
European Conference on Computational Fluid Dynamics
ECCOMAS CFD 2006
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Abstract. This article aims to demonstrate the advantages of using a high resolution

central scheme in the field of multiphase flow in porous media. The black oil model, used

in the petroleum reservoir engineering, is employed as it generally provides an acceptable

model for most reservoirs and recovery processes.

The governing equations are split into a parabolic equation for pressure variations and

a system of hyperbolic equations for species transport. The hyperbolic part has non-convex

degenerate flux functions which presents a major challenge to the robustness of numerical

schemes. The two sets of equations are discretized on a triangular unstructured grid.

A semi-discrete CFL-independent high-resolution central scheme due to Kurganov and

Tadmor is employed in this work.

Two test cases, one with top view and the other with cross sectional view, are solved

to assess the performance of the proposed approach. Comparing the obtained results with

those of the previous works indicates the robustness and accuracy of the scheme used. The

simplicity of derivation and implementation of the numerical method used here makes it a

viable choice for dealing with degenerate reservoir problems. Simulations show that inclu-

sion of the gravitational effects in the second test case does not introduce any additional

complications in the numerical method. This is in contrast to those schemes which require

eigenvalue computations and therefore face substantial difficulty when eigenvalues change

dramatically.

1 INTRODUCTION

Numerical simulation of multiphase flow in porous media is an active research area due
to its use in analysis of many engineering applications. Oil reservoir simulation is one of
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the most important examples of such analyses. The application of advanced numerical
schemes in this field has been to some extent, delayed relative to other engineering fields
due to the complex nature of the governing equations.

In the petroleum reservoir simulation field, application of one-point upwind scheme
for the solution of the saturation equation was popular (Aziz and Settari2). In this
method, the flux through the control volume face is calculated from the saturation value
of the upstream node and the data from the downstream node is ignored. The excessive
diffusion of this method lead to the proposition of a two-point upwind scheme by Todd
et al.1, taking into account two points instead of one in the upstream direction. This
scheme is fairly popular especially in commercial simulators. Although these methods
have made the solution of the complex behaving governing equations possible, generally
their numerical diffusion is high and an excessive grid refinement is needed to obtain a
good resolution of the phenomena. Additionally, second-order upwind methods are prone
to spurious numerical oscillations near discontinuities. Blunt and Rubin7 and Rubin and
Edwards10 proposed Flux Limited schemes to cure this.

Another approach to the problem was the application of high resolution Godunov
schemes, initiated by Bell and Shubin3, Bell et al.,4, Colella8 and Trangenstein and Bell6.
These methods decompose the equation system according to its eigen-values and eigen-
vectors. The contribution of a particular mode from the nodes to the interfacial flux, then
depends on the sign of its eigenvalue. If all the eigenvalues happen to have the same sign,
the scheme reduces to the upwind schemes mentioned earlier. This is not true in gen-
eral and as a result, Godunov schemes, compared to upwind schemes, provide a superior
resolution in complex flow situations. Due to the degeneracy and non-convexity of the
governing equations, the mathematics involved is much more complicated and calcula-
tion of eigen-values and eigen-vectors means a greater number of arithmetic calculations
per time step. Additionally, when effects such as gravity are included, the eigen-vector
structure of the equations are changed and new formulae for calculation of flux contri-
butions needs to be developed (Bell et al.5). Extension to two dimensions were achieved
by Dicks9 on a regular grid and by Bergamaschi et al.11 on a triangular mesh. Although
these schemes performed quite well and resolve the flow features with good accuracy, they
have not been widely incorporated in the commercial simulators.

Recently a new class of high resolution central schemes due to Kurganov and Tadmor12

has been applied to the black oil model by Naderan et al.14. Two major features of this
scheme are that it does not require eigen-vector decomposition and independence of its
artificial diffusion from the CFL number. The first feature is a major advantage, especially
when other strong nonlinear effects like gravity are taken into account and a uniform
treatment of such effects is essential. The second feature is helpful in maintaining the
accuracy of the scheme on nonuniform grids or when the CFL number is decreased. This
is in direct contrast to the general class of central schemes in which excessive amount
of diffusion at reduced CFL numbers degrades the quality of solution by for example
smearing the sharp fronts.
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The present article investigates the application of this scheme and its potential benefits
in two dimensional reservoir simulation. The black oil model is used and the governing
equations are discretised on a triangular unstructured mesh. The black oil model is a three
phase three component model by which, a noticeable number of reservoir and recovery
operations can be described. The use of unstructured mesh provides maximum flexibility
in local grid refinements, especially near wells. Two different configurations, with and
without the effect of gravity are investigated and it is shown that no alteration of the
numerical method is needed when the gravity effects are included.

2 Governing equations

Equations governing the black oil model can be formulated in several forms. The form
chosen for the present work is based on the work of Trangenstein and Bell6, which uses a
volume error discrepancy for derivation of the pressure equation. For the sake of brevity,
the details of the assumptions and derivation process are not discussed here and only a
brief review of the equations is presented.

In the black oil model, the reservoir fluid is considered to be composed of three pseudo-
components, which are oil, gas and water, distributed into three phases, liquid, vapor and
aqua. Neglecting the capillary effects, all phases have the same pressure, p. The mass
of components per pore volume is represented by the vector z = {zo, zg, zw}

T and the
volume of each phase by u = {ul, uv, ua}

T .
The pressure variation inside the reservoir is governed by the following parabolic

equation11:
(

−φeT ∂u

∂p
+ eTu

∂φ

∂p

)

∂p

∂t
+ eTu

∂u

∂z
∇ ·

(

RB−1v
)

=
eTu− 1

∆t
φ (1)

The vector of phase velocities is defined as

v =







vT
l

vT
v

vT
a







in which

vj = −λj (∇p− ρjg) (2)

are the phase velocities and vt = vTe is the total velocity. Moreover, e = {1, 1, 1}T , φ is
the porosity, ρj is density of phase j, g is the gravitational acceleration vector and t is
time. Also, λj = Kkrj

/µj is the mobility of phase j where K is the rock permeability, and
krj

and µj are the relative permeability and dynamic viscosity of phase j, respectively.
Summing up both sides of Eq. (2) for all phases, gives the total velocity as follows

vt = −λ (∇p− ρmg) (3)
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where λ =
∑

j=l,v,a λj is the total mobility, ρm =
∑

j=l,v,a fjρj is the average density
and fj = λj/λ. The phase velocities can be written in terms of the total velocity in the
following manner;

vj = fjvt + tjg (4)

and

tj = fj

∑

s 6=j

λs (ρj − ρs) (5)

The matrix B = diag{Bl, Bv, Ba}, is the volume formation factor which shows the
volume of each phase in reservoir condition (RC) compared to the Stock Tank Condition
(STC). In the absence of thermal effects, Bs are functions of the phase pressure.

The matrix R is the solution ratio. Rij is defined as the amount of component i in phase
j, compared to the amount of principal component of phase j. The principal component
of a phase is, by definition, the component present in that phase at STC. Specifically,
oil, gas and water are the principal components of the liquid, vapor and aqua phases,
respectively.

In the classical black oil model, only the solubility of gas in oil is considered, giving
the R matrix the following structure:

R =





1 0 0
Rl 1 0
0 0 1



 Rl =
zgl

zol

(6)

where zij is the mass of component i in phase j per pore volume. The model considered
by Trangenstein and Bell6 is rather more general and considers the solubility of gas in
both oil and water and evaporation of oil, with the following R matrix.

R =





1 Rv 0
Rl 1 Ra

0 0 1



 Rl =
zgl

zol
Rv =

zov

zgv
Ra =

zga

zwa
(7)

In this work, the general model of Trangenstien and Bell is adopted. The transport of
components is governed by the mass conservation law which yields

∂φz

∂t
+ ∇ ·

(

RB−1v
)

= 0 (8)

Here, u and z are related together by

u = BTz (9)

where T is a matrix such that TR = I.
When all the three phases are present, the flow is termed saturated. However, there is

a possibility that the gas is completely dissolved into the liquid phase, thus, eliminating
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the vapor phase. This situation is called under-saturation which shows that the reservoir
pressure is higher than the liquid bubble pressure and the liquid phase has the capacity
to swallow more gas. In this case, R, T and B matrices need to be modified but the
general form of Eqs. (1), (8) and (9) does not alter. This is the main reason for choosing
this formulation as the base of present work, since it permits a unified treatment of the
saturated and under-saturated cases. For a detailed discussion of the under-saturated
cases, consult Trangenstein and Bell6.

3 Numerical method

Discretisation of the governing equations was carried on a triangular unstructured grid.
This brings a great amount of flexibility in geometry definition and mesh adaptation.

Figure 1 shows a typical grid node, its neighboring triangular elements and the corre-
sponding control volume. The mesh has a unit depth in the direction normal to the plane.
The control volume is constructed around the node using the medians of the elements,
shown by thick lines. All the governing equations are discretised on this control volume.
For future reference, the line connecting two neighboring nodes is termed as an edge and
each segment of thick line on the perimeter of the control volume is called a face.

 
 
 
 
  

G 

M1 

M2 

M3 

Median 

Edge 
Face 

Control Volume 

Figure 1: Construction of nodal control volumes in a triangular mesh

As a result, the numerical method used, can be identified as a vertex centered FVM.
Two faces are associated to each edge, which the numerical fluxes run through. These
faces can be unified by vector summing the area vectors normal to the surfaces (Fig. 2).

Using this, the number of flux calculations will be equal to the number of edges, which
is half the number of the original control surfaces. Integrating Eq. (1) on the control
volume shown in Fig. 1, using an implicit approach in time gives

∫∫∫

α
∂p

∂t
dV dt+

∫∫∫

eTBT∇ ·
(

RB−1v
)

dV dt =

∫∫∫

βdV dt (10)
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Figure 2: Unification of control surfaces

where

α = −φeT ∂u

∂p
+ eTu

∂φ

∂p

β =
eTu − 1

∆t
φ

Assuming that p is constant over the control volume, RB−1 in the second term is
treated as a constant, simplifying Eq. (10) to the following form

αi

(

pn+1
i − pn

i

)

V + ∆t
∑

j∈N(i)

vn+1
ij ·Aij = βiV ∆t (11)

The coefficients α and β are evaluated at time tn while the total velocities are evaluated
at time tn+1. N(i) is the set of neighboring nodes for node i, V is the volume of control
volume i and ( )ij is the property associated to the edge connecting nodes i and j. The
velocities belong to the faces and are calculated by discretising Eq. (3) along the edge;

vij · Aij = −λij
pj − pi

|rij|
r̂ij · Aij +

1

2
λij(ρmi + ρmj)g · Aij (12)

in which rij is the vector connecting i to j and r̂ij is the unit vector along the edge. λij

is the equivalent mobility of the edge and is calculated by harmonic averaging the values
from nodes i and j.

For the component transport, integration over the control volume using an explicit
time approximation yields

zn+1
i − zn

i = −
∆t

φiV

∑

j∈N(i)

hn
ij · Aij (13)

where hn
ij is the flux vector RB−1v of edge ij, evaluated on its corresponding face, and

can be written as a function of the conserved variables on the two sides of the face. This
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is an essential element of this work as the type of this function has a direct impact on the
resolution and accuracy of the results. The approach taken here is adopted from the work
of Kurganov and Tadmor12, Kurganov and Petrova13 and Naderan et al.14. The original
work of Kurganov and Tadmor was formulated in both semi and fully-discrete forms.
Here, the semi-discrete form is used since it is already in the conservation form. The
same expression for the face flux can be reached from the fully-discrete form with some
algebraic manipulations. This method has an artificial diffusion of order O(δ3) where δ is
an element size indicator12. The numerical flux is given by

hij · Aij =
1

2

[

h+
n + h−

n

]

−
1

2
aijAij

(

z+ − z−
)

(14)

in which

z+ = zj −
1

2
ψj(zi)∇zj · rij

z− = zi +
1

2
ψi(zj)∇zi · rij

are the right and left states, respectively, and h±
n is RB−1v ·Aij, evaluated by substituting

the pressure of the edge midpoint and z±. Figure 3 shows the quantities defined above.
ψ(zi) is the slope limiter defined by

ψi(zj) = min

[

1, γ
min (Mi − zj , zj −mi)

max|∇zi · rik|

]

(15)

in which k ∈ N(i). mi = {moi, mgi, mwi}
T and Mi = {Moi,Mgi,Mwi}

T are defined as
follows:

mli = min(zli, zlk)

Mli = max(zli, zlk)

l = o, g, w

For γ = 1/2 the limiter is the two dimensional extension of the well-known minmod
limiter, which is used in this work.
aij is defined as

ρ

(

∂h

∂z
(z)

)

z ∈ C
(

z−, z+
)

(16)

where ρ(X) is the spectral radius of matrix X and C (z−, z+) is a path that connects the
two states z−1+1/2 and z+

1+1/2 in the phase space via Riemann fans.
Since the flux function is non-convex and complicated to evaluate, it is not easy or even

sometimes possible to find aij accurately. In the present work, the following estimate is
used
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Figure 3: Extrapolation of nodal values to face

aij = ρ

(

∂h

∂z
(z̄)

)

(17)

in which z̄ is the arithmetic mean of z− and z+. Numerical experiments proved that this
is sufficiently close to the true maximum wave speed.

The CFL condition is computed on the basis of wave speed, a, and a global CFL
number, C, at each face, using

aij∆t

∆x
< C (18)

In practice, a global time-step size is used which is the minimum of allowable time-steps
computed for each cell in the grid.

4 Test cases

To assess the performance of the method mentioned above, two test cases are solved,
each showing a different aspect of the method. Both test problems are chosen from Dicks9.

The first test case, is the typical five spot configuration, shown in Fig. 4. The side
of the square is 100ft. The domain is divided into 3200 triangular elements, giving
roughly 1600 nodes which is the same number of nodes used by Dicks. A regular trian-
gulation was avoided in order to rule out any effect of grid orientation on the solution.
Initially, the reservoir has a composition of zresv = {0.703, 70.3, 0.0502}T and a pressure
of 1800psi. Injection takes place at the lower left corner with a mixture composition of
zinj = {0.0414, 66.23, 0.497}T at 2000psi. Production is carried out at the upper right
corner with a pressure of 1600psi. All the model parameters are defined in the appendix A.

This problem has an areal view hence, gravity plays no roll in the flow. The initial
state of the reservoir is saturated and a saturated mixture is injected into it. This test
problem shows the general structure of the flow when all the three phases are present.

The second test case is a cross sectional problem in the x−z plane. The domain consist
of a 400 × 50ft2 rectangle divided into 1330 triangular elements (Fig. 5). Gravitational
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Figure 4: Computational grid used for test case 1

acceleration is acting vertically downwards with a magnitude of 32.2ft/s2. The initial
reservoir pressure is 1800psi and has a hydrostatic distribution throughout the domain.
Injection takes place from the entire left boundary and has a pressure of 2000psi at the
top with a hydrostatic distribution along the edge. Production is along the right side
with a constant pressure of 1600psi over the entire edge. Since the pressure is variable
in the domain, a constant value for composition cannot be defined. Instead the value of
saturation in the reservoir and at the injection boundary is specified and composition is
calculated from the hydrostatic distribution condition. The initial reservoir saturation is
sresv = {1.0, 0.0, 0.0}T with a bubble pressure of 1800psi. The injected fluid saturation is
sinj = {0.0, 0.0, 1.0}T . The model parameters are the same as test case 1.

It is notable that although free gas is not present, the value of bubble pressure reveals
that the gas component is present and is totally dissolved in the liquid phase. Hence the
reservoir initial state is undersaturated. As the flow develops, reduction of pressure in
regions near the production boundary will make the gas leave the liquid phase and appear
as free gas making the flow a mixed saturated/undersaturated type. Furthermore, due
to the small density of the free gas, relative to the other two phases, and the presence of
gravitational forces, the vapor phase tends to raise quickly and percolate at the top of the
domain. Although the test case configuration is simple, the complex nature of this flow
places a tough test on the stability and accuracy of the method when nonlinearities are
severely increased.
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Figure 5: Computational grid used for test case 2.

5 Results and discussion

Figures 6-9 show a side by side comparison of the results obtained in the current work
(left side) and the work of Dicks9 (right side). Both sets of figures show the reservoir
after 5 days of injection. As can be seen, the structure of the waves and their fronts are
in good agreement. The slight discrepancy between the front shapes can be associated
to the regular shape of the grids used by Dicks and the irregular shape of the control
volumes used in this work.

 

Figure 6: Oil component density in test case 1. left: current work, right: work of Dicks9

Figure 10 shows the structure of the waves at day 5. The z axis represents the saturation
percentage of each phase. At any point on the x− y plane, the distance from the ground
to the first surface indicates the saturation of the vapor phase, the distance from the first
surface to the second surface indicates the saturation of the liquid phase and the rest of
the height shows the saturation of the aqua phase. The sum of the three saturations is
100% which is the total height of the graph.
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Figure 7: Gas component density in test case 1. left: current work, right: work of Dicks9

 

Figure 8: Water component density in test case 1. left: current work, right: work of Dicks9

As it is clear, injection initiates two fronts, one of them moves faster than the other.
The faster front is associated to the gas movement as it is more mobile. The complexity
of the solution can be envisaged from the shock-rarefaction form of the faster running
wave.

Figures 11-14 give the results of current work (upper tiles) and the results from Dicks9

(lower tile) for test case 2. Both sets of figures, give a snapshot of the reservoir at day
15 from the start of injection. The figures show clearly that both methods predict the
reservoir state quite similarly. The water-oil front in Fig. 11(top) is slightly sharper than
that of Fig. 11(bottom) which can be associated to the higher number of elements used.
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Figure 9: Pressure distribution in test case 1. left: current work, right: work of Dicks9

Figure 10: A three dimensional graph of the wave structure of the flow in test case 1. The distance
between the ground and the lower surface is the vapor phase, between the lower and upper surface is the
liquid phase and between the upper surface and top is the aqua phase saturation

Furthermore, Dicks9 has compared his results in this test case with the results obtained
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from VIP, a well established commercial reservoir simulator. This gives a double check
on the current method.

Figure 11: Saturation of the liquid phase in test case 2. top: current work, bottom: work of Dicks9

Figure 12: Saturation of the vapor phase in test case 2. top: current work, bottom: work of Dicks9

Figure 12 shows the liberation of gas and its percolation in top of the domain. It
can be seen that the higher order Godunov method which uses a rigorous eigenvector
decomposition and the current method which uses a much simpler analysis virtually give
the same result.
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Figure 13: Saturation of the aqua phase in test case 2. top: current work, bottom: work of Dicks9

Figure 14: Pressure distribution in test case 2. top: current work, bottom: work of Dicks9

6 Conclusion

In the present work, a new form of high resolution central schemes, originally developed
for compressible flow computations, was successfully applied to the problem of three
phase flow in porous media. The extension is made to two dimensional problems using
unstructured grids. The results show that the method meets the expectations set by other
more sophisticated methods in terms of accuracy.

The scheme can handle mixed saturated/undersaturated flow seamlessly, with no change
in formulation or solution variables. Moreover, it was shown that effects such as gravity
can be taken into account with minimal effort.
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The simplicity in mathematical formulation and implementation of the numerical
method, besides robustness in complex flow situations, make this method a good can-
didate for solving practical problems.
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A Properties of rock and fluids

The spatial coordinates have units of feet, and time t is measured in days. Pressure
p is measured in psi, viscosity is measured in centipoise and the rock permeability K
is measured in 0.006328 times the value in millidarcies. In this work, K = 100md and
porosity φ = 0.2(1 + 10−5p).

The relative permeability functions are

krl
= (1 − sv − sa)(1 − sv)(1 − sa)

krv
= s2

v

kra
= s2

a

The solution ratios are given as

Rl(p) = 0.05p

Rv(p) = 9 × 10−5 − 6 × 10−8p + 1.6−11p2

Ra(p) = 0.005p

Viscosities are defined by

µl =

{

0.8 − 10−4p saturated liquid
(0.8 − 10−4pb)(1 + 6.78 × 10−5(p− pb)) undersaturated liquid

µv = 0.012 + 3 × 10−5p

µa =

{

0.35 saturated aqua
0.35(1 + 6.78 × 10−5(p− pb)) undersaturated aqua

and finally, the volume formation factors are

Bl =







1.0 − 2.31 × 10−5p if Rl(p) ≡ 0
1.0 + 1.5 × 10−4p saturated liquid

1.0+1.5×10−4pb

1.0+2.31×10−5(p−pb)
undersaturated liquid

Bv =

{

1
6.0+0.06p

saturated vapor
1

7.0+0.06p
+ R̄v

Rv

[

1
6.0+0.06p

− 1
7.0+0.06p

]

undersaturated vapor

Ba =







1.0 − 1.8 × 10−5p if Ra(p) ≡ 0
1.0 − 3 × 10−6p saturated aqua

1.0−3×10−6pb

1.0+6.87×10−5(p−pb)
undersaturated aqua
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