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Abstract

Autonomous motion planning requires the ability to safely reason about learned trajectory predictors,
particularly in settings where an agent can influence other agents’ behavior. These learned predictors
are essential for anticipating the future states of uncontrollable agents, whose decision-making process
can be difficult to model analytically. Thus, uncertainty quantification of these predictors is crucial for
ensuring safe planning and control. In this work, we introduce a framework for interactive motion
planning in unknown dynamic environments with probabilistic safety assurances. We adapt a model
predictive controller (MPC) to distribution shifts in learned trajectory predictors when other agents react
to the ego agent’s plan. Our approach leverages tools from conformal prediction (CP) to detect when
the other agent’s behavior deviates from the training distribution and employs robust CP to quantify
the uncertainty in trajectory predictions during these agent interactions. We propose a method for
estimating interaction-induced distribution shifts during runtime and the Huber quantile for enhanced
outlier detection. Using a KL divergence ambiguity set that upper bounds the distribution shift, our
method constructs prediction regions with probabilistic assurances in the presence of distribution shifts
caused by interactions with the ego agent. We evaluate our framework in interactive scenarios involving
navigation around autonomous vehicles in the BITS simulator, demonstrating enhanced safety and
reduced conservatism. The code of this work will be made publicly available '

1 https://github.com/mayank176/robust_CP_interactive_planning
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Introduction

1.1. Problem Statement

The increasing adoption of autonomous systems across various domains such as autonomous vehi-
cles (AV’s), drones, legged robots, manipulators, and collaborative robots- has sparked a significant
push to make these systems safe, capable of reasoning under uncertainty, and able to learn and adapt
to unstructured environments. Among these systems, AV’s (see Figure 1.1) have garnered substan-
tial investment and attention due to their significant potential to impact mobility and the environment
ranging from improved road safety [54], reduced fuel consumption [5] to economic advantages [19]
and enhanced on-demand mobility solutions [80]. Recent industry surveys have identified consumer
safety as a primary bottleneck to the widespread adoption of AV’s [17]. This challenge has prompted
extensive research and development efforts in both academia and industry [37], [21], [63], [71] [55],
[85], [94], [46], [52], focusing on ensuring safe operations of AV’s in unstructured environments. A key
aspect of this safety challenge lies in the ability of autonomous systems to reason about and interact
safely with other agents in dynamic environments [38], [47], [61].

Traditional approaches to motion planning for autonomous systems have relied on predict-then-plan
schemes. This involves first predicting the motion of other agents using either heuristic [77], [32], or
learned models [1] and then creating a plan for the ego agent based on these predictions. However,
these methods do not consider the influence of the ego agent’s plan on other agents’ behaviors, leading
to overly conservative behaviors that have been shown to lead to unsafe situations [76]. Recent works
have addressed this limitation of predict-then-plan schemes through the combination of learning-based
and optimization-based methods in planning and control frameworks. These works aim to leverage the
expressivity of learning-based methods to capture interactions [60] and the constraint satisfaction guar-
antees of optimization-based methods [49]. Notable approaches of this methodology in industry include
Waymo'’s use of transformers for behavior prediction, integrated with an optimization-based plannerin a
receding horizon fashion [84] as well as Tesla’s tree-based planner to model intra-object dependencies
(i.e., interactions), integrated with a neural planner trained on offline optimized trajectories [70].

Figure 1.1: Waymo full self-driving car [28]
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While the above methods have made significant progress, a critical gap remains in providing proba-
bilistic safety assurances for interactive planning. Existing methods for uncertainty quantification in
interactive planning assume specific agent behavior models or predictors. These approaches restrict
the type of disturbances and prediction models considered, lack safety assurances, and show overly
conservative unsafe behavior. Moreover, current state-of-the-art prediction models capture interac-
tions through ego-conditioning, where the prediction of other (non-ego) agents is conditioned on the
ego agent’s motion plan. However, integrating ego-conditioned models with optimization-based plan-
ners is computationally prohibitive, making it challenging to design planners that can leverage these
prediction models and maintain the constraint satisfaction guarantees of optimization-based methods,
which are vital for providing safety assurances.

‘ ‘ ]
l ,y
train safer models and

design safer subsystems
less prone to erratic behavior

Robust Training Uncertainty Quantification

T 3-—-
, 2
.
catch component-level failures early . x t+1 b

and mitigate system-level safety
consequences

00D / Anomaly Detection Output-level Monitoring Failure Mitigation

test systems rigorously, a ) % . —
and continuously adapt

to new hazards and risks using real-
world data

V&V / Testing Data Curation Model Refinement

Figure 1.2: Pillars of Al Safety Research for Safety-Critical Robot Autonomy, adapted from [56]. This thesis proposes methods
that integrate uncertainty quantification and anomaly detection (highlighted in green) in interactive planning frameworks to
provide safety assurances.

To address these challenges, we focus on using methods from uncertainty quantification and anomaly
detection to provide safety and adaptability of planners under interactive scenarios (see Figure 1.2). In
particular, this thesis proposes to bridge this gap by developing an MPC-based framework for safe inter-
active planning with valid safety assurances. We use tools from conformal prediction (CP), a statistical
tool that rigorously quantifies uncertainty in complex deep-learned trajectory predictors without making
assumptions about the data distribution or predictive model [78], [62]. By incorporating trajectory pre-
diction regions to design safety constraints, CP has been established as an effective framework in plan-
ning tasks [43], [23]. However, CP assumes exchangeability between train and test distributions i.e.,
such that there is no distribution shift between the distributions. As current training data predominantly
captures well-structured, non-interactive behavior [83], [33], real-world test scenarios often involve in-
teractive behaviors where the ego agent’s plan can influence other agents’ behaviors. This discrepancy
necessitates a method to quantify uncertainty in trajectory predictors under interaction-induced distri-
bution shifts. To achieve this, we use CP to quantify uncertainty in learned trajectory predictors under
interactions. To ensure safety amid interaction-induced distribution shifts, we perform outlier detection
using CP to detect when the other agent’s behavior deviates from the training distribution and employ
robust CP methods [48] to capture nearby distributions upper bounded by an KL divergence for these
outliers. This approach allows us to maintain safety assurances when encountering behaviors that de-
viate from the training distribution due to interactions. We summarize our research questions in Section
1.2, contributions in Section 1.3, and provide a formal problem formulation in Section 3.1.
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1.2. Research Questions

» What techniques can quantify the uncertainty of complex deep-learned trajectory forecasting
methods, and how can we detect outliers reliably?

In particular, we focus on using techniques from conformal prediction (CP), an uncertainty quan-
tification tool that makes no assumptions about the data distribution or predictive model. We
explore variants of CP, and how they can be used to quantify uncertainty in learned trajectory
predictors under interaction-induced distribution shifts.

* How can learning-based trajectory forecasting methods be integrated into interactive motion
planning frameworks with probabilistic safety assurances?

We focus on making minimal assumptions on the predictor type to create a framework that can
be compatible with a wide range of predictive models, including both ontological and phenomeno-
logical methods.

How can we model the interactions between agents when the counterfactual motion of other
agents is unknown?

Given the challenges of predicting interactions, we focus on how we can develop an explainable
model that captures interaction-induced uncertainty at a distributional level rather than at a (single)
trajectory level.

1.3. Contributions

We develop an adaptive MPC-based framework for safe interactive planning that accounts for
distribution shifts in learned trajectory predictors resulting from ego-conditioning. Our approach
leverages tools from conformal prediction to detect and quantify these shifts, enabling the planner
to adapt during runtime.

We propose a method for estimating interaction-induced distribution shifts during runtime and a
Huber quantile for enhanced outlier detection.

We empirically show that our framework works in interactive scenarios involving navigation around
autonomous vehicles in the Bi-level imitation for traffic simulation (BITS) simulator [87].

1.4. Outline

The remainder of this thesis is organized as follows: Chapter 2 provides a comprehensive overview of
related works in interactive planning, planning with safety assurances, motion prediction, and outlier
detection techniques. Chapter 3 formally introduces the problem addressed in this thesis, it then intro-
duces the reader to conformal prediction (CP), an uncertainty quantification tool, and presents methods
for applying CP in settings involving distribution shifts and finite-horizon trajectories. Chapter 4 provides
the main contribution of this thesis, proposing a safe interaction-robust model predictive control (MPC)-
based planner. This chapter details a framework that encompasses enhanced outlier detection using
the Huber quantile, a technique to estimate interaction-induced distribution shifts, and an MPC that
incorporates these elements to ensure safety assurances for interactive planning. Chapter 5 presents
and analyzes simulation results using the Bi-level Imitation for Traffic Simulation (BITS) simulator. This
chapter discusses implementation details and provides both qualitative and quantitative analyses of the
results. Chapter 6 concludes the thesis by summarizing the key findings and proposing future research
directions and open problems in the field. Appendix A includes the research paper resulting from this
thesis work.



Related Work

2.1. Interactive Planning

Initial approaches in interactive planning include modeling the behavior of other agents with Gaussian
uncertainty without considering the influence of the ego agent. However, ignoring the influence of
the ego agent was found to result in conservative plans, as shown in the freezing robot problem [76].
To take into account interaction, approaches employ joint optimization via Gaussian processes [76].
Furthermore, interaction potential terms are incorporated with Gaussian processes to capture interac-
tions [75]. Additionally, other works explore artificial potential fields [86] and reinforcement learning to
capture interactions in dense crowds [11].

Reachability analysis is another approach for modeling multi-agent interactions [51]. This method pro-
vides a framework for determining possible system states given specific dynamics and time horizons.
Forward reachability, or open-loop safety, has been utilized to identify potential states of other agents,
allowing the ego agent to plan collision-free trajectories [3]. While this approach offers safety assur-
ances, it often leads to conservative behaviors and can result in planning infeasibility, particularly over
extended time horizons. Backward reachable sets, or closed-loop safety, which involve backward
propagation of joint agent dynamics, can mitigate some conservatism but are often computationally
intractable.

Other model-based approaches use game theory to formulate coupled trajectory optimization prob-
lems, assuming the availability of objective models for all agents. Such approaches are well-known
for reasoning about bi-directional interactions. However, they assume simplified behavior models such
as the rational model [58] or noisy Boltzmann models [27] and are computationally prohibitive when
scaled to more agents. Other works have explored partially observable Markov decision processes
(POMDP) to model interactions; however, it can result in an intractable partially observable stochastic
game (POSG) [59].

2.2. Motion Planning with Probabilistic Safety Assurances
Approaches for providing probabilistic safety assurances in planning frameworks typically attempt to
quantify uncertainty in other agents’ motions. A common assumption is that an agent’s motion is a
random process, and its distribution can be determined provided independent and identically distributed
(i.i.d.) samples of trajectories.

Various methods have been developed to address this challenge. Scenario optimization [10] computes
a predicted set for other agents based on previously observed scenarios, which are then formulated
into chance constraints. These chance constraints have been applied using various models, including
Gaussian process models [44], Gaussian uncertainty [93], and arbitrary uncertainty distributions [31].
Other approaches have leveraged the access to human-in-the-loop datasets of driving behaviors to
solve mixed integer linear programs to find the minimum area set that contains trajectories within a
given confidence level [24]. Similarly, quantile regression has been used to learn bounds over trajec-
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tory datasets for a specified confidence level, which are then incorporated in a Tube MPC scheme [25].
Additional techniques for generating bounds on trajectory prediction models include post-bloating, sup-
port vector machines, and conformal prediction as shown in [14]. Fundamentally, these methods can
be viewed as addressing a classification problem, aiming to ensure that 1 - § of predicted trajectories
should be within some learned bounds [16].

Recent works have focused on using conformal prediction (CP) to provide safety assurances. Linde-
mann et al. [43] use CP to construct prediction regions for learning-based trajectory predictors (see
Figure 2.1) and use these to design a model predictive controller that uses these prediction regions as
collision avoidance constraints. This framework provides probabilistic safety assurances over the task
horizon by using Boole’s inequality. However, this method is conservative and results in larger predic-
tion regions for longer prediction horizons that can potentially make the MPC infeasible. Yu et al. [89]
extended the work from [43] to further reduce the conservatism of prediction regions by a normalization
technique inspired by [18]. In another method to reduce conservatism, Tonkens et al. [74] use copulas
to construct prediction regions for longer horizons. Taking into account general distribution shifts, Dixit
et al. [23] use adaptive CP to construct the prediction regions but only provide asymptotically valid
guarantees [29], [30]. We note that the aforementioned works provide safety assurances over the task
horizon. Additionally, these methods do not guarantee planner feasibility, besides recent work that
provides feasibility guarantees with a shrinking-horizon framework, where the horizon extends to the
end of the mission and is solved at each time step [65].

Figure 2.1: Safe planning framework using CP regions (blue circles) to quantify the uncertainty of learned trajectory predictors
[43].

Other methods that address distribution shifts [20] propose a method that can detect general distribu-
tion shifts using out-of-distribution (OOD) detection with an ensemble of multi-layer perceptrons (MLPs).
They then use a conservative reachability-based fallback controller when such shifts are identified.
However, their approach uses simplified MLPs that don’t represent SOTA trajectory forecasting meth-
ods [60], [90], making it difficult to know if this OOD method would translate to SOTA models in a
computationally efficient manner as they use an ensemble of predictors. In another line of work, Leke-
ufack et al. [42] introduce conformal decision theory, an approach that couples prediction uncertainty
with system control through a risk notion adjusted by a conformal control variable \. Rather than us-
ing prediction regions for navigation, the method employs X to inform the controller. However, this
approach may still lead to conservative actions and requires careful parameter tuning.

Other works have explored different aspects of the planning problem. Muthali et al. [53] have con-
structed reachable sets calibrated with CP. Sun et al. [68] focus on uncertainties in the dynamics
model and propose using CP with diffusion dynamics models in offline reinforcement learning tasks.
In the context of run-time monitors, Zhao et al. [91] propose monitoring algorithms using robust CP
[48] under signal temporal logic (STL) tasks for general distribution shift, though the method assumes
a worst-case shift at all times without adapting to actual distribution shifts during test time. Other works
propose conformal predictive safety filters [67] for reinforcement learning which ensures the learned
policy avoids the CP regions, and Luo et al. [45] use CP to detect unsafe situations with a guarantee on
the false negative rate. As a result, the following challenges remain: ensuring planner feasibility while
providing safety assurances, adapting to real-time interaction-induced distribution shifts, and scaling
outlier detection and/or OOD detection methods to more sophisticated trajectory forecasting models.
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2.3. Motion Prediction

Trajectory forecasting methods have been extensively studied in literature and can be broadly cate-
gorized into ontological and phenomenological methods. Ontological methods capture other agents’
interaction dynamics by assuming they strongly tend to avoid collisions (i.e., agents are cooperative).
The optimal reciprocal collision avoidance (ORCA) [7] [2], the social force model [32], the intelligent
driver model [77], and the interaction potential for Gaussian processes [75] are examples of ontologi-
cal methods. An advantage of these methods is that they explicitly derive interaction dynamics, making
them explainable. Such models work well for short time horizon (<0.5s) trajectory predictions. However,
a drawback of these methods is that they do not consider interaction history and scene context and
only use the current state to model interactions, making them unsuitable for longer horizon predictions.

On the other hand, phenomenological methods consider deep-learned models to forecast agent tra-
jectories [1], [60], [90]. Methods have been proposed that produce single (unimodal and deterministic)
trajectory predictions [1] and also multiple (multimodal and probabilistic) trajectories [60]. These can
be further categorized as agent-centric or scene-centric models, which predict trajectories of other
agents separately or jointly, respectively. Deep-learning models have been shown to provide better
closed-loop motion predictions for longer horizons compared to ontological methods [87]. However,
integrating such models into planning and control frameworks presents challenges. These include a
lack of explainability, uncertainty in model training (epistemic uncertainty), and complexity in represent-
ing the distribution of other agents’ motion from finite data (aleatoric uncertainty) [16]. Furthermore,
such models make assumptions on the distribution of agents, such as Gaussian Mixture Models [60].
While scene-centric predictions capture more realistic interactions through joint trajectory predictions,
they tend to be more computationally expensive as the predictions cannot be parallelized. Moreover,
a current limitation of most datasets is that they mostly contain well-structured, goal-directed, and co-
operative motion [57]. As these datasets may not encompass all possible behaviors [83], the efficacy
of prediction models trained on such data in interactive scenarios is unclear.

2.4. Outlier Detection

Outlier detection methods aim to identify unusual data points or patterns that deviate from normal
behavior. Laxhammar et al. [40] propose three explanations for anomalies: rare samples from the
same distribution as training data, distribution shifts between training and test data, and true anoma-
lies. There are three main approaches to outlier detection: distance-based, distribution-based, and
functional uncertainty-based methods. Distance-based methods, such as conformal anomaly detec-
tion proposed by [41], use metrics to identify outliers but can be computationally intensive for real-time
applications as they use a nonconformity score that requires all trajectories during test time. Distribution-
based methods compare test data against training data distributions, such as the 'p-quantile anomaly’
[26] and the use of exchangeability martingales [9] to detect distribution shifts.

Functional uncertainty-based methods address the limitations of distance and distribution-based ap-
proaches by considering how changes in input affect the output, which is particularly important for
closed-loop control systems. These methods aim to assess how well the training data informs predic-
tions for new inputs and often involve equipping trained models with out-of-distribution (OOD) monitors.
One recent approach by [64] uses the Fisher information matrix to determine how a model's param-
eters influence its output distribution, offering comparable performance to baselines while reducing
computational burden for real-time applications.



Preliminaries

3.1. Problem Formulation
Consider a discrete-time dynamical system:

Xin = (X} ) 3.1)

where X} € X C R" and u} € & C R™ denote the state and the control input of the agent i € {e, 0}
at time ¢ € N U {0}, respectively. Here, e represents the ego (controllable) agent and o represents
the other (uncontrollable) agents. The sets &/ and X denote the set of permissible control inputs and
the workspace of the agent, respectively. The measurable function f? : R® x R™ — R™ describes the
agents’ dynamics. Let Xy := (X?1,...., X7 y) € RN™ refer to the joint state of N other agents at time ¢,
such that X7, is the state of agent j at time ¢. The joint other agent trajectories X¢.,. is sampled from
an unknown distribution D that obeys the dynamics f°:

X° = (X3, X{,..., X)) ~D

Assumption 1 We have access to a dataset D := {X°(1) ... X°(5)} containing K trajectories where
X0 = (X¢D XD . x2%) are drawn independently and identically distributed (i.i.d.) from a
training distribution D, i.e., X°() ~ D.

Remark 3.1.1. Assumption 1 is standard in prior work [43], [23], [89], [24], [14], [31] and not restrictive in
practice as current autonomous driving datasets typically contain data from certain geographic regions
and mostly contain well-structured, goal orientated, non-interactive trajectories [8], [67].

Assumption 2 At test time, the ego agent’s state Xy influences the behavior of the N other agents,
shifting their trajectory distribution from the training distribution D to an unknown, ego-conditioned dis-
tribution D°. The resulting test time trajectories for some time 7' are denoted as X, and are sampled
from the unknown distribution D¢:

X2 = (X7, X7(XG), ..., XP(XG, XT, ..., X{ ) ~D°

where these test time trajectories capture the influence of the ego agent’s state on the other agents’
trajectories.

Remark 3.1.2. Assumption 2 aligns with established works in both trajectory forecasting [60], [90], [1]
and planning [12], [15], [13], where they assume that the ego agent’s plan can influence the neighboring
agents’ plan. This interdependence is particularly evident in trajectory forecasting research, where the
distribution of other agents’ is learned by conditioning their predicted trajectories on the ego agent’s
anticipated plan. Moreover, this interdependence is also observed in many real-world interactive driving
scenarios such as merging, lane changes, and yielding where the plans of agents are influenced by
one another.
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Assumption 3 For any time ¢ > 0, the Kullback-Leibler (KL) divergence between the test distribution
D¢ and training distribution D can be bounded by an ego-state-dependent function (X7 ), where X7 is
the ego agent’s state. For notational simplicity, we denote the bound as e:

DKL(DEHD) S €

It is important to note that this bound is not uniform across all ego agent states but varies with X7. We
define the ambiguity set Pk, (D) centered at D with radius e as:

,PKL,E(D) = {,De s.t. DKL('DEH'D) < e}

This set captures all distributions D¢ within an e KL divergence radius from the training distribution D.
The value ¢ is unknown a priori and variable. It can be estimated during runtime when the ego agent
state X7 is known. We make no assumptions on the form of the distributions D and De.

Remark 3.1.3. Assumption 3 is applicable in many practical scenarios involving autonomous vehicles.
It models situations where other agents generally follow their expected behavior (D) but may deviate
(resulting in D¢) in response to the ego agent’s state as agents tend to strongly prefer avoiding collisions
(i.e., cooperative). The use of the KL divergence to quantify shifts is also consistent with approaches
in related work, where the KL divergence has been used to measure the degree of influence an agent
has over another [73] and mutual information as an indicator of forthcoming collisions [50].

Formally, we present the problem this thesis attempts to solve in Problem 1:

Problem 1 Given the system in (3.1), access to trajectories X°(9) from a distribution D, access
to a trajectory X °:¢ from distribution D¢, the KL divergence D (D¢||D) < ¢ valid for the current
ego agent state X7, and a failure probability 6 € (0,1), our goal is to compute control inputs g
and trajectory X¢ such that the collision avoidance constraint ¢ : R x R™V — R is satisfied with
a probability of at least 1 — ¢ for all time ¢:

P(c(X7, X7°) >0,V € {0,...,T}) > 146 (3.2)

In this work, we propose an approximate solution to Problem 1. Given that the actual test distribution
is unknown, a conservative approach would be to assume a uniform bound on the distribution shift that
is valid for all ego agent states and that holds for all time steps. However, this could lead to overly
conservative behavior, leading to infeasibility of the problem that is typically seen in robust methods
[92].

Therefore to address Problem 1, we propose an approach that dynamically adapts to distribution shifts
during test time. Our method combines:

» Real-time outlier detection for distribution shifts using conformal prediction (CP) techniques
+ Estimation of the interaction-induced distribution shift with the Kullback-Leibler (KL) divergence

» Robust CP to update collision avoidance constraints to take into account the estimated interaction-
induced distribution shift

» An adaptable model predictive control (MPC) framework that incorporates these robust prediction
regions

This approach allows us to provide safety assurances while adapting to varying levels of interaction-
induced distribution shifts. The following subsections (3.2 and 3.4) in this chapter detail each com-
ponent of our methodology. In Chapter 4, we propose an interaction robust planner to approximately
solve Problem 1.

3.2. Conformal Prediction

Let {R®}*  be k + 1i.i.d. random variables. We denote the nonconformity score, also known as the
residual R(). This score is commonly defined as R := ||Z() — (X )||,, where the predictor is a
mapping p : X — Z® from the input space X to the output space Z(*). A large nonconformity
score indicates a poor predictive model. Our goal is to construct a prediction region C for R(*) based
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on {RM}k_  such that the random variable is contained in the prediction region C' with a probability
1 — 0, where 6 € (0,1) is a user-specified failure probability [78], [62]:

P(RY <C)>1-96 (3.3)

Using the Quantile Lemma, we construct the prediction region C' using the finite-sample corrected
(1—6)th quantile of the empirical distribution of { R®)}%_, (Lemma 1 [72]). Firstly, the quantile is defined
as:

Quantile(1 —0,R) =inf{z:P{Z <2} >1-0},Z~R (3.4)

where Z is the empirical distribution of { R)1%_, constructed using Dirac distributions ;) centered at
R We then determine the quantile, where [-] is the ceiling function:

K+1)] 1
C — Quantile < [a 5)( + Z S >> (3.5)
Furthermore, two requirements must be met before determining C. The quantile must be bounded and

the minimum number of data points K is required such that:

—5)1((K+1)1 - 36)

0< 1

Provided that the requirement (3.6) is satisfied, we sort {R(), ..., R} in a non-decreasing order and
let R+ .= co. We then have C' := R to be the pth smallest nonconformity score where p :=
[(k+1)(1—9)]. When requirement (3.6) is violated, C' = cc.

350 ‘1

300 A i/ C
a 250 i
o i
L 200 |
=3 |
9] |
T 150 !
100 i
50 4 ‘i
0 ?

[} 1 2 3 4 5 6
Residuals
Figure 3.1: Histogram of residuals. C is chosen as the [(1 — &)(n + 1)] smallest of {R(1), ..., R(") oo}

It is important to note that CP provides marginal coverage guarantees and does not imply conditional
coverage. Specifically, the probability bound holds in expectation over the input space and may not
hold uniformly across all subsets of the input space. Additionally, CP’s validity also holds when the non-
conformity scores are exchangeable. Particularly, exchangeability is formally defined as: (X;,Y;)™,
are exchangeable if, for any permutation o of [1,n]:

(X0, Y1),y (X, Vo)) 2 (Xo1)s Yor(1)s -+ (Xon)s Yoim)) - (3.7)

For example, Z; and Z, are exchangeable if (7, Z5) = (ZQ, Z1). In other words, rearranging the labels
does not alter the probability distribution.

Remark 3.2.1. CP requires exchangeability at minimum, a less stringent assumption than i.i.d. Specif-
ically, i.i.d. refers to conditions where the distribution remains constant, such that all samples are taken
from the same probability distribution, and that each sample does not influence other samples (i.e.,
the sampled random variables are independent). Exchangeability relaxes the second requirement of
i.i.d. data as it allows for dependencies between samples that do not affect the overall joint probability
distribution when the samples are re-ordered.
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However, in settings of distribution shift where the calibration residuals {R(¥}*_, are drawn from a
distribution R and the test sample R(?) is drawn from a different distribution R¢, the above methodology
makes no claims of validity as the exchangeability assumption is not satisfied. This motivates the
following robust variant of conformal prediction.

Lemma 1. Robust Conformal Prediction [48] provides valid prediction regions under sufficiently small
distribution shifts between the calibration and test data. The distribution shift is typically quantified using
the f-divergence: Given a closed convex function f : R — R satisfying f(1) = 0 and f(¢) = +oo for
t < 0, the f-divergence between probability distributions R¢ and R on a set Z is

DsRR) = [ (G ) amee) (3.8)

where Z is the support of R, and & dR( ) is the Radon-Nikodyn derivative of R¢ with respect to R.

Jensen’s inequality guarantees that D;(R°||R) > 0 always. Examples include f(z) = zlog z, which is
the KL divergence, and f(t) = $(¢t — 1)?, which gives the chi? divergence.

We denote R¢ and R as the test and calibration residual distributions, respectively, where RO ~ Re
and {R'}X, ~ R, such that their f-divergence D;(R¢,R) < e. The adjusted prediction region Cin
P(R(® < C) > 1 -4 is computed using an adjusted confidence level 4 that takes into account a set of
distributions P, (R) := {R° s.t. D;(R°||R) < €} centered around the calibration residual distribution
R (see Corollary 2.2 [48]):

C := Quantile, ;(RW,..., R, (3.9a)
b:=1—g ' (1-6,) (3.9b)

that is obtained with the following convex optimization problems:

S :—1g<< > 11— )) (3.10a)

9(B) :==inf{z € [0,1] | Bf (; (3.10b)

g~ (r) =sup{B € [0,1] | g(B) (3.10c)

where the function g(5) (3.10b) solves a constrained optimization problem. It seeks the smallest value
of z that satisfies the f-divergence constraint between the calibration and test distributions, effectively
mapping a nominal confidence level 3 to a robust confidence level z while considering potential distri-
bution shifts. Complementing this, g~ 1(7) (3.10c) serves as the inverse of g(3), identifying the largest
B that yields a g(8) value not exceeding 7. We also note that robust CP provides prediction regions that
take into account distributional uncertainty as they are valid for all distributions within the KL divergence
radius. This differs from doing split CP on the test data samples if available, which would only provide
guarantees on the test data distribution.

\/
/—\
| =
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Robust CP assumes a known, fixed amount of shift . However, our approach addresses scenarios
where the shift ¢ is variable and unknown. In our setting, the shift ¢ to be robust against depends on
the level of influence the ego agent has on the other agents. Therefore, this necessitates an adaptive
approach to determining e during run-time.

In addition, robust CP presents requirements for the amount of calibration data K. From (3.9b) and
(3.10a) we require the following holds to compute the adjusted quantile 1 — §:

0< (1+I1{) g l1-0)<1 (3.11)

Remark 3.2.2. Robust CP has been shown to provide the right coverage level for arbitrary distribution
shifts. However, the challenge lies in estimating the amount of distribution shift to be robust against.
We present an approach to estimate the KL divergence in Lemma 3.
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Remark 3.2.3. The data requirement for (3.9), as presented in (3.11), implicitly constrains the permissi-
ble distribution shift. This constraint arises from the relationship between the original failure probability
0 and the adjusted failure probability 5. As § decreases, the upper bound on ) (which must remain less
than or equal to 1 for quantile computation) becomes more restrictive. Consequently, this limits the
extent of distribution shift that can be accommodated while maintaining the desired failure probability
(see Figure 3.2).

Remark 3.2.4. It has been shown that robust CP can be solved with binary search over feasible 5 €
[1, 1] with accuracy € in time log 1_77 [48]. However, even for low accuracy values, this would not be
feasible in an MPC framework. We later show that we interpolate robust CP § values offline and use
them during planning.

Robust Conformal Prediction for varying &
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— 0=02
— 6=0.25
— 6=0.3

0.825 4

0.800
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&

Figure 3.2: Robust CP calculated for varying ¢ with KL divergence. We note that increasing ¢ reduces the permissible
distribution shift e

While Assumption 3 bounds the trajectory-level distribution shift by ¢, estimating this shift at the resid-
ual level is more efficient due to its one-dimensional nature. The data processing inequality [6] allows
us to compute the KL divergence on the nonconformity measure level, which is computationally ad-
vantageous and potentially provides tighter bounds as we directly estimate the distribution shift in the
nonconformity score metric that we are interested in compared to estimating distribution shifts on multi-
dimensional trajectories.

Lemma 2. Data Processing Inequality [6]: Given a nonconformity measure R : X — R, X*¢ ~ D¢ and
X° ~ D, let R¢ and R follow a distribution R¢ and R such that they are the push-forward of D¢ and D,
respectively. It holds that the f-divergence between two distributions does not increase when pushed
through R:

Dy(D*[D) > Dy (R||R),
D(D¥|D) < e Dp(R|[R) < ¢

Therefore, to determine ¢ for solving (3.9) and (3.10), we compute the distribution shift at the residual
level rather than at the trajectory level. As we make no assumptions on the data distribution, the
approach requires samples from both the calibration data distribution R and test residual distribution
R¢. However, Assumption 3 implies that we lack a priori access to test residuals, necessitating a
method to estimate these residuals and, consequently, the current KL divergence for use in robust
CP. We elaborate on our proposed framework for determining samples from R¢ in Section 4.3. Given
samples from both R and R¢, we propose using the following KL divergence estimator that can operate
efficiently in real-time.



3.3. k-NN-based KL Divergence Estimator 12

3.3. k-NN-based KL Divergence Estimator

Lemma 3. k-NN Based KL Divergence Estimator [81], [82]: We consider the following samples:
{R{,..., Ry} drawn iid. from R¢ and {Ry,..., Ry} drawn iid. from R. Let n; = [|Rf — R, [lx
be the absolute difference between RS and its k-nearest neighbor (k-NN) in {Re}ﬁgl Particularly, the
k-NN of Rf in {Rf,..., R{_,,Rf ,,..., Ry} is Rf,, where the indices i(1),. (z —1),i(i +1),...9(L)
represent an ordering of all other pomts based on thelr distance from Rg:

I[RY — Ryl < [|Rf — Rip)lh < ... <|Rf — Ryp)lh

Similarly, v; := ||R¢ — R; k)Hl is the absolute difference between R¢ and its k-NNin {Ry,..., Ry }. The
kE-NN of R¢ in {R; .. RM} is R, where i(1),...,i(n) is such that:

IR — Ryl S [IRF — Ripyllh < - <R — Rian 11

The k-NN-based K L-divergence estimator is defined as follows [81], [82]:

Drr(Ré||R) =

L .
Z (0) j +log Ml (3.12)
Z

M&

It has been shown under mild regularity conditions that the £-NN divergence estimator (3.12) is asymp-
totically unbiased (Theorem 1 [82]):

lim E[Dgr(R||R)] = Dxr(R||R)
L,M—oc0

Additionally, the estimator is mean-square consistent (Theorem 2 [82]):

. }\}IrgooE[(DKL(ReHR) Drr(R°||R))?) =

We note that the samples must be drawn i.i.d. to prove mean-square consistency. Below we run the KL
divergence estimator using pytorch for an example computing the KL divergence for two exponential
distributions:

KL Divergence and Computation Time vs Sample Size
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Figure 3.3: Estimator for Dy 1, (Ezp(1)||Exp(2)) with varying sample size. (Both distributions are sampled with the same
number of samples), k=50
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3.4. Conformal Prediction for Finite-Horizon Trajectories
We now use CP to obtain prediction regions for predictions denoted X’f‘f

Remark 3.4.1. This methodology treats each trajectory as an independent observation, thereby main-
taining the i.i.d. assumption across trajectories while acknowledging the temporal dependence of time
steps within each trajectory [69], [43], [18], [89].

In the multi-step setting, the goal is to construct prediction regions over a task horizon 7" with 1 — §
guarantee. Formally, we want to construct prediction regions defined by C;, where 7 ¢ {t +1,...,T}
is a future timestep. Let a dataset D contain trajectories of the other agents as stated in Assumption
1. Let Dyygin C D, Deqi C D, and Dypgin N Deqi = 0. Consider a function PREDICT that is trained on
observations (Xg, ..., X?) from Dy, and outputs predictions (X260+1|t7 . Tlt) With the following
predictions, we define the nonconformity scores as introduced in Section 3. 2 with a normalization term
o-t,; > 0 determined using a subset of the training data D;4»,1 to conform to the exchangeability

assumption in CP. We normalize with the maximum prediction error for an individual timestep. The

nonconformity score for all future times 7 € {¢t + 1,..., T} and other agents j is defined as [89], [18]:
XO(?) _
Rg—l‘)t (ma)x H T,j T|tJ||
T,7)€ (o
L TY 21N It.4 (3.13)
- o(i)
Tritg = A, X7 = X2 JII

This approach enables us to achieve more efficient prediction regions for each agent compared to using
Boole’s inequality [43], [23]. Provided the nonconformity scores Rg)t determined using D.,;, we can
construct prediction regions for finite-horizon trajectories (i.e., over multiple future predictions) in an
open-loop and closed-loop setting. The open-loop ensures the validity of all 7-step ahead prediction
regions (i.e., 7]|0) while the closed-loop ensures the validity of all one-step ahead prediction regions
(i.e., t + 1Jt). Particularly, the following two statements hold for open-loop and closed-loop regions,
respectively:

o(1)
P(IX75 — T|0;|| < CoLor05; (3.14)
(7’7] = {t—i—l,,T} X {1,,N}) Z 1-0
o(i)
(||Xt+1\t i Xt+1|tJH sl (3.15)

(t, J)e{o,..., —1}x{1,....,N})>1-34

where C¢yp := R and Cor = R ; are the pth smallest closed loop and open loop nonconformity
scores, respectlvely, with p := [(k + )( —9)].

However, in settings of interaction-induced distribution shift such that during test time the other agents
are under some level of influence from the ego agent, the prediction regions in (3.14) and (3.15) are
not valid. To address this, we require an estimate of the distribution shift ¢ which depends on the test
nonconformity scores. By solving (3.9) and (3.10), we can then obtain updated prediction regions C¢,
and Co, that remain valid under the specified distribution shift. However, evaluating the nonconformity
score defined in (3.13) at test time ¢ is challenging, as only states (X{,..., X) are observable
and not the future states (Xt"fl, ..., X%°). To overcome this limitation, we introduce the time-lagged
nonconformity score, detailed in Section 4.2.

Remark 3.4.2. We note that as o, ; is computed using data from the proper training set, the maximum
prediction error could be less than what could be observed in in-distribution data not trained on. This
is because the prediction model is trained to minimize the prediction error (i.e., the residuals). Conse-
quently, this approach leads to an underestimation of the normalization factor o ., ;, which results in a
slightly conservative outcome.
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Figure 4.1: Proposed framework that employs robust CP to take into account interaction uncertainty due to the ego agent’s
influence on other agents when an outlier is detected.

In this thesis, we propose an interactive planning framework that uses robust CP for learned trajectory
predictors to address interaction uncertainty when outliers are detected (see Figure 4.1). The approach
uses observed data of other agents to compute test-time residuals to detect outliers, defined as scores
not contained within the prediction regions constructed with the calibration residuals. When an outlier is
detected, the prediction region is updated to adapt to the interaction uncertainty by estimating real-time
distribution shifts (i.e., KL divergence) in other agents’ behavior caused by the ego agent’s presence.
The estimated shift is used to update the prediction regions by solving a series of convex optimization
problems as defined in equations (3.9) and (3.10) to ensure 1 — § coverage under distribution shift.

Using outlier detection also addresses the planner’s computational efficiency and feasibility under distri-
bution shifts. The framework reduces computational burden in multi-agent settings by estimating shifts
only when CP guarantees with calibration residuals under-cover (i.e., when an outlier is detected),
rather than for all agents. This also benefits the planner’s feasibility by limiting changes in collision
avoidance constraints across iterations to only agents under interaction uncertainty.

Lastly, under Assumption 1 in section 3.1 we use an agent-centric prediction model that can predict
trajectories of other agents, taking into account their dynamics and semantic information, as detailed
in [87]. Our framework is compatible with both deterministic and probabilistic trajectory predictors. The
PREDICT function takes as input the observed trajectory of other agents X'/, scene information .S and

€

outputs a prediction X:it of the other agents.

14
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4.2. Outlier Detection

The proposed framework employs outlier detection using CP to identify when the observed behavior
of other agents deviates from the predicted behavior. This requires computing a nonconformity score
R* during test time to determine if it lies in the prediction region C|;, computed based on calibration
residuals defined in (3.13). An outlieris detected when k¢ > C|, However, recall that the nonconformity

score defined in (3.13) cannot be evaluated at time ¢ as only the previous states (XJ¢,..., X°) are
observable, while the future states (Xffl, e X§’e) are unknown. Therefore, we define a time-lagged
nonconformity score that evaluates the  step-ahead prediction error that was made 7 time steps ago

and is valid when t > 7:

; 1X75 = X7 ol
R® = max : 4.1)
(1.5)€ Or|t,j

{1,... T}x{1,...,N}

Furthermore, the prediction region C; is computed using the calibration residuals (3.13) and follows
a Beta distribution. With a sufficiently large calibration set, we expect the outlier rate to approach
the calibrated failure probability 5. However, it is important to note that the prediction region C, is
computed using calibration residuals from diverse driving scenarios where the frequency of certain
scenarios can be much lower than more commonly observed scenarios. Also known as the ’curse
of rarity’ [22] where the occurrence of safety-critical scenarios (i.e., scenarios in the long tail of the
distribution) are observed rarely. This imbalance can lead to epistemic uncertainty in regions of the
input space with limited data [36]. Consequently, this may lead to large nonconformity scores that lead
to conservatism while determining the prediction region C|, and thus fewer detected outliers. However,
we want a prediction region that takes into account epistemic uncertainty due to the curse of rarity. It
should be able to detect more outliers such that we leverage our proposed conservative controller that
is designed to capture distribution shifts.

Inspired by robust regression [34], we address this challenge by obtaining a less conservative prediction
region C|, for outlier detection. We use a quantile that minimizes the Huber loss to reduce epistemic
uncertainty. The Huber loss gives less weight to residuals above a threshold parameter \ by using a
linear loss and more weight to residuals below A by using a quadratic loss [35]:

. L(R®)2 if RO < )\
LRy = 2 = 4.2
AEY) {Aé(R(ZH — 1)) ifRO > A (42)

where X is commonly chosen to be M AR/0.6745 [35], with M AR denoting the median absolute resid-
ual. We note that this is a tunable parameter that can be adjusted to ensure § outliers are detected
during experiments. To compute M AR we use a subset of the training data D, 4, 2 to conform to the
exchangeability assumption in CP. To compute the Huber quantile, we substitute (4.2) in the quantile
loss function:

Lon(R®) = {((sl fxd()]?(;))\( B?()i 3 N :tf;:w Izs g (4.3)
The quantile is found by minimizing this Huber quantile loss over the calibration set of size k:
k
4 = arg mqin Z Ly (R™) (4.4)

i=1

where C¢ , := ¢ in the case the closed-loop residuals are minimized. Formally, we classify the test
residual as an outlier if R* > Ccr . The offline computation of residuals for conformal prediction is
summarized below in Algorithm 1.
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Algorithm 1 Residuals for Conformal Prediction

1: Input: Failure probability ¢, calibration dataset D4, training dataset Dy.in, prediction and task horizons H and
T, threshold parameter A

2: Output: Ccr,Cor,Ccr,n,Cor,h, Or|t

3: p = (|Doa| + 1) (1 - 0)

4: fort =0to T — 1 do > Using Training Data
5: forr=t+1tot+ H do
6:
7
8

Obtain predictions Xfl(t’) for each X°() € Dy

end for _ ,
Lo max || X2 — X2 )
9: end for
10: fort =0to 7T — 1 do > Using Calibration Data
11: forr=t+1tot+ H do
12 Obtain predictions )A(fl(t‘) for each X°() € Dy
RO [ -xe) 9
: o ¢ max, o for each X € Deal
v RO Jeef -y ot
: O & max, o] for each X" € Deq
15: end for
16: end for

17: 1?‘CDL03"~'1| — oo7R‘ODL°a'+1‘ +— 00

18: Sort R(C”L and RS)L in non-decreasing order

19: Cor + Rg)%, Cor + R(Opz

20: Compute Huber quantiles gor, and gcr, by solving (4.4)
21: Cor,n < Gor, CoL,n < GoL

4.3. Capturing Distribution Shift

Provided an outlier is detected, we propose updating the prediction regions to take into account in-
teraction uncertainty which is inherent with longer prediction horizons [24]. Particularly, we use ro-
bust CP to dynamically adapt to the aleatoric uncertainty arising from interactions with the ego agent.
This method provides prediction regions that are valid for a KL divergence ambiguity set defined as:
Prre(R) == {R° s.t. Dxr(R°||R) < €}. where R° represents the distribution of residuals at test
time under interaction, R is the calibration residual distribution, and ¢ is the KL divergence bound. To
compute the updated prediction region C the KL divergence must be estimated. However, this would
require multiple test residual samples to estimate a distribution and thus distribution shift. Furthermore,
we have access to only calibration residuals and a single trajectory prediction of the other agent.

To address this limitation, we propose using an interaction potential term to estimate the test distribu-
tion. This approach is on the basis that residuals increase in magnitude due to interaction uncertainty
leading to larger prediction errors:

Assumption 4. Let the test residuals R be a function of the calibration R residuals with the following
heuristic interaction potential to model the influence of the ego agent:

R
R = 4.5
1-— 'yexp(—#dQ) (4.5)

where d is the L? norm distance between the ego and other agents, and v and h are parameters that
determine the strength of the interaction (see Figure 4.4). This interaction potential allows us to ego-
condition M samples of the calibration residuals, providing a heuristic estimate of the test residual
distribution. We can then use this estimate to determine the KL divergence radius e on the residual
level using equation (3.12). Given the estimated ¢, we use robust CP to find the updated prediction
region C1, by solving (3.9) and (3.10). This process allows us to dynamically adapt the predictions to
take into account interaction uncertainty that can vary at each time step by computing a new estimate
€.
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4.4. Model Predictive Control

With the prior sections, we formulate an optimization problem for the ego agent given a cost function J,
the initial condition of the ego and other agents, and predictions of the other agents’ trajectories. The
objective is to compute control inputs «§ such that the collision probability with the other agents is less
than or equal to § over the task horizon T

t+H—1

min J(Xiy1,up) (4.6a)
X k=t

s.t.,

X = ¢, (4.6b)
Xgy = fo(Xgug),  Vke{t,....t+H-1} (4.6c)
up €U, Xj € X, Vke {t,...,t + H—1} (4.6d)
(X5, X76) = 0.Y(k,j) € {t,....t + H—1} x {1,..., N} (4.6e)

The optimization problem in (4.6) formulates an approach that uses robust CP prediction regions as
constraints for a model predictive control (MPC) method to compute control inputs «© over a prediction
horizon H. The objective function J in (4.6a) minimizes a step-wise cost function over the prediction
horizon H. The constraints (4.6b) set the initial condition where £¢ is the current state of the ego agent.
Constraint (4.6¢) enforces the ego agent dynamical constraints represented by f¢. Constraint (4.6d)
ensures the control inputs u® and states X*¢ remain within their feasible sets ¢/ and X, respectively.
Constraint (4.6e) enforces the probabilistic safety constraint. It utilizes the robust conformal prediction
regions for X,j’e when an outlier is detected and prediction regions from calibration residuals when no
outlier is detected. The function ¢(-,-) represents the safety criterion, for example, to ensure a safe
distance between the ego agent and the predicted states and regions of the other N agents.

The above optimization problem (4.6) is then solved by linearizing the cost, dynamics, and constraints
to solve the quadratic program in a closed-loop (receding horizon) strategy. We now summarize the
proposed interaction robust MPC in Algorithm 2:
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Algorithm 2 MPC with Robust Conformal Prediction

1: Input: Failure probability §, calibration dataset D, prediction and task horizons H and T'

2: Output: Control input u§

3: fort=0to7T —1do > Online perform planning loop
4: Sense X¢ and X;*°

5. Obtain predictions X;’If forr=t+1,...,t+H
6: if test residual from (4.1) > C¢1 5, then
7 Obtain M samples of R¢ from (4.5)
8: Obtain € using the K L divergence estimator (3.12)
9: Obtain C,; := Coro,; given e
10: else
11: Obtain Cﬂt = CCLO'T\t
12: end if
13: Calculate controls ug, ..., u5_; as the solution of (4.6)

14: Apply uy to the ego agent
15: end for




Results

5.1. Implementation Details

We evaluate our approach in interactive scenarios by simulating autonomous vehicle interactions with
other human-driven vehicles using the Bi-level Imitation for Traffic Simulation (BITS) environment [87]
with the Nuscenes dataset [8].

Remark 5.1.1. We select the Nuscenes dataset for our experiments, aligning with Assumption 1. This
choice is supported by the analysis in [33], which introduces a courtesy metric for quantifying inter-agent
interactions. In particular, the courtesy metric computes the KL divergence between an agent’s motion
with and without the presence of the ego agent. They show (see Figure 2 in [33]) that the Nuscenes
dataset contains minimal interactions among agents, thus satisfying Assumption 1.

This BITS closed-loop simulation offers a comprehensive way to evaluate our proposed approach over
replaying dataset scenes. Each simulation scene is initialized with one of the 100 test scenes from the
NuScenes dataset and then evolves forward with a policy for each agent. We select one agent as the
ego agent and control it using our proposed method. We let the remaining agents run the BITS policy.
This policy generates diverse traffic behaviors by leveraging a bi-level imitation learning framework,
which captures high-level decision-making and low-level control of human drivers (see Figure 5.1 ego
agent is one without red prediction regions and with MPC horizon plotted).

Figure 5.1: BITS simulator environment [87]

Itis important to note that the BITS environment generates diverse in-distribution behaviors. This stems
from the fact that simulation tools are limited by their training data, which can limit the scenarios they
can generate. Therefore, we test our approach by introducing out-of-distribution behaviors. Specifi-
cally, we vary other agents’ speeds by up to + 20% from the BITS policy’s planned trajectories. This
aids in creating more interactions and tests our proposed method’s adaptability to varying behaviors.
Furthermore, we also spawn new agents every 4 seconds around the ego agent. This also aids in
increasing potential interactions by creating more challenging and dense traffic scenarios.

19
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Remark 5.1.2. Generating out-of-distribution behaviors: Our approach to generating diverse behaviors
in the simulator by varying the speed of the other agents also follows from prior works [20], and [88],
where they vary the velocities of pedestrians to create out-of-distribution scenarios.

The BITS policy that the other agents follow uses three main components (see parameters in Table
5.3 and 5.4). Firstly, a spatial goal network extracts multiple goals for each other agent. Secondly, a
goal-conditioned policy generates plans to reach these sampled goals. Finally, a trajectory predictor is
used to predict the future trajectories of the neighboring agents. These components are then integrated
into a cost-minimization framework to determine the optimal action.

Our closed-loop planner uses three modules: a trajectory predictor, a high-level route planner, and
our proposed interaction robust MPC that plans the trajectory. We use the deterministic BITS predic-
tion model as the trajectory predictor without ego-conditioning. We train the model on the NuScenes
dataset [8], consisting of 1000 20-second scenes collected in Boston and Singapore with an Nvidia
4070 RTX GPU. Predictions are made by combining local features extracted from RolAlign, with global
scene features extracted from the rasterized input using a ResNet-18 ConvNet backbone (see [87] for a
detailed overview). We set the number of history and future frames to be 20 (2 seconds). We then use
this prediction model to predict single trajectories for each other agent lasting 20 frames (2 seconds).
We similarly train the BITS spatial planner to generate diverse, interactive goal poses for the ego agent.
These poses serve as a global plan for the agent to follow. We solve the MPC using Casadi [4] on a
CPU and model the ego agent with the extended unicycle dynamics model [39]:

Ti41 T + At - UVt COS(et)

Yerr| _ | ¥t t+ At - vy sin(6y) (5.1)
Vt+1 V¢ + At - Q¢ ’
0141 0 + At - wy

where z;,y; is the position, v; is the velocity, 6, is the heading (orientation), and At is the sampling
time (0.1 s). The control inputs include the yaw rate w; and the longitudinal acceleration a;. We use a
standard quadratic cost that minimizes the control effort and tracking error. Further, we constrain the
velocity, acceleration and yaw rate to: v € [—5,50], a € [—6,6], w € [—8, 8] and the cost values used in
the experiments are as follows:

Table 5.1: MPC costs

Costz | Costy | Costv | Costa | Costw
T | 5 | 1 | 05 | 2

Table 5.2 shows the key simulation parameters. Particularly, we construct CP prediction regions using
a failure probability 6 = 0.2. Our trajectory predictor predicts other agents’ trajectories for a horizon of
2 s and considers agents in a 30 m radius of the ego agent.

Table 5.2: Simulation Parameters

Failure Prediction Task Ego action | Agent Interaction
Probability ¢ Horizon Horizon | timestep Distance
0.2 \ 2s | 20s | 02s | 30m
Table 5.3: BITS simulator parameters
Table 5.4: BITS simulator cost parameters
Parameter Value
Mask drivable True Cost Weights Value
Number of plan samples 50 Collision weight 20.0
Number of action samples 20 Lane weight 20.0
Pos to yaw True Lane direction weight | 20.0
Yaw correction speed 1.0 Likelihood weight 0.1
Diversification clearance | None Progress weight 0.005
Sample True
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We evaluate the ego failure rate, which is caused by either collisions or going offroad, the average
minimum distance, average jerk, average MPC cost, constraint violations (i.e., use of slack variable
that we discuss later below), conformal efficiency, outliers detected, and updated prediction region
coverage. The ego failure rate is determined as the percentage of time steps where the ego agent is
in a collision or offroad. Conformal efficiency is defined as the average size of the prediction sets over
all 7-step ahead predictions [79]. We compare the interaction robust MPC to three baselines:

1. Safe planning in dynamic environments with conformal prediction (SPDE) [43]: in this baseline,
distribution shifts are not considered and Boole’s inequality is used to construct the finite-horizon
prediction regions. However, for a fair comparison, we use the prediction regions constructed in
Section 3.4

2. Worst-case § = 0.01: a variant of the interaction robust MPC that uses a constant worst-case
distribution shift 6 = 0.01 without outlier detection

3. Interaction robust with C,: a variant of the proposed planner that uses the closed-loop prediction
region Ccr, from (3.15) for outlier detection instead of the proposed Huber adjusted prediction
region Ccr, p, from (4.4)

We use the following ellipsoidal collision avoidance constraint that takes into account the ego agent
and other agents’ extents denoted as (L¢, W¢) and (L°,W°), respectively, and prediction regions C.
or C7; when an outlier is not detected.

(X0 - X2 (e, [1] - X))

e | L° | A We | W° | A o=

Vt>0,Vre{t+1,...,t+H}

The prediction regions C.|; are computed using the train-val subset (200 scenes) of the Nuscenes
dataset, and we compute 4891 close-loop residuals. Further, o, ; from (3.13) is trained on a subset
of the training data (100 scenes). The histogram of close-loop residuals is as follows:

Close loop residuals
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Figure 5.2: Close loop residuals

From observation, we note that the values of C, (from (3.15)) are similar at different times ¢. Therefore
we define the T-step ahead prediction region using the minimum value of C.|; across all observed t.
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Further, we introduce a slack variable for constraint (4.6e) to take into account noise in the orientation of
the elliptical constraints due to rasterization (see Figure 5.3). To determine the Huber quantile, we first
run simulations using the ground truth data to check how many outliers are detected with no distribution
shift and then tune the parameter X to ensure we detect the expected number of outliers i.e., for § = 0.2,
it is expected that on average 20% of the scene is detected as outliers under no distribution shift (ground
truth data). Lastly, we implement robust CP with interpolation to satisfy the run-time requirements of
the MPC.

5.2.

Figure 5.3: Rasterization noise alters the orientation of the elliptical collision avoidance constraint

Qualitative Results

We present the following key qualitative results that show several insights into the performance of the
different planners and prediction model:

Prediction Accuracy and Interaction Effects: We observed frequent detection of outliers near the
ego agent, suggesting a decrease in predictor performance during interactions. Interestingly,
outliers were also detected at distances where they should have minimal influence on the ego
agent’s behavior.

Impact of Historical Data on Prediction: A significant factor in reducing conservatism in prediction
regions was the number of historical timesteps used. Models trained with 20 history frames (2s)
produced notably tighter prediction regions compared to those using 10 frames (1s).

Worst-Case MPC Performance: The worst-case MPC exhibited challenges in scenarios with
neighboring agents on both sides, as the conservative prediction regions limited the availabil-
ity of feasible paths. This resulted in many instances of off-road behavior compared to the other
approaches.

SPDE Baseline Behavior: In contrast to the worst-case MPC, the SPDE baseline demonstrated
a tendency to navigate much closer to other agents. This behavior occasionally led to collisions
in certain scenarios due to insufficient maintenance of safe distances especially because of the
added variability in the other agents speed that we added to create out of distribution behaviors.

Interaction robust MPC with Cq, for outlier detection: The interaction robust MPC showed im-
proved feasibility compared to the worst-case approach, particularly in cluttered multi-agent sce-
narios. It identified static vehicles as non-outliers, allowing for planning in lanes with agents on
both sides. However, in some instances where other agents demonstrated out-of-distribution
behavior, it was not able to reach quickly to the other agents changes.

Interaction robust MPC with C¢ 1, j, for outlier detection: An enhanced version of interaction robust
MPC with improved outlier detection. capabilities maintained better distances from other agents
compared to SPDE, while showing only minor differences from the standard interaction robust
MPC. This version detected more outliers that reduced close encounters with other agents in
some scenarios. However, the increased outlier detection occasionally led to reduced feasibility
in dense scenarios, resulting in jerky or off-road maneuvers.

We note that the proposed interaction robust MPC variant using a Huber quantile for tunable outlier
detection achieved a balance between worst-case MPC and standard interaction robust MPC.
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Figure 5.4: Scene 0093, (left to right) shows the ego agent navigating around two other vehicles identified as outliers (blue
prediction regions)

Figure 5.5: Scene 0522, (left to right) shows an agent detected as an outlier and maneuver by the ego agent to avoid collision

F
- : LY

Figure 5.6: Scene 0523, (left to right) Show a roundabout scenario, where an outlier is detected and the ego agent deviates
from its plan to prevent a collision

Figure 5.7: Scene 0330, (left to right) shows a lane merge scenario, where the other agent slows down to let the ego agent
merge safely
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5.3. Quantitative Results

To evaluate our approach, we analyze both conformal prediction metrics and simulation metrics, fo-
cusing on safety, outlier detection, and controller performance. We begin by examining results from
ground truth data, which we use to calibrate the tuning parameter X in the Huber loss.

Experiments where the other agents follow ground truth behavior show that the outliers detected using
Ccyr for § = 0.2 and § = 0.1 are fewer than expected (see Tables 5.5 and 5.6). We note that we expect
to detect the calibrated number of outliers as there is no distribution shift between the calibration and
ground truth data used. This can be due to the limitations of using the time-lagged nonconformity score
as an estimate for the actual test residual, and can also stem from our argument in Section 4.2 that
in nominal (in-distribution) scenarios, out-of-distribution events are rare. This rarity of samples leads
to epistemic uncertainty in the model due to limited training, leading to inflated prediction regions to
ensure CP coverage. To address this we adjust X in subsection 4.2 to be M AR/0.6745 and re-evaluate
using the ground truth policy for the other agent behaviors. Tables 5.5 and 5.6 demonstrate that this
A value leads to a higher number of detected outliers. We note that A can be further tuned to reach
a desired outlier detection rate, in our experiments we adopt the above value for the results that are
presented below.

Table 5.5: Outliers detected in ground truth data (no distribution shift), § = 0.2

| Outliers Detected
21%
17%

Interaction Robust w/Ccr p,
Interaction Robust w/C¢,

Table 5.6: Outliers detected in ground truth data (no distribution shift), § = 0.1

| Outliers Detected
12%
8%

Interaction Robust w/Cc¢, ,
Interaction Robust w/C¢,

Table 5.7: Conformal Prediction Metrics, § = 0.2

Mean Empirical
Conformal Detected .
Efficiency (m) (1) Covgrage Llevel Outliers Empirical Coverage
With Outlier
Interaction Robust w/Ccr, 1, 0.52 0.87 31% 77%
Interaction Robust w/C¢, 0.52 0.88 28.9% 78%
Worst-case § = 0.01 0.73 0.99 28.3% 93%
SPDE [43] 0.5 0.8 28.7% 70%
Table 5.8: Simulation Metrics, § = 0.2
Average minimum  Constraint Average Average MPC  Ego failure
distance (m) (1)  Violation (}) Jerk (ms—3)(l) cost () rate ()
Interaction Robust w/Ccr, 1, 0.39 20% 1.20 15.52 16%
Interaction Robust w/C¢, 0.39 21% 1.22 17.2 19.3%
Worst-case 6 = 0.01 0.43 28 1.45 28.2 24%
SPDE [43] 0.27 22% 1.23 17.79 22%

Table 5.9: Mean Runtime of Interaction Robust MPC

Predictor Build and | KL divergence
Solve Time Estimator
28Hz \ 20 Hz \ 2000 Hz
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We now compare the four approaches we conducted experiments on. Table 5.7 and 5.8 summarize the
main experimental results. Overall, our findings show that our proposed interaction robust planner using
Ccr,, Tor outlier detection demonstrated the best balance between conservatism and almost nearly
achieve conformal coverage (i.e., we would like 80% and our adaptive method increases coverage from
69% to 77%), see Figure 5.16 and 5.15. It achieved the lowest use of slack with the constraint violation
being 20% and the lowest ego failure rate of 16% (see Figures 5.12 and 5.14) We note that a slack cost
of 1000 is used. However, we note that the constraint violations may not all be attributed to the planner
but also due to limitations in the rasterization as illustrated in Figure 5.3. The proposed planner has
an average minimum distance of 0.39 m that aligns close to the minimum distance achieved with the
worst-case planner demonstrating the planner’s robustness (see Figure 5.9). We note that the methods
have about equal jerk values (see Figure 5.8), instead of the worst-case planner. We highlight that the
proposed planner has the lowest MPC cost demonstrating the efficiency of using outlier detection to
induce interaction robustness when needed compared to at all times like in the worst-case planner.

Even though the worst-case approach provided the highest conformal coverage of 93%, it resulted
in the highest average MPC cost of 28.20 (see Figure 5.10), and the highest constraint violations of
28% which suggests the planner is overly conservative. On the other hand, not being robust to the
interaction-induced distribution shifts led to the SPDE baseline having the lowest conformal coverage
of 70% and the lowest average minimum distance of 0.27 m. We note that the detected outliers in
Table 5.7 represent the drop in coverage under distribution shift (see also Figure 5.13). They are all
calculated using the time-lagged nonconformity score (4.1) in a close-loop manner.

By providing near-expected coverage while maintaining robustness behavior as seen with the aver-
age minimum distance, the proposed planner achieves results in out-of-distribution settings that are
comparable to those obtained in scenarios without distribution shift, demonstrating its robustness to
interaction-induced shifts.

Lastly, Table 5.9 shows the runtime for the interaction robust MPC. The predictor and KL-divergence
estimator were run on a Nvidia 4070 RTX GPU, and the MPC was run on a CPU using Casadi. The
runtime of the KL divergence estimator is shown when using 3500 residual samples and £ = 50. The
number of agents varied across scenes from 5 to 20 agents. As demonstrated, estimating the KL
divergence can be done very efficiently allowing us to update the prediction regions individually in the
prediction horizon. Another data-efficient approach would be to only take the maximum shift and update
all regions with a uniform shift.

Continuing, we highlight that the permissible distribution shift is also influenced by the interaction po-
tential parameters v and & that were set to 0.2 and 8, respectively. By tuning these parameters the
distribution shift could increase leading to more conservatism as shown in the worst-case-shift planner.
Thus an appropriate choice of the interaction potential is vital to balancing conservatism and achieving
the conformal coverage under distribution shift. Along the same line, the Huber loss tuning parameter A
also has a direct effect on the conservatism of the solution. By having a smaller C¢, ;, more outliers are
detected which would result in more prediction regions with higher coverage leading to conservatism.

In conclusion, experimental results demonstrate the effectiveness of the proposed interaction robust
planner using C¢, 1, for outlier detection. This approach aims to provide an optimal balance between
conservatism and conformal coverage and outperforms both the overly conservative worst-case ap-
proach and the non-robust SPDE baseline. By achieving near-expected coverage under distribution
shift, our planner shows it can adapt to interaction-induced distribution shifts. The method’s efficiency
is evident in its low MPC cost and minimal use of slack, while still maintaining safe distances compara-
ble to the worst-case planner. Furthermore, the runtime analysis reveals the computational feasibility
of our approach, even with a variable number of agents.
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Conclusion

6.1. Summary

Autonomous motion planning requires the ability to safely reason about learned trajectory predictors,
particularly in settings where an agent can influence other agents’ behavior. These learned predictors
are essential for anticipating the future states of uncontrollable agents, whose decision-making process
can be difficult to model analytically. Ensuring safe planning and control requires robust uncertainty
quantification of these predictors, especially in scenarios where the ego agent’s plan induces a distri-
bution shift in other agents’ behaviors. Existing methods often assume specific agent behavior models,
limiting their applicability and potentially leading to overly conservative or unsafe behavior. Moreover,
while state-of-the-art prediction models capture interactions through ego-conditioning, integrating these
models with optimization-based planners is computationally prohibitive.

In this thesis we present an adaptive framework for safe interactive motion planning in unknown dy-
namic environments, addressing the challenge of uncertainty quantification in learned trajectory pre-
dictors when the ego agent interacts with other agents. The approach combines model predictive con-
trol (MPC) with tools from conformal prediction (CP) to provide safety assurances in the presence of
interaction-induced distribution shifts. The thesis introduces an adaptive MPC-based framework that
accounts for distribution shifts in learned trajectory predictors resulting from ego-conditioning, along
with a method for estimating these shifts during runtime using a heuristic interaction potential term.

The framework first uses CP to detect outliers in other agents’ behaviors. It employs a time-lagged
nonconformity score to estimate the test residual and a Huber quantile to tune the outlier detector. When
outliers are detected, the system estimates a distribution shift using the interaction potential term and
a k-NN based KL divergence estimator. The framework then updates prediction regions using robust
CP to account for the estimated distribution shift. These updated regions are then incorporated into an
MPC formulation as collision avoidance constraints.

Our interaction robust MPC-based planner is evaluated in diverse autonomous driving scenarios us-
ing the Bi-level imitation for traffic simulation (BITS) closed loop simulator. It achieved near-expected
conformal coverage (77% vs 80% desired) with the lowest constraint violations (20%) and ego fail-
ure rate (16%). Maintaining an average minimum distance of 0.39 m, comparable to the worst-case
(conservative) planner, it showed robustness while achieving the lowest MPC cost. This balanced ap-
proach outperformed the over-conservative worst-case method (93% coverage but highest MPC cost
and violations) and the less robust SPDE baseline (70% coverage, 0.27 m average minimum distance).
Notably, our method demonstrated comparable performance in out-of-distribution settings to scenarios
without distribution shift, indicating robustness to interaction-induced shifts.

In light of our findings and proposed method, we revisit the research questions that guided this thesis:

» What techniques can quantify the uncertainty of complex deep-learned trajectory forecasting
methods, and how can we detect outliers reliably?

27
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We demonstrated the effectiveness of CP techniques in quantifying uncertainty without making
assumptions about data distribution or the predictive model. Our approach, using a time-lagged
nonconformity score and a Huber quantile, proved effective in detecting outliers, achieving near-
expected conformal coverage (77% vs 80% desired) in simulations.

* How can learning-based trajectory forecasting methods be integrated into interactive motion
planning frameworks with probabilistic safety assurances?

Our adaptive MPC-based framework successfully integrated robust CP to quantify uncertainty
in trajectory predictors under agent interactions. This integration provided probabilistic safety
assurances by dynamically adjusting the distribution shift that robust CP accounts for.

* How can we model the interactions between agents when the counterfactual motion of other
agents is unknown?

We developed an interaction potential term that estimates the test residual distribution given sam-
ples from the calibration data, and we propose using a k-NN-based KL divergence estimator to
estimate distribution shifts during runtime.

6.2. Limitations and Future Work

The result of this thesis work opens many interesting research directions to address limitations and
improve the existing method:

+ A limitation of our approach emerges when the ego agent and other agents come into proximity.
There could be scenarios where other agents are not cooperative, and as the distance between
the agents decreases, the interaction potential term would increase, leading to larger estimated
distribution shifts. This would result in larger prediction regions for the other agents and could
result in feasibility issues in the ego agent plan due to their proximity. Such scenarios would
require slack in the constraints as the distribution shift increases to ensure that the ego agent
does not result in taking unsafe or overly conservative behaviors impeding its objective.

» The accuracy of our prediction method could be significantly enhanced by considering the di-
versity of driving scenarios. Currently, we compute residuals from trajectories across various
situations such as turning, lane merging, and highway driving. However, the prediction difficulty,
and thus the distribution of residuals, can vary greatly between these scenarios. For instance,
predicting the trajectory of a vehicle maintaining a constant speed on a highway is typically easier
than anticipating how a vehicle might navigate a turn. To address this, it would be worth labeling
scenarios in autonomous driving datasets. By categorizing residuals based on specific driving
scenarios, we could create more targeted prediction regions. When an agent is identified to be in
a particular scenario (e.g., driving straight on a highway), we would use the residuals specific to
that scenario to compute the prediction region. This method could help reduce conservatism and
provide context awareness by constructing prediction regions precisely for specific scenarios.

» To address the ’curse of rarity’ as introduced in section 4.2, it would be worth exploring how to
develop robust prediction models by generating safety-critical scenarios and training prediction
models to minimize the quantile and Huber quantile losses. There is existing work to generate
safety-critical scenarios to develop robust prediction models [66], and it would be interesting to
train these models using the quantile and/or Huber quantile loss to reduce epistemic uncertainty
[36].

» Given that our current method works for KL divergences, a major limitation is that the ego-conditioned
distribution must have an overlapping domain with the training distribution. This could limit the
types of interactive behaviors that can be considered, making it challenging to measure larger in-
teraction uncertainties. Another metric that does not require overlapping domains is the Wasser-
stein metric, which outputs finite values when the domains do not overlap. Therefore, it would
be worth considering to extend the robust CP framework to Wasserstein distances to take into
account larger distribution shifts which may not necessarily have overlapping domains.

» Under assumptions on the trajectory predictor type, it would be worth exploring the use of prob-
abilistic trajectory forecasting methods to generate i.i.d. test trajectory samples to compute dis-
tribution shift estimates online. In particular, the predictor could be evaluated with and without
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ego-conditioning, and the samples generated from both distributions could be used to compute
a distribution shift estimate. Moreover, with current probabilistic predictors making assumptions
on the distribution (i.e., Gaussian mixture models [60]), closed-form solutions to the shift could be
used to then update prediction regions using robust CP. Along the same lines, by predicting the
evaluator only once with ego-conditioning, the test samples could be used in an exchangeabil-
ity martingales framework to test if the samples are in distribution with respect to the calibration
residuals.
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Robust Conformal Prediction for Adaptive Motion Planning Among
Interactive Agents

Mayank Prashar!, Javier Alonso-Mora!, Lars Lindemann

Abstract— Autonomous motion planning requires the ability
to safely reason about learned trajectory predictors, partic-
ularly in settings where an agent can influence o ther agents’
behavior. These learned predictors are essential for anticipating
the future states of uncontrollable agents, whose decision-
making process can be difficult t o m odel a nalytically. Thus,
uncertainty quantification o ft hese p redictorsi s c¢ rucial for
ensuring safe planning and control. In this work, we introduce
a framework for interactive motion planning in unknown
dynamic environments with probabilistic safety assurances. We
adapt a model predictive controller (MPC) to distribution shifts
in learned trajectory predictors when other agents react to the
ego agent’s plan. Our approach leverages tools from conformal
prediction (CP) to detect when the other agent’s behavior
deviates from the training distribution and employ robust CP
to quantify the uncertainty in trajectory predictors during
these agent interactions. We propose a method for estimating
interaction-induced distribution shifts during runtime and the
Huber quantile for enhanced outlier detection. Using a KL
divergence ambiguity set that upper bounds the distribution
shift, this method constructs prediction regions with probabilis-
tic assurances in the presence of distribution shifts caused by
interactions with the ego agent. We evaluate our framework in
interactive scenarios involving navigation around autonomous
vehicles in the BITS simulator; demonstrating enhanced safety
and reduced conservatism.

I. INTRODUCTION

A major challenge in motion planning for autonomous
systems is the ability to safely reason about interactions with
other agents [1]. A typical approach involves predicting the
motion of other agents through heuristic [2], [3], or learned
models [4], followed by the creation of an ego (controllable)
agent plan considering these predictions. Such predict-then-
plan schemes often overlook the influence of the ego agents’
plan on other agents, resulting in overly conservative be-
havior that has been shown to lead to unsafe situations [5].
State-of-the-art (SOTA) prediction models [6], [7] attempt
to address this limitation through ego-conditioning, where
the prediction of other agents is conditioned on the ego
agent’s motion plan. However, integrating ego-conditioned
prediction models with iterative planners is computationally
prohibitive, and existing methods lack uncertainty quantifica-
tion tools to provide safety assurances [8], [9], [10]. While
iterative planners provide constraint satisfaction guarantees
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(CoR), Delft University of Technology, 2628 CD Delft,
Netherlands.

2Author is with the Thomas ord Department of Computer Science,
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Fig. 1. Using robust conformal prediction, we adjust the prediction regions
of other agents (shown in light blue) in response to the ego agent’s plan
(shown in red) at test time

[11], quantifying the uncertainty of prediction models allows
us to design safety constraints with probabilistic assurances
[12], [13].

Existing uncertainty quantification methods in interactive
motion planning typically assume specific agent behavior
models [14], [8], [15], [16] or predictors [5], [17], [18],
[19], [20], [21]. These approaches restrict the types of
disturbances and prediction models considered, lack safety
assurances, or exhibit overly conservative unsafe behavior
when attempting to do so [22]. Conformal prediction (CP)
is a statistical tool that rigorously provides valid predic-
tion sets to quantify model uncertainty without assumptions
on the data distribution or predictive model [23], [24]. It
has been proven as an effective framework for uncertainty
quantification in complex deep-learned trajectory predictors,
offering safety assurances over finite-horizon trajectories [12]
[13]. However, CP assumes exchangeability between train
and test distributions. While current autonomous driving
training data mostly captures well-structured, non-interactive
behavior [25], [26], real-world (test) scenarios often involve
interactive behaviors where the ego agent’s plan can in-
fluence other agents’ behaviors. Such interactive scenarios
necessitate a method to quantify uncertainty in trajectory
predictors under interaction-induced distribution shifts.

To address this challenge, this paper proposes an adap-
tive model predictive control (MPC)-based framework for
interactive planning with safety assurances. We use CP to
quantify uncertainty in learned trajectory predictors under



interactions (see Figure 1). To ensure safety amid interaction-
induced distribution shifts, we detect these shifts using CP
and employ robust CP methods [27] to capture nearby
distributions upper bounded by a KL divergence. We then
formulate an MPC with robust prediction regions as collision
avoidance constraints. Our contributions are as follows:

« We develop an adaptive MPC-based framework for
safe interactive planning that accounts for distribution
shifts in learned trajectory predictors resulting from
ego-conditioning. Our approach leverages tools from
conformal prediction to detect and quantify these shifts,
enabling the planner to adapt during runtime.

« We propose a method for estimating interaction-induced
distribution shifts during runtime and a Huber quantile
for enhanced outlier detection.

o« We empirically show that our framework works in
interactive scenarios involving navigation around au-
tonomous vehicles in the Bi-level Imitation for Traffic
Simulation (BITS) simulator [28].

II. RELATED WORK
A. Interactive Planning

Early approaches have modeled the behavior of agents
with Gaussian uncertainty while not considering the influ-
ence of the ego agent, leading to conservative plans as seen
in the freezing robot problem [5]. To take into account
interaction, initial approaches employed joint optimization
via Gaussian processes [S5], [29], artificial potential fields
[30], and reinforcement learning to capture interactions [31].

Multi-agent interactions have also been modeled via reach-
ability sets [32] that help determine the set of possible
states a system can reach given the system’s dynamics and
time horizon. Even though this provides safety assurances,
it results in overly conservative behaviors and infeasibility
of the planning problem with longer time horizons [33].
Furthermore, when the exact dynamics of other agents are
unknown, providing safety assurances can be challenging.

Other model-based approaches use game theory to for-
mulate a coupled trajectory optimization problem under the
assumption that an objective model of all players is available.
Such approaches address bi-directional interactions, yet as-
sume simple behavior models such as the rational model [16]
or noisy Boltzmann models [15] and are difficult to scale.
Partially observable Markov decision processes (POMDP)
formulation also results in intractable partially observable
stochastic game (POSG) [34].

B. Motion Planning with Probabilistic Safety Assurances

Approaches toward probabilistic safety assurances in plan-
ning frameworks typically attempt to quantify uncertainty in
other agents’ motions. A common assumption is that the
other agent’s motion is a random process and a distribution
can be determined provided independent and identically
distributed (i.i.d.) samples of trajectories. Scenario optimiza-
tion [35] computes a predicted set over other agents based
on samples from previously observed scenarios. These are
formulated to create chance constraints that contain the given

samples with a confidence level. Previous works have used
chance constraints with Gaussian process models [36], Gaus-
sian uncertainty [37], and arbitrary uncertainty distributions
[38]. Other approaches have assumed access to a human-in-
the-loop dataset of driving behaviors, which is used to find
the minimum area set that contains trajectories within a given
confidence level [39]. Similarly, quantile regression has been
used to learn bounds over a dataset, which are then used in
a tube MPC [40]. Other techniques to generate bounds on
the prediction model include post-bloating, support vector
machines, and conformal prediction as shown in [41]. Over-
all, methods that offer confidence bounds attempt to ensure
that 1 - ¢ of the predicted trajectories should be within some
learned bounds [42].

Recent works utilized CP to quantify uncertainty in trajec-
tory predictors and integrated them into an MPC framework,
providing safety assurances over finite-horizon trajectories
using Boole’s inequality [12]. Recent approaches have re-
laxed the assumption that the training and test trajectories are
i.i.d. Using adaptive CP [43], the confidence level is adjusted
online to take into account distribution shifts; however, it
provides asymptotic guarantees [13]. Other approaches have
used robust CP [27] for online verification under general
distribution shift [44] and for out-of-distribution detection
under general distribution shift, which is then used to adapt
a controller [45].

C. Motion Prediction

Behavior models are broadly categorized into ontologi-
cal and phenomenological methods. Ontological frameworks
capture other agents’ interaction dynamics by assuming that
agents strongly tend to avoid collisions. Examples include
the Optimal Reciprocal Collision Avoidance (ORCA) [46],
Social Force Model [3], and Intelligent Driver Model [2].
These methods explicitly derive interaction dynamics that
make them explainable and work well for short time hori-
zons. However, these methods solely use the current state,
making them unsuitable for longer predictions [39]. Phe-
nomenological methods use deep-learned models to predict
trajectories [4], [6], [7]. Initial methods produced single
(unimodal and deterministic) predictions [4]. Recent works
account for uncertainty by generating multiple (multimodal
and probabilistic) trajectories [6]. These models are also
categorized as agent-centric and scene-centric which predict
trajectories of other agents separately and jointly, respec-
tively. However, these methods lack explainability and have
uncertainty in training the model (epistemic uncertainty) and
learning distributions from finite data (aleatoric uncertainty)
[42]. Furthermore, assumptions are made on the distribution
of the agents (e.g., Gaussian mixture models) [6]. Scene-
centric models, though more realistic, can be computationally
expensive due to a lack of parallelization. Moreover, most
datasets use well-structured, and cooperative motion [47].
This may not be representative of the diverse behaviors
and interactions possible [25]. As prediction models are
trained on such data it is unclear how effective they are in
interaction-aware scenarios.



III. PRELIMINARIES
A. Problem Formulation

Consider a discrete-time dynamical system X, =
fA(XEul) where X; € X C R® and ui € U C R™
denote the state and the control input of the agent i € {e, o}
at time ¢ € N U {0}, respectively. Here, e represents the
ego (controllable) agent and o represents the other (un-
controllable) agents. The sets ¢/ and X denote the set of
permissible control inputs and the workspace of the agent.
The measurable function f? : R™ x R™ — R™ describes
the agents’ dynamics. Let X7 = (X7,,...., X7 y) € RV"
refer to the joint state of N other agents at time ¢, such that
X{; is the state of agent j at time ¢. The joint other agent
trajectories X .- is sampled from an unknown distribution
D that obeys the dynamics f°:

X0 = (X3, X0,.... X)) ~D

Assumption 1 We have access to a dataset
D = {x°W .. X°K) containing K trajectories
where X .= (Xg(i),Xlo(i),...,X;(i)) are drawn i.i.d.
from a training distribution D.

Assumption 2 At test time, the ego agent’s state X[ in-
fluences the behavior of the N other agents, shifting their
trajectory distribution from the training distribution D to an
unknown, ego-conditioned distribution D¢. The resulting test
time trajectories are denoted as Xg,’; and are sampled from
the unknown distribution D¢:

X7 = (X87X10(X§)5 te aXf(ng‘Xlea s aXte—l)) ~ D¢

where these test time trajectories capture the influence of the
ego agent’s state on the other agents’ trajectories.
Assumption 3 For any time ¢ > 0, the Kullback-Leibler (KL)
divergence between the test distribution D¢ and training dis-
tribution D, is bounded by an ego-state-dependent function
e(Xy¢), where X¢ is the ego agent’s state. For notational
simplicity, we denote the bound as e:

DKL(DeHD) S €

It is important to note that this bound is not uniform across
all ego agent states but varies with X7. The ambiguity set
Prr,(D) with radius € is defined as:

PKL,E(D) = {De S.t. DKL(DeHD) < e}

This set captures all distributions D¢ within an ¢ KL di-
vergence from the training distribution D. The value € is
unknown a priori and variable. It can be estimated during
runtime when the ego agent state X is known. We make no
assumptions on the form of the distributions D and D*.
Assumption 3 is applicable in many practical scenarios
involving autonomous vehicles. It models situations where
other agents generally follow their expected behavior (D),
but may deviate (resulting in D¢) in response to the ego
agent’s state as agents tend to strongly prefer avoiding
collisions. The use of the KL divergence to quantify shifts
is also consistent with approaches in related work. Where
the KL divergence has been used to measure the degree

of influence an agent has over another [48], and mutual
information as an indicator of forthcoming collisions [49].
Problem 1 Given the system, access to trajectories X °(*)
from a distribution D, access to a trajectory X ¢ from
distribution D¢, the KL divergence estimate D1, (D¢||D) <
€ valid for the current ego agent state X, and a failure
probability & € (0,1), our goal is to compute control
inputs uy and trajectory X; such that the collision avoidance
constraint ¢ : R” x R™Y — R is satisfied with a probability
of at least 1 — ¢ for all time ¢:

P(e(X{, X7) > 0,9t € {0,..., T} >1-6 (1)

B. Conformal Prediction

Let {RW}F ; be k + 1 iid. random variables. The
variable R() is referred to as the nonconformity score, and
is commonly defined as R := ||Z®) — (X ®)]|5, where
the predictor is a mapping p : X@ — Z_ A large
nonconformity score indicates a poor predictive model. Our
goal is to construct a prediction region C for R(®) based on
{RM}E_, such that the random variable is contained in the
prediction region C' with a probability 1—¢, where § € (0, 1)
is a user-specified failure probability [23], [24]:

P(RO <C)>1-4 )

Using the Quantile Lemma, we construct the prediction
region C' using the finite-sample corrected (1 —d)th quantile
of the empirical distribution of {R(W}¥_ (Lemma 1 [50]).
Firstly, the quantile is defined as:

Quantile(1 — 0, R) =inf{z :P{Z <2} >1-0},Z~R
3
where Z is the empirical distribution of {R"1}%_, con-
structed using Dirac distributions ;) centered at RW. We
then determine the quantile, where [-] is the ceiling function:

(=K +1)] 1 & )
C = Quantile | ——————~; — dra 4)

Furthermore, two requirements must be met before deter-
mining C. The quantile must be bounded and the minimum
number of data points K is required such that:

[(A=0)(K+1)]

0< i <1 Q)
Provided that the requirement (5) is satisfied, we sort
{RW ..., R™} in a non-decreasing order and let R(*+1) .=
co. We then have C := R® to be the pth smallest
nonconformity score where p := [(k + 1)(1 — §)]. When
requirement (5) is violated, C' = oo. It is important to note
that CP provides marginal coverage guarantees and does
not imply conditional coverage. Specifically, the probability
bound holds in expectation over the input space, and may
not hold uniformly across all subsets of the input space. Ad-
ditionally, CP’s validity also holds when the nonconformity
scores are exchangeable such that their joint distribution is
unchanged for all permutations o: {R(W}¥_ . However, in
settings of distribution shift where the calibration residuals
{R®W}k_ are drawn from a distribution R and the test



sample R© is drawn from a different distribution R€,
the above methodology makes no claims of validity as the
exchangeability assumption is not satisfied. This motivates
the following robust variant of conformal prediction.

Lemma 1 Robust Conformal Prediction [27] provides
valid prediction regions under sufficiently small distribution
shifts between the calibration and test data. Denote R°
and R as the test and calibration residual distributions,
respectively, where R(®) ~ R¢ and {R'}X, ~ R, such that
their f-divergence Dy(R°,R) < e. The ad]usted prediction
region C' in P(R© < C) > 1 — ¢ is computed using an
adjusted confidence level J that takes into account a set of
distributions Py (R) = {R° s.t. Dy(R°||R) < €} (see
Corollary 2.2 [27]):

C:= Quantilel_(g(R(l), e
b:=1—g11-46,)

that is obtained with the following convex optimization

RE) ), ©

problems:
5pi=1—g <<1 + [1(> g ' (1- 5))
o)== 87 (5) + -7 (125 ) <o)
g~ (r) :=sup{B €[0,1] | g(8) <}

)

Robust CP assumes a known, fixed amount of shift e.
However, our approach addresses scenarios where the shift ¢
is variable and unknown. In our setting, the shift ¢ to be
robust against depends on the level of influence the ego
agent has on the other agents. Therefore, this necessitates
an adaptive approach to determining ¢ during run time.

While Assumption 3 bounds the trajectory-level distribu-
tion shift by €, estimating this shift at the residual level is
more efficient due to its one-dimensional nature. The data
processing inequality allows us to compute the KL diver-
gence on the nonconformity measure level, which is com-
putationally advantageous and potentially provides tighter
bounds compared to estimating distribution shifts on multi-
dimensional trajectories.

Lemma 2 Data Processing Inequality [51]: Given a non-
conformity measure R : X — R, X?¢ ~ D¢ and X° ~ D,
let R® and R follow a distribution ¢ and R such that they
are the push-forward of D¢ and D, respectively. It holds that
the f-divergence between two distributions does not increase
when pushed through R:

D(DY||D) <€ = Dy(RY[[R) < €

Therefore, to determine € to solve (6), (7), we can estimate
the KL divergence using M samples from R and L samples
from R°. We further elaborate in Section IV-B of our
proposed framework how we determine samples from R°.
Lemma 3 k-NN Based KL Divergence Estimator [52],
[53]: We consider 1-dimensional samples {RS,...,R$}
drawn i.i.d. from R¢, and {R1,..., R} drawn i.i.d. from
R. ni = ||Rf — R{, |1 is the absolute difference between

R and its k-nearest neighbor (k-NN) in { RS };;. Similarly,
vi = ||Rf — Rjuyl|1 is the absolute difference between
R¢ and its k-NN in {Ry,..., Rps}. The k-NN-based K L-
divergence estimator is defined as follows [52], [53]:

Vi (’L) M

L
. . d
D1 (RY[[R) = 7 ;log
It has been shown under mild regularity conditions that the
k-NN divergence estimator (8) is asymptotically unbiased
(Theorem 1 [53]):

lim ]E[DKL(REHR)]

Dgr(RY[IR)
L,M—

and mean-square consistent (Theorem 2 [53]):

lim E[(DgL(RY||R) — Dxr(R°||R))?] =

L,M—oc0
We note that the samples must be drawn i.i.d. to prove mean-
square consistency.

C. Conformal Prediction for Finite-Horizon Trajectories

Let a dataset D contain trajectories of the other agents
as stated in Assumption 1. Let Dyygin C D, Deqy C D,
and Dy,qin N Deq; = (0. Consider a function PREDICT that
is trained on observations (X¢,...,X?) from Dy.qin and
outputs predictions (X&-ll P ’X%I ,)- With the following
predictions we define the nonconformity scores as introduced
in Section III-B with a normalization term o, ; > 0
determined using a subset of the training data Dypqin,1
to conform to the exchangeability assumption in CP. The
nonconformity score for all future times 7 € {t+1,...,T}
and other agents j is defined as [54], [55]:

1x29 — xo) H

R(Tl‘)f = (ma)x T‘”
T,J)€ Or
1., T}x]{1 ..... N} It:3 &)
o xol) _ o)
Or|t,j = 7€{I{}&XK} H .5 T\t jH

This approach enables us to achieve more efficient prediction
regions for each agent compared to using Boole’s inequality
[12], [13]. Provided the nonconformity scores R(l deter-
mined using D.,;, we can construct prediction regions for
finite-horizon trajectories (i.e., over multiple future predic-
tions) in an open-loop and closed-loop setting. The open-loop
ensures the validity of all 7-step ahead prediction regions
(i.e., 7]|0), while the closed-loop ensures the validity of all
one-step ahead prediction regions (i.e., t + 1|¢). Particularly,
the following two statements hold for open-loop and closed-
loop regions, respectively:

P(|x29 — 20 || < Cororo,

T\OJ
(r,j)ef{t+1,....T}x{1,....,.N}) >1-9§
(10)
o(1) o(i)
HXt+1|f] Xt+1|t,jH < CCLUt+1\t,j7
(t,4) € {0, ..., T—1} x {1,....N})>1-35
(1)



where Cop = R(Cp% and Cp; = Rg’)L, are the pth
smallest closed loop and open loop nonconformity scores,
respectively, with p := [(k + 1)(1 — 4)].

However, in settings of interaction-induced distribution
shift such that during test time the other agents are under
some level of influence from the ego agent, the prediction
regions in (10) and (11) are not valid. To address this, we
require an estimate of the distribution shift e which depends
on the test nonconformity scores. By solving (6) and (7)
we can then obtain updated prediction regions C¢y and
Coy, that remain valid under the specified distribution shift.
However, evaluating the nonconformity score defined in (9)
at test time ¢ is challenging, as only states (XJ°, ..., X°)
are observable, and not the future states (X7, ..., X5°).
To overcome this limitation, we introduce the time-lagged
nonconformity score, detailed in Section IV-A.

IV. INTERACTION ROBUST MODEL PREDICTIVE
PLANNER

This section proposes an interactive planning framework
that uses robust CP for learned trajectory predictors to
address interaction uncertainty. The approach uses observed
data of other agents to compute test-time residuals to detect
outliers, defined as scores not contained within the prediction
regions constructed with the calibration residuals. When an
outlier is detected, the prediction region is updated to adapt
to the interaction uncertainty by estimating real-time distri-
bution shifts (i.e., KL divergence) in other agents’ behavior
caused by the ego agent’s presence. The estimated shift is
used to update the prediction regions by solving a series of
convex optimization problems as defined in equations (6) and
(7) to ensure 1 — § coverage under distribution shift.

Using outlier detection also addresses the planner’s com-
putational efficiency and feasibility under distribution shifts.
The framework reduces computational burden in multi-
agent settings by estimating shifts only when CP guarantees
with calibration residuals under-cover (i.e., when an outlier
is detected) rather than for all agents. This also benefits
the planner’s feasibility by limiting changes in collision
avoidance constraints across iterations to only agents under
interaction uncertainty.

Lastly, under Assumption 1 in section III-A, we use an
agent-centric prediction model that can predict trajectories of
other agents taking into account their dynamics and semantic
information, as detailed in [28]. Our framework is compatible
with both deterministic and probabilistic trajectory predic-
tors. The PREDICT function takes as input the observed
trajectory of other agents X, scene information S, and

outputs a prediction thf of the other agents.

A. Outlier Detection

The proposed framework employs outlier detection using
CP to identify when the observed behavior of other agents
deviates from the predicted behavior. This requires comput-
ing a nonconformity score R¢ during test time to determine
if it lies in the prediction region C;|; computed based on
calibration residuals defined in (9). An outlier is detected

when R¢ > C7|;. However, recall that the nonconformity
score defined in (9) cannot be evaluated at time ¢ as only
the previous states (X, ..., X"°) are observable, while
the future states (X7},..., X3:°) are unknown. Therefore,
we define a time-lagged nonconformity score that evaluates
the 7 step-ahead prediction error that was made 7 time steps

ago:

il

‘ |X$:; - XT\t—T,j

R¢ = max
(T,4)€

{1, T}x{1,...N}

(12)
Orlt,j

That is valid when ¢ > 7. Furthermore, the prediction region
C7¢ is computed using the calibration residuals (9) and fol-
lows a Beta distribution. With a sufficiently large calibration
set, we expect the outlier rate to approach the calibrated
failure probability §. However, it is important to note that the
prediction region C';|, is computed using calibration residuals
from diverse driving scenarios where the frequency of certain
scenarios can be much lower than more commonly observed
scenarios. Also known as the ’curse of rarity’ [56] where
the occurrence of safety-critical scenarios (i.e., scenarios in
the long tail of the distribution) are observed rarely. This
imbalance can lead to epistemic uncertainty in regions of the
input space with limited data [57]. Consequently, this may
lead to large nonconformity scores that lead to conservatism
while determining the prediction region C7|, and thus fewer
detected outliers. However, we want a prediction region that
takes into account epistemic uncertainty due to the curse of
rarity. It should be able to detect more outliers such that we
leverage our proposed conservative controller that is designed
to capture distribution shifts.

To address this challenge and obtain a less conservative
prediction region C'|, for outlier detection, we use a quantile
that minimizes the Huber loss to reduce epistemic uncer-
tainty. The Huber loss gives less weight to residuals above a
threshold parameter \ by using a linear loss and more weight
to residuals below \ by using a quadratic loss [58]:

1(p(i))2 : i
: 1(RW) it RO <\

La(R) = 2B . 13
AET) {Aé(R(” — 1)) if RO > (13
where A is commonly chosen to be M AR/0.6745 [58], with
M AR denoting the median absolute residual. We note that
this is a tunable parameter that can be adjusted to ensure ¢
outliers are detected during experiments. To compute M AR,
we use a subset of the training data Dy,qip 2, to conform to
the exchangeability assumption in CP. To compute the Huber

quantile, we substitute (13) in the quantile loss function:

, 8- Ly(R® — if R() >
Lq’)\(R(z)) _ { A( a), 1 24q,

: 14
(1—10)-Lx(R™ —¢q), otherwise, (19

and the quantile is found by minimizing this Huber quantile
loss over the calibration set of size k:

k
G = argmqinZLq,A(R“)) (15)

i=1



where Ccor,;, := ¢ in the case the closed-loop residuals
are minimized. Formally, we classify the test residual as an
outlier if R® > Ccp, p.

Algorithm 1 Residuals for Conformal Prediction

1: Input: Failure probability J, calibration dataset D, training
dataset Dyin, prediction and task horizons H and 7', threshold
parameter A

2: Output: Ccr,Cor,Ccr.n,CorL,h,0rt

3: p 4+ (|Deal + 1) (1 =9)

4: fort =0to T — 1 do > Using Training Data
5: forr=t+1tot+ H do )

6: Obtain predictions X:\(Z) for each X € Dgy

7: end for ) o

8: Or|t < Max; HXi(;) — X:l(;)]H

9: end for

10: fort=0to T — 1 do
11: for r=t+1tot+ H do

> Using Calibration Data

12: Obtain predictions X f(z) for each X° € Dy
@) [ @
13: Ryp + max, -———— for each X' € Dy
o o e e |
14: Ry < max, T‘tcrf\o It I for each X°) € Dey
15: end for
16: end for

17: Rlc’yDL“‘H‘ — oo,R‘DL‘“‘+1| — oo

18: Sort Rg)p and Rg ., in non-decreasing order

19: Cor R(cp%7COL — Rg’z

20: Compute Huber quantiles gor, and gcr by solving (15)
21: CCL,h <~ q4cr, COL,h <~ dor

B. Capturing Distribution Shift

Provided an outlier is detected, we propose updating the
prediction regions to take into account interaction uncer-
tainty which is inherent with longer prediction horizons
[39]. Particularly, we use robust CP to dynamically adapt
to the aleatoric uncertainty arising from interactions with
the ego agent. This method provides prediction regions that
are valid for a KL divergence ambiguity set defined as
Prre(R) = {R° st. Dgr(R°||R) < €}, where R
represents the distribution of residuals at test time under
interaction, R is the calibration residual distribution, and € is
the KL divergence bound. To compute the updated prediction
region C, the KL divergence must be estimated. However,
this would require multiple test residual samples to estimate a
distribution and thus the distribution shift. However, we have
access to only calibration residuals and a single trajectory
prediction of the other agent.

To address this limitation, we propose using an interaction
potential term to estimate the test distribution. This approach
is on the basis that residuals increase in magnitude due to
interaction uncertainty.

Assumption 4. Let the test residuals R° be a function
of the calibration R residuals with the following heuristic
interaction potential to model the influence of the ego agent:

_ R

1 —yexp(—gzd?)
where d is the L? norm distance between the ego and other
agents, -, and h are parameters that determine the strength

€

(16)

of the interaction. This interaction potential allows us to ego-
condition M samples of the calibration residuals, providing
a heuristic estimate of the test residual distribution. We can
then use this estimate to determine the KL divergence € on
the residual level using equation (8). Given the estimated e,
we use robust CP to find the updated prediction region Ccp,
by solving (6) and (7). This process allows us to dynami-
cally adapt the predictions to take into account interaction
uncertainty that can vary at each time step by computing a
new estimate e.

C. Model Predictive Control

With the above sections we formulate an optimization
problem for the ego agent given a cost function .J, the initial
condition of the ego and other agents, and predictions of the
other agents’ trajectories. The objective is to compute control
inputs uy such that the collision probability with the other
agents is less than or equal to § over the task horizon T':

t+H—1
)I{Igine J(Xgi1,uy) (17a)
k=t
s.t.,
X¢ = ¢, (17b)

Xli—H:fe(szuZ)’ VkE{t,...,t-f—H—l} (17¢)
ug €U, Xg €X,  Vkel{t,...,t+H-1} (17d)
(X5, X15) > 0,%(k, j) € {t,...,t + H—1} x {1,...,N}

(17¢)

The optimization problem in (17) formulates an approach
that uses robust CP prediction regions as constraints for a
model predictive control (MPC) method to compute con-
trol inputs u® over a prediction horizon H. The objective
function J in (17a) minimizes a step-wise cost function
over the prediction horizon H. The constraints (17b) set the
initial condition where £° is the current state of the ego
agent. Constraint (17c) enforces the ego agent dynamical
constraints represented by f¢. Constraint (17d) ensures the
control inputs ©¢ and states X ¢ remain within their feasible
sets U and X, respectively. Constraint (17e) enforces the
probabilistic safety constraint. It utilizes the robust conformal
prediction regions for X »“ when an outlier is detected, and
prediction regions from calibration residuals when no outlier
is detected. The function c(-, -) represents the safety criterion,
for example, to ensure a safe distance between the ego agent
and the predicted states and regions of the other /N agents.

The above optimization problem (17) is then solved by
linearizing the cost, dynamics, and constraints to solve
the quadratic program in a closed-loop (receding horizon)
strategy.

V. EXPERIMENTS

To evaluate our approach in interactive scenarios, we
perform experiments in driving scenarios between an au-
tonomous vehicle and other human-driven vehicles. As we
want to evaluate our approach in interactive settings, using



Algorithm 2 MPC with Robust Conformal Prediction

1: Input: Failure probability 6, calibration dataset D.a, prediction
and task horizons H and T'

2: Output: Control input uy

3: fort=0to7T —1do > Online perform planning loop
4: Sense X7 and X¢

5: Obtain predictions X°% forr=¢+1,...,t+ H

6: if test residual from (12) > Ccr.,, then

7: Obtain M samples of R from (16)

8: Obtain ¢ using the KL divergence estimator (8)

9: Obtain C|; := Coror ¢ given e,

10: else

11: Obtain CT“ = CCLO'T\t

12: end if

13: Calculate controls ug, ..., us_; as the solution of (17)
14 Apply uf to the ego agent

15: end for

replayed scenes from the NuScenes dataset would be insuffi-

shifts are not considered and Boole’s inequality is
used to construct the prediction regions. For a fair
comparison, we use the prediction regions constructed
in Section III-C with this method

2) Worst-case 5 = 0.01: A variant of the interaction
robust MPC that uses a constant worst-case distribution
shift & = 0.01 without outlier detection

3) Interaction robust with C'cr.: A variant of the proposed
planner that uses the closed-loop prediction region
Ccr from (11) for outlier detection instead of the
proposed Huber adjusted prediction region C¢, 5, from
(15)

We use the following ellipsoidal collision avoidance con-

straint that takes into account the ego agent and other agents’
extents denoted as (L°,W¢) and (L°,W?), respectively,
and prediction regions Cr|; or C; when an outlier is not
detected.

coen (X500 = X202 (X5, [1] - X7 [)?

T|t

cient to evaluate the planner. Therefore, we conduct closed- o(Xi, X7°) L LT, WeTwe A -120
loop simulations in the BITS simulation environment [28]. V2 V\/§> 0 ; ‘f V2 " T
Each simulation scene is initialized with one of the 100 test t20vre{t+1,....t+ H} (18)

scenes from the NuScenes dataset and then evolves forward
with a policy for each agent. We choose one agent as the
ego agent that our proposed planner controls. All the other
agents run the BITS policy that generates realistic and diverse
behaviors of road vehicles. Additionally, every 4 seconds, we
spawn agents around the ego agent to increase the number of
interactions in each scene. Our closed-loop planner uses three
modules: a trajectory predictor, a high-level route planner,
and the interaction robust MPC that plans the trajectory.
We use the deterministic BITS prediction model as the
trajectory predictor without ego-conditioning, which gener-
ates a single trajectory lasting 20 timesteps (2 seconds). The
model is trained on the NuScenes dataset [59], consisting of
1000 20-second scenes collected in Boston and Singapore.
The BITS spatial planner is used to generate diverse global
plans for the ego agent that provides a goal pose (position
and heading). Table I shows the key simulation parameters:

TABLE I
SIMULATION PARAMETERS

Failure Prediction Task Ego Action | Agent Interaction
Probability § Horizon Horizon Timestep Distance
0.2 ‘ 2s | 20s | 0.2s ‘ 30 m

We evaluate the ego failure rate which is caused by either
collisions or going offroad, the average minimum distance,
average jerk, average MPC cost, constraint violations (i.e.,
use of slack variable that we discuss later below), conformal
efficiency, outliers detected, and updated prediction region
coverage. The ego failure rate is determined as the percentage
of time steps where the ego agent is in a collision or offroad.
Conformal efficiency is defined as the average size of the
prediction sets over all 7-step ahead predictions [60]. We
compare the interaction robust MPC to three baselines:

1) Safe planning in dynamic environments with con-
formal prediction (SPDE) [12]: in which distribution

From observation, we note that the values of C|; are similar
at different times t¢. Therefore, we define the 7-step ahead
prediction region using the minimum value of C7, across
all observed t. Further, we introduce a slack variable for
constraint (17e) to take into account noise in the orientation
of the elliptical constraints due to rasterization. To ensure the
planner runs in real-time, we interpolate values from robust
CP. To determine the Huber quantile, we first run simulations
using the ground truth data to check how many outliers are
detected with no distribution shift. Using closed-loop test
residuals, the detected outliers is 17% using ground truth data
(no distribution shift). We then initialize the tuning parameter
A= MAR/0.6745 in the Huber loss and repeat simulations
on ground truth data and detect 21% outliers. We note that A
can be further tuned to reach a desired outlier detection rate,
in our experiments we adopt the above value for the results
that are presented below.

TABLE II
CONFORMAL PREDICTION METRICS, § = 0.2

Mean Empirical

Detected
Coverage Level

Outliers

Conformal

Efficiency (m) (1) Empirical Coverage

With Outlier
Interaction Robust w/Ccp, 1, 0.52 0.87 31% T7%
Interaction Robust w/C'c:r, 0.52 0.88 28.9% 8%
Worst-case 6 = 0.01 0.73 0.99 28.3% 93%
SPDE [12] 0.5 0.8 28.7% 70%
TABLE III

SIMULATION METRICS, § = 0.2

‘ Average minimum Constraint Average  Average MPC  Ego failure

distance (m) (1) Violation (})  Jerk (}) cost (1) rate ({)
Interaction Robust w/Ccr,, 20% 1.20 15.52 16%
Interaction Robust w/Ccp, 0.39 21% 1.22 17.2 19.3%
Worst-case & = 0.01 0.43 28 1.45 28.2 24%
SPDE [12] 0.27 22% 1.23 17.79 22%

Our experimental results, summarized in Tables II and III,
compare our method with the three baselines. Simulation
videos can be found here. Interaction robust planner using



Ccr,, outperforms baselines. Our planner achieved the best
balance between conservatism and conformal coverage (i.e.,
we would like 80% and our adaptive method increases
coverage from 69% to 77%). It demonstrated the lowest
constraint violations (20%) and lowest ego failure rate (16%).
Also, it has an average minimum distance of 0.39 m, compa-
rable to the worst-case-shift planner. Notably, it achieved the
lowest MPC cost, indicating efficient use of outlier detection
for scenarios requiring interaction robustness. The worst-
case-shift approach, while providing the highest conformal
coverage (93%), resulted in the highest average MPC cost
(28.20) and constraint violations (28%), suggesting over-
conservatism. Conversely, the SPDE baseline, not robust
to interaction-induced distribution shifts, had the lowest
conformal coverage (70%) and average minimum distance
(0.27 m) as it does not take into account interactions. Our
method demonstrates comparable performance in out-of-
distribution settings to scenarios without distribution shift
by maintaining its conformal coverage level, indicating ro-
bustness to interaction-induced shifts. Detected outliers in
Table II represent the coverage drop under distribution shift,
calculated using the time-lagged nonconformity score (12)
in a closed-loop manner.

Runtime analysis: Simulations showed efficient perfor-
mance across scenes with agents varying from 5 to 20. The
predictor and KL divergence estimator run on an Nvidia 4070
RTX GPU at 28 Hz and 2000Hz respectively. The MPC was
run on a CPU using Casadi at 20Hz. The KL divergence
estimation was performed using 3500 residual samples and
k = 50.

VI. CONCLUSION

This paper presented a framework for safe interactive
planning in unknown dynamic environments, introducing
an adaptive MPC approach that leverages robust conformal
prediction to address interaction-induced distribution shifts.
Our key contributions include a method for real-time de-
tection and quantification of these shifts using conformal
prediction and KL divergence estimation and a Huber quan-
tile approach for enhanced outlier detection. Experimental
results in the BITS simulator demonstrated the effectiveness
of our approach, achieving the lowest constraint violations
(20%) and ego failure rate (16%). The proposed planner
maintained comparable performance in out-of-distribution
settings, indicating robustness to interaction-induced shifts.
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