Overcoming Network Saturation in
Continual Learning: A Method for
Dynamic Parameter Adjustment

MSc. Thesis

Random
connections

Localized Random
connections connections

Responses or
Output area

l! Association '

Input Threshold Threshold
area units units

Unidirectional Unidirectional Bidirectional

information flow information flow information flow

Overcoming Network Saturation in
Continual Learning: A Method for
Dynamic Parameter Adjustment

MSc. Thesis

by

Xusen Qin

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Friday 19 Jan 2024 at 14:00

Student Number: 5594979
Daily Supervisor: MSc. Aleksandr Dekhovich
Project Duration: Oct 2022 - Jan 2024

Thesis committee: Dr. M.H.F. Sluiter, TU Delft, ME Faculty
Dr. S. Kumar, TU Delft, ME Faculty
Dr. Kevin Rossi, TU Delft, ME Faculty
Dr. M.A. Bessa, Brown University,

School of Engineering

Delft
e t University of
Technology

Keywords: Deep Learning, Continual Learning, Network Saturation, Image
recognition, Data-Driven Analysis

Front Cover: Multilayer perceptron, the origin of deep learning. Image Rosen-
blatt. [1]

Copyright © 2024 by Xusen Qin

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

We can only see a short distance ahead,
but we can see there’s plenty to be done.

Alan Turing

Acknowledgements

Academic pursuits are like a journey, where the end of each phase marks the be-
ginning of a new one. Looking back over the years, the beautiful times and scenery
are still vivid in my mind. As this chapter comes to an end and a new phase begins,
I sincerely thank everyone and everything I have encountered along the way.

I sincerely thank my parents, Mr. Qin Yong and Ms. Zhou Li. It is you who
bestowed upon me the gift of life, provided me with unassuming yet warm care,
and supported every choice I made at each stage of my life. I am grateful for your
companionship through every challenging or joyful moment. Under your watchful
care, I have grown from a green youth into a spirited young adult, helping me
earnestly search for my direction in the vast ocean of life.

During my master’s academic career, I am deeply grateful to Professor Miguel
A. Bessa and Professor Marcel H.F. Sluiter. I thank Professor Bessa for his selfless
guidance on my project, which helped me make an interdisciplinary transition and
opened the door to research in artificial intelligence. I am also grateful to Pro-
fessor Sluiter for his constructive insights into my research. Additionally, I extend
my gratitude to my senior colleague, Aleksandr Dekhovich, for his meticulous as-
sistance with my project. Thank you for your patience and guidance when I was
overwhelmed by difficulties.

During my academic journey abroad, I am deeply grateful for the companionship
and support of my friends. I thank Wu Jianzhang for our mutual progress in life
and studies; I am grateful to Wang Yan for all her help with my graduation process;
thank you to Barkav Sudhakar for his assistance in the field of aerospace structures;
special thanks to Ge Yipeng, Wen Junhan, and Liu Banxian for their guidance and
encouragement in the field of artificial intelligence. I am especially thankful to my
beloved Peng Linhan for her devoted companionship. Thank you for being with
me through the toughest times. I am incredibly fortunate to have met you in this
beautiful country.

Additionally, I am grateful to my four cats, Ms. Flower, Mr. Yello, Ms. Mao, and
Mr. Ball, for bringing healing and hope into my life. A special thanks to Ms. Flower
for 16 years of companionship. You were there as I grew up, and I was there as
you aged. Thank you for being a part of my world.

Looking back on these two years of my academic journey, I am grateful for my
own perseverance, for the growth and resilience I have developed in the face of
challenges, and for choosing to persist despite numerous temptations to give up.
Although there are regrets, I am thankful for my efforts and hard work.

May I return from this journey of a thousand sails, still with the heart of a youth!

Xusen Qin
Delft, Jan 2024

vii

Summary

Neural networks have made significant progress in domains like image recognition
and natural language processing. However, they encounter the challenge of catas-
trophic forgetting in continual learning tasks, where they sequentially learn from
distinct datasets. Learning a new task can lead to forgetting important information
from previous tasks, resulting in decreased performance on those earlier tasks. This
issue is further intensified in dynamic scenarios where the task sequence varies un-
predictably. To address this problem, architectural methods have been developed
to modify a neural network’s structure, creating or adapting subnetworks to re-
tain task-specific knowledge and mitigate catastrophic forgetting. However, these
solutions can lead to network saturation, where the accumulation of task-specific
adaptations hampers the network’s ability to learn new tasks. This research aims
to address the problem of network saturation by developing innovative methods
that enable neural networks to maintain high performance across both existing and
new tasks in continual learning scenarios. Eventually, the new model improved
its learning ability on new tasks in the presence of an allowable forgetting, while
demonstrating better overall learning ability.

Contents

Acknowledgements vii
Summary ix
1 Introduction 1
2 Literature review 5
2.1 Catastrophic forgetting oL, S
2.2 Continual learning approaches 7
2.3 Rehearsalmethods., 7
2.4 Architectural methods and network pruning 8
2.4.1 Dynamic parameters architectural methods. 13
2.5 Regularization methods 15
2.5.1 Bayesian based methods 16
2.5.2 Parameter-driven methods 19
2.6 Knowledge Gapst v v ittt e e e e 22
2.7 Implementations for Dynamic Parameters Architectural meth-
0ds . .. e e e e e e 23
2.7.1 Implementation of Continual Prune-and-Select. 23
2.7.2 Implementation for Dynamic Parameters Architectural
methods (DPA) 25
2.7.3 Employing regularization loss in the overlap subnet-
WOrK . .o e e 26
3 Experiments in Classification Continual learning Scenario 31
3.1 Benchmarks. o o 31
3.2 MetriCs . . v v v v v i e e 33
3.3 Task-specific parametersratio. 33
3.3.1 Multi-Head Model classification continual learning sce-
Nario . . .« .. e e e e e e e 34
3.4 Experiments. it e e e e e e e e e 36
3.4.1 MNISTdataset 36
3.4.2 Fashion-MNIST dataset 39
3.4.3 EMNIST dataset 41
3.4.4 CIFAR-100dataset. 43
3.4.5 Discussions L o e 47
4 Experiments in Regression Continual learning Scenario 49
4.1 Introduction. e e 49
4.2 Benchmarks. L e e 49
4.2.1 Relative Error for the Regression Problem 51

Xi

xii Contents

4.3 Experiments. v i i e e e e e e e e e e e e e e e e 51
4.3.1 Hyperparameter analysis 52
4.3.2 Parallel Composite dataset 52
4.3.3 Perpendicular Composite dataset 57
4.3.4 Mixdataset o 60
4.4 DISCUSSIONS « . v v v v v v v v it et e e e e e 64
5 Conclusion 65
A Appendix to Chapter 2 73
A.1 Progressive Neural Networks (progressive network). 73
A2 PackNet e 74
A.3 Laplace approximation, 75
A.4 Variational continual learning (VCL) 76
A.5 Incremental Moment Matching (IMM). 77
B Appendix to Chapter 4 81
B.1 Task order for Classification problems 81
B.2 Results for the MNIST dataset 84
B.3 Sparsity analysis for the experiment in MNIST dataset 86
B.4 Results for the experiments in Fashion-MNIST dataset 88
B.5 Results for the experiments in EMNIST dataset. 93
C Appendix to Chapter 5 95
C.1 Results for the experiments in Parallel Composite dataset . . . 95
C.2 Results for the experiments in Perpendicular Composite dataset
95

C.3 Results for the experiments in Mix dataset 95

Introduction

In recent years, neural networks have demonstrated exceptional performance in
various domains such as image classification, natural language processing, and data
regression. However, when deployed in real-life scenarios, deep learning models
often encounter the challenge of continual learning. In this context, training data
is organized into distinct tasks, with the neural network training for each task sep-
arately. For example, this could involve real-time image data streaming from a
camera or health monitoring data from a mobile device. In such scenarios, the
neural network model is sequentially trained on these task-specific datasets, and it
lacks a comprehensive view of all the tasks. Consequently, when learning a new
task, the neural network may inadvertently “forget” information from previously
learned tasks. This results in the model performing well on the new task but poorly
on the older tasks. Furthermore, in dynamic environments, the sequence of tasks
may change, further challenging the network’s memory capabilities. This decline in
neural network performance on previously learned tasks is commonly referred to
as "Catastrophic Forgetting” [2, 3].

There are several methods to address the issue of catastrophic forgetting in con-
tinual learning scenarios. One of these methods, known as “Architectural methods”
[4], dynamically adjusts the neural network’s architecture to preserve information
from previous tasks within task-specific regions. When training on a new task, the
model generates a subnetwork within the architecture or expands the network’s
capacity to accommodate the requirements of the current task. After completing
training on a task, the task-specific parameters for certain tasks are fixed to retain
the information from previous tasks. This parameter fixing prevents changes to the
information related to old tasks, allowing the neural network to maintain consistent
performance on those tasks. Examples of Architectural methods include SupSup
[51, SpaceNet [6], and CP&S [7]. While this method effectively mitigates catas-
trophic forgetting by preserving parameters, it introduces a challenge: as the task
sequence grows, the fixed task-specific regions within the network can gradually
occupy the entire network and limit the availability of free parameters for learning

1

2 1. Introduction

Task 1 Task 2

Average
accuracy

Catastrophic
forgetting

’ Neural Network

\ Prediction Number of tasks

Task 1, 2, 3, ...

Figure 1.1: Continual learning and catastrophic forgetting in deep learning

new tasks. Consequently, as the task sequence lengthens, the model’s capacity
to learn new tasks may decrease, leading to a phenomenon known as "Network
Saturation” in Continual Learning.

In this study, we introduce the Dynamic Parameters Architectural (DPA) method
to address the issue of network saturation in the architectural method of continual
learning. DPA dynamically adjusts some of the fixed parameters within the neu-
ral network without introducing additional parameters. It ensures that the model
can learn new tasks with more parameters by updating certain task-specific param-
eters, thereby resolving network saturation while maintaining a balance between
resistance to forgetting and learning capacity. In this research, we employ Contin-
ual Prune-and-Select (CP&S)[7] as the prototypical architectural method to evaluate
the efficacy of the DPA. The inclusion of DPA represents an improvement, enhanc-
ing the CP&S approach in alleviating network saturation in continual learning. The
key innovation lies in DPA's approach to managing parameters within overlapping
subnetworks. Unlike CP&S, in which the task-specific parameters are fixed, DPA
dynamically updates shared parameters across subnetworks. By freeing shared
parameters among subnetworks, DPA is designed to provide a more versatile and
adaptable mechanism compared to CP&S. Experimental results are evaluated on
both classification and regression datasets, demonstrating that DPA exhibits higher
learning efficiency on new tasks. Moreover, in the context of classification prob-
lems, DPA effectively mitigates forgetting while improving learning performance,
resulting in superior overall learning performance.

In this thesis, Chapter 2 presents a comprehensive review of the state-of-the-
art in continual learning, highlighting the existing knowledge gaps that impede
solving the problem of network saturation. Chapter 3 evaluates the effectiveness
of the DPA methods within the context of classification tasks in continual learning
scenarios. Chapter 4 examines the DPA methods’ performance in the continual
learning framework for data-driven analysis of composite hyperelastic properties.
Finally, Chapter 5 summarizes the findings and discusses the advantages of DPA

methods over the conventional CP&S approach.

Literature review

As deep learning gains prominence within the realm of artificial intelligence, the
issue of catastrophic forgetting [8, 3] has emerged as a pressing challenge that
demands attention from researchers. This literature review aims to provide an in-
depth exploration of the foundational concepts and context surrounding continual
learning. Additionally, it delves into the current landscape of state-of-the-art algo-
rithms within the field, typically classified into three main categories: regularization-
based, rehearsal-based, and architectural methods. Within our discussion of these
algorithms, We intend to highlight the advantages and disadvantages of these meth-
ods. We aim to identify important gaps in knowledge within the current research
literature through this assessment. These identified gaps will help guide our re-
search objectives and contribute to the ongoing pursuit of solutions to the problem
of catastrophic forgetting.

2.1. Catastrophic forgetting

Learning can be perceived as the modification of existing connections and the for-
mation of new ones between neurons [9]. Through parameter adjustments, artifi-
cial neural networks can emulate biological neural networks, thus acquiring capabil-
ities to learn, remember, and predict [10]. However, unlike the human brain which
can continually adapt to new information, artificial neural networks face a chal-
lenge. When exposed to new data, they often lose previously learned knowledge.
This phenomenon, known as catastrophic forgetting[3, 8], stands as a notable con-
straint in certain neural network applications.

Catastrophic forgetting occurs when a neural network significantly loses retained
knowledge from prior training as it learns from new data streams. This challenge is
a fundamental issue in deep learning, constraining the efficacy of neural networks in
sequential or incremental learning contexts [3]. For instance, when a deep learning
model processes multiple data batches (referred to as ‘tasks’) in parallel, it maintains
consistent learning and predictive accuracy across all tasks. In contrast, when these

5

6 2. Literature review

batches are introduced sequentially, the model tends to prioritize the most recent
task, diminishing its recollection of earlier ones. Consequently, as tasks accumulate,
the model’s overall performance declines due to its tendency to prioritize the most
recent information.

One of the main reasons for catastrophic forgetting is the disparate parame-
ter distributions within the neural network across various tasks [2]. In multi-task
learning, the dataset for tasks is presented to the model concurrently, leading to
a convergence in the neural network’s weight distribution once the training loss
function attains its minimum [3]. Contrarily, in a continual learning setting, tasks
are not introduced to the model simultaneously. Typically, neural networks employ
Gradient Descent (GD) to refine network parameters. However, GD primarily em-
phasizes the gradient of the present data, neglecting insights from prior data [3,
2]. When the model undergoes training for a new task, the loss function’s update
trajectory for the fresh task aligns with its global optimal direction. Yet, this di-
rection might diverge from the ideal update path for loss functions associated with
previous tasks. This divergence leads to parameter shifts in older tasks to minimize
the fresh task’s loss function, diminishing performance in earlier tasks, and inducing
catastrophic forgetting. To counteract this and bolster deep learning’s efficacy in
sequential task learning, approaches like continual or lifelong learning have been
advocated [8, 11]. Figure 2.1 offers a schematic representation of catastrophic
forgetting.

Task 1 Task 2 Task 3 Task 4 Task ... Task T
Deep Learning Model

Error of each task

Task 1 Task 2 Task 3 Task 4 Task ... Task T

oupue -€3MNING Learning Learning Learning Task T

%/O # # # £ 0

Current task has lowest
error

Figure 2.1: The schematic diagram of catastrophic forgetting in deep learning

2.2. Continual learning approaches 7

2.2. Continual learning approaches

Continual learning, often referred to as lifelong learning, pertains to a model’s ability
to adapt to a continuous sequence of diverse tasks [12]. Usually, these new tasks
exhibit minimal or no correlation with preceding ones. The main goal of continual
learning techniques is to mitigate catastrophic forgetting, ensuring that machine
learning models not only excel in new tasks but also maintain proficiency in earlier
ones. Continual learning can be broadly classified into two distinct types [4]:

o Continual Learning with Task ID: In this scenario, the identity of the task
(task ID) is provided when data is fed into the model during both the training
and inference stages. Although it represents a more straightforward contin-
ual learning challenge (given the explicit knowledge of the task for test data
points), many research works consider this scenario for real-world applica-
tions [13, 14]. It is also commonly referred to as task incremental learning
(task-IL) [15].

¢ Continual Learning without Task ID: Here, the task ID is supplied only
during the training phase and is absent during inference. In practice, this
constraint often renders this scenario more complex compared to its coun-
terpart, due to the reduced contextual information about test data [16, 17,
18]. Some methodologies attempt to predict the task ID for test data, though
this can introduce new challenges and limitations [19, 20]. When models
in this setting are geared towards solving classification problems, it's termed
class-incremental learning (class-IL) [15].

In the early stages of continual learning research, temporary buffers were em-
ployed to retain data from preceding tasks, allowing models to replay this buffered
data and thereby reinforce their acquired knowledge, offsetting catastrophic for-
getting to some extent [21]. Modern approaches to continual learning are primarily
categorized into three methods: architectural, regularization, and rehearsal
[4]. Architectural methods dynamically refine the neural network by either ap-
pending additional parameters [22] or by formulating task-specific parameters to
encapsulate information from earlier tasks [23, 20]. Regularization methods
leverage various strategies, such as harnessing Bayesian properties inherent to in-
cremental learning [24, 25, 12], restricting alterations in network parameters [26,
271, or employing knowledge distillation when there’s a significant parameter shift,
ensuring the conservation and transfer of insights from prior tasks [16]. Meanwhile,
rehearsal methods emphasize retaining and replaying past task data during the
training of subsequent tasks [17, 28, 29]. A visual representation of the latest
advancements in continual learning can be found in Figure 2.2.

2.3. Rehearsal methods

Humans frequently reinforce their memories through revisitation. This process is
similar to students preparing for exams or athletes refining specific moves. Neural
networks can emulate this human-like review approach through what is termed

8 2. Literature review

Continual learning methods

Rehearsal methods Regularization methods Architectural Methods
[
iCaRL [17] / \

EEIL [30] _ PNN [22]

BiC [30] Bayesian-based Parameter-driven PackNet [23]
PodNet [31] CP&S [7]
iTAML [19] | | SupSup [5]
Dé{ffé]ﬂ EWC [34] SI [27] SpaceNet [6]

VCL [25] MAS [26]
IMM [35] LWF [16]

Figure 2.2: Different researches on continual learning.

"rehearsal methods” [15]. A significant portion of contemporary continual learning
research employs these methods, with notable examples including iCaRL [17], EEIL
[30], BiC[30], PodNet [31], iTAML [19], AFC [32] and DER++ [33]. However, these
techniques often require dedicated storage, leading to increased memory usage by
algorithms. Moreover, due to privacy concerns, previous task data may become
inaccessible when a new task is introduced [36]. Therefore, this research will not
explore rehearsal methods in greater detail.

2.4. Architectural methods and network pruning

Human memory is a multifaceted mechanism. The remarkable capacity of organ-
isms to retain information is attributed to the brain’s versatility in storing diverse
data across its regions [37]. To emulate the nuanced memory systems found in
human brains, architectural methods in machine learning have been developed.
These methods counteract catastrophic forgetting by incorporating strategies such
as: introducing new branches for incoming tasks to prevent parameter overwrit-
ing [22], segregating information across distinct model replicas [38], or allocating
information to different segments of a neural network [39, 23, 20].

Progressive Neural Networks (PNN or progressive network) [22] represent
a notable approach grounded in the dynamic architecture method customized for
continual learning scenarios. In PNNs, older parameters undergo refinement dur-
ing training, ensuring retention of insights from preceding tasks (refer to appendix
A.1 for details). Nonetheless, the implementation of PNNs necessitates additional

2.4. Architectural methods and network pruning 9

storage to preserve the finalized model for each distinct task. Consequently, with
an increasing number of tasks, the parameter count also grows, placing additional
demand on the device's memory capacity.

Maintaining memory by storing an entire neural network model proves to be
both inefficient and burdensome in terms of memory consumption. Therefore, a
viable solution to this challenge is to allocate distinct subnetworks within the main
network to handle different tasks. Once training on a particular task concludes,
the parameters of its corresponding subnetwork are solidified, ensuring no future
modifications. During the evaluation, the appropriate subnetwork is engaged to
process the test data. Techniques like iterative pruning can be employed to establish
these subnetworks [40].

Network pruning is a widely-used technique for compressing neural networks,
aiming to create a more compact yet efficient model by eliminating less significant
parameters related to a specific task [41]. Researchers emphasize the presence
of numerous redundant neurons and weights within the neural network structure,
providing the theoretical basis for its compression [42]. In the context of continual
learning, several network pruning methodologies have emerged in recent times [23,
20, 39].

Hidden
Input
Output

Hidden

Input
Output
Hidden
Input
Output Network pruning ©<8%>

Hidden Task-specific subnetwork

Input
Output

Task-specific subnetwork K%(Q

Task-specific subnetwork

Figure 2.3: The schematic diagram of creating a task-specific network by network pruning

PackNet leverages network pruning techniques to free parameters, enabling
the assimilation of new tasks without expanding the network’s capacity [23]. The
foundational concept behind PackNet is to initiate a large-scale neural network. As

10 2. Literature review

a task is introduced, the model dedicates a subset of its parameters to this input.
Once training concludes for the task, these allocated parameters become immutable
(as detailed in Appendix A.2). Nonetheless, there is an inherent challenge: as
tasks consume the available parameters, the network eventually saturates. This
saturation implies that without expanding its parameter storage, the model can’t
accommodate additional tasks. Furthermore, PackNet’s reliance on a rudimentary
magnitude-based pruning method [40] does not yield a sufficiently sparse network
representation. It's also worth noting that PackNet operates optimally in continual
learning scenarios where the task ID is provided during inference. These limitations
constrict the broader adaptability of PackNet.

To address challenges in precise model pruning, task-specific parameter com-
pression, and the enhancement of neural network performance in continual learn-
ing scenarios without explicit task IDs, the Continual-Prune-and-Select (CP&S)
method is introduced [20]. In contrast to PackNet, which identifies subnetworks,
CP&S employs iterative pruning to discover task-specific subnetworks with strong
learning capabilities. Once optimized for a task, parameters within these subnet-
works are solidified. Interestingly, CP&S allows for subnetwork overlap, enabling
them to share parameters, regardless of their mutability status. This overlap rep-
resents the merging of newly formed subnetworks with previous ones. When new
task data is introduced, both mutable and immutable parameters within the sub-
network are utilized for forward propagation, but only mutable parameters receive
gradient updates. This mechanism ensures the new subnetwork imbibes insights
from previous tasks without overwriting their established parameters. For infer-
ence, when provided a task ID, CP&S activates the corresponding subnetwork. In
scenarios lacking a task ID, CP&S predicts it, initiating the relevant task-specific sub-
network. Due to the unchangeability of task-specific parameters, each subnetwork
consistently retains its post-training performance..

The CP&S training includes both pre-training and re-training phases. During
pre-training, CP&S identifies a subnetwork within the model by evaluating the im-
portance score (IS) [7] for each connection, enabling the creation of task-specific
masks and parameter assignments for tasks. For layer [, the input is represented
by the pruning set X4-1 = (x{"}¥_,, where each element x{ ™" = {x{ Djmis
has a dimension of m;_,. The contribution from a connection between neuron i in

layer [— 1 and neuron j in layer is given as the average output %Eﬁ:1|w§;)x”71>

The importance score of the bias for neuron j in layer [is taken as the bias value

|bj(l)| relative to the total output of layer I. This is illustrated in Fig.2.4 and formally
expressed in Eq.2.1.

2.4. Architectural methods and network pruning 11

@ @ Layer /

W1(l1) 0 Q)
Wi, Wy2
WO w® w0 wy)

ORNORRCRNORE

Figure 2.4: Definition of importance score for each connection and bias is determined by the proportion
of the neuron’s output as well as values of bias to the total output of layer I [7].

Lo w®xlD
- n (-1 l
i (A b)) + 1)

© _

|5
For bias: s;:
Shias,j mi_q <l | O) (l 1) >+ |b(l)|
k=1 Wij Xnk)j

For weights: s} =

2.1)

The importance score for each connection serves as a benchmark for the prun-
ing function, determining which connections should be pruned prior to processing
through layer [. A hyperparameter, «, is set such that if the cumulative importance
score falls below (1 — @) Yie, s; j» then the connection is eliminated from the net-
work during the learning of a specific task (refer to the pseudo-code in Algorithm.1).
Given a sequential dataset D,.; = {Di}iT=1 in a continual learning context, the prun-
ing function generates a series of masks M;.; = {Mt}le, each corresponding to an

individual task. Every mask, denoted as M, = {mfj}, , establishes a subnetwork
L]

tailored to a particular task.

12 2. Literature review

Algorithm 1 Pseudo-code for pruning function in CP&S
Require: network &V, training dataset X, pruning hyperparameter a.
1 X < x
2: for every layer 1 =1,...,L do
x® « layer(x*™)
for every neuron j in layer | do
Compute importance scores s\? for every connection w.; and bias b"
using Eq. 2.1.
6 §l(]l) « Sort(si(}l.), order = descending).
7: Find p, = min{p : ¥} 30 > al.
8

v kW

i=1ij
Prune connections with importance score s

9: end for

10: end for

O _ A0
i < Spoj

Fig. 2.5 presents the performance of CP&S on the ImageNet-100 dataset [43].
When compared to other state-of-the-art continual learning methods, CP&S demon-
strates superior performance when the ImageNet-100 dataset is divided into 10
tasks. CP&S maintains a consistently high Top-5 classification accuracy when opti-
mized using Adam with a batch size (bs) of 20, showing negligible decrement. This
can be attributed to the stabilization of the shared segment among subnetworks,
ensuring the preservation of parameter distributions for specific tasks. On the
CIFAR-100 dataset [44], CP&S consistently exhibits commendable accuracy rates
along with minimized forgetting rates. Remarkably, when the dataset is divided
into 5 or 10 tasks, CP&S’s performance remains consistent, regardless of the avail-
ability of the task ID, highlighting the model’s ability to accurately determine task
affiliations (as depicted in Fig. 2.6).

(a) Comparison on ImageNet-100: 10 tasks 100 (b) Varying test batch size

98

96

60 —@— Finetuning
94 —e— iTAML (bs=50)

—o— LwF
50 o icarL
40 —»— BiC —&— CP&S (Adam, bs=5)

RPS-net : —— CP&S (Adam, bs=10)

30 o iTAML (bs=50) 92 _« CP&S (Adam, bs=20)
20 DER —»— CP&S (SGD, bs=20)
1o —+ CPSS (adam, bs:ZO)\.\H 90~~~ CP&S (Adam, taskc-L)
—»— CP&S (SGD, bs=20) --= CP&S (SGD, task-IL)

0 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Classes learned Classes learned

Top-5 accuracy (%)
Top-5 accuracy (%)

Figure 2.5: The performance comparison of CP&S in ImageNet-100 [43] split in 10 tasks [20]. The bs
refers to batch size.

However, when the task number increases to 20, the accuracy drops signifi-
cantly. This happens because as soon as a parameter is assigned to a task, it can
never be updated with gradient descent. Therefore, there are fewer available train-

2.4. Architectural methods and network pruning 13

ing parameters after every newly learned task. This phenomenon is called network
saturation and is common to all architectural methods based on subnetworks within
a fixed-size network.

CIFAR-100: 5 tasks CIFAR-100: 10 tasks CIFAR-100: 20 tasks

80 :’_4__,,_.”—:“—_*-‘_‘ 85 :*#——H%“"““"‘H ===y 90 ?w';';;iij‘*» T

70 ‘\\ 75\ 80 | Ve

0 65\ 70 | X
2 8 \ 260 | RN
- \ —55 \ g \ e
350 \ 3 \ 350 | b\
e \ ®45 |\ e ! +
340 \ 3 \ 340
O O 35
g < <30 _*

30 —e— Finetuning Y —e— Finetuning —e— Finetuning
iTAML S~ iTAML 20 iTAML
20 — CP&S (bs=20) e 15 —< CP&S (bs=20) ~e__ 10 —* CP&S (bs=120)
CP&S (task-IL) B CP&S (task-IL) t—— CP&S (task-IL) ~®-o-e- Y

20 40 60 80 100 5 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100

Classes learned Classes learned Classes learned

N
v

10

Figure 2.6: The performance comparison of CP&S in CIFAR-100 [44] split in 5, 10 and 20 tasks [20].

In architectural methods, the challenge of catastrophic forgetting has primarily
been addressed by fixing parameters in the overlapping regions between the cur-
rent and preceding subnetworks. However, this strategy of freezing parameters
can hinder the model’s adaptability when exposed to new tasks. The integration
of knowledge from prior tasks can enhance learning efficiency for newer tasks by
leveraging previously utilized task-specific parameters [45]. When parameters re-
main static, training for a new task becomes isolated from historical tasks. Thus, the
central aim of this research is to refine the learning paradigm of architectural meth-
ods for new tasks. This strives to achieve minimal forgetting without an increase in
the parameter count for previous tasks. One potential solution to address parame-
ter saturation is to moderate the constraints on the subnetwork overlap and update
it using insights from the new task. Finding a balance between retaining old data
and assimilating new data becomes crucial. Additionally, harnessing the reusability
of parameters can enhance the model’s learning capability for fresh tasks. Given
the preference against direct retention of historical data, the deployment of regu-
larization methods becomes essential to confine updates in the shared parameters
of the architectural method.

2.4.1. Dynamic parameters architectural methods

Since the task-specific parameters in the architectural methods are fixed to prevent
the change in training the new task, these parameters cannot assist subsequent
learning. To improve the reusability of parameters, the dynamic parameters archi-
tectural methods are proposed. During the training process, the dynamic parame-
ters architectural method first adjusts the neural network architecture in the contin-
ual learning scenario and creates task-specific parameters for each task. Different
from the architectural method that freezes the specific parameters for the previ-
ous tasks, the main idea for this implementation is to update part of unimportant
previous parameters in training on the new task [46, 6]. By reusing the previous
parameters, training on new tasks will be less dependent on the free weights in
the neural network, and the requirement of storing extra parameters also reduces.

14 2. Literature review

Meanwhile, old information can be transferred to the new task learning through the
sharing parameters [45]. By reusing the parameters, the old parameters can be
used to improve the learning performance of the model on the new parameters.
The recent research on dynamic parameters architectural methods are as follows.

Dynamically Expandable Network (DEN) [46] augments the number of
trainable parameters when introducing a new task, thereby expanding the neural
network’s information capacity. DEN operates in an online fashion, employing selec-
tive retraining to enhance network capacity. Contrasting with PackNet [23], neuron
count determination is driven by group sparse regularization instead of utilizing the
entirety of neural network parameters. Concurrently, a subset of parameters cor-
responding to prior tasks is chosen for updating during new task training. This
is achieved by constructing sparse connections within the model, with parameters
outside these connections remaining static. A schematic representation of DEN
can be viewed in Fig.2.7. In a subsequent development, Bayesian compression
for dynamically expandable networks (BCDEN) [47] employs Bayesian tech-
niques to streamline the model’s architecture while preserving its accuracy. This
results in fewer neurons being updated across each hidden layer when new tasks
are introduced, leading to the solidification of more parameters during updates.

(eXel[(eXe)

R

Figure 2.7: An overview of Dynamically Expandable Network (DEN) for learning in the continual learning
scenario [46]

Feature Boosting and Compression (FOSTER) [48] enhances dynamic ar-
chitectures by mapping expanding feature vectors to trainable linear layers of fixed
dimensions. This method enlarges the new model to accommodate the residuals
of the old model and employs knowledge distillation to update the parameters that
are shared between the new model and previous iterations.

Dynamically adjusting task-specific parameters during training on new tasks can
mitigate the capacity constraints of the neural network. However, a common lim-
itation in contemporary research on dynamic parameter architectural methods is
the frequent expansion of the model size. This continual growth of parameters can
place significant strain on device memory. Consequently, devising strategies to up-
date parameters without further inflating the model’s size emerges as a paramount
challenge warranting further investigation in this field.

2.5. Regularization methods 15

-, NN parameters distribution on Task T-1 ::> Update without penalty
- NN parameters distribution on Task T » Update with penalty

Task T-1

Figure 2.8: The neural network updated on the new task will be based on the optimal parameter space
of previous tasks. If the neural network is updated without penalty (yellow arrow), the parameters will
leave the optimal space for old tasks (orange region) and enter the optimal space for the new task
(blue region). When the parameters are updated with the penalty (red arrow), the new parameters will
converge to the optimal parameters space on both the old tasks and the new task (overlap between
orange and blue regions). [24]

2.5. Regularization methods

In continual learning, tasks arrive at the neural network in batches. Let D, =
{X,., Yn}ff:l be the data collection of task T. The performance of neural networks
on different tasks can be considered as the performance of the model in the joint
dataset D,.; = {Dt}le. The neural network should not only learn the data D, of
task T but also have a good performance on the previous tasks from D, to D;_, to
prevent catastrophic forgetting.

One approach to counteract catastrophic forgetting is to constrain the updates
to parameters initiated by the introduction of a new task, thereby preventing signifi-
cant alterations [49]. Parameter updates are fundamentally tied to the minimization
of the current task’s loss function. By incorporating a penalty related to prior tasks
into the loss function for regularization purposes, the network’s updates are con-
nected to historical tasks. Consequently, substantial deviations in parameters are
deterred by this regularization term. As illustrated in Fig. 2.8, the basic tenet of
regularization methods is depicted: the orange region demarcates the parameter
space associated with previous tasks (representing the low error zone for tasks
1: T — 1), while the blue region delineates the parameter space pertinent to new
tasks (signifying the low error zone for task T). If the neural network operates
using parameters from historical tasks and simultaneously trains on a new task,
the trajectory of parameter optimization is represented by the yellow arrow. The
parameters gravitate towards the low error region of the new task, subsequently
deviating from the optimal parameter realm of bygone tasks. However, if regu-

16 2. Literature review

larization methods are employed (as indicated by the red arrow), the parameters
are steered towards the intersection of the parameter spaces of both the old and
current tasks. After the completion of training for task T, the model retains traces
of earlier tasks, indicating that the neural network demonstrates good performance
across both historical and current tasks.

In many cases, data from the previous tasks is not available when a new task
arrives. Instead of keeping the data in external storage, regularization methods
introduce a regularization term in the loss function during the training process to
solidify the parameters updated with previous tasks [4]. The regularization-based
loss functions are usually expressed as follows:

Leotar = LV, Yr) + 4-Q - [|0 — 0174 (2.2)

The total loss function, denoted as £;,:,; and regulated by Eq.2.2, is employed
to direct the updates in the neural network. In this equation, Y; represents the
ground truth label of Task T, while ¥, signifies the label output by the network
during the training process. The weight matrices of the model for task T and for
prior tasks (from task 1 to task T — 1) are given by 6 and 6,.;_,, respectively.
The term A acts as a hyper-parameter, determining the impact of the regularization
term. The matrix Q, which captures the importance of each parameter’s change,
is crucial in constraining the parameter distribution. The computation of Q can be
categorized into Bayesian-based methods and Parameter-driven methods.

2.5.1. Bayesian based methods

The output of a neural network model can be considered as a probability distribution
function (pdf) P(D|0) [50]. D is the data that is trained and 6 is the parameters
of the neural network. The parameters can be inferred by Maximum Likelihood
Estimation (MLE):

oM E = arggnaxlogP(DlH) (2.3)

In MLE, the prior distribution of the P(0) is not considered, which means the
distribution P(8) has no relevancy to the model parameters structure. However, in
the continual learning scenario, the update of the neural network on the new tasks
is based on the optimal parameters of previous tasks. So, the previous parameters
can be considered as the prior of the new parameters. In the Bayesian perspective,
the Maximum Posteriori (MAP) of the parameters can be calculated by the likelihood
P(D|6) and the prior of the parameters P(68). And by taking the logarithm of the
likelihood, we can get the loss function £(D) [51]. The MAP of model parameters
6 is described as follows:

2.5. Regularization methods 17

oMAP = argmaxlogP(6|D)
6

=argmaxlogP(0|D) + log P(8) —log P(D)
]

(2.4)
=argmaxlogP(D|0) + logP(9)
6

=argmin L(D) — log P(6)
6

In the case of continual learning, the model receives the data in batches D,, D, ...
We define the overall dataset as D,.; = {Di}iTzl. If we consider the learning process
from task T — 1 to task T, we can write the overall dataset as a set from already
observed data D,.;_, and the new data D;:

D1:T = {Dl:T—1; DT} (25)

The probability distribution function (pdf) in continual learning of neural network

parameters is P(6|D,.r). Owing that the 6 is inferred based on the posterior dis-

tribution of the previous parameters, P(6|D;.7_4) is the proiri of the P(8|D,.1). As

the MAP of parameters from Eq.2.4 and Eq.2.5 can be changed into the following
form:

oMAP = argmaxlog P(6|Dy.r)
6

= arggnax log P(D7|6) + log P(6|Dy.7-1) (2.6)
=argmin L(Dy) —log P(6|Dy.7—1)
)

Eqg.2.6 represents an adaptation of Bayes' rule tailored for a continual learning
context. This foundational equation illuminates the essence of Bayesian inference
within neural networks throughout continual learning. It underscores the idea that
when the model is introduced to new tasks, its parameters’ updates should be
anchored and influenced by previously learned parameters. As a result, the past
knowledge embedded within the previous distributions is retained during subse-
quent training phases. The challenge, however, lies in accurately capturing the
distribution P(6|D,.7—1). While it's the linchpin to inferring the neural network’s
optimal parameters, in many scenarios, this posterior distribution eludes a straight-
forward closed-form solution [52]. A pivotal concern in Bayesian continual learning
then becomes the expedient and precise computation of this posterior distribu-
tion. A potential solution emerges from the use of exponential family distributions.
Specifically, one could employ q(8|¢), which provides a closed-form solution char-
acterized by parameters ¢,. The intent here is to utilize this distribution as an
approximation for P(8|D,.r_,) [53]. Consequently, the overarching objective crys-
tallizes: it's about discerning that specific set of parameters, ¢, which offers a
robust approximation to our desired posterior distribution.

q(0l¢r) = P(0|D1.r-1) (2.7)

,Dr.

18 2. Literature review

The Laplace approximation is a simple and widely used method for estimating
probability distributions approximation [54]. The basic idea of the Laplace approx-
imation is to use a Gaussian distribution with parameters ¢ = (u, o) to approxi-
mate a complex distribution. If we compute the second order Taylor expansion of
logP(0|D;.7—1) at 6 = 0,.+_, then we get the expression of P(6|D;.;r_;) with the
expectation is the model parameters that converge on the previous tasks and the
Hessian matrix of the old parameters pdf, and the variation is the reciprocal of sec-
ondary derivative (Hessian matrix #) of the distribution of the parameters, which
is shown in Eq.2.9. Appendix.A.3 illustrates the detail of Laplace approximation.

1 98%1logP(6|D1.r-1)
log P(0|Dy.7—1) =1ogP(01.7-1|D1.7—1) + 5 - > 1 (6 — 01.7-1)?
2 a0 01:7-1
Hessian
(2.8)

9?1og P(6|Dy.7—1)
20°

) e

However, computing the second-order derivatives of a neural network with re-
spect to its parameters can be challenging. In a recent development, the Elastic
Weight Consolidation (EWC) method was introduced, offering a solution to this
problem by substituting the Hessian matrix with the Fisher information matrix [34].
It's worth noting that the Hessian matrix, Hogpa)p,,_,), Satisfies the Jacobian of
the second derivative of the log-likelihood. By taking the expectation over the Hes-
sian matrix, it becomes apparent that the expectation of ' equates to the diagonal
of the Fisher information matrix F [55]. With the replacement of the Hessian matrix
in Eq.2.9, the probability density function (pdf) of P(6|D,.r—;) can be represented
as:

P(0IDyr—1) ~ N(el:r_l. (-

P(OID17-1) ~ N (1.7-1,F ") (2.10)

Fisher information matrix is defined as the expectation of the outer product of
the log first derivative [55]:

F= IE[V log P(8|Dyir—1) - VlogP(GlDlzT_l)] (2.11)
The MAP process of 8 in EWC is finally given:

oM = argmaxlog P(6|D;.7)
6

= arg;naxlogP(DﬂH) +1og P(6|Dy.r-1) (2.12)

A
=argmin £L(Dy) + 3 F (0 = O1.0-1)?
1

The total loss function Lz, in EWC can be written as follows [24]:

2.5. Regularization methods 19

A
Lgwc(Dr) = L(Dr) - 5 ¥ (6 = O1:7-1)* (2.13)

Total loss loss on Task T

regularization term

The Eq.2.13 is the final expression of the loss function when updating the neural
network on the Task T; L(Dr) is the loss function on task T, which is the cross-
entropy (classification problem) or MSE (regression problem). Hyperparameter A
that controls the proportion of the regularization term to the overall update pro-
cess, F is the new diagonal of the Fisher information matrix and 6,.;_, is the old
parameters that had been trained on previous T-1 tasks. Considering that the imple-
mentation of EWC is very effective, it can be used to update the shared parameters
between old models and the new model in architectural methods.

Variational continual learning (VCL) [56] and Incremental Moment Match-
ing (IMM) [35] are two recent researches solve the approximation of P(6|D;.r)
by other Bayesian methods. Variational continual learning (VCL) applies variational
inference [25] in the continual learning scenario: by artificially introducing an ex-
ponential family distribution q(8|¢) ~ N (¢) with the parameter ¢ to fit the unsolv-
able distribution P(6|D) [56]. While Incremental Moment Matching (IMM) solves
the problem of distribution comparison by using moment matching [57] in continual
learning. Details are shown in Appendix.A.4 and Appendix.A.5.

2.5.2. Parameter-driven methods
Importance estimation. Not all connections and parameters are necessary for
the neural network [42]. If one parameter is significant for the task, the magnitude
of updates for it should be significantly limited. How to estimate the moving scale of
each parameter without using extra memory is determined by the importance term
Q of each parameter. One paper proposes Synaptic Intelligence (SI) [27] to
alleviate the catastrophic forgetting issue in neural networks by judging the impor-
tance of parameters through the trajectories integral to the training process. The
synapse here refers to the “strength” of the interconnection between neurons of
the neural network. To some extent, analyzing the importance of the is equivalent
to the "perception” of the “synaptic” to its own contribution.

The parameters update during the training in each epoch can be expressed as
the multiply of minor migration of parameters §(t) and the gradient g = Z—‘; in terms
of the change of loss function (£) in dataset D:

L(D,6(t) + 8() — L(D,6(D)) = Z 9:j(0)8(t) (2.14)
iJ

The minor migration of parameters 6;;(t) can be considered as the derivative

24 Since g;(t) and 8 (t)

of parameters (6;;) with respect to t, which is §;;(t) = m

are both the derivative of parameters:

20 2. Literature review

tr tr
6 o) do = ij 61" d
ftT 9(6()) - 5(0) Z ftmg](t)) oL

- _ T
ij

The path integral wT] can illustrate the contribution of each parameter to the
total loss in task T, which can be simply approximated as the product with the
gradient g;;(t) with the parameters update §;;(t). In the tralnlng process, the
updated scale of the parameter 6;; is related to its path integral (u . To connect
the current task T with the information from the previous task v, the importance
term Q;; is calculated as follows:

(2.15)

Z @ S (2.16)

The importance term Q;; contains two significant parts: 1) the path integral
w;,j contributes the importance of each parameter to decide its change amplitude;
2) the parameters change distance A}; = 6;;(v) — 0;;(v — 1) in terms of how far
the parameter moves (To avoid A}, = 0 in the denominator, a hyperparameter ¢
is introduced) [27]. The definition of the equation is reasonable since the path
integral Q;; only determines the contribution of one parameter to the loss function
and neglects the update range of the parameter itself. If one parameter has a high
Q;; but low Ay}, which means this parameter is too critical and necessary to update.
On the other hand, adding 4}; is a normalization process of Q;; that puts the ;; and
loss function into the same order of magnitude. The introduction of the importance
term limits the update rate of parameters when learning a new task. This limitation
avoids the drastic changes to weights[27].

The loss function of SI can be also written in a conventional way in all regular-
ization methods as Eq.2.2:

Parameters update
Ls(Dr) = L(Dr) _Az SRR NG

Total loss loss on Task T iL,j

(2.17)

regularization term

Memory Aware Synapses (MAS) provides another approach to continual
learning by emulating synaptic behaviors, thereby endowing neural networks with
a persistent memory mechanism [26]. Specifically, MAS determines the allowable
update range for each parameter by computing its importance weights, which mea-
sure the sensitivity of a learned function to changes in individual parameters [26].
As illustrated in Fig.2.9(a), the method initially identifies parameter importance by
contrasting the network’s output (in light blue) with the ground truth labels (in
green) within the training data (in yellow). Upon convergence, as depicted in
Fig.2.9(b), MAS gauges the significance of parameters based on the volatility of

2.5. Regularization methods 21

the output to their modifications. Within the MAS paradigm, parameter updates
are contingent on their ascertained significance. Significant alterations to vital pa-
rameters are deterred, ensuring these pivotal parameters retain stability when new
data is introduced. This approach ensures the model’s consistent performance on
antecedent tasks by maintaining their low-loss regions. Concurrently, less crucial
parameters are adjusted to improve performance on new challenges, as demon-
strated in task (c). This strategy ensures the model’s adaptability while preserving
its expertise in preceding tasks.

X X
@) ® ©

T1 Training Importance estimation using unlabelled data T2 Training

Figure 2.9: Estimate the importance of each parameter to limit the parameter change. The update of
important parameters is penalized to ensure the performance of the model in old tasks.[26]

In this approach, every epoch of the training process can be considered to differ-
entiate the parameter change path. For a given data set D = {X,,, Yn}N F(X,; 0)

n=1/
as the output of the neural network, and ¢ is a differentiation for parameter updates
(6 = {6;j = A6;;}). The training process of the neural network can be described as

follows:

F X0+ 0) = F(Xu 8) = Y g1y (Xa)3y (2.18)
Lj
. . OF (Xn;0) . . .
In this equation, g;; = g 1S the gradient of the neural network output with
9]

respect to the parameters during the training process. In the case of the multi-
dimensional network output F(X,; 8), the back-propagation algorithm is computa-
tionally difficult. To simplify the calculation, MAS suggests computing the gradients
of the squared [, norm of the output F(X,; 8) with respect to the parameter 6.

_ O[I3(F (X 0))]
9ij = TI.] (2.19)

During the learning periods, the importance (Q;;) of each parameter (6;;) can
be described as:

N
1
8 = = > llgy (2.20)
n=1

22 2. Literature review

By introducing the Q;; importance term, the importance of the parameters can
be estimated. The update value of parameters that are important for the output
in previous tasks is smaller than those that are not very necessary. This method
grants that all parameters will not be uniformly changed on a large scale, only a
part of the parameters that have less attribute to the outputs will be optimized for
the new task, which ensures the integrity of the distribution of the parameters on
old tasks. The expression of the MAS loss is as follows:

Params update
—_n "
Lyas(Dr) = L(MDr) -2 E Q- (65— 93};7—1)2

Total loss loss on Task T i,j

(2.21)

regularization term

The MAS loss function still follows the form of the previous regularization loss
formula (in Eq.2.2). The importance term Q;; determines the updated value of
each parameter, which will be updated after training on a new task. To store pre-
vious information of old tasks, Q;; is the sum of all previously computed Q;;. The
calculation process of ;; does not need to go through the loss function, the avail-
able data of the old tasks can gain it. The update of Q;; is available after learning
each task, which releases the computation capacity for online learning. Fig.2.10
compares different approaches’ learning performance and storage space require-
ment. In Fig.2.10(a), the average learning performance of MAS is higher than SI,
LwF, and EWC in the ImageNet with 8 tasks. Fig.2.10(b) suggests that the storage
space requirement of MAS and EWC are lower than SI and LwF. The results on Im-
ageNet show that the MAS has both higher memory performance and insufficient
storage space, which is one of the ideal implementations for updating the shared
parameters in the architectural methods.

Total Memory Requirement (Mb)

<4 MAS
sl

3500
. MAS (52.69)

Sl (50.49)
= EWC (50.0)
 LwF (49.49)
= EBLL (50.29)

4 EWC

4 LwF

4 EBLL
IMM

15004 ~# Finetune

N oW
o &
s 3
s 3

IMM (46.83)
W Finetune (32.67)

2000

Accuracy %

Total Memory Requirement (Mb)
1
8

w
S
3

e

0
ol . "
(@) Flower Scenes Birds Cars Aircraft Actions Letters SVHN avg (b) Flower Scenes Birds Cars Aircraft Actions Letters SVHN

Figure 2.10: The learning performance and storage space requirement comparing between different
implement[26]

2.6. Knowledge Gaps

Similar to the human brain, the architectural methods create task-specific subnet-
works (regions) that often are fixed after the corresponding task is learned. How-

2.7. Implementations for Dynamic Parameters Architectural methods 23

ever, this leads to the network saturation — the situation when a model does not
have enough free connections to learn a new task [20]. Therefore, we can formu-
late the first knowledge gap for the current research:

¢ Knowledge Gap 1: Architectural methods suffer from network saturation
if a large number of tasks are learned. There is no proposed solution that
would solve this issue.

To eliminate this problem, we hypothesize using the regularization-based method
to the least important overlapping connections in the subnetworks and allow them
to change with some penalty. However, there is ho example of such an application
of the regularization technique to the subnetworks. Thus, the second knowledge

gap is:

* Knowledge Gap 2: The appropriateness of regularization-based continual
learning algorithms to update only part of the network and resolve the network
saturation issue.

In the domain of continual learning, a common strategy to combat neural net-
work saturation is to introduce additional connections, thereby expanding the net-
work’s capacity. Depending solely on the current network parameters to preserve
information from past tasks leads to limited model reusability and necessitates ad-
ditional storage space.

* Knowledge Gap 3: Information from previous tasks is stored within a
subnetwork, enhancing parameter reusability without the need for additional
storage space.

Hence, the aim of the research is to obtain a clear understanding of the formu-
lated Knowledge Gaps. In this work, Continual Prune-and-Select (CP&S) is chosen
as the representation of the architectural methods for the implementation. To over-
come network saturation we examine the most basic and well-known regularization
algorithms such as EWC [34], SI [27], and MAS [26]. Meanwhile, the L, norm is
selected as the benchmark of the regularization methods.

2.7. Implementations for Dynamic Parameters Ar-

chitectural methods

2.7.1. Implementation of Continual Prune-and-Select

Continual prune-and-select(CP&S)[20] is based on training a subnetwork for each
given task and selecting the correct subnetwork to infer new data. The process
begins with training a regular neural network for a specific task, which is then iter-
atively pruned to find a subnetwork that exhibits strong performance. This trained
subnetwork is specifically tailored to execute the assigned task, thereby keeping
the remaining network available for future tasks. When a new task emerges, a
new subnetwork is determined by iteratively pruning the entire original network,

24 2. Literature review

including all existing subnetworks. This is facilitated by freezing the parameters
of prior subnetworks, updating the remaining parameters, and performing pruning
iterations until the new subnetwork is identified. This approach enables seamless
knowledge transfer between tasks without impacting performance on earlier tasks.

Each subnetwork, denoted as N'¢, is discovered utilizing the NNrelief pruning
algorithm. This algorithm estimates the importance of the connection by evaluat-
ing their contributions to the total signal received by neurons. At the beginning
of training on a new task, the model is firstly pre-trained on the given data. The
Importance Score (SI) is calculated from the pre-trained model to measure how
much each connection contributes to the receiving neuron. The definition of im-
portance score for each neuron is defined as the ratio of the neuron output to the
layer output for each input signal x = { x;, x5, ..., x,}.

| @ (l 1)|
l

mi— l -1 l
5 (Asalwxe) + 16

O _

For weights: s;;

o 0 .
For bias: spiqs; = 0D "
mz
w5 (w01 +
where |w;x;| = %Zﬁzl |wijx,;|- NNrelief prunes connections entering neurons

with low contributions to the importance score, where the sum is less than (1 —
a) Z;'il s;j. Here, a serves as a hyperparameter influencing the extent of connection
removal during subnetwork creation, with higher values resulting in more aggressive
pruning.

In the context of task-IL, in which task ID is given in the prediction phase, the
data sets arrive sequentially: X*,X?, ...,X". Pruning creates masks M*, M?, ..., M”

foreachtaskt = 1,2, ..., T, along with corresponding importance scores 51, 52, ..., 7,5t =

(sfj)' .The masks M*,M?, ..., M” are created during the pruning process for each
L]

taskt = 1,2,...,T. Amask Mt is represented as a matrix of binary values mU, where
each eIement |nd|cates the presence or absence of an active connection between
neurons i and j in the subnetwork for task t. Specifically,

1, if there is an active connection
mt = between neurons i and j
0, otherwise

These masks are used for constructing subnetworks that are specialized for indi-
vidual tasks. The masks determine which connections are retained, enabling task-
specific knowledge to be preserved while adapting to new tasks.

During the transition between different subnetworks, the shared connection
parameters remain unchanged. This parameter freezing is achieved through the
parameter rewriting mechanism. Once the new subnetwork is created, the task-
specific segment within the subnetwork is determined. This segment encompasses

2.7. Implementations for Dynamic Parameters Architectural methods 25

the parameters unique to the current task and not shared with any previous sub-
networks. At the end of each training epoch, the model employs parameters from
prior tasks to rewrite the parameters outside the current task-specific segment. By
stabilizing parameters related to previous tasks, the integrity of their performance
is preserved. The schematic graph of the implementation of CP&S is represented
in Fig.2.11.

Initial network Pruning Training
Training process on Task 1

— Task-specific
parameters

comectons comeetens for Task 1 Model after task sequence

Training process on Task 2

— Available = Subnetwork 1

Subnetwork 2 Task-specific
connections — parameters
i for Task 2
— Fixed overlap

parameters Fixed overlap
parameters

Figure 2.11: The schematic graph for the Continual Prune-and-Select (CP&S).

2.7.2. Implementation for Dynamic Parameters Architectural
methods (DPA)

The Dynamic Parameters Architectural (DPA) method is designed to facilitate the
adaptation of fixed parameters between subnetworks within the context of CP&S.
These subnetworks are tailored using the NNrelief pruning algorithm in CP&S. How-
ever, there is a difference in the handling of parameters within overlapping sub-
networks between CP&S and DPA. In CP&S, at the end of the training, only the
task-specific parameters are updated for the new task, while the rest are fixed with
previously stored values. Unlike CP&S, DPA allows the new subnetwork to update
all parameters and not only those corresponding to task-specific areas.

On the other hand, updating the parameters in the new subnetwork alters the
initial parameter distribution for the old tasks, which can result in catastrophic for-
getting [2]. To prevent significant changes in the parameters within the overlapping
regions, the updating of the overlap parameters is governed by the regularization
loss function. Given that the neural network optimizer is gradient-based (such as

26 2. Literature review

Adam or SGD), the gradient for each training epoch is determined as:

gradient of the loss on
current task, For task-specific parameters

gradient of the loss on

current task + gradient
of regression term, For overlap parameters

Specifically, for regression problems, the base loss function Ly is the Mean
Square Error, while for classification problems, it is the cross-entropy loss. The
gradient VLy,ce is computed with respect to the model output and the ground truth
labels. The gradient for task-specific parameters wiagy.spec is directly influenced by
the task-specific 10SS Liask-spec- IN contrast, the gradient Vggyeriap for the overlap-
ping parameters woyeriap is affected by the regularization loss Lig. These inde-
pendently assigned gradients effectively delineate distinct regions for parameter
updates. Gradients outside the subnetwork are set to zero, ensuring that the re-
maining parameters remain unchanged. The schematic graph are represented in
the Fig.2.12.

2.7.3. Employing regularization loss in the overlap subnetwork
In the research, four different regularization losses are employed in the overlap sub-
network, Elastic Weights Consolidation (EWC) [34], Memory Aware Snapses (MAS)
[26], Synaptic Intelligence (SI) [27] and REG (L, norm of the parameter change
between tasks) [58]. The general form of the regularization loss is represented in
Eq.2.2

Elastic Weight Consolidation (EWC)

The core idea of Elastic Weight Consolidation (EWC) is to address the forgetting
problem in continual learning[34]. As a method, EWC aims to protect the knowledge
of previous tasks when a neural network learns new tasks. This is achieved by
constraining the changes to the network’s weights.

EWC adds a regularization term to the loss function, penalizing the difference
between the weights and their initial values on previous tasks. By doing so, EWC en-
courages the network to maintain the weights learned for the old tasks when learn-
ing new ones, thereby mitigating the problem of forgetting. The specific weights to
be regularized by EWC are chosen based on the Fisher information matrix, which
measures how sensitive the loss function is to weight changes. Weights that are
important for previous tasks are regularized, allowing them to be preserved during
learning new tasks.

The loss function in Elastic Weight Consolidation (EWC) is formulated as Eq.
2.13. The process of computing the EWC loss is as follows: After training the
model for the current task, the loss for the current dataset is calculated and stored
in the gradient buffer. Subsequently, the Fisher information matrix is computed

2.7. Implementations for Dynamic Parameters Architectural methods 27

Backpropagation
Initial network Pruning p(Bg)g Update

Training process on Task 1

— Available — Subnetwork 1 <—@ BPfor Task1loss — Task-specific
connections connections parameters
for Task 1
wﬁ“}‘v
S SIS
D@ [[] [
ERGS
“NgL— ° ° °
[] [])
Training process on Task 2
Subnetwork 2 Task-specific
= connections <—@ BPforTask2loss parameters

for Task 2
[J
AT ° o ® e
ST &)
S g o o
KO K >
W > ®

Model after task sequence

Figure 2.12: The schematic graph for the Dynamic Parameters Architectural method.

by squaring the gradients in the buffer. The size of the Fisher information matrix
matches the size of the entire network. To ensure that only relevant information
from the current task is retained, the Fisher information matrix is pruned using the
union masks of the current subnetwork. The union mask is created by combining
all task masks during the training sequence, as shown in Eq. 2.24.

M*=M'UM?uU..uM’ (2.24)

The Fisher information matrix from prior tasks is stored for future use. While learn-
ing a new task, the EWC loss focuses on the overlap areas of subnetworks.

In each training epoch, the algorithm follows a specific sequence of steps. It
starts by initializing a Gradient Buffer, which helps keep track of gradients. Then,
it calculates the base loss and its gradient and stores them for later use. Next, the
algorithm computes the EWC loss gradient, which is then backpropagated through
the model’s neurons. During this process, it isolates the gradients specific to the
parameters that overlap between tasks, while resetting other gradients outside this
overlap area. Using the previously stored base loss gradient, the algorithm calcu-

28 2. Literature review

lates gradients for both task-specific and overlapping parameters. These gradients
are then used to update the network’s parameters. An important aspect of this
process is that the algorithm preserves knowledge of previous tasks by rewriting
parameters beyond subnets using a buffer. This procedure significantly improves
the model’s ability to adapt and retain insights from past tasks. The training process
is represented in Algorithm.2.

Algorithm 2 The training for Dynamic Parameters Architectural methods (DPA)
Procedure

1: Initialize network

2: for each task t do

3: Define overlap subnetworks 0, and the union subnetwork U,

4 for each pretrain epoch e, do
5 Calculate loss Ly
6 Backpropagate loss for task-specific parameters: 2’;—‘“"

task
7: Calculate regularization loss L,

- oL
8 Backpropagate regularization loss for overlap parameters: ﬁ
overlap

9: network.step()
10: end for
11: Pruning based on network pruning algorithm[7]
12: Define overlap subnetworks 0, and the union subnetwork U,
13: for each retrain epoch e, do
14: Calculate loss L
15; Backpropagate loss for task-specific parameters: Z;t—“s"

task
16: Calculate regularization loss L,

- oL
17: Backpropagate regularization loss for overlap parameters: agi
overlap

18: network.step()
19: end for
20: end for

Memory Aware Synapses (MAS)
The Memory Aware Synapses (MAS) method utilizes the output from previous task
data to estimate the significance of each network parameter [26]. Similarly to the
process in EWC, once training on each task is completed, the model computes the
output of the model on the task-specific data. Subsequently, it calculates the L,
norm of the output tensor and uses the resulting scalar value after normalization
to derive the parameters necessary for obtaining the gradient matrix of the model,
denoted g;;. The importance term Q is obtained by 2.20.

In the network, the updating of overlap parameters is governed by the gradient
of the loss in MAS, while the updating of task-specific parameters is driven by the
gradient of the basic loss (cross-entropy for classification or mean squared error

2.7. Implementations for Dynamic Parameters Architectural methods 29

for regression problems). The parameters are updated by the gradients-based
optimizer.

Synaptic Intelligence (SI)

Synaptic Intelligence (SI) offers a solution to combat the issue of catastrophic for-
getting in neural networks [27]. It mainly revolves around the evaluation of the im-
portance of individual synaptic connections within the network, considering their im-
pact on overall performance. By assigning higher priority to these critical synapses
during subsequent learning, the network is encouraged to make more subtle adjust-
ments, reducing the risk of detrimental alterations that could erase knowledge from
previous tasks. SI functions as a regularization technique, providing an effective
approach to mitigate catastrophic forgetting. Unlike EWC and MAS, SI dynamically
updates the importance term online during the training process. After each training
epoch, it calculates an online parameter specification contribution term, denoted as
wy};, for each parameter 0;; using Equation 2.15. The computation of w}; relies on
the basic gradients (derived from cross-entropy for classification or mean squared
error for regression loss) of the parameter, scaled by the parameter’s value change,
which represents the difference between the updated parameter and its previous
epoch value. When training is completed on the current task, the importance term
Q;; for each parameter 6;; is determined using Equation 2.16. The adjustment of
overlap parameters hinges on the loss gradient within SI. On the other hand, task-
specific parameters are updated based on the gradient of the fundamental loss,
which might be cross-entropy for classification or mean squared error for regres-
sion tasks. These parameters are refined using a gradient-driven optimizer.

Experiments in Classification
Continual learning Scenario

In this study, multilayer perceptrons (MLP) serve as the network architecture applied
to various widely used MNIST-like image datasets, including MNIST [59], Fashion-
MNIST [60], and EMNIST [61]. For the CIFAR-100[44], ResNET-18 [62] is selected
as the network architecture

By comparing, analyzing, and summarizing the experimental data and results,
the effectiveness and superiority of the work presented in this paper are substan-
tiated.

3.1. Benchmarks

MNIST Dataset

The MNIST dataset is a widely used benchmark dataset in machine learning and
computer vision. It consists of a collection of grayscale images of handwritten dig-
its, each measuring 28x28 pixels. There are a total of 60,000 training images and
10,000 test images in MNIST, with each image corresponding to a single digit from
0 to 9. MNIST serves as a fundamental dataset for tasks such as digit classifi-
cation, and its simplicity and accessibility make it a popular choice for evaluating
various machine learning algorithms. The example plot for the MNIST dataset is
represented in fig.3.1

Fashion-MNIST Dataset

Fashion-MNIST is a dataset designed to serve as a direct alternative to MNIST, of-
fering similar characteristics but featuring fashion-related items instead of digits. It
comprises grayscale images of 10 different fashion items, including clothing and ac-
cessories. Like MNIST, Fashion-MNIST contains 60,000 training images and 10,000
test images, all of which are 28x28 pixels in size. Fashion-MNIST provides a diverse
set of visual recognition challenges and is commonly used to benchmark algorithms

31

32 3. Experiments in Classification Continual learning Scenario

HEAREOHFNTIEEIRT
14\ |0]3]0]k]2]9]9

NHCIER O
IIIEEIIIEIIIEI E
IIIIIIEIEIEIIIEI
40|/ 7|2]L(2]7 43516161 |7

117617 F|09])]012]%|3|6/4 9|5
361817 8196977609640

Figure 3.1: The MNIST dataset

for image classification and feature extraction in the context of fashion items. The
example plot for the Fashion-MNIST dataset is represented in fig.3.2

_n;nie 2@

o T

Figure 3.2: The Fashion-MNIST dataset

EMNIST Dataset

The Extended MNIST (EMNIST) dataset is an extension of the original MNIST
dataset, offering a broader range of handwritten characters and symbols. EM-
NIST includes both digits and uppercase and lowercase letters, making it a valu-
able resource for tasks involving character recognition and classification. Similar to
MNIST, EMNIST contains 814,255 training characters and 81,426 test characters.
The dataset encompasses various writing styles and variations, providing a more
comprehensive assessment of models’ capabilities in handling diverse handwritten
characters.

In this experiment, EMNIST Balanced is selected as the dataset for Extended
MNIST. Meanwhile, to construct a regular task-sequence the data with labels 45
and 46 are removed. The example plot for the EMNIST dataset is represented in
fig.3.3

3.2. Metrics 33

=L EECERY
3 B g w3 WX WX
i T RN R e Ve

SRADKERAGANR

-0 A QPG
NAAQCP MmN ®
LO L{'-L{L_’u.(__ft_il_.a
SRR AT AT N
N NN NN N

RPN L g0 — D

A

]
H
o
[}
h
h
A
A
/4

F g
Fe
{q
F3
G
£ g
t 6
F
Fa
X 7

ZE

Figure 3.3: The EMNIST dataset

CIFAR-100 Dataset

The CIFAR-100 dataset is designed to provide a more diverse and challenging set
of image classification tasks. CIFAR-100 consists of 100 different classes, mak-
ing it a valuable resource for tasks involving fine-grained image recognition and
classification. It includes 60,000 images divided into 50,000 training samples and
10,000 test samples. Each class in CIFAR-100 comprises 600 images, showcasing a
wide variety of objects, animals, and scenes, which challenges models to recognize
and classify images with a high degree of diversity and complexity. The dataset
is an excellent benchmark for evaluating the robustness and versatility of image
classification models across a rich and varied set of visual categories.

3.2. Metrics

The forgetting rate is an important indicator for measuring the learning performance
of the model in the continual learning scenario. A lower forgetting rate represents
the model has better performance resistance to catastrophic forgetting.

The definition of the forgetting rate is as follows:

Initial error — Later error
Initial error

Forgetting Rate = — (3.1)
where Initial error is the error of the model right after training on the initial task.
And Later error is the error when revisiting that task after training on other tasks.

3.3. Task-specific parameters ratio

Task-specific parameters are defined as the parameters that only belong to one
certain subnetwork. These parameters are not shared between subnetworks and
only contribute to the learning and prediction for the corresponding task (shown
in Fig.2.12). The task-specific parameters ratio is defined as the ratio of the task-
specific parameters with the size of the subnetwork.

Task-specific parameters
Subnetwork size

Task-specific parameters ratio = (3.2)

34 3. Experiments in Classification Continual learning Scenario

airplane %.V}\ V..="!-
automobile EEHE‘
od S| il WERS ¥ B

cat sl Bl LA R &
s >R |
deer o] o Jod RN Tl

g [RESESBIRK R
rog i N 2) KL
rorse il I N 6) [B S S T
e E e B e EI S
week o R 0 58 5 o (L S

Figure 3.4: The CIFAR-100 dataset

By analyzing the ratio of task-specific parameters, the degree to which each
subnetwork specializes in its task can be inferred. A higher ratio indicates that a
significant portion of the subnetwork is dedicated solely to its specific task, sug-
gesting a higher degree of task specialization. Conversely, a lower ratio may imply
that the subnetwork relies more on shared or general parameters, indicating less
task-specificity. This metric offers insights into how neural architectures strike a
balance between task-specific features and shared representations.

3.3.1. Multi-Head Model classification continual learning sce-

nario

The Multi-Head Model is a neural network architecture used in continual learning
scenarios. This model consists of a single overarching architecture with multiple
individual "heads”, each corresponding to a specific task, such as Task 1, Task 2, and
Task 3. Each head operates independently and is dedicated to processing the data
and generating predictions for its respective task. A schematic graph illustrating
the concept of multi-heads can be found in Fig.3.5.

In the context of continual learning, the Multi-Head model is designed to solve
situations involving multiple distinct tasks. This approach offers several advantages:

e Distinct Task Handling: The model has separate "heads” for each task (e.g.,

3.3. Task-specific parameters ratio 35

XX
= O

- .

Figure 3.5: The schematic graph for multi-heads in a continual learning scenario.

Task 1, Task 2, Task 3). These heads work independently, focusing solely on
their assigned task to ensure the model’s output aligns with the current task’s
requirements.

o Task-Specific Loss Computation: The Multi-Head model computes the cate-
gorical cross-entropy loss for the digits relevant to the current task. This tar-
geted loss calculation fine-tunes the model specifically for the ongoing task.

» Mitigation of Catastrophic Forgetting: By using dedicated heads and task-
specific loss computation, the model minimizes interference between newly
learned information and previously learned tasks. This approach helps pre-
vent catastrophic forgetting, preserving task-specific knowledge.

e Scalability and Adaptability: The model is highly flexible and can easily ac-
commodate new tasks by adding additional heads. This design allows the
model to expand its capabilities without requiring extensive changes to its
architecture.

In summary, the Multi-Head model provides a structured yet adaptable solution
to the challenges of continual learning, ensuring both specificity and flexibility across
multiple tasks. In this research, the Multi-Head model is selected for the model in
classification continual learning scenarios. The head of different tasks is not shared,
and the heads are updated by the basic loss function. The regularization loss is not
applied in the heads.

36 3. Experiments in Classification Continual learning Scenario

3.4. Experiments

3.4.1. MNIST dataset

To construct the task sequence, the MNIST dataset is divided into 5 tasks with 2
classes in each task. Each task’s dataset D, consists of MNIST handwritten digit
images with class labels. These images are created from pixel data that has under-
gone a consistent random arrangement at different time intervals during various
task phases. In this chapter, a comparison is made among four regularization
methods, namely EWC, MAS, SI, and L,, when applied to shared parameters in
Continual Prune-and-Select (CP&S). The aim is to release the constrained differ-
ences and enhance the model’s learning capability for new tasks. For the neural
network architecture, a Multilayer perceptron (MLP) with 2 hidden layers and 400
neurons per layer is applied. Between each hidden layer, set ReLU as the activa-
tion function. The training batch size for each training is 64. The hyperparameter
A for each regularization method (in Eq.2.2) is selected by grid-search, which is
represented as follows:

Model name A
DPA-EWC 4500
DPA-MAS 15
DPA-REG 3

DPA-SI 3

Table 3.1: A value for different models for MNIST dataset

Fig. B.1 illustrates the learning capacity of various models when applied to the
MNIST dataset. Fig. B.1a presents the error of different models in predicting tasks
as the task sequence progresses. Within each gray region, the curves represent
changes in error for the current task after training on that task. For instance, in the
first gray region, each curve comprises 5 points, with each point representing the
recognition error of the model for Task 1. The first point represents the recognition
error when the model is trained solely on Task 1, while the second point reflects
the recognition error for Task 1 after the model has been trained on Task 2. By
studying the downward trend of the recognition error curve for each task, the neural
network’s anti-forgetting capability can be demonstrated.

From Fig. 3.6a, all models achieve error levels less than 1% on the MNIST
dataset. The slight downward trend in each model’s respective curve signifies their
better anti-forgetting performance on the MNIST dataset, indicating their effective-
ness in preserving a substantial amount of information even after learning new
tasks. Notably, CP&S, DPA-MAS, and DPA-L, exhibit consistently unchanging error
rates for each task, suggesting no forgetting of information from previous tasks.
However, DPA-EWC shows a significant drop in recognition error for old tasks, indi-
cating a higher propensity for forgetting old task information. In contrast, DPA-SI
exhibits a notable behavior termed as positive transfer [63], where the performance
on previous tasks improves after learning new ones. This effect suggests that the
acquisition of new tasks might enhance the model’s understanding and representa-

3.4. Experiments 37

tion of earlier tasks, possibly due to shared features or hierarchical representations.

In Fig.B.1c, the performance metrics of different continual learning methodolo-
gies are presented over a series of tasks. The incorporation of network pruning
in both DPA and CP&S methods endows them with a heightened resilience against
catastrophic forgetting, especially when compared with pure regularization strate-
gies. Additionally, their proficiency in learning new tasks markedly exceeds that
of the regularization methods. Within the depicted methodologies, our custom-
designed DPA-based techniques stand out, surpassing both the CP&S approach
and traditional regularization strategies. While CP&S is designed to inherently pre-
vent forgetting, the DPA techniques excel further by not just resisting forgetting,
but also by displaying higher adaptability and learning prowess on new tasks—this
is evident from their consistently minimized error rates.

Fig. 3.6 illustrates the forgetting rates as the task sequence progresses in the
MNIST dataset. In Fig. 3.6a, we can observe that these forgetting rates provide
insights into the models’ ability to retain previously learned information when ex-
posed to new tasks. In this plot, several models’ forgetting rates are notable. CP&S
exhibits a forgetting rate of 0, indicating that it does not forget information from
prior tasks and maintains a consistent performance throughout the task sequence.
This is because the parameters from the previous task are fixed. DPA-EWC, on the
other hand, demonstrates a slight forgetting rate of 0.0177, implying that it retains
most of the previously learned knowledge but experiences a marginal decrease in
error when learning new tasks. DPA-MAS and DPA-L, both demonstrate a forget-
ting rate of 0, signifying their effective retention of information from previous tasks
even in situations where parameters from the previous model have been modi-
fied. When we combine this observation with the insights provided by Fig. B.1, it
becomes evident that the dynamic parameter architecture method exhibits higher
performance in learning new tasks while also maintaining a memory of previously
learned information, avoiding forgetting. Remarkably, DPA-SI displays a negative
forgetting rate of -0.0277, indicating a positive transfer of knowledge. This means
that learning new tasks somehow improves the model’s performance on old tasks,
enhancing its ability to recognize previous patterns.

In Fig. 3.7, we observe the average recognition error across the task sequence.
Notably, the average error for all models remains consistent and doesn’t decrease
as the task sequence progresses. This suggests that the models exhibit resistance
to catastrophic forgetting. Meanwhile, DPA-L, consistently outperforms other mod-
els throughout the entire task sequence. This indicates that the DPA-L, method has
higher performance in both learning new tasks and retaining previously learned in-
formation, making it a standout performer. Moreover, an interesting trend becomes
evident: Once the third task is learned, all DPA methods outperform CP&S in terms
of average error. Specifically, DPA-EWC maintains a lower average error even when
there are positive forgetting rates for the fourth and fifth task sequences. This illus-
trates that DPA methods, by releasing fixed parameters, substantially improve the
model’s capacity to grasp new tasks. Even when forgetting happens, they consis-
tently do better than CP&S. In summary, DPA methods offer a distinctive trade-off
between learning and forgetting, highlighting their adaptability in maintaining a

38 3. Experiments in Classification Continual learning Scenario

Training on MNIST dataset

0.10 "4

- —k— CP&S
X 0.05 ~*— DPA-EWC
2 / N\ —*— DPA-MAS
g 0.00 —h—k ® —*— DPA-L2
2 _0.05 Ne—a—x % DPASI
w

~0.10 d—hk—k *
Task 1 Task 2 Task 3 Task 4 Task 5

Training Sequence Per Task

(a) Average forgetting rate for all observation tasks sequence
Average forgetting after final task

< 002 0.0177
o
£
g 0.0 0.0 0.0
& 0.00
5
Q

-0.02

CP&S DPAEWC DPA-MAS DPAL2

Methods

(b) Average forgetting rate after learning the final task

Figure 3.6: The forgetting rate in the MNIST data experiment

balance between these two pivotal aspects of continual learning.

Average error for each task sequence

0.7 —%— CP&S
—*— DPA-EWC
0.6 —*— DPA-MAS
X —*— DPA-L2
S ~% DPASI
5 0.5
0.4
D —
Task 1 Task 2 Task 3 Task 5

Training Sequence Per Task

Figure 3.7: The average recognition error for all observation tasks in the MNIST data experiment

Fig. B.2 (in Appendix.B.3) shows network sparsity in the MNIST data experi-
ment. In Fig.B.2a, we see how the proportion of task-specific parameters (defined
in Eq.3.2) changes as we go through different tasks. In this plot, each row repre-
sents how many of the parameters in each subnetwork are specific to the task, and
it changes as we move from one task to the next. For instance, in the initial row,
when we commence with the first subnetwork, we observe that all the parameters
are entirely dedicated to that particular task, resulting in a 100% task-specific pa-
rameter ratio. However, as we progress through the comprehensive training of the
entire task sequence within the MNIST dataset, a significant shift occurs. This ratio
steadily declines and eventually stabilizes at around 11%. This finding implies that

3.4. Experiments 39

approximately 90% of the parameters within the subnetwork become shared with
other subnetworks, leaving only 12% that remain uniquely associated with Task 1.

Additionally, our investigation reveals a consistent trend across multiple subnet-
works. Most of them converge to having just 8-14% of task-specific parameters
remaining after the culmination of the entire task sequence. This indicates that the
majority of parameters are indeed shared among different networks. The result of
this analysis is that the model efficiently uses shared parameters for different tasks.
This means the model can reuse and apply a significant part of what it learned from
one task to another. This sharing of parameters is crucial in continual learning be-
cause it helps the model adapt to new tasks while keeping the knowledge it gained
from previous ones.

In Fig.B.2b, we look at the ratio of the union mask compared to each subnet-
work. Each subnetwork takes up only 4-8% of the total model's parameters. After
finishing training on the task sequence, the union mask contains around 15% of
the connections in the network. This means that the model is quite sparse, with
85% of the connections unused. This sparsity arises from the fact that handwritten
digits are usually centered in the images, and pixels near the edges don't provide
much information for classification.

3.4.2. Fashion-MNIST dataset

The neural network architecture, batch size, pruning iteration and a,. used in the
Fashion-MNIST dataset experiment remain consistent with those employed in the
MNIST dataset experiment. In the Fashion-MNIST dataset experiment, the hyper-
parameter A for each regularization method (as defined in Eq.2.2) is determined
via a grid-search approach and is presented in Table 3.2:

Model Name | 1 Value
DPA-EWC 10000

DPA-MAS 4.5
DPA-REG 4.5
DPA-SI 2

Table 3.2: A Values for Different Models in the Fashion-MNIST Dataset

The graph in Fig.B.3 illustrates the recognition error as the task sequence pro-
gresses in the Fashion-MNIST dataset. Due to the Fashion-MNIST dataset’s higher
complexity compared to MNIST, the experiment’s error falls in the range of approx-
imately 3.7% to 4%, slightly below that observed in the MNIST dataset. Similar
to previous experiments, forgetting is not a prominent issue in the Fashion-MNIST
dataset. Notably, DPA-EWC shows a significant error decrease during Task 1, indi-
cating its lower resistance to forgetting compared to other models.

It's important to note that on the final task, CP&S achieves an error of 3.58%,
while DPA-EWC records 3.38%, DPA-MAS reaches 3.63%, DPA-L, maintains 3.7%,
and DPA-SI excels with an error of 3.28%. These results indicate that the dynamic
parameters architecture method, particularly with the application of EWC and SI to
release shared fixed parameters, exhibits better performance in learning new tasks

40 3. Experiments in Classification Continual learning Scenario

within the Fashion-MNIST dataset. In Fig.B.3c, we see the performance of various
continual learning methods across tasks. DPA, CP&S, and regularization methods
perform similarly in the initial tasks. However, by Task 3, regularization methods
show a higher error rate, while DPA and CP&S remain stable. This indicates that
DPA and CP&S are more better than regularization methods in the Fashion-MNIST
dataset.

In terms of average recognition error, DPA-EWC exhibits the lowest performance
due to its relatively high forgetting rate. Conversely, DPA-SI achieves the highest
average recognition error after completing all five tasks, primarily because of its
substantial positive transfer. The remaining models perform similarly to each other.
This observation highlights the presence of varying degrees of positive transfer
within the DPA framework during the Fashion-MNIST experiment. Positive transfer
indicates that the model excels not only in learning new tasks but also in enhancing
its recognition performance on previously learned tasks. Consequently, the DPA
approach outperforms CP&S in terms of recognition error, even when considering
the presence of forgetting. This highlights the potential advantages of incorporating
positive transfer as an integral part of the continual learning process.

For the average recognition error, DPA-EWC has the worst average recognition
error due to its high forgetting rate. Due to the high positive transfer, DPA-SI
has the highest average recognition error after learning all five tasks. the rest of
each model is close to each other. this phenomenon indicates that, in the Fashion-
MNIST experiment, there are varying degrees of positive transfer in DPA. The model
not only performs well on new tasks but also improves the recognition rate of old
tasks. Therefore, DPA performs better than CP&S in the recognition error under
the premise of allowing forgetting.

Fig.B.5 illustrates the task-specific parameters ratio and the network’s sparsity
following the completion of all task sequences. Subnetwork 1 and subnetwork
5 exhibit a task-specific parameters ratio ranging from 9-13%. This implies that
approximately 90% of the parameters are shared among different networks for
these subnetworks. In contrast, subnetworks 2, 3, and 4 have a higher task-specific
parameters ratio compared to subnetworks 1 and 5. This disparity arises due to the
larger sizes of subnetworks 2, 3, and 4 (shown in Fig.B.5b). However, it is important
to note that the union subnetwork’s size occupies only about 12.5% of the total
network’s parameters. This indicates that the model remains highly sparse despite
the variations in task-specific parameters. The prevalence of sparsity in the model
is due to the nature of handwriting digit datasets, where the majority of pixels near
the image boundary contain little discriminative classification information, leading
to an efficient utilization of parameters.

In the context of the Fashion-MNIST experiment, the dynamic parameter ar-
chitecture (DPA) framework exhibited good performance characterized by two sig-
nificant attributes. Firstly, it prominently showcased a higher degree of positive
transfer, allowing the model not only to excel in learning new tasks but also to
enhance its recognition accuracy on previously acquired tasks. This observation
underscores the practical utility of DPA, as it facilitates knowledge retention and
application across a sequence of tasks. Secondly, it is important to note that the

3.4. Experiments 41

DPA framework showed the capability to achieve overall learning performance sim-
ilar to or better than the CP&S approach. This held even in situations where the
model was allowed to forget. The DPA framework provides a trade-off between
forgetting and learning new tasks. Lastly, it is essential to highlight that the model
maintained a high level of sparsity despite its better performance in the Fashion-
MNIST experiment. New subnetworks tend to be generated on already trained
subnetworks.

3.4.3. EMNIST dataset

The neural network architecture, batch size, pruning iteration, and a;. used in the
EMNIST dataset experiment remain consistent with those employed in the MNIST
dataset experiment. In the EMNIST dataset experiment, the hyperparameter 2 for
each regularization method (as defined in Eq.2.2) is determined through a grid-
search approach and is presented in Table 3.3:

Model Name | 1 Value
DPA-EWC 10000

DPA-MAS 4.5
DPA-REG 10
DPA-SI 2

Table 3.3: A Values for Different Models in the EMNIST Dataset

Most of the results of the experiment in the EMNIST dataset are in the Ap-
pendix.B.5. In contrast to the MNIST and Fashion-MNIST dataset experiments, the
EMNIST dataset is divided into 9 tasks. As the number of learning tasks increases,
old information in neural networks becomes more susceptible to being overwrit-
ten by new information. In Fig.B.7a, we observe that, apart from DPA-EWC, the
model’s recognition error on the tasks hardly decreases as the number of learned
tasks grows. This observation indicates that the model possesses a high resistance
to forgetting. Additionally, in Fig.B.7b, DPA-MAS, DPA-L,, and DPA-SI demonstrate
better learning capacity in the final task, with DPA-L, achieving the highest error for
the final task. This phenomenon suggests that by freeing the shared parameters,
the model can involve more parameters in learning new tasks, ultimately leading to
improved performance on new tasks. In Fig.B.7c, the chart shows error rates for
various continual learning methods. DPA and CP&S methods have lower error rates
than the regularization methods in most tasks. As more tasks are introduced, the
error rates rise, yet DPA and CP&S remain consistently stable. This indicates that
DPA and CP&S possess a higher resistance to catastrophic forgetting compared to
regularization techniques.

In the context of the EMNIST dataset, which involves a significant number of
tasks, the challenge of retaining knowledge from previous tasks becomes increas-
ingly evident as the model progresses through its learning sequence. This results
in fluctuations in the model’s recognition error when evaluating its performance
on older tasks. These error fluctuations indicate that as the model acquires new
knowledge, it can experience positive transfer, where its understanding of certain

42 3. Experiments in Classification Continual learning Scenario

concepts or patterns improves even for previously learned tasks. However, a closer
examination in Fig.3.8b reveals that each DPA model exhibits a positive forgetting
rate, indicating that despite the positive transfer phenomenon, these models can-
not completely eliminate forgetting. The average forgetting rates for DPA-MAS and
DPA-L, are relatively low, at 0.0026% and 0.0077%, respectively. While these rates
are minimal, they demonstrate that some degree of forgetting still occurs, albeit on
a negligible scale.

0.10 Training on EMNIST dataset

7 3
| X / Jok, % Fx hl CP&S
‘ * L@

0.05 | /* Sk Jaf ok * | DPA-EWC
g b AR R R
' T x *i DPA-L2
Sokck *’{\ ?

*) *

DPA-SI

AR

—-0.05

Forgetting %

—-0.10

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9
Training Sequence Per Task

(a) Average forgetting rate for all observation tasks sequence

Average forgetting after final task
0.1696

o
=
v

e
o
=)

Forgetting %

0.05

o
o
a

0.0 0.0026 0.0077
0.00 CP&sS DPA-EWC DPAMAS DPA-L2 DPA-SI
Methods

(b) Average forgetting rate after learning the final task

Figure 3.8: The forgetting rate in the EMNIST data experiment

Fig.3.9 shows the average recognition error for each model. Notably, DPA-L,
and DPA-SI consistently outperform CP&S in terms of average error across the task
sequences. Particularly, DPA-L, achieves the lowest average error upon completing
training on all tasks. These results indicate that in complex continual learning sce-
narios like EMNIST, the trade-off between learning and forgetting becomes more
apparent compared to simpler datasets. In such cases, DPA models exhibit a signifi-
cant improvement in average recognition error when compared to CP&S. Therefore,
with a larger number of tasks, DPA’s performance improvement over CP&S becomes
more pronounced.

In scenarios with a high number of tasks, the neural network maintains a con-
sistently high level of sparsity, as evident in Fig.B.8. Upon completing the training,
the ratio of task-specific parameters reduces to less than 10%. This reduction im-
plies that over 90% of the parameters within each subnetwork are shared with
other subnetworks, resulting in diminishing task-specific parameters. Specifically,
each subnetwork comprises only 5-10% of the total neural network’s parameters,
while the union of subnetworks after completing the task sequence accounts for
approximately 30%. This high level of sparsity indicates that new subnetworks

3.4. Experiments 43

Average error for each task sequence

crss
DPA-EWC
DPA-MAS
DPA-L2
2.4 DPA-SI

—h—
—x— \\1:>*?:%
—a— =
e

¢ f #

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9
Training Sequence Per Task

Figure 3.9: The average recognition error for all observation tasks in the EMNIST data experiment

tend to emerge within existing subnetworks. Furthermore, there remain numerous
connections that are left unused.

3.4.4. CIFAR-100 dataset

To construct the task sequence, the CIFAR-100 dataset is partitioned into 20 tasks,
each consisting of 5 classes. Each task’s dataset, denoted as D,, comprises CIFAR-
100 digit images with corresponding class labels. To ensure optimal learning per-
formance, we have adopted the L, regularization method for updating the over-
lap parameters between different subnetworks, as it has been demonstrated to
be effective in MNIST-like datasets. The hyperparameter A for each regularization
method (as shown in Eq. 2.2) is set to 15. In our research, inspired by the find-
ings in CP&S [20], it was observed that the model’s learning ability starts to decline
and network saturation occurs when learning more than 11 tasks. Consequently,
we have implemented a dynamic parameter adjustment strategy. After completing
the training for task 11, the model transitions to the original CP&S implementation,
where subnetworks are fixed after training. At the outset of task 12, the previously
fixed parameters are released to participate in the training of the current task, fa-
cilitated by the application of L, regularization. Moreover, the hyperparameters
used for training on CIFAR-100 remain consistent with those employed in the CP&S
research [20].

Fig. 3.10 presents a comparison between DPA-L, and CP&S models on the
CIFAR-100 dataset, which is divided into 20 distinct tasks. Within this figure, Fig.
3.10a specifically highlights the differences in performance between the two mod-
els, focusing on their results for the final task. In this comparison, DPA-L, shows
reduced recognition errors for the final task. This observation suggests that the
DPA-L, model’s strategy, which involves releasing overlapping parameters and ap-
plying L, regularization, effectively increases the number of parameters participat-
ing in the learning process throughout the tasks. As a result, this approach appears
to enhance the model’s ability to learn and adapt to new tasks.

Furthermore, Fig. 3.10a offers a detailed perspective on the model’s learning
performance during the final task sequence. This analysis evaluates the model’s
accuracy after completing the training for the final task and making predictions for

44 3. Experiments in Classification Continual learning Scenario

Last Task Error

30.2

30

Error %

28

27 CP&S DPA-L2

Methods

(a) Recognition error for the last tasks sequence.
Error for each task after training

EEm CP&S

Dynamic Parameter Adjustment
s DPA-L2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Training Sequence

(b) Average forgetting rate for the final task sequence.

Figure 3.10: The performance comparison in the CIFAR-100 data experiment.

all preceding tasks. An important takeaway from this figure is the minor fluctuation
in the error rate observed for task 12. However, starting from task 13 and beyond,
DPA-L, consistently maintains a lower prediction error compared to CP&S. This
trend is noteworthy because it signifies an enhancement in model performance
without a significant reduction in accuracy for tasks completed prior to task 11.
This aspect is crucial as it indicates that DPA-L, releases the network saturation
issues while preserving the model’s knowledge retention of previous tasks.

Fig.3.11a presents the forgetting rate observed in the training history of the
task sequence. The forgetting curve of DPA-L, exhibits fluctuations as the task
sequence progresses, indicating that, despite releasing overlap parameters, the
model experiences some degree of forgetting. In contrast, the forgetting curve of
CP&S remains relatively flat, suggesting no forgetting. This observation is further
supported by the analysis of the average forgetting rate after completing the final
task, as depicted in Fig.3.11b. Here, CP&S records a 0% forgetting rate, while
DPA-L, demonstrates forgetting for previous tasks.

Additionally, the graph in Fig. 3.12, illustrating the average recognition error
across all tasks, demonstrates an improvement following the implementation of dy-
namic parameter adjustment in the DPA-L, model after completing 12 tasks. This
decrease in recognition error indicates that DPA-L,, through its dynamic parameter
adjustment strategy, relieves the issue of network saturation by releasing param-
eters and enhances the overall accuracy of the model’s task recognition. This im-

3.4. Experiments 45

Training on Random order for CIFAR100

,0.75 I —*— CP&S
& " ‘ —*— DPA-L2
20.50 ﬁ
o
b
‘ \

£0.00 W‘m“‘ﬁﬁf’f‘“f“*%f L W

*

10 11 12 13 14 15 16 17 18 19 20
Tralnlng Sequence

(a) Average forgetting rate for all observation tasks sequence
Average forgetting after training

0.08 0.0787
S
20.06
=
$0.04
(s}
w

0.02

0.0
0.00 CP&S DPA-L2

Methods

(b) Average forgetting rate after learning the final task

Figure 3.11: The forgetting rate in the CIFAR-100 data experiment

provement represents a positive development when compared to the conventional
CP&S approach, underscoring the effectiveness of dynamic parameter adjustment
in handling complex learning scenarios. The improvement of the overall perfor-
mance of the DPA-L, indicates that, by releasing the fixed parameters, while al-
lowing small-scale forgetting, the model improves overall learning capabilities by
improving learning performance on new tasks.

Average Error for task sequence

—*— CP&S

20.0) —*~ DPAL2 Dynamic Parameter Adjustment 4%

i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Training Sequence

Figure 3.12: Average recognition error after the entire task sequence.

Impact of the class correlation to the learning capacity

In DPA, the subnetworks are allowed to share the parameters with each other. The
shared parameters are updated based on the information both on previous tasks
and current tasks. In this case, if the types of tasks before and after are similar, the

46 3. Experiments in Classification Continual learning Scenario

learning of the model may be affected by the similarity of the tasks. Therefore, we
divided the CIFAR-100 dataset into 20 different tasks according to the classification
of the superclass (each superclass includes 5 classes) and analyzed the learning
ability of the model in the task sequence constructed by the superclass, especially
the learning ability under different task types. The task sequence based on the
division of the superclass is shown in Table.3.4.

1. insects 11. large natural outdoor scenes

2. fruit and vegetables 12. aquatic mammals

3. flowers 13. large carnivores

4. vehicles 2 14. large omnivores and herbivores
5. vehicles 1 15. household furniture

6. food containers 16. large man-made outdoor things
7. small mammals 17. household electrical devices

8. people 18. non-insect invertebrates

9. fish 19. reptiles

10. medium-sized mammals 20. trees

Table 3.4: Create task sequence based on the division of superclasses (Superclasses 1 order).

he recognition error of both CP&S and DPA-L, exhibits significant fluctuations
after task 12, which can be attributed to network saturation. This saturation di-
minishes the model’s capacity to learn new tasks effectively. DPA-L, shows more
pronounced fluctuations across different task types compared to scenarios with
fewer task sequences. Nonetheless, the fluctuation patterns observed in DPA-L,
and CP&S are notably similar. This indicates that, even after releasing overlap pa-
rameters, DPA-L, does not demonstrate a distinctly different learning capability for
various class types compared to CP&S. This suggests that, in the existing experi-
ments, releasing overlap parameters has not significantly demonstrated knowledge
transfer between task types, indicating a potential area for further investigation in
enhancing the models’ adaptability to diverse class categories.

Training on Superclasses 1 order for CIFAR100

1 2 3 4 5 6 7

8

9

10 11 12 13 14 15 16 17 18 19 20

Training Sequence

Figure 3.13: Average recognition error after the entire task sequence for the Superclasses 1 order.

3.4. Experiments 47

3.4.5. Discussions
By analyzing the experiments in MNIST-like and CIFAR-100 datasets, the discussion
of the DPA in the classification continual learning scenario is as follows:

» Higher Learning Capabilities: DPA consistently has a higher learning per-
formance when faced with a longer or more complex task sequence. Its
flexible approach to adjusting shared parameters enables the model to retain
past knowledge while effectively learning new tasks, thereby enhancing its
overall learning capacity than CP&S.

* Trade-off Between Learning and Forgetting: DPA balances the acqui-
sition of new task-related knowledge and the retention of previously learned
information. Under the premise of allowing some level of forgetting, DPA con-
sistently achieves lower average recognition error. This adaptability makes
the model perform well in continual learning scenarios, allowing it to outper-
form CP&S.

* Higher Performance with L, Regularization: DPA-L, achieves the high-
est average error across the MNIST-like datasets. Fine-tuning the reused pa-
rameters with L, regularization maintains low overall error[64]. This demon-
strates that parameter reuse is effective for retaining information from past
tasks and provides a trade-off between learning and forgetting, making L,
regularization particularly effective among other regularization methods in
DPA on MNIST-like and CIFAR-100 datasets.

Experiments in Regression
Continual learning Scenario

4.1. Introduction

In the past few years, constitutive modeling has undergone significant transforma-
tions, primarily due to the integration of data-driven analysis framework[65]. Tradi-
tional models came with several assumptions and required intensive computations.
In contrast, data-driven analysis offers improved accuracy, speedier calculations,
and more adaptability. As highlighted in [66], the data-driven approach begins
with the examination of diverse microstructures under predetermined conditions.
Techniques such as the Finite Element Method (FEM) are applied to particular Repre-
sentative Volume Elements (RVEs). Once computations are done, a comprehensive
database from these RVEs is constructed. This database aids Machine Learning
(ML) in identifying relationships between the structure and the outcomes. Conse-
quently, it becomes possible to predict the overarching properties of unexplored
materials. By combining classic computational techniques with modern data-driven
methods, we can make highly precise predictions about material properties, merg-
ing two research domains.

In the data-driven framework, the material properties of a single RVE can be
treated as an individual learning task. When the data from each RVE is received
at different times, the tasks that come one after another create a sequence of
tasks. Therefore, in the data-driven system, data continuity can be considered as
a regression problem in continuous learning.

4.2. Benchmarks

Hyperelasticity is a material property that characterizes the behavior of certain elas-
tic materials. These materials are often referred to as "hyperelastic materials” or
"elastic material models.” Hyperelasticity describes the ability of these materials to
undergo elastic deformation when subjected to various stress states and maintain

49

50 4. Experiments in Regression Continual learning Scenario

their elastic nature throughout. This behavior is typically modeled using mathemat-
ical formulations known as “strain energy density functions.” Unlike linear elastic
materials, hyperelastic materials do not conform to Hooke’s law, making it more
challenging to describe their mechanical behavior. In hyperelastic materials, the
stress-strain relationship is nonlinear, and they exhibit a unique ability to undergo
significant elastic deformation without permanent distortion, thereby defying con-
ventional linear elasticity principles. Utilizing data-driven analysis, the mechanical
properties of hyperelastic materials can be rapidly predicted with minimal computa-
tional burden. In a data-driven analysis system, the Representative Volume Element
(RVE) functions as the smallest unit for assessing material properties, highlighting
the unique characteristics of diverse materials. When it becomes necessary to study
various materials within a single data-driven analysis system and the data pertaining
to these different materials arrive sequentially, addressing the challenge of learning
in sequential tasks can be viewed as a continual learning problem.

The dataset for the regression continual learning scenarios is the hyperelas-
tic properties of the composite with parallel fiber and perpendicular fibers. The
schematic plot for the dataset is represented in Fig.4.1.

Parallel Composite Perpendicular Composite
RVE 1 RVE 2 RVE 3 RVE 1 RVE 2 RVE 3
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

Figure 4.1: Hyperelasticity dataset

In this research, both the Parallel Composite and Perpendicular Composite datasets
are categorized into three distinct tasks, each corresponding to a different compos-
ite. The training data for each task comprises in-plane stress values (oy, o, and
Txy) and strain values (g, &,, and ,,,) specific to the Composite. These stress and
strain datasets are generated using Abaqus software [67]. The author of this data
is O. Taylan Turan. Each task within both the Parallel and Perpendicular datasets
consists of approximately one thousand stress-strain vectors. In these regression
problems, the input data for each task consists of strain vectors, while the output

4.3. Experiments 51

data represents the corresponding stress vectors. Additionally, for each dataset,
the order is shuffled, and the average error is analyzed across six different task
orders of the dataset.

Given the significant disparities in the hyperelastic relationships of Parallel Com-
posite and Perpendicular Composite, neural networks exhibit distinctive learning
behaviors when exposed to these dissimilar datasets. In the realm of continual
learning, task sequences encompass a range of task types. To evaluate the model’s
capacity for continual learning across diverse task types, the model will be trained
on the sequence with variant task types based on the difference in the hyperelas-
ticity of different composites. Further, the Mix dataset is created by combining the
Parallel dataset and the Perpendicular dataset. The Mix dataset comprises six tasks,
with the dataset order being randomized for analysis. We assess the average error
across six distinct task orderings within this dataset. To investigate the model’s
continuous learning capability in response to changes in task types, the first three
tasks consist of Parallel datasets, while the last three tasks are from Perpendicular
datasets.

4.2.1. Relative Error for the Regression Problem

In regression problems, the relative error is a crucial metric for evaluating the ac-
curacy of predictions. It measures the discrepancy between the predicted values
(¥pred) @nd the actual values (y) relative to the magnitudes of the actual values.
The relative error is defined as:

ly _}’pred”2

Relative Error =
Iyl

, (4.1)

where:

y : Actual values
Ypred * Predicted values
I - Il2 : L, norm (Euclidean norm)

This metric helps assess the predictive accuracy of regression models, taking
into account the scale of the true values. A lower relative error indicates better
model performance in approximating the target values. In practical terms, a relative
error of zero would imply that the model’s predictions are an exact match to the
actual values. In this section, relative error is employed to estimate the learning
performance of each model.

4.3. Experiments

In this section, we compare four regularization techniques: EWC, MAS, SI, and L,.
These methods are used on shared parameters in the Continual Prune-and-Select
(CP&S) framework. The goal is to reduce constraints and improve the model’s
ability to adapt to new tasks. For the neural network architecture, we employ a
Multilayer Perceptron (MLP) comprising three hidden layers, each containing 50

52 4. Experiments in Regression Continual learning Scenario

neurons. RelLU serves as the activation function between each hidden layer. Both
the input and output layers have three neurons. The batch size for training in each
case is set to 400. The hyperparameter A for each regularization method (as defined
in Eq.2.2) is determined through a grid-search approach.

4.3.1. Hyperparameter analysis
In investigating the influence of changes in subnetwork size on learning capacity in
the regression problem, two key hyperparameters come into discussion:

¢ Pruning Iterations: This parameter dictates the number of pruning cycles
performed on each subnetwork following its initial pretraining phase.

 a;.: Pruning Ratio for Fully Connected Layers: This parameter regulates
the fraction of parameters retained within the fully connected layers of each
subnetwork. A higher value of ay, implies that a greater number of parameters
are preserved, resulting in larger subnetworks.

The number of Pruning Iterations directly influences the size of each subnet-
work, with more iterations leading to smaller subnetworks. This outcome arises
because a larger number of parameters are pruned during each pruning cycle.
Conversely, the value of ag. also impacts subnetwork size. A higher a;. results
in larger subnetworks by retaining more parameters in the fully connected layers,
while a lower a. makes the subnetworks smaller. Both of these hyperparameters
are of utmost importance as they collectively define the size and complexity of the
subnetworks.

4.3.2. Parallel Composite dataset

The Parallel dataset is composed of three tasks from three materials with different
continuous hyperelastic constitutive relationships. The hyperelasticity relationship
for input stress ¢ and e is represented in Fig.4.2. As can be seen from the fig-
ure, the three composites, especially composite 2, have different hyperelasticity
relationships. Therefore, in the case of continuous learning, the neural network
model needs to perform continuous learning from task sequences of three chang-
ing task types. This is used to test the learning of the model when changing the
task sequence.

The grid-search for Pruning Iterations and «aj. is represented in Fig.4.3. In this
plot, each node corresponds to an experiment conducted during the respective
pruning iteration and with a specific value of a;.. The size and number displayed
on each node represent the average relative error obtained after the model com-
pletes its learning process for all three tasks. Smaller node sizes and numbers
indicate better learning performance. Additionally, the color of each node signifies
the average task-specific ratio achieved by the model after completing all the task
sequences. Deeper node colors indicate smaller task-specific ratios, suggesting that
more parameters are shared among different subnetworks.

In the context of the pruning process, the number of pruning iterations plays a
critical role in determining the composition of subnetworks. As pruning iterations

4.3. Experiments 53

Relationship of strain € and applied stress o

« Composite 1 s Composite 1 o Composite 1
Composite 2 400 Composite 2 o Composite 2
s Composite 3 s Composite 3 o Composite 3

011(MPa)
022(MPa)
012(MPa)

1 =0 .
.
o g BTN
o0
50
- B "
.2 S -°\
o o -s0 o g N
Y s s q & o
.
—s0 - .
100 100

000 025 050 075 100 125 150 000 025 050 075 100 125 150 -02 0o 02 04 06 08
€11 €22 €12

Figure 4.2: Hyperelasticity relationship of input stress ¢ and e for Parallel composites

progress, there is a notable impact on the subnetworks’ size and structure. During
each pruning iteration, the pruning function identifies and removes parameters that
are considered less important for the model’s performance. These less important
parameters are often shared parameters that contain information from past tasks.
They tend to have a lower importance score (IS) because they are not task-specific.
Conversely, task-specific parameters, which are trained specifically for a given task,
typically have a higher IS. These parameters contribute significantly to the model’s
output for the corresponding task.

As the number of pruning iterations increases, the model becomes tighter in
retaining parameters. It tends to preserve parameters with higher IS, which are
often task-specific parameters. This behavior results in a higher task-specific pa-
rameter ratio within each subnetwork. In other words, a larger proportion of the
remaining parameters in each subnetwork is dedicated to the specific tasks the
model has learned. These retained parameters are well-suited to the tasks, as they
have demonstrated their importance through training. In scenarios where a;. is
set to a higher value, the subnetworks tend to be larger. This is because a higher
as. value makes the pruning process less stringent, allowing more parameters to
be retained. Initially, one might think that this would result in a higher proportion
of task-specific parameters within each subnetwork. However, the data shows a
different trend: the task-specific ratio decreases.

This outcome can be explained by considering the nature of the parameters
that are retained. When ay, is high, the pruning algorithm is less aggressive. This
leniency allows not just the task-specific parameters, but also a significant number
of shared parameters to survive the pruning process. These shared parameters
are usually designed to capture more general features and are less specialized for
any single task. Because of this, the larger subnetworks end up having a mix of
both task-specific and shared parameters. The presence of these shared parame-
ters dilutes the concentration of task-specific parameters. Consequently, the ratio
of task-specific parameters to the total number of parameters in the subnetwork
decreases. This leads to a lower task-specific ratio, which is contrary to what one
might initially expect from a larger subnetwork.

The task-specific parameter ratio within subnetworks is a crucial aspect of con-

54 4. Experiments in Regression Continual learning Scenario

Dataset: parallel

CcP&S DPA-EWC DPA-MAS
163 163 163
7 8.8 2 7 217 2 7 9.9 2
55% 55% 55%
0 v o
5 5.2 2 5 155 £ 5 5.7 g
" 47 5 0 a7 é " a7 E
£ g £ g £ 5
23 7.6 32 308 23 16.3 9.6 39 23 7.0 36 398
S 3 S 8 E] g
&] g &] & &]]
M M - M
2| 87 35 ’731 3% 2{ 219 9.4 E.l, 31y 2{ 118 43 E,z 31g
m g 1 g m g
245 L 24§ 24§
) X g . ‘ Y g N a an g
40 85 E 2 9.0 (125 (120 2 6.4 5.8 @7 2
08 09 085 08 09 085 08 X 085
alpha_fc alpha_fc alpha_fc
DPA-L2 DPA-SI
163 163
7 9.1 g 7 9.5 S Nodes size & number:
55% 55% Average relative error %
» H
g g
5 53 P 5 6.4 . ||True Value — Model output]||
w 0
§ £ g g ||True Value||
2 g 2 g
23 7.6 35 398 23 8.8 3.7 398
g g H Nodes color:
o I o o I o "L
M M
2{ 100 & E_l 1 2l iea ® Fol |3 Average Task specific
—) —) parameters ratio %
245 IR 245 .
1140 56 52 H 1170 6.2 @_3 2 Task specific parameters
& & Subnetwork size
058 08 9 0.5

0.9 0.
alpha_fc alpha_fc

Figure 4.3: Hyperparameter analysis for Parallel dataset. In this plot, the size and the number of the
circle represents the average error for each model in the task sequence, smaller size number represents
the lower average error for the model. The color represents the tendency of the average task-specific
parameters ratios, the deeper the color, the less the average task-specific parameters ratios.

tinual learning models. It is a fine balance that must be maintained to ensure the
effective retention of information from both old and new tasks. If the task-specific
parameters occupy a significant portion of the subnetworks, it means that there are
fewer shared parameters available to capture knowledge from previous tasks. This
can result in increased forgetting, where the model loses previously learned infor-
mation as it focuses more on the new tasks. On the other hand, if the task-specific
parameters are too restricted within the subnetworks, the subnetworks may not
have sufficient capacity to accommodate the knowledge required for learning new
tasks effectively. The challenge lies in finding the right equilibrium where the task-
specific parameters are neither too dominant nor too limited. In the context of the
pruning iterations and as. hyperparameter, the aim is to ensure that the subnet-
works can effectively balance the retention of old task information with the ability
to learn new tasks. It has been observed that the most optimal configuration, lead-
ing to the lowest average relative error, occurs when the pruning iteration is set to
2, and ay is set to 0.95 in the Parallel dataset. This suggests that, in this specific
dataset and experimental setup, a moderate task-specific parameter ratio, achieved
through these hyperparameters, strikes the best balance between preserving prior
knowledge and facilitating new learning.

Fig.4.4 illustrates how the average relative error changes throughout the task

4.3. Experiments 355

sequence. In contrast to classification problems, regression problems involve pre-
dicting continuous values, making it challenging to achieve perfect matches with
target results[68]. Consequently, any alterations to the model’s task-related infor-
mation visibly affect its prediction accuracy. The graph reveals a noticeable upward
trend in the average relative error for the DPA models. This trend suggests that,
as shared parameters are released when transitioning to new tasks, the model’s
grasp of information from previous tasks undergoes noticeable changes, resulting
in evident forgetting of the old task. In Fig.4.5b, all DPA models exhibit lower errors
for the final task, indicating that releasing shared parameters enhances the model’s
performance in learning new tasks.

Training on Parallel

CP&S
DPA-EWC
DPA-MAS
DPA-L2
DPA-SI

*
X% b

bttt

Task 1 Task 2 Task 3
Training Sequence Per Task

(a) Relative error for all observation tasks sequence
Last Task Error

CP&S DPA-EWC DPA-MAS
Methods

(b) Relative error after learning the final task

Figure 4.4: The relative error in the Parallel dataset experiment

The extent of forgetting observed in various models is visualized in Fig.4.5. No-
tably, CP&S maintains a constant forgetting rate throughout, showing no variation
in its memory retention. Conversely, the DPA model exhibits an increasing forget-
ting rate with the accumulation of tasks, signifying that as the model learns more
tasks, its ability to retain knowledge from previous tasks diminishes. The consis-
tently positive forgetting rate depicted in the graph implies a lack of significant
positive transfer. In Fig.4.5b, DPA-L, stands out with the lowest average forgetting
rate across the task sequence, averaging only 5.18% forgetting for each task. In
contrast, EWC exhibits the highest forgetting, with a substantial loss of information
in the old tasks, resulting in a staggering forgetting rate of 277.47%.

For the average relative error, DPA-EWC has the worst error rate, primarily due
to its elevated forgetting rate. Conversely, DPA-MAS and DPA-REG exhibit error
rates that closely resemble those of CP&S. This suggests that, in the context of
regression problems, the DPA framework enhances the model’s overall learning
capacity throughout the task sequence by expanding the network parameter set

56 4. Experiments in Regression Continual learning Scenario

Training on Parallel
|

0 —*— CP&S
X —&— DPA-EWC
2 —*— DPA-MAS
g 20 N ~% DPA-L2
= / — % DPASI
o [~ ::
9 E — *
Task 1 Task 2 Task 3
Training Sequence Per Task
(a) Average forgetting rate for all observation tasks sequence
Average forgetting after final task
300 287.6162
®
2200
=
©
<
£100
29.6084
. 0.0 18.9145 4.8514
CP&S DPA-EWC DPA-MAS DPA-L2 DPA-SI

Methods

(b) Average forgetting rate after learning the final task

Figure 4.5: The forgetting rate in the Parallel dataset experiment

available for acquiring new task knowledge, even in the presence of forgetting.

Average error for each task sequence

CP&S

DPA-EWC

DPA-MAS "
DPA-L2 _—

DPA-SI —

thitt

Error %
w
\

_— R ——

o= N — - i*:ff—— =

Task 1 Task 2 Task 3
Training Sequence Per Task

Figure 4.6: The average relative error for all observation tasks in the Parallel dataset experiment

In the Parallel dataset experiment, different tasks exhibit varying ratios of task-
specific parameters (see in Appendix.C.1). Initially, the first task has a relatively
high ratio, approximately 23-24%. However, as subsequent tasks are introduced,
this ratio gradually decreases. For instance, the second task displays a lower ratio
of about 8-9%, and the final task stabilizes at a ratio of approximately 16-17%. This
phenomenon arises because each subnetwork initially possesses a larger propor-
tion of task-specific parameters. Yet, as additional tasks are integrated, the model
adapts by diminishing its reliance on task-specific parameters in later tasks. Fig.
4.4b provides insight into the subnetwork sizes. Each subnetwork constitutes ap-
proximately 37% of the total parameters. Upon completing training on the entire

4.3. Experiments 57

task sequence, 60% of the parameters are utilized across the three subnetworks.
Notably, the model’s sparsity in the Parallel dataset experiment is comparatively
lower than that observed in MNIST-like datasets.

4.3.3. Perpendicular Composite dataset

The relationship between input stress ¢ and strain e for Perpendicular composites,
which follows a hyperelastic behavior, is depicted in Fig.4.7. Analogous to the case
with Parallel composites, these three distinct composites demonstrate varied hyper-
elastic properties. In tasks involving the Perpendicular dataset, the deep learning
model is set to undergo training within a continual learning framework, tackling a
variety of task types that reflect these differences in hyperelastic performance.

Relationship of strain € and applied stress o

120
e Composite 1 01 o Composite 1 s Composite 1

Composite 2 Composite 2 100 Composite 2
o Composite 3 s Composite 3 o Composite 3

011(MPa)
022(MPa)
012(MPa)

) 20 Al
50
; 2 0 o
2 0
o
0 - r e

o 25 150 —02 oo 02 o4
&1 &2 €12

Figure 4.7: Hyperelasticity relationship of input stress ¢ and e for Perpendicular composites

The analysis of hyperparameters for the Parallel dataset is depicted in Fig. 4.8.
Remarkably, the trend observed in the task-specific parameter ratio concerning
pruning iterations and ay. is similar to the findings from experiments conducted
on the Parallel dataset (as shown in Fig. 4.3). As the number of pruning itera-
tions increases, the task-specific parameter ratio tends to ascend. Conversely, an
increment in ay. results in a decreased task-specific parameter ratio. This con-
sistent pattern underscores how these hyperparameters impact the distribution of
task-specific parameters across various tasks in both the Parallel and Perpendic-
ular dataset experiments. Notably, for CP&S, DPA-MAS, and DPA-SI, the optimal
hyperparameter combination involves 2 pruning iterations with a; set to 0.95. Con-
versely, for DPA-EWC and DPA-L,, the ideal hyperparameter combination consists
of 1 pruning iteration with oy, set to 0.9.

The training results for the Perpendicular dataset, as shown in Fig. 4.9, exhibit
a trend similar to what was observed in the Parallel dataset experiment. There is a
noticeable increase in the average relative error for the DPA models. This increase
suggests that when the model transitions to new tasks and releases shared parame-
ters, its retention of information from previous tasks undergoes significant changes,
leading to clear evidence of forgetting old tasks. While the error of CP&S has not
changed, this is because the parameters for the old information are fixed. For the
error on the final task, only DPA-EWC and DPA-MAS show lower errors compared
to CP&S. Both DPA-L, and DPA-SI perform worse on the last task. Therefore, DPA

58 4. Experiments in Regression Continual learning Scenario

Dataset: perpendicular

CP&S DPA-EWC DPA-MAS
=48 148 rT48
7 4.0 B3 7 14.0 b3 7 4.4 X
o 8 -]
420 420 420
o o o
5 2.6 2 5 10.8 £ 5 3.1 g
. e, e, i
g s 2 s £ 5
2 5 2 g £ g
23 312 2.0 32& 23 11.3 517 32& 23 39 25 328
£ S £ s S
g g 5 g 5 2
& | 2 & g & | G
3 M M
2152 22 ’71.9 g 2{ 16.2 5.8 5.8 g 2{ 6.0 26 Ez %
— ° v - A
Y 3)
e @ g
a p 21% 21¢ P 219
1125 23 22 z 1148 Eﬂ GE z 1136 35 69 z
038 09 005 08 09 005 08 09 0905
alpha_fc alpha_fc alpha_fc
DPA-L2 DPA-SI
148 148
7 5.0 g 7 5.7 S Nodes size & number:
278 28 Average relative error %
0 o
5 3.0 37%§ 5 36 37§ || True Value — Model output]|
g s § < || True Value||
2 g 2 g
23 3.6 2.2 328 23 5.4 24 32&
£ s < s
2 g 2 g Nodes color:
~ | 3 11
215l Py o vy 2165 P PY 7y Average Task Sp_ECIfIC
e — 3 parameters ratio %
2 g
1B E] @7 s B @ ||z Task specific parameters
& & Subnetwork size
0.8 0.9 0.95 0.8 0.9 0.95
alpha_fc alpha_fc

Figure 4.8: Hyperparameter analysis for Perpendicular dataset

still outperforms in learning new tasks when using typical regression methods to
update fixed parameters. Note that the errors for the first task vary among different
methods. This variation is due to the different hyperparameters (pruning iterations
and ay) chosen for each method.

For the analysis of forgetting, as shown in Fig. 4.10, forgetting in DPA methods
rises as the task sequence increases. Among all DPA methods, DPA-L, shows the
lowest rate of forgetting. This is due to the constraint on parameter updates using
the L, norm. On the other hand, DPA-EWC has the highest rate of forgetting.

Considering the average relative error for all observation tasks in the Perpendicu-
lar dataset experiment (in Fig. 4.11), it's evident that CP&S consistently maintained
the lowest average relative error for this regression problem. This achievement is
attributed to CP&S's ability to retain comprehensive information about past tasks,
preventing any instances of forgetting. Although DPA-L, also exhibits the smallest
forgetting rate, its performance in learning new tasks is lower than CP&S, resulting
in a higher average relative error. On the other hand, DPA-MAS, while having a
slightly higher average error across the task sequence compared to CP&S, does
showcase lower error specifically in the final task. This suggests that even in the
presence of some forgetting, DPA-MAS manages to control the overall average er-
ror, ensuring it doesn’t deviate significantly from CP&S by enhancing its learning
capabilities for new tasks.

The sparsity analysis of the model in the Perpendicular Composite dataset is in

4.3. Experiments 359

Training on Perpendicular

3.0
&~ CP&S

.25 * —*— DPA-EWC
8 4 ¥ —*— DPA-MAS
g20 — ~% DPA-L2
w -

15 —*— DPA-SI

1o Task 1 Task 2 Task 3

Training Sequence Per Task

(a) Relative error for all observation tasks sequence
Last Task Error

CP&S DPA-EWC DPA-MAS
Methods
(b) Relative error after learning the final task

Figure 4.9: The relative error in the Perpendicular dataset experiment

Training on Perpendicular

—*— CP&S
040

R —~— DPA-EWC
2 —+— DPA-MAS
£20 ~—%— DPA-L2
o ~—*— DPA-SI
(o]

- 0 *

Task 1 Task 2 Task 3
Training Sequence Per Task
(a) Average forgetting rate for all observation tasks sequence
Average forgetting after final task
162.8646
150

X

o

C

£100

[

=

b4

50 41.6182
0 0.0 0.7633 10555
CP&S DPA-EWC DPA-MAS DPA-L2 DPA-SI

Methods

(b) Average forgetting rate after learning the final task

Figure 4.10: The forgetting rate in the Perpendicular data experiment

the Appendix.C.2. The observed differences in task-specific parameter ratios and
network sparsity among various models in the Perpendicular dataset experiment can
be attributed to variations in pruning iterations and a;. hyperparameters. Specif-
ically, models like DPA-EWC and DPA-L, employ lower pruning iterations and ay,

60 4. Experiments in Regression Continual learning Scenario

Average error for each task sequence

—%— CP&S

3.5/ —* DPA-EWC
—%— DPA-MAS

R3,0 —* DPAL2 e

s DPA-SI

w

2.0) 7

e

Task 2
Training Sequence Per Task

Figure 4.11: The average relative error for all observation tasks in the Perpendicular dataset experiment

values, which means they retain more task-specific parameters during the prun-
ing process. Consequently, this leads to larger subnetworks and a higher union
subnetwork size when compared to other models. However, the distribution of
task-specific parameters within these larger subnetworks follows a unique pattern.
In the first subnetwork, the task-specific parameter ratio for DPA-EWC and DPA-L,
is lower than that of other models. This suggests that these models initially allo-
cate fewer parameters to task-specific information in the first subnetwork. Yet, the
situation changes in the second and third subnetworks. For DPA-EWC and DPA-
L,, the task-specific parameter ratio becomes higher than that of other models
in these subnetworks, with the exception of the third subnetwork for CP&S. This
phenomenon can be explained by the models’ attempt to adapt to different task
requirements. Initially, they prioritize shared parameters over task-specific ones in
the first subnetwork. However, as they progress to the second and third subnet-
works, the models recognize the need to allocate more parameters to task-specific
information for better task performance. This adaptability in parameter allocation
within subnetworks contributes to the observed variations in task-specific parameter
ratios.

4.3.4. Mix dataset

To further test the continuous learning capabilities across task types of the model,
the Mix dataset is constructed by combining both Parallel and Perpendicular datasets.
The Mix dataset comprises three tasks from the Parallel dataset followed by three
tasks from the Perpendicular dataset. This arrangement introduces a significant
shift in the task types and complexities encountered during training. As the neural
networks transition from the initial three tasks to the subsequent three, they are
required to adapt to and learn from tasks of varying types and characteristics.

To evaluate how effectively the Dynamic Parameters Architectural (DPA) method
adapts to this shift in task type, we examine the relative error across the task
sequence. Fig. 4.12 demonstrates how different pruning hyperparameters impact
the average relative error and the average task-specific parameter ratio throughout
the task sequence. Notably, the observed trend in the task-specific parameter ratio,
concerning both pruning iterations and a;., aligns with the patterns identified in the

4.3. Experiments 61

experiments conducted on the Parallel and Perpendicular datasets (as depicted in
Fig. 4.3 and Fig. 4.8). Specifically, an increase in the number of pruning iterations
tends to raise the task-specific parameter ratio, while an elevation in ;. leads to
a decrease in the task-specific parameter ratio. For CP&S, DPA-MAS and DPA-SI,
the lowest relative error occurs when pruning iterations and . are 3 and 0.95,
respectively. For DPA-EWC, the pruning iterations and a;. are 2 and 0.9. For DPA-
L, the best performance occurs lowest pruning iterations and a;..

Dataset: mix

CP&S DPA-EWC DPA-MAS

]
S
&

]
IS
&

]
S
&

N
N
»
S
~
-
@
>

@
3
W
&

«
a
S
«
-
=
w
«
©
@

N
©

o
N
Average task specific parameters ratio%

]
©

N
N

Average task specific parameters ratio%
N

Average task specific parameters ratio%

@ 0 0
2 - £ 2 L
23 9.0 ’:,a 23 19.8 15.3 23 12.2 ’:3 5
< - < € |
S S 5
& IS &
16 16 16
21112 5.0 3.9 21254 El} 15.7 21 18.0 9.8 8.9
| Py 9 g | 9 T Y / ah 9
1165 6.4 86 11 22.7 243/ 28.7 11 21.6 | 254 \ 274
L 4 AR \ 4 @ B
0.8 0.9 0.95 0.8 0.9 0.95 0.8 0.9 0.95
alpha_fc alpha_fc alpha_fc
DPA-L2 DPA-SI
743 143
7 196 7 19.6 Nodes size & number:

w
=)
w
&

Average relative error %

w
=
bl
@
w
L4
o

||True Value — Model output||

N
©
N
©

B 8
o °
g g
13 E
8 $ 3 N g [[True Value]|
23 13.0 176| | |2 23 126 (@ 2¢
< sz — S
2 g 2 g Nodes color:
21159 12.2 24.6 15% 21 22.4 13.7 5.6 16? Average Task Sp(_ECIfIC
& % parameters ratio %
g R - 9 g o
1 103 183 62.7 2 1{(136 168 205 H Task specific parameters
- ~1 i n — | [Subnetwork size
0.8 0.95 0.8 0.95

0.9 0.9
alpha_fc alpha_fc

Figure 4.12: Hyperparameter analysis for Mix dataset

Fig. 4.13 displays the relative error for each model across the task sequence.
As the number of tasks increases and the task complexity shifts, all DPA models
exhibit noticeable forgetting of previous tasks. Notably, CP&S maintains consistent
performance in the old tasks, while other methods experience an obvious increase
in relative error for these tasks. In contrast, for the final task (as shown in Fig.
4.13b), DPA-EWC, DPA-MAS, and DPA-SI exhibit lower performance compared to
CP&S, implying that the DPA models excel in learning new tasks. However, DPA-
L, stands out in this experiment, displaying significant forgetting of previous tasks
and a high error rate in the final task. This is because the L, regularization method
focuses on the reusability of parameters [64], which limits the update of each shared
parameter on the new task, rather than just the important parameters, which makes
the new network learn slower on the learning of the new task, especially if the task
type changes, so the learning ability of the model in the new task decreases

The analysis of forgetting for the task sequence is presented in Fig. 4.14. As the

62 4. Experiments in Regression Continual learning Scenario

Training on Mix

[1/; /¥ —*— CP&S
.8 [f [/ * % DPAEWC
S 6 [/ 4 / —%— DPA-MAS
<] Nk / *
2 * _ack * : / —*— DPA-L2
o4 2 #ﬁt f ¥ ~% DPA-SI

2
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

Training Sequence Per Task

(a) Relative error for all observation tasks sequence
Last Task Error

CP&S DPA-EWC DPA-MAS
Methods

(b) Relative error after learning the final task

Figure 4.13: The relative error in the Mix dataset experiment

number of tasks increases and their complexity rises, each DPA model experiences
an elevated forgetting rate compared to previous datasets. Among all DPA models,
DPA-EWC consistently exhibits the highest rate of forgetting. In contrast, DPA-MAS
and DPA-SI maintain the lowest rates of forgetting. Notably, DPA-L, shows a high
average forgetting rate across the entire task sequence. For further clarification,
Fig. 4.14a reveals that the forgetting rate for the first three tasks is less than 20%.
This rate is lower than those observed for DPA-MAS and DPA-SI. However, upon the
introduction of the fourth task from the Perpendicular dataset, the forgetting rates
for tasks 1 and 2 increase abruptly. This sudden change contributes to an overall
elevation in the average forgetting rate for all tasks.

The average relative error for various models in the Mix data experiment is
depicted in Fig.4.14. Due to the heterogeneity of task types, parameter reuse
adversely impacts the model’s performance. It leads to severe forgetting, causing
DPA-L, to perform poorly on this dataset. The average errors for DPA-MAS and
DPA-SI are quite similar. Their average relative errors in the final task sequence
are approximately 2% higher than those of CP&S. Given that DPA-SI demonstrates
a more better learning ability than CP&S in the final task, it can be concluded that
DPA models can provide a balance between learning capacity in new tasks and
forgetting. This equilibrium is achieved by enhancing the model’s learning capacity
for new tasks while allowing for some degree of forgetting.

The sparsity levels for various models are depicted in Fig.C.3 (see in Appendix.C.3.
DPA-EWC stands out for having high task-specific parameter ratios but relatively
small subnetwork sizes. This phenomenon can be attributed to its low setting for
ag. With a lower ag. and higher pruning iteration, DPA-EWC tends to retain more
task-specific parameters, resulting in higher task-specific parameter ratios. By the

4.3. Experiments 63

CP&S
DPA-EWC
DPA-MAS
DPA-L2
DPA-SI

IS
o

tHitd

Forgetting %
N
o

o

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6
Training Sequence Per Task

(a) Average forgetting rate for all observation tasks sequence
Average forgetting after final task

300 283.2159

B

2200

=

[

o

S 100 105.2336
w

63.4757 67.8869
0 0.0
CP&S DPA-EWC DPA-MAS

Methods

(b) Average forgetting rate after learning the final task

Figure 4.14: The forgetting rate in the Mix data experiment

Average error for each task sequence

= A-S ——%

—k— ”77/7””””””77/

6 DP, ke >
—k— -| P o //
: - : B) *
- e

—k— S|)
w

4

2

ask 4 . k

Training Sequence Per Task

Figure 4.15: The average relative error for all observation tasks in the Mix dataset experiment

end of the task sequence, these ratios for the first subnetwork range between 40%
and 60%. Howeuver, it's important to note that all DPA models exhibit some de-
gree of forgetting for task 1. This suggests that the parameters most influential
for task 1 have likely undergone significant modifications. As a result, the model’s
information for task 1 has been altered. In contrast, DPA-L, shows the lowest spar-
sity among the models, despite its low ag. setting. This is primarily due to fewer
pruning iterations, which leads to the retention of more parameters. The remaining
models generally exhibit sparsity levels around 40%, indicating a balanced trade-off
between task-specific and shared parameters.

64 4. Experiments in Regression Continual learning Scenario

4.4, Discussions

e Learning Capabilities: The regularization methods used in DPA provide
a trade-off between learning new tasks and forgetting old ones. Under the
premise of allowing some level of forgetting, DPA enhances its learning ca-
pacity for new RVEs.

+ Balance between forgetting and saturation: Owing to the high forget-
ting for the previous information DPA model can not surpass the overall learn-
ing performance of CP&S, but is close to CP&S. However, due to the improve-
ment of the learning capacity in the new task. The new methods still balance
the learning capacity of new tasks and the anti-forgetting capacity.

¢ Regularization for Complex RVEs types: For a wide range of non-correlated
RVE modeling tasks, parameter-focused regularization methods like SI and
MAS appear more fitting with DPA. They aim to preserve important parame-
ters for individual RVE modeling. This approach helps the model adapt better
to new task challenges, keeping previously learned patterns intact.

» Forgetting Resistance: The performance for the DPA model doesn’t have
a direct relationship with the task-specific parameters. However, When the
model has fewer task-specific parameters, it tends to have a high resistance
to catastrophic forgetting, resulting in a lower average modeling error rate.

Conclusion

In this study, we have introduced the Dynamic Parameters Architectural (DPA)
method as an evolution from the CP&S approach. The primary innovation lies
in how DPA manages parameters within overlapping subnetworks. Unlike CP&sS,
which is limited to task-specific parameters, DPA updates shared parameters be-
tween subnetworks. By freeing up shared parameters among subnetworks, DPA
has been designed to provide a more adaptable and flexible mechanism compared
to CP&S.

Our findings directly address the concerns raised in Knowledge Gap 1. Specifi-
cally, the DPA method provides a solution to the issue of network saturation com-
monly found in architectural methods. By enabling the dynamic adaptation of pa-
rameters within overlapping subnetworks, DPA mitigates the saturation challenge,
demonstrating improved learning performance in our experiments when compared
to CP&S. In addressing Knowledge Gap 2, we have empirically demonstrated that
regularization-based continual learning algorithms update only parts of a network.
This helps in resolving the network saturation issue. The incorporation of L, norm
regularization within DPA, especially in classification continual learning scenarios,
effectively preserves information from past tasks while simultaneously adapting to
new ones. Moreover, our research also addresses Knowledge Gap 3. By lever-
aging DPA, we ensure that information from prior tasks is adeptly stored within the
structure of subnetworks. This not only enhances the reusability of parameters but
also crucially avoids the introduction of any additional parameters, negating the
need for extra storage space—an advancement than the CP&S.

Experiments for classification continual learning were conducted using the widely
recognized MNIST, Fashion-MNIST, and EMNIST datasets. For regression continual
learning scenarios, datasets focusing on the hyperelastic properties of compos-
ites, specifically those with perpendicular and parallel fibers, were employed. This
selection ensured a comprehensive evaluation of the DPA method across both clas-
sification and regression tasks.

Key findings and observations from our experiments include:

65

66

5. Conclusion

DPA demonstrates superior learning capabilities in continual learning scenar-
ios by providing balance to the acquisition of new tasks and the retention of
old tasks. Compared with CP&S, DPA has a higher learning performance in
classification continual learning.

The use of L, norm regularization in DPA has proven particularly effective
for classification continual learning, ensuring information preservation and
adaptability.

For data-driven modeling scenarios, methods like DPA-SI and DPA-MAS, which
focus on the importance of specific parameter distribution, are more suitable
for complex RVE types. These methods illustrate a close learning capacity
with the CP&S, but higher performance in the new task.

Models with fewer task-specific parameters exhibit better retention capabil-
ities. This emphasizes the value of shared parameters applicable across di-
verse tasks or RVEs.

In conclusion, the Dynamic Parameters Architectural (DPA) method effectively

resolves the issue of network saturation while striking a balance between preserving
prior knowledge and enhancing learning capacity. It outperforms CP&S in achieving
these objectives. Future research can further explore its potential and applicability
across a broader spectrum of application scenarios, ensuring the ongoing efficiency
and resilience of continual learning techniques in the context of ever more intricate
data and tasks.

[1]

[2]

[3]

[4]

[5]
(6]

[7]
(8]
[9]

[10]

[11]

[12]

[13]

Bibliography

Frank Rosenblatt. “The perceptron: a probabilistic model for information stor-
age and organization in the brain.” In: Psychological review 65.6 (1958),
p. 386.

Robert M French. “Catastrophic forgetting in connectionist networks”. In:
Trends in cognitive sciences 3.4 (1999), pp. 128-135.

Michael McCloskey and Neal J Cohen. “Catastrophic interference in connec-
tionist networks: The sequential learning problem”. In: Psychology of learning
and motivation. Vol. 24. Elsevier, 1989, pp. 109-165.

Matthias De Lange et al. “A continual learning survey: Defying forgetting in
classification tasks”. In: IEEE transactions on pattern analysis and machine
intelligence 44.7 (2021), pp. 3366—3385.

Mitchell Wortsman et al. “Supermasks in superposition”. In: Advances in Neu-
ral Information Processing Systems 33 (2020), pp. 15173-15184.

Ghada Sokar, Decebal Constantin Mocanu, and Mykola Pechenizkiy. “Spacenet:
Make free space for continual learning”. In: Neurocomputing 439 (2021),
pp. 1-11.

Aleksandr Dekhovich et al. “Neural network relief: a pruning algorithm based
on neural activity”. In: arXiv preprint arXiv:2109.10795 (2021).

Ian J Goodfellow et al. “An empirical investigation of catastrophic forgetting in
gradient-based neural networks”. In: arXiv preprint arXiv:1312.6211 (2013).

Steven A Siegelbaum and Eric R Kandel. “Learning-related synaptic plasticity:
LTP and LTD". In: Current opinion in neurobiology 1.1 (1991), pp. 113-120.

Judith E Dayhoff and James M DeLeo. “Artificial neural networks: opening the
black box”. In: Cancer: Interdisciplinary International Journal of the American
Cancer Society 91.S8 (2001), pp. 1615-1635.

Rupesh K Srivastava et al. “"Compete to compute”. In: Advances in neural
information processing systems 26 (2013).

Piyabute Fuangkhon and Thitipong Tanprasert. “An incremental learning al-
gorithm for supervised neural network with contour preserving classification”.
In: 2009 6th International Conference on Electrical Engineering/Electronics,
Computer, Telecommunications and Information Technology. Vol. 2. IEEE.
2009, pp. 740-743.

Fan Feng et al. “Challenges in task incremental learning for assistive robotics”.
In: IEEE Access 8 (2019), pp. 3434-3441.

67

68 Bibliography

[14] Guy Oren and Lior Wolf. “In defense of the learning without forgetting for
task incremental learning”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2021, pp. 2209-2218.

[15] Gido M Van de Ven and Andreas S Tolias. “Three scenarios for continual
learning”. In: arXiv preprint arXiv:1904.07734 (2019).

[16] Zhizhong Li and Derek Hoiem. “Learning without forgetting”. In: IEEE trans-
actions on pattern analysis and machine intelligence 40.12 (2017), pp. 2935-
2947.

[17] Sylvestre-Alvise Rebuffi et al. “icarl: Incremental classifier and representation
learning”. In: Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition. 2017, pp. 2001-2010.

[18] Gyuhak Kim et al. “"A Theoretical Study on Solving Continual Learning”. In:
arXiv preprint arXiv:2211.02633 (2022).

[19] Jathushan Rajasegaran et al. “itaml: An incremental task-agnostic meta-
learning approach”. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 2020, pp. 13588—-13597.

[20] Aleksandr Dekhovich et al. “Continual prune-and-select: class-incremental
learning with specialized subnetworks”. In: Applied Intelligence (2023), pp. 1-
16.

[21] Anthony Robins. “Catastrophic forgetting, rehearsal and pseudorehearsal”.
In: Connection Science 7.2 (1995), pp. 123-146.

[22] Andrei ARusu et al. “Progressive neural networks”. In: arXiv preprint arXiv:1606.04671
(2016).

[23] Arun Mallya and Svetlana Lazebnik. “Packnet: Adding multiple tasks to a sin-
gle network by iterative pruning”. In: Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition. 2018, pp. 7765-7773.

[24] Abhishek Aich. “Elastic weight consolidation (EWC): Nuts and bolts”. In: arXiv
preprint arXiv:2105.04093 (2021).

[25] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. “Variational inference: A
review for statisticians”. In: Journal of the American statistical Association
112.518 (2017), pp. 859-877.

[26] Rahaf Aljundi et al. "Memory aware synapses: Learning what (not) to forget”.
In: Proceedings of the European Conference on Computer Vision (ECCV).
2018, pp. 139-154.

[27] Friedemann Zenke, Ben Poole, and Surya Ganguli. “*Continual learning through
synaptic intelligence”. In: International Conference on Machine Learning.
PMLR. 2017, pp. 3987-3995.

[28] David Rolnick et al. “Experience replay for continual learning”. In: Advances
in Neural Information Processing Systems 32 (2019).

[29] Arslan Chaudhry et al. “Continual learning with tiny episodic memories”. In:
(2019).

Bibliography 69

[30] Yue Wu et al. “Large scale incremental learning”. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 2019, pp. 374-
382.

[31] Arthur Douillard et al. “Podnet: Pooled outputs distillation for small-tasks in-
cremental learning”. In: Computer Vision—ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23-28, 2020, Proceedings, Part XX 16. Springer.
2020, pp. 86—-102.

[32] Minsoo Kang, Jaeyoo Park, and Bohyung Han. “Class-incremental learning by
knowledge distillation with adaptive feature consolidation”. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. 2022,
pp. 16071-16080.

[33] Pietro Buzzega et al. “Dark experience for general continual learning: a strong,
simple baseline”. In: Advances in neural information processing systems 33
(2020), pp. 15920-15930.

[34] James Kirkpatrick et al. “Overcoming catastrophic forgetting in neural net-
works”. In: Proceedings of the national academy of sciences 114.13 (2017),
pp. 3521-3526.

[35] Sang-Woo Lee et al. “"Overcoming catastrophic forgetting by incremental mo-
ment matching”. In: Advances in neural information processing systems 30
(2017).

[36] Junting Zhang et al. “Class-incremental learning via deep model consolida-
tion”. In: Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision. 2020, pp. 1131-1140.

[37] Larry R Squire. *Memory and brain” In: (1987).

[38] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. “Expert gate:
Lifelong learning with a network of experts”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2017, pp. 3366—
3375.

[39] Siavash Golkar, Michael Kagan, and Kyunghyun Cho. “Continual learning via
neural pruning”. In: arXiv preprint arXiv:1903.04476 (2019).

[40] Song Han et al. “Learning both weights and connections for efficient neural
network”. In: Advances in neural information processing systems 28 (2015).

[41] Zhuang Liu et al. “Rethinking the value of network pruning”. In: arXiv preprint
arXiv:1810.05270 (2018).

[42] Yoshio Izui and Alex Pentland. “Analysis of neural networks with redundancy”.
In: Neural Computation 2.2 (1990), pp. 226—238.

[43] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In:
2009 IEEE conference on computer vision and pattern recognition. Ieee.
2009, pp. 248-255.

[44] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of features
from tiny images”. In: (2009).

70

Bibliography

[45]
[46]
[47]

[48]

[49]

[50]
[51]
[52]
[53]

[54]

[55]
[56]
[57]

[58]

[59]

[60]

[61]

Zifeng Wang et al. “Learn-prune-share for lifelong learning”. In: 2020 IEEE
International Conference on Data Mining (ICDM). 1EEE. 2020, pp. 641-650.

Jaehong Yoon et al. “Lifelong learning with dynamically expandable net-
works”. In: arXiv preprint arXiv:1708.01547 (2017).

Yang Yang, Bo Chen, and Hongwei Liu. “Bayesian compression for dynami-
cally expandable networks”. In: Pattern Recognition 122 (2022), p. 108260.

Fu-Yun Wang et al. “Foster: Feature boosting and compression for class-
incremental learning”. In: Computer Vision—ECCV 2022: 17th European Con-
ference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XXV. Springer.
2022, pp. 398—414.

David Lopez-Paz and Marc’Aurelio Ranzato. “Gradient episodic memory for
continual learning”. In: Advances in neural information processing systems
30 (2017).

Hao Wang and Dit-Yan Yeung. “A survey on Bayesian deep learning”. In: ACM
Computing Surveys (CSUR) 53.5 (2020), pp. 1-37.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and ma-
chine learning. Vol. 4. 4. Springer, 2006.

Max Kochurov et al. “Bayesian incremental learning for deep neural net-
works”. In: arXiv preprint arXiv:1802.07329 (2018).

Ananth Ranganathan. “"Assumed density filtering”. In: Georgia Inst. of Tech-
nology, Atlanta, GA (2004).

Zhenming Shun and Peter McCullagh. “Laplace approximation of high dimen-
sional integrals”. In: Journal of the Royal Statistical Society: Series B (Method-
ological) 57.4 (1995), pp. 749-760.

Agustinus Kristiadi. Fisher Information Matrix. ht tps://agustinus.kristiz

de/techblog/2018/03/11/fisher-information/.

Cuong V Nguyen et al. “Variational continual learning”. In: arXiv preprint
arXiv:1710.10628 (2017).

Malay Ghosh and Ruitao Liu. *Moment matching priors”. In: Sankhya A 73.2
(2011), pp. 185-201.

Yen-Chang Hsu et al. “"Re-evaluating continual learning scenarios: A catego-
rization and case for strong baselines”. In: arXiv preprint arXiv:1810.12488
(2018).

Yann LeCun. “The MNIST database of handwritten digits”. In: http://yann.
lecun. com/exdb/mnist/ (1998).

Han Xiao, Kashif Rasul, and Roland Vollgraf. “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms”. In: arXiv preprint
arXiv:1708.07747 (2017).

Gregory Cohen et al. "EMNIST: Extending MNIST to handwritten letters”. In:
2017 international joint conference on neural networks (IJCNN). IEEE. 2017,
pp. 2921-2926.

https://agustinus.kristia.de/techblog/2018/03/11/fisher-information/
https://agustinus.kristia.de/techblog/2018/03/11/fisher-information/

Bibliography 71

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Kaiming He et al. “Deep residual learning for image recognition”. In: Pro-

ceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 770-778.

Jonathan Schwarz et al. “Progress & compress: A scalable framework for
continual learning”. In: International conference on machine learning. PMLR.
2018, pp. 4528-4537.

Xilai Li et al. “Learn to grow: A continual structure learning framework for

overcoming catastrophic forgetting”. In: International Conference on Ma-

chine Learning. PMLR. 2019, pp. 3925-3934.
Pin Zhang, Zhen-Yu Yin, and Yin-Fu Jin. “State-of-the-art review of machine

learning applications in constitutive modeling of soils”. In: Archives of Com-

putational Methods in Engineering (2021), pp. 1-26.
Miguel A Bessa et al. “A framework for data-driven analysis of materials under

uncertainty: Countering the curse of dimensionality”. In: Computer Methods

in Applied Mechanics and Engineering 320 (2017), pp. 633-667.

G Abaqus. “Abaqus 6.11". In: Dassault Systemes Simulia Corporation, Provi-

dence, RI, USA (2011), p. 3.

Michael LeBlanc and Robert Tibshirani. “Combining estimates in regression
and classification”. In: Journal of the American Statistical Association 91.436
(1996), pp. 1641-1650.

Charles Blundell et al. "Weight uncertainty in neural network”. In: Interna-

tional conference on machine learning. PMLR. 2015, pp. 1613-1622.

Thang Bui et al. "Deep Gaussian processes for regression using approximate
expectation propagation”. In: International conference on machine learning.
PMLR. 2016, pp. 1472—-1481.

Jacob Goldberger and Sam Roweis. “Hierarchical clustering of a mixture model”.

In: Advances in neural information processing systems 17 (2004).

Kai Zhang and James T Kwok. “Simplifying mixture models through func-
tion approximation”. In: IEEE Transactions on Neural Networks 21.4 (2010),
pp. 644-658.

Surajit Ray and Bruce G Lindsay. “The topography of multivariate normal
mixtures”. In: The Annals of Statistics 33.5 (2005), pp. 2042—-2065.

David JC MacKay. “A practical Bayesian framework for backpropagation net-
works”. In: Neural Computation 4.3 (1992). One Rogers Street, Cambridge,
MA 02142-1209, USA, pp. 448—472.

Ill

Appendix to Chapter 2

A.1l. Progressive Neural Networks (progressive net-

work)

The accomplishment of the progressive network[22] is very concise. After the
model learned a task, the parameters of the model on this task are fixed and stored
as the previous network. Whenever a new task reaches the model, a new column
(a new network) is generated to learn the new data. To make use of the previous
information in the updating of the parameters on new tasks, data from the new
task also be input into all previous networks, and input the output of each layer
of the previous network together with the output of each layer of the current net-
work into the next layer to train the current network. Specifically, a model that
generates task T is expressed as shown in Eq.A.1. The hidden Iayer h() of the
column T(on task T) and layer i gets output from the weight Wt ") times hidden

layer h{", on task T and the hidden layers from all previous networks ¥ U,

The transverse connection weight between column j to column T (Ut’)) controls
the signal strength of the old information. In this expression, f is the activation
function, which is f(x) = max(0, x). The workflow of the progressive network is as
follows (Fig.A.1):

P = (Wt(T)h(T)l + Z u¢ ’”hﬁ)l) (A1)

In general, the progressive network is to extract the information of the previous
neural network and merges it with the current input information, during the new
network training. The advantage of the progressive network is that it fixes the
parameters from old tasks, preventing the catastrophic forgetting brought by the
change of parameters update. Besides, knowledge from the previous tasks also
transfers to the learning in new tasks. In the progressive network, knowledge

73

74 A. Appendix to Chapter 2

outputy |

output; ‘ outputy

Figure A.1: The parameter update in Progressive network[22].

)@,)@, 0000000000
o O OeO |0 000 0e000

©) o O Oe|| 0000 | 0000
@) O/ e0 O |00 O] 00O @)
o O L) 0000|| #0000

(a) Initial filter for Task | (b) Final filter for Task | (c) Initial filter for Task Il d) Final filter for Task Il (e) Initial filter for Task Il

60% pruning + re-training training 33% pruning + re-training training

Figure A.2: Solving catastrophic forgetting through Network pruning in PackNet[23]

from old data is not instantaneous, it can be integrated at each level of the feature
hierarchy. Furthermore, adding new capacity alongside the progressive network
gives these models the flexibility to reuse old computations and learn new tasks.
However, the knowledge transfer in the progressive network will not always have
a positive effect on the learning process especially if the old tasks are not relevant
to the new tasks yet. Meanwhile, the requirement of saving the total model also
increases the pressure on the device’s memory.

A.2. PackNet

Each training session of a certain task in PackNet can be divided into two parts:
pre-training and re-training[23]. Pre-training is aim to find which parameters with
the highest magnitude are suitable to be saved as the task-specified parameters,
other unimportant parameters are pruned by constituting binary masks. Then, the
remaining parameters are retained on the given task until convergence. To limit the
size of parameters used for every task, a hyperparameter 7 is used to control the
pre-training mask fraction. The pruning and training session is described in Fig.A.2

Fig.A.3 illustrates the performance of PackNet compared with Learning without
Forgetting (LwF)[16] in training in four tasks. The accuracy in PackNet doesn't
reduce with the increase in task number. During the training, each certain task-

A.3. Laplace approximation 75

Change in Error with Task Addition - LwF Change in Error with Task Addition - Pruning
40 39.02 40
arae [
35 34.16 35
31.36 31.20 30.87 30.87
X 12842 x*
= et
Qs 24.25 23.84 Qs 24.57 24.57
i})
T2 T
a -3 18.36 18.36
° 17.35 ° e pre-prune error |
15{ —— ImageNet 151 —— ImageNet
—— CUBS —— CUBS
10{ —— Stanford Cars 101 —— Stanford Cars
Flowers Flowers
5 s
ImageNet +CUBS +Stanford Cars +Flowers ImageNet +CUBS +Stanford Cars +Flowers
Dataset Dataset

Figure A.3: Performance of PackNet in comparing with Learning without Forgetting[16] in 4 tasks con-
tinual learning[23].

specified parameter is fixed, while catastrophic occurs when the parameters shift
between old and new tasks, so PackNet will remember every task precisely because
of the consolidation of parameters[23]. Is that mean catastrophic forgetting has
been solved by PackNet? There is a vital disadvantage of PackNet that the free
parameters in a neural network are limited. Once all parameters are assigned to
tasks, the model cannot create more parameters for new data[4]. Therefore, the
maximum task number learned by PackNet is smaller than other methods (e.g. in
progressive network[22], the model can generate infinite models for tasks), unless
the size of the model in PackNet is large enough. Nevertheless, increasing the size
of the neural network will challenge the device’s memory again, which is the same
problem faced by the progressive network. Consequently, the way parameters are
assigned to each task needs to be redesigned to further reduce the size of the saved
model.

A.3. Laplace approximation

Set f(0) = log P(6,.r—1|D1.7—1), the first step of Laplace approximation is to calcu-
late the second order Taylor extension of the f(0) at 6 = 0;.7_4:

ar(e
@ =0+ L2 (A2)
af (o 1 9%f(6
f(6) =f(O1.7-1) + j;fg) Oy ts aj;(z) Orrs (6 = 61.7-1)* + R(61:7-1)

(A.3)
Since the model converges on the previous task, 6,.;_; is the MAP of the param-
eter of all old tasks, so P(6|D;.7—,) reaches its maximum point when 6 = 6,.;_,.

So, % . = 0 as well as higher-order terms of the Taylor expansion R(6;.7_1)
1:T—1

can be neglected. The Taylor expansion becomes:

76 A. Appendix to Chapter 2

1 9%f(6
fO)=fOur-1)+ 5~ aj;(z) 0171

Hessian

Transfer f(6) back to log P(8|Dy.7—1):

(9 - 91:T—1)2 (A4)

1 02logP(0|Dy.7-1)
log P(8|Dy.7—1) = log P(81.7—1|D1:7-1) + 7 2 2
06 61:7-1

Hessian

(9 - 91:T—1)2

(A.5)
Eq.A.5 is similar to the expression of Gaussian distribution if the secondary

- . . \0%logP(0|Dy.7— .
derivative terms (Hessian martlx)% o can be written as
1:T—-1

(_ 0%10gP(8|Dy:7—1)
86°

-1
) and take out log
91:T—1

1 (_ 62 log P(9|D1:T_1)

P(0|Dy:7—1) = P(01.7-1|D1:7—1) - exp[E . 96°

-1
) - em_l)Z]

(A.6)
The Eg.A.6 is the Laplace approximation of the intractable distribution P(8|D;.7—1).-
With the approximation, since P(6;.7_1|D1.7—1) is @ constant, the posterior pdf
P(0|Dy.7—1) is a Gaussian distribution:

91:T—1

0%1og P(0|Dy.r—1)
26°

-1
P(0|Dy:r-1) ~ N<61:T—1' (- 91:T—1)) (A.7)

A.4. Variational continual learning (VCL)

The main idea of variational inference is to use ¢(8|¢) to fit the intractable pdf
P(68]|D) [25]. Then we set the exponential family distribution with the parameter

o

q(01¢) ~ N(¢) (A8)

To approximate the intractable pdf P(6|D) (in Eq.2.5), we need to get the dis-
tributions q and P as “close” to each other as possible. To solve this problem, we
come back to Baye’s rule in task T:

P(0|Dy.r) x P(6)P(D1.7-116) (A.9)

With the approximation, the relationship between P(6|D,.;) and q(0|(¢r) is the
projection of the right term on the parameters space.

P(8ID17) ~ q(61¢r) =proj(P(8ID1r_1)P(Drl6))

(A.10)
=proj(a(8l¢r-)P(Dr16))

A.5. Incremental Moment Matching (IMM) 77

To guarantee the manually introduced exponential family distribution q(8|¢r)
can precisely approximate the So, the optimization target is to minimize the KL
divergence between these distributions:

q@|¢r) = argminKL[q(Blcb)’

1
Z_CI(9|¢T—1)P(DT|9)] (A.11)
T

In this equation, Z; is the intractable normalizing constant that will not influence
the final result in MAP of 8. For the first approximate distribution q(0|¢,) is defined
to be the prior of the neural network in the initial period P(6). If we extend the
KL-divergence term, the express is as follows:

1
KL[q(embT) Z—q<9|¢r_1)P(DT|9)]

T (A.12)
=q(0|¢)-lnm— 0|¢7) - InP(D7|6) +InZ
PEer) G @lgry ~ TOT T T

Now we get the expression for the distribution q(6|¢+) to approximate P(6|D;.1).
The total loss function of the VCL is obtained:

Lyc,(Dr) = L(Dr) —KL[‘I(9|¢T)

Totalloss lossonTaskT

q(e|¢T_1)] A13)

regularizationterm

How to calculate the KL divergence in the regularization term in Eq.A.13 is de-
scribed in the paper. Researchers constructed a small episodic memory by combin-
ing VI with the coreset data[69, 70]. The coreset is like an episodic memory in the
replay method to that retains key information from previous tasks.

Input: Prior p(0).

Output: Variational and predictive distributions at each step {q:(8), p(y*|x*, D1:¢) }—1.
Initialize the coreset and variational approximation: Co < @, Go < p-
fort=1...Tdo

Observe the next dataset D;.
C' < update the coreset using C;—1 and D;.
Update the variational distribution for non-coreset data points:

G:(9) + argmingeo KL(q(8) || G:-1(0) p(D: U Ci—1 \ C4]6)). ()]
Compute the final variational distribution (only used for prediction, and not propagation):
4:(0) + argmingeo KL(q(8) || 73:(8)p(C:|0)). 3
Perform prediction at test input *: p(y*|z*, D1:t) = [¢:(0)p(y*|6, x*)d6.

end for

Figure A.4: Pseudo code of the implementation of VCL [56]

A.5. Incremental Moment Matching (IMM)

Incremental Moment Matching (IMM)[35] was published to solve the KL di-
vergence problem between the current parameters distribution and previous pa-

78 A. Appendix to Chapter 2

rameters distribution by using moment matching in continual learning. The mo-
ment matching [57] is usually used to estimate population parameters and deals
with distribution approximation problems. When two distributions (q(8|ur—1, 07-1),
q(@|ur, o7)) are both Gaussian distributions, the expression of KL divergence can
be simplified as:

KL [Q(9|#T—1: or-1)||a@lur, UT)]

1
ZE[(ﬂT—l — ur)" - op Y (r—q — pr) —logdet(ortor_y) + Tr(oror_1) — n]

(A.14)
The first moment of the Gaussian distribution is the average u, and the sec-
ond moment is the variance o. If the first moment of both distributions is equal
(ur=pr_4), the KL distance reaches its minimum. In this case, we can infer the first
and second moment, which are distribution parameters of q(6|uy). This method is
Moment Matching[57]. Different from the previous Bayesian-based methods, the
update process in IMM is to calculate the distribution of the parameters g, sep-
arately one every single task t and use moment matching to estimate the final
distribution q,.r that can remember information in all T tasks based on every previ-
ous single distribution g;. The Incremental Moment Matching is supported by two
proposed moment matching algorithms in continual learning scenarios, Mean-based
Incremental Moment Matching (mean-IMM) and Model-based Incremental Moment
Matching (mode-IMM)[35].

NN parameters distribution on Task T-1

NN parameters distribution on Task T

Task T-1

Figure A.5: Schematic diagram for Incremental Moment Matching [35]

In Mean-IMM, the first moment pj.; of the distribution g;.; is computed by
taking averages of the distributions of the parameters on each task by adding a
normalization coefficient with Zf a; = 1[71, 72]. By minimizing the KL divergence,

A.5. Incremental Moment Matching (IMM) 79

the parameters of the final distribution g,.; can be obtained by moment match-
ing. In the inference of the parameters of final distribution, only the first moment
ui.r, Which is also the mean of g,.; is necessary, so the second moment o;. is
neglectable. the mean of the final distribution can be computed by the weighted
average of every single distribution on each task i, which is shown in Eq.A.15:

T
Wi, 01,7 =argmin Z “tKL(Qtl |Q1:T)

B =) @ py (A.15)

Ofir =) @ (00 + (e = i) - e = i)
t

Mean-IMM avoids complex calculations to transfer the information from each
task by using a weighted average of each distribution to solve the parameters of
the final distribution. However, the average value of the distributions might not
locate in the area in the parameters space that satisfies all low-loss areas for every
task. To further limit the update of parameters and force the parameters, mode-
IMM is proposed by considering all distributions are mixed with each other to form
a new distribution. Since the priori of the distribution is Gaussian distribution, the
expression of the final distribution is an MoG (Mixture of Gaussian). The parameters

in the T cluster MoG lie on the T—1 dimensional hypersurface {9|9 = (3 atogl)_l-

(Zf a7t -), with Zf a; = 1}[73]. By using Laplace approximation[74], the
parameters of the final distribution are obtained:

T T

T
1
logqq.r zZatlogqt +C' =26T . (Zatat_l)‘e +(Z(xta{1) 0+C
t t t

T
0= #;:T :GI:T ' (Z ato-t_l : Mt)
t

T
i =Y awi)”
t

(A.16)

The second moment o; is the second derivation of the parameters in the neural

network, which introduce a Hessian matrix into the training process. Owing to the

computational difficulty of the Hessian matrix, the Fisher information matrix can be

applied to approximate the Hessian matrix as the implementation in EWC[24]. In
this case, Eq.A.16 can be written as the following version:

80

A. Appendix to Chapter 2

T
0 = pi.r =017 - (Z acFit '#t)
T
(A.17)

T
-1
otr =) @)
t

Appendix to Chapter 4

B.1. Task order for Classification problems
The task order of the MNIST dataset is:

* taskl: [8, 6]
o task2: [9, 0]
o task3: [2, 5]
o task4: [7, 1]
o task5: [4, 3]
Fashion-MNIST Dataset
The task order of the Fashion-MNIST dataset is:
» taskl: [8, 6]
« task2: [9, 0]
e task3: [2, 5]
o task4: [7, 1]
« task5: [4, 3]
EMNIST Dataset
The task order of the EMNIST dataset is:
- taskl: [39, 44, 12, 43, 17]
o task2: [23, 32, 0, 31, 22]

81

82

B. Appendix to Chapter 4

task3:
task4:
task5:
taské6:
task7:
taskS:
task9:

[16, 11, 1, 34, 42]
[28, 40, 30, 25, 36]
[7, 37, 4, 38, 33]
[24, 6, 14, 18, 35]
[2, 29, 15, 9, 13]
[27, 10, 21, 19, 8]
[26, 5, 41, 20, 3]

B.1. Task order for Classification problems 83

84 B. Appendix to Chapter 4

B.2. Results for the MNIST dataset

Training on MNIST dataset

0.8 Ak —*— CP&S
—*— DPA-EWC

2 0.6 Kh—h—h—&
= = —*— DPA-MAS
20.4 *— N —&— DPA-L2
wi :ZE:T: *—*—*’ ’ *—k —*— DPA-SI

0.2

*—hk—% %
Task 1 Task 2 Task 3 Task 4 Task 5

Training Sequence

(a) Recognition error for all observation tasks sequence
Last Task Error

0.5
0.24 0.24 0.16 0.2 0.15
< I N s S s
§ 0.0
Iy
-0.5
CP&S DPA-EWC DPA-MAS DPA-L2 DPA-SI
Methods

(b) Recognition error after learning the final task

40
—*— CP&S
930 —%— DPA-EWC
< —*— EWC
© 20
=
*10
0 5 *
Task 1 Task 2 Task 3 Task 4 Task 5
Training Sequence
40
—*— CP&S
© 30 —*— DPA-MAS
(=)
—%—
520 MAS
=
“10
0 *4: *
Task 1 Task 2 Task 3 Task 4 Task 5
Training Sequence
40
—*— CP&S
.30 —*— DPA-L2
> > 12
520
=
0
0 —h—h—k *Zt *

Task 1 Task 2 Task 3 Task 4 Task 5
Training Sequence

30 - CP&S
—%— DPASI
2 .//\ o
D R —— — —

Task 1 Task 2 Task 3 Task 4 Task 5
Training Sequence

Error %
-
o o

o

(c) Log recognition error for DPA methods and regularization methods

Figure B.1: The recognition error in the MNIST data experiment

B.2. Results for the MNIST dataset 85

86 B. Appendix to Chapter 4

B.3. Sparsity analysis for the experiment in MNIST
dataset

Training on MNIST dataset

10D0DODODO0

100 7
801

60 -

204 3438333534
1
i 2021182020 1516141415 12
20 - 1112101010
100 | Bl Eams |

801

Subnet 1

o

- 60 4

8 4643464546

S a0 2577242325

g 22
" 1816171617 1311121112
100
go{ HEE CP&S

m | TEE DPA-EWC

2 60

< B DPA-MAS
wl 303131,

: DPALs 2930 22122121
201

100

801

60 1

404

Subnet 4

i 1417151617
20 89889

100 [mEmmE |

801

60 1

404

Subnet 5

18161918
204 171816

Task-specific parameters ratio of each subnetwork %

Task 1 Task 2 Task 3 Task 4 Task 5
Training sequence

(a) Task-specific parameters ratio for all observation tasks sequence

X
% 151 =sfe== Union subnetwork ratio OPsS
S I Subnetwork ratio -*- DPA-EWC
© =sh= DPA-MAS
g 101 k= DPA-L2
2 =k DPA-SI
]
2 59
c
o
@) |

Task 1 Task 2 Task 3 Task 4 Task 5

Training Sequence Per Task

(b) Sparsity analysis for each subnetwork

Figure B.2: Sparsity analysis for the MNIST data experiment

B.3. Sparsity analysis for the experiment in MNIST dataset 87

88 B. Appendix to Chapter 4

B.4. Results for the experiments in Fashion-MNIST

dataset
Training on Fashion-MNIST dataset
¥ —%— CP&S
3 —%— DPA-EWC
iz —*— DPA-MAS
S s —% DPAL2
wig ~% DPA-SI
0 F—h—hk—k —e— —W
Task 1 Task 2 Task 3 Task 4 Task 5

Training Sequence

(a) Recognition error for all observation tasks sequence
Last Task Error

358 3.63 3.7

Error %
w
w

w
o

CP&S DPA-EWC DPA-MAS
Methods

(b) Recognition error after learning the final task

20 —%— CP&S
o —*— DPA-EWC
X
= —%— EWC
£20
w
ol ek o s Fam—— = 1
Task 1 Task 2 Task 3 Task 4 Task 5
Training Sequence
40 —*— CP&S
< —*— DPA-MAS
> —k— MAS
220
w
ol *Fwdek a4 —k—k ! '
Task 1 Task 2 Task 3 Task 4 Task 5
Training Sequence
40 —*— CP&S
—*— DPA-L2
N
5 —*— L2
=20
w
o =1 1
0 *—k kK —k—%
Task 1 Task 2 Task 3 Task 4 Task 5
Training Sequence
20 —*— CP&S
© —*— DPA-SI
-:L —*— Sl
220
w
ol *F——F— 4 s *—k—k % %
Task 1 Task 2 Task 3 Task 4 Task 5

Training Sequence

(c) Log recognition error for DPA methods and regularization methods

B.4. Results for the experiments in Fashion-MNIST dataset 89

Average forgetting after final task

0.1292
x0.10
o
£
B
$0.05
8

0.00 0.0 -0.0002

CP&S DPA-EWC DPA-MAS DPA-L2 DPA-SI
Methods
(a) Average forgetting rate after learning the final task
0.10 Training on Fashion-MNIST dataset
—— CP&S

R 0.05 —~— DPA-EWC
2 / Z | —*— DPA-MAS
£
B 0.00 \ h—h—k—k —4— DPA-L2
o \ RN ~%— DPASI
5 -0.05 \
w \\

-0.10

Task 1 Task 2 Task 3 Task 4 Task 5
Training Sequence Per Task

(b) Average forgetting rate for all observation tasks sequence

Figure B.4: The forgetting rate in the Fashion-MNIST data experiment

90 B. Appendix to Chapter 4

Training on Fashion-MNIST dataset

10D0DODODOO
100
801
—
D 60
fo
S 404
,_% 40 3129263023
17
N - _14111414 121051010 109798
1004 | = | i
80
o~
2 60 5656585756
5
5 401 2603242627
3 324
204 - 1716161717 1414131415
100 |~ Dl |
g0 HEM CP&S
m
o, T DPA-EWC
= 60
< I DPA-MAS
40 302931
2 "] mm DpPA-L2 12929 e »
4 121679213 14
o DPAS e ol will |
100

801

60

404

Subnet 4

ol 1616201818 1314171515

801

60

404

Subnet 5

201 135 91010

Task-specific parameters ratio of each subnetwork %

Task 1 Task 2 Task 3 Task 4 Task 5
Training sequence

(a) Task-specific parameters ratio for all observation tasks sequence

o
i 12.51 =she= Union subnetwork ratio S
S 10.0 Bl Subnetwork ratio A-EWC
[CI —fe- DPA-MAS
S 7.5 - DPA-L2
= DPA-SI
£ 5.0/ *
(9]
E 2.51
o
@) |

Task 1 Task 2 Task 3 Task 4 Task 5

Training Sequence Per Task

(b) Sparcity analysis for each subnetwork

Figure B.5: Sparsity analysis for the Fashion-MNIST data experiment

B.4. Results for the experiments in Fashion-MNIST dataset 91

Average error for each task sequence

1.50
< 1.25
= —*— CP&S
©1.00
= —*— DPA-EWC
0.75/ —* DPA-MAS
—*— DPA-L2
0.50|] —*— DPA-SI
Task 1 Task 2 Task 3 Task 4 Task 5

Training Sequence Per Task

Figure B.6: The average recognition error for all observation tasks in the Fashion-MNIST data experiment

92

B. Appendix to Chapter 4

B.5. Results for the experiments in EMNIST dataset 93

B.5. Results for the experiments in EMNIST dataset

Training on EMNIST dataset

;; CP&S
—*— DPA-EWC
—+— DPA-MAS
w § —*— DPA-L2
—*+— DPA-SI
, ot et o

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7
Training Sequence

(a) Recognition error for all observation tasks sequence

Last Task Error

Error %
w

Task 8 Task 9

4.34 4.36

431

CP&S

DPA-EWC DPA-MAS
Methods
(b) Recognition error after learning the final task
—*— CP&S

020 —*— DPA-EWC

& —*— EWC

g

w 10 ﬁ

ol *
falaialatalalofit s 13 =t 1 Sialalalele R oo A SC: holad
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9
Training Sequence
—*— CP&S

40 %~ DPA-MAS
x
& —%— MAS
<
uLJ 20 fk*k** f&k *)j

Py X !
0 holalolalaialalalaloletnlalatalola SRt tosotatot SR elalololala SR 1t Lo g Joedokok ok Rl X
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

Task 8 Task 9
Training Sequence

—*%— CP&S
20 —%— DPA-L2
= —— L2
=
g
’ i ﬁ £ z
FedcAeAdA A dededcdeieichk dedeiiekiok | Yok ST Sedck *
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9
Training Sequence
40 —*— CP&S
© —*— DPA-SI
% 30 —— Sl
€20 e ff
w
i o™ ,z‘***** o | | |
0 Rolalalalalalalaled Lo Ll Lt t Sttt t ror SR Salalalale] Yokchk Yokokk Yook sk %
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Ta

sk 7 Task 8 Task 9
Training Sequence

(c) Log recognition error for DPA methods and regularization methods

Figure B.7: The recognition error in the EMNIST dataset experiment

94 B. Appendix to Chapter 4

Training on EMNIST dataset

100 7

50 4

100 1
501

100 4-_____—

50+

100 B e
50 4
100 BN | e
504
100 T
so{ I CP&S
EmE DPA-EWC
1007w DPA-MAS
5o/ HEE DPA-L2
@ DPA-SI

100

501

100

501

Subnet 9 Subnet 8 Subnet 7 Subnet 6 Subnet 5 Subnet 4 Subnet 3 Subnet 2 Subnet 1

Task-specific parameters ratio of each subnetwork %

Task1 Task2 Task3 Task4 Task5 Task6 Task7 Task8 Task9
Training sequence

(a) Task-specific parameters ratio for all observation tasks sequence

o q

‘ZD 30 —*— Union subnetwork ratio &S
S B Subnetwork ratio —&k— DPA-EWC
C50- —k— DPA-MAS
c —&— DPA-L2
o

5 —k— DPA-SI
@ 104

c

c

o

@)

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9
Training Sequence Per Task

(b) Sparsity analysis for each subnetwork

Figure B.8: Sparsity analysis for the EMNIST data experiment

Appendix to Chapter 5

C.1. Results for the experiments in Parallel Compos-
ite dataset

C.2. Results for the experiments in Perpendicular
Composite dataset

C.3. Results for the experiments in Mix dataset

95

96

C. Appendix to Chapter 5

Training on Parallel dataset

100 100 100 100 100

801

60 1

404

Subnet 1

201

801

60 1

Subnet 2

401

201

100

801

60 1

401

Subnet 3

201

Task-specific parameters ratio of each subnetwork %

Task 2
Training sequence

Task 1

(a) Task-specific parameters ratio for all observation tasks sequence

CP&S
DPA-EWC
DPA-MAS
DPA-L2

DPA-SI

Task 3

[*)]
o

=fe=_Union subnetwork ratio
B Subnetwork ratio

N
o

N
o

Connection ratio %

o

Task 1

Task 2
Training Sequence Per Task

(b) Sparcity analysis for each subnetwork

Figure C.1: Sparcity analysis for the Parallel dataset experiment

wfe= CP&S
=afe= DPA-EWC
=sfe=_ DPA-MAS

Task 3

C.3. Results for the experiments in Mix dataset 97

Training on Perpendicular dataset

100 100 100 100 100

100
Bl CP&S

c,\c> 80 4 I DPA-EWC
v Emm DPA-MAS
5 ;, 60 BN DPA-L2
I m DPA-SI
4&‘) 3 404
C
Ko 201
=}
(%]
_C 100
O
©
() 80
Y
O 60
o 3
=
E 3 40 4
%]
—
8 204
)
E 100
©
.
8 80
Qoo
Y 7
S g
(]
o @ %] 32
) 27 g6 29 27
A‘,‘) 201
(©
=

Task 1 Task 2 Task 3
Training sequence

(a) Task-specific parameters ratio for all observation tasks sequence

801 =e=_Union subnetwork ratio =fe= CP&S
B Subnetwork ratio =fe=DPA-EWC
60 1 el g DPAMAS
PA-L2

PA-SI

N
o

Connection ratio %
FaN
o

o

Task 1 Task 2 Task 3
Training Sequence Per Task

(b) Sparcity analysis for each subnetwork

Figure C.2: Sparcity analysis for the perpendicular dataset experiment

98 C. Appendix to Chapter 5

Training on Mix dataset
100

80
601
40
204
100

801

Subnet 1

60 -
404

- -H..u..u.

Subnet 2

801

m

D 60

c

Q 4041

= b
100 W CP&S an’ i

« 8o HEE DPA-EWC

© e0{ HEE DPA-MAS

f

S 40| mmE DPA-L2

» -

204

n
100

80 4

60
404

Subnet 5

201
100

E |
JL

801
60 1
40 -

Subnet 6

201

Task-specific parameters ratio of each subnetwork %

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6
Training sequence

(a) Task-specific parameters ratio for all observation tasks sequence

[e]
o

—#— Union subnetwork ratio —+— CP&S
| mmm Subnetwork ratio

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6
Training Sequence Per Task

[2)]
o

N
o

Connection ratio %
N
o

(b) Sparcity analysis for each subnetwork

Figure C.3: Sparcity analysis for the Mix dataset experiment

	Acknowledgements
	Summary
	Introduction
	Literature review
	Catastrophic forgetting
	Continual learning approaches
	Rehearsal methods
	Architectural methods and network pruning
	Dynamic parameters architectural methods

	Regularization methods
	Bayesian based methods
	Parameter-driven methods

	Knowledge Gaps
	Implementations for Dynamic Parameters Architectural methods
	Implementation of Continual Prune-and-Select
	Implementation for Dynamic Parameters Architectural methods (DPA)
	Employing regularization loss in the overlap subnetwork

	Experiments in Classification Continual learning Scenario
	Benchmarks
	Metrics
	Task-specific parameters ratio
	Multi-Head Model classification continual learning scenario

	Experiments
	MNIST dataset
	Fashion-MNIST dataset
	EMNIST dataset
	CIFAR-100 dataset
	Discussions

	Experiments in Regression Continual learning Scenario
	Introduction
	Benchmarks
	Relative Error for the Regression Problem

	Experiments
	Hyperparameter analysis
	Parallel Composite dataset
	Perpendicular Composite dataset
	Mix dataset

	Discussions

	Conclusion
	Appendix to Chapter 2
	Progressive Neural Networks (progressive network)
	PackNet
	Laplace approximation
	Variational continual learning (VCL)
	Incremental Moment Matching (IMM)

	Appendix to Chapter 4
	Task order for Classification problems
	Results for the MNIST dataset
	Sparsity analysis for the experiment in MNIST dataset
	Results for the experiments in Fashion-MNIST dataset
	Results for the experiments in EMNIST dataset

	Appendix to Chapter 5
	Results for the experiments in Parallel Composite dataset
	Results for the experiments in Perpendicular Composite dataset
	Results for the experiments in Mix dataset

