitan regions is also informative. For example, vari-
ability between emission sources is apparent around the city of Atlanta, 
Georgia, USA (Supplementary Fig. 15). The population-weighted NO2 
concentration in Atlanta and the surrounding region dropped by 28% 
from April 2019 to 2020, but with substantial spatial variability in the 
observed change. The greatest NO2 decreases are found near a large 
coal-powered electricity plant to the southeast of the city, with signifi-
cant changes near another plant to the northwest. Decreases were also 
larger near the Hartsfield–Jackson International Airport—reflecting 
the dramatic slowdown in air travel—and over suburban regions to 
the west and northeast of the city centre, than in the downtown core. 
Supplementary Fig. 15 also demonstrates the range of NO2 changes 
experienced by the local population. Over 1.2 million people live in 
regions where NO2 decreases exceeded 40%, whereas nearly 1 million 
people experienced decreases of 10% or less. Similar heterogeneity 
in population exposure exists in other major cities, as demonstrated 
by Supplementary Fig. 16. For example, a subset of over 1 million 
people in the Paris metropolitan area experienced NO2 decreases of 
75% (4.5 ppbv) or more (10th-percentile exposure), whereas another 
similar-sized subset experienced changes of 23% (0.6 ppbv) or less 
(90th-percentile exposure). Of the cities examined here, 68 had an 
interquartile range in population exposure change during lockdowns 
of 20 percentage points or larger, 22 of which were unmonitored cities. 
Studies have found that NO2 changes during lockdowns varied among 
socioeconomic, ethnic and racial groups in US cities46, and thus the vari-
ability in other major cities observed here suggest similar disparities 
may occur elsewhere. The heterogeneity of NO2 changes demonstrates 
the need for the finely resolved information on lockdown effects that 
is offered by satellite observations.

We find that using this satellite-derived NO2 dataset as an observa-
tional proxy for lockdown conditions is also useful for identifying links 
between lockdown-driven emission changes and secondary pollutants. 
For example, several studies have found little to no change in fine par-
ticulate matter (PM2.5) during lockdowns as meteorology, long-range 
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transport and nonlinear chemistry complicate the relationship between 
PM2.5 and NOx emissions47,48. A challenge in these studies has been limited 
observational information on the local lockdown intensity. Recent work 
examining 2020–2019 changes in satellite-derived PM2.5 concentrations 
found that lockdown-driven decreases in PM2.5 concentration can be 
identified by separating the meteorological effects from emissions 
effects using chemical transport modelling and focusing on regions 
with the greatest sensitivity to emission reductions49. Here we exam-
ine that same satellite-derived PM2.5 dataset using TROPOMI-derived 
ground-level NO2 concentrations to identify the regions where PM2.5 
concentrations are most likely associated with lockdowns or sensitive 
to NOx emissions. Supplementary Fig. 17 shows the distribution of 
changes in monthly mean PM2.5 concentrations from 2020–2019 for 
China in February and North America and Europe in April. Regions with 
the largest 2020–2019 NO2 concentration decreases (90th percentile) 
are considered to be those with significant NOx emission reductions. 
Population-weighted mean PM2.5 concentrations decreased overall; 
however, regions with the largest NO2 decreases experienced greater 
local changes in PM2.5 concentration in China and to a lesser extent in 
North America, indicating that the sensitivity of PM2.5 to changing NOx 
emissions can be inferred. The year-to-year variability of PM2.5 concen-
trations in Europe is similar regardless of changes in NO2, indicating 
a greater role of meteorology or transport on PM2.5 in this region and 
period. These results are consistent with previous findings when using 
chemical transport modelling to identify regions where local emissions 
are important49. Thus, the observational proxy on lockdown conditions 
offered by these satellite-derived surface NO2 concentrations offers 
spatially resolved information to identify where PM2.5 and NO2 (and 
by proxy, NOx emissions) are most strongly coupled.

Implications
The pronounced decreases in ground-level NO2 found here for over 
200 cities worldwide during COVID-19 lockdowns are a culmination 
of recent advancements in techniques for estimating ground-level 
NO2 from satellite observations27 alongside higher-resolution satellite 
observations from TROPOMI that allow for estimating high spatial reso-
lution, short-term changes in NO2 exposure. This method bridges the 
gap between monitor data (that measure ground-level air quality but 
have poor spatial representativeness) and satellite column data (that 
provide spatial distributions but are less representative of ground-level 
air quality). The ability to infer global ground-level NO2 concentrations 
with sufficient resolution to assess individual cities and even within-city 
gradients is an important development in satellite remote-sensing 
instrumentation and algorithms. Additionally, these satellite-derived 
ground-level NO2 concentrations offer information about unmoni-
tored communities and populations that are underrepresented in 
studies focused on ground-monitor data. These cities are found to 
have different characteristics of NO2 concentrations and changes dur-
ing lockdowns that motivate the need for satellite observations in the 
absence of local ground monitoring. The changes in ground-level NO2 
due to COVID-19 lockdown restrictions, which exceed recent long-term 
trends and expected meteorologically driven changes, demonstrate the 
impact that policies that limit emissions can have on NO2 exposure. This 
information has relevance to health impact assessment; for example, 
studies focused on ground-monitor data have indicated improvements 
in health outcomes related to improved air quality during lockdowns, 
including an estimated 780,000 fewer deaths and 1.6 million fewer pae-
diatric asthma cases worldwide due to decreased NO2 exposure20. Our 
study demonstrates considerable spatial variability in lockdown-driven 
ground level NO2 changes that does not necessarily correlate with popu-
lation density, demonstrating probable uncertainties arising from 
extrapolating changes observed by ground monitors to estimate broad 
changes in population NO2 exposure. Satellite-based ground-level 
NO2 estimates provide high-resolution information on the spatial 

distribution of NO2 changes in 2020 that cannot be achieved through 
ground monitoring, particularly in regions without adequate ground 
monitoring, and should improve exposure estimates in future health 
studies. Additionally, ground-level concentrations from downscaled 
OMI observations provide the opportunity to contrast effects of past 
mitigation efforts on long-term NO2 trends against the short-term 
changes resulting from more dramatic regulations, and a chance to 
improve studies of health outcomes related to long-term NO2 exposure.

The strength of the links between observed changes in NO2 con-
centration and lockdown stringency indicates that satellite-based 
ground-level NO2 concentrations offer useful observational, spatially 
resolved information about lockdown conditions. This provides an 
observational metric for examining the efficacy of lockdown restric-
tions on restricting mobility for studies examining the spread of 
COVID-19. Here we exploited this information to illustrate the dif-
fering sensitivity of NO2 concentrations to changes in various emis-
sion sources to lockdown restrictions. Future applications of these 
data could include examining socioeconomic drivers that impact 
this variability within and between countries. Comparisons between 
satellite-derived ground-level NO2 and PM2.5 also indicate the utility of 
these data as an observational proxy for identifying regions where sec-
ondary pollutants such as PM2.5 or ozone are more likely to be sensitive 
to NOx emissions; these links are otherwise difficult to trace without 
the use of chemical transport models50.

These data offer information to improve NO2-exposure estimates, 
to examine exposure trends, and subsequently estimate changes in 
health burden. These developments provide an excellent opportunity 
for advances in air quality health assessment in relation to NO2 and its 
combustion-related air pollutant mixture.
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Methods

Data
We use tropospheric NO2 columns from the OMI (NASA Standard Prod-
uct version 4)51 and TROPOMI52,53 satellite instruments. Both instru-
ments measure solar backscatter radiation in the ultraviolet–visible 
(UV–vis) spectral bands on sun-synchronous orbits with local overpass 
times around 1:30 p.m. TROPOMI observations from April 2018–Octo-
ber 2020 are used to examine near-term NO2, and OMI observations 
from January 2005–December 2019 are used to examine long-term 
trends. Observations with retrieved cloud fractions greater than 0.1 
or flagged as poor quality or snow-covered (that is, TROPOMI qual-
ity assurance flag <0.75) are excluded. Although the resolution of 
TROPOMI observations is 3.5 × 5.5 km2, several studies have demon-
strated that oversampling techniques can provide accurate NO2 maps 
at 1 × 1 km2 resolution when averaging over a one-month period31,32,54. 
An area-weighted oversampling technique55,56 is used to map daily 
satellite NO2 column observations from TROPOMI onto a ~0.01° × 0.01° 
(~1 × 1 km2) resolution grid and from OMI to a 0.1° × 0.125° (~10 × 10 km2) 
grid, as these resolutions balance the need of fine resolution for observ-
ing fine-scale structure and of minimizing the effects of sampling biases 
and noise in the observations. Supplementary Fig. 8 provides further 
evidence that a one-month period provides sufficient observations for 
a 1 × 1 km2 map as the agreement between TROPOMI-derived surface 
concentrations and in situ observations does not deteriorate when the 
sampling period is reduced from one year to one month. Additionally, 
we compared 2019 monthly mean concentration estimates with the 
2019 annual mean and find high correlation (r = 0.90), indicating similar 
spatial variability. We correct for sampling biases in the satellite records 
due to persistent cloudy periods or surface snow cover using a correc-
tion factor calculated with the GEOS-Chem chemical transport model 
described below by sampling the GEOS-Chem-simulated monthly or 
annual mean column densities to match the satellite.

We use hourly ground-level NO2 measurements from monitors to 
constrain and evaluate the satellite-based estimates. Observations 
from the US Environmental Protection Agency Air Quality System 
(https://aqs.epa.gov/aqsweb/documents/data_mart_welcome.html) 
over the continental USA from 2005–2020, Environment and Climate 
Change Canada’s National Air Pollution Surveillance Program (http://
maps-cartes.ec.gc.ca/rnspa-naps/data.aspx) from 2005–2019, Euro-
pean Environment Agency (https://aqportal.discomap.eea.europa.
eu/index.php/users-corner/) from 2005–2020, National Air Quality 
Monitoring Network in China from 2015–2020 were (obtained from 
https://quotsoft.net/air) were used. European monitors classified as 
near-road are excluded. Monthly and annual mean concentrations at 
each site are calculated by averaging hourly observations between 
13:00–15:00 h (corresponding to satellite overpass times) and cor-
rected for the known overestimate in regulatory measurements due to 
interference of other reactive nitrogen species following Lamsal et al.24.

To examine the relationship between COVID-19 lockdown policies 
and ground-level NO2 concentrations, we use the Oxford COVID-19 
Government Response Tracker (OxCGRT, https://www.bsg.ox.ac.uk/
research/research-projects/coronavirus-government-response-tracker
#data). OxCGRT provides a daily country-level policy ‘stringency index’ 
ranging from 0–100 that is based on containment and closure policies 
(for example, school and workplace closures, stay-at-home orders, 
gathering restrictions). We also use population density data from the 
Center for International Earth Science Information Network for the 
available years of 2005, 2010, 2015 and 2020, and linearly interpolate 
for other years (https://doi.org/10.7927/H4JW8BX5).

Inferring ground-level concentrations from satellite column 
observations
Ground-level NO2 concentrations are derived from TROPOMI 
NO2 columns following the method developed in Cooper et al.27. 

This algorithm builds upon the method first developed by Lamsal 
et al.24 which uses the GEOS-Chem-simulated relationship between 
ground-level and tropospheric column NO2 concentrations. The 
updated algorithm uses the satellite-observed column densities and 
ground-monitor data as observational constraints on the shape of the 
boundary layer profile, reducing the sensitivity to model resolution 
and improving agreement between satellite-derived ground-level 
concentrations and in situ observations. Technical details on the 
application of this method as used here are available in the Supple-
mentary Information.

For long-term trend analysis, we use more recent TROPOMI observa-
tions to provide fine-resolution spatial structure to the OMI-observed 
NO2 columns following the method of Geddes et al.25. Annual mean OMI 
NO2 columns are gridded to 10 × 10 km2 resolution and a median-value 
filter is applied to reduce noise. We smooth the two-year (April 2018–
April 2020) mean TROPOMI NO2 columns mapped at 1 × 1 km2 reso-
lution using a two-dimensional boxcar algorithm with an averaging 
window of 10 × 10 km2 to match the resolution of the gridded OMI NO2 
columns. We then downscale the annual mean OMI NO2 columns using 
the ratio of the 1 × 1 km2 TROPOMI columns to the smoothed TROPOMI 
columns. The downscaled columns are then used to infer ground-level 
concentrations following the method used for TROPOMI. Supplemen-
tary Fig. 18 demonstrates the utility of this downscaling approach by 
comparing OMI-derived ground-level concentrations to those derived 
from the downscaled columns. When comparing 2020–2019 changes 
in monthly mean concentrations to long-term trends, trends in annual 
mean concentration are scaled by the ratio of the 2019 monthly mean 
to the 2019 annual mean to account for seasonality.

The GEOS-Chem chemical transport model version 11-01 is used 
here (https://geos-chem.seas.harvard.edu/) for NO2 vertical profiles 
and to assess meteorological effects. GEOS-Chem simulates atmos-
pheric chemistry and physics using a detailed HOx–NOx–VOC–O3–
aerosol chemical mechanism57,58 driven by meteorological data from 
the MERRA-2 Reanalysis of the NASA Global Modeling and Assimilation 
Office59. A detailed description of the simulation is provided in Hammer 
et al.60. We replace the a priori profile used in the retrieval with profiles 
simulated using the GEOS-Chem model to ensure consistency in verti-
cal profile representation between TROPOMI, OMI, and GEOS-Chem. 
We simulate NO2 profiles from January 2005–June 2020 at a horizon-
tal resolution of 2° × 2.5°. Supplementary Fig. 19 shows results from 
tests using a simulation at 0.5° × 0.625° which was available over North 
America, Europe and Asia. Satellite-derived ground-level concentra-
tions at ~1 × 1 km2 resolution were not sensitive to the resolution of 
the a priori information, consistent with Cooper et al.27, and thus the 
2° × 2.5° was used here for consistency across all regions.

Inferring country- and city-level NO2 changes during COVID 
lockdowns
City-level monthly means are calculated from TROPOMI-derived 
concentrations at ~1 × 1 km2 resolution averaged over a 20 × 20 km2 
region surrounding the city. Meteorological effects are estimated using 
GEOS-Chem simulations at 2° × 2.5° resolution with consistent emis-
sions in both years, downscaled to ~1 × 1 km2 resolution using the hori-
zontal variability of TROPOMI-derived ground-level concentrations. 
Supplementary Fig. 20 demonstrates that GEOS-Chem simulations 
can represent meteorologically driven changes in NO2 in pre-lockdown 
periods. Trends are defined over 2005–2019 for North America, Europe 
and Australia, 2015–2019 for Asia and Africa, and 2010–2019 for South 
America and scaled for seasonality.

Country-level population-weighted means, used to represent popu-
lation NO2 exposure, are calculated using concentrations at ~1 × 1-km2 
resolution via:
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where xi is the NO2 concentration and Pi is the population within a 
~1 × 1-km2 grid box.

Limitations and sources of uncertainty
Uncertainty values for country- and region-level population-weighed 
means (σtotal) represent the sum in quadrature of three main error 
sources:

σ σ σ σ= + + . (3)Ωtotal pop−weighted
2 2

AMF2020
2

max

Uncertainty in population-weighted means (σpop-weighted) are estimated 
using a bootstrapping method61. Uncertainty in 2020 NO2 estimates 
(σAMF2020) arises from the use of simulated profiles as a priori information 
for calculating satellite air mass factors and for informing the 
column-to-ground-level relationship, as these simulations use emission 
inventories that do not reflect changes resulting from COVID-19-related 
travel restrictions. Such errors may result in overestimating the fraction 
of columnar NO2 near the surface, resulting in an overestimate in 
satellite-derived ground-level NO2 concentrations and an underestimate 
of the 2020–2019 difference. We estimate σAMF2020 by performing sensitiv-
ity studies where anthropogenic NOx emissions were uniformly reduced 
by 50% to assess the effect of such emission errors on ground-level NO2 
estimates. Reducing anthropogenic NOx emissions by 50% led to a 5% 
change in monthly mean population weighted NO2 concentrations in 
North America, Europe and Asia for March 2020. Aerosols can also con-
tribute to uncertainty in air mass factor calculations, as a reduction in 
anthropogenic scattering aerosols during lockdowns may reduce air 
mass factors leading an underestimation of the NO2 change62,63. However, 
this is likely to be a minor source of uncertainty in estimated NO2 changes 
due to lockdown, because aerosol concentration changes were small in 
most regions49 and a reduction in aerosol concentration of 10% translates 
to an uncertainty in NO2 of less than 5%64. Additional uncertainty (σΩmax

) 
may arise from the choice of the Ωmax parameter (described in the Sup-
plementary Information), particularly in regions where there are insuf-
ficient ground-monitor data for constraining Ωmax. We estimate σΩmax

 by 
evaluating the sensitivity of mean population-weighted NO2 concentra-
tions to a 20% change in Ωmax. Median country-level σΩmax values are ~7%. 
Uncertainty values in trends are calculated by a weighted linear regression 
where annual mean concentrations are weighted by σtotal.

Although tests here indicate that satellite-derived ground-level NO2 
concentrations are insensitive to the resolution of the simulated data 
used in the algorithm, discontinuities can occur at the edges of simula-
tion grid boxes. To quantify this uncertainty, we calculate the differ-
ence across the grid box boundaries in each region. In most regions 
the discontinuity is small (<0.5 ppbv in 92% of total cases, and in 98% 
of cases where NO2 concentrations >2 ppbv) although can be larger 
in some cases (>2 ppbv in 0.02% of cases where NO2 concentrations 
>2 ppbv, maximum of 4.5 ppbv).

The along-track resolution of TROPOMI observations changed from 
7 km to 5.5 km in August 2019. This change may influence interannual 
comparisons, particularly with respect to the sub-grid downscaling of 
process which relies on the spatial structure observed by the satellite. 
To test the influence of this change, we perform a case study where 
annual mean surface concentrations over Asia are calculated using two 
different sub-grid scaling factors (ν in equation S1 in the Supplementary 
Information) determined from one year of observations before and 
after the resolution change, with other variables held constant. The 
mean relative difference between the two tests was 9% for grid boxes 
with annual mean concentrations greater than 1 ppbv, with a change in 
regional population-weighted NO2 concentrations of 3%. Greater sensi-
tivity to observation resolution was evident in regions with larger NO2 
enhancements, although relative differences greater than 25% occur 
in fewer than 5% of grid boxes. These tests indicate that although the 
change in observation resolution may change some spatial gradients, 
the overall impact on population exposure estimates is small.

Uncertainty values presented above represent uncertainty in the 
conversion of satellite-observed slant columns into surface concentra-
tions and do not represent systematic errors in the retrieval of slant 
columns from satellite-observed radiances (~10%), or errors in the air 
mass factor calculations (23–37%), both of which have been exten-
sively examined in prior studies52,65. Errors related to air mass factor 
calculations can be reduced by using higher-resolution inputs in air 
mass factor calculations66,67 and are partially mitigated here during the 
conversion of column densities to surface concentrations through the 
sub-grid parameterization27.

Although we apply a scaling factor to correct for sampling biases 
due to persistent cloud cover or surface snow cover, biases in monthly 
mean calculations may persist if the sampling rate is sufficiently low, 
particularly for city-level calculations. Most of the cities examined in 
Supplementary Table 1 had sufficient sampling to allow for a robust 
monthly mean calculation (median sampling rate of 14 days per month 
for the months indicated in the table), except for two cities for which 
fewer than 5 days of observations per month were available for the given 
month in either 2019 or 2020 (labelled * in Supplementary Table 1). 
However, results from these cities were consistent with nearby, more 
frequently sampled cities, lending confidence to these results despite 
the lower sampling frequency.

This dataset represents substantial improvement over past 
satellite-derived ground-level NO2 estimates, as the updated algorithm 
is less sensitive to model resolution and leverages higher-resolution 
satellite observations than previous estimates. However, limitations 
remain. There can be considerable fine-scale variability at scales finer 
than the 1 × 1 km2 resolution used here that cannot be captured by the 
satellite observations68,69. Additionally, ground-monitor data are used 
as a constraint in converting observed column densities to ground-level 
concentrations, and thus absolute concentration values are probably 
less accurate in time periods or regions where ground-monitor data are 
unavailable. However, these data are still useful for examining relative 
interannual variability or trend analysis. In combining OMI and TRO-
POMI observations we assume that the spatial gradients observed by 
TROPOMI in 2018–2020 can be applied to OMI for the entire 2005–2019 
time series. New or disappearing point emission sources with small 
plume footprints may affect this assumption; however, past evalua-
tions of similar assumptions have not found it to be a substantial error 
source25. Additional errors in the column to ground-level conversion 
may occur in areas with substantial free tropospheric NO2 sources such 
as aircraft emissions or lightning.

Data availability
TROPOMI-derived 2019 annual mean ground-level NO2 concen-
trations developed here are available at https://doi.org/10.5281/
zenodo.5484305. TROPOMI-derived January–June 2019 and 2020 con-
centrations are available at https://doi.org/10.5281/zenodo.5484307. 
Satellite-derived ground-level NO2 concentrations for 2005–2019 
used for trend analysis are available at https://doi.org/10.5281/
zenodo.5424752. Satellite column data used here are available 
from the NASA Goddard Earth Sciences Data and Information Ser-
vices Center (TROPOMI, https://doi.org/10.5270/S5P-s4ljg54; OMI, 
10.5067/Aura/OMI/DATA2017). The GEOS-Chem model version used 
here is available at https://doi.org/10.5281/zenodo.2658178. Hourly 
ground-level NO2 measurements from ground monitors in the USA are 
available from the US Environmental Protection Agency Air Quality 
System (https://aqs.epa.gov/aqsweb/documents/data_mart_welcome.
html), in Canada from Environment and Climate Change Canada’s 
National Air Pollution Surveillance Program (http://maps-cartes.
ec.gc.ca/rnspa-naps/data.aspx), in Europe from the European Environ-
ment Agency (https://aqportal.discomap.eea.europa.eu/index.php/
users-corner/), and in China from https://quotsoft.net/air. COVID-19 
lockdown policy information is provided by the Oxford COVID-19 
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Government Response Tracker (https://www.bsg.ox.ac.uk/research/
research-projects/coronavirus-government-response-tracker#data). 
Population distribution data are available from the Center for Inter-
national Earth Science Information Network, https://doi.org/10.7927/
H4JW8BX5. NO2 changes during COVID-19 lockdowns from previous 
studies used for comparison here were compiled by Gkatzelis et al.34 
and are available at https://covid-aqs.fz-juelich.de. Gross National 
Income data were provided by World Bank, available at https://data.
worldbank.org/indicator/ny.gnp.pcap.cd?year_high_desc=true.

Code availability
Code used to calculate surface NO2 concentrations from satellite col-
umns is available upon request. Some features in the displayed maps 
were produced using The Climate Data Toolbox for MATLAB70.
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