
DELFT UNIVERSITY OF TECHNOLOGY

MASTERS THESIS

Global State Queries in Stream Processing

Author:
Mitali PATIL

Supervisor:
Asterios KATSIFODIMOS

Daily Co-Supervisors:
George CHRISTODOULOU

Kyriakos PSARAKIS

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Web Information Systems Group
Software Technology

July 17, 2025

http://www.tudelft.nl
http://www.wis.ewi.tudelft.nl/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/

ii

Declaration of Authorship
I, Mitali PATIL, declare that this thesis titled, “Global State Queries in Stream Pro-
cessing” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed: Mitali Patil

Date: 16 th July 2025

iii

DELFT UNIVERSITY OF TECHNOLOGY

Abstract
Electrical Engineering, Mathematics and Computer Science

Software Technology

Master of Science

Global State Queries in Stream Processing

by Mitali PATIL

While database systems have matured significantly over the past few decades, the
rapid growth of real-time analytics to feed quick decision making has paved a way
for multipurpose and high performant systems. As stream processing also matures,
it is of interest to explore its full functional capabilities such as state management.
Most streaming systems have inaccessible state for external systems to query, which
limits the ability to drive value from the live mutable state data. In this thesis we
present Q-Styx, a system that exposes the live state of stateful operators in a stream-
ing engine for external queries. We introduce a global state store that maintains
a copy of the distributed state across the system without the need of an external
database. With strong isolation guarantees for consistent results, our implementa-
tion balances the tradeoffs between performance isolation and data freshness while
exhibiting minimal impact on the core transactional capabilities of the streaming en-
gine.

HTTP://WWW.TUDELFT.NL
https://www.tudelft.nl/en/ewi/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/

iv

Acknowledgements
I would like to firstly thank my supervisors Dr. Asterios Katsifodimos, George
Christodoulou and Kyriakos Psarakis for their huge help, support and great ideas
during my thesis. I especially acknowledge their feedback and invaluable patience.

I am also grateful for all my friends in Delft who made this place feel like home
and inspired me. And lastly, to my family for their unconditional support through-
out this journey.

v

Contents

Declaration of Authorship ii

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Research Questions . 1
1.2 Contributions . 2
1.3 Outline . 2

2 Background 3
2.1 Transactional and Analytical Processing 3
2.2 Motivation . 3
2.3 Preliminaries . 4

2.3.1 State Management . 4
2.3.2 Quering a State Store . 5
2.3.3 Styx . 5
2.3.4 Isolation Levels . 5

2.4 Related Work . 7

3 Methodology 8
3.1 Architecture . 8

3.1.1 Design Challenges . 8
3.2 Implementation . 10

3.2.1 Global State Store . 10
3.2.2 Updating the State . 11
3.2.3 Querying the Live State . 11

3.3 Isolation levels . 12

4 Evaluation 13
4.1 Setup . 13
4.2 Evaluation of Transaction Latency: Impact of Q-Styx 15
4.3 Data Synchronisation Performance . 16
4.4 Freshness Score . 17
4.5 Query Performance . 18
4.6 Summary . 19
4.7 Limitations and Takeaways . 19

5 Conclusion and Future Work 21
5.1 Future Work . 21
5.2 Conclusion . 21

Bibliography 22

vi

List of Figures

3.1 Global State Architecture . 8
3.2 Workload Isolation vs Data Freshness 9
3.3 Global State Store Schema . 11

4.1 Latency vs Throughput . 15
4.2 Latency vs key scale . 16
4.3 State Update Latency . 17
4.4 Query performance showing the 50th and 99th percentiles of query

latencies for varying key space sizes. 18

vii

List of Tables

2.1 Phenomena possible in different isolation levels [6]. 6

3.1 Guarantee of Q-Styx . 12

4.1 Average freshness score in milliseconds for different key spaces and
query rates (QPS). 17

4.2 Comparison of system factors across different key space sizes. 19

viii

List of Abbreviations

HTAP Hbrid Transaction/ Analytical Processing
OLTP On Line Transaction Processing
OLAP On Line Analytical Processing
KV Key Value
RDBMS Relational Database Management System
ACID Atomicity Consistency Isolation Durability
DAG Direct Acyclic Graph
ETL Extract Transform Load

1

Chapter 1

Introduction

Stream processing systems over the years have evolved to support real time analyt-
ics, central to this utility is the state management model. The need to manage state
like a ’first class citizen’ arises for many interactive and reactive data applications
like Event-driven services , Online ML model training and inference, etc. As stream
processors mature to support analytics on top of real time transaction processing-
managing large scale, distributed and consistent state has become a challenge. This
raises a significant architectural design question of how the state is managed, stored
and can be queried [8]. A well rounded overview of stream processing systems
drawn from, [11] states the programmability, architectures and open challenges of
state management. In stream processing, state consists of all internal data required to
produce correct output - which includes sliding windows , joins , aggregation coun-
ters and such. Steaming systems like Apache Flink [3], Spark [4] and Millwheel[1]
introduced user-programmable state, allowing developers to define and manipulate
state directly via API calls. These systems balance usability with system-managed
persistence and scalability. The design choices of state management influence the
way internal state can be queried externally. Being able to query the state allows the
user to see an exposed view of the state amid transaction processing in the stream-
ing system. This can be used for auditing, debugging and real-time analytics. For
example - fraud detection application running on top of a streaming service can ag-
gregate and filter state data to flag transactions above a certain amount or daily limit.
However, querying live state externally presents several challenges. In systems with
partitioned state, accessing a complete global view requires coordination across par-
titions. Since the state is continuously mutating, any attempt to access it must not
interfere with ongoing transaction processing. At the same time, the retrieved state
should be as fresh and consistent as possible. This is similar to querying a recent,
but potentially slightly stale, version of the data. Several challenges exist to query
live state, among them are data synchronisation, query optimisation, performance
isolation and resource scheduling. Multipurpose systems like HTAP databases aim
to solve these issues for OLTP and OLAP workloads. These architectural choices can
be applied in streaming engines to serve state queries as a way to handle analytical
workload for continuous stream of data.

1.1 Research Questions

This issue raises the following research questions:

1. How does integrating an active global state store affect the transactional stream
processing performance?

2. How fast can the state store be updated in a distributed setting ?

2 Chapter 1. Introduction

3. How fresh can the fetched state data be for analytical workloads?

4. What consistency guarantees can be achievable when querying the state?

1.2 Contributions

In this thesis we propose Q-styx a system that queries the distributed state of a
streaming processor. Q-Styx exposes the internal state of operators for external sys-
tems to query. Q-Styx is implemented in Styx [20], a streaming dataflow engine that
guarantees serializable isolation and low latency performance. Our experimental
evaluation suggests that Q-Styx adds only about 2ms in transaction latency in the 99
th percentile. We make the following contributions to current research:

• Design and implementation of a global state store, that exposes the state of
a streaming processors transaction for querying, while minimally impacting
Styx’s throughput and latency.

• Retrieving all the distributed state data without the need for the data to be
sinked to any external data store.

• Q-Styx guarantees Snapshot Serializable Isolation for consistent query results.

• Thorough evaluation of Q-Styx’s performance using various state sizes, and
input throughput. Using freshness scores to evaluate the staleness of data.

• And finally, we offer ways to improve the system further for better perfor-
mance and scalability.

1.3 Outline

In chapter 2 we discuss the background and motivation for this thesis and go over
some preliminary knowledge about state management and isolation levels required
for the rest of the thesis. In chapter 3 we discuss the architecture and implementation
of Q-Styx and in chapter 4 we evaluate the system performance based on the defined
metrics. And finally in chapter 5 we conclude with some observations for future
work.

3

Chapter 2

Background

2.1 Transactional and Analytical Processing

Traditional data processing systems separate transactional/operational data - that
systems use for running the business which is stored in databases and analytical data
- that is used for insights and is stored in buckets. Each of these OLTP and OLAP are
designed to serve a distinct purpose. Moreover, advances in both OLAP and OLTP
have driven the emergence of HTAP systems which are designed to handle mixed
workloads and serve both purposes. HTAP databases are challenging to build for
scale while maintaining consistent views of the data in all the replicas. Databases like
[16], [13], [24] have various storage strategies and target different applications. For
example, some applications like e-commerce require high scalability, while banking
applications require high data freshness. It also depends on wether transactions or
analytics get priority.

2.2 Motivation

Through ETL processes that may take hours sometimes upto days, the OLTP data
is periodically moved to OLAP systems. This limits real time decision making that
would benefit many downstream applications. For example, if an application uses
Machine learning to generate insights based on some user activity, the transactional
data is used for analytics and fed back to the transactional system. Stream process-
ing systems fit into this kind of architecture. Our work aims to apply the concepts of
HTAP systems into stateful stream processing. Stream processing works on a contin-
uous stream of data. Instead of generating analytics from an external data store that
could be the sink of the stream processor, we intend to query the live state of the data
in the stream. Exposing the distributed state of a streaming system has applications
like:

• Real-Time Monitoring: Queryable state would allow external applications to
directly access and monitor current state of a stream processing job. This
would eliminate the need to rely on ETL process and stale data. For exam-
ple, in a billing system , the current quarterly/monthly/weekly totals can be
provided to downstream applications quite quickly.

• Debugging : Inspecting the state at specific points in time or during specific
streaming jobs can help identify issues and anomalies. This can be of great
assist to developers when particularly dealing with complex computations in
a distributed system. This also aids in our understanding of streaming topolo-
gies in depth.

4 Chapter 2. Background

• Look Aside Cache : Applications that use look aside cache pattern benefit from
a queryable state store. Instead of querying an external database for fast chang-
ing data, the state store can serve the metrics for low latency applications like
gaming.

To be able to query the live state of the data, we have to dive into the stream
processors and state backends.

2.3 Preliminaries

Here we will discuss the background knowledge required for the rest of the thesis
to follow.

A stateful stream processor processes continuous data streams while maintain-
ing a memory of past events, enabling operations like aggregations, joins, and win-
dowed analyses. Stream processing applications are structured as Directed Acyclic
Graphs (DAGs), where each node represents a processing function—either stateless
(e.g., filtering) or stateful (e.g., aggregations) that remember the result of previous
execution. There are two types of "states" in stream processing : The metadata of
stream processing , that tracks the progress of the processing task, such as check-
pointing and offsets which is essential for fault tolerance and recovery. The other
state is the intermediate data maintained between processing steps, enabling opera-
tions like aggregations and joins. When we refer to "state" in stream processing, we
refer to the intermediate data.

2.3.1 State Management

Maintaining state in stream processing involves storing, updating, and recovering
state in case of failures. Storing state requires allocating memory or disk space to
hold intermediate processing data. To ensure fault tolerance, state must be persisted
in durable storage, enabling recovery after crashes. This is achieved through a state
store, which can range from simple in-memory key-value maps to embedded stores
like RocksDB[7], or even external systems like Cassandra[15]. The state store acts
as a repository for intermediate results between processing steps. Different architec-
tures support different needs: in-memory state offers low-latency access and is ideal
for frequent, fast updates but is limited by available RAM. Out-of-core state archi-
tectures, such as those using RocksDB, extend the state beyond memory by spilling
to disk, allowing for much larger state sizes at the cost of disk I/O latency. In exter-
nalized state stores the state completely resides outside the processing engine, like
Google’s BigTable, as used in MillWheel[1] , providing strong durability and trans-
actional guarantees but introducing higher access latencies. An important aspect of
state maintenance is persistence granularity—the frequency and scope at which state
is saved. Epoch-level persistence captures state snapshots either periodically or after
a fixed number of records have been processed. This is typically implemented us-
ing asynchronous consistent snapshotting, such as the Chandy-Lamport algorithm
[9], where each operator in the system saves a consistent copy of its state during
an epoch. In contrast, batch-level persistence, seen in systems like Spark Streaming
rely on a micro-batching approach where the state is only persisted at the end of
each batch, after a group of records have been collected and processed. Another im-
portant aspect of state management is partitioned and non-partitioned(global) state.
While processing a stream in parallel, partitioning the state is a standard approach.

2.3. Preliminaries 5

The data is grouped by keys and mapped to respective logical partitions for com-
putations. Global state on the other hand is maintained as a single state instance
over the complete input stream. This kind of state is useful for global operations like
counting total events, keys per operator or for all operators. However, this approach
does not scale well. Most modern streaming dataflow systems offer built in state
management as the alternative would be to essentially make all operators stateless
and externalise all intermediate data.

2.3.2 Quering a State Store

State management features can also extend to being able to query the state store
from outside the system. This provides a read access to the latest values computed
by the stream processor. This state of the system can be used for ad-hoc analysis
through a SQL like querying interface. From a traditional distributed systems view-
point, this is similar to querying the stale replicas of the master node. Combined
with pluggable state backends mentioned in 2.3.1, users can interact with system-
managed and user defined state through APIs provided by the stream processor
like in [1],[3], [2], [14]. Most dataflow programming models assume a key-value
schema for input records and always associate state with a key meaning that the
state is partitioned by a key and any query or update operate only on partition-local
state for its key.

2.3.3 Styx

Styx builds on stateful streaming dataflow execution model inspired by systems
like Apache Flink, that supports Stateful Functions-as-a-Service paradigm [21] with
deterministic transactions [20]. Styx co-locates state with the function logic which
eliminates the need for external data stores. This allows for high performance with
end to end serializable transactions and exactly-once processing guarantees. Dur-
ing runtime , Styx structures an application as a directed dataflow graph where the
vertices represent the operators (stateful entities) and edges represent the flow of
events (function invocations). The deterministic sequencing of functions guarantees
that each transaction’s sequence and effect are repeatable under failure and replay.
Hence, Styx is able to handle both parallel, data-intensive streaming workloads. Op-
erators are partitioned across multiple cluster nodes, each partition holds a set of
stateful entities. During an incoming event when a function is invoked, the local
state is retrieved from the operators partition, the respective function is executed
and the state is updated. Styx offers epoch level state persistence, meaning, the en-
tire task graph is committed after each epoch is processed. A complete execution of
an epoch is useful to support isolated queries for analytics on-top of data streaming
[23].

2.3.4 Isolation Levels

In Distributed systems, the isolation property of the ACID (Atomicity, Consistency,
Isolation and Durability) [12] model ensures that transactions appear to execute in-
dependently. [6] defines and improves upon the ANSI-SQL standard stating certain
isolation levels based on possible anomalies listed in the table and explained below.

6 Chapter 2. Background

Isolation
level

Dirty
write

Dirty read Lost up-
date

Fuzzy read Phantom
read

Read un-
committed

Not possi-
ble

Possible Possible Possible Possible

Read com-
mitted

Not possi-
ble

Not possi-
ble

Possible Possible Possible

Repeatable
read

Not possi-
ble

Not possi-
ble

Not possi-
ble

Not possi-
ble

Possible

Snapshot Not possi-
ble

Not possi-
ble

Not possi-
ble

Not possi-
ble

Possible

Serializable Not possi-
ble

Not possi-
ble

Not possi-
ble

Not possi-
ble

Not possi-
ble

TABLE 2.1: Phenomena possible in different isolation levels [6].

• Dirty write: Occurs when two transactions modify the same item and if either
rolls back, the final value is not correct.

• Dirty read: Occurs when a transaction reads uncommitted changes from an-
other transaction that later on is rolled back. This leads to the first transaction
reading an incorrect value.

• Lost update: Occurs when an update by one transaction overwrites an update
made by another transaction. The initial update is lost.

• Fuzzy read: Occurs when a transaction reads the same value twice but sees
different results due to a concurrent update from another transaction.

• Phantom read: Occurs when a transaction re-executes a query and sees a dif-
ferent set of rows because of inserts or deletes from other transactions.

Table 2.1 summarizes which phenomena can occur for different isolation levels.
Stronger levels like Serializable prevent all anomalies, while weaker levels like Read
Uncommitted allow dirty reads, lost updates, and other inconsistencies.

As mentioned in 2.3.3, Styx explicitly provides serializability, which is the strongest
isolation level in the ACID model. In Styx, the deterministic transaction protocol se-
quences transactions in global order, tracks read/write sets and deterministically
resolves conflicts. All state changes from a transaction appear atomic and isolated,
even across distributed operator partitions. This isolation level is stronger than snap-
shot isolation, repeatable read, or read committed — because it prevents phenom-
ena like write skew and phantom reads too. Styx is well suited for real-time global
queries on its state store for the following reasons:

• Co-location of state and compute : Because the state lives inside the running
dataflow graph , there is no external database we have to access.

• Determinstic Execution: Styx guarantees serializability and exactly once pro-
cessing, during a query run on its state , the results will reflect a valid cut of
the system without any dirty read(no uncommitted data is read due to epoch
level persistence).

2.4. Related Work 7

2.4 Related Work

Kafka Streams [14] allows users to interactively query the state store. This is imple-
mented through RPCs(Remote Procedure Calls) and the know-how of which parti-
tions the keys lie in. This results in a distributed database for state, embedded in an
application. Moreover, kafka streams guarantees eventual consistency which could
result in temporary incorrect results and edge cases in business logic. This is not
ideal for applications that require strict consistency. Although kafka streams pro-
vide the ability to query the state, its a library and not a complete stream processing
system with queryable state utility.
Apache Flink[3], on the other hand is a comprehensive stream processing system.
The QueryableStateServer is responsible for serving the query from the state store
after the state store is determined by the QueryableStateClientProxy. In Flink the
state object when queried is directly accessed from a concurrent thread without any
synchronisation or copying. The read patterns may become unsafe and cause the
queryable state server to fail due to concurrent modifications.
Apache Samza [19] maintains state alongside the processing logic. It supports queries
to its state however , not out of the box. Each task handles queries to its own local
state store meaning , you need to route requests based on partition information to
the correct local store. There’s no global look up.

8

Chapter 3

Methodology

This chapter describes the architecture, implementation and the isolation levels of
the qureyable state system in Styx 1, from here on out we will call it Q-Styx .2 .
Ad-hoc SQL queries can be submitted to the state store anytime, executed once, to
provide insights into the systems current state which is the live state of the operators
distributed across the streaming system.

3.1 Architecture

FIGURE 3.1: Global State Architecture

The high level architecture of the state store is depicted in Figure 3.1. There are
two separate but tightly coupled systems. Q-Styx service has an in-memory global
key-value state store. Q-Styx primarily runs two concurrent tasks - it ingests delta
updates from Styx and processes external queries against the current state. The delta
updates are state changes tracked per epoch. These deltas are merged to get a consis-
tent global view of the Styx systems distributed state which represent the operators
, partitions and their respective keys and values hence the name, global state store.
Q-Styx reflects the latest committed state of the transactions in Styx providing low
latency access of the state for external analytical queries.

3.1.1 Design Challenges

Extending Styx to support real-time analytical queries directly over its internal state
introduces several fundamental architectural challenges. This resembles the goals

1https://github.com/delftdata/styx
2https://github.com/mitalipatil99/Q-Styx

https://github.com/delftdata/styx
https://github.com/mitalipatil99/Q-Styx

3.1. Architecture 9

of modern Hybrid Transactional and Analytical Processing (HTAP) systems, which
aim to unify Online Transaction Processing (OLTP) and Online Analytical Process-
ing (OLAP) workloads in a single runtime. As discussed in recent HTAP surveys
and systems [17], [25], combining transactional processing with analytical queries
involves a balance between data freshness, workload isolation, and system perfor-
mance. Hence, it is critical to understand the challenges and trade offs under various
architectures.

Styx

Processing

Insatnce

Q-Styx

Processing

Insatnce

Transaction processing Query processing

Memory
Memory

Styx

Processing

Insatnce

Q-Styx

Processing

Insatnce

Transaction processing Query processing

Memory

a: High Workload Isolation , low data freshness

b: Low Workload Isolation , high data freshness

FIGURE 3.2: Workload Isolation vs Data Freshness

Data Freshness vs Performance Isolation: A key architectural challenge when in-
tegrating a queryable state store with Styx is managing the trade-off between data
freshness and performance isolation. Data freshness refers to how up-to-date the
query results are with respect to the latest committed transactions in the process-
ing system. To support real-time analytics, Q-Styx must access the most recent state
updates produced by Styx’s transactional functions. This requires fast, frequent syn-
chronization of state from the transactional runtime to the analytical store. Perfor-
mance isolation, on the other hand, reflects how well the system can minimize in-
terference between analytical workloads and transaction processing. In Styx, trans-
actional functions continuously mutate state while ensuring strong serializability
and exactly-once guarantees. Adding analytical queries introduces new load that
can compete for CPU, memory, and locks, potentially slowing down transaction
throughput. This creates a trade-off of depicted in Figure 3.2.

Running transactions and analytics in separate nodes or instances can achieve
high performance isolation — since both processes would not contend for the same
resources shown in part a of Figure 3.2. However, this comes at the cost of lower
data freshness, because newly committed transactional state must be replicated to
the analytical store, which introduces synchronization lag. Queries may then return
slightly stale results if the replication is delayed.

10 Chapter 3. Methodology

Running transactions and analytics in the same memory space provides maxi-
mum data freshness, as both workloads operate directly on the live, mutable state as
shown in part b of Figure 3.2 . However, this approach can degrade overall perfor-
mance, because analytical queries share CPU cycles, memory bandwidth, and locks
with the stateful functions, potentially slowing down the transaction processing.

Therefore, we need to carefully balance these requirements by: Providing low-
latency access to the latest committed state for analytical queries while minimiz-
ing the performance impact on Styx’s core transactional workload to maintain high
throughput and strong consistency guarantees.

Data Synchronization: Another challenge is to decide when and how to synchro-
nize state changes to the queryable state store. To minimize interference with Styx’s
transaction processing, it is necessary to maintain a separate replica of the state
changes for analytical queries. However, this introduces a trade-off: If synchroniza-
tion occurs too frequently, the analytical replica will always reflect the latest state,
providing high data freshness for queries. However, frequent copying and merging
of state changes can consume significant network bandwidth and can increase the
merge overhead especially if the state changes are big. On the other hand, if the data
replication updates are too infrequent, the state store may serve stale data, which
will undermine the goal of real-time analytical querying.

3.2 Implementation

In the context of Styx, by addressing the above mentioned trade-offs to build Q-Styx
on top of it, the following design choices have been made: We incrementally ship
state changes after each epoch to another service over a TCP network to minimise
the performance impact on Styx’s transaction function calls. The state data is repli-
cated to an in-memory KV store. This enforces isolation for analytical queries so that
long running queries do not degrade Styx’s performance and blow up memory for
eg. to hold intermediate aggregation results. With a focus on data freshness, in the
next chapter 4 we evaluate the performance degradation in Styx mentioned in sec-
tion 4.2 , Data Synchronization Performance between the two systems mentioned in
section 4.3 , the Freshness of results mentioned in section 4.4 and Query Performance
evaluated in section 4.5

3.2.1 Global State Store

Since the stateful operators are located across the partitions in Styx, to support query-
ing of live state, a global view of the system state is essential. We construct this view
compacting all deltas up to the current epoch, effectively merging all state changes
into a unified, consistent snapshot. This compaction enables external queries to ac-
cess the complete operator state across all partitions and for all operators without
requiring distributed coordination. The resulting global state store serves as an in-
memory KV database that offers low-latency, local access to the current state. It
eliminates the need for cross-node communication during query processing because
now the operators and key’s are co-located. Figure 3.3 illustrates transactions for
an application with three operators(stock, payment and order) partitioned across 4
nodes. The global view store’s all the KV pairs of all operators in Styx’s transaction
processing.

3.2. Implementation 11

The source of truth for this state store are the committed transaction’s state per
epoch in Styx. During compaction the latest value per key is overwritten , reduc-
ing memory overhead while maintaining the latest state values. This design choice
simplifies the complex coordination logic and partition alignment required for key
to instance routing .

Stock Order Payement

1: 100 1:98 1: 115

4:200 . .

. . .

. . .

Worker 1 Worker 2 Worker 3 Worker 4

Stock Order

2:13 2:89

5:119 6:76

8:345 .

. .

Payment Order

2:678 3:34

5:678 7:90

8:90 .

11:63 .

Stock Order Payment

3:1000 4:456 3:74

6:788 8:550 6:345

9:265 . 9:12

. . 12:

Stock Order Payment

1: 100 1:98 1: 115

2:13 2:89 2:678

3:1000 3:34 3:74

4:200 4:456 .

5:119 . 5:678

6:788 6:76. 6:345

. . .

. 8:550 .

Global state store

FIGURE 3.3: Global State Store Schema

3.2.2 Updating the State

Q-Styx maintains an In-Memory KV Data Structure that is updated incrementally us-
ing state changes (called delta maps) from distributed worker nodes. Each worker
node processes a portion of the stream and reports its local state changes for each
epoch. At the end of the transactional epoch in Styx, state updates are grouped, per
worker dictionary containing a mapping of [operator, partition]-> key: values pairs
of the respective epoch. These deltas are asynchronously sent over a TCP network
to Q-Styx where the state is only updated in the store once all workers have sub-
mitted their deltas for the next epoch to be updated. The state store uses the same
partitioned key as the operators in Styx to store the value. This non blocking opera-
tion does not interrupt the ongoing transaction processing. Moreover , this structure
lends itself to fault tolerance ready since all the deltas are stored in a buffer until a
full set is ready to be successfully merged. This also ensures atomic updates to the
state store per epoch - either the entire epoch update is committed or its not.

3.2.3 Querying the Live State

The decoupled KV store can now be queried externally to retrieve the state of the
operators during ongoing transactions. An SQL query can be used to get the state
of a processing job. Clients can send structured query messages that include the
operator and optionally the partition or the key. For example, getKeyState/Stock/1245
, here we are querying to get the value of key 1245 from the Stock operator. With just
the key in the query, the same hash partitioning mechanism in Styx is used to locate
the partition for retrieval. The queries supported so far are mentioned in Section 4.1.
Q-Styx responds asynchronously with the query results. This architecture ensures
strong isolation between transaction and analytical processing .

12 Chapter 3. Methodology

3.3 Isolation levels

In this section we discuss the isolation levels achievable for Q-Styx. Referring to
the isolation levels mentioned in Section 2.3.4, the following table shows the Q-Styx
guarantees.

System
Guarantee

Dirty Read Dirty
Write

Fuzzy
Read

Lost-
Update

Phantom
Read

Snapshot
Isolation

Not Possi-
ble

Not Possi-
ble

Not Possi-
ble

Not Possi-
ble

Not Possi-
ble

TABLE 3.1: Guarantee of Q-Styx

Q-Styx has Serializable Snapshot Isolation (SSI) by design, which provides strong
consistency guarantees. Q-Styx’s role is to serve queries against a committed state in
Styx. Queries observe a consistent cut/snapshot of the state as the state is updated
after an epoch is committed in Styx.

Since queries only see the committed data of the latest updated epoch state, Dirty
Reads are not possible. Similarly, Dirty Write phenomenon cannot occur because the
state is locked during the update process while the latest epoch is applied, prevent-
ing concurrent writes that might overwrite uncommitted data.

Queries served against a current committed epoch in the state store cannot see
multiple versions of the same data; the state store is immutable for the duration of
the query. Hence, if a query is being processed the transaction is locked to prevent
fuzzy reads and to ensure consistency.

Because we lock the state store during an update and only process all the epoch
state changes serially, There are no concurrency write conflicts and the queries are
read only which prevents the Lost Update phenomenon.

Furthermore, when a query starts, it is served from the previously committed
epoch view. Phantom Reads are avoided because the no changes are added to the
state store and the keys in it during the query execution, even if the next epoch state
is ready to be committed.

Q-Styx’s design guarantees that queries always see and read a consistent isolated
snapshot of Styx’s state answering the Research Question 4.

13

Chapter 4

Evaluation

The evaluation of the query state system is performed by answering the following
questions:

1. How does integrating the active global state store impact the performance of
transactional stream processing in Styx. (Section: 4.2)

2. How fast is the state store updated.(Section: 4.3)

3. How fresh can the state data be for analytical workloads. (Section: 4.4)

4.1 Setup

System Under Test. In all the following evaluation we use two systems. Styx:
,stateful dataflow system and Q-Styx the query extension for Styx. Both the systems
are implemented in Python 3.12 and use coroutines for asynchronous concurrent ex-
ecution. Apache Kafka is used as a durable input and output queue for messages.
Both are standalone containerized systems deployed using Docker.

Workload/Benchmark. We use the YCSB-T, [10] benchmark where each transac-
tion performs two reads and two writes. For example for 1000 unique bank account
keys, a simulation is performed to transact money from the debtors account to the
creditors given sufficient credit exists for the payment. If not a rollback is performed.
We select the debtor key based on an uniform distribution from a given key space
size, for example 1k, 10K and 100k keys.

Resources. Throughout all the evaluation, Styx system was deployed with 4 worker
nodes and 1 coordinator node, Q-Styx is deployed with 1 Queryengine node. Each
node is allocated 1 CPU and 32GB of RAM respectively.

Metrics. We aim to observe the latency of the systems under test against varying
transactions, queries and key sizes.

1. Input Throughput is defined as the number of transactions submitted to Styx
per second (TPS). We expect the latency of transactions to increase as the load
to the system increases.

2. Transaction Latency is defined by the time interval between a transaction sub-
mitted to Styx and the commit time of the same transaction. In Styx the la-
tency timer starts when a transaction is submitted in the input queue (Kafka)
and stops when the system reports the transaction as committed/aborted in
the output queue.

14 Chapter 4. Evaluation

3. Epoch State Update Latency is defined as the time interval between the com-
pletion of an epoch in Styx and the successful commit of the corresponding
state updates in Q-Styx’s state store. This metric assess the performance of
state state synchronization mechanism between Styx and Q-Styx. To capture
this metric we measure two timestamps per epoch:

(a) Epoch Completion Time — when Styx finalizes all transactions in that
epoch and commits them locally.

(b) State Store Commit Time — when Q-Styx finishes applying and persisting
the corresponding state updates.

The difference between these timestamps represents that state propagation la-
tency, which includes the Network communication delay (pushing deltas to
Q-Styx), Serialization and Deserialization costs,and the processing overhead
for updating the state store.

4. Query Throughput is defined by the number of analytical queries that are sub-
mitted to Q-Styx per second (QPS). Here, we expect Q-styx to maintain an
acceptable latency as the the queries increase.

5. Freshness Score is defined as the recency of the data read by analytical queries.
Following [18], we define the freshness score of an individual analytical query q,
denoted as Fq. This metric measures the staleness of the snapshot visible to the
query relative to the most recent committed state in the transactional engine.

Formally, the freshness score of query q is:

Fq = Astart − Tfirst_unseen

where:

• Astart is the global clock time when the analytical query starts. In our
system, this corresponds to the time when the query processing begins in
Q-Styx.

• Tfirst_unseen is the commit time of the first transaction whose updates are not
visible to the snapshot read by q. In our system, this aligns with the epoch
commit time in Styx for which the query is served by Q-Styx.

By definition, Fq = 0 indicates that the snapshot seen by the query is fully
up-to-date and includes all transactions committed before the query started. If
Fq > 0, the snapshot is stale by the given time interval.

In realistic workloads, multiple analytical queries run concurrently, each with
its own freshness score. Therefore, the overall system freshness is an aggre-
gated metric, such as the average or the 95th percentile of all query freshness
scores.

6. Query Latency is defined as the time interval between the submission of a state
query to the Kafka queue in Q-Styx and the receipt of the corresponding re-
sponse by the user. Here, we expect the query latency to increase with the
query throughput.

Queries. The following point queries have been used in random generation order
in Q-Styx to retrieve the state data from Styx.

4.2. Evaluation of Transaction Latency: Impact of Q-Styx 15

1. getKeyState/Operator/Key, e.g., getKeyState/Order/1245
This query fetches the state of the Operator’s specified key.

2. getOperatorState/Operator, e.g., getOperatorState/Payment
This query fetches the entire Operators state across all partitions.

3. getOperatorPartitionState/Operator/Partition,
e.g., getOperatorPartitionState/Stock/2
THis query fetches the state of a particular partition of the mentioned operator.

4.2 Evaluation of Transaction Latency: Impact of Q-Styx

To answer Research Question 1, we compare the baseline Styx runtime with Q-
Styx, which asynchronously replicates the post-epoch committed state. We con-
ducted controlled experiments focusing on transaction latency under varying in-
put throughput and key spaces. The experiments were run for 240 seconds with a
warmup of 10 seconds.

20 40 60 80 100
Percentile

2

4

6

8

10

12

14

La
te

nc
y

(m
s)

Styx 1000 TPS
Styx 2000 TPS
Styx 3000 TPS
Styx + Q-Styx 1000 TPS
Styx + Q-Styx 2000 TPS
Styx + Q-Styx 3000 TPS
50th Percentile
99th Percentile

FIGURE 4.1: Latency vs Throughput

Figure 4.1 highlights the 50th and 99th percentile latencies of Styx runtime and
Styx with Q-Styx enabled, tested at 1K, 2K and 3K TPS respectively with 10,000
unique keys. We expect the latency to increase as the throughput increases and base-
line run of Styx shows a similar pattern. The overlapping greenline on blue in the
reference figure indicates that adding Q-Styx shows almost no change in transaction
latencies. Thus, we conclude that Q-Styx has a minimal to no impact on the core
performance properties of Styx when the input throughput increases.

To further examine query impact of Q-Styx when we scale the data, we measure
how the transaction latency changes as we increase the key space. When the key
space is small, the total state per worker is limited — so the data transferred after
each epoch is relatively small. However, when the key space grows, each worker’s
partition contains proportionally more key-value pairs. Consequently: More data
must be serialized, transferred by Styx and, deserialized and ingested by the Q-Styx
system. This replication happens asynchronously, but it shares bandwidth and CPU
resources with the main transaction pipeline. The larger the key space, the more
replication work is done in the background after each epoch boundary. Hence, the
observed effect in the experiments is a slight increase in transaction latency as shown
in Figure 4.2. The 99th percentile shows a 2ms increase in transaction latency for 100K
keys.

16 Chapter 4. Evaluation

20 40 60 80 100
Percentile

2

4

6

8

10

12

14

La
te

nc
y

(m
s)

Styx 1000 keys
Styx 10000 keys
Styx 100000 keys
Styx + Q-Styx 1000 keys
Styx + Q-Styx 10000 keys
Styx + Q-Styx 100000 keys
50th Percentile
99th Percentile

FIGURE 4.2: Latency vs key scale

This goes to show that Q-Styx can be integrated with Styx for live state query
capability while keeping Styx’s high throughput and low latency performance un-
changed.

4.3 Data Synchronisation Performance

To answer Research Question 2, we compare the Epoch State Update Latency against
an incremental query throughput and varying key space. This will in part help us
understand how performant the two systems are for replicating the state data from
Styx to Q-Styx.

Figure 4.3 shows the state propagation latency at the 50th and 99th percentiles
across key spaces of 1K, 10K, and 100K unique keys, with query rates ranging from
1 to 5 QPS. For smaller key spaces, the state delta per epoch remains small, so state
updates are consistently fast (typically under 4ms) and remain stable even as query
rates increase. In contrast, larger key spaces lead to larger state deltas per epoch,
which significantly degrades state update performance. This degradation is primar-
ily due to the increased network overhead of transmitting larger deltas, combined
with the serial bottleneck of waiting for state updates from all workers — which can
only proceed as fast as the slowest worker. Additionally, each received delta must
be deserialized and the full operator partition updated accordingly. All of this must
be executed serially to preserve isolation guarantees. As a result, higher propaga-
tion latency directly impacts query’s freshness results: slower epoch updates lead to
more stale state in Q-Styx, reducing the effectiveness of real-time analytical queries.

4.4. Freshness Score 17

40000

60000

80000

100000

120000

140000

160000
Hi

gh
 L

at
en

cy
 (m

s)

100k keys - 50th pct
100k keys - 99th pct

1 2 3 4 5
Queries per Second (QPS)

0

2

4

6

8

10

12

14

Lo
w

La
te

nc
y

(m
s)

1k keys - 50th pct
1k keys - 99th pct
10k keys - 50th pct
10k keys - 99th pct

Epoch Latency vs QPS (Broken Axis)

FIGURE 4.3: State Update Latency

4.4 Freshness Score

To answer research question 3 we measure the average freshness scores from query
responses for incremental QPS and varying key spaces. In this evaluation , we ran
the Styx engine with Q-Styx for 240 seconds while simultaneously processing the
queries mentioned in the setup.

Keys 1 QPS 2 QPS 3 QPS 4 QPS 5 QPS
1k 2.44 2.94 2.98 2.87 3.24

10k 3.87 4.07 4.04 4.18 4.12
100k 40409.31 76737.34 87393.24 89601.97 89222.86

TABLE 4.1: Average freshness score in milliseconds for different key
spaces and query rates (QPS).

Lower freshness scores indicate better alignment between real-time transactional
commits to Styx and the snapshots used by analytical workload in Q-Styx. Higher
scores highlight delays in propagating state updates from Styx’s core engine to Q-
Styx, which can directly impact the timeliness of query results. The average fresh-
ness scores are shown in Table 4.1. The average scores reported for 1k, 10k unique
keys is consistent and <=4ms which is good for most large scale applications. When
the state size grows to 100K keys , there is a finer balance to maintain between up-
dating the larger delta sizes to the store whilst processing queries.

18 Chapter 4. Evaluation

4.5 Query Performance

In part, another evaluation criteria for Q-Styx’s efficiency is its query performance
which is a measure of its query latency. We evaluate the latency for the same config-
urations mentioned in the previous experiments.

100000
125000
150000
175000
200000
225000
250000
275000

Hi
gh

 L
at

en
cy

 (m
s)

100k keys - 50th pct
100k keys - 99th pct

1 2 3 4 5
Queries per Second (QPS)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Lo
w

La
te

nc
y

(m
s)

1k keys - 50th pct
1k keys - 99th pct
10k keys - 50th pct
10k keys - 99th pct

Query Latency vs QPS (Broken Axis)

FIGURE 4.4: Query performance showing the 50th and 99th per-
centiles of query latencies for varying key space sizes.

Figure 4.4 illustrates the 50th and 99th percentile query latencies for key spaces of
1K, 10K, and 100K keys. We observe that query latency is influenced by the trade-
off between freshness and responsiveness. Serving fresher data requires Q-Styx to
prioritize applying new state store updates as soon as they are propagated from
Styx. This synchronization step can temporarily delay query processing, as the state
store must maintain isolation and consistency guarantees while applying incoming
deltas. In contrast, serving queries over a stale state data can reduce response time
but at the cost of freshness, because the system can immediately process queries
without waiting for the latest updates to be applied.

4.6. Summary 19

4.6 Summary

Factor 1K Keys 10K Keys 100K Keys
State Delta Size Small Medium Large
Network & State update Apply Cost Low Medium High
Data Sync to Q-Styx Quick Acceptable Slow
Freshness Score Low Still Low High

TABLE 4.2: Comparison of system factors across different key space
sizes.

4.7 Limitations and Takeaways

In our current implementation, we use Python’s asyncio library, [5] to execute con-
current tasks within Styx and Q-Styx. At its core, asyncio provides an event loop
that orchestrates the execution of many tasks concurrently within a single-threaded
context. This is especially effective for I/O-bound operations, such as network or
disk I/O as it allows the program to continue to perform other tasks while waiting
for the I/O tasks to complete.

However, when running CPU-bound operations inside a coroutine, asyncio can
become a performance bottleneck. Operations like serialization, deserialization, com-
pression, and decompression of large state deltas are CPU-intensive. Running these
inside the event loop can block the coroutine. In our case, degrading the overall
epoch state update performance for 100k keys. Additionally, creating too many tasks
at a time leads to frequent context switching, which further reduces the performance.
To limit excessive task creation, we could use semaphores to limit the number of ac-
tive tasks at any time especially when we have limited resources.

For CPU-bound tasks in Q-Styx like processing state delta updates, a better ap-
proach is to use threads to exploit multiple CPU cores. One approach would be to
use concurrent.futures.ProcessPoolExecutor. This would allow multiple processes
to run in parallel, fully utilizing multi-core hardware. In our context, offloading the
serialization and compression tasks to a process pool could potentially reduce epoch
update latency, especially for large delta sizes like 100K keys.

Another potential performance bottleneck at larger key scale (e.g., 100K keys) is
the use of locks for enforcing isolation guarantees when updating and reading from
the state store. In our current implementation we use locks to prevent dirty reads
and writes when we update the new epoch deltas. If the updates are bigger, the
locks are held for longer which increases the latency for both reads and writes.

To improve query performance(query latency) for higher query throughput, we
can adopt a multi-version concurrency control (MVCC) approach. In this method,
we maintain two versions of the state store in memory. While one version copy is
being updated with the latest committed epoch’s state, the other version copy con-
tinues to serve queries allowing for atomic reads. Once the state update is complete,
the system can switch a version marker to make the latest updated version copy
active to serve queries, while the other copy processes the next state update. This
eliminates the need for locking during reads and writes, allowing queries to be read
without having to wait for the update to complete. MVCC can therefore significantly
improve query latency and throughput under bigger update load.

20 Chapter 4. Evaluation

We also explored py-linq [22] as a query language that would allow us to treat
the in-memory KV state store as a collection to perform more expressive queries on.
However, it requires the collection of objects to be an enumerable structure which
would have required an extra step of conversion after every state update. For large
delta sizes this is an added overhead that will decline the performance making it
impractical for our application.

21

Chapter 5

Conclusion and Future Work

5.1 Future Work

While Q-Styx demonstrates a promising approach for supporting queries on live
state synchronized with Styx’s streaming transactional core, several directions re-
main open for future improvement and evaluation.

Firstly, the next step would be to evaluate Q-Styx on a realistic analytical and
mixed workload benchmark like HATtrick or CH-benCHmark , which covers more
complex query patterns beyond point lookups, including JOINS, FILTERS, and AG-
GREGATIONS. This will help validate the system’s ability to serve hybrid work-
loads under realistic analytical queries.

Currently, Q-Styx materializes epoch-to-epoch state. If applications require ac-
cess to historical state data upto a certain point in time, for example, queries that
span not just the current epoch but also past committed epochs, then we can spill
older state versions to disk. This would make Q-Styx’s state store a hybrid, in-
memory for fresh data with persistent storage for historical reads and fault tolerance
in the solid state drive.

Another direction for higher query throughput and faster scans would be to
adopt an in-memory columnar store design like SingleStore or Oracles IM column
store. This would enable faster scans for workloads with large reads or wide table
projections.

Another fine grain optimisation can involve locking only the rows that are being
updated. Even if some keys have not changed for several epochs, queries that touch
these keys in the current implementation must still wait for the entire epoch’s update
cycle to complete. If only rows being updated would be locked, and queries that read
from unchanged rows could proceed immediately. This would reduce unnecessary
blocking for keys that have not changed across epochs and further improve real-time
freshness for queries.

These areas would make Q-Styx a more high performant In-Memory state store
in conjunction with streaming processors for real time analytical queries.

5.2 Conclusion

This thesis presents Q Styx, a system supporting SQL like queries to the distributed
state of a stream processing system (Styx). We are able to query the live state of Styx
with a serializable snapshot isolation guarantee. We find that Q-Styx adds very little
overhead to Styx transaction latency and has good performance characteristics from
thousands to tens of thousands unique keys. And most importantly, Q-Styx exposes
intermediate state querying capabilities for numerous applications.

22

Bibliography

[1] Tyler Akidau et al. “MillWheel: Fault-Tolerant Stream Processing at Internet
Scale”. In: Very Large Data Bases. 2013, pp. 734–746.

[2] Apache Beam. Apache Beam. https://beam.apache.org/. Accessed: 2024-07-
03. 2024.

[3] Apache Flink. Open-source, distributed streaming and batch data processing
engine. 2023. URL: https://flink.apache.org.

[4] Apache Spark. Open-source distributed computing framework. 2011. URL: https:
//spark.apache.org/.

[5] Asynchronous I/O. https://docs.python.org/3/library/asyncio.html.

[6] Hal Berenson et al. “A critique of ANSI SQL isolation levels”. In: SIGMOD
Rec. 24.2 (May 1995), 1–10. ISSN: 0163-5808. DOI: 10.1145/568271.223785.
URL: https://doi-org.tudelft.idm.oclc.org/10.1145/568271.223785.

[7] Dhruba Borthakur et al. RocksDB. https://rocksdb.org/. Accessed: 2024-06-
24. 2013.

[8] Paris Carbone et al. “Beyond Analytics: The Evolution of Stream Processing
Systems”. In: Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data. SIGMOD ’20. Portland, OR, USA: Association for Com-
puting Machinery, 2020, 2651–2658. ISBN: 9781450367356. DOI: 10.1145/3318464.
3383131. URL: https://doi.org/10.1145/3318464.3383131.

[9] K. Mani Chandy and Leslie Lamport. “Distributed Snapshots: Determining
Global States of a Distributed System”. In: ACM Transactions on Computer Sys-
tems (1985), pp. 63–75. URL: https://www.microsoft.com/en-us/research/
publication/distributed-snapshots-determining-global-states-distributed-
system/.

[10] Akon Dey et al. “YCSB+T: Benchmarking web-scale transactional databases”.
In: Mar. 2014, pp. 223–230. ISBN: 978-1-4799-3481-2. DOI: 10 . 1109 / ICDEW .
2014.6818330.

[11] Marios Fragkoulis et al. A Survey on the Evolution of Stream Processing Systems.
2023. arXiv: 2008.00842 [cs.DC]. URL: https://arxiv.org/abs/2008.00842.

[12] Theo Haerder and Andreas Reuter. “Principles of transaction-oriented database
recovery”. In: ACM Comput. Surv. 15.4 (Dec. 1983), 287–317. ISSN: 0360-0300.
DOI: 10.1145/289.291. URL: https://doi-org.tudelft.idm.oclc.org/10.
1145/289.291.

[13] Dongxu Huang et al. “TiDB: a Raft-based HTAP database”. In: Proc. VLDB En-
dow. 13.12 (Aug. 2020), 3072–3084. ISSN: 2150-8097. DOI: 10.14778/3415478.
3415535. URL: https : / / doi - org . tudelft . idm . oclc . org / 10 . 14778 /
3415478.3415535.

[14] Apache Kafka. “Interactive Queries”. In: Kafka Documentation (2024). https://kafka.apache.org/37/documentation/streams/developer-
guide/interactive-queries.html.

https://beam.apache.org/
https://flink.apache.org
https://spark.apache.org/
https://spark.apache.org/
https://docs.python.org/3/library/asyncio.html
https://doi.org/10.1145/568271.223785
https://doi-org.tudelft.idm.oclc.org/10.1145/568271.223785
https://rocksdb.org/
https://doi.org/10.1145/3318464.3383131
https://doi.org/10.1145/3318464.3383131
https://doi.org/10.1145/3318464.3383131
https://www.microsoft.com/en-us/research/publication/distributed-snapshots-determining-global-states-distributed-system/
https://www.microsoft.com/en-us/research/publication/distributed-snapshots-determining-global-states-distributed-system/
https://www.microsoft.com/en-us/research/publication/distributed-snapshots-determining-global-states-distributed-system/
https://doi.org/10.1109/ICDEW.2014.6818330
https://doi.org/10.1109/ICDEW.2014.6818330
https://arxiv.org/abs/2008.00842
https://arxiv.org/abs/2008.00842
https://doi.org/10.1145/289.291
https://doi-org.tudelft.idm.oclc.org/10.1145/289.291
https://doi-org.tudelft.idm.oclc.org/10.1145/289.291
https://doi.org/10.14778/3415478.3415535
https://doi.org/10.14778/3415478.3415535
https://doi-org.tudelft.idm.oclc.org/10.14778/3415478.3415535
https://doi-org.tudelft.idm.oclc.org/10.14778/3415478.3415535

Bibliography 23

[15] Avinash Lakshman and Prashant Malik. “Cassandra: A Decentralized Struc-
tured Storage System”. In: Operating Systems Design and Implementation (OSDI).
Available at https://cassandra.apache.org/. USENIX Association, 2009.

[16] Juchang Lee et al. “Parallel replication across formats for scaling out mixed
OLTP/OLAP workloads in main-memory databases”. In: The VLDB Journal
27.3 (June 2018), 421–444. ISSN: 1066-8888. DOI: 10.1007/s00778-018-0503-z.
URL: https://doi-org.tudelft.idm.oclc.org/10.1007/s00778-018-0503-
z.

[17] Guoliang Li and Chao Zhang. “HTAP Databases: What is New and What is
Next”. In: Proceedings of the 2022 International Conference on Management of Data.
SIGMOD ’22. Philadelphia, PA, USA: Association for Computing Machinery,
2022, 2483–2488. ISBN: 9781450392495. DOI: 10.1145/3514221.3522565. URL:
https://doi-org.tudelft.idm.oclc.org/10.1145/3514221.3522565.

[18] Elena Milkai et al. “How Good is My HTAP System?” In: Proceedings of the
2022 International Conference on Management of Data. SIGMOD ’22. Philadel-
phia, PA, USA: Association for Computing Machinery, 2022, 1810–1824. ISBN:
9781450392495. DOI: 10.1145/3514221.3526148. URL: https://doi- org.
tudelft.idm.oclc.org/10.1145/3514221.3526148.

[19] Shadi A. Noghabi et al. “Samza: stateful scalable stream processing at LinkedIn”.
In: Proc. VLDB Endow. 10.12 (Aug. 2017), 1634–1645. ISSN: 2150-8097. DOI: 10.
14778/3137765.3137770. URL: https://doi-org.tudelft.idm.oclc.org/
10.14778/3137765.3137770.

[20] Kyriakos Psarakis et al. Styx: Transactional Stateful Functions on Streaming Dataflows.
2025. arXiv: 2312.06893 [cs.DC]. URL: https://arxiv.org/abs/2312.06893.

[21] Carlo Puliafito et al. “Stateful Function as a Service at the Edge”. In: Computer
55.9 (Sept. 2022), 54–64. ISSN: 1558-0814. DOI: 10.1109/mc.2021.3138690. URL:
http://dx.doi.org/10.1109/MC.2021.3138690.

[22] py-linq. https://pypi.org/project/py-linq/.

[23] Jim Verheijde et al. “S-QUERY: Opening the Black Box of Internal Stream Pro-
cessor State”. In: 2022 IEEE 38th International Conference on Data Engineering
(ICDE). 2022, pp. 1314–1327. DOI: 10.1109/ICDE53745.2022.00103.

[24] Jianying Wang et al. “PolarDB-IMCI: A Cloud-Native HTAP Database System
at Alibaba”. In: Proc. ACM Manag. Data 1.2 (June 2023). DOI: 10.1145/3589785.
URL: https://doi-org.tudelft.idm.oclc.org/10.1145/3589785.

[25] Chao Zhang et al. “HTAP Databases: A Survey”. In: IEEE Transactions on Knowl-
edge and Data Engineering 36.11 (2024), pp. 6410–6429. DOI: 10.1109/TKDE.
2024.3389693.

https://cassandra.apache.org/
https://doi.org/10.1007/s00778-018-0503-z
https://doi-org.tudelft.idm.oclc.org/10.1007/s00778-018-0503-z
https://doi-org.tudelft.idm.oclc.org/10.1007/s00778-018-0503-z
https://doi.org/10.1145/3514221.3522565
https://doi-org.tudelft.idm.oclc.org/10.1145/3514221.3522565
https://doi.org/10.1145/3514221.3526148
https://doi-org.tudelft.idm.oclc.org/10.1145/3514221.3526148
https://doi-org.tudelft.idm.oclc.org/10.1145/3514221.3526148
https://doi.org/10.14778/3137765.3137770
https://doi.org/10.14778/3137765.3137770
https://doi-org.tudelft.idm.oclc.org/10.14778/3137765.3137770
https://doi-org.tudelft.idm.oclc.org/10.14778/3137765.3137770
https://arxiv.org/abs/2312.06893
https://arxiv.org/abs/2312.06893
https://doi.org/10.1109/mc.2021.3138690
http://dx.doi.org/10.1109/MC.2021.3138690
https://pypi.org/project/py-linq/
https://doi.org/10.1109/ICDE53745.2022.00103
https://doi.org/10.1145/3589785
https://doi-org.tudelft.idm.oclc.org/10.1145/3589785
https://doi.org/10.1109/TKDE.2024.3389693
https://doi.org/10.1109/TKDE.2024.3389693

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Research Questions
	Contributions
	Outline

	Background
	Transactional and Analytical Processing
	Motivation
	Preliminaries
	State Management
	Quering a State Store
	Styx
	Isolation Levels

	Related Work

	Methodology
	Architecture
	Design Challenges

	Implementation
	Global State Store
	Updating the State
	Querying the Live State

	Isolation levels

	Evaluation
	Setup
	Evaluation of Transaction Latency: Impact of Q-Styx
	Data Synchronisation Performance
	Freshness Score
	Query Performance
	Summary
	Limitations and Takeaways

	Conclusion and Future Work
	Future Work
	Conclusion

	Bibliography

