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Abstract

Human Activity Recognition (HAR) is a key enabler of various applica-
tions, including smart homes, health care, Internet of Things (IoT), and
virtual reality games. A large number of HAR systems are based on wear-
able sensors and computer vision. However, a challenge that has emerged in
the last few years entails recognizing human activities using WiFi Channel
State Information (CSI). Exiting state-of-the-art solutions have considered
only amplitudes of the CSI to recognize human activities, we explore both
amplitudes and phase differences to recognize activities. We utilize Con-
tinuous Wavelet Transform (CWT) to generate scalogram images from the
CSI measurements. Then, we use these images as input to the pertained
Convolution Neural Network (CNN), namely AlexNet to extract features
that are resilient to environment changes and classify the activities. The
experimental results show that the proposed method achieves an accuracy
of 98.18% ± 1.26% using amplitude and phase difference. We also studied
the impact of different environments and people, and the results show its
robustness.
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Chapter 1

Introduction

Human activity recognition (HAR) has received great attention in recent
years and plays an important role in the areas of health care, smart homes,
Internet of Things (IoT), security, and virtual reality games [26]. In the
health care application, for instance, patients with diabetes, obesity, or heart
disease are required to follow a particular exercise routine for their treatment
[18, 51]. HAR is considered as a key component of many product consumers.
For instance, the exergames on Microsoft Kinect and Nintendo Wii tracks
the gestures and full body movements to allow users to interact with the
video games and change the game experience [6].

Traditional HAR approaches are based on wearable sensors and computer
vision. There have been significant improvements in sensors and mobile
devices in terms of price, computational power, and size, leading many re-
searchers to work on sensor-based activity recognition. Sensors used in HAR
can be categorized into four groups: motion sensors, environmental sensors,
physiological sensors, and position sensors. Accelerometers and gyroscopes
are the most common sensors that are used to recognize daily activities.
Several papers have been able to recognize daily activities (e.g., walking,
running, sitting, lying, etc.), and have reported high accuracies of 95% [23],
97.51% [16], and 97.9% [22] using accelerometers. Others have combined
an acceloermeter and a gyroscope to recognize hand gestures [63, 13]. A
comprehensive survey of the sensors based on activity recognition can be
found in [26, 40]. In spite of the small size and low price sensors, users are
required to wear these sensors at all times, which can be inconvenient.

Another promising area used to understand human activities is computer
vision. Vision-based activity recognition is the basis of numerous applic-
ations, including video surveillance systems, Human-Computer Interaction
(HCI), robot learning, and healthcare [69]. With the development of RGB-
D cameras that provides both a color image and per-pixel depth estimates,
depth-based representations have attracted many researchers. For instance,
the Microsoft Xbox Kinect produces real-time skeleton joint positions from
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a single depth image. As a result, it allows users to interact with video
games and virtual reality using gestures [41]. A comprehensive survey of
vision-based activity recognition can be found in [69, 32, 53]. There are
a couple disadvantages of using cameras. Users have to be in the line of
sight (LOS) with enough lighting in order to be detected. As a result, many
cameras are required to increase the coverage area. In addition, the use of
cameras inside homes can raise some user privacy concerns [10].

1.1 Related Work

To overcome the limitation of vision and sensors based activity recognition,
device-free wireless solutions has been proposed. These solutions can be
categorized into three categories: Radio Frequency (RF) based systems,
Received Signal Strength Indicator (RSSI), and Channel State Information
(CSI) based.

RF based systems such as Software defined radio (SDR) and Universal
Software Radio Peripheral (USRP) are used to capture RF signals. In
WiSee, USRP has been used to extract the Doppler shifts caused due to
hand movement. A positive Doppler shift indicates the body is moving
toward the receiver, whereas moving away from the receiver results in a
negative Doppler shift. WiSee has been able to identify nine gestures with
an average accuracy of 94% [33]. The drawback of RF systems is that these
systems require additional hardware which is often expensive.

From the Media Access Control (MAC) layer, RSSI is the most com-
mon power feature that is available in wireless radio types, including WiFi,
Bluetooth, and ZigBee. Sigg et al. were able to recognize 11 gestures using
RSSI from a smartphone with a recognition accuracy of 72% [42]. Abdelnas-
ser et al. conducted another study in the same matter, but used an access
point (AP) and a laptop. They were able to recognize seven gestures with
a recognition accuracy of 87.5% [1]. The main drawback of RSSI is that it
fluctuates over time and fails to provide unique features in complex indoor
environments [65].

Channel State Information (CSI) is considered as a fine-grained meas-
urement from the physical layer that describes both the amplitude and the
phase of the wireless signal across the orthogonal frequency-division mul-
tiplexing (OFDM) subcarriers and across multi-antennas in multiple-input
and multiple-output (MIMO) system. CSI is stable and can capture the
multipath effect [65]. Recently, open source drivers for off-the-shelf Net-
work Interface Cards (NIC) such as Intel 5300 [14], Atheros 9390 [61], and
BCM4339 network card [36, 35, 34] allow to extract CSI information.

Although several CSI based HAR solutions have achieved good perform-
ance and recognition accuracy, prior works on human activity recognition
have only considered amplitude as a base signal [56, 66, 62, 9]. Amplitude
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is relatively stable compared to the phase as it does not suffer from a lot
of random errors. For instance, the authors in [66] uses a deep learning
long short-term memory LSTM (LSTM) to extract features and classify six
different activities from the raw amplitude. They found that the LSTM per-
forms better than Hidden Markov Model (HMM) and random forest with an
average accuracy of 90%. However, the performance degrades when testing
in different environment because the extracted features are depended on the
trained environment. In CARM [56], a 12-level discrete wavelet transform
(DWT) is applied to the denoised signals from which the 27-dimensional
feature vector is the extracted and is used to classify different activities.
CARM achieves an average accuracy 96% and it is resilience to environment
changes. One drawback of using amplitude is that some activities such as
sitting down and standing have a similar amplitude pattern change. This
can be confusing from the amplitude point of view [66, 54]. Another draw-
back is that the signal becomes weaker as the distance between the human
body and the LOS path increases due to the path loss [54]. A survey of the
related work in CSI can be found in the appendix.

1.2 Challenges in CSI based HAR

There exists several challenges when working with CSI signals for HAR.

• How do human activities affect the amplitude, phase and phase differ-
ence information of CSI?

• The CSI data suffers from measurement errors due to the imperfect
hardware. How to reduce the CSI noises while maintaining the activity
signal?

• What methods can be used to extract features that are resilient to en-
vironment changes, and how well these methods can generalize across
different people?

• What classifier should be used for this problem, and how to evaluate
its performance?

1.3 Research Goal & Contributions

All the challenges and limitations in the previous sections 1.1 & 1.2 lead to
our research goal. The main goal of this thesis is to develop an activity re-
cognition system that uses commodity WiFi devices which can: (i) recognize
activities performed by different people (ii) be applied in complex/untrained
environments (iii) perform online classification of the activities which would
be suitable for real-time applications. In summary, our main contribution
as follows:
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• To our best of knowledge, we are the first to utilize both amplitude and
phase difference of CSI that successfully recognize human activities in
different environments.

• We leverage a Continuous Wavelet Transform (CWT) to generate sca-
lograms of the activity signal, which then we use a pre-trained Con-
volutional Neural Network (CNN) to classify the different activities.

• Investigate the parameters that effect the performance such as un-
trained environments, different people, sampling rate and window size.
We also compare the impact of having phase difference and having only
amplitude.

1.4 Organization of the thesis

This thesis is organized as follows. Chapter 2 gives a background on CSI
and the sources of measurement errors. Chapter 3 investigates the extracted
base signals - amplitude, phase and phase difference, and their effect on the
human activities. Chapter 4 describes the preprocessing methods used to
remove the noises and improve the extracted features. Chapter 5 shows
the extraction of time-frequency features which are essential in classification
problem. Chapter 6 discusses the AlexNet Convolutional Neural Network
(CNN) architecture used to classify the activities. Chapter 7 presents the
experimental results and discussion. Finally, in Chapter 8 draws conclusions
and purpose possible future work.
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Chapter 2

Preliminaries

This chapter gives a background on Channel State Information (CSI) and
how does it recognize activities (Section 2.1). Then, the sources of measure-
ment errors are discussed in Section 2.2.

2.1 Channel State Information (CSI)

Wi-Fi devices with standards such as IEEE 802.11n/ac use multiple trans-
mitters and receiver antenna arrays, which are also known as Multiple Input,
Multiple Output (MIMO) systems. MIMO is used in order to increase di-
versity gain, array gain, spatial multiplexing gain, and interference reduction
[30]. It is typically used with Orthogonal Frequency-Division Multiplexing
(OFDM) as a physical (PHY) layer [67]. In IEEE 802.11n, OFDM divides
a spectrum band (20 MHz/40 MHz) into a set of closely spaced orthogonal
(64/128) sub-carriers. The 64 subcarriers in 20 MHz as shown in figure 2.1
are divided into 52 subcarriers for data, 4 for pilot and 8 as null subcarriers.
In case of 40 MHz, 128 subcarriers are into 108 subcarriers for data, 6 for
pilot and 14 as null subcarriers. The frequency spacing between two consec-
utive subcarriers is 312.5 KHz (20 MHz or 40 MHz / 64 or 128) [12, 10, 31].
The modified firmware of Intel 5300 provides CSI values for 30 subcarriers
only per transmit-receive (TR) link which corresponds to the grouping Ng
= 2 for 20 MHz and Ng = 4 for 40 MHz as shown in Table 2.1 [14].

In a narrowband flat-fading channel with MIMO, the Channel Frequency
Response (CFR) can be modeled as:

y = Hx+ n (2.1)

where y and x are the received and transmitted vectors, respectively, H is
the channel matrix, and n is an additive white Gaussian noise vector. The
noise component is often modeled as a circular symmetric complex normal
with n ∼ CN (0, S), where the mean value is zero and the noise co-variance
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Figure 2.1: OFDM Subcarriers in 802.11n Wi-Fi

Table 2.1: IEEE 802.11n Standards

matrix S is known. Therefore, an estimation of H, also known as Channel
State Information (CSI), is:

Ĥ =
y

x

In OFDM, the CSI of a single subcarrier can be expressed as:

h = |h|ejsinθ (2.2)

, where |h| and θ represent amplitude and phase, respectively [59].
As shown in Figure 2.2, the received signal in an indoor environment

is a sum of LOS path, static reflected paths from static objects such as
ceiling or floor, and dynamic reflected paths caused by human movement.
In a static environment where there is no motion in the room, the channel
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Figure 2.2: Multipaths caused by human movement in an indoor environ-
ment

is relatively stable. However, when a person is moving in the room, the
channel fluctuates, leading to amplitude attenuation and phase distortion.

2.2 Wi-Fi CSI Error Sources

Due to the hardware imperfection in the wireless signal processing, the CSI
suffers from measurement errors. To understand the sources of CSI error,
one must first understand the overall signal processing in IEEE 802.11n.
Figure 2.3 illustrates a typical signal processing architecture at the receiver.
First, the Automatic Gain Controller (AGC) compensates the incoming sig-
nal amplitude attenuation s(t) to the transmitted power level. Then, the
signal is sampled as a discrete digital signal s(n) by Analog-to-Digital con-
verter (ADC). When there is a correlation between s(n) and the pre-defined
802.11 preamble pattern, a packet is detected and, then, the signal central
frequency is estimated and corrected by the Central Frequency Offset (CFO)
corrector. In order to extract the data correctly, the receiver estimates the
instantaneous CSI and, then, the channel equalizer compensates amplitude
attenuation and phase errors [61, 72, 47].

As shown in Figure 2.3, a number of possible errors have occurred while
processing the signal. These errors include power amplifier uncertainty
(PAU), sampling frequency offset (SFO), carrier frequency offset (CFO),
packet detection delay (PDD), phase-locked-loop phase offset (PLO), phase
ambiguity (PA), and system nonlinearity (SN). The impact of these errors
can cause CSI amplitude offset, CSI phase rotation, and offset [61, 71, 46,
46, 52, 50].

7



Figure 2.3: Overview of Signal Processing in 802.11n

2.2.1 Power Amplifier Uncertainty (PAU)

The AGC cannot perfectly calibrate the signal amplitude attenuation to the
transmitted power level; so, the measured CSI amplitude is a sum of the
calibrated power level and the power control uncertainty error. As a result,
high amplitude impulse and burst noises are introduced in the CSI stream
[56]. Averaging individual bands can mitigate the CSI amplitude offset.
However, this is not always the case when the number of CSI measurements
on each band is insufficient [19, 61].

2.2.2 Sampling Frequency Offset (SFO)

Because of non-synchronized ADC clocks, the sampling signal s(n) at the
receiver is shifted by an offset φS(t) relative to the transmitter. However,
the clock offset is almost constant over a short time and, therefore, the phase
rotation errors are constant.

2.2.3 Carrier Frequency Offset (CFO)

Similarly, the central frequencies of the transmitter and receiver cannot syn-
chronize perfectly due to a mismatch between the transmitter’s and the re-
ceiver’s local oscillator. Even though there exists a module ”CFO corrector”,
which calibrates the central frequency, the signal s(n) still carries residual
errors. As a result, it causes phase offsets φC(t) for all CSI sub-carriers.
Wang et al. indicated that a CFO of 5 GHz band can reach up to 80 KHz,
leading to a phase shift of 8π. However, the body movement generally leads
to a phase shift of 0.5π, which is not observable from the raw CSI phase
[56].

2.2.4 Packet Detection Delay (PDD)

One of the simplest ways to detect a packet while requiring a minimum
amount of signal processing is to detect its energy based on the few first
samples [19]. If a number of samples cross its energy detection threshold,

8



then the packet is detected. However, the number of required samples re-
quired to detect the energy varies based on the received signal power as well
as noise. As a result, the packet detection module produces a time shift
signal φP (t) due to the sensitivity of the packet detector [61, 52, 72].

2.2.5 Phase-Locked Loop Offset (PLO)

The phase-locked loop is responsible for generating a centre frequency for
both the transmitter and the receiver [3]. Due to hardware imperfection,
both the transmitter and the receiver have some initial random phase, res-
ulting in a phase difference in the received OFDM symbol. Therefore, a
relatively constant phase offset φPLL is added to the CSI phase [52, 72, 21].

2.2.6 Phase Ambiguity (PA)

When analyzing the phase difference between two receiving antennas, Tzur
et al. pointed that there exists another source of error known as ”phase am-
biguity”, which can be found in Intel 5300 NICs when working on 2.4 GHz.
This error exists because of the firmware implementation. There are two
sources of ambiguity: symmetric ambiguity and phase-periodic ambiguity.

Symmetric ambiguity occurs when the system cannot distinguish between
the physical AoA θ and its symmetric π − θ

The phase-periodic ambiguity occurs when d ≥ λ/2, which is the physical
phase difference in the range [−π, π], and is given by:

∆φ = ∆φ̂+ 2πk (2.3)

Where k is an integer. If d < λ/2, then k = 0, and the ambiguity is
eliminated [50].

2.2.7 System Nonlinearity (SN)

The authors in [61, 72, 73] identified a non-negligible non-linear source of
phase errors that exists in the IQ imbalance module, as shown in Figure 2.3.
The non-linear errors exist in both NICs: Intel 5300 and Atheors AR9380.
These errors are stable over time but sensitive to the used frequency band.
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Chapter 3

Amplitude, Phase & Phase
Difference Analysis

This chapter investigates the extracted base signals: the amplitude (Section
3.1), phase (Section 3.2) and phase difference (Section 3.3) variations across
the different subcarriers, and their effects on the human activities. Each
base signal has its own pros and cons.

3.1 Amplitude Analysis

Since there are a total of 90 subcarriers for the three received antennas from
a single transmitter, we study the correlation amplitudes of subcarriers when
there is a body movement. The reason for this study is that we are looking to
reduce dimensions instead of processing all 90 subcarriers and hence good
computational complexity. Also, to investigate whether averaging all 30
subcarriers [54, 58] into one signal per each antenna is effective.

To measure the linear correlation between subcarriers, the Pearson Cor-
relation Coefficient (PCC) [15] is calculated using Equation 3.1:

rxy =
1

n− 1

n∑
i=1

(
xi − x̄
sx

)(
yi − ȳ
sy

) (3.1)

where x and y represents two subcarrier signals, n is the length of the
signal. The term (xi−x̄sx

) and (yi−ȳsy
) is the z-score of x and y where x̄, ȳ

and sx, sy is the mean and standard deviation of the subcarrier x and y
respectively. The rxy values ranges from -1 to +1. A value of +1 indicates
that the two subcarriers have a strong positive linear relationship, 0 is no
linear relationship and -1 indicates for a strong negative linear relationship.
Figure 3.1 shows the linear correlation between subcarriers. We observe that
the adjacent subcarriers from the same antenna are more correlated than the
subcarriers from different antenna. It can be seen that the first and second
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subcarrier for a body movement is strongly correlated than the first and
30th subcarrier. Figure 3.2 shows that the first and second subcarrier have
identical amplitude changes whereas the 23th and 83th subcarrier have non
identical amplitude changes. Also, the adjacent subcarriers from the second
antenna (31-60) are strongly correlated compared to first and third antenna.

Because the further subcarriers are less correlated than the adjacent sub-
carriers, averaging of all the 30 subcarriers [54, 58] into one signal per link
is ineffective because the filtered signal will lose some of its important high-
frequency components and sharp transitions, which are essential in recog-
nizing an activity. Hence, a principle component analysis (PCA) is utilized
and discussed in section 4.3 to reduce the dimension and extract the most
important information from data.
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Figure 3.1: Correlation between subcarriers of a body movement across 3
received antennas. Subcarrier index from [1-30, 31-60, 61-90] represents the
first, second and third received antenna respectively

3.2 Phase Analysis

Due to the hardware imperfection discussed in section 2.2, the raw phase
information cannot distinguish human activities. Figure 3.3 shows the polar
histogram of the phase information (1st subcarrier) of a walking activity.
As it is shown, the raw phase information is distributed randomly and it is
unstable.
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Figure 3.2: Amplitude variations of a body movement across different sub-
carriers
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Figure 3.3: The raw phase information of a walking activity

One of the common techniques used to remove the phase error is linear
transformation [39, 60]. Let the measured phase φ̂i for the subcarrier i be:

φ̂i = φi + 2π
si
N

∆t+ β + Z (3.2)

where φi is the true phase, si is the subcarrier index in Table 2.1, N is the
FFT size (64 for 20 MHz or 128 for 40 MHz), ∆t is the timing offset due to
SFO, β is the unknown phase offset due to CFO, and Z is a measurement
noise. The key idea of linear transformation is to eliminate the timing
∆t and the unknown phase offset β by considering phase across the entire
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measured subcarriers (data and pilot subcarriers) which is 56 subcarriers for
the 20 MHz or 114 subcarriers for the 40 MHz. Since only 30 subcarriers
are measured, the subcarrier indices from the Table 2.1 are asymmetric. In
other words, the

∑30
i=1 si 6= 0. Assuming they are symmetric

∑30
i=1 si = 0 ie

([-15,-14,...,14,15]), the phase slope a between the first and last subcarrier
and the mean of the phases of all the subcarriers b can be calculated with
the following:

a =
φ̂30 − φ̂1

s30 − s1
=

φ̂30 − φ̂1

15− (−15)
=
φ̂30 − φ̂1

30
(3.3)

b =
1

30

30∑
r=1

φ̂r (3.4)

By subtracting the linear equation: asi+b from the raw phase φ̂i equation
3.2, the random phase offsets are removed. The calibrated phase φ̃i is given
by:

φ̃i = φ̂i − asi − b

φ̃i = φ̂i − (
φ̂30 − φ̂1

30
)si −

1

30

30∑
r=1

φ̂r (3.5)

Figure 3.4 shows the linear transformed phase compared to the raw phase.
As it can be seen that linear transformed phase is concentrated between [0◦-
15◦]. Figure 3.5 shows the phase variation of walking activity with respect
to time.
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Figure 3.4: The calibrated phase information of the walking activity

Even though the randomness is removed to some extent, the linear trans-
formation does not capture activities that have small phase changes. In
our case, it is found that phase changes of a clapping activity is buried in
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phase noise whereas activities that have large phase changes such walking
is observed as shown in Figures 3.5, 3.6.
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Figure 3.5: The phase changes of
a walking activity
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Figure 3.6: The phase changes of
a clapping activity

3.3 Phase Difference Analysis

Due to the limitation of linear transformation, the next approach is to exploit
the phase difference between two antennas. As shown in Figure 3.7, a phase
difference between two subsequent antennas exists because a signal has to
travel further to reach each subsequent antenna [37]. The phase difference
between two subsequent antennas ∆φ is given by:

∆φ = 2π
d sin θ

λ
(3.6)

Where d is the distance between two antennas, λ is the wavelength of the
signal, and θ is the angle of arrival (AoA) [50].

Due to a shared clock between antennas and having the same SFO, CFO,
PDD, and PLO offsets, the offsets are cancelled out. Hence, the phase
difference between two antennas is stable [57]. We examined the stability
of phase difference between the antennas, the polar histogram in Figure 3.8
shows that the phase difference between two subsequent antennas is being
shifted by multiple of 90◦ in the 2.4 GHz band. The phase difference between
first and second antenna, and between second and third antenna, clusters
around [0◦, 90◦, 180◦, 270◦], [70◦, 160◦, 250◦, 340◦] respectively. This is
referred as a ”four-way ambiguity” which has been observed by Tzur et al
[50]. It occurs because of the firmware implementation which measures the
phase in modulo π/2 rather than modulo 2π. As a result, the measured
phase difference is unstable, and hard to determine the variation of the
phase difference of a clapping activity as shown in Figure 3.9.

We found that the ambiguity issue exists only when using an access point
(AP) as a transmitter and a receiver that has Intel 5300 NIC (network
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Figure 3.7: A signal hits an antenna array. There are N antennas spaced d
apart. As a result, an additional path of dsin(θ) is added at each subsequent
antenna.
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Figure 3.8: Polar histogram of the
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Figure 3.9: The phase difference
of a clapping activity in 2.4 GHz
using AP mode

interface card). However, it does not exit when working on a monitoring
mode where packets are captured without associating to an access point.
The monitoring mode works when both WiFi devices have Intel 5300 NIC.
Figure 3.10 shows the polar histogram of the phase difference between two
subsequent antennas when working on monitor mode. The phase difference
values between the first and second antenna is concentrated between 340◦and
15◦. The second and third antenna’s phase difference is clustered from 15◦to
30◦. Unlike linear transformation, the phase difference data captures small
body movement such as clapping as shown in Figure 3.11.

Furthermore, we observed that the ambiguity issue does not exist when
working on a 5 GHz band for both monitor and AP mode. As it can be seen
from Figure 3.12, the phase difference between two antennas is concentrated
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Figure 3.11: The phase difference
of a clapping activity in 2.4 GHz
using monitor mode

in 255◦and 228◦. The ambiguity of the clapping activity is eliminated in 5
GHz band as shown in Figure 3.13. The 5 GHz band is chosen through
out our experiment because the wavelength is shorter compared to 2.4 GHz
which leads to a better movement speed resoultion as shown in Figure 3.13.
Also, the 5 GHz is a better option for less inter-channel interference and
more reliable communication.
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Figure 3.12: Polar histogram of
the phase difference between two
subsequent antennas in 5 GHz
band
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Figure 3.13: The phase difference
of a clapping activity in 5 GHz

We also found that the correlation of phase differences between 60 sub-
carriers (ie phase difference between first and second antenna, and second
and third antenna) behave the same as amplitudes correlation between sub-
carriers (discussed in section 3.1). The subsequent subcarriers are more
correlated than the further subcarriers. Hence, PCA is used and discussed
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in section 4.3 to reduce the dimensions and extract important information
from the data.

3.4 Summary

• The subsequent subcarriers are more correlated than the further sub-
carriers from the same and different antennas. Hence, averaging all
the 30 subcarriers would not be an optimum solution.

• Linear transformation of the phase purposed in [39, 60] removes the
random phase error to some extent. We observed that the method
only captures large activity movement that have large phase changes
such as walking. However, activities with the small phase changes such
as clapping is often buried in the noise, and the phase changes cannot
be captured when using linear transformation.

• Phase difference between subsequent antennas is more stable than than
the phase information. Due to the shared clock between antennas,
the offsets are cancelled. However, phase ambiguity is existed in the
2.4 GHz band because of the firmware implementation of Intel 5300.
We found that the phase ambiguity is eliminated when working on a
monitor mode 2.4 GHz or also working in the 5 GHz band.

• The 5 GHz band is used through out the experiments because it
provides a better movement resolution, and has less inter-channel in-
terference.
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Chapter 4

CSI Preprocessing

This chapter describes the preprocessing methods used to remove the en-
vironmental and internal hardware noises, and improve extracted features.
Section 4.1 discusses the linear interpolation used to construct missing data.
Then, Section 4.2 describes the windowing approach which enables an online
classification. Section 4.3 shows how noise and dimensions of the subcarriers
are reduced.

4.1 1D Linear Interpolation

Although the transmitter is configured to send packets at a fixed rate, the
collected CSI data are non-uniformly sampled in the time domain because
of the packet loss and transmission delay. This raises an issue when extract-
ing features of a signal that is discontinuous. Also evenly spaced data is
required to perform time-frequency analysis and obtain spectrogram [70]. A
1-D linear interpolation method [10, 27] is adopted to get an evenly spaced
samples with the spacing of 1 ms since our sampling rate of the collected
dataset is 1000 Hz. Given two data points (x1, y1) and (x2, y2) where x1, x2

are the packet arrival time, y1, y2 are the signal value (amplitude or phase),
x is the new equal spaced time, the interpolant is a straight line segment
given by:

y = y1 + (x− x1)
y2 − y1

x2 − x1
(4.1)

Although 1D linear interpolation is simple and quick to compute, it res-
ults in a discontinuous at each point and sharp edges between two adjacent
segments especially for non-linear functions [4]. Hence, other interpolation
methods such as polynomial or spline would result in a ”smooth” interpol-
ating function. Because of the nature of CSI signal in which the amplitude
is fluctuated and has abrupt changes as shown in Figure 4.1, a 1D linear
interpolation is utilized in the experiment.
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Figure 4.1: Fluctuated Raw CSI amplitude

4.2 Sliding Window

Before extracting the features, the CSI signals are segmented into windows.
This will reduce the computation, and enable an online classification of the
activity. Selection of the window size is important because short windows
may not provide sufficient information of the performed activity, and large
windows may have more than one activity. Also, the windows are calculated
with the certain overlap to handle the transition more accurately and reduce
the misclassification [26]. In this study, a fixed sliding window approach of
4 seconds is used with a 50% overlap. Different window sizes are tested in
Section 7.4.2 to evaluate the performance of the classifier.

4.3 Noise & Dimension Reduction

From section 3.1 and 3.3, we showed that the adjacent subcarriers from the
same antenna are more correlated than the further subcarriers for both amp-
litudes and phase differences, and averaging the 30 subcarriers is ineffective
due to loss of activity information. Also, we discussed in section 2.2 that
burst noise and high amplitude impulse exists for every subcarrier due to
power amplifier uncertainty (PAU). The question is how to ensure that the
noise is removed and at the same time the dimension is reduced?

We firstly utilize principle component analysis (PCA) [20] to reduce the
dimension and noise. This is achieved by transforming a set of possibly
linearly correlated variables into linearly uncorrelated variables called prin-
ciple components (PCs) in such a way that the first principle component
has the highest possible variance which retains most of the data variability.
In our experiment, the PCA is applied for each antenna (ie 30 subcarriers)
separately for both amplitudes and phase differences because the results
from section 3.1 show that subcarriers from different antennas tend to be
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uncorrelated.
There are four main steps of applying PCA to the CSI matrix H which

is (n × m) where n is the signal length, and m = 30 the total number of
subcarriers so that we have:

H = [H1, H2, H3, ...,Hm] (4.2)

1. Normalizing H matrix. We normalize the H matrix using z-score such
that each column i=1,...,m will have a zero mean and unit variance.
The normalized version of H is denoted as Z. The effect of normaliz-
ation is studied in section 4.3.1.

2. The covariance matrix Q of Z is calculated such that Q = ZTZ. The
covariance matrix is a m×m symmetric matrix.

3. Eigen-decomposition of the covariance matrix is performed to calculate
the eigenvectors vi, i = 1,2,...m such that eigenvectors are ranked in
order of their eigenvalues from highest to lowest.

4. Reconstruction of the signal is performed such that zi = Z × vi where
i is the ith principle component.

5. The optimum number of PCs that describes more than 90% of the
variance of the data is the first 2 PCs. Based in our experiment with
the training dataset in Table 7.1, we observe that only the top two PCs
that describes more than 90% of the information. Hence, the total
number of PCs = 10 PCs (2 PCs amplitudes x 3 antennas + 4 PCs
phase differences between two subsequent antennas: RX12 & RX23).

Not only does PCA reduce the dimension, but also reduce the burst noise.
Figure 4.3 shows the the top two PCs of the walking activity. As it can be
seen that the noise has been reduced significantly in the second PC which
represents 8% of the activity information compared to the raw CSI amplitude
in Figure 4.2. However, there is still some correlated noises in the first PC
- 83% of the activity information that PCA could not remove it. Hence, we
utilize a moving average to smooth the signal and reduce the burst noise.
We choose the window size to be 50 ms so that it is large enough to smooth
the signal and at the same time not to distort the activity signal. Figure 4.4
shows the smoothed version of the walking activity signal. We can see that
the burst noises has been removed as well as the large impulse that exist at
time 15 second.
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Figure 4.2: Raw CSI amplitude of
a walking activity
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Figure 4.3: After PCA. PC1 rep-
resents 83% of the total variance
of data. PC2 represents 8%
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Figure 4.4: After moving mean

4.3.1 Impact of Standardization in PCA

Standardization is important in PCA because subcarriers with high amp-
litudes will not dominate subcarriers with smaller domains, and hence pre-
venting from having a biased result. For instance, we performed a PCA on
the first antenna (30 subcarriers) without normalization for a sitting activ-
ity, and the results in Figure 4.5 shows that the first two components explain
95% of the total variance and the first PC explains about 78% of the total
variance. However, the results in Figure 4.6 shows that the the first three
components explain more than 95% and the first PC explains only 50% when
applying a z-score normalization. It is clear that the second and third PC
also contribute to the overall variance of the data.

The reason why standardization does effect the outcome of PCA is that
is the covariance is scaled by the product of standard division as derived
in Equation 4.5. We know that the standardization of a variable can be
written as:

z =
xi − x̄
σ

(4.3)
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Figure 4.6: After normalization:
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component for a sitting activity

and the covariance between subcarrier x and y can be expressed as:

cov(x, y) =
1

n− 1

n∑
i

(xi − x̄)(yi − ȳ) (4.4)

After standardizing both subcarriers x and y:

x
′
i =

xi − x̄
σx

and y
′
i =

yi − ȳ
σy

The new covariance be written as:

cov(x, y)′ =
1

n− 1

n∑
i

(x
′
i − x̄)(y

′
i − ȳ)

Since standardized subcarrier x, y has a zero mean, then:

=
1

n− 1

n∑
i

(x
′
i − 0)(y

′
i − 0)

=
1

n− 1

n∑
i

(
xi − x̄
σx

)(
yi − ȳ
σy

)

=
1

(n− 1)(σxσy)

n∑
i

(xi − x̄)(yi − ȳ)

cov(x, y)′ =
cov(x, y)

σxσy
(4.5)
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4.4 Summary

• Performing time-frequency analysis and obtaining spectrogram requires
data to be evenly spaced. Due to the transmission delay, packet loss,
the collected CSI data are non-uniformly sampled in the time domain.
Hence, 1D linear interpolation is adopted to have an evenly spaced of
1 ms since the sampling rate of our CSI data is 1000 Hz.

• A fixed sliding window with 50% is applied to ensure the transition is
smooth and reduce the misclassfication.

• PCA is used to remove the burst noise that exists for each subcarrier.
Only the first and second principle component are utilized which rep-
resents 90% of the variance of the activity information. Since there are
correlated noises that mostly exists in the first principle component, a
moving average is used to smooth the signal.

• Standardization of the CSI data affects the outcome of PCA because
the covariance is scaled by the product of standarnd division.
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Chapter 5

Time-Frequency Analysis

This chapter describes extraction of time-frequency features which are essen-
tial in classification problem. Section 5.1 explains why time-frequency ana-
lysis is used. Section 5.2 gives an insight into Continuous Wavelet Transform
(CWT), and how it is different from Short-Time Fourier Transform (STFT).
Section 5.3 discusses the selection of CWT parameters: the scale and wave-
let family. Lastly, Section 5.4 shows how to apply CWT to the principle
components.

5.1 Why Time-Frequency Analysis?

The most important part in identifying different activities from the signal is
feature extraction. If the selected features are unique and well defined, then
any simple classification method would be able to recognize and classify the
different activities. The aim of our work is classify different activities in
different environments performed by different people. Hence, the selected
features need to be:

• Representative: The ability of the selected features to represent the
activity that is being done regardless the different environment and
people.

• Discriminative: Not only does the selected features need to represent
the activity, but also discriminative among other activities.

Statistical time domain features such as mean, standard deviation, median
absolute deviation...etc have been commonly used in activity recognition.
For instance, Wifall [59] uses seven features to detect a fall. These features
are normalized standard deviation of CSI, offset of signal strength, period of
the motion, median absolute deviation, inter-quartile range, signal entropy,
and velocity of signal change. Wifall can achieve a detection precision of
87% in average. However, the results from Wifall show that the performance
degrades when the environment changes.
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Due to the multipath, the same activities performed in different environ-
ments result in different amplitude changes and different statistical prop-
erties. However, representing the CSI signal in frequency domain which is
related to the speed of the change in multipaths will result in similar fea-
tures obtained from different environments [56]. Because the CSI signal is
non stationary where frequency changes over time, time frequency domain
features are extracted in our experiment.

5.2 Continuous Wavelet Transform (CWT)

The Continuous Wavelet Transform (CWT) provides a high localization
in time and frequency by continuously varying the scale a and translation
(shifting) b parameter of the wavelets. The wavelet transform of a continuous
time signal x(t) can be defined as:

X(a, b) =
1√
|a|

∫ ∞
−∞

x(t)ψ∗
(
t− b
a

)
dt (5.1)

where ψ∗(t) is the complex conjugate of the analyzing mother wavelet func-
tion ψ(t). The a parameter causes the dilation of the wavelet, while b causes
shifting of the wavelet. The output X(a, b) is wavelet coefficients X which
are a function of scale and position. The magnitude spectrum of CWT is
represented by |X(a, b)|. The 1√

|a|
factor ensures energy normalization so

that the energy of the scaled mother wavelet equal to energy of the original
mother wavelet. When the wavelet is compressed (ie the the scale 0 < a1),
abrupt changes and high frequency components are captured while stretched
wavelet a > 1 helps capturing low frequency components. The CWT of the
signal is represented using a scalogram which is a time frequency represent-
ation of the signal by wavelet transform.

The scale parameter in CWT is described in terms of octaves and voices.
The number of octaves determine the frequency range to be analyzed. For
instance, if the wavelet is dilated by a factor of 2 for a sampling frequency
of 1000 Hz, then it results in an equivalent frequency by an octave - 500 Hz.
The number of octaves can be determined by:

Number of octaves = log2(
fmax
fmin

) (5.2)

where fmax and fmin is the maximum and minimum frequency respectively.
The number of voices per octave determine the number of scales between
successive octaves. For instance, a 10 voices per octave results in ratio of
21/10 between voices. Given the number of octaves N and number of voices
per octave L, the total number of scales would equal to N × L. The scale
value for a given octave n0 and voice l0 is:

Scale value = 2(n0+
l0
L

) (5.3)
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where n0 = [0, 1, 2, ..., N − 1] and l0 = [0, 1, 2, ..., L− 1]

5.2.1 Difference to STFT

We utilize CWT because it provides better time localization for short dur-
ation, high frequency events, and better frequency resolution for long dura-
tion, low frequency events. Hence, CWT would be able to localize activities
such as fall and sit which causes abrupt changes in high frequency com-
ponents for a short period of time. Unlike Short-Time Fourier Transform
(STFT), the analysis window is fixed. Large window size will lead to high
frequency resolution but bad time resolution while small window size will
lead to better time resolution but bad frequency resolution. Choosing the
right window size is a trade-off between time and frequency [38]. The time-
frequency plane tiling of the STFT and CWT is shown in Figure 5.1.

Figure 5.1

We have applied STFT and CWT to the first principle component derived
from the 30 subcarriers amplitudes of the first antenna in order to investigate
the time-frequency trade-off. Our sampling frequency is 1000 Hz and the
window size is set to 500 samples and 100 samples so that it gives a time
resolution of (500/1000) = 500 ms and (100/1000) = 100 ms. Figure 5.2
shows the spectograms and scalogram of the fall activity that occur at t =
1.5s. We can see that with the window size of 500 ms in Figure 5.2(b), the
fall activity occurs precisely at the frequency of 22 Hz but it is not possible
to locate the end of activity; hence bad time resolution. With the window
size of 100 ms, the fall activity in Figure 5.2(c) can be located in time but
imprecise estimation of the frequency (from 15 Hz to 30 Hz). However, the
CWT in Figure 5.2(d) achieves good time localization at the high frequency
components (20 Hz to 30 Hz), and good frequency resolution at the low
frequency components (1 to 10 Hz).
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Figure 5.2: Illustration of the properties of STFT and CWT. (a) A fall
activity at time t = 1.5s. (b) STFT with window length of 500 ms. (c)
STFT with window length of 100 ms. (c) CWT with the Morlet wavelet

5.3 Selection of Scale and Wavelet Family

As seen from Equation 5.1, the scale and wavelet family should be defined
to analyze the signal. The scale parameter is determined by the frequency
range we interested in analyzing the human activity. In this study, we
analyze four different activities: walk, clap, fall and sit. Walk and fall will
have the highest average velocity compared to sit and clap which causes
to have the highest frequency. According to [5], the average indoor walk is
about 1.2 ± 0.3 m/s, and a typical human fall can reach to a maximum speed
of 5 m/s [45]. Hence, the maximum frequency will be obtained from the
fall activity. Using the Doppler Frequency formula, the maximum Doppler
frequency can be calculated:

∆fmax =
2vmax
c

F0 (5.4)

where vmax is the maximum velocity, c is the speed of light, and F0 is the
center frequency. For a WiFi at 5.7 GHz, the maximum Doppler frequency
for the fall activity is 190 Hz. To ensure the activity coverage, we set the
maximum frequency threshold to 200 Hz and the minimum frequency is 1
Hz in our study. Hence, the number of octaves according to Equation 5.2
would be around 7 octaves. The number of voices per octave is set to 15
voices so that redundancy and computation are compromised.
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There many different wavelets that can be used in CWT, and each wave-
let has its own properties depending on the signal being analyzed. These
properties such as orthogonality, compact support, symmetry and vanish-
ing moment. Some wavelets have the same properties, so the shape of the
wavelet is also considered [28, 49]. In our study, a Morlet wavelet is chosen
because it has the same structure and shape with CSI signal. The Morlet
wavelet is a product of sinusoidal and gaussian function as shown in Figure
5.3b. Figure 5.3a shows the fall activity of the first principle component
from the first antenna.
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(b) A Morlet Wavelet

5.4 Applying CWT to the Principle Components

Given there are a total of 10 principle components (2 PCs amplitudes x 3
antennas + 4 PCs phase difference between two subsequent antennas: RX12
& RX23) as seen from section 4.3, now the CWT is applied for each principle
component individually.

Because the principle components are orthogonal to each other and each
one of them has unique frequency components, a higher amount of activity
information can be obtained by summing the magnitude of CWT coefficients
from the same antenna. Therefore, the total number of scalograms for each
activity will be 5 scalograms (1 scalogram/amplitude x 3 antennas +
2 scalograms/phase differences between two subsequent antennas (RX1 &
RX2)).

The summed magnitude scalograms of the four different activities from
PCs of the first antenna amplitudes are illustrated in Figure 5.4. It can
be seen that the energy in the walking activity is spreading across different
frequencies from 1 Hz to 50 Hz, while the clapping activity has short peak
of 50 Hz. In fact, the number of claps can be determined by counting the
number of peaks. Looking at the image, the number of claps is 3 claps per
second in average. The fall activity is characterized by high peak of about
60 Hz and after that the energy is spreading in lower frequencies for a period
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Figure 5.4: Comparison of the CWT scalograms of different activities. (a)
Walking, (b) Clapping, (c) Falling, (d) Sitting.

of 1.5 seconds, but the sit activity has only a short peak of 25 Hz. Algorithm
1 summarizes the procedure of getting the five scalograms.

Algorithm 1: Pseudo Code of generating the five scalograms

Result: Five generated scalograms
input: CSI RAW: CSI measurements from 3 received antennas n

1 Get the phase difference between subsequent antennas
2 Interpolate both amplitude and phase difference
3 Apply PCA and moving average
4 Apply CWT to only the first and second principle component (PC)
5 Sum the magnitude of CWT coefficients of both PC1 & PC2
6 Generate the scalograms from the summed magnitude
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5.5 Summary

• Time-Frequency analysis is applied to extract features that are resi-
lience to environment changes. These features represent the speed of
change in multipath with respect to time.

• Continuous Wavelet Transform is chosen due to high resolution time-
frequency representations. Unlike STFT, CWT provides better time
resolution at high frequency and better frequency resolution at low
frequency.

• A typical human fall can reach up to a maximum speed of 5 m/s which
results to maximum frequency of 190 Hz with the 5.7 GHz WiFi band.
Hence, the maximum number of octaves according to Equation 5.2 is
7 octaves. The number of voices per octave is set to 15 voices so that
redundancy and computation are compromised.

• The Morlet wavelet is selected based on the similarity between the CSI
signal and wavelet.

• The CWT is applied individually to the principle components of amp-
litudes and phase difference between antennas. There are total of 10
principle components (2 PCs amplitudes x 3 antennas + 4 PCs phase
difference between two subsequent antennas: RX12 & RX23).

• Because the principle components are orthogonal, a higher amount of
activity information is obtained by summing the magnitude of CWT
coefficients from the same antenna.

31



32



Chapter 6

Deep Learning Based
Activity Recongiton

This chapter shows that Convolution Neural Network can be used to train
the obtained scalograms of CSI amplitude and phase difference to extract
features automatically. Section 6.1 discusses why CNN is used and its basic
structure. Then, Section 6.2 describes the architecture of AlexNet CNN and
how the scalograms are feed into the architecture.

6.1 Why Convolution Neural Network (CNN)?

Existing WiFi based activity recognition uses K-Nearest Neighbors (KNN)
[2], Hidden Markov Model (HMM) [56] and Support Vector Machine (SVM)
[59, 8, 11, 54, 68, 29, 55, 58] to process the extracted features and classify
different activities. However, these models experience issues when dealing
with CWT scalograms.

The CWT scalograms of the different activities have different features in
both time and frequency dimensions. The KNN model does not consider
time, so activities that have similar frequencies but different in time cannot
be distinguished. HMM considers time but it is based on the Markov as-
sumption which states that the probability of a given state at time t only
depends on the state at time t− 1 but it is not always the case with activit-
ies where dependencies extend to sequence of states. Also, it is based on a
strong assumption that the successive observations are independent but in
reality they rarely independent [7]. The SVM is simple and effective but it
requires features engineering, fine tuning a number of parameters and the
optimality of the solution is depended on the kernel [43].

Convolution Neural Network (CNN or ConvNet) is one of the common
deep neural networks which is used especially in images, and has many
applications in computer vision. The strength of CNN lies on automating
the feature extraction from raw inputs and ability to learn localized patterns
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through weights sharing and pooling. Furthermore, the extracted features
of CNN are shift-invariance which is the ability to recognize the patterns
at different locations of the input [64]. This is an important property in
classifying the CWT scalograms because the activity signal can happen at
any period of time. CNN consists of input, hidden and output layers. There
are three main types of the hidden layers: convolution layer, pooling layer
and fully connected layer [17].

The convolution layer is the main component of CNN which consists of
several filters or kernels that are small in size. These filters are used to
extract particular features of the image such as edges, curves, lines,...etc.
They have the shape of (size× size× depth) which is basically an array of
numbers also referred as weights, and each point in the filter is a neuron.
The filters are applied to the input image of shape (height×width×depth),
where depth is the number of channels of the image. The output of this
layer is called feature maps with the shape of size×size×number of filters.

The pooling or down-sampling layer is responsible for reducing the spa-
tial dimension of the input and hence reducing the number of neurons and
computation in the network. Another advantage is that it extracts high
level features regardless of the positional information so that scale changes,
rotation, and occlusion of the image are handled. Most common types of
pooling layer are max and average pooling. An example of max and average
pooling is shown in Figure 6.1.

Figure 6.1: Max and average pooling 2× 2 filter with 2 strides

The activation layer takes a value and passes into non linear functions
which squashes the value into range. The output of the activation layer is
also called activation maps. The most common activation function is ReLU
(Rectified Linear Unit) which is defined by: f(x) = max(0, x) where x is
the input to a neuron.

It is common with the large network size, dropout layer is applied to
a certain layer in order avoid the problem of overfitting [44]. Overfitting
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occurs when the model fits the data too well which results in high accuracy
in training set but bad accuracy in test sets. The dropout layer randomly
drops certain neurons during the training, and this significantly improves
the performance of the network. After several convolution, activation and
polling layers, the fully connected layer maps the extracted visual features
to the desired output. Typically two or three fully connected layers are
used and the size of last layer of the network is the same as the number of
predicated classes.

One limitation of using CNN is that training is expensive and it requires
large amount of labeled data to train and achieve a good convergence. How-
ever, there is a concept called knowledge transfer or transfer learning where
a model is trained in one problem domain and applied to another domain
but related problem. This will speedup the training process and overcome
the issue of data shortage.

6.2 AlexNet

Since our dataset is limited, we utilize AlexNet pre-trained model to fine
tune and classify the CWT scalograms. AlexNet is one of the famous CNN
architectures that won the 2012 ImageNet LSVRC (Large Scale Visual Re-
cognition Challenge) with the top five errors of 15.3% [24]. The ImageNet
LSVRC project contains a database of 14 millions images and more than
20,000 categories. AlexNet contains eight layers with weights: five convo-
lution layers and three fully connected layers. The dropout layer is used in
the first two fully connected layers. The output layer has four connected
neurons which represent the four activities. The ReLU layer is applied after
every convolution. One of the main challenges in using AlexNet is that the
input layer accepts an RGB image size of 224 × 224 × 3 but there are five
scalogram images that represent the activity signal obtained from section
5.4.

The question is how do we feed the five scalograms of the activity into
AlexNet CNN? There are several options that we could follow. The first
option would be to train each scalogram separately and then combine the
results but this will result in a poor performance because the five scalograms
are dependent with each other. Another option would be to place an image
on top of each other on a single image but with 5 channels instead of 3. This
would be the ideal solution but the input layer cannot be modified since we
are using pretrained model. Therefore, we stack the five scalograms in the
top of each other and then feed it to AlexNet CNN as shown in Figure 6.2.
This will create discontinuities at the boundaries but the AlextNet CNN is
deep enough to recognize these noise.
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Chapter 7

Implementation And
Evaluation

This chapter starts with the implementation details in Section 7.1. In Sec-
tion 7.2, we present the data collection procedure and the evaluation setup.
Then, Section 7.3 discusses the metrics used to evaluate the system. Section
7.4 presents and discusses the experimental results.

7.1 Implementation

We implemented the system using two laptops: Lenovo Thinkpad X220 i5-
2540M 4GB (transmitter), and Dell Latitude D630 Intel Core 2 Duo 2GB
(receiver). Both of them are equipped with the Intel 5300 WiFi mini card
and Ubuntu 12.04 with the Linux kernel version 3.2 installed. To collect
the CSI data, we install the CSI tool released by Halperin et al [14]. The
laptops are operated in monitor mode where it only monitors packets that
have been sent by the transmitter. The packet transmission rate is set to
1000 packets/second. The transmission power is set to 15 dBm by default.

In the experiment, we use one antenna in the transmitter, and three an-
tennas in the receiver. The transceivers are working in the frequency band
of 5 GHz of 20 MHz channel bandwidth instead of 2.4 GHz because of the
stability of the phase difference discussed in section 3.3 and also better move-
ment speed resolution. The signal processing part such as PCA and CWT,
and classification part are all done using MATLAB 2019 with the University
student licences. The training process of AlexNet model is done on a single
NVIDIA Tesla V100 GPU with 16 GB of RAM in Amazon Web Services
(AWS) server.
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7.2 Evaluation Setup

We collected a total of 330 training samples which is about 22 mins training
time as shown in Table 7.1 of the four different activities performed by two
people in two different living rooms (7 × 4 m2, 3 × 3 m2), as illustrated in
Figures 7.1a, 7.1b with the blue triangle spots. It is should be noted that the
different activities are not equally distributed, and hence special attention
must be paid when evaluating the performance of each individual activity.

To show the generality of the system, we conducted experiments in two
untrained environments namely bedroom (4 × 4 m2) and corridor (2 × 6
m2) that is illustrated in Figures 7.1a with the green triangle spots. Both
apartments are fully furnished with desks, sofas, and home appliances. Also,
the system has been tested with 7 volunteers who are not included in the
training set, and are varying in age, heights, weights and genders. The
volunteers were invited to perform walking and clapping in the living room
Figures 7.1a for a period of 36 seconds (9 samples). Due to safety purpose,
the fall activity was done only for 12 seconds (3 samples) and so is the sit.

(a) Apartment 1 (b) Apartment 2

Figure 7.1: Floor plans

Table 7.1: Summary of training dataset

Walk Clap Fall Sit Total

Living Room - 4× 7 (m) (Env1) 54 54 36 36 180
Living Room - 3× 3 (m) (Env2) 45 45 30 30 150

Total Samples* 330
Total Training Time (mins) 22

*Each sample is a 4 second period
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7.3 Performance Measures

To evaluate the performance of the proposed method, we employ three
standard metrics.

Accuracy: measures the proportion of correctly classified activities which
can be expressed as follows:

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn
(7.1)

where Tp (true positive) and Tn (true negative) represent an outcome where
the model correctly predicts positive and negative classes. Fp (false positive)
and Fn (false negative) represent an outcome where the model incorrectly
predicts positive and negative classes. However, accuracy is not a reliable
metric since we have imbalanced dataset where the accuracy is biased to-
wards the majority classes. This is commonly referred as the accuracy para-
dox.

Since the falling and sitting from the dataset Table 7.1 are less than
walking and clapping, precision, recall and F-measure score are calculated.

Precision: measures the percentage of the results that are relevant. It is
defined by the following:

Precision =
Tp

Tp + Fp
(7.2)

Recall: or true positive rate measures the percentage of the total relevant
results that are correctly classified. It is defined by the following:

Recall =
Tp

Tp + Fn
(7.3)

Typically, improving in precision leads to reducing in recall and vice versa
[48].

F1-measure: combines both of precision and recall with the following:

F1-measure = 2× precision× recall
precision+ recall

(7.4)

Since the dataset is the small, K-fold cross validation is utilized to evaluate
the performance and stability of the classifier. Cross validation is used to
check for overfitting and ability to predict unknown data. The three main
steps of performing cross validation are:

1. The data is randomly shuffled and divided into k groups. One of the
k subset is used as a test set.

2. The remaining k-1 groups are used for training. The model is fitted
on the training dataset, and evaluated its performance on the test
dataset.
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3. Repeat the above steps until all the subsets are selected.

The general procedure of 5-fold cross validation is shown in Figure 7.2.

Figure 7.2: The scheme of 5-fold cross validation

7.4 Results & Discussion

7.4.1 Activity Recognition

The confusion matrix with the precision and recall of each activity is given in
Table 7.2. The results show that the proposed system which is using both
amplitude and phase differences achieves an average accuracy of 98.18%
with the standard deviation of 1.27 using 5-fold cross validation across all
activities. The AlexNet model showed best performance when classifying
the walk and clap activity with the precision and recall of 100%. The fall
and sit has a precision and recall of 97%, 94% and 94%, 97% respectively.
There are two possible reasons that causing the model to misclassify the fall
and sit activity:

• Even though falling results in a high peak in frequency for a short
period of time as we have analyzed in section, it is likely that sitting
down quickly is causing to have features similar to fall activity which
results in a confusion.

• It is possible that after detection of the fall, the period which the
person is transitioning to stop, that period is classified as a sit. Due
to the static sliding window approach, similar features of different
activities are generated. A solution would be to use a dynamic window
approach which only extract features which the activity is happening
but we will leave this for future work.
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Predicted

Walk Clap Fall Sit Recall

A
ct

u
al

Walk 99 0 0 0 1
Clap 0 99 0 0 1
Fall 0 0 62 4 0.94
Sit 0 0 2 64 0.97

Precision 1 1 0.97 0.94

Table 7.2: Confusion Matrix with AlexNet using 5-fold cross validation. The
average classification accuracy is 98.18% ± 1.27

7.4.2 Impact of Window Size

Although it is intuitively clear that the larger window size, the better per-
formance to recognize an activity since more information about the activity
is captured. The results in Table 7.3 which shows the average accuracy and
F-measure, and F-measure per activity under 5-fold cross validation confirm
the intuition. With the window size of 4 seconds, the average accuracy is
98.18% ± 1.27, and the average F-measure is 97.73% across the four activit-
ies. However, the performance degrades when working on a window size of 3
seconds. The fall and sit F-measures have reduced by 7% while the walk and
clap F-measures have slightly decreased by 1 to 2%. With the window size
of 1 seconds, the performance has significantly degraded especially with the
fall activity that has F-measure of 61.22%. Nevertheless, the fall and sit can
be detected with the F-measure above 80% and average F-measure of 90%
using 2 seconds window. By using a short window size, the system is able
to save computation power while maintaining a reasonable performance.

Window Accuracy F-measure per activity F-measure

(Sec) (%) ± std Walk Clap Fall Sit

4 98.18 ± 1.27 100 100 95.38 95.52 97.73
3 94.45 ± 2.34 99.4 98.48 88.80 88.80 93.87
2 91.49 ± 2.88 97.65 98.49 82.32 84.86 90.83
1 80.77 ± 1.77 87.64 94.5 61.22 75.79 79.79

Table 7.3: Effect of window size on average accuracy, F-measure and F-
measure per activity under 5-fold cross validation
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7.4.3 Impact of Transmission Rate

A range of transmission rates have been evaluated to analyze the perform-
ance of the system. Different rates starting from 1000 Hz to 50 Hz were
achieved by down-sampling the transmission rate of 1000 Hz which is used
through the experiments. The results in Table 7.4 show that the performance
remains relatively steady from 1000 Hz to 100 Hz with the average accuracy
and F-measure of 97% , and then starts deteriorating at 50 Hz with average
accuracy of 39%. This is because the Nyquist frequency of 50 Hz is 25 Hz,
and the activities go up to 60 Hz as discussed in section 5.4. As a result,
high frequency components are not captured with the 50 Hz, and hence
the model cannot reliably classify the performed activities. Nevertheless,
the 1000 Hz is used through the experiments to increase the measurement
resolution and reduce the noises associated with analog-to-digital converter
(ADC) [25].

Fs Accuracy F-measure per activity F-measure

(Hz) (%) ± std Walk Clap Fall Sit

1000 98.18 ± 1.27 100 100 95.38 95.52 97.73
500 97.89 ± 1.73 99.50 98.99 95.38 95.50 97.34
200 97.27 ± 1.97 98.99 98.48 95.38 94.81 96.92
100 96.66 ± 2.91 97.96 98.51 93.85 94.74 96.26
50 39.69 ± 5.18 52.25 44.10 26.10 24.82 36.81

Table 7.4: Performance comparison for different transmission rates under
5-fold cross validation

7.4.4 Impact of Amplitude & Phase Differences

The performance of having only amplitudes, phase differences only, amp-
litude and phase differences is evaluated under the 5-fold cross validation.
The results in Table 7.5 show that the overall average accuracy and F-
measure across all the activities is about 95% with or without the phase
differences. Using both amplitude and phase differences have improved the
average accuracy by 2% and the average F-measure by 1% higher than us-
ing only amplitude. The average F-measure and accuracy of using phase
differences only is 2% less than using amplitude and phase differences. The
increase is relatively small because the three antennas of the received signal
is capturing most of the activity signal. Hence, the effect of distance and
people on the performance is studied in sections 7.4.5 and 7.4.6.
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Accuracy F-measure per activity F-measure

(%) ± std Walk Clap Fall Sit

Amp & 98.18 ± 1.27 100 100 95.38 95.52 97.73
Ph Diff

Amp 96.66 ± 1.97 99.50 99.00 93.02 92.65 96.04
Ph Diff 96.36 ± 3.14 99.50 98.98 91.60 92.54 95.65

Table 7.5: Performance with and without phase differences using 5-fold cross
validation in terms of average accuracy, F-measure per activity and average
F-measure

7.4.5 Impact of Distance

To evaluate the effect of distance which is the distance between the per-
formed activity and the transceivers on the system performance, true pos-
itive rate (TPR) is used to detect the presence of the activity to the total
number of times the activity is performed. The results in Figure 7.3 show
that the activity range detection across the four different activity.

The walk activity in Figure 7.3a shows that the proposed system detects
walking up to 5 meters using amplitude and phase differences with TPR of
80% while the TPR of using only phase differences has dropped significantly
to 11% at 5 meters. The system could not detect the walk activity at 5
meters when using only amplitude. For the clap activity, the results in
Figure 7.3b show that the system could fully detect clapping up to 5 meters
with the TPR of 100% with or without the phase differences. The fall
activity in Figure 7.3c is detected up to 3 meters and then the TPR has
dropped to 83% when using amplitude and phase differences while the TPR
of using only amplitude or phase differences is 33% and 66% respectively.
The sit activity in Figure 7.3d is detected up to 4 meters and then the TPR
has dropped to 66% using amplitude and phase differences, 50% using phase
difference only and 33% using amplitude only.

While each activity has a difference in detection range, the results show
that using both amplitude and phase differences have overall improved the
detection range. This is because the phase difference utilizes antenna di-
versity and the sum of sensory sensitivity is the sum of two antenna’s sens-
itivity [60]. It is observed that the clapping activity is detected with the
high TPR even with the long distance compared to large movements such
as walking and falling. This is because when the user is far away from the
transceivers, the reflected signal decreases and the model tends to classify
to clapping when the signal reflection is less.

43



1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Distance [m]

Tr
ue

Po
si

tiv
e

R
at

e

Amplitude
Amplitude + Phase Diff
Phase Diff

(a)

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Distance [m]

Tr
ue

Po
si

tiv
e

R
at

e

Amplitude
Amplitude + Phase Diff
Phase Diff

(b)

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Distance [m]

Tr
ue

Po
si

tiv
e

R
at

e

Amplitude
Amplitude + Phase Diff
Phase Diff

(c)

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Distance [m]

Tr
ue

Po
si

tiv
e

R
at

e

Amplitude
Amplitude + Phase Diff
Phase Diff

(d)

Figure 7.3: Effect of distance on true positive rate using amplitude, phase
differences, amplitude and phase differences across the four different activ-
ities: a) Walk, b) Clap, c) Fall, d) Sit

7.4.6 Impact of Different People

Another goal of this study is evaluate the generalizability of the proposed
method across different people. We evaluated with 7 different people who
are not included in the training set, and varies in gender, age, height and
weight. The results in Figure 7.4 show that the performance of the sys-
tem of 7 different people across different activities using with and without
phase differences. While using amplitude only yields to excellent results
for most people, using amplitude and phase differences have improved the
performance for some people. For instance, the clapping for subject index
7 has F-measure of 80% when using only amplitude but the F-measure has
increased to 100% when using both amplitude and phase differences. Also,
the sit activity for subject index 7 has improved by 20% when using the
amplitude and phase differences. In some cases, the activity could not be
detected using the amplitude. For example, the fall activity for subject 2 is
not detected using amplitude but using phase differences have improved the
F-measure to 80%. One possible reason is that different people have differ-
ent ways of performing the activity, and using only amplitude can lead to
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uncertainty between activities such as fall and sit. Because phase difference
is more sensitive than amplitude [60], more reliable results can be provided.
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Figure 7.4: Impact of different people on the performance across the dif-
ferent activities using amplitude, phase difference, and amplitude & phase
difference.

7.4.7 Impact of Untrained Environments

We have evaluated the system in two untrained environments - bedroom of
size 16 m2 and corridor of size 12 m2 as shown in Figure 7.1a, and compared
the performance when the phase difference is used. The results in Table 7.6
and Table 7.7 show the accuracy, F-measure per activity and average F-
measure of both environments bedroom and corridor respectively. The ac-
curacy has improved when using the phase difference in both environments.
It is observed that using amplitude and phase difference in both environ-
ments have improved the accuracy and average F-measure of the different
activities. For instance, the F-measure of fall in bedroom has increased by
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about 20% and the F-measure of sit has increased by 7% when using amp-
litude and phase difference compared to using only amplitude. Using only
phase difference has slightly improved the accuracy 3% compared to using
amplitude but the combination of both amplitude and phase difference have
improved the accuracy by 6% compared to amplitude only.

Since the corridor is narrower than the bedroom, the effect of multipath
is much stronger, and hence it has a strong impact in feature extraction. As
a result, the accuracy of using amplitude in corridor is much less than the
accuracy in bedroom. However, using amplitude and phase difference has
significantly improved the performance to an accuracy of 93% and average
F-measure of 91.42% compared to accuracy of 71% and average F-measure
of 67.81% when using amplitude only.

Table 7.6: Environment1 (Bedroom): performance with and without phase
differences in terms of average accuracy, F-measure per activity and average
F-measure

Accuracy F-measure per activity F-measure

Walk Clap Fall Sit

Amp & 96 100 100 92.31 90.91 95.80
Ph Diff

Amp 90 94.74 100 72.73 83.33 87.70
Ph Diff 93 100 100 85.71 80 91.43

Table 7.7: Environment2 (Corridor): performance with and without phase
differences using 5-fold cross validation in terms of average accuracy, F-
measure per activity and average F-measure

Accuracy F-measure per activity F-measure

Walk Clap Fall Sit

Amp & 93 100 100 85.71 80 91.42
Ph Diff

Amp 71 71.43 78.26 61.54 60 67.81
Ph Diff 76 80 100 40 70.59 72.65
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7.4.8 Computation Time

Another goal of this research is to develop an online classification of the
human activity recognition. Since the window size used in the experiment
is 4 seconds with the sampling rate of 1000 Hz, the sequences of the activity
signal are processed using four main methods: CSI extraction and interpola-
tion, PCA, CWT, and classification. Table 7.8 shows the average computa-
tion time of our proposed method using 2.5 GHz Intel Core i7 machine. The
results show that the average CPU time to classify a four second activity sig-
nal is about 1.2 seconds which is suitable for real-time application. 79.17% of
the CPU time is consumed by the CSI extraction and Interpolation method.
This is because the extraction and interpolation method involves extracting
the CSI data and interpolating for each subcarrier which there are 90 sub-
carriers in total from three received antennas. The PCA method only takes
1.58% of the CPU time. Then, 12.5% of the CPU time is spent on CWT
method which involves generating 5 scalograms at different scales. Finally,
classification of the scalograms takes 6.75% of the CPU which corresponds
to only 0.081 seconds.

Table 7.8: Average computation time of classifying activities

Methods Average CPU Time

(sec) (%)

CSI extraction & Interpolation 0.95 79.17
PCA 0.019 1.58
CWT 0.15 12.5

Classification 0.081 6.75

Total Time 1.2
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Chapter 8

Conclusions and Future
Work

8.1 Conclusions

In this thesis, we design and implement an online low-cost yet accurate
human activity recognition system that uses commodity WiFi devices to
recognize activities. The key contribution of our work is the use of amplitude
and phase difference to recognize performed by different people and can be
applied in untrained/complex environments.

In chapter 3, we begin by studying the correlation amplitudes of the sub-
carriers, and exploit the feasibility of the phase and phase difference between
antennas in activity recognition. We show that the subsequent subcarriers
are more correlated than the further subcarriers which motivated applying
PCA method introduced in chapter 4. Furthermore, we discuss how the
phase difference between subsequent antennas is more stable than the phase
information due to the shared clock between antennas.

In chapter 4, we discuss the preprocessing techniques used to remove the
internal hardware noises, and improve the extracted features of amplitude
and phase difference. We apply a 1D linear interpolation to have an even
sampled CSI data which is important in performing time-frequency analysis
and obtain the scalograms. The CSI signal is segmented into fixed windows
with the certain overlap to enable an online classification of the activity. We
also apply PCA and a moving average to reduce the dimensions and noises.

In chapter 5, we discuss why time-frequency analysis is applied and in
particular CWT, and then describe the process of selecting the scale and
the wavelet family. We then discuss how to apply the CWT to the principle
components of amplitude and phase difference.

In Chapter 6, we discuss why CNN is chosen, and how AlexNet CNN
architecture is used to classify the scalograms obtained from the previous
chapter.
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We analyze the classification results of the proposed system in chapter 7.
The results show that the system achieves an average accuracy of 98.18%
with standard deviation of 1.27 using 5-fold cross validation across the four
activities (walk, clap, fall and sit). The system shows its capability to ob-
tain high performance under transmissions rates as low as 100 Hz, and under
window size as low as 2 seconds. In long distance, the system is able to de-
tect walking with the TPR of 80% at the distance of 5 meters when using
amplitude and phase difference compared to TPR of 55% at the distance
of 4 meters when using only amplitude. In untrained environments, using
amplitude and phase difference has significantly improved the performance
to an accuracy of 93%, 96% and average F-measure of 91.42%, 95.80% com-
pared to accuracy of 71%, 90% and average F-measure of 67.81%, 87.70%
respectively when using amplitude only. The system shows its generalizabil-
ity across 7 different people with the F-measure above 80%. It also shows its
capability to be run in real-time application with an average computation
time of 1.2 seconds.

8.2 Future Work

In order to reach the full potential of WiFi activity recognition, several
challenges and topics need to be investigated before applying to the real-
world.

• Even though the proposed system is able to recognize activities per-
formed by different people, only a single user can perform the activity
in one environment. In real-world, there may be more than one user
in the same environment which each one of them is performing differ-
ent activities. The main challenge is how to determine the number of
people and recognize their activities separately?

• Sometimes high recognition accuracy is limited to the size and com-
plexity of the environment. The proposed system achieves high ac-
curacy up to 4 meters and then the performance degrades. One of
the possible ways to increase accuracy is by using multiple APs and
combining the information to recognize an activity. However, which
AP needs to be selected and how can one fusion multiple AP needs
requires further research.

• The purposed system works when one person is performing one activity
at a time. However, sometimes people perform more than one activity
at the same time. For instance, talking on the phone while walking or
eating while watching TV. Distinguishing the signals due to activities
of different parts of the body is another challenge.
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Appendix A

Confusion matrices

Predicted

Walk Clap Fall Sit

Walk 99 0 0 0
Clap 0 99 0 0
Fall 0 0 62 4
Sit 0 0 2 64

Table A.1: Confusion Matrix of 4 seconds window size - Dataset: 7.1

Predicted

Walk Clap Fall Sit

Walk 165 0 0 0
Clap 0 162 1 2
Fall 2 1 119 10
Sit 0 1 16 115

Table A.2: Confusion Matrix of 3 seconds window size - Dataset: 7.1
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Predicted

Walk Clap Fall Sit

Walk 229 0 2 0
Clap 0 229 0 2
Fall 9 1 156 32
Sit 0 4 23 171

Table A.3: Confusion Matrix of 2 seconds window size - Dataset: 7.1

Predicted

Walk Clap Fall Sit

Walk 443 8 33 11
Clap 1 481 6 7
Fall 62 21 251 128
Sit 10 13 68 371

Table A.4: Confusion Matrix of 1 seconds window size - Dataset: 7.1

Predicted

Walk Clap Fall Sit

Walk 99 0 0 0
Clap 0 99 0 0
Fall 0 0 62 4
Sit 0 0 2 64

Table A.5: Confusion Matrix of 1000 Hz sampling rate - Dataset: 7.1

Predicted

Walk Clap Fall Sit

Walk 98 1 0 0
Clap 0 98 0 1
Fall 0 0 62 4
Sit 0 0 1 65

Table A.6: Confusion Matrix of 500 Hz sampling rate - Dataset: 7.1
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Predicted

Walk Clap Fall Sit

Walk 98 1 0 0
Clap 1 97 0 1
Fall 0 0 62 4
Sit 0 0 2 64

Table A.7: Confusion Matrix of 200 Hz sampling rate - Dataset: 7.1

Predicted

Walk Clap Fall Sit

Walk 96 3 0 0
Clap 0 99 0 0
Fall 1 0 61 4
Sit 0 0 3 63

Table A.8: Confusion Matrix of 100 Hz sampling rate - Dataset: 7.1

Predicted

Walk Clap Fall Sit

Walk 58 17 6 18
Clap 20 41 16 22
Fall 26 11 15 14
Sit 19 18 12 17

Table A.9: Confusion Matrix of 50 Hz sampling rate - Dataset: 7.1

Predicted

Walk Clap Fall Sit

Walk 5 4 0 0
Clap 0 9 0 0
Fall 0 1 4 1
Sit 0 0 3 3

Table A.10: Confusion Matrix of untrained environment (Corridor) - Amp-
litude only
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Predicted

Walk Clap Fall Sit

Walk 6 0 2 1
Clap 0 9 0 0
Fall 0 0 2 4
Sit 0 0 0 6

Table A.11: Confusion Matrix of untrained environment (Corridor) - Phase
difference only

Predicted

Walk Clap Fall Sit

Walk 9 0 0 0
Clap 0 9 0 0
Fall 0 0 6 0
Sit 0 0 2 4

Table A.12: Confusion Matrix of untrained environment (Corridor) - Amp-
litude & Phase difference

Predicted

Walk Clap Fall Sit

Walk 9 0 0 0
Clap 0 9 0 0
Fall 1 0 4 1
Sit 0 0 1 5

Table A.13: Confusion Matrix of untrained environment (Bedroom) - Amp-
litude only

Predicted

Walk Clap Fall Sit

Walk 9 0 0 0
Clap 0 9 0 0
Fall 0 0 6 0
Sit 0 0 2 4

Table A.14: Confusion Matrix of untrained environment (Bedroom) - Phase
difference only
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Predicted

Walk Clap Fall Sit

Walk 9 0 0 0
Clap 0 9 0 0
Fall 0 0 6 0
Sit 0 0 1 5

Table A.15: Confusion Matrix of untrained environment (Bedroom) - Amp-
litude & Phase difference
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