<]
TUDelft

Delft University of Technology

Image-based representations for efficient rendering and editing

Scandolo, Leonardo

DOI
10.4233/uuid:1947fa3e-2e3c-4007-bc4f-12cb93f34be6

Publication date
2019

Document Version
Final published version

Citation (APA)
Scandolo, L. (2019). Image-based representations for efficient rendering and editing. [Dissertation (TU
Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:1947fa3e-2e3c-4007-bc4f-12cb93f34be6

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.4233/uuid:1947fa3e-2e3c-4007-bc4f-12cb93f34be6
https://doi.org/10.4233/uuid:1947fa3e-2e3c-4007-bc4f-12cb93f34be6

IMAGE-BASED REPRESENTATIONS FOR EFFICIENT
RENDERING AND EDITING

IMAGE-BASED REPRESENTATIONS FOR EFFICIENT
RENDERING AND EDITING

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology,
by the authority of the Rector Magnificus, prof. dr. ir. T.H.J.J. van der Hagen,
chair of the Board of Doctorates
to be defended publicly on September 18, 2019 at 10:00 o’clock

by

LEONARDO SCANDOLO

Licenciate in Computer Science, Universidad Nacional de Rosario, Argentina

born in Rosario, Argentina.

This dissertation has been approved by the promotor.

Composition of the doctoral commitee:

Rector Magnificus, chairperson

Prof. dr. E. Eisemann, Technische Universiteit Delft, promotor
Independent members:

Prof. dr. ir. M. C. Veraar, Technische Universiteit Delft

Prof. U. Assarsson, Chalmers Institute of Technology, Sweden

Prof. dr. ing. M. Stamminger, Friedrich-Alexander-Universitét
Erlangen-Niirnberg, Germany

Dr. ing. J. Bikker, Universiteit Utrecht, The Netherlands

Prof. dr. ir. D.H.J. Epema, Technische Universiteit Delft, reserve member
Dr. J. Munkberg, NVIDIA Corporation

Other members:

Dr. R. Marroquim, Technische Universiteit Delft

! \
Delft %4%?% oo K
University of NS
Technology Advanced School for Computing and Imaging

| VISUAL
(lnte) ICOMPUTING HARVEST

HARVESTING DYNAMIC 3D WORLDS
l NSTITUTE FROM COMMODITY SENSOR CLOUDS

NJ/O

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

This work was partly supported by EU FP7-323567 project Harvest4D, the Intel VCI at
Saarland University and VIDI NextView, funded by NWO Vernieuwingsimpuls.

Printed by: (to be determined)
Copyright © 2019 by L. Scandolo
ISBN 000-00-0000-000-0

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

CONTENTS

Summary ix
Samenvatting xi
Preface xiii
1 Introduction 1
1.1 Image-based resolution strategies 3

1.2 Presented applications e 4

1.3 Personal contributions Lo 8

2 Compressed Multiresolution Hierarchies 9
2.1 Introduction L 10
22 RelatedWork L 11
2.3 Compressed Multiresolution Hierarchies 13
2.3.1 Construction.o e 14

2.3.2 Compressed Quadtrees 17

233 Filtering 19

24 Shadowmapstacks. 20
2.5 Multiresolution Hierarchies Evaluation. 22
2.6 Merged Multiresolution Hierarchies 25
2.6.1 Hashing e 27

2.6.2 SubtreeMatching Lo Lo 29

2.6.3 Serialized Tree Creation 31

2.6.4 Merged Multiresolution Hierarchies Evaluation 32

2.7 Conclusionand FutureWork 0L, 35

3 Quad-Based Fourier Transform 37
3.1 Introduction 38
3.2 RelatedWork L 39
3.2.1 Diffraction Modeling and Rendering. 39

3.2.2 Acceleration Techniques for Fourier Transform 40

33 Background. Lo 40
3.3.1 Standard Fourier Transform 40

3.3.2 Diffraction with Fourier Transform. 41

34 Ourapproach. e 41
3.4.1 Primitive-based Fourier Transform 42

3.4.2 Far-Field Diffraction Rendering 43

3.4.3 Accelerations Lo oo 44

344 OcclusionandArealLights 46

3.4.5 Near-Field Diffraction 47

vii

viii CONTENTS
35 Results 49
3.5.1 Far-Field Diffraction. 49

3.5.2 Near-Field Diffraction 52

3.6 Applications L 53
3.6.1 GlareRendering 53

3.6.2 Ringing at Dynamic ApertureEdges 54

3.6.3 Bloom/GlowRendering 54

3.7 Discussion and Limitations., 55

4 Gradient-Guided Local Disparity Editing 57
4.1 Introduction 58
42 RelatedWork L 59
4.3 DisparityEditing e 60
43.1 DisparityMap oL 60

4.3.2 DisparityTools.o o 61

4.3.3 Disparity Map Optimization. 62

4.3.4 Stereoimagecreationo 64

4.3.5 ImplementationDetails, 66

44 Results L e 67
441 Memoryusage v v v e e e e e e e e e e e e e 70

442 Timing.o 71

443 Userstudies e 71

4.4.4 Limitationsand FutureWork. 73

45 Conclusion Lo e 74

5 Conclusion 75
Epilogue 89
Acknowledgements 91
Curriculum Vitae 93

List of Publications

SUMMARY

VER the years, technological improvement has led to the ability to acquire, create
O and store vast amounts of geometrical and appearance data to use in graphical ap-
plications. Nevertheless, efficiently creating images when using such large amounts of
data remains an ongoing topic of research, given the computational resources required.
This dissertation will focus on a particular kind of algorithms in order to tackle this prob-
lem: image-based representations.

Entities represented in a virtual 3-dimensional world can be projected into a regu-
lar 2-dimensional grid to form an image. This results in a much more compact, albeit
incomplete, representation of the original information, since an image is a piece-wise
constant discretization of the underlying data. Nevertheless, computing properties of
the 3-dimensional data via its 2-dimensional projection is much more efficient. Still, itis
important to understand when and how to use these types of representations, since the
discretization of the original data can lead to artifacts in the computed results.

This work will focus on three key aspects of computer-graphics algorithms where
using appropriate image-based representations can result in increased performance:
memory requirements, computational efficiency, and interactivity. To do so, it will de-
scribe image-based solutions to different relevant problems in the field of computer
graphics. Firstly, by exploring how using 2-dimensional intermediate representation
can reduce memory requirements for storing large static shadow information in com-
parison to state-of-the-art voxel representations. Secondly, a hierarchical image-based
approach for efficiently computing diffraction patterns will be demonstrated, which can
outperform FFT-based solutions. Lastly, an efficient interactive optimization method for
editing disparity when creating stereographic images will be described.

These algorithms will be described and evaluated in detail, in order to give the reader
insight into the usage of image-based representations.

ix

SAMENVATTING

VER de jaren heen heeft technologische vooruitgang geleid tot de mogelijkheid om
O enorme hoeveelheden geometrische en uiterlijke gegevens te verkrijgen, te creé-
ren en op te slaan voor toepassingen in grafische applicaties. Desalniettemin blijft het
efficiént creéren van afbeeldingen bij het gebruik van dergelijke grote hoeveelheden ge-
gevens een voortdurend onderwerp van onderzoek, gezien de benodigde berekeningen.
Dit proefschrift richt zich op een specifiek soort algoritmen om dit probleem aan te pak-
ken, namelijk op afbeeldingen gebaseerde representaties.

Entiteiten die worden weergegeven in een virtuele driedimensionale wereld kunnen
worden geprojecteerd op een regelmatig tweedimensionaal raster om een afbeelding
te vormen. Dit resulteert in een veel compactere, zij het onvolledige, weergave van de
originele informatie omdat een afbeelding een stuksgewijze constante discretisatie van
de onderliggende data is. Niettemin is het berekenen van de eigenschappen van de 3-
dimensionale gegevens via de 2-dimensionale projectie veel efficiénter. Toch is het be-
langrijk om te begrijpen wanneer en hoe dit type representaties te gebruiken is, omdat
de discretisatie van de originele gegevens kan leiden tot artefacten in de berekende re-
sultaten.

Dit werk zal zich concentreren op drie belangrijke aspecten van computergraphics
algoritmen waarbij het gebruik van passende op afbeeldingen gebaseerde representa-
ties kan resulteren in verhoogde prestaties namelijk de geheugenvereisten, de efficiéntie
van de berekeningen en interactiviteit. Om dit te doen worden de op afbeeldingen ge-
baseerde oplossingen voor verschillende relevante problemen op het gebied van com-
putergraphics beschreven. Ten eerste door te onderzoeken hoe het gebruik van twee-
dimensionale tussenrepresentaties geheugenvereisten kan reduceren voor het opslaan
van grote statische schaduwinformatie in vergelijking met de beste huidige voxelrepre-
sentaties die tegenwoordig worden gebruikt. Ten tweede zal een hiérarchische op af-
beeldingen gebaseerde benadering voor het efficiént berekenen van diffractiepatronen
worden gedemonstreerd die beter kan presteren dan op FFT-gebaseerde oplossingen.
Ten slotte zal een efficiénte interactieve optimalisatiemethode voor het bewerken van
de dispariteit bij het maken van stereografische afbeeldingen worden beschreven.

Deze algoritmen zullen in detail worden beschreven en geévalueerd om de lezer in-
zicht te geven in het gebruik van op afbeeldingen gebaseerde representaties.

Xi

PREFACE

LEONARDO SCANDOLO
Delft, March 2019

This work is in many ways the conclusion to four amazing years of work at TU Delft.
When I contacted Prof. Eisemann to ask about the possibility of pursuing a PhD within
his group, it was only a lucky misunderstanding that led to an interview and later to a
position offer. During our initial conversations, I remarked that my main goal was to
learn as much as possible about computer graphics in that time. Luckily, he agreed with
this sentiment, and we set out to work on a variety of topics from the start.

This dissertation is based on the line of work I was most involved personally, and
where we were able to successfully improve upon the state-of-the-art methods. Along
the way were many failed, or rather not-quite-so-successful, attempts at solving the
same problems that are presented in this dissertation. Understanding why these meth-
ods were not as useful was sometimes very enlightening, and I feel it was a very impor-
tant part of improving as a researcher.

Furthermore, I was lucky enough to participate to a smaller degree in a diversity of
other projects, from which I took away many important lessons. Although not part of
this dissertation, they are a core part of the knowledge I acquired during my PhD, and
hopefully part of that is reflected on the quality of my work as time went on.

xiii

Highly organized research is guaranteed to produce nothing new.

Frank Herbert, Dune.

HE field of computer graphics plays a large role on a wide variety of industrial and

artistic applications. Some popular fields include computer games, animated movies
and shorts, and the special effects industry. Other applications include training simula-
tors for a variety of skills, scientific visualization of large datasets, and industrial and
architectural design. All of these areas are in constant growth, demanding the creation
and visualization of ever-increasing amounts of data and details. Over the years, there
has been a steady increase of quality, realism, and detail in the achieved results, as well
as increased efficiency in rendering, the process through which images are created.

Although hardware advancements contributed to expanding the applications and
amount of complexity that can be pursued when rendering, research into optimized data
structures and algorithms remains crucial. Indeed, since its inception, the computer-
graphics field has struggled with the limitations of hardware capabilities in order to pro-
duce large, detailed, physically accurate images. The development of distributed ray
tracing[1], radiosity algorithms[2], and path tracing solutions to the rendering equation|[3]
provided correct, albeit slow (for current standards) methods for recreating the most
prominent aspects of realistic lighting. Ever since, much of the research in the area of
computer graphics has been devoted to providing developers with the tools and capa-
bilities to represent and render increasingly larger and more detailed virtual scenarios in
a more efficient manner.

Nowadays, most artistic content generated using computer graphics attempts to mimic
our reality and is therefore 3-dimensional in nature. Nevertheless, working directly in
three dimensions is inherently costly in terms of memory and processing requirements.
Scaling becomes an important issue, since doubling the scale of a representation in
three dimensions results in an eight-fold increase in memory and computational re-
source requirements. Virtual scenarios represented directly in three dimensions, via

2 1. INTRODUCTION

Figure 1.1: Examples of increasing complexity and realism in computer graphics over the years. In reading
order: A frame from the short computer animated film A Computer Animated Hand by Edwin Catmull and
Fred Parke (1972), example of path tracing from the article The Rendering Equation by Jim Kajiya (1986), a
frame from the computer animated movie Toy Story by Pixar Animation Studios (1995), and a frame from the
game Red Dead Redemption 2 by Rockstar Games (2018).

voxels or similar primitives, are difficult to employ in current-day high-performance ap-
plications. The state-of-the-art techniques for encoding rich virtual scenes using vox-
elized representations|4, 5] have memory requirements that are prohibitive for real-time
interactive applications. For such high-performance applications, virtual scenes and
characters are represented as a surface described by a set of triangles, an inherently
2-dimensional geometric entity, placed in a 3-dimensional world. Furthermore, mate-
rial and geometrical attributes, such as color, surface detail and reflective properties are
usually encoded using images, typically referred to as textures. A simple mapping from
triangle vertices to texture coordinates allows rich details to be added to simple geomet-
rical models, further reducing the need to create and store detailed geometrical objects.
The success of such representations motivated the creation of highly specialized graph-
ics processing units (GPUs) that can access and manipulate triangle representations and
textures efficiently.

Following the same reasoning, this dissertation will explore new methods of reduc-
ing memory and processing requirements of computer graphics algorithms by finding
an appropriate 2-dimensional (image-based) intermediate representation. To do this,
we will tackle specific problems that will provide insight into their applicability and per-
formance. For each problem, we propose new representations that are not only more
efficient, but also easier to reason about and implement using current graphics process-
ing software and hardware than their complete 3-dimensional counterparts.

1.1. IMAGE-BASED RESOLUTION STRATEGIES 3

1.1.

Images are, by and large, the most common medium used to portray graphical informa-
tion. Usually, a specific representation is used for images: a regular 2-dimensional grid
of values, commonly called pixels. This representation is not coincidental, a regular grid
is in most cases easier to design and build, and also easier to reason about and subdivide.
CRT, LCD and LED-based televisions and monitors are, except for rare occasions, built
using this same image representation, physically and/or logically, for this very reason.

In computer graphics, simulated virtual cameras are used to create images meant to
be displayed on a physical screen. The parameters that define these cameras are respon-
sible for the section of the virtual scenario that will be represented in the resulting image.
The camera view is defined via a truncated' cone (or a cuboid, depending on the projec-
tion model used), named the view frustum. An image representing that view is created
by projecting the contents of the view frustum into the camera view plane, and naturally
resolving occlusions based on distance.

Due to the fast processing of image content achievable using graphics hardware, the
produced images are not only used for final display on the screen but also gave rise to
many different applications meant to improve rendering quality. By reasoning directly
using this image representation, many effects can be created at a fraction of the compu-
tational cost that it would demand were it to be computed based on exploring the entire
scene information. Screen-space effects that exploit this concept include ambient oc-
clusion, simple screen-space anti-aliasing techniques, bloom effects, and many more.

Other entities in the virtual scene can also benefit from using image representations.
A prime example of this are spot lights and directional lights, where shadow maps|6] are
used to determine the part of the scene that is lit. A shadow map is an image that stores
the distance to the first visible surfaces from the light. Reasoning about and evaluating
shadows using a shadow map is far simpler (albeit not always as exact) than involving
the entire geometrical structure of the scene.

The common focus on image-based representations of the techniques presented in
this dissertation is not accidental. Many of the optimized resolution strategies for re-
current problems in computer graphics can be broadly grouped based on their funda-
mental approach. One example of a common approach is to change the representation
basis of an image or other data, usually expressing information using a Fourier, wavelet
or spherical harmonics decomposition. This approach has led to the jpeg[7] image com-
pression algorithms and video compression algorithms[8]. In the context of rendering,
some techniques that use this approach are convolution shadow maps [9], prefiltered
single scatter effects[10], fast global illumination approximations [11, 12], and many
more. Another example of a common strategy is to employ statistical reconstruction of
information via sparse image sampling. Approaches that use this strategy are variance
shadow maps[13], imperfect shadow maps[14], and moment-based algorithms[15, 16].
While many of the previous approaches mostly used image-based solutions as a means
to cheaply approximate costly effects, this dissertation explores using image-based so-
lutions that can achieve high-quality rendering results. We will show that image-based
solutions are efficient and also accurate options for many different tasks. Specifically, to

1 The reason for not using a full cone is culling objects very close to the virtual camera

4 1. INTRODUCTION

demonstrate the versatility of these representations, we will focus on three fundamental
operations: storage, access, and modification. Therefore, this dissertation will put spe-
cial emphasis on memory resources, efficiency, and interactive modification of image-
based representations. In order to do this, we will specifically tackle problems where one
or more of these properties are essential. Each of the applications will be fully explored
in its own chapter, and the next section will outline the problem and resolution strategy
employed in each case.

1.2.

Using shadow maps is the most common and efficient way of creating shadows in real-
time computer graphics applications. Each texel of a shadow map records the distance to
the first visible surface from the point of view of the light. When creating an image from
the point of view of the main scene camera, the surface point at each pixel is compared
against what is stored in the corresponding shadow map texel. This depth comparison,
also called a depth test, determines whether a point is lit. If the point seen by the main
camera matches what is stored in the shadow map, then the object is lit, and otherwise
it is shadowed.

Shadow maps are not a perfect solution to the shadowing problem, as they suffer
from aliasing. This problem stems from the fact that shadow maps only store a discrete
representation of the scene. When the resolution of the shadow map is insufficient for
the main image that is being rendered, the correct shadowing patterns cannot be repro-
duced. In order to alleviate this problem, many adaptive shadow map creation schemes
have been devised, which attempt to match the main image resolution with the shadow
map resolution. Popular among these techniques are perspective shadow maps[17],
which applies a projective transformation to the shadow map, and cascaded shadow
maps[18], which creates several shadow maps for a single light, each corresponding to
different depth ranges as seen from the main camera.

Traditionally, shadow maps are generated for each frame in order to capture changes
in the scene. Nevertheless, in most applications, most parts of an environment are static,
such as the terrain or buildings. Optimally, one could create a shadow map containing
only the static objects just once, and then update another shadow map with the dynamic
objects, resulting in much less rendering done each frame. Unfortunately, using a static
shadow map is, in most cases, infeasible, given the need to use adaptive techniques that
depend on the main camera position.

In this thesis, a hierarchical method to compress shadow map information is pre-
sented. (Fig. 1.2). This compression allows creating very high resolution shadow maps
(upwards of 128k x 128k texels), which bypasses the need to use adaptive techniques,
and thus a single compressed shadow map can be precomputed for the static scene ob-
jects. This greatly reduces the amount of objects that need to be rendered into shadow
maps in each frame.

1.2. PRESENTED APPLICATIONS 5

Figure 1.2: Left: A compressed multiresolution hierarchy is used to generate deatailed shadows of trees.
Right: The structure used encodes depth in a hierarchical manner, using smaller (deeper) nodes as needed.
Nodes in deeper tree levels are shown in lighter colors.

EFFICIENT DIFFRACTION PATTERN SYNTHESIS

Diffraction patterns are a wave-optical phenomenon that occurs when a light wavefront
interacts with an object blocking its path. The perturbed wavefront interferes with itself,
creating interesting patterns of light when it reflects off surfaces. Furthermore, the wave-
front behaves differently depending on its wavelength, resulting in colorful patterns.

A common occurrence of this phenomenom presents itself when light traverses a
narrow aperture that is perpendicular to the wavefront direction and parallel to a sensor
plane. This is the case for many photographic and video cameras in use today, which
focus light using a series of lenses through a small aperture in order to stimulate a sensor.
When bright light shines through this aperture, the refraction patterns become visible in
the form of starburst patterns (see Fig. 1.3), whose exact shape depends on the aperture
shape and camera setup.

Although these diffraction patterns are an artifact of the camera lens and sensor sys-
tem, artists find the patterns visually pleasing, and thus attempt to incorporate them to
virtual scenes. The guiding principle behind these patterns was researched by Chris-
tiaan Huygens in the 17th century, and summarized in the Huygens-Fresnel formula.
This formula was then approximated and simplified for near-field diffraction, when the
sensor is close to the aperture plane in relation to the considered wavelength, and for
far-field diffraction, when the aperture plane is far from the sensor plane. Interestingly,
the simplified formula for far-field patterns matches the integral for expressing a func-
tion (the aperture shape) in the frequency domain, the 2D Fourier Transform. Therefore,
far-field diffraction patterns in computer graphics have classically been computed using
the Discrete Fast Fourier Transform (FFT).

Chapter 3 presents an alternative method for computing these diffraction patterns,
which fully leverages the regular structure of an aperture shape represented as an im-
age. By decomposing an aperture pattern into multi-scale regular quadrangular com-
ponents (quads), a single closed-form formula can be used for all components in order
to efficiently compute far-field diffraction patterns. Leveraging the regular structure of

6 1. INTRODUCTION

Figure 1.3: Examples of a far-field diffraction (left) and near-field diffraction patterns (right) from a heptagonal
aperture. In the case of the far-field diffraction, noise has been added to the aperture shape to obtain a more
colorful pattern.

a 2D grid and the additive nature of the far-field diffraction formula, this thesis outlines
several optimization strategies that can further reduce the time required to create these
patterns

Furthermore, the approach is extended to near-field diffraction patterns. Contrary
to FFT-based methods, the method described in this work is able to seamlessly compute
diffraction patterns efficiently for any sensor distance.

Finally, the chapter also outlines efficient methods for computing colorful patterns
in the visible light spectrum based on the pattern of a single wavelength.

Stereographic content gives artists a medium that can more faithfully represent virtual 3-
dimensional scenes. Stereo display devices require two images to be created each frame
which will be displayed individually to each eye of the viewer. These images are created
with virtual cameras placed in the scene with a horizontal distance similar to where the
eyes of an observer would be placed. By altering the projection of these cameras, an
artist can emulate different focal points, emulating in this way the rotation of the viewers’
eyes, also called vergence. This allows the human brain to naturally interpret the depth
of each object in the scene by accounting for the horizontal distance, called disparity, of
the object in the left and right image.

Another depth cue used by the human visual system to identify distances is to change
the curvature of the lens in the retina using specialized muscles. This process, known as
accommodation, allows the eyes to adjust their focal distance, and is unconsciously used
to estimate distance. Normally, vergence and accommodation cues agree and provide
the visual system with a robust estimate of depth. In the case of a stereoscopic image,
the screen distance, on which the images are displayed, remains constant, but the ver-

1.2. PRESENTED APPLICATIONS 7

L —— g —— g T —— g
— s % .7 — AL .7 —_—) -_
: p— 2 —’ ol N’
- N = A N B 58y
s = » = - =
= = -

Figure 1.4: Example usage of our disparity edition tool. Left column shows the original version of the scene,
with color-coded disparity and anaglyph stereo result. Middle column depicts the result of enhancing the
disparity of the blades without harmonizing the result with the rest of the scene; looking at the image will
generally cause discomfort in viewers. Right column shows the result of our tool, which maintains the disparity
enhancement on the blades but modifies the rest of the scene to avoid discomfort. = =

gence cues may indicate different depths. If both cues disagree strongly, the viewer may
be unable to properly fuse the images, and may experience discomfort or headaches.
The range of difference that vergence and disparity cues can adopt while still remain-
ing comfortable to the viewer is known as the stereoscopic comfort zone[19]. Content
creators must ensure that the scene and camera parameters used to create stereoscopic
images result in synthetic vergence cues that fall within this zone.

To ensure comfort bounds, stereoscopic content requires special processing, but
artistic edition of such content is not straightforward. Once the camera parameters are
established, each pixel of the resulting images has a defined disparity, which depends on
its depth with respect to the cameras. Content creators may choose, for artistic purposes,
to modify the disparity of individual objects in the scene, to make them appear closer or
farther away from the camera, or make them rounder or flatter. Unfortunately, modify-
ing the disparity of a single object without taking into account the rest of the scene can
have negative consequences; disagreements between disparity and other visual cues,
such as occlusion, texture or size, can occur.

In Chapter 4, we propose an image representation of disparity values, a disparity
map, that will guide the editing process. A user can choose to modify disparity proper-
ties of individual objects, which will add constraints to the values of this disparity map.
Certain guarantees on the disparity values are also taken into account, again in the form
of constraints, in order to avoid conflicting depth cues. An optimization process is then
performed in order to obtain a disparity map that follows artist constraints and is free
from depth-cue conflicts. This optimized map will then guide the rendering process in
order to obtain the final stereo pair (see Fig. 1.4).

8 1. INTRODUCTION

1.3.

Following this short introduction, this dissertation contains three main chapters which
are based on scientific articles published as part of my studies.

Chapter 2 is based on Compressed Multiresolution Hierarchies for High Quality Pre-
computed Shadows, Computer Graphics Forum, Vol. 35, No.7 (2016), and Merged Mul-
tiresolution Hierarchies for Shadow Map Compression, Computer Graphics Forum, Vol
35, No. 7 (2016). The solution was conceived in collaboration with Dr. Pablo Bauszat
and Prof. Elmar Eisemann, and the articles were written as a collaborative effort as well.

Chapter 3 is based on Quad-Based Fourier Transform for Efficient Diffraction Syn-
thesis, Computer Graphics Forum, Vol 37, No. 4 (2018). For this work, Dr Sungkil Lee
and Prof. Elmar Eisemann proposed the use of an aperture decomposition approach
for computing the diffraction patterns. Together with Dr. Sungkil Lee, we extended the
hierarchical quad-based method for far-field and near-field diffraction, and proposed
several optimization strategies described in the article.

Chapter 4 is taken almost verbatim from Gradient-Guided Local Disparity Editing,
Computer Graphics Forum, Vol. 38, No. 1 (2019). For this work, Prof. Elmar Eisemann
proposed using a resolution strategy based on constraints on the image disparity and its
gradient, as well as the reprojection principle. Based on this idea and early work done
by Dr. Leila Schemali, along with Dr. Pablo Bauszat we created the editing tools, dis-
parity optimization procedure, and an improved reprojection approach described in the
article.

In all cases, aside from the scientific contributions described, I was also the main
programmer for the solutions, which led to many small optimizations contributed to
the projects, too numerous to detail here.

COMPRESSED MULTIRESOLUTION
HIERARCHIES FOR HIGH QUALITY
PRECOMPUTED SHADOWS

L. Scandolo, P. Bauszat, E. Eisemann

The quality of shadow mapping is traditionally limited by texture resolution. We present
a novel lossless compression scheme for high-resolution shadow maps based on precom-
puted multiresolution hierarchies. Traditional multiresolution trees can compactly repre-
sent homogeneous regions of shadow maps at coarser levels, but require many nodes for
fine details. By conservatively adapting the depth map, we can significantly reduce the
tree complexity. Our proposed method offers high compression rates, avoids quantization
errors, exploits coherency along all data dimensions, and is well-suited for GPU architec-
tures. Our approach can be applied for coherent shadow maps as well, enabling several
applications, including high-quality soft shadows and dynamic lights moving on fixed
trajectories. Additionally we present an extension that leverages redundancy to further
reduce the memory requirements by merging functionally equivalent subtrees.

10 2. COMPRESSED MULTIRESOLUTION HIERARCHIES

Figure 2.1: Left: High-quality shadows in a static large-scale environment rendered in 1 millisecond using a
32-bit shadow map with a resolution of 1.048.576 x 1.048.576 pixels. The shadow map is compressed from four
terabytes down to 160.6 MB (26124:1 ratio) without loss of precision. Right: Precomputed soft-shadows from a
high-detail model using 2.048 coherent shadow maps, each with a resolution of 2.048 x 2.048 pixels, rendered
with 32 samples in 14 milliseconds and stored in 145 MB (227:1 ratio).

2.1. INTRODUCTION

IGH-QUALITY shadows are an important challenge in many real-time rendering ap-
H plications in computer graphics. Shadow mapping [20] is today’s standard for real-
time shadows, however, its quality is often limited by texture resolution. Ideally, when
projecting a shadow map into the view of the main scene camera, the main camera
resolution should match the projected shadow map texel resolution. Unfortunately, to
achieve this in large scale scenes this would require resolutions and memory require-
ments that are not supported in commodity GPUs. As an example, in the castle scene
presented in Fig. 2.1, a shadow map with a resolution lower than 128k? would display
blocky artifacts, which means that a minimum of 64GB of video memory is needed to
use a single standard shadow map. Adaptive approaches such as Adaptive Shadow Maps
[21] or Cascaded Shadow Maps [18, 22] are popular real-time solutions, but come at the
cost of reduced run-time performance since they require the creation of several shadow
maps for each frame. Virtual scenes often consist of large static parts (e.g., terrains or
buildings), and therefore pre-computing detailed shadow information for them has be-
come a common practice (e.g., light maps). In this case, shadows of the dynamic scene
parts need to be computed with a different algorithm.

Recent advances have shown that precomputed compressed high-resolution shad-
ows information can be a competitive alternative[23-25]. Such techniques fully handle
shadows cast by static objects on both static and dynamic receivers. Dynamic shadow
casters are handled using standard shadow mapping techniques at run-time, with the
added benefit of not having to render the static parts of the scene. Unfortunately, con-
ventional image compression techniques are not suitable for compressing shadow maps.
Conventional lossy compression techniques result in light and shadow leaks, since they
are not designed to satisfy strict per-pixel bounds. Globally diminishing allowable bounds
or using lossless compression techniques does not result in satisfactory compression
rates. Furthermore, many techniques rely on run-length encoding, which prohibits fast,
random-access queries necessary for computing real-time shadows. Fast, random-access
compression of color textures has been explored in the context of GPU architectures
([26-28]), but these algorithms rely on quantizing data or lead to low compression rates
(up to 5%), which is insufficient for higher resolutions. Consequently, custom schemes
for shadow-map compression have recently been proposed. These approaches typically

2.2. RELATED WORK 11

exploit the fact that, in static scenes, any depth value between the depth of the first and
second surface underneath a pixel leads to a conservative occlusion test. However, pre-
vious approaches do not fully exploit the data coherency, or rely on depth quantization.

We introduce a novel compression scheme for creating very high-resolution shadow
maps based on multiresolution hierarchies (MH). We propose a sparsification process,
which exploits the concept of dual shadow mapping (a shadow map for the front faces
and one for the back faces) to create an extremely sparse, but conservative, multiresolu-
tion decomposition of the original (front) shadow map. This decomposition is efficiently
encoded in a compressed regular tree for fast random access during run-time. We show
that our approach achieves higher compression rates than all previous approaches, can
be queried with real-time performance, and can be efficiently built using GPU architec-
tures. Our approach is the first to exploit coherency along all data dimensions, it does not
rely on quantization (maintains full 32-bit precision) and supports shadow maps from
arbitrary light sources. Another benefit is that it naturally incorporates all information
required for hierarchical filtering operations since it offers a multiresolution representa-
tion, which means that each level of the resulting hierarchy by itself is a complete shadow
map. We also show that our approach can be directly extended from single shadow maps
(2D encoding using quadtrees) to a coherent set of shadow maps (3D encoding using
octrees). Fig. 2.1 shows an example of shadows created from both precomputed shadow
maps and coherent shadow map sets encoded using our method. Finally, we present
an algorithm to find and merge functionally equivalent subtrees within the resulting
MH, which can reduce memory requirements of the structure by up to 40% while re-
taining the same run-time performance. This algorithm is based on the observation that
the resulting hierarchical representation frequently exhibits similar hierarchical patterns
around small structures and edges due to the regular nature of the underlying data. Our
approach is the first to enable efficient compression of and rendering with high-quality
shadow map sets to produce soft shadows, and moving light sources with known trajec-
tories (e.g., sun lighting).

2.2. RELATED WORK

We will briefly discuss previous approaches for precomputed compressed shadows and
compression of tree hierarchies. For a comprehensive overview of real-time shadow gen-
eration, we refer to the surveys of Eisemann et al. [29] and Woo et al. [30].

Texture compression Image compression techniques are abundant; two of the most
widespread compression standards are JPEG[7] and PNG [31]. Traditional techniques
often do not provide efficient random-access to the data, i.e., they require to decode
larger parts or the whole image at once, which prohibits their use for real-time appli-
cations that require fast random access. In the context of real-time rendering, several
GPU-supported compression formats that allow random-access queries exist, such as
S3TCI32], ETCI[33], ASTC[34] and others. While these methods work well for texture and
normal maps, they are lossy and encoding an image with these techniques results in a
globally bounded per-texel error. In the context of shadow map compression, it is nec-
essary to ensure that the result of the depth test is always correct in order to avoid arti-

12 2. COMPRESSED MULTIRESOLUTION HIERARCHIES

facts and thus, lossy techniques are not suitable. Although lossless compression meth-
ods based on decomposition and block-based matching exist [HC07], they achieve very
modest results compared to specialized shadow map compression methods that can ex-
ploit per-texel error margins.

Compressing with line segments Based on the assumption that shadows are not cast
inside of objects, Woo et al. [35] proposed midpoint shadow mapping as a solution
to self-shadowing artifacts. Midpoint shadow mapping computes a new shadow map,
which represents the intermediate surface lying between the two surfaces closest to the
light source. Since all depth values stay between the front facing geometry (the sur-
faces that represent the original shadow map) and the back facing geometry (the first
exit point out of the object), the resulting occlusion test is conservative. An extension of
this approach is dual shadow mapping [36], where the shadow maps are kept separate
and shadow biasing can be performed adaptively. Based on this concept, Arvo et al. [23]
introduced Compressed Shadow Maps (CSM) and showed how to compress a shadow
map by representing each scan-line with a set of line segments approximating the mid-
point surface. This approach shows that shadow map compression can be understood as
signal compression with a specific spatially-variant bound. Although our approach can
be interpreted as a 2D or 3D extension, finding the exact analytic equivalent in higher
dimensions is a significantly more complex task.

Ritschel et al. [37] similarly compresses a set of coherent shadow maps by encoding
the depth values of each pixel for all images by using a set of lines. However, both ap-
proaches do not fully exploit data coherency along all dimensions (e.g., only along the
vertical dimension or "through" the image stack) and, therefore, cannot achieve optimal
compression rates. Additionally, since these compression schemes are non-hierarchical
they do not adapt well to the underlying data and efficient filtering along dimensions
other than the compression dimension becomes impractical.

Precomputed Voxelized Shadows Recently, Sintorn et al. [24] proposed to precom-
pute shadow information for a voxelized scene representation in projective light-space,
which is efficiently encoded in a 2-bit Sparse Voxel Octree [38]. The octree is further
compressed by subtree merging using a Directed Acyclic Graph (DAG) [39]. The initial
compression and construction performance was improved and resulted in the current
state-of-the-art compression method for precomputed shadows [25]. Unfortunately, the
voxelization process leads to depth quantization and, although the information is en-
coded hierarchically, it is not a multiresolution representation, and fast filtering requires
additional memory, almost doubling the size of the tree. Despite their ability to greatly
reduce memory requirements for 1-bit or 2-bit values, DAGs are not well suited for com-
pressing more complex data, since equal subtrees become scarce, thus their usage to
compress 32-bit shadow maps becomes unfeasible. State-of-the-art approaches in this
area [4] require heavy quantizing of data in order to obtain acceptable results, which is
incompatible with the lossless constraint of shadow map compression. Furthermore,
their usage to encode shadow mabp sets is difficult since the compression is only efficient
in the projected space of the light source.

2.3. COMPRESSED MULTIRESOLUTION HIERARCHIES 13

Figure 2.2: Left: A multiresolution decomposition of a shadow map requires many coefficients (red) at finer
levels in varying regions and is typically not sparse. Middle: Using dual shadow mapping, an intermediate
surface (green) can be found between the shadow map (red) and the auxillary second-surface shadow map
(blue). Here, the intermediate surface represents a linear, conservative approximation of the shadow map by a
set of axis-aligned planes. Choosing these planes to represent common depth values for many pixels results in
a more homogeneous occlusion surface. Right: A significantly sparser multiresolution decomposition encod-
ing the set of axis-aligned planes. The overlayed quadtree shows the encoding of coefficients. Inner nodes are
represented by green circles, while leaf nodes are marked as yellow. Note the empty inner nodes (white circles)
which are required to encode the topology information, but do not store any depth values.

Tree Compression A large body of research exists for efficient tree-based encoding of
MH (e.g., [40-42]). Unfortunately, our tree must support random access and exhibits cer-
tain uncommon characteristics, making it difficult to apply most previous techniques.
However, to address the overhead introduced by storing topology information, we uti-
lize the pointer compression technique proposed by Lefebvre et al. [42] and efficiently
encode tree pointers using 16-bits. We do not employ any vector quantization [43-45]
or other optimizations to the stored depth values themselves. Our results demonstrates
that even without such data changes, our approach outperforms previous compression
approaches, while maintaining full 32-bit depth precision.

2.3. COMPRESSED MULTIRESOLUTION HIERARCHIES

Multiresolution decompositions of images (e.g., wavelets [46] or quadtree images [47])
split features into components of different scales, typically storing homogeneous parts
at coarser levels and details at finer levels. In consequence, finer levels (which contain
more coefficients) are usually sparse, and coefficients are small if they are encoded as
differentials to previous levels. Lossy compression exploits this characteristic and re-
moves small coefficients assuming their influence to the composed image is not signifi-
cant. However, for lossless compression all coefficients, independent of their magnitude,
have to be considered. This results in decreased sparsity and diminished compression
(Fig. 2.2, left).

Our key idea is to compress an alternative representation of the shadow map that is
more homogeneous, but still conservative. Our goal is to find new depth representatives
for each texel in order to increase the sparsity of the hierarchy, but such that a conser-
vative depth test (i.e. equal depth test result for all visible parts of the scene) remains
possible. This is achieved by choosing values inside the boundaries defined by the first
entry and exit surface points. To compute these bounds, we employ the concept of dual

14 2. COMPRESSED MULTIRESOLUTION HIERARCHIES

shadow mapping (Fig. 2.2, middle). As a whole, the procedure can alternatively be inter-
preted as the compression of an image with a spatially-varying error bound defined by
an interval that must be met to maintain lossless compression. For fast random-access
during run-time, we encode the sparse decomposition using a compressed quadtree
(Fig. 2.2, right).

For non-watertight or one-sided objects, the upper and lower bounds of the depth
interval need to be set to the depth value of the entry surface to ensure a conservative
depth test. Although this reduces compression capability, our technique still handles
these cases correctly and no artifacts are introduced.

In the following, we will first propose two greedy construction methods for finding
sparse decompositions from conservative depth bounds. Then, we cover efficient en-
coding and traversal of the sparse representation using a compressed quadtree. Finally,
we discuss shadow map filtering and propose an optimized traversal technique to sig-
nificantly reduce filtering costs. While this section focuses on single shadow maps only,
we will demonstrate in Sec. 2.4 how to extend our approach to a set of coherent shadow
maps using a compressed octree.

2.3.1. CONSTRUCTION

Our first task is to define the allowable depth interval for each texel. While the lower
depth bound is defined by the original shadow map, the upper bound is determined
using the second layer obtained via depth peeling [48].

If the scene contains intersecting watertight objects, we can even further exploit the
compression potential by ignoring surfaces inside of other objects. To exemplify this
point, one can imagine each shadow map texel corresponding to a ray cast from the
light source. For each ray, one can track the encountered surfaces with a counter while
advancing in the scene. The counter is incremented for each front-facing surface and
decremented when a back-facing surface is encountered. The first intersection corre-
sponds to the minimum bound of the allowable depth interval, which sets the counter
to one. After that, when the counter reaches zero, the ray has exited all objects and the
corresponding depth is set as the maximum of the depth interval. This procedure can
be efficiently carried out for all texels simultaneously via a depth-peeling algorithm or
by using a k-buffer [49]. In the case of one-sided surfaces, they can be accounted for as
coinciding front and back faces.

After computing per-texel depth intervals, we need to find a per-texel depth value
inside such intervals which allows for a sparse decomposition. Interestingly, the task of
finding an intermediate surface inside a given envelope is a common problem in mesh
simplification, and for the 3D case it is known to be NP-hard [50]. We propose two greedy
approaches, which perform a sparse decomposition and tree construction at the same
time. The first one is a top-down approach which tries to globally minimize the num-
ber of distinct depth values, while the second one operates in a bottom-up manner and
inspects only local texels from the next finer level. The resulting hierarchy will then be
sparsified and encoded using a quadtree structure.

Top-down construction The top-down construction starts at the coarsest level, which
represents the entire image domain, and greedily selects the depth value which covers

2.3. COMPRESSED MULTIRESOLUTION HIERARCHIES 15

VN N W

Figure 2.4: Three steps of the bottom up creation algorithm. Left: Initially all values are present in the finest
level. Middle: The most frequent value is pulled up the hierarchy. Right: The procedure is repeated for the
next level and an empty node is created to preserve the connectivity.

the largest number of depth intervals.

We then mark all texels that can be represented by this value as covered. These cov-
ered texels will inherit the depth value from the coarsest level and only the remaining
uncovered texels need to store a separate depth value. The approach then proceeds to
the next finer level by decomposing the domain into four quadrants. For each quadrant
that contains at least one non-covered value, the algorithm is launched recursively. If
all texels in a quadrant are covered, or the finest level is reached, the algorithm stops.
Consequently, homogeneous areas result in an early termination of the process.

To find the depth value covering most intervals, a direct approach would be to dis-
cretize the depth, create a histogram, and find the value with the largest number of con-
forming intervals. To avoid discretization, we propose an analytic sweep-based algo-
rithm instead. We start by sorting all interval-bound depths in ascending order.

Then, we sweep through the
sorted list and keep track of the
number of overlapping intervals
by incrementing a counter each
time an interval minimum is en-
countered (we enter an interval) B
and by decrementing it when | -
a maximum is encountered (we] I
exit an interval). The high-
est detected count during the -
sweep leads to the depth repre- -
sentative which covers the maxi-

mum amount of intervals possi-

ble (Fig. 2.3). The pseudo-code Figure 2.3: To find a depth value which intersects the maximum
number of intervals from a given set (left), we propose a sweep-
based mode finding scheme. The interval boundaries are sorted in
ascending order first (left). We can then find the mode which cor-
responds to the best depth value by sweeping through the sorted
list and keep track of the number of open intervals.

t Sorted intervals

Unsorted intervals <
B ——
[
o

Depth

]
1]

A EmaEm
(T TaErme]

[

Occurrence

for the top-down decomposition
isshown in Alg. 1.

The algorithm requires a sin-
gle sorting in the beginning,
which can be performed in O(n log n)
with n being the number of intervals (shadow map texels). Once the initial list is sorted,
all subsequent levels only require an O(n) extraction step to retrieve the sorted list of
uncovered-texel intervals for the corresponding quadrant. Since the extraction has to be
performed for each level, the overall run-time becomes O(n (log n)32).

16 2. COMPRESSED MULTIRESOLUTION HIERARCHIES

Algorithm 1 Pseudo-code for top-down hierarchy creation

function createHierarchy(intervals) :
sortedIvals < sort(intervals)
createNode(rootNodeLocation, sortedIvals)
function createNode(nodeLocation, sortedIvals) :
if isEmpty(sortedIvals) then
return
end if
bestlval — 0
numlvals < 0
bestNum — 0
for each ival € sortedIvals do
ifisMin(ival) then
numlvals++
else
numlvals- -
end if
if numlvals > bestNum then
bestNum — numlvals
bestlval — ival
end if
end for
saveNodeToHierarchy(nodeLocation, bestIval)
sortedlvals — extractUncoveredlvals(sortedIvals, bestlIval)
for each childLocation do
childlvals < extractChildIvals(childLocation, sortedIvals)
createNode(childLocation, childIvals)
end for

Bottom-up construction An alternative is a bottom-up construction, which only con-
siders sibling groups of four texels and their shared parent during creation. This ap-
proach is better suited for parallel execution and, for all our test scenes, it performs
competitively to the top-down construction, while being an order of magnitude faster.

The bottom-up construction is based on the idea of a min-max mipmap creation.
Initially, we inspect the lower and upper depth bound of texels at the finest level. When
defining the next coarser level, we analyze the four subjacent depth bounds of each texel
P using the same sweeping algorithm as for the top-down approach to find a largest
depth interval valid for most of these four texels. This interval I is then stored in P and
all subjacent texels, whose depth interval contain I are flagged as empty texels. The
algorithm then proceeds upwards to the next level. Once we reach the coarsest level, we
will populate the map with actual depth values in every non-empty texel by storing the
average of the interval bounds.

Since only four intervals are treated at a time, the costly sorting step is avoided and
the bottom-up construction requires only a constant number of operations per texel,

2.3. COMPRESSED MULTIRESOLUTION HIERARCHIES 17

Algorithm 2 Pseudo-code for bottom-up hierarchy creation
childbounds « [lower,upper]
for level from finestlevel - 1 to coarsestlevel do
for each pixel in level do
childrenPixels — getChildren(pixel, level+1)
depthRepresentative — findBestRepresentative(childrenPixels)
bounds(pixel) —]
for each childPixel € childrenPixels do
if satisfiesBounds(depthRepresentative, childPixel) then
setNonExistant(childPixel)
bounds(pixel) — bounds(pixel) N getBounds(childPixel)
end if
end for
end for
end for

resulting in an O(n logn) construction time. The algorithm maps better to current GPU
architectures, also leading to a practical speedup. The pseudo-code is shown in Alg. 2,
and Fig. 2.4 shows an example of the creation of a three level tree. The approach shows
similarities to the Mallat-algorithm for wavelet construction [46], but instead of using
the average as representative we choose the mode from the set of intervals in order to
sparsify the representation.

Tiled construction For the extremely large shadow map resolutions encountered in
our approach, it is infeasible to compute the full uncompressed depth intervals in mem-
ory before the creation of the MH. Fortunately, the construction of the MH can be per-
formed in tiles. First, the shadow map is divided in tiles of manageable size (in our im-
plementation typically 4k x 4k or 8k x 8k). For each tile, we compute its uncompressed
bounds via depth peeling, compress it using the top-down or bottom-up algorithm, and
store it along with the depth bounds of the root node. After all tiles have been com-
pressed, the stored depth bounds from all root nodes form the bounds of a new shadow
map, which is again compressed to create the top level structure of the complete tree.
Since only the uncompressed data of a single tile is required in memory at once, this
construction procedure is both efficient and maintains a small memory footprint.

2.3.2. COMPRESSED QUADTREES

The previous algorithms lead to a sparse hierarchy of depth values, which subsequently
needs to be encoded efficiently while ensuring fast random-access at run-time — which
are requirements fulfilled by a quadtree.

Encoding Our quadtree contains three node types: leaves (nodes with no children),
inner nodes, and empty nodes. Inner nodes and leaves contain a 32-bit depth value.
Empty nodes are only required to encode the quadtree connectivity, but do not contain
avalue themselves. Unlike other multiresolution decompositions, at this stage we do not

18 2. COMPRESSED MULTIRESOLUTION HIERARCHIES

9 7 6 5 4 3 2 1 0 Levels

1/o0 1 0o of1fo 1 0o ¥

Sample 0
1 0o 0 O 1 0 1 1 1 Y

Next child =b11 =3

1 1 0 1 O O0OjO0 1 1 1 X
1 1 0 O O 13090 1 O Y

o}
Diverging paths
o}

Figure 2.5: Finding the next child index can be done by inspecting the bits from the x and y position of the
query point. The lowest common node of multiple query points can be found by finding the last level where
the bits are equal.

encode the depth values using parent node differentials. In consequence, only a single
value needs to be fetched during tree traversal, which reduces the memory throughput
and accelerates lookups.

Inner and empty nodes contain an 8-bit mask indicating the type of each child node
(stored in two bits) and a pointer to the first child. We distinguish four cases for the
child type: a) non-existent, b) leaf node, c) inner node, d) empty node. As it is common
practice, a single pointer is sufficient, as all present child nodes are stored contiguously
in memory, and the location of a specific child can be obtained from examining the mask
in the parent node.

We employ the pointer encoding scheme proposed by Lefebvre et al. [42] in order
to reduce the amount of memory needed to store pointers. Their scheme stores sub-
trees close together and allows us to encode pointer offsets, whose magnitudes decrease
rapidly per level. Using a per-level scaling, we can efficiently encode pointers for all of
the test resolutions presented in this article with just 16 bits introducing only negligible
(no more than a few KB for Fig. 2.1) padding overhead for alignment. We exhaustively
search for the optimal per-level scaling factor as proposed by Lefebvre et al. Finally, we
also pad full and empty nodes with a single byte, resulting in 4-byte aligned nodes (8
bytes for full nodes, and 4 bytes for empty nodes and leaves). The padding increases the
memory footprint, but eases fetching the values on current GPU architectures, hence
decreasing lookup times. Alternatively, 24-bit pointers could be used, however, we de-
cided to keep the bit count compatible with the compressed octree representation which
will be introduced in Sec. 2.4. In all our test scenes, no significant difference was intro-
duced by using 16-bit pointers instead of 24-bit pointers for quadtree compression. If
memory footprint is overall more critical than traversal performance, the padding can
be removed to further improve the compression.

2.3. COMPRESSED MULTIRESOLUTION HIERARCHIES 19

Figure 2.6: Required traversal steps in the CLOSED CITY scene for a 5x5 PCF filtering using a naive implementa-
tion (lower-left triangle of the image) and our optimization finding the lowest common node first (upper-right
triangle). Bright colors represent numbers close to the maximum (tree height times number of samples), while
dark ones mean that only few levels are traversed.

Traversal Traversal of our compressed-quadtree encoding follows the same procedure
as standard quadtree traversal, but performs lazy fetching of the depth values to account
for the presence of empty nodes. The traversal path through the tree is defined by the po-
sition of the query point. By keeping track of the current level, we can directly compute
the index of the next child using a few bit-operations (see Fig. 2.5). We start traversal at
the root node (which is always a full node) and initialize a pointer which holds the index
of the last node containing a depth value. After reading the children mask and pointer,
we compute the index of the next child and query the mask to validate the child’s ex-
istence. We compute the offset of the next child node from the mask and 16-bit child
pointer to recursively continue the traversal. When we traverse a full node the pointer
to the last position of a depth value is always updated. If a child node does not exist or
a leaf node is reached, the depth value is fetched from the last-stored position and the
recursion is terminated. We do not query the depth value earlier, as this would result in
unnecessary texture fetches, since we do not store differentials, but absolute values.

Although hierarchical traversal has typically a run-time depending on the tree height,
the sparsity of our tree often leads to a termination after only a few levels.

2.3.3. FILTERING

Efficient filtering is an important aspect of shadow mapping. Percentage-closer filtering
(PCF)[51] is a popular technique which performs averaging of several depth-test results
in a fixed-size kernel (usually an r x r box). A naive implementation of PCF using our

20 2. COMPRESSED MULTIRESOLUTION HIERARCHIES

Figure 2.7: Left: An example of hierarchical PCF with a 3x3 kernel in the CLOSED CITY scene. Anti-aliased
shadows are present at all distances. Middle: An inset showing anti-aliased shadows closer to the camera.
Right: Another inset showing anti-aliased shadows cast by a complex occluder in the distance.

approach would perform a full tree traversal for each kernel sample. Since our quadtree
encodes a multiresolution prediction, we can perform analytic filtering when all samples
correspond to the same node. While this is not always the case, most samples share at
least a common path from the root node until a certain level. This level can be directly
computed from the minimum and maximum query points of the filter kernel and a few
bit-operations (see Fig. 2.5). We propose to traverse all kernel samples together through
the first few levels until we find the lowest common node where paths divergence. After
that, each sample proceeds individually. This easy-to-implement optimization can lead
to drastic improvements in PCF lookup time. A visualization of the amount of traversal
steps for the naive implementation and our optimization for a 5x5 PCF kernel size is
shown in Fig. 2.6. Another possible optimization is to keep a cache of the last queried
sample and reuse it if the next sample shares the same path through the tree down to the
retrieved value.

Multiresolution anti-aliasing such as hierarchical PCF computes the shadow map
footprint of a image pixel and looks up the depth value for the corresponding resolution
level. Since each of our tree levels encodes a full shadow map of the corresponding res-
olution, hierarchical filtering is natively supported. When performing PCF filtering, the
appropriate sampling level of the hierarchy can be chosen to maintaina 1 to 1 correspon-
dence between screen pixels and shadow map texels. This ensures that smooth shadows
are present at any view distance regardless of the projected area of a pixel in the shadow
map. Furthermore, tri-linear filtering can be performed by choosing two consecutive
sample levels and interpolating their values in order to create smooth transitions during
motion.

2.4. SHADOW MAP STACKS

We can extend our concept of compressed multiresolution hierarchies directly to a set
of coherent shadow maps. By stacking shadow maps in a 3D image cube, we can com-
pute a sparse decomposition in the same manner as for a single shadow map and en-
code it using an octree. This approach is useful for rendering of soft shadows from area
lights (Fig. 2.9, left) or varying light positions (Fig. 2.9, right). For soft shadows, we sam-
ple multiple light positions on an area light using a Hilbert-curve sampler as also used
by Ritschel et al. [37]. The light positions can be jittered in order to avoid banding for

2.4. SHADOW MAP STACKS 21

Figure 2.8: Left: An overview of the VILLA scene with an unfiltered 32K? compressed shadow map. Middle:
Close-up of filtered shadows rendered in 2 ms using a 3x3 non-hierarchical PCF kernel. Right: Another view-
point with a 5x5 non-hierarchical PCF filtering kernel rendered in 5 ms.

Figure 2.9: Left: Computing soft-shadows from an area light requires sampling multiple points on the light
source. The set of shadow maps corresponding to these points can be stacked in a 3D image cube for efficient
compression. Right: Motion of dynamic light source, which is known in advance, can be precomputed by
discretly sampling the trajectory, e.g., for simulating high-quality shadows from sun lights.

smaller sampling rates. For moving light sources, the motion has to be known and the
images are simply stacked in the order of discrete sample points along the trajectory.
Our hierarchical structure is able to exploit coherency along all 3 dimensions by encod-
ing homogeneous cubic regions in coarser levels of the hierarchy.

The construction and traversal techniques of the previous section can be directly
applied for octrees as well. The only major difference, however, is that we now have to
consider potentially eight children instead of four, which leads to 16-bit child masks.
This conveniently removes the need for padding and makes the octree nodes perfectly
aligned to 4-byte boundaries by default.

In the case of light trajectories, it is often only necessary to store a small number
of different light positions. In this case, creating an equally-sized cube would restrict the
resolution to match the number of images. Our approach allows for a convenient encod-
ing of non-cubic image stacks by generating placeholder nodes with a depth boundary
of [0,1]. Having the largest possible interval width, these nodes will be merged up the
hierarchy during compression and introduce minimal overhead to maintain the octree
connectivity.

22 2. COMPRESSED MULTIRESOLUTION HIERARCHIES

Figure 2.10: Realistic soft shadows in the SHIP scene generated with an octree from 512 depth maps of 1K2
resolution. Overall, the compressed octree is stored in 57 MB. Left: A closeup using 32 shadow-map samples
per pixel rendered in 14 ms. Right: Another viewpoint using 64 samples rendered in 30 ms.

2.5. MULTIRESOLUTION HIERARCHIES EVALUATION

In this section, we demonstrate the compression capabilities of our method for five test
scenes and evaluate its memory requirements, construction times and run-time evalu-
ation times. The CLOSED CITY scene (613K triangles) represents a typical open-world
game setting with both large scale and detailed features. The CiTYSCAPE scene (11K tri-
angles) is an example of an architectural design model, while the VILLA scene (89K trian-
gles) as well as the SHIP scene (810K triangles) are examples of scenes containing many
fine scale details. The DRAGON scene (7.2M triangles) consists of a scanned model with
a very high polygon count. Fig. 2.15 and Fig. 2.1 showcases the test scenes.

We implemented larger parts of the construction algorithm on the GPU using NVidia
CUDA 7.5. The rendering is done using OpenGL 4.3 and deferred shading, and our mea-
surements are reported for the evaluation of the shadows. All experiments were at a res-
olution of 1920x1080 on Windows 7 using a PC with and Intel i7-5820K CPU with 16GB
of system memory, and an NVidia Titan X GPU. We re-implemented the algorithm of
Arvo et al. [23] for the comparison to scanline compression. For the comparison to
DAG-based compression of voxelized shadows [24], we used the implementation kindly
provided by the authors which includes all the improvements from Kampe et al. [25].

Quadtree compression Table 2.1 presents compression results for single shadow maps
using multiresolution quadtree compression. We report memory footprints for the quad-
tree using the 1-byte padding for inner nodes and a full 32-bit depth precision. In all
cases, our algorithm outperforms the previous approaches and is able to compress even
large resolutions in the order of hundreds of thousands down to a few hundred megabytes.
All results used the bottom-up construction. Note that, in contrast to the previous ap-
proaches, our method implicitly encodes a full multiresolution representation of the
shadow information.

Table 2.2 showcases detailed construction times and total node quantity for several
test scenes, as well as the construction time for the voxelized shadows approach from
Kampe et al. [25]. While the preprocessing time is not interactive for larger resolutions,
we report numbers in the same order of magnitude as the highly-optimized implemen-
tation from Kampe et al. It can be seen that most of the time is spent in the depth peeling

2.5. MULTIRESOLUTION HIERARCHIES EVALUATION 23

Method 1K? 2K2 4K2 16K? 64K> 256K2 512K2 1M2
Uncompressed 4 MB 16 MB 64 MB 1GB 16 GB 256 GB 1TB 4TB
E Arvo et al. 0.092MB 0.23MB 0.56 MB 2.83 MB 12.85 MB 54.09 MB 109.8MB 221.9 MB
2 Kampeetal. - - 0.62MB 3.40 MB 14.89 MB 60.46 MB - -
é MH 0.067MB 0.17MB 0.41MB 2.10MB 9.26 MB 38.43 MB 79.63MB 160.5 MB
MH (ratio) 1.68% 1.06% 0.64% 0.21% 0.056% 0.015% 0.0078% 0.0039%
Uncompressed 4MB 16 MB 64 MB 1GB 16 GB 256 GB 1TB 4TB
; Arvo et al. 0.15 MB 036 MB 0.78MB 3.42MB 14.03 MB 56.61 MB 113.5 MB -
2 Kampeetal - - 094MB 3.94MB 16.38 MB 63.34 MB - -
3 MH 0.11 MB 026 MB 0.59MB 2.70MB 11.41 MB 46.73 MB 94.88MB 190.4 MB
MH (ratio) 2.75% 1.625% 0.92% 0.26% 0.069% 0.0178% 0.0090% 0.0045%
Uncompressed 4MB 16 MB 64 MB 1GB 16 GB 256 GB 1TB 4TB
- Arvo et al. 0.14 MB 040MB 1.10MB 5.89MB 2525MB 103.84 MB - -
= Kampeetal. - - 1.78MB 926 MB 39.70MB 166.47 MB - -
g MH 0.11MB 0.35MB 0.86MB 5.01MB 23.61MB 101.52MB 205.5MB 414.6 MB
MH (ratio) 2.75% 2.18% 1.34% 0.48% 0.14% 0.03% 0.02% 0.009%
Uncompressed 4 MB 16 MB 64 MB 1GB 16 GB 256 GB 1TB 4TB
Arvo et al. 0.21 MB 0.60 MB 1.44MB 6.73MB 28.23 MB 115.34 MB 233.2MB -
; Kampe et al. - - 201MB 8.66MB 3557MB 153.67 MB - -
MH 0.15MB 043MB 1.05MB 5.26MB 22.71MB 94.18 MB 191.5MB 392.1 MB
MH (ratio) 3.75% 2.68% 1.64% 0.51% 0.13% 0.036% 0.018% 0.0093%

Table 2.1: Compression results for our 2D MH approach comparing to the scanline compression of [23] and
the voxelized shadows approach of [25]. Our approach outperforms competing compression approaches con-
sistently while retaining full depth precision.

in order to obtain the initial depth bounds. The compression itself is mostly dominated
by the bottom-up construction that creates the sparse decomposition, and to a lesser
extent by the encoding of the quadtree. Finding the optimal per-level scale for 16-bit
pointer compression only takes up a small fraction of the overall construction time.

In Table 2.3 we report timings for single lookup performance and different PCF kernel
sizes. We compare our optimized PCF implementation against a naive one, standard
shadow mapping (for supported resolutions), and the methods from Arvo et al. [23] and
Kampe et al. [25] for the VILLA scene. Since it is naturally provided, our implementations
perform hierarchical PCE Shared traversal is significantly faster for PCF filtering than a
naive implementation (up to 2 ms for a 3x3 kernel, and 4.7 ms for 5x5). The method
from Arvo et al. performs well for small PCF kernels at low resolutions, but does not
scale well. The voxelized shadow approach is highly optimized for 9x9x9 and 17x17x17
cubic kernels, and achieves almost the same look-up times compared to single lookups.
In their case, the filtering is done at the lowest tree level, and thus will still potentially
result in aliasing when the footprint of a pixel is bigger than the kernel size.

In Fig. 2.8 and Fig. 2.7, we present visual results for unfiltered, non-hierarchical, and
hierarchical PCF filtering using our method. It can be seen that even high-frequency
shadows from small features can be faithfully rendered. Additionally, the insets in Fig. 2.7
show that anti-aliased shadows at any view distance can be achieved by sampling the
appropriate level.

As a practical optimization, Sintorn et al. [24] and Kampe et al. [25] store the top 6
levels of the hierarchy in a simple dense grid for large resolutions. This requires a con-
stant 8 MB of memory, which is negligible at higher resolutions. The numbers we report
for their approach include this optimization. In our case, this would allow us to remove

24 2. COMPRESSED MULTIRESOLUTION HIERARCHIES

Resolution Total Rendering M},I Quad?ree Serialization T.otal Kam?e etal.
nodes creation creation time time
. 1K? 14944 0.019 0.001 0.003 0.007 0.089 -
é 4K? 90775 0.067 0.003 0.004 0.017 0.242 0.098
§ 64K2 2037131 3.253 0.555 0.584 0.260 5.301 4.878
° 256K2 8477953 39.53 9.052 3.653 1.001 55.18 65.23
1K2 25859 0.012 0.001 0.003 0.009 0.089 -
% aK2 130974 0.044 0.004 0.009 0.021 0.221 0.061
é 64K2 2508119 1.755 0.551 0.612 0.299 3.888 4.089
- 256K2 10215660 22.45 8.975 4.287 0.984 38.85 51.58

Table 2.2: A detailed breakdown of construction timings (in seconds) and tree characteristics for the multireso-
lution quadtree compression for the CLOSED CITY and CITYSCAPE scene. Rendering times dominate construc-
tion times, while creation of the sparse decomposition and quadtree encoding constitutes around one third of
the total. We also provide a comparison to the method from Kampe et al. [25].

Method 4K2 16K® 64K 256K?

© Shadow mapping 0.25 0.36 - -
o MH 0495 052 054 0.71
5 Arvo et al. 0.39 0.51 1.04 2.6
Kampe et al. 0.61 0.61 0.68 0.72

Shadow mapping 0.34 0.65 - -
) MH PCF Naive 3.35 3.7 3.99 4.11
- MH PCF Optimized ~ 1.61 172 1.89 2.04
Arvo et al. 0.85 1.25 4.18 9.7

Shadow mapping 0.62 1.46 - -
1o MH PCF Naive 7.7 8.49 8.9 9.32
fé MH PCF Optimized 3.45 3.95 4.4 4.72
Arvo et al. 1.4 2.25 5.6 15.9
9x9x9 Kampe et al. 0.78 0.84 0.93 0.96

Table 2.3: Traversal time in ms for a single scene (VILLA) for our approach and comparing to standard shadow
mapping and the approaches from Arvo et al [23] and Kampe et al. [25]. The latter is highly optimized for a
cubic 9x9x9 kernel size and for a fair comparison, we only report these numbers.

the upper 11 levels of the quadtree and halve the number of traversed levels on average.
If evaluation time is more critical than compression, this could potentially lead to faster
lookups.

Octree compression We evaluate our 3D compression for high-quality soft shadows
and light motion, and compare it against naively compressing each image separately
with our 2D scheme. Table 2.4 reports memory sizes for our image stack compression al-
gorithm for soft-shadows. In the table, we show the resulting memory footprint of com-
pressing a set of shadow maps from an area light separately using our quadtree structure
and compressing them with our octree approach. It can be seen that our 3D compression
provides an additional gain and is able to reduce the compression rate down to 57.9% at
best compared to 2D compression.

Avisual impression of high-quality soft-shadows in the SHIP scene is given in Fig. 2.10.

2.6. MERGED MULTIRESOLUTION HIERARCHIES 25

Method 5123 1K3 2K3 4K3
~ Uncompressed 512 MB 4GB 32GB 256 GB
8 2D MH 11.5MB 484MB 205.8MB 863.6 MB
é 3D MH 6.7 MB 27.8 MB 145 MB 689.2 MB
R 3D/2Dratio 57.9% 57.3% 70.4% 78.8%

Table 2.4: Memory footprint of 3D multiresolution octree-based compression for a set of N images with dif-
ferent resolutions. As a comparison we report the memory by naively using our 2D quadtree compression for
each image individually.

Method 256 x 2K> 256 x 4K? 256 x 8K?
= Uncompressed 4GB 16 GB 64 GB
2 Compressed size 45.85MB 136.08 MB 456.32 MB
S Construction time 12.3s 36.2s 1359s

Table 2.5: Memory footprint and construction times of 3D multiresolution octree-based compression for a
non-cubic data set of 256 images taken a fixed-trajectory moving light source.

Please note that the shadow penumbrae generated in this way is geometrically correct
and appears more realistic as opposed to PCF filtering. The lookup time for 32 random
samples per pixel out of 512 depth maps is 14 ms, whereas evaluating 64 samples takes
30 ms.

Finally, we evaluate our 3D compression scheme for non-cubic image stacks for fixed-
trajectory light sources in Table 2.5. We show different viewpoints for the CITYSCAPE
scene in Fig. 2.11. Since the construction of the octree is based on cubic tiles, which
need to be kept small to fit in GPU memory, the viewport size for rendering is restricted,
leading to a large amount of render calls. Therefore, rendering makes up most of the
octree creation time.

2.6. MERGED MULTIRESOLUTION HIERARCHIES

The MH presented in Sec. 2.3 is able to sparsely represent a dense shadow map (or
shadow cube) by exploiting local similarities and using a hierarchical compression scheme.
Nevertheless, the proposed data structure still possesses redundant information, which
cannot be captured by our proposed method. Namely, the tree representation of a MH
may contain redundant equivalent subtrees. In this section, we will explore how to find

Figure 2.11: The CITYSCAPE scene shows shadows from different views taken from a compressed shadow map
stack of 256 4K? images taken on a trajectory above the city. The octree has a compressed size of 136.08 MB
(uncompressed 16 gigabytes) and is queried in under 1 ms.

26 2. COMPRESSED MULTIRESOLUTION HIERARCHIES

redundant subtrees in the MH representation of a shadow map, and how to modify the
structure so that only a single representative is left in memory. In other words, our goal
is to create a structure that can capture both the hierarchical similarities exploited by
MH representations as well as the non-hierarchical similarities exploited by DAG repre-
sentations Fig. 2.12. We will refer to this structure as a merged multiresolution hierarchy
(MMH). For clarity, in the following we will explain how to create an MMH from an MH
representing a single shadow map. Nevertheless, the same ideas are fully applicable to
shadow map cubes.

We propose to merge subtrees of an MH quadtree if we find that they (a) exhibit
the same structure and (b) each corresponding pair of non-empty nodes have matching
depth intervals. If both conditions are met, we can select one of the subtrees and replace
its depth intervals for each node with the intersection of the corresponding nodes in the
other trees. We then remove all other repeating occurrences and replace them with ref-
erences to the modified subtree. This allows us to remove redundant subtrees from the
hierarchy without violating the bounds of the dual shadow map.

In order to be able to merge similar structures at different depths, we change the MH
representation to represent depth values as differentials relative to their parent node. For
every node in the hierarchy, we subtract the mid-interval value of the parent from the
interval bounds of the children. Since the mid-interval value will be stored in the final
serialized quadtree, the original absolute value for a node is recovered by summing the
depth values along a traversal path (Alg. 3). Changing the traditional MH representation
from an absolute one to a relative one does not noticeably increase evaluation times
since all ancestors of a node have to be visited during the top-down tree traversal, and
will therefore be available due to cache pre-fetching. Having subtree values relative to
their parent nodes is beneficial because it allows structurally similar subtrees at different
levels of the hierarchy to be potentially merged.

A major task is to identify and match redundant subtrees in the hierarchy. Unfor-
tunately, this task is not as straightforward as in the case of DAGs, where only identical
subtrees are candidates for merging, and therefore keeping a dictionary of existing sub-
trees is all that is needed. Subtrees in a MH representation can potentially have very
different depth intervals, but still be mergeable as long as an intersection for each pair of
corresponding nodes and their intervals exists. Hence, building a dictionary of MH sub-
trees is not enough to capture similarity; we need to compare each corresponding depth
interval between subtrees to establish mergeability. Further, multiple combinations for
merges exist frequently, rendering this task a combinatorial problem.

High resolution MHs may potentially contain millions of subtrees, and so comparing
each possible pair is infeasible in practice. Therefore, we restrict matching of subtrees to
pairs of equal topology, which allows us to define clear partitions of subtrees. Although
cases exist where a subtree is mergeable with another subtree of larger topology, these
cases are unusual and would result in increased evaluation times for the replaced smaller
topology branch. We propose a two-step approach to greatly reduce the number of tests
and efficiently find small sets of similar subtrees.

The overview of our technique is as follows. We start by creating the high-resolution
dual shadow map, which defines the per-texel depth intervals via depth-peeling as de-
scribed in Sec. 2.3. We then iteratively sparsify each level bottom-up and create a quadtree

2.6. MERGED MULTIRESOLUTION HIERARCHIES 27

§ l
$ 4
{ H
; S

W
| 1\ \
[1 1\
L1 1 1\
A
c
2
@
o
£ £
o 1\
bt I\
s L1 1 | WA WA \
2
g Similarity Compression
o SR
T H T\
LI 11 1 11

Figure 2.12: MMH captures both the hierarchical compression present in MH representations as well as the
similarity compression present in DAGs.

representation, but keep the depth intervals for each node as auxiliary information. We
then convert them to a relative representation as explained earlier. In the next step, we
use a hash-based technique to partition the set of all inner nodes according to the topol-
ogy of their descendants (Sec. 2.6.1). We then perform the pair-wise matching solely be-
tween elements in the hash collision lists, hereby enforcing comparisons only between
trees of matching topology (not necessarily at the same depth in the hierarchy). Fig. 2.13
illustrates this procedure. To reduce the number of tests further, we restrict comparisons
within each collision list to local areas by inserting elements following a spatial ordering.
To accelerate the pair-wise subtree matching, we introduce an interval-based rejection
test (Sec. 2.6.2). Finally, we discuss how to perform the final serialization step while tak-
ing into account the presence of merged subtrees (Sec. 2.6.3).

2.6.1. HASHING
Given an inner node (empty or full) in the initial MH quadtree structure, its child pointer
always indicates the first existing child node in memory. All siblings of a child node lie

28 2. COMPRESSED MULTIRESOLUTION HIERARCHIES

Algorithm 3 Pseudo-code for relative quadtree evaluation
function evaluateQuadtree(rootNode, coord) :
value — rootNode.value
node — rootNode
while true:
child — getChildNode(node, coord)
if isLeaf(child):
return value + child.value
if not isEmpty(child):
value < value + child.value
node < child

Algorithm 4 Pseudo-code for bottom-up hash code construction

function bottomUpHashCreation() :
for level from deepestLevel to rootLevel
for every node in level
updateHash(node)

function updateHash(node) :

node.size — typeSize(node.type)

if isLeaf(node)
node.hash < 1
return

hash — node.childFlags

for each child in node.children
node.hash < node.hash + (child.size « childIndex)
node.hash — node.hash * (child.hash « childIndex)
node.size — node.size + child.size

return hash

consecutively in memory and the parent node contains a flag byte that is used to indicate
every child’s existence and type (full inner node, empty inner node, or leaf node). Since
each group of 4 sibling nodes is packed consecutively in memory, the subtrees we merge
have a 4-node pack at their root level (see Fig. 2.13). Hence, each subtree has exactly
one parent node, whose child pointer indicates the first node in the 4-node root level. If
two subtrees can be merged, we redirect the pointer in one of their parents to the other
subtree.

Testing all subtree combinations is impractical due to the very large quantity of them
present in an MH. We therefore assign a hash code for each subtree, which we store in
their parent node, such that potential merge candidates collide when inserted in a hash
table. We then only need to test node pairs in the same collision lists.

The hash encodes the topology of a subtree by involving the flags of all its nodes.
Note that the parent node type does not have to match for two subtrees to be compatible,
since the parent node is not part of the subtree. Further, we only match subtrees of the

2.6. MERGED MULTIRESOLUTION HIERARCHIES 29

same height, and thus we keep a separate hash table for each subtree height to avoid
collisions. We insert each node into its corresponding hash table, according to the hash
code stored in it. This allows us to keep a reference to the subtree parent in order to
redirect its child pointer if a merge candidate is found. Hence, after each node has been
inserted into the hash table corresponding to its height, each hash table entry contains
a collision list representing all equal-topology subtrees (Fig. 2.13).

Since the hash value stored at each inner node represents its descendant subtree, it
is convenient to produce the hash codes for the whole hierarchy in a single bottom-up
sweep of the hierarchy. This allows us to easily track the height of the subtree, in order to
insert it into the corresponding hash table. Further, we insert nodes into the hash table
in a depth-first order to preserve a spatial locality inside each collision list. Our hash
function, which fulfills these properties, is presented in Alg. 4.

2.6.2. SUBTREE MATCHING

So far, we have produced the collision
lists of the hash tables. Now, the actual
matching takes place and the hash tables
are processed in the order of their height
from large to small. Hereby, we make

sure that larger subtree matching can re- D

move larger parts of the tree before pro-

ceeding to test the smaller subtrees. The nnan

collision lists themselves can be treated \

in arbitrary order, as no elements of two o] Tole] |f| O] [e[TTF [o[110l

separate collision lists will ever be tested.
Therefore we can speed-up the subtree
matching step by processing all collision
lists of a single hash table in parallel, since
there is no dependency between them.
To further increase performance, we re-
duce the number of overall tests by a lo-
cal matching and speed up the individual
pair-wise tests by an early rejection test.

CRTRITY] [T

Vv,
L L T
1 %,
£
L]%JJ o
%
%

el

Local matching Testing all possible sub-
tree pairs in a collision list would lead Figure 2.13: The matching procedure inserts subtrees

to a creation time that is quadratic with into their corresponding hash table based on their
K height using a topology-based hash code. Subtree pairs
respect to the number of nodes. This in each hash table collision list within a certain dis-

would render the algorithm impractical, tance are then tested to determine their mergeability.
and thus we propose a local matching
scheme to keep the run-time bounded.
Having used a depth-first insertion, the
nodes in each collision list correspond to
spatially-close neighborhoods. It is likely
to find matches between elements close

30 2. COMPRESSED MULTIRESOLUTION HIERARCHIES

Algorithm 5 Pseudo-code for subtree matching
function matchPairs(hashTable, searchLimit) :
for each collisionList in hashTable
listSize — collisionList.size
for i from listSize - 1 to 0
for jfromi + 1 to min(i + searchLimit, listSize - 1)
ny — collisionList[i]; n, — collisionList[j]
if (n;.IMax<n;.IMin) || (n;.hMin>n;.hMax)
continue
if offsetTooLarge(n;, n»)
continue
if fullTest(rn;,n,)
merge(n,nz)
break

in the list as they tend to be located nearby similar features. In consequence, we limit
the testing of a node to a certain distance within a collision list. In our experiments, a
distance limit of 1000 entries provided a good trade-off between compression and con-
struction time. Furthermore, increasing this limit further will eventually lead to testing
subtrees that cannot be merged since their distance in the final structure will be too large
to represent as an offset pointer. We discuss the influence of this parameter further in
Sec. 2.5 and show that the usage of local matching decreases compression only slightly
while reducing the run-time of the algorithm by several orders of magnitude.

Early Rejection When testing two subtrees for merge compatibility, all of their nodes
and depth intervals need to be compared. While this process can become costly, spe-
cially for large trees, a single mismatch is enough to stop the comparison. Hence, we
introduce a fast early rejection test.

For our rejection test, we aggregate information about the depth intervals of each
subtree and store it in their parent node. This is done during the previously described
bottom-up traversal that computes the hash codes of each subtree. We exploit the ob-
servation that merging is only possible if the depth interval of all corresponding node
pairs in the tested subtrees intersect (otherwise, there is no possible conservative depth
value). In consequence, a conservative test checks if there is at least one node in one
of the subtrees whose depth intervals fails to intersect the union of all intervals in the
other subtree. In order to test this property, we keep track of the lowest and highest
minimum and maximum depth of all node intervals for each subtree. If the highest min-
imum depth of a subtree is higher than the highest maximum of another subtree, at least
one node exists in the first tree without an intersection with any node in the second one.
The same is true if the lowest maximum depth of a subtree is lower than the lowest min-
imum of another subtree. Fig. 2.14 provides a graphical example of this test. In both
cases, merging the two subtrees can be immediately rejected if the test fails.

2.6. MERGED MULTIRESOLUTION HIERARCHIES 31

V3
l—’---..----------- Lowest maximum

Lowest minimumT_—‘

Depth

Figure 2.14: Compatibility testing of two trees with equal topology can be sped up by observing the aggregated
statistics of their nodes’ depth intervals. In this example, we see that the lowest minimum depth of all nodes in
the left tree is higher than the lowest maximum depth of all nodes in the right tree. We can then conclude that
the lowest interval in the right tree is guaranteed to not have an intersection with any intervals of the left tree.

Subtree Merging Once a pair of compatible subtrees has been found, we have to de-
cide which one to remove and which one to keep. We apply a simple rule and always
remove the one that appears earlier in the collision list. The reason is that the serialized
quadtree uses positive offsets instead of full pointers, and removing the earlier subtree
avoids a negative offset. The depth intervals of all nodes in the surviving subtree are
modified to intersect the intervals of the nodes in the removed subtree. Hereby, we en-
sure that this subtree correctly represents both original subtrees. If the surviving subtree
is later merged with another one, the intervals in its nodes will be the intersection of all
the intervals of the corresponding nodes in the original trees. At this point, instead of
actually removing the redundant subtree immediately from the hierarchy, we only mark
its parent as merged and save a reference to the surviving subtree’s root. All marked sub-
trees will later be skipped during the serialization step.

Alg. 5 summarizes the matching algorithm. Note that the outer loop over each ele-
ment in the collision list proceeds in back-to-front order. This ensures that each subtree
indexed by the outer loop is not already merged, thus allowing us to safely merge it with
another subtree if we find a suitable match.

2.6.3. SERIALIZED TREE CREATION

Once the subtree matching is completed and redundant subtrees are marked in the hi-
erarchy, we perform the quadtree serialization. While the original serialization applied
a single depth-first order traversal, our altered serialization requires two passes through
the hierarchy. The reason is that to correctly encode the redirected child pointers, we
need to know the final position of a subtree in the serialized representation. To this ex-
tent, we perform a first pass where we only compute the final position of all nodes in

32 2. COMPRESSED MULTIRESOLUTION HIERARCHIES

Figure 2.15: An overview of the tested CITYSCAPE, VILLA, and SHIP scene. The CLOSED CITY scene is shown in
Fig. 2.1.

the serialized representation. In the second pass, we write the serialized structure and
use the previously computed positions to assign the correct offset to the nodes that were
marked as merged.

Offset scaling After the merging process, each inner node contains a pointer to a sub-
tree, which might be shared by several nodes. These pointers will be represented in the
form of 24-bits offsets into the serialized quadtree. The original MH quadtree used 16
bit offsets and added 8 bits of padding. In our case, merged subtrees may be very distant
in the final serialized quadtree layout, and therefore we use the padding bits to increase
the offset size to 24 bits.

Two nodes at different levels in the quadtree might share the same subtree, since
subtrees are merged according to their topology and depth intervals, and not their posi-
tion in the final structure (see Fig. 2.13). This means that during the quadtree traver-
sal, the same subtree may be encountered at two different levels. Consequently, we
need to ensure the offset scaling factors of those levels are the same. Fortunately, the
quadtree depth-first order ensures that the scale factor will always be one for the lower
levels; imagine a complete quadtree, then the first 12 levels (4!? = 224) contain only par-
ent nodes whose offset to the children will fit into 24 bits. Therefore, we restrict merge
operations to the lowest 12 levels to ensure that all merged nodes are at levels with scale
one. Since the lowest tree levels typically contain most of the nodes, very little compres-
sion is lost by this restriction.

To ensure that all merged subtrees use unscaled offsets and fit in 24 bits, we deter-
mine whether there is a risk to exceed this bound during each merge test. We compute
a conservative bound on the number of required bits for the resulting offset and forbid
the merging operation if it is too large. This bound is the distance within the original
(unmerged) quadtree as computed in [52], since our merging algorithm can only cause
a decrease in this offset.

2.6.4. MERGED MULTIRESOLUTION HIERARCHIES EVALUATION

In this section, we will compare MMH-based compression with MH-based and DAG-
based compression, for our test scenes. We will also explore the impact of the rejection
schemes and parameters involved in the merging process. The software implementation
and test hardware matches the one described in Sec. 2.5.

2.6. MERGED MULTIRESOLUTION HIERARCHIES 33

Method 4K% 16K%> 64K%> 256K?

E Kampeetal. 0.62 3.40 14.90 60.46
g MH 0.41 2.10 9.33 38.43
3 MMH 0.30 1.43 5.80 23.73
= Kampeetal. 0.94 3.94 16.38 63.34
§ MH 0.60 2.73 11.53 47.07
§ MMH 0.40 1.67 6.83 27.71
Kampe et al. 1.78 9.27 39.70 166.47

é MH 0.88 5.01 23.61 101.52
MMH 0.63 3.62 17.36 74.11
Kampeetal. 2.01 8.66 35.57 153.67

; MH 1.11 5.64 24.57 102.36
MMH 0.82 3.83 16.34 67.64

Table 2.6: Size comparison in MB for DAG-based compression[25], MH-based, and MMH-based compression
for our four test scenes and varying shadow map resolutions.

Method 4K% 16K® 64KZ 256K?

£ Kampeetal. 0.098 0.53 4.88 65.23
g MH 027 124 580 56.17
g MMH 037 159 872 7254
Kampe et al. 0.12 0.67 6.16 78.74

H MH 031 159 7.08 69.30
MMH 054 31 156 109.9

Table 2.7: Creation time comparison in seconds of DAG-based compression[25], MH-based compression, and
MMH-based compression at varying resolutions for the CLOSED CITY and SHIP test scenes.

In Table 2.6, we compare the memory footprint of traditional MH compression, DAG
compression and our MMH compression method. Our solution reduces the memory
footprint by up to 60% compared to DAG compression and up to 40% compared to
MH-based approaches. Averaged over all scenes and resolutions, our approach achieves
31.3% higher compression rates than traditional MH-based compression.

Table 2.7 shows a comparison of creation times for our method and the compet-
ing approaches. It can be seen that our approach adds an overhead to the construction
time that is between 30% and 150% at higher resolutions in comparison to MH-based
and DAG-based compression. However, precomputing and compressing a static shadow
map only needs to be done once and construction time is often not considered as signif-
icant as memory reduction in applications typically employing this technique.

As explained in Sec. 2.5, we use a tile-based construction method since the entire
uncompressed depth map would not normally fit in memory. CPU memory require-
ments are smaller, since the CPU only performs the merging operations on the already
compressed MH structure tiles. For the scene in Fig. 2.1, the CPU memory usage never
exceeded 600 MB during construction.

Evaluation performance at run-time is unaffected by the merging, remaining below
1 ms for single queries full HD image at 256k resolution, and between 1 ms and 2.5 ms
using a 3x3 hierarchical PCF filter kernel, as shown in Table 2.3.

34 2. COMPRESSED MULTIRESOLUTION HIERARCHIES

Resolution Interval mismatch Offset toolarge Full test rejection

£ 16K 67.2% 0.00 % 32.63%
g 64K2 64.8% 0.28% 34.76 %
5 256K 63.5 % 11.9 % 24.39%
s 16K2 64.88 % 0.00 % 34.90%
2 64K? 62.15% 1.49% 36.21%
S 256K? 61.94 % 13.51 % 24.44%

Table 2.8: Early rejection statistics showing the effectiveness of each individual test during the examination of
node pairs. Note that the rejection criteria are given in the order that they are performed in the implementa-
tion, e.g., a pair rejected for interval mismatch will never be tested for offset incompatibility.

Closed City Villa

7
——)' 20 $=—- / 40

MB
IS
«»
Seconds
MB
5
8
Seconds

3 — /
? —o— size (MB) || *° s —o— size (VB) | 10

-— n

== Time (s) | o L == Time (s)
0 0 0 0

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
Local Search Distance Local Search Distance

Figure 2.16: Compressed size vs. subtree merging time for varying local search distances in the CLOSED CITY
and VILLA scenes at 64k resolution. The graph shows the diminishing returns of larger distances during the
pair matching of subtrees. The green line shows the minimum attainable size, resulting from an infinite search
distance. A reasonable trade-off between final size and creation time can be achieved using search distances
between 500 and 1000.

We also evaluated the influence of the local search distance parameter (Fig. 2.16).
Our standard choice of 1000 leads to a good trade-off between the achieved compres-
sion and construction time. Beyond this point the cost of comparing nodes dominates
the total time, and the diminishing returns in achievable compression do not seem to
justify the strong increase in construction time. Furthermore, local search distance is
eventually limited by the maximum offset representable in the final quadtree structure.

Table 2.8 shows statistics for the early rejection test during the individual pair-wise
subtree matching. It can be seen that the interval-based rejection test quickly eliminates
most (avg. 64%) of the comparisons and only one quarter to one third of the subtree
pairs perform a full node-by-node comparison. Furthermore, only a small amount of
merges are rejected due to the 24-bit offset limit for our choice oflocal search distance.

Finally, Fig. 2.17 showcases a visual example of the merged nodes for a small section
of the CLOSED CITY scene. As can be seen in the figure, most of the merging happens at
the lower levels in the hierarchy. This is to be expected as for higher levels the amount of
topology variations grows exponentially, and so fewer subtrees share the same topology,
which leads to less merging possibilities.

2.7. CONCLUSION AND FUTURE WORK 35

Figure 2.17: Part of a shadow map with a resolution of 256k x 256k compressed with an MMH. The merging
process eliminates the nodes marked in red and reduces memory usage from 38.43 MB down to 23.77 MB.

2.7. CONCLUSION AND FUTURE WORK

We presented a novel compression scheme for shadow maps based on multiresolution
hierarchies. We demonstrated that our approach creates high-quality shadows for real-
time rendering and achieves high compression rates. For example, our method is able
to compress a 32-bit shadow map with a resolution of 229 x 22° (uncompressed 4 ter-
abytes) down to 0.0045% at best. Another benefit of our approach is that a multires-
olution representation is highly beneficial for fast hierarchical filtering. Using a set of
coherent shadow maps, we are able to create soft shadows or dynamic lights on a fixed
trajectory. We also showcased a method to modify this structure in order to obtain an up
to 40% extra compression rate while retaining the same run-timeperformance.

While our approach can handle non-closed geometry, these parts as well as very thin
objects lead to a reduction of compression performance. This stems from the reduced
size of the depth interval, diminishing the possibility for creating homogeneous regions.
Nonetheless, this problem is shared by all related compression methods. Another issue is
geometry that is viewed at grazing angles since our shadow map representation encodes
a set of strictly axis-aligned planes. In the future, we would like to investigate alternative,
non-linear representations to overcome these limitations.

Additionally, we would like to investigate non-regular subdivision schemes (e.g., based
on multiresolution kd-trees) to provide more adaptivity to the underlying depth signal.
Still, it is not clear how to efficiently construct these non-regular trees and if the overhead
of storing subdivision information introduces a too large overhead. Finally, we want to
investigate sparse decompositions that avoid storing topological information for empty
inner nodes, e.g., matrix trees[53].

QUAD-BASED FOURIER
TRANSFORM FOR EFFICIENT
DIFFRACTION SYNTHESIS

L. Scandolo, S. Lee, E. Eisemann

Far-field diffraction can be evaluated using the Discrete Fourier Transform (DFT) in image
space but it is costly due to its dense sampling. We propose a technique based on a closed-
form solution of the continuous Fourier transform for simple vector primitives (quads)
and propose a hierarchical and progressive evaluation to achieve real-time performance.
Our method is able to simulate diffraction effects in optical systems and can handle vary-
ing visibility due to dynamic light sources. Furthermore, it seamlessly extends to near-field
diffraction. We show the benefit of our solution in various applications, including realistic
real-time glare and bloom rendering.

37

38 3. QUAD-BASED FOURIER TRANSFORM

O i

/
9
T

(a) Parametric aperture definition to K quad primitives

quad 0, 1 quad 2, 3 quad K-2, K-1

(b) Fourier transforms (FTs) of subdivided quads (c) Far-field diffraction (d) Near-field diffraction

Figure 3.1: Given an aperture image, we subdivide it into a list of parametric quad primitives forming a
quadtree (a). The Fourier transform of each quad is efficiently evaluated with a closed-form solution (b),
and combined to render the final far-field diffraction (c). We extend this approach to also produce near-field
diffraction (d). (c) and (d) are rendered in 0.85 ms and 2.1 ms at 1024 x 1024 resolution, respectively.

3.1. INTRODUCTION

IFFRACTION phenomena can be observed when taking a photo of a strong light
D source, which typically results in bursting streaks (or glares) [54-57]. While often
used for artistic purposes, these effects also increase the perceived brightness of light
sources [54, 58] and are important elements of realistic rendering beyond typical ray op-
tics.

By definition, diffraction refers to the interference and superposition of spherical
waves propagating around obstructions (i.e., apertures) in the path of light. Fresnel’s
diffraction integral [59], based on Huygens’ principle of wavelet superposition, mathe-
matically models diffraction. In practice, additional geometric approximations (Fresnel
and Fraunhofer approximations) can be applied for distant observation planes (at near
and far field).

Near/far-field diffraction has typically been computed by formulating the problem
as a Fourier Transform (FT) and resorting to optimized FT implementations [55], usually
relying on an image-space Discrete FT (DFT) under the assumption of a periodic func-
tion. Given a 2D sampling resolution of M x N, the per-pixel time complexity of the DFT
is O(MN). Separable integration and Fast DFT (FFT) are more efficient alternatives but
still costly and oriented mostly to offline processing.

While many applications use static aperture patterns, a faster simulation of diffrac-
tion can enable applications to capture physical details caused by dynamic aperture
changes from area lights, stray lights, and optical elements. However, real-time appli-
cations have hardly used dynamic diffraction due to the low FT performance.

Our key observation to accelerate diffraction computations is that the optical aper-
ture image is relatively simple in its color and shape; real light sources are strong (mostly

3.2. RELATED WORK 39

white) and iris apertures are polygon-like. Consequently, we opt for a geometrical rep-
resentation of the aperture and formulate a closed-form solution for its shape. Similar
ideas have been applied in electromagnetics and optics for polygon support and spe-
cific patterns [60-62] but no generalization for rendering exists. While similar in spirit,
our solution is generalizable, flexible, and parallelizable. Specifically, we present an ef-
ficient diffraction rendering technique. Instead of DFT, we combine closed-form FT of
vector primitives in the continuous domain. At its basis, our approach uses quads with
constant intensity as such vector primitives and builds upon their closed-form solution
to the diffraction integral. We show that quads are an efficient basis even for input im-
ages with complex shapes, since we use a hierarchical tessellation. Contrary to previous
solutions, the complexity of our transformation relies on the number of quads (tessellat-
ing an aperture) instead of the image resolution, which proves typically advantageous.
We also introduce a progressive refinement, which exploits spatiotemporal coherence
for incremental updates. Our method is suitable for graphics-processing-unit (GPU) ex-
ecution, enabling interactive and dynamic diffraction rendering. Besides achieving a
high-quality far-field approximation, our approach can be extended to a high-quality
near-field approximation as well.

3.2. RELATED WORK

3.2.1. DIFFRACTION MODELING AND RENDERING

Diffraction and wave optics in computer graphics are used mostly for glare rendering
and reflectance modeling.

Glare rendering relates to the properties of an optical system with an aperture for
strong light sources. Early studies to reproduce the patterns used analytic approxima-
tions where diffraction gratings are mapped to streaks [63]. It is simple but has limited
modeling power for arbitrary apertures. Kakimoto et al. introduced a practical render-
ing framework and improved accuracy via the FT-based diffraction integral [55], which
was later used for lens flares [57]. Other work attempted to model glares in the human
visual system [54, 56, 64]. Spencer et al. intensively discuss physiological glare com-
ponents and their causes [54]. Additional modeling (e.g., light scattering) and temporal
fluctuation were introduced for higher perceptual accuracy [56].

The reflectance modeling to spectral interference has focused on bidirectional re-
flectance functions of surface microstructures. An effective diffraction analysis was pro-
posed (avoiding the evaluation of the Kirchhoff integral) for the microstructure of sur-
faces (e.g., a compact disc) [65]. Further efficiency can be obtained with spherical har-
monics and the Chebyshev approximation [66, 67]. A high-quality solution to gener-
ate multiple scattering effects was introduced using destructive interference [68]. Re-
cently, many studies have extended microfacet models to simulate iridescence from
scratches [69], metal surfaces [70], and thin-film coating [71], often integrating data-
driven acquisition/rendering [72] or a two-scale geometry model [73].

In the previous work, simple texturing/billboard or iterative filtering are common in
interactive applications [64, 74], but high-quality modeling relies on FT [55, 56, 65]. The
FT results are stored in lookup tables as Point-Spread Functions (PSFs) for online usage
due to their cost. In contrast, our work accelerates the FT itself, which enables real-time

40 3. QUAD-BASED FOURIER TRANSFORM

evaluation and applications.

3.2.2. ACCELERATION TECHNIQUES FOR FOURIER TRANSFORM

A FT of digital images typically relies on numerical integration. FFT [75] is typically ap-
plied when the sampling interval is uniform over input/output and the signal is periodic.
For general cases, FFT is currently the most efficient solution and recent work focuses
on optimizations. FFTW is an optimal CPU implementation [76] and parallel versions of
FFT have received attention due to the increased throughput on modern hardware [77-
791.

A substantial amount of literature exists for near-optimal or approximate DFTs, at-
taining sublinear complexity. We refer the reader to [80] for a survey. A notable attempt
is Sparse FT [80], which excludes negligible coefficients from the FT evaluation, leading
to an approximate but high-quality result.

For simple input functions, the continuous FT can have a closed-form solution. The
function can be either piecewise constant [81] or piecewise discontinuous [82, 83]. Sev-
eral parametric functions admit closed-form solutions, including sunburst patterns [60],
polygonal shapes [61, 62], and triangular meshes [84, 85]. The majority of such closed-
form solutions are applied for electromagnetic analysis or the detection of diffraction [86].
Rendering of dispersion and near-field ringing has hardly been explored in this direction
[871.

Our work introduces and extends concepts for accelerated FT computation to ren-
dering for real-time diffraction effects. We exploit that large constant areas in an image
are quite common for diffraction rendering; e.g., an area light source or an aperture.
Quad primitives approximate such regions well and lead to GPU-friendly light-weight
computations, resulting in good performance. We also propose a hierarchical solution
and progressive refinement that lead to additional acceleration and enable dynamic vis-
ibility integration. These concepts are difficult to couple with general supports, such as
triangles [84, 85], where the performance benefits of closed-form solutions can be lost.

3.3. BACKGROUND

We first revisit the standard FT and its formulation for diffraction before introducing our
contributions.

3.3.1. STANDARD FOURIER TRANSFORM
Given a function f in the spatial domain, the FT operator & defines & (f) as a continu-
ous integration over the spatial domain:

F(fH(u,v)=F(u,v) = ffoo f, yh(ux+vy)dxdy, (3.1

where i = V=1, h(x) := e~ ?"* and (u, v) isa frequency-domain position. If f is regularly
sampled and periodic, its DFT is:

1
vMN

F(u,v) =

x=0

N-1¢M-1 ux vy
2 =0 F@h+ 50, (3.2)

3.4. OUR APPROACH 41

where M, N are the sampling resolutions over x, y respectively. An effective DFT evalua-
tion relies on FFT, reducing the per-pixel complexity to O(log M +log N), but is still costly
in a real-time context.

3.3.2. DIFFRACTION WITH FOURIER TRANSFORM

Given the source aperture plane position p := (x, y) and the destination position (x', y') at
the observation plane at distance z, the Huygens-Fresnel equation describes diffraction
as:

. ikR
DU,y)= f f fonpE—dxdy, 33)

where A is a wavelength of light, k = 27/A, and R = ((x' - x)? + (' = y)? + 252 [59]. The
power spectrum of D(x’, y’,A) corresponds to the intensity that we wish to visualize in
the final image. Computational efficiency can be increased by using Fresnel’s approxi-
mation for Near-Field Diffraction (NFD) [59]:

2+y?
2z

)h(x +J’J’

D,y) x —f flx, y)h(—)dxdy. (3.4)
Note that we drop a phase term as it is irrelevant to the power spectrum. When the
destination plane is assumed to be far (i.e, (x* + yz) < zA), Far-Field Diffraction (FFD)

becomes:

J/J’

D',y A) —fff(y)h(Ydxdy, (3.5)

When we let (i, v) = (x'/zA, y'/ zA), FFD becomes a scaled FT:
D',y ,) < F(u,v)/(zA), (3.6)

where u and v can be considered spatial frequencies [59].

D,y /Uoc—fff(x ye i2m(Z3E]dxdy 3.7)

3.4. OUR APPROACH

Our approach uses axis-aligned guad primitives with constant intensity. Quads allow us
to efficiently approximate arbitrary shapes via tessellation into a set of disjoint quads.
Given that our input is a digital image, which is by definition composed pixels (small
quads), the constancy assumption does not restrict our solution. While different shapes
can be used as primitives, obtaining a tessellation of the input image into more complex
shapes becomes a bottleneck. Conversely, quads lend themselves well to a hierarchical
representation, which reduces their number, and results in an efficient implementation.

We first introduce our novel approach on a primitive-based FT and specialize it for
quad primitives (Sec. 3.4.1). Then, we present our approach to render FFD effects (Sec. 3.4.2).
In this context, we will also describe the efficient tessellation of the input into a hierarchi-
cal representation. We then explain accelerations to our solution (Sec. 3.4.3) and show
how to integrate occlusion and area lights (Sec. 3.4.4). Finally, we extend our approach
to NFD (Sec. 3.4.5).

42 3. QUAD-BASED FOURIER TRANSFORM

3.4.1. PRIMITIVE-BASED FOURIER TRANSFORM

Here, we introduce our primitive-based FT, which we use for efficient diffraction synthe-
sis. Fundamental to our method is the reformulation of the image-space FT. The idea is
to decompose the input signal into a sum of primitives (e.g., polygons). The primitive-
based FT then uses the superposition principle, which states that the FT of each primi-
tive can be computed independently:

Flaf(x)+bf(») =aZ (f(x)+DbF(fy). (3.8)

The superposition principle has also been shown for diffraction in optics (e.g., Babinet’s
principle) [59, 88].

Initially, we assume all primitives are disjoint, i.e., the original signal is a union of all
primitives without intersection. Then, the FT can be computed as a sum:

F@=) 1 W@, (3.9)

where q := (u,v), £ is the set of primitives, and Wj the transform of the primitive k.
To compute Wi, we assume k is given by a function fi(p) and a domain Q, typically
bounded in R?. We then obtain:

We(@ = F(f) (@ = /Q Fu@h(p-q)dp. (3.10)
k

Quad-based Closed-Form Solution Axis-aligned quads with constant intensity are easy
to integrate, and result in an efficient and concise closed-form solution. Additionally, we
show that using the shift property of the FT, we can achieve further acceleration.

A quad k with constant intensity I is defined as the inside of a bounded rectangular
domain Qf = {(x,y) € R?| |x — cxl < 5412, |y — ¢yl < sy/2}, which is centered at ¢ = (cx, ¢y)
with a size of s; = (sy, sy). Since the function f of k is separable along the x and y axes,
fx is defined as a tensor product of boxcar functions:

TG y) = I Mg, 5, ® ey 5,) (X, 1) = Ik Mgy 5, (0Tey 5, (1), @.11

where the boxcar function is defined as I1; s(x) = H(x—c+s/2)— H(x—c—s/2), and H(x)
is the Heaviside step function. The closed-form FT of the boxcar function I (x) is given
as:

I s(u) = FT,,5(x) (W) = ssinc(rus)h(c), (3.12)

where sinc(x) = sin(x)/x. Then, we can obtain the closed-form solution to Wi(q) as a
tensor product of T:

Wi(q) = I (ch,sx el cy,sy) Q. (3.13)

While this evaluation is simple for a single quad, having several quads leads to many
redundant computations. We can reduce the number of computations using the shift
property, which states:

Win(q) = h(d-q)Wi(q). (3.14)

This holds for two quads k and m of the same spatial support size, with a displacement
d, such that f,,(p) = fi(p + d). Hence, we can reuse the FT of a single quad for the FTs of
all equally-sized quads.

3.4. OUR APPROACH 43

(@) ’ (b)

Figure 3.2: Examples of the non-uniform quadtree subdivision: subtractive superposition (a) and non-square
rectangles (b).

Rendering the object-space FT The rendering is straightforward. For a given list of
quads, we evaluate the FT for each pixel using Egs. 3.9, and 3.13, efficiently on the GPU.
We employ Eq. 3.14 to compute the quad FT only once.

3.4.2. FAR-FIELD DIFFRACTION RENDERING

Here, we introduce the application of the previous analysis to achieve efficient FFD ef-
fects. We describe the approach for a point light source and how to decompose the aper-
ture into a small set of quads to achieve a fast diffraction computation.

Principle Given a point light source and a camera with an aperture and image plane,
we can produce a realistic diffraction pattern in real time. As pointed out in Sec. Sec. 3.3,
assuming that the aperture is given in the form of a binary image, its FT will yield the
desired diffraction pattern. In principle, we could treat each texel of the aperture im-
age as a quad, collect them in a list, and apply the solution from the previous section.
This means that for each image pixel, we need to perform a summation over all quads.
Therefore, minimizing the number of quads will have a big impact on the computation
time.

Hiearchical Decomposition of Aperture and Rendering To reduce the number of quads,
we use a quadtree, which hierarchically tessellates the aperture (Fig. 3.1) for a compact
representation.

We perform a bottom-up quadtree construction, which is fast to compute. The pro-
cess is initiated from the binary aperture image and proceeds from mipmap to mipmap
level, outputting a list of quads in the process. We consider groups of four texels at a
time, which correspond to a single texel from the next mipmap level, and depending on
their value we initialize the texel value from the next mipmap level. If the four consid-
ered texels have the same value, we consider them merged, write their common value
on the next mipmap level and proceed without outputting any quads. Otherwise, we
output a variable amount of quads depending on the values of the texels. Contrary to a
typical quadtree, we introduce a special non-uniform subdivision procedure (Fig. 3.2).
Specifically, if only one quad has a value of one, we attach this single quad to the list
and initialize the next mipmal level texel with a zero. We process the case of two non-
adjacent quads similarly. If two adjacent quads have a value of one, a merged quad is
outputted (Fig. 3.2b) and again the next mipmap level texel is initialized to zero. If three
quads have a value of one, we initialize with a one the next mipmap level pixel, and out-
put a negative quad (Fig. 3.2a), which has the support of the quad with value zero but
will be subtracted after transformation.

During the evaluation of the quad list, we employ the shift property. For each quad
shape and size, we compute its FT only once, and apply Eq. 3.14 for congruent quads.
Hereby, we accelerate the FT evaluation without reducing quality.

44 3. QUAD-BASED FOURIER TRANSFORM

Figure 3.3: Example frames of a moving circle occluding a heptagonal aperture. Our progressive method
can update the FT for the entire aperture by adding/subtracting only the FTs of newly disoccluded/occluded
(green/red) quads to/from the previous calculation.

3.4.3. ACCELERATIONS
Culling and Symmetry An important observation is that a significant portion of the
FT output contains zeros (in terms of the power spectrum) and skipping these pixels
would accelerate computations. Testing for zeros in the power spectrum at full reso-
lution would be too expensive. Instead, we use a lower-resolution image (in practice
1/82) and additionally test if the analytical derivatives of the power-spectrum of the FT
are zero. While not strictly conservative, the continuity of the derivatives leads to a very
good estimate and we found no differences with respect to the actual zero test at full HD
resolution. The previous pixel-based FTs lack analytical derivatives and cannot profit
from such an acceleration.

Additionally, we exploit mirror symmetry in the FT. We evaluate only the half-plane
and mirror it, obtaining the other half for free. When the input image has additional
symmetries, which are common for apertures, we can exploit these as well.

Progressive Refinement Another benefit of the object-space transformation (Eq. 3.9)

is the use of progressiverefinement. We capture dynamic spatio-temporal changes, which
significantly distinguishes our solution from the pixel-based FTs. When the input aper-

tures show coherence, instead of recreating the FT from scratch, we update the FT by ex-

ploiting the superposition principle. To this extent, we derive a quad list that represents
the difference between the current and previous aperture. We perform a bottom-up pro-

cedure on this difference (Fig. 3.3), where we extract all positive and negative quads. This
procedure is similar to the original extraction, but we deal with the positive and nega-

tive parts independently in different texture channels, which allows us to apply the same
merging strategies as before without making the quadtree creation procedure more com-

plex. Progressive refinement proves very beneficial for animation, since typically only a
reduced number of quads are needed to update the FT. Additionally, it is highly impor-

tant when including visibility changes to the aperture shape (Sec. 3.4.4).

Accelerated Spectral Integration So far, we have described a method for computing
the monochromatic diffraction pattern for a single wavelength. For visible diffractions,
there is usually a need to cover the whole visible spectra. For an accelerated spectral
integration, we extend that introduced in [57].

We start with a reference wavelength A, (e.g. 587.6 nm), for which we compute its FT
F), . Each different A gives a relative wavelength scale p(1) = A,/ A. Given the observation

3.4. OUR APPROACH 45

“og
Oo
OOOOQ
O'O~O<O,.q

O-o.o_ooo

2"

Figure 3.4: Uniform spectral scaling (left) and 4-channel batch spectral scaling (right), with examples for the
diffraction of an hexagonal aperture. Our batch scaling saves the amount of lookups from the base pattern by
roughly a factor of four.

origin

distance z, the diffraction for A can be expressed in terms of the diffraction of A, as:
1 1
D',y ,) x —F(@ = ——pA)Fy, (p(1)g). (3.15)
zZA ZA,

The required spectral samples correspond to scaled texture locations (p(1)q in Eq. 3.15),
lying on the same line passing through q and the origin. For a fixed z, 1/(zA,) is a con-
stant. Using Eq. 3.15, we establish a relation between the color pattern Sy created by a
quad k:

Se(@ o Li(q) = f 2 WIF@]2dA
AeA
- fl ZWPAPIE, (pQIdL (3.16)
€

where || F||? is the power spectrum of the FT, A is the spectral domain, Z (1) is a nor-
malized spectral response function for a particular chromaticity channel (e.g., X, Y, or
Z in XY Z color space), and the scale relates to the exposure time. In general, Z'(A) is
empirically defined in terms of piecewise measurements; a recent analytic approxima-
tion exists [89] but does not lead to a closed-form integration. Hence, we numerically
integrate it via:

Li@=) ,cp ZWpW)? IFy, (p)Ql*dA, (3.17)

—_——

dispersive weights

where A’ is a discrete subset of A in a finite visible spectral range, and Y ycp» X (1)dA = 1.

While the scaling-based integration (Eq. 3.17) avoids brute-force spectral sampling,
many samples (e.g., > 60) are needed to avoid spectral aliasing. Therefore, we propose
batch-scaling using an intermediate four-channel texture. In this texture, we store four
nearby samples of || Fy, |2 along the scaling line p(1)q in a RGBA quadruplet. In a second
pass, we sparsely sample this texture along the same line recovering four samples at a
time, which are then scaled by the dispersive weights (Eq. 3.17). In this way, we only
need a quarter of the original texture lookups. As reference wavelength A,, we use the
geometric mean of the extrema of the visible wavelength range (e.g., 529 nm for [400, 700]

46 3. QUAD-BASED FOURIER TRANSFORM

(]

(a) Normal FT (b) with Perlin aperture noise (c) with anisotropic Perlin noise

Figure 3.5: Examples of diffraction patterns without noise (a) and with the addition of Perlin noise (b) and
anisotropic noise (c).

Q000

Figure 3.6: Near-field diffraction pattern of a partially occluded aperture using a quadtree resolution of 10242
(a) and 1282 (b), and a 5x difference visualization (c). Both results are very similar but the lower quadtree
resolution results in a ~ 7x speedup.

nm). Using batch-sampling leads to non-uniform spacing towards the extrema but the
difference to uniform sampling is marginal, as seen in Fig. 3.4.

3.4.4. OCCLUSION AND AREA LIGHTS

Up to now, we have ignored any kinds of occlusions additional to the aperture shape.
Given the efficiency of our approach, we can integrate dynamic visibility changes in the
scene.

One simple type of occlusion results from imperfections such as floating dust parti-
cles on lenses. These occlusions could be approximately handled by integrating pertur-
bation of the input aperture pattern. We can use arbitrary noise patterns but Perlin noise
offers spatiotemporal coherence for animation (Fig. 3.5).

For more structural occlusions due to a blocker, our approach can show major ad-
vantages. In this case, we can render the aperture as seen from the light source and
project the scene geometry on top of it to derive the unblocked part of the aperture. The
resulting aperture image can then be transformed with our approach. In this scenario,
the progressive refinement proves particularly useful.

So far, we have assumed a point light source and obtained only the Point-Spread
Function (PSF) of the resulting aperture image. In reality, light sources cover an area.
Consequently, we convolve diffraction patterns over this area by using them as PSFs [56].

However, when integrating visibility, each point in the area light source may exhibit
different viewing conditions, impacting the diffraction pattern. Here, for each point
sample, we need to render the scene towards the aperture. For large area lights, this step
remains costly. Although we did not investigate this direction, image-warping approxi-

3.4. OUR APPROACH 47

(a)

o |

Figure 3.7: Spectral integration (over 60 wavelengths) of the NFD pattern (a) cannot be approximated as done
for the FFD (c). However, a heuristically chosen scaling factor (here, 1+0.05(1 - p)) still can produce a plausible
approximation (b).

mations, or hierarchical point-based solutions such as the one described by Hollander
etal. [90] can be used. As a cheaper alternative, we could also consider a small neighbor-
hood in the scene image around each light sample and intersect the light-source pixels
with the aperture image. In this way, we approximate a projection of the aperture from
the image plane into the scene and onto the light. Our approximate projection is mean-
ingful under the assumption that all scene geometry is closer to the aperture than the
light source. When the geometry is fairly far from the aperture, the quality of the result-
ing approximation is reduced.

3.4.5. NEAR-FIELD DIFFRACTION
Having derived FFD patterns (Eq. 3.5), we also seamlessly extend our work to NFD, where
the far-field assumption does not hold. NFD is often related to ringing at the edges of
bokeh patterns or ghosting apertures in lens-flare rendering [57, 91].

It is known that the superposition principle also holds for near-field diffraction [59],
as evidenced by Eq. 3.4. Consequently, we can compute it as a sum in terms of the NFD
of a set of primitives:

Gu,v) =) ez Vieu, v), (3.18)

where V. is the contribution of quad k in the set #. Using Eq. 3.4 and the constancy
assumption, we obtain:

Vieltt, v) = Ui/ 20) (geyns, (1) (gcy'sy(v)), (3.19)
where
c+s/2 1
ges() = f h(tx - —x*)dx. (3.20)
c—s/2 2z

Unlike the FFD, the integral we need to solve involves square terms of x, which have
no analytical solution in the general case, and so we use a numerical approximation. The
integral to approximate can be decomposed into real and imaginary parts:

t ¢ ¢
f e’(““bxz)dx:f cos(ax+ bxz)dx+if sin(ax + bx?)dx. 3.21)
0 0 0

48 3. QUAD-BASED FOURIER TRANSFORM

(a) box

-

1.000/53.4 dB] 0.998/59.6 dB

(b) circle

1.000/57.0dB] 1.000/64.1 dB] 1.000/65.0 dB

00/61.5dB] 0.999/61.5 dB|

(c) heptagon

(d) whirl

0.998/57.4 dB| 0.998/57.9 dB|
NFD (z=500/k) NFD (z=2500/k) NFD (z=10000/k)

Input aperture NFD (z=100/k)

Figure 3.8: FFD and NFD outputs (scaled for illustration) for the input aperture images (the first column) used

for the experiment. The numbers at the bottom indicate SSIM/PSNR values measured against the references
(generated by discrete NFD/FFD solutions).

Using the Fresnel integrals C(x) and S(x), we can express these terms as:

r T P a2
fo cos(ax +bx*)dx = \/%(cos EC(%) +sin ES((pt)) (3.22)

t 2 2
fo sin(ax + bx?)dx = \/%(cos Z—bS(qbt) _sin Z—bcupt)), (3.23)

where ¢; = %anbt and C(t) and S(¢) are defined as:
t t
C() = f cos(nx*/2)dx and S(t) = f sin(x?/2)dx. (3.24)
0 0

In general, C(#) and S(#) do not have analytic solutions, and thus, we use their numerical
approximations [92] by precomputing a 1D look-up table to use during evaluation.

Efficient Rendering Our approach for NFD is more expensive than our FFD solution
given that we need to compute the complex-valued Fresnel integrals four times for each
quad. Yet, we can observe that the product in Eq. 3.19 is again separable. To avoid redun-
dant computations, we propose an effective two-pass optimization, such that unique
combinations of (k, u) and (k, v) are evaluated only once. In the first pass, for each quad,
we precompute g, s, (#) and 8cy.s, (V) for all u and v, respectively, and store these results

3.5. RESULTS 49

*

0.99/50.1 dB

0.99/48.4 dB 0.99/37.5 dB

0.99/55.0 dB 0.99/55.9 dB 0.99/42.8 dB
finest aggressive finest aggressive finest aggressive
(981 quads) (440 quads) (1613 quads) (730 quads) (2673 quads) (1358 quads)
circle heptagon whirl

Figure 3.9: Comparison of quality in terms of quadtree resolution for monochromatic and dispersive FFDs.
The one-step further downsampling from the finest quadtree resolution results in a negligible visual difference
(SSIM/PSNR at the bottom), while increasing speed by a factor of two (timings given at the top).

aperture | 2562 5122 10242 2048% 40962

box 40 40 40 617 617
circle 109 227 440 981 1976
heptagon 176 389 730 1613 2996
whirl 303 647 1358 2673 5278

Table 3.1: Number of quads produced at the quadtree tessellation.

in a texture. Then, in the next pass, for every pixel, Vi(u, v) can be obtained by combin-
ing these partial results according to Eq. 3.19, which reduces the number of evaluations
drastically.

For the FFD, we speed up computations by performing a culling pass at a lower reso-
lution, and enabling progressive refinement for dynamic scenes. Our experience shows
that the NFD result is not sensitive to high-frequency content for low z values and a
coarse quadtree can be used without significant quality loss (Fig. 3.6).

With respect to the spectral integration, the previously-used simple scaling for A,
cannot be applied (Fig. 3.7c). For correct results, we need to repeat Eq. 3.19 for dispersive
samples (Fig. 3.7a). However, we empirically found that scaling with smaller amounts
(e.g., 14+ 0.05(1 — p)) leads to a plausible approximation but the result will no longer be
physically accurate (Fig. 3.7b).

3.5. RESULTS

In this section, we assess performance and quality of our solutions for FFD and NFD and
provide several examples of our results.

3.5.1. FAR-FIELD DIFFRACTION

The experiments used four input aperture shapes; the monochromatic images produced
for FFD (and NFD) are shown in Fig. 3.8, along with quality comparison with respect
to the brute-force DFT-based reference solutions. Their resolution scales from 2562 to

50 3. QUAD-BASED FOURIER TRANSFORM

[CPU-FFT [GPU-FFT B ours (full) Bl ours (progressive) Bl ours (coarse) Bl ours (progressive + coarse)

257 Circle

]20.6
870
3‘5210?1 R
870
3520 0

s

8.7 (1976)

40962
407 Whirl
35
30
25
20
15
10

5

frame time (ms)

3520 0
87.0 U
3520 0

201

4.6 (149)

40967 20482 40967

output resolution

Figure 3.10: Timing comparison of our object-based FT methods to the pixel-based FT techniques. Ours in-
clude the four versions and the frame times are shown on each bar. For ours, the average numbers of evaluated
quads are shown with blue color in parentheses.

40962. Unlike standard DFT techniques, our technique scales with the number of quads,
where the degree of tessellation depends on the image content (Table 3.1); rectangle and
circle would already have optimal analytical solutions, but we showcase them as general
cases. In particular, although the rectangle aperture could be represented by a single
quad, the quadtree decomposition results in a larger amount which differs at different
resolutions depending on its pixel alignment to the quadtree grid and pixel differences
at each resolution. Nevertheless, any slightly different shape would result in a similar
amount of quads.

We initiate the finest mipmap level of the quadtree construction to the half size of the
input image to avoid redundancy from anti-aliased boundaries (rasterized from vector
images); note that this does not reduce the output resolution, unlike a downsampling
for the pixel-based FT techniques. We also use a coarser quarter-size mipmap for a more
aggressive quadtree approximation. Their visual differences are marginal; Fig. 3.9 shows
the comparison of quality and performance in terms of the quadtree tessellation resolu-
tion.

We implemented our solution in OpenGL 4.5 on an Intel i7-5820K with 3.3 GHz and
an NVIDIA GeForce GTX 1080 Ti graphics card. We first compare our FFD techniques
with different implementations of the standard FT: the well-known FFTW [76] (CPU-
FFT), and our GPU implementation of FFT (GPU-FFT); we note that our GPU-FFT is
equivalent to those used in [55, 57]. Our techniques use four versions in terms of ag-
gressive tessellation and progressive evaluation; the symmetry and culling optimizations
are used in all cases. The progressive evaluation uses animated sequences, as shown in
Fig. 3.3; we overlaid a circular shadow on each aperture, which moves at 5 pixels per
frame. Then, we report the individual effects of our optimization techniques.

Fig. 3.10 shows the performance comparison of our techniques against CPU-FFT and
GPU-FFT for monochromatic FFD. Our solutions are faster than CPU-FFT and GPU-FFT,
because our methods evaluate far fewer quads than pixels present in the image. The
exception being the Whirl aperture for high resolutions at the finest tessellation level.

3.5. RESULTS 51

output resolution 2562 5122 10242 20482 40962
no optimizations (ms) 0.13 0.40 2.25 19.46 139.35
culling (ms) 0.21 0.32 1.06 5.65 31.63
symmetry (ms) 0.14 0.25 1.20 9.76 74.70

culling+symmetry (ms) 0.14 0.26 0.71 3.57 20.22

Table 3.2: Impact of optimizations on the timing (measured in ms) of the FFD for the Heptagon aperture.
outputresolution | 256> 5122 1024> 20482 40967
full (ms) 0.040 0.127 0.530 1.960 8.180 3
batch (ms) 0.019 0.038 0.114 0.430 1.710

Table 3.3: Cost comparison (measured in ms) between the full spectral scaling and our four-sample batch
spectral scaling.

40962 []
520482
= Il aperture subdivision
> 2
§ 1024 B culling
o 5122 mm FT

2562 [spectral integration

0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0 time (ms)

Figure 3.11: Per-stage performance breakdown of our FFD rendering for the Heptagon aperture.

Using a coarser input quadtree, our solution outperforms the competing methods while
producing visually indistinguishable results (Fig. 3.9). Similarly to FFTs, our solutions
also scale with the output resolution, but depend more on the input shape. Our progres-
sive refinement significantly reduces the effective number of quads to evaluate without
any quality loss; the Box aperture is an exception due to its simple shape. The number
of quads are reduced roughly down to 10-20% (see the figure for the average number of
the effective quads), and the speedup factor ranges from 1.3 to 4.5 for larger resolutions.
The aggressive approximation with the coarser quadtree representation gains an addi-
tional speedup with marginal quality loss. When combining the progressive evaluation
and aggressive approximation, our solution achieves a significant speedup in compar-
ison to GPU-FFT (between 4 and 8.3 times faster for resolutions above 1024%). Hence,
in practice, we suggest using a coarser resolution for plausible fast rendering. With our
object-based approach, it is also easier to decouple the input and output resolutions
than it is when using pixel-based FTs.

Table 3.2 shows the performance gain using culling and symmetry. Culling improves
performance by up to 4x and symmetry up to 2x. Combining both, we achieve up to
roughly a 8x speedup.

Table 3.3 shows the performance gain of the batch spectral scaling against the full
spectral processing. The full processing with scaling requires 60 spectral samples while
our batch scaling requires 4+15 spectral samples and indeed performs about 4 times
faster.

52 3. QUAD-BASED FOURIER TRANSFORM

output CPU-FrFT GPU-NFD Our NFD
resolution Box Circle Heptagon Whirl
2562 15.98 4.87 0.12 0.11 0.14 0.16
5122 33.01 20.94 0.14 0.23 0.36 0.49
10242 128.72 94.73 0.28 0.84 1.71 2.93
20482 533.85 — 7.88 5.43 15.78 23.42
40962 2133.19 — 30.88 41.30 137.16 255.72

Table 3.4: Performance (measured in ms) comparison of CPU-FrFT [93], GPU-NFD, and our NFD.

2=120/k © z=80k 2=60/k 2=40/k

Figure 3.12: As z decreases, the discrete NFD without enough zero padding leads to interference patterns. Our
NED solution does not suffer from these artifacts.

Fig. 3.11 shows the performance breakdown of the entire rendering pipeline of FFD,
which includes the aperture subdivision, culling, monochromatic FT, and spectral in-
tegration. We note the noise patterns are optional, for realistic imperfections. Their
addition to the main pattern takes less than 0.5 ms at a 4096 resolution.

3.5.2. NEAR-FIELD DIFFRACTION

For the same data and the same machine used in Sec. 3.5.1, we compare our NFD tech-
nique against our GPU-based implementation of the reference discrete NFD (GPU-NFD)
and a recent CPU-based discrete fractional FT [93] (CPU-FrFT; written in Matlab); in
many cases, the NFD evaluation relies on an optimized FrFT implementation [94]. Un-
like our closed-form solution of the continuous integrals, the discrete techniques may
exhibit severe aliasing for near-source distances (see Fig. 3.12), which requires signifi-
cant zero padding to avoid it. For GPU-NFD, we had to use 8x larger resolutions than
the input to completely remove aliasing in our experiments. Thus, in our experiments,
GPU-NFD cannot be produced at input resolutions higher than 10242 (requiring 81922
for the evaluation) due to limitations of the texture sizes in our test hardware. This in-
dicates an important benefit of our solution against the discrete techniques, where ours
accelerates at a lower resolution and uses less memory.

Our NFD solution uses the two-pass optimization (separable computation of the ten-
sor product), which is roughly 5x faster than without the optimization. We used culling,
but no symmetry. The culling used function-only sampling at a lower resolution, since
it is impossible to find the analytic gradient of the NFD power spectrum. Given that the
NFD depends less on high frequencies when compared to the FFD, this culling produces
no artifacts.

Table 3.4 shows the comparison of the monochromatic NFD generated with our solu-

3.6. APPLICATIONS 53

(a) dynamic glaref/flare effects rendered with our FFD solution

il

(b) static glare/flare effects that only modulate the intensity

Figure 3.13: Comparison of glare/flare rendering [57] using a static glare image and our dynamic solution. Our
FFD solution (a) for area-light integration reflects the varying visibility of the dynamic light source. The shape
of the refraction changes based on visibility. In contrast, static glare effects (b) only modulates intensity.

tion compared to CPU-FrFT and GPU-NFD. Similarly to the FFD techniques, CPU-FrFT
and GPU-NFD scale only with the image resolutions, while ours depends on the aperture
shapes as well as the image resolutions. For all resolutions, ours are significantly faster
than CPU-FrFT and GPU-NFD; speedup factors are 34-182 x for the most complex Whirl
aperture. GPU-NFD is also slow due to its significant zero padding, which results in 30—
42 x slower performance than our NFD (for the Whirl aperture). Our approach does not
suffer from such problems and can be used at any resolution, which also provides more
fine-grained control over performance. As expected, CPU-FrFT is the slowest variant.
As shown in Fig. 3.6, the results of the coarse quadtree are less sensitive than those
of FFDs. Thus, in practice, a more aggressive downsampling can be used. Our spec-
tral approximation using linear scaling for NFD is much faster than a precise evaluation
with speedup factors in the range of 93.1/244.7 for a resolution of 2562/5122, Given the
marginal quality loss, it is a practical alternative to the full evaluation. The progressive
approach has a similar effect as for FFD, which is why we left this evaluation out.

3.6. APPLICATIONS

3.6.1. GLARE RENDERING
Glare rendering is a major application for our FFD and NFD techniques, which can be
used to achieve more realistic results when compared to previous techniques that rely

54 3. QUAD-BASED FOURIER TRANSFORM

Figure 3.14: An example glare rendering of a bright light on a lamp post when using an aperture simulating a
human eye with eyelashes.

on static diffraction patterns [57]. To render dynamic glare, the diffraction pattern (i.e.,
PSF) is applied only to the relevant parts of the scene. For an area light source, we extract
the scene image around the light source, integrate the PSFs of individual light samples
with varying occlusions, and blend the result with the scene image.

Fig. 3.13 shows examples rendered for an area-light source with and without dynamic
diffraction. The aggressive approximations still result in plausible outcomes, which suits
real-time applications well. A variation of glare rendering simulates the effect of eye-
lashes (Fig. 3.14), which simplifies the previous models of the human visual system [55,
56]. More extensive modeling involves additional components (e.g., iris, cornea, pupil,
vitreous humor, and retina [54, 56]).

The performance of our area-light integration is roughly 2x faster than that of FFT.
In our experiments (81 light point samples at 10242 resolution), the timings of ours and
FFT for monochromatic outputs are 31.9 ms and 63.4 ms, respectively. In addition, the
aperture creation (9.42 ms) and spectral integration (13.5 ms) are required, which are
shared with the FFT-based solution.

3.6.2. RINGING AT DYNAMIC APERTURE EDGES

Our NFD enables the simulation of an aperture pattern cropped by the housing, as is
typical for a composite lens. Here, some light rays from the entrance pupil are consumed
by the housing. Hence, light reaching the iris aperture is already partially culled (often
dubbed as the cat’s eye effect). The NFD of such patterns becomes visible in lens-flare
ghosts [57]. In contrast to previous work [57, 95], our solution can handle these dynamic
changes. Fig. 3.15 shows examples of dynamic diffraction with cropped apertures.

3.6.3. BLOOM/GLOW RENDERING

Bloom rendering is another application of our FFD technique, which shows the halos
of light sources or their reflections. Real-time rendering typically uses simple postfilter-
ing [96], destroying significant details. In our implementation, we create a glare pattern
that incorporates dynamic lens effects (e.g., noise) and convolve it with the scene im-
age at a low resolution using pixel intensities as weights. Thereby, we can capture the
physical impact of source shapes in the diffraction patterns (Fig. 3.16).

3.7. DISCUSSION AND LIMITATIONS 55

Figure 3.15: The dynamic ringing of the aperture cropped by the lens housing, which can be used for realistic
lens-flare rendering.

’&!H

Figure 3.16: The examples of the realistic bloom rendering generated with our FFD solution.

3.7. DISCUSSION AND LIMITATIONS

We have shown the utility of our primitive-based FT and NFD in terms of performance,
quality, and flexibility in parametrization. While pixel-based FT techniques have a fixed
cost, our primitive-based FT solution can employ many optimization techniques. This
results in a higher performance without quality reduction in all proposed applications.

Our experiments showed that reducing the number of quads is crucial for higher per-
formance. At present, we exploited only quads, but integrating more primitives is an in-
teresting direction. For instance, a triangular mesh [84, 85] can spawn less primitives,
but the hierarchical construction can be difficult. Investigating a full vectorial represen-
tation is an interesting direction.

In addition to our solution of introducing negative quads when extracting the list
from the quadtree, we also described the merging of neighboring quads into rectangles,
which reduced the number of primitives for FFD and NFD. Merging across several levels
of the quadtree is an interesting direction for future work. While promising, the applica-
tion of the shift property becomes more difficult.

Our approach is most efficient if larger homogeneous areas appear in the input im-
age. Natural images might lead to a larger quad set, which eventually becomes equiv-
alent to processing every pixel independently, making our approach unpractical. On
current hardware, around 1500 quads can be handled competitively in comparison to
a GPU FFT approach. This amount is largely sufficient for the presented applications
involving typical camera lens shapes, especially when using progressive refinement.

GRADIENT-GUIDED LOCAL
DISPARITY EDITING

L. Scandolo, P. Bauszat, E. Eisemann

Stereoscopic 3D technology gives visual content creators a new dimension of design when
creating images and movies. While useful for conveying emotion, laying emphasis on cer-
tain parts of the scene, or guiding the viewer’s attention, editing stereo content is a chal-
lenging task. Not respecting comfort zones or adding incorrect depth cues, e.g. depth inver-
sion, leads to a poor viewing experience. In this chapter, we present a solution for editing
stereoscopic content that allows an artist to impose disparity constraints and removes re-
sulting depth conflicts using an optimization scheme. Using our approach, an artist only
needs to focus on important high-level indications that are automatically made consis-
tent with the entire scene while avoiding contradictory depth cues and respecting viewer
comfort.

57

58 4. GRADIENT-GUIDED LOCAL DISPARITY EDITING

Figure 4.1: Left: Original stereographic image with disparity map inset Middle: An edited version, where we
increased the roundness of the lion head and moved the background wall away from the viewer, presents
depth-cue conflicts where the edited elements meet Right: Our optimization procedure preserves edits while
removing inconsistencies. = =

4.1. INTRODUCTION

TEREOSCOPIC images provide the viewer with a better understanding of the geomet-
S ric space in a scene. Used artistically, it can convey emotions, emphasize objects or
regions, and aid in expressing story elements. To achieve this, stereo ranges are increased
or compressed and relative depths adapted [97]. Nevertheless, conflicting or erroneous
stereo content can result in an uncomfortable experience for viewers. In this regard,
stereo editing is a delicate and often time-consuming procedure, performed by special-
ized artists and stereographers. Our solution supports these artists by allowing high-level
definitions to set and modify stereo-related properties of parts of a scene. These indica-
tions are propagated automatically, while ensuring that the resulting stereo image pair
remains plausible and can be viewed comfortably.

For a known display and observer configuration, the terms depth (distance to the
camera), pixel disparity (shift of corresponding pixels in an image pair), and vergence
(eye orientation) are linked [98]. For the sake of simplicity, we will use these terms inter-
changeably throughout this chapter. Although disparity is typically a function of camera
parameters and the object that is observed, stereographers manipulate depth content to
influence disparity. While some artists work with 2D footage only [99], we will focus on
3D productions, where disparity values can be changed by interacting with the 3D scene,
i.e., changing the depth extent and position of objects.

Modifying depth directly can result in depth cue conflicts and affect the observer’s
interpretation of the scene, which can cause visual discomfort. For example, in Fig. 4.1
the background wall was moved away from the viewer (by increasing its disparity), while
the lion head was extended in depth. These edits result in conflicts with the rest of the
scene: the lion head appears to extend beyond the wall and the wall seems detached
from other scene elements.

Depth relationships between objects render depth manipulations complex. Manip-
ulating one object can induce an entire chain of operations and quickly result in a trial-
and-error process. Therefore, we propose to manage disparity edits as a global process,
taking all parts of a scene into account to avoid unwanted results. Our approach aims at
fulfilling the artist’s indications while testing for depth-cue errors. As for many artistic
tools, providing fast feedback is important. This goal is achieved via an efficient opti-

4.2. RELATED WORK 59

mization procedure that derives suitable disparity values that are used to produce a new
stereoscopic image pair.

4.2. RELATED WORK

Over the last century, stereo vision and depth perception has received much attention
from the clinical and physiological perspective. A detailed explanation of the mecha-
nisms involved in human stereo vision can be found in [100] and [101]. More recently,
work has been devoted to understanding discomfort and fatigue related to distortions
present in stereo image displays. Lambooij et. al [19] and Meester et al. [102] provide
reviews that detail distortion effects in stereoscopic displays and their effect on viewer
comfort. In particular, vergence and accommodation conflicts [103-105] are a leading
cause of visual fatigue, which can be reduced by keeping depth content to a depth com-
fort zone. Camera parameters can be automatically adapted for this purpose in virtual
scenes [106] or even real-life stereoscopic camera systems [107]. Other methods to re-
duce discomfort rely on post-processing[108] of the final stereo pair, introducing blur
[109], and depth of field effects [110].

Research towards perceptual stereo models can also help reduce or eliminate viewer
discomfort [111-113]. Such models can also be used to enhance depth effects, for ex-
ample using the Cornsweet illusion [114] or adding film grain to a video [115], or to ef-
ficiently compress disparity information [116]. Templin et al.[115] and Mu et al. [117]
modeled user response times for rapid disparity changes, such as video cuts, which al-
lows artists to know when fast vergence changes will be acceptable for observers.

In the context of stereo content editing and post-process, rotoscoping [99, 118] is a
widely used technique, where image elements are placed in layers at different depths.
The depth of these layers can be moved and scaled, and commercial products[119-121]
are available to facilitate this process. Some of these tools can detect color inconsis-
tencies between the stereo pair images and also possible violations to the stereo vision
comfort zone, but the detection and correction of depth conflicts is left to the artist. Fur-
thermore, Wang et al. [122] provide tools to insert depth information to a 2D image via
scribble-based tools and the use of an image-aware dispersion method.

Other artistic stereo editing methods focus on globally modifying the available depth
range, akin to global tone-mapping used in images. Wang. et al [123] and Kellnhofer
et al. [124] propose different methods to modify disparity globally in order to enhance
depth perception in certain areas of an image pair or stereoscopic video. Lang et al.
[125] present a method to automatically create and apply a global disparity warping that
affects the complete scene but does not allow for localized editing (see Fig. 4.4). Op-
timizing for depth perception during motion in depth [126] and parallax motion [127]
have also been explored.

Nevertheless, most of the previous approaches do not allow for user-defined local ed-
its, which are common in movie productions, or they do not ensure consistency after an
edit has been made. Our work addresses this problem. We will rely on a global optimiza-
tion strategy that shares similarity with gradient-guided optimizations that have been
explored in different settings, e.g., editing and filtering [128, 129], video editing [130],
or image stitching [131]. Luo et al [132] propose an automated system for stereoscopic
image stitching that can preserve borders and correct perspective projection. They do

60 4. GRADIENT-GUIDED LOCAL DISPARITY EDITING

. (T Tessellation [\Vertex \ I TEYN 1A () Final stereo pair
Disparity . disparity, + vertex aware 1 1[@ AV
optimization map) disparity | ’ renderin ; &
reprojection | g € e

Figure 4.2: Our pipeline takes the initial disparity values and artist input to create an optimized disparity map,
which is used by the vertices of the scene to allow a disparity-aware render algorithm to create a stereographic
image pair.

so via a gradient-preserving optimization process similar to Perez et al [128], but unlike
the work presented here, it targets images with no defined underlying mesh and only
handles the use case of image-stitching.

4.3. DISPARITY EDITING

The goal of our proposed method is to allow an artist to edit disparity values for a given
view of a 3D scene without having to consider potential conflicts. In this context, we
strive for real-time performance to be able to provide instant feedback.

To explain our solution, we will first describe how we will model the tools that influ-
ence the original scene disparity (Sec. 4.3.2). In practice, this process will be linked to a
disparity map, which, for a given view, stores in each pixel a disparity value (Sec. 4.3.1).
Our algorithm will derive an optimized disparity map, integrating the artist’s constraints
defined with the aforementioned tools, while avoiding depth conflicts (Sec. 4.3.3). To
additionally prevent artifacts due to hidden geometry and temporal changes, we rely
on a scene reprojection technique. It transfers the information from this disparity map
to the 3D scene, which is then rendered to an image pair following the disparity map
(Sec. 4.3.4). Fig. 4.2 showcases our proposed pipeline.

4.3.1. DISPARITY MAP

The disparity map stores the final pixel disparity between the left and right view as an
image taken from a camera located precisely between the left and right view. This map
can be derived very efficiently by rendering the scene from the middle camera and con-
verting the depth buffer by taking the focal plane distance and the interaxial distance of
the stereoscopic cameras into account [98]. We refer to this unedited disparity map as
D:N2—R.

The tools we will provide to the user will influence this disparity map. As user com-
mands might cause conflicts or inconsistencies, a depth conflict resolution strategy will
override them where necessary before performing an optimization.

The tools and conflict resolution procedures will shape a target gradient G that will

4.3. DISPARITY EDITING 61

be linked to the optimized disparity map D via a set of linear equations:

Dx,y = Dx+1,y - Gxx,y

l:)x,y = ?x—l,y + G:xx—l,y “.1)
Dyy = Dxyr1—Gyxy

Dx:y = Dx,y—l + ny,y—l

These equations will be part of a larger linear system that will be solved in the least-
squares sense in order to obtain D.

For brevity and readability, we will use subscripts to refer to the sampling of these
maps, i.e., D, instead of D(p). Likewise, the first and second component of G will be
noted as Gx and Gy respectively.

4.3.2. DISPARITY TOOLS

We will describe several editing tools, which are found in actual practice [99]. These tools
act on properties of individual objects, properties relating pairs of objects or world-space
points, and global parameters. We will express their effect directly in terms of constraints
for the optimized disparity map or its target gradient.

Roundness Roundness refers to a change of an object’s disparity range. Increasing
roundness is commonly used to put emphasis on main objects or to convey emotion;
in the movie UP, the roundness of the main character contrasted drastically with the
roundness of a happy character when the latter approached his house to express the
different emotional states.

Roundness R scales the disparity difference of every point of an object with respect
to its center. This operation amounts to enlarging or decreasing the disparity gradient in
apixel p, if it belongs to the pixel set 6,;,; corresponding to the manipulated object :

Vpebopj:Gp=Gp-R 4.2)

Disparity anchoring Disparity anchoring means that a certain disparity value is en-

forced for a chosen location. This option is important to specify the overall layout of a 3D

environment [98]. Usually, the artist will enforce a specific depth for certain scene ele-

ments, e.g., the main object at screen distance to minimize the vergence-accommodation
conflict. In our solution, the artist chooses an offset Oy to the initial disparity. As round-

ness will affect the disparity as well, we include it in the computation:

Vp€Oopi:Dyp=Dpy+(Dp—Dy)-R+0qg 4.3)

where D,, is the object’s center point disparity.

Interface preservation Interface preservation is used to maintain the local depth con-
trast between objects. It is known that local depth contrast can have a global effect [114,
133]. Further, it helps separating objects clearly in space.

We allow users to specify pairs of objects for which the disparity difference should be
maintained. Consequently, the pixels on the shared boundary maintain their disparity

62 4. GRADIENT-GUIDED LOCAL DISPARITY EDITING

Dy, de Pp - |i)p5 I;Jp _
)IL_DE-_D_pd_)I(Disparity ,:L_DE'_%“_' Disparity
I
p ! L p
I/.
|

Figure 4.3: The matching points constraint matches the disparity of two points plus an offset (zero in this case)
while maintaining the original disparity difference of all points in their influence set.

gradient (G, = Gp). This definition can also be extended by allowing the user to draw
a pixel mask to indicate where the disparity gradient should remain unaffected. This
option is particularly useful for static imagery in the background.

Matching points Besides overlapping objects, a user can also couple the disparity of
different elements in the scene. For example, in a view of a soccer ball flying through the
air, one might want to keep the disparity between player and soccer ball constantly at
the limit of the comfort zone to obtain the highest comfortable depth contrast. A more
subtle application is for objects that are in contact. Fig. 4.1 shows an example, where the
wall has been moved back. The attached objects become disconnected and appear to
floatin the air. An artist can easily connect the objects to the wall using matching points.

Specifically, a user can mark a destination point p, to match the disparity of a source
point p; plus an optional offset O,,. This constraint affects the disparity value of a set
of screen-space points 8,,, defined as belonging to the object indicated by pg, or, op-
tionally, a specified area around p. For all points p within 6, the constraint attempts
to maintain the original disparity difference between p and pg, but takes as pivot point
(Dp, + Oy,) instead of D), (Fig. 4.3):

Vp€Opmp:Dy=(Dp,+O0p)+([Dp—Dp,) (4.4)

4.3.3. DISPARITY MAP OPTIMIZATION

The aim of the optimization stage is to solve the sparse linear system that arises from the
constraints imposed by the tools described in Sec. 4.3.2 . Specifically, the optimization
procedure will produce an optimized disparity map D which minimizes the sum of a
per-pixel energy function E over all pixels:

argmin)_E,(D) 4.5)
b P
The energy function E is the sum of four terms which arise from the gradient constraints
and the editing tools, and whose weights can be adjusted by the user:

Ep(D) = ¢c1Ep (D) + ¢, Epy (D) + 3 E;)' (D) +€E}, (D). (4.6)

4.3. DISPARITY EDITING 63

Original Matched (ours) Global Match

Figure 4.4: Left: Original disparity values and resulting stereoscopic pair for a scene with two characters. Mid-
dle: Result after using our method, matching the disparity of both characters. Right: Adjusting the disparity
globally to match the character disparities, as in [125], results in loss of stereo contrast between the front char-
acter and the floor. = =

The individual energy functions are the square residuals of the linear system formed by
Egs. Eq. 4.1, Eq. 4.3, Eq. 4.4, and a regularizing term:

 E8, the gradient energy term, is the sum of the square difference of the sides of
Egs. 4.1, defined for all pixels.

e E3, the disparity anchor term, is the square difference of Eq. 4.3. It is present for the
pixels corresponding to objects for which an anchor disparity has been defined.

¢ E™, the matching points term, comes from the squared difference of the sides of
Eq. 4.4 for each matching point defined. Each set of matching points has a differ-
ent pixel influence set 0.

o Ef, = IDP - Dplz, the regularization term, ensures that there is a single solution in
the absence of user defined constraints. It is defined for all pixels with a very low
weight factor.

The gradient energy term ensures that the solution follows the target disparity gra-
dient and that discontinuities or edges are correctly preserved. The target gradients are
created using Eq. 4.2 for intra-object gradients. For inter-object gradients, we use the
gradient of D, which is the field we obtain by applying Eq. 4.3; this is the edited dispar-
ity map showcased in Figs. 4.1, 4.8, 4.9, 4.10, and 4.11. Finally, for areas where interface
preservation is specified we revert to the original disparity map gradient.

64 4. GRADIENT-GUIDED LOCAL DISPARITY EDITING

Before the optimization procedure is performed, the linear system is inspected and
modified to avoid depth inconsistencies which can potentially arise from using the tools.
The most important inconsistencies are depth inversions, where for two overlapping
objects, one should be behind another but their disparities imply the opposite. Such
changes are reflected by differing signs of the gradient in the original and goal map gra-
dients, which makes them easy to detect. In this case, the target gradient can be reset to
the original gradient. Our framework can be expanded to deal with other conflicts in a
similar fashion. For example, depth conflicts can arise at image borders for objects that
are supposed to appear in front of the screen, as they are cut by the screen boundary.
This case can be solved by adding an appropriate constraint to the system that penalizes
pixel disparities larger than the pixel distance from the nearest vertical image border.

In general, the weight of each user-defined constraint is initialized to a default value
of one and can be controlled by the user manually and intuitively since we provide in-
stant feedback. However, some effects may only be required when viewing an object
from a certain direction, or at a specified distance. Especially in image sequences, an
artist may want a smooth transition between different sets of constraints when the cam-
era or scene objects move. Our system provides the means to control the weight of a
specific constraint based on different geometrical factors. A video of this use case is in-
cluded in the supplementary material to the article that was the basis of this chapter.

Given that we follow a target gradient, the final optimization method is a modi-
fied Poisson reconstruction problem with added screening constraints. For large res-
olution images, directly solving the linear system is usually infeasible due to memory
constraints, and thus iterative methods are preferable, such as Jacobi, SOR, or gradient
descent methods[134]. For our implementation, we opted to use a GPU-based multi-
resolution solver, since it maps well to GPU usage, avoids expensive GPU-CPU memory
transfers, and is fast enough to provide real-time results. We create successively halved
resolution versions of the full-resolution grid (via rendering or sampling), and solve each
one with ten iterations of the Jacobi method. The initial solution for each grid level is
obtained by upscaling the solution for the next coarser grid and the coarsest grid is ini-
tialized to D. We create the initial disparity value for pixel p ¢ in the finer grid level f
using the optimized disparity value of pixel p. in coarse grid level ¢ using the formula
D;C + (BZC - l~)’;) where the disparity map superscript denotes the grid level used. This
formula uses the nearest pixel at the lower resolution grid, and adds the disparity differ-
ence in D to ensure that discontinuities are preserved between source and destination.

4.3.4. STEREO IMAGE CREATION

In principle, one can create a stereoscopic image pair by warping a middle-view image
according to the optimized disparity map [135]. Unfortunately, such image-based pro-
cedures can lead to holes due to disocclusions that reveal content not visible from the
middle view. In the case where the only available information is a single segmented im-
age plus a depth or disparity estimation, this is the best possible solution.

A more interesting case arises when we have access to the complete scene informa-
tion. In this situation, we can provide a more robust solution, that relies on assigning a
disparity value to each mesh vertex based on the optimized disparity map. With a per-
vertex optimized disparity value, we can perform a disparity-aware render of the scene

4.3. DISPARITY EDITING 65

essellated

Figure 4.5: Top inset: Optimized screen-space disparity Left: Resulting disparity (top) and final stereoscopic
image (bottom) when projecting screen-space disparity to original vertices fails to reproduce the target opti-
mized disparity. Right: Disparity projected to tessellated geometry closely matches the optimized result. = =

to obtain a hole-free stereo image pair that matches the optimized disparity map. This
method is similar to the one described in [126], but since we target real-time perfor-
mance, several adaptations are needed. As we will detail below, we target a much lower
tessellation level and employ a different heuristic for hidden vertices, as well as a bilat-
eral filter pass in order to improve temporal stability. We begin by describing how to
perform the stereo rendering step in order to give insight into some restrictions that will
apply to the disparity reprojection step.

Disparity-aware rendering In the simplest case of a single triangle and a target dis-
parity map, we want to render a stereo image pair that renders the triangle according
to the map. We do this by sampling the disparity map at each projected vertex posi-
tion. We then render the triangle from the middle-view camera once for each view, and
add an offset to the viewport-space position in opposite horizontal directions for each
view. This added offset corresponds to half of the disparity value assigned to the vertex
being processed. Consequently, disparity values are respected precisely at the vertices,
and are a linear interpolation of the vertex disparities at all other locations. Therefore,
as described, this method cannot correctly follow non-linear disparity gradients inside

66 4. GRADIENT-GUIDED LOCAL DISPARITY EDITING

the triangle that may be present in the target disparity map. In order to overcome this
limitation, we can apply tessellation to the original triangle before projecting the dispar-
ity values to the vertices, resulting in a piecewise-linear approximation of the original
disparity map.

This procedure can be applied to a complete 3D scene to create a stereo image pair
that correctly handles disocclussions. We use the hardware tessellation capabilities of
modern GPUs to avoid any modifications to the original mesh. However, the disparity
reprojection step needs to carefully handle the cases of vertices that are occluded or fall
outside the middle-view camera field of view. Fig. 4.5 shows the poor approximation of
the target disparity for parts of a scene with low triangle count, such as large flat walls,
and the improvement achieved when applying tessellation.

Disparity reprojection For visible vertices, we can directly assign a disparity value by
sampling the disparity map. In order to determine vertex visibility, we compare its pro-
jected depth to the depth map created during the initial disparity map creation. Instead
of relying only on the corresponding disparity map pixel to which each vertex projects,
we sample a small neighborhood of pixels to increase robustness. This step also allows
us to assign a disparity for vertices just outside the view frustum or close to the occlu-
sion boundary. To integrate the result of the samples, we make use of a cross bilateral
filter[136, 137], using filter weights based on screen-space position, depth difference,
normal orientation, and object id[138]. In this way, samples not related to the current
vertex will be discarded automatically. Furthermore, filtering values avoids sudden dis-
parity jumps and improves temporal coherency.

If we cannot determine any valid sample for a vertex, we can still estimate its dis-
parity by comparing D to D at this location and applying the difference to the original
disparity of the vertex.

4.3.5. IMPLEMENTATION DETAILS

We initially render the middle view via a deferred rendering pass, outputting several tex-
tures that contain properties used in the optimization pass, such as depth information,
normals, object id and an initial disparity value. The optimization pass is then per-
formed as a series of compute shader dispatches that create the target gradients, and is
followed by a multi-resolution solver [139] that acts as outlined in Sec. 4.3.3, and outputs
an optimized disparity texture. Using 16-bit floating point values provides sufficient pre-
cision for the optimization procedure and leads to real-time rates. Therefore, an artist
can interactively edit the scene, and receive instant feedback.

The final rendering pass uses the optimized disparity map to determine vertex dis-
parities during the tessellation evaluation stage, with the tessellation level determined by
screen-space area. The disparity value is then added to the vertex viewport x coordinate
in a geometry shader, which is invoked twice with multi-viewport support to efficiently
generate a side-by-side image pair.

Optimizing Texture Resolution The use of cross bilateral filtering to obtain a per-vertex
disparity lifts the strict correspondence in terms of resolution for the optimized disparity
map and the final image. In our experiments, the optimization resolution can be much

4.4. RESULTS 67

Original

Optimized at 1:1 resolution

Optimized at 1:8 resolution

Figure 4.6: Top: Original disparity map and resulting image pair. Middle: Optimization result after increasing
the roundness of the first two spheres. Bottom: Performing the optimization at 1:8 resolution yields very
similar results. = =

lower than the final stereo image resolution without a noticeable difference in quality.
Thus, we can target very large stereo image resolutions, while maintaining low memory
usage and real-time performance. Fig. 4.6 illustrates the result and stereo images using
a 1:1 and 1:8 scale between optimized disparity and final image pair. Moreover, this per-
formance gain can be invested into placing the middle view differently and increasing
its field-of-view projection to encompass both views to well handle the screen borders.

Optimizing Convergence In most optimization techniques, and ours in particular, a
good initial estimate of the solution results in a faster solver convergence. During the
course of a typical animation, the resulting disparity maps will be similar from one frame
to the next, which implies that a previous frame is a good estimate of the next frame
disparity. Using our reprojection technique, we can create a view for the current frame
using the previous disparity values and use it as an initial solution for the optimization
procedure.

4.4. RESULTS

We implemented our method into a tool where a user can easily edit depth content in
a scene by accessing the stereoscopic properties described in Sec. 4.3. We tested our
method for different scenes and with varied artistic purposes to show the range of stere-

68 4. GRADIENT-GUIDED LOCAL DISPARITY EDITING

30 7—— mStereorendering m Optimization m Disparity rendering |
25

20 +

Fig. 1 Fig. 11 Fig. 4 Fig. 6

15 4 —

(a) Creation times in ms for selected test scenes using different disparity map resolutions and full
HD stereo image resolution.

30 7 ——1920x1080 —=—960x540 480x270 —=—240x135 |
25

20 /

15

10 /

5 e ———
0 T T T T T)

Matching points

(b) Timings in ms of the optimization stage for Fig. 4.4 using different amounts of matching points
and disparity-map resolutions.

Figure 4.7: Timings for our optimization procedure

ographic modifications that can be easily performed. In the following, we will detail
some examples. Figs. 4.1, 4.6, and 4.11 showcase scenes were elements are highlighted
by increasing their roundness or offsetting them in depth, making them more prominent
while still harmonizing with the rest of the scene elements. To illustrate the interaction
on an example, in the fairy scene, the user simply clicked on both trees in the back-
ground and increased their roundness by a factor of around five. The arising conflicts,
that are very visible in the image that directly integrates the indications, were fully re-
moved automatically by our algorithm, while maintaining the overall consistency of the
scene. In Fig. 4.4 we show an example of matching the disparity of two characters which
are at different depths. This is a useful application in practice since it means an observer
does not need to adjust their vergence when switching their gaze from one character to
the other. Such quick vergence shifts are known to cause discomfort, and stereographers
usually employ various methodologies to avoid them [140] or in some cases may need to
redesign a scene [98]. In this case, a user created a matching point constraint between
the two characters. As is visible in the result, local contrasts are maintained. This prop-
erty gives the illusion of maintaining the original scene arrangement, while the disparity
of the two characters is actually matched despite them being in different 3D locations in
the scene.

Edits are sometimes useful to evoke emotions. We show an example of a disparity

4.4. RESULTS 69

@riginal

Optimized

Figure 4.8: Stereoscopic manipulation can be used to showcase negative feelings as well. In this scene we
convey a feeling of loneliness by flattening the sitting man and pushing him back in depth. = =

manipulation meant to increase the feeling of scale in Fig. 4.10, by making the cliffs seem
more prominent and dangerous. In this case, the user selected parts of the mountain and
increased their roundness, while anchoring them at a preferred depth. Additionally, the
constraints can be dampened depending on the view of the camera. For example, during
the course of an animated sequence, the weight of the user’s constraints can be linked to
the camera location, which allows them to vanish when the camera is rotated away from
the cliffs. Another example to convey emotion is shown in Fig. 4.8, where depth edits
were used to convey a feeling of loneliness in the scene by flattening the character and
pushing him away from the viewer. Hereby, a feeling of distance is created. The editing
operation moved the person backwards, which created a conflict with the couch, but
also the bunny in his hand. The optimization process adjusts the disparity to correct for
these mistakes. As shown, this solution is robust and also handles smaller objects, such
as the bunny.

Finally, we also believe our method is useful beyond artistic purposes. In Fig. 4.9, we
show a visualization of a human jaw, where we want to enhance the shape of the three

70 4. GRADIENT-GUIDED LOCAL DISPARITY EDITING

¥ |

/

-
, o

Edited T

Original

-« |

Optimized

Figure 4.9: Our method can be used to aid in visualization applications. Here, the three molars are made
rounder to improve the understanding of their shape. = =

lower left molars. Such a solution is useful in an educational context to focus attention
to important elements. The user only manipulated the roundness to increase the shape
perception.

All edits in these scenes required less than a few seconds of interaction. By default
object interfaces are maintained, which causes the optimization process to spread the
deviation induced by the constraints over all objects. In general the user input can be
very sparse, which supports our goal of simplifying interaction and having the artist fo-
cus only on important indications. Additional examples and animations are presented
in the accompanying material of the article on which this chapter is based.

4.4.1. MEMORY USAGE

Memory consumption is almost entirely linked to the textures used for the optimiza-
tion. It includes the deferred buffers containing the scene properties, and a series of
mipmapped textures used for the multigrid optimization procedure. At full HD resolu-
tion, around 160 MB are used, which is directly linked to the disparity map resolution,
i.e. at half that resolution, the memory usage is four times smaller.

4.4. RESULTS 71

Original

Figure 4.10: A more menacing look for the rock cliffs can be achieved by making them more prominent in
depth. This is a hard case for manual editing, since many small features such as trees and bushes need to be
made consistent with the edited parts of the mountain. = =

4.4.2. TIMING

Our pipeline is implemented using C++ and OpenGL and all tests were run on an Intel
i7-5820K CPU running Windows 7, with 32GB of main system memory and an NVidia
Titan X GPU.

Our method employs three stages: the disparity map and scene property extraction,
the optimization, and the stereo pair rendering. Three parameters affect the efficiency
of these stages: the disparity map resolution R,, the final stereo image pair resolution
R and the geometric complexity of the scene G. The first stage is only dependent on
R, and G, the second stage depends solely on R, and the final stage is only affected by
R and G. The optimization stage can also be affected by the amount of matching point
constraints set by the artist as they render the linear system less sparse and requires
additional texture lookups. Out of these parameters, R, is the one an artist has most
control over, and can be selected to obtain a desired time/quality balance.

Fig. 4.7a showcases the timing of the three stages in some of our test scenes for dif-
ferent resolutions of the optimized disparity map. The optimization procedure is most
heavily affected by different matching points and the scene from Fig. 4.4 shows an in-
creased time spent on the optimization procedure. Fig. 4.7b shows the effect of different
amount of matching point constraints on the optimization timing.

4.4.3. USER STUDIES
Stereo perception study We performed a small-scale user study to evaluate the effec-
tiveness of the stereographic images created through our algorithm.

We presented the different versions of the stereo output of Fig. 4.10 to a sample of
seven participants, after verifying that they were able to perceive stereoscopic content.
Fig. 4.12 showcases the view frustum and some of the parameters used for this task. All
participants had normal or corrected-to-normal vision and no knowledge in the field of
stereoscopic content creation or editing.

72 4. GRADIENT-GUIDED LOCAL DISPARITY EDITING

v
Original Edited Optimized

Figure 4.11: In the fairy forest test scene, the trees are made more prominent by increasing their roundness and
slightly offsetting their disparity towards the viewer. The unoptimized version shows depth conflicts where the
trees meet the ground and the fairy character, which are fixed in the optimized version. = =

In the first part of the trial, the participants were shown the original stereoscopic
image and our optimized version, and they were freely able to switch between both ver-
sions with no time constraints. They were asked to explain the difference between both
images and recorded whether they were correctly able to identify the expected edition
effect, namely that the cliffs look rounder and more prominent. All participants noticed
that the difference between both images were constrained to the cliff area, and five out
of the seven (71.5%) described the effect stating that the cliffs were better defined and
there was better depth perception in their area.

In the second part, we allowed the participants to observe both our optimized ver-
sion and the unoptimized edited version, and again they could switch between both
images. No time constraint was imposed and they were asked to choose their preferred
image. In this case, 100% of the participants expressed a preference for the optimized
version, alleging either discomfort or visible artifacts when looking at the unoptimized
version.

Usage study In order to test our solution against a traditional 3D modeling approach,
we tasked an expert 3D modeler to create a similar modification as was created with our

4.4. RESULTS 73

Figure 4.12: A screenshot of the editing interface used for our experiments, showing the camera frustum and
some of the parameters used for our perceptual user study.

method in Fig. 4.13, namely to enhance the disparity of two rock models in the scene.
The task was performed in Autodesk Maya and the artist reported that around 45 min-
utes of work were required. The results are shown at the bottom of Fig. 4.13. The same
edition was done in under one minute with our framework. The artist mentioned diffi-
culties to correctly maintain the geometric interfaces between the mesh parts intended
to be enhanced and the rest of the scene. Additionally, when asked if the effect could
be enhanced, he reported that he would have to basically start over. He also underlined
that he considers the task as very challenging. The final image shows a large depth en-
hancement for the target regions, but as expected, the geometrical shape of the area has
been significantly altered. Furthermore, some objects are missing, such as one of the
trees. This highlights a key feature in our proposed solution: the ability to largely decou-
ple disparity edition from geometrical shape, thus altering only depth perception while
maintaining the geometrical shape of the scene.

4.4.4. LIMITATIONS AND FUTURE WORK

We obtain good results for realistic use cases. Nevertheless, introducing highly contra-
dictory constraints can create unwanted results. In those circumstances, high disparity
gradients can occur in the inside of originally flat objects as the least-squares optimizer
spreads the constraint error. In such cases, a user can adjust the constraint weights to
achieve good results. A limitation exists for thin geometry, and large disparity changes.
A large disparity gradient can result in a stretched version of the object to fulfill the indi-
cated disparity constraints. We do not explicitly tackle the problem of temporal stability
for image sequences, but the produced disparity values do not show stability problems
in our tests, as the optimization procedure has a well-defined behavior and provides a
smooth fit to the artist’s constraints. If the constraint changes are smooth, the result is
typically smooth. We could envision reprojecting the optimized disparity map between
consecutive frames using optical flow and rely on equalizing constraints with a small
weight to avoid large changes but found it unnecessary in practice.

74 4. GRADIENT-GUIDED LOCAL DISPARITY EDITING

Artist,version

Figure 4.13: A comparison of our optimized version with an artist edited version where the geometry has been
modified. Directly modifying geometry is time consuming and alters the original look of the scene, while our
solution is much faster to create and preserves the geometric shape, only altering stereo perception. = =

4.5. CONCLUSION

We have presented a method for editing stereoscopic content in 3D scenes by modifying
high-level properties of the scene elements. Our approach then identifies regions where
depth conflicts may arise from the user input and creates and performs an optimization
procedure to obtain a conflict-free disparity map. Although image-based, coupling the
map to our reprojection leads to a hole-free stereoscopic image pair. The solution runs
fully on the GPU, which leads to instant feedback even for very large image resolutions.
Our approach is an important addition to the toolbox of stereographers that simplifies
dealing with the various conflicts. It allows the artist to focus on semantics instead of
the technical underpinnings and delivers convincing results even when used by novice
users.

CONCLUSION

N this dissertation, we set out to demonstrate the importance of image-based repre-
I sentations for many computer graphics tasks. For this reason, we have striven towards
providing new tools and techniques for researchers, artists, and engineers to create ap-
plications that can outperform current ones. Throughout the chapters of this work, we
have explored three aspects in particular of these representations, to illustrate that many
of the previous challenges related to image-based representations can be addressed al-
gorithmically. Specifically, we focused on memory requirements, efficiency, and interac-
tive edition of images for 3-dimensional rendering tasks.

In general, images are a discretization of the projection of a 3-dimensional object,
scene, or feature onto a plane. The original information is discretized into individual
pixels, providing a piece-wise constant representation of the original information. As
such, care must be taken when using such representations so that the loss of informa-
tion does not result in objectionable artifacts, since sub-pixel features cannot be cor-
rectly captured. Therefore, artifacts can arise, and one example of these are the presence
of blocky shadows when using shadow maps of insufficient resolution. As Chapter 2
demonstrated, very large resolutions shadow maps can be encoded and efficiently ac-
cessed during the rendering process, even for large scale scenes. In contrast, accessing
the entire geometrical information would not result in acceptable framerates.

Some applications require the projection of an image back into the 3-dimensional
scene, as is the case exemplified in Chapter 4. In such case, the discretization of the in-
formation is an issue to consider, since the image may not encode the exact information
point that is required. As shown in the aforementioned chapter, this problem can be
overcome by exploring a neighborhood around the desired projected point. The neigh-
borhood data may need to be filtered based on geometrical or other types of similarity
in order to obtain a correct approximation. Another issue arises from the fact that im-
ages record only a single surface, usually closest to the camera. The lack of background
information can be tackled by clever reconstruction techniques, but care must be taken
to ensure that the result is sensible and correctly approximates the missing information.
Using several images to capture different layers is a possibility, but the extra computing

75

76 5. CONCLUSION

resources need to be carefully managed in order to still provide an efficient solution.

Finally, another important feature of images, given their regular nature, is their nat-
ural hierarchical decomposition into quadtrees. Chapter 2 and Chapter 3 explored both
the improvements in memory requirements and computational resources that can be
achieved when hierarchically subdividing images and working with as-large-as-possible
homogeneous pieces. Chapter 4 uses this decomposition to its advantage as well for ef-
ficiently optimizing the disparity map using a multi-scale approach. Current hardware,
with its trend towards greater parallelization, is able to deal with the decomposition and
individual processing of each part exceedingly efficiently. In general, hierarchical de-
composition is an approach that should always be considered when dealing with image
representations.

In Chapter 2 we tackled the problem of increasing memory requirements for creat-
ing very large shadow maps. Shadow maps reduce the problem of finding blockers for
a light by discretizing the relevant blockers in a scene and storing this information in
an image. Finding a potential light blocker using such a representation is far simpler
than exploring the scene geometry. Nevertheless, the discretization of the blockers into
texels can potentially result in artifacts, such as blocky shadows, which can be avoided
by using larger shadow map resolutions. For large virtual scenes, the necessary resolu-
tions would require far more memory than is available in commodity hardware. Current
high-end GPUs sport 8 to 32 GBs of VRAM, whereas the memory requirements for cre-
ating high-quality shadows in large outdoor scenes can range in the hundreds of TBs.
Our solution to this problem is an algorithm that can create a fast random-access com-
pressed version of the original large resolution shadow map. The compression method
described in Chapter 2 exploits local and non-local similarities to reduce the amount of
information that needs to be stored in memory. We utilize the regularity of an image
representation to group values hierarchically, which results in very efficient compres-
sion and random-access algorithms. This regularity is also exploited to find non-local
similarities efficiently at any level in the hierarchy. Although we provide an algorithm
specifically aimed at compressing shadow maps, the same ideas can be used for any
problem where values in a regular grid can be moved within a per-element threshold.

Current graphics hardware is highly optimized for efficient access and modification
of images. We took full advantage of this in Chapter 3 in order to create an efficient algo-
rithm for rendering light diffraction patterns. A FFT is commonly used to compute such
patterns. For the case of apertures, the input signal is binary, and this allows us to com-
pute the result of the integral at the heart of the diffraction formula using a closed-form
solution. Given an aperture shape defined in an image, each pixel represents a square
quadrilateral in the 2D plane. We describe the closed-form solution for a single quadri-
lateral aperture, and given the associative nature of integral domains, we can compute
the full solution as the sum of the results of each pixel. In order to reduce the amount
of quads to process, we can group locally close pixels together, and repeat the process
hierarchically. This process can be done exceedingly quickly using current GPUs. We
describe several optimizations to this base algorithm that can drive efficiency even fur-
ther. Furthermore, the same technique can be used to compute near-field and far-field
diffraction patterns. Our choice of quads as primitives was inspired in the usage of im-
age pixels as atomic components of the aperture shape, but a closed-form solution of the

77

diffraction integral can be found for other shapes. Therefore, finding a minimal combi-
nation of different primitives can be explored as a means of increasing efficiency further.

Image representations can also be used for facilitating editing tasks in 3-dimensional
scenes. We explored this concept in Chapter 4, where we tackle the task of editing the
3-dimensional stereo effect in a stereographic image pair for a given camera view. The
problem in this case resides in efficiently harmonizing editing constraints imposed by
an artist without introducing any conflicting depth cues. Instead of altering the scene
geometry directly to meet the artistic constraints, we rely on a disparity map as an in-
termediate representation. Via the use of such a map, both artist constraints and depth
cue conflicts can be defined formally. We then find an optimal conflict-free disparity
map that meets the artistic intent provided by the user. The optimization method is very
efficient since its domain is 2-dimensional, and we can leverage the regularity of the im-
age representation to use a well-known fast multi-scale approach, the multigrid method.
The optimized map is then used to guide the rendering of the stereo image pair, such that
the correct disparity values are obtained. This method provides a much more intuitive
way of altering disparity values than directly modifying the scene geometry, since errors
are detected and corrected automatically. In our work, we propose and test several tools
for disparity edition, but they are far from a complete set. Building upon the same frame-
work, many new tools can be created by formally defining the constraints they impose
on the disparity map.

The success of regular grid structures in general is visible in other fields as well.
Recently, the success of convolutional neural networks, and similar techniques, have
even led to the creation of specialized hardware that can perform grid convolution and
other grid operations very efficiently. Moreover, voxel grids are enjoying rising popu-
larity in rendering, as seen by the development of fast voxel-based methods to com-
pute global illumination [141] and highly compressed shadow and scene information
[4, 142, 143]. Furthermore, the same ideas presented here for images are applicable for
higher-dimensional grids, as was briefly explored with shadow cubes in Chapter 2. Per-
haps in the future, specialized hardware for general and hierarchical regular grid oper-
ations will enable a new generation of algorithms that can further expand the range of
effects and realism achievable in interactive applications.

In the preceding chapters, three main use cases were explored, namely memory effi-
ciency, computational efficiency, and intuitive interaction. The specific problems tack-
led in this dissertation do not span the whole range of problems where intermediate
image representations can be used. Nevertheless, it is the goal of this dissertation to
provide practical, well-explored examples of its applicability that can not only solve a
specific problem, but also provide a blueprint, or at least an intuition, for applying the
same type of methods to other applications. The results presented in this dissertation
show that in each case the state of the art was improved, which highlights the range of
problems that can be approached in this manner.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(91

(10]

(11]

[12]

(13]

BIBLIOGRAPHY

R. L. Cook, T. Porter, and L. Carpenter, Distributed ray tracing, SIGGRAPH Com-
put. Graph. 18, 137 (1984).

D. S. Immel, M. E Cohen, and D. P. Greenberg, A radiosity method for non-diffuse
environments, SIGGRAPH Comput. Graph. 20, 133 (1986).

J. T. Kajiya, The rendering equation, SIGGRAPH Comput. Graph. 20, 143 (1986).

B. Dado, T. R. Kol, P. Bauszat, J.-M. Thiery, and E. Eisemann, Geometry and at-
tribute compression for voxel scenes, Computer Graphics Forum (Proc. Eurograph-
ics) 35 (2016).

D. Dolonius, E. Sintorn, V. Kdimpe, and U. Assarsson, Compressing color data
for voxelized surface geometry, IEEE transactions on visualization and computer
graphics (2017).

L. Williams, Casting curved shadows on curved surfaces, in ACM Siggraph Com-
puter Graphics, Vol. 12 (ACM, 1978) pp. 270-274.

W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data Compression Standard,
1st ed. (Kluwer Academic Publishers, Norwell, MA, USA, 1992).

S. Battista, E Casalino, and C. Lande, Mpeg-4: a multimedia standard for the third
millennium, part 1, IEEE multimedia , 74 (1999).

T. Annen, T. Mertens, P. Bekaert, H.-P. Seidel, and J. Kautz, Convolution shadow
maps, in Proceedings of the 18th Eurographics conference on Rendering Techniques
(Eurographics Association, 2007) pp. 51-60.

O. Klehm, H.-P. Seidel, and E. Eisemann, Prefiltered single scattering, in Proceed-
ings of the 18th meeting of the ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games (ACM, 2014) pp. 71-78.

E X. Sillion, J. R. Arvo, S. H. Westin, and D. P. Greenberg, A global illumination
solution for general reflectance distributions, SIGGRAPH Comput. Graph. 25, 187
(1991).

P-P. Sloan, J. Kautz, and J. Snyder, Precomputed radiance transfer for real-time
rendering in dynamic, low-frequency lighting environments, ACM Trans. Graph.
21, 527 (2002).

W. Donnelly and A. Lauritzen, Variance shadow maps, in Proceedings of the 2006
symposium on Interactive 3D graphics and games (ACM, 2006) pp. 161-165.

79

http://dx.doi.org/10.1145/964965.808590
http://dx.doi.org/10.1145/964965.808590
http://dx.doi.org/10.1145/15886.15901
http://dx.doi.org/10.1145/15886.15902
http://dx.doi.org/ 10.1145/127719.122739
http://dx.doi.org/ 10.1145/127719.122739
http://dx.doi.org/10.1145/566654.566612
http://dx.doi.org/10.1145/566654.566612

80

BIBLIOGRAPHY

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

T. Ritschel, T. Grosch, M. H. Kim, H.-P. Seidel, C. Dachsbacher, and J. Kautz, Imper-
fect Shadow Maps for Efficient Computation of Indirect lllumination, ACM Trans.
Graph. 27 (2008).

C. Peters and R. Klein, Moment shadow mapping, in Proceedings of the 19th Sym-
posium on Interactive 3D Graphics and Games (ACM, 2015) pp. 7-14.

C. Miinstermann, S. Krumpen, R. Klein, and C. Peters, Moment-based order-
independent transparency, Proceedings of the ACM on Computer Graphics and
Interactive Techniques 1, 7 (2018).

M. Stamminger and G. Drettakis, Perspective shadow maps, in ACM transactions
on graphics (TOG), Vol. 21 (ACM, 2002) pp. 557-562.

W. Engel, Cascaded shadow maps, ShaderX5: Advanced Rendering Techniques
(2006).

M. Lambooij, M. Fortuin, I. Heynderickx, and W. IJsselsteijn, Visual discomfort
and visual fatigue of stereoscopic displays: A review, JIST 53, 30201 (2009).

L. Williams, Casting curved shadows on curved surfaces, SSIGGRAPH Comput.
Graph. 12, 270 (1978).

R. Fernando, S. Fernandez, K. Bala, and D. P. Greenberg, Adaptive shadow maps, in
Proceedings of the 28th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH '01 (ACM, 2001) pp. 387-390.

E Zhang, H. Sun, L. Xu, and L. K. Lun, Parallel-split shadow maps for large-scale
virtual environments, in Proceedings of the 2006 ACM International Conference on
Virtual Reality Continuum and Its Applications (2006) pp. 311-318.

J. Arvo and M. Hirvikorpi, Compressed shadow maps, Vis. Comput. 21, 125 (2005).

E. Sintorn, V. Kdmpe, O. Olsson, and U. Assarsson, Compact precomputed vox-
elized shadows, ACM Trans. Graph. 33, 150:1 (2014).

V. Kampe, E. Sintorn, and U. Assarsson, Fast, memory-efficient construction of vox-
elized shadows, in Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games (ACM, 2015).

M. D. and B.]., Directx 6 texture map compression, Game Developer , 42 (1998).

Z.Hong, K. Iourcha, and K. Nayak, Fixed-rate block-based image compression with
inferred pixel values, (2004), uS Patent 6,775,417.

T. Inada and M. D. McCool, Compressed Lossless Texture Representation and
Caching, in Graphics Hardware (The Eurographics Association, 2006).

E. Eisemann, M. Schwarz, U. Assarsson, and M. Wimmer, Real-Time Shadows
(A.K. Peters, 2011) p. 398.

BIBLIOGRAPHY 81

[30]

(31]

(32]

(33]

(34]

[35]

[36]

[37]

[38]

[39]

[40]

(41]

[42]

(43]

(44]

(45]

A. Woo and P. Poulin, Shadow Algorithms Data Miner (A K Peter/ CRC Press, 2012)
p. 268.

T. Boutell, Png (portable network graphics) specification version 1.0, (1997).

K. Iourcha, K. Nayak, and Z. Hong, System and method for fixed-rate block-based
image compression with inferred pixel values, (1999), uS Patent 5,956,431.

J. Strom and T. Akenine-Moller, ipackman: High-quality, low-complexity texture
compression for mobile phones, (ACM, NY, USA, 2005) pp. 63-70.

J. Nystad, A. Lassen, A. Pomianowski, S. Ellis, and T. Olson, Adaptive scalable tex-
ture compression, in HPG ’12 (Eurographics Association, 2012) pp. 105-114.

A. Woo, The shadow depth map revisited, in Graphics Gems III, edited by D. Kirk
(Academic Press, 1992) pp. 338-342.

D. Weiskopf and T. Ertl, Shadow mapping based on dual depth layers, Eurographics
2003 Short Papers (2003).

T. Ritschel, T. Grosch, J. Kautz, and S. Miieller, Interactive illumination with coher-
ent shadow maps, in Proceedings of the 18th Eurographics Conference on Rendering
Techniques, EGSR’07 (Eurographics Association, 2007) pp. 61-72.

S. Laine and T. Karras, Efficient Sparse Voxel Octrees — Analysis, Extensions, and
Implementation, NVIDIA Technical Report NVR-2010-001 (NVIDIA Corporation,
2010).

V. Kdmpe, E. Sintorn, and U. Assarsson, High resolution sparse voxel dags, ACM
Transactions on Graphics 32 (2013), sSIGGRAPH 2013.

J. R. Woodwark, Compressed quad trees, The Computer Journal 27, 225 (1984).

H. Samet, Data structures for quadtree approximation and compression, Commun.
ACM 28, 973 (1985).

S. Lefebvre and H. Hoppe, Compressed random-access trees for spatially coherent
data, in Proceedings of the 18th Eurographics Conference on Rendering Techniques,
EGSR’07 (Eurographics Association, 2007) pp. 339-349.

A. Gersho and R. M. Gray, Vector Quantization and Signal Compression (Kluwer
Academic Publishers, 1991).

N. Chaddha, P. A. Chou, and R. M. Gray, Constrained and recursive hierarchical
table-lookup vector quantization. in Data Compression Conference (IEEE Com-
puter Society, 1996) pp. 220-229.

M. Kraus and T. Ertl, Adaptive texture maps, in Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics Hardware, HWWS ’02 (Euro-
graphics Association, 2002) pp. 7-15.

82

BIBLIOGRAPHY

[46]

(47]

(48]

(49]

(50]

(51]

(52]

[53]

(54]

(53]

[56]

[57]

[58]

[59]

(60]

S. G. Mallat, A theory for multiresolution signal decomposition: the wavelet repre-
sentation, IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 674
(1989).

H. Samet, The quadtree and related hierarchical data structures, ACM Comput.
Surv. 16, 187 (1984).

C. Everitt, Interactive order-independent transparency, (2001).

L. Bavoil, S. P. Callahan, A. Lefohn, J. a. L. D. Comba, and C. T. Silva, Multi-fragment
effects on the gpu using the k-buffer, in Proceedings of the 2007 Symposium on In-
teractive 3D Graphics and Games, 13D '07 (ACM, New York, NY, USA, 2007) pp.
97-104.

P. K. Agarwal and S. Suri, Surface approximation and geometric partitions, in Pro-
ceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
'94 (Society for Industrial and Applied Mathematics, 1994) pp. 24-33.

W. T. Reeves, D. H. Salesin, and R. L. Cook, Rendering antialiased shadows with
depth maps, ACM Siggraph Computer Graphics 21, 283 (1987).

L. Scandolo, P. Bauszat, and E. Eisemann, Compressed multiresolution hierarchies
for high-quality precomputed shadows, Computer Graphics Forum (Proc. EG) 35
(2016).

N. Andrysco and X. Tricoche, Matrix trees, Computer Graphics Forum 29, 963
(2010).

G. Spencer, P. Shirley, K. Zimmerman, and D. P. Greenberg, Physically-based glare
effects for digital images, in Proc. ACM SIGGRAPH (ACM, 1995) pp. 325-334.

M. Kakimoto, K. Matsuoka, T. Nishita, T. Naemura, and H. Harashima, Glare gen-
eration based on wave optics, in Proc. Pacific Graphics (2004) pp. 133-140.

T. Ritschel, T. Grosch, and H.-P. Seidel, Approximating dynamic global illumina-
tion in image space, in Proc. of the 2009 symposium on Interactive 3D graphics and
games (2009) pp. 75-82.

M. Hullin, E. Eisemann, H.-P. Seidel, and S. Lee, Physically-based real-time lens
flare rendering, ACM Trans. Graph. 30, 108:1 (2011).

A. Yoshida, M. Ihrke, R. Mantiuk, and H.-P. Seidel, Brightness of the glare illusion,
in Proc. Symp. Applied Perception in Graphics and Visualization (2008) pp. 83-90.

J. Peatross and M. Ware, Physics of Light and Optics (Bringham Young University,
2015).

B. K. Yap and S. D. Fantone, Application of a sunburst aperture to diffraction sup-
pression, JOSA 64, 978 (1974).

BIBLIOGRAPHY 83

(61]

(62]

(63]

(64]

(65]

[66]

[67]

(68]

(69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

S.-W. Lee and R. Mittra, Fourier transform of a polygonal shape function and its
application in electromagnetics, IEEE Trans. Ant. and Prop. 31, 99 (1983).

K. Mcinturff and P. S. Simon, The Fourier transform of linearly varying functions
with polygonal support, IEEE Trans. Ant. and Prop. 39, 1441 (1991).

E. Nakamae, K. Kaneda, T. Okamoto, and T. Nishita, A lighting model aiming at
drive simulators, ACM Trans. Graphics 24, 395 (1990).

P. Rokita, A model for rendering high intensity lights, Computers & graphics 17, 431
(1993).

J. Stam, Diffraction shaders, in Proc. ACM SIGGRAPH (ACM, 1999) pp. 101-110.

C. Lindsay and E. Agu, Physically-based real-time diffraction using spherical har-
monics, Advances in Vis. Comp. , 505 (2006).

D. S.J. Dhillon and A. Ghosh, Efficient surface diffraction renderings with Cheby-
shev approximations, in SIGGRAPH ASIA Technical Briefs (ACM, 2016) p. 7.

T. Cuypers, T. Haber, P. Bekaert, S. B. Oh, and R. Raskar, Reflectance model for
diffraction, ACM Trans. Graphics 31, 122 (2012).

S. Werner, Z. Velinov, W. Jakob, and M. B. Hullin, Scratch iridescence: Wave-optical
rendering of diffractive surface structure, ACM Trans. Graphics 36, 220:1 (2017).

Z.Dong, B. Walter, S. Marschner, and D. P. Greenberg, Predicting appearance from
measured microgeometry of metal surfaces, ACM Trans. Graphics 35, 9 (2015).

L. Belcour and P. Barla, A practical extension to microfacet theory for the modeling
of varying iridescence, ACM Trans. Graphics 36, 65 (2017).

A. Toisoul and A. Ghosh, Practical acquisition and rendering of diffraction effects
in surface reflectance, ACM Trans. Graphics 36, 166 (2017).

N. Holzschuch and R. Pacanowski, A two-scale microfacet reflectance model com-
bining reflection and diffraction, ACM Trans. Graphics 36, 66 (2017).

C. Oat, A steerable streak filter, in Shader X3, edited by W. Engel (Charles River Me-
dia, 2004) pp. 341-348.

J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex
Fourier series, Mathematics of computation 19, 297 (1965).

M. Frigo and S. G. Johnson, FFTW: An adaptive software architecture for the FFT,
in Proc. Acoustics, Speech and Signal Processing, Vol. 3 (1998) pp. 1381-1384.

K. Moreland and E. Angel, The FFT on a GPU, in Proc. Graphics Hardware (Euro-
graphics Association, 2003) pp. 112-119.

84

BIBLIOGRAPHY

[78]

[79]

[80]

(81]

(82]

(83]

(84]

(85]

[86]

(87]

[88]

(89]

[90]

[91]

N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J. Manferdelli, High perfor-
mance discrete Fourier transforms on graphics processors, in Proc. Supercomputing
(2008) p. 2.

E Franchetti, M. Puschel, Y. Voronenko, S. Chellappa, and J. M. Moura, Discrete
Fourier transform on multicore, IEEE Signal Processing Magazine 26 (2009).

H. Hassanieh, P. Indyk, D. Katabi, and E. Price, Simple and practical algorithm for
sparse Fourier transform, in Proc. ACM-SIAM Symp. Discrete Algorithms (2012) pp.
1183-1194.

E. Sorets, Fast Fourier transforms of piecewise constant functions, Journal of Com-
putational Physics 116, 369 (1995).

G.-X. Fan and Q. H. Liu, Fast Fourier transform for discontinuous functions, IEEE
Trans. Ant. and Prop. 52, 461 (2004).

Y. Liu, Z. Nie, and Q. H. Liu, DIFFT: A fast and accurate algorithm for Fourier trans-
form integrals of discontinuous functions, IEEE Microwave and Wireless Compo-
nents Letters 18, 716 (2008).

B. Houshmand, W. C. Chew, and S.-W. Lee, Fourier transform of a linear distribu-
tion with triangular support and its applications in electromagnetics, IEEE Trans.
Ant. and Prop. 39, 252 (1991).

Y.-H. Liu, Q. Liu, Z.-P. Nie, and Z.-Q. Zhao, Discontinuous fast Fourier transform
with triangle mesh for two-dimensional discontinuous functions, J. Electromag.
Waves and Appl. 25, 1045 (2011).

A. Lucat, R. Hegedus, and R. Pacanowski, Diffraction prediction in HDR measure-
ments, in Proc. Eurographics Workshop on Material Appearance Modeling (2017).

S. Lee and S. Lee, Interactive Additive Diffraction Synthesis, in EG 2016 - Posters,
edited by L. G. Magalhaes and R. Mantiuk (The Eurographics Association, 2016).

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation,
interference and diffraction of light (Elsevier, 2013).

C. Wyman, P-P. Sloan, and P. Shirley, Simple analytic approximations to the CIE
XYZ color matching functions, Journal of Computer Graphics Techniques 2, 1
(2013).

M. Hollander, T. Ritschel, E. Eisemann, and T. Boubekeur, ManyLoDs: Parallel
many-view level-of-detail selection for real-time global illumination, Computer
Graphics Forum 30, 1233 (2011).

E. C. Kintner, Edge-ringing and Fresnel diffraction, Optica Acta: International Jour-
nal of Optics 22, 235 (1975).

http://dx.doi.org/10.2312/egp.20161042

BIBLIOGRAPHY 85

[92]

[93]

[94]

[95]

(96]

(97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

K. D. Mielenz, Algorithms for Fresnel diffraction at rectangular and circular aper-
tures, J. Research of the National Institute of Standards and Technology 103, 497
(1998).

R. Tao, G. Liang, and X.-H. Zhao, An efficient FPGA-based implementation of frac-
tional Fourier transform algorithm, J. Signal Proc. Systems 60, 47 (2010).

H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The fractional Fourier transform with
applications in optics and signal processing (Wiley, 2001).

S. Lee and E. Eisemann, Practical real-time lens-flare rendering, Computer Graph-
ics Forum 32, 1 (2013).

G. James and J. O’'Rorke, Real-time glow, in GPU Gems, edited by R. Fernando (Ad-
dison Wesley Professional, 2004) pp. 343-362.

S. Gateau, R. Neuman, and M. Salvati, Siggraph 2011 stereoscopy course, (2011).

B. Mendiburu, 3D movie making: stereoscopic digital cinema from script to screen
(CRC Press, 2012).

A. Smolic, P Kauff, S. Knorr, A. Hornung, M. Kunter, M. Muller, and M. Lang, Three-
dimensional video postproduction and processing, Proc. of the IEEE 99, 607 (2011).

D. M. Kent, Foundations of binocular vision: A clinical perspective. (2001).

L. P Howard, Perceiving in depth, volume 1: basic mechanisms (Oxford University
Press, 2012).

L. M. Meesters, W. A. IJsselsteijn, and P.J. Seuntiéns, A survey of perceptual evalu-
ations and requirements of three-dimensional tv, IEEE Trans. Circuits Syst. 14, 381
(2004).

P. Burt and B. Julesz, A disparity gradient limit for binocular fusion, Science 208,
615 (1980).

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, Vergence-
accommodation conflicts hinder visual performance and cause visual fatigue, Jour-
nal of vision 8, 33 (2008).

T. Blum, M. Wieczorek, A. Aichert, R. Tibrewal, and N. Navab, The effect of out-of-
focus blur on visual discomfort when using stereo displays, in ISMAR (IEEE, 2010)
pp. 13-17.

T. Oskam, A. Hornung, H. Bowles, K. Mitchell, and M. H. Gross, Oscam-optimized
stereoscopic camera control for interactive 3d. ACM Trans. Graph. 30, 189 (2011).

S. Heinzle, P. Greisen, D. Gallup, C. Chen, D. Saner, A. Smolic, A. Burg, W. Matusik,
and M. Gross, Computational stereo camera system with programmable control
loop, in ACM Trans. Graph., Vol. 30 (2011) p. 94.

86

BIBLIOGRAPHY

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]
[120]
[121]

[122]

[123]

T. Kawai, T. Shibata, T. Inoue, Y. Sakaguchi, K. Okabe, and Y. Kuno, Development
of software for editing stereoscopic 3-d movies, in Proc. of SPIE, Vol. 4660 (2002) pp.
58-65.

A. T. Duchowski, D. H. House, J. Gestring, R. I. Wang, K. Krejtz, L. Krejtz, R. Mantiuk,
and B. Bazyluk, Reducing visual discomfort of 3d stereoscopic displays with gaze-
contingent depth-of-field, in ACM SAP (2014) pp. 39-46.

K. Carnegie and T. Rhee, Reducing visual discomfort with hmds using dynamic
depth of field, IEEE Comput. Graph. Appl. 35, 34 (2015).

P. Didyk, T. Ritschel, E. Eisemann, K. Myszkowski, and H.-P. Seidel, A perceptual
model for disparity, in ACM Trans. Graph., Vol. 30 (2011) p. 96.

P. Didyk, T. Ritschel, E. Eisemann, K. Myszkowski, H.-P. Seidel, and W. Matusik, A
luminance-contrast-aware disparity model and applications, ACM Trans. Graph.
31, 184 (2012).

S. Du, B. Masia, S. Hu, and D. Gutierrez, A metric of visual comfort for stereoscopic
motion, ACM TOG 32, 222 (2013).

P. Didyk, T. Ritschel, E. Eisemann, K. Myszkowski, and H.-P. Seidel, Apparent stereo:
The cornsweet illusion can enhance perceived depth, in IS&T/SPIE Electronic Imag-
ing (2012).

K. Templin, P. Didyk, K. Myszkowski, and H.-P. Seidel, Perceptually-motivated
stereoscopic film grain, in CGF, Vol. 33 (2014) pp. 349-358.

D. Pajak, R. Herzog, R. Mantiuk, P. Didyk, E. Eisemann, K. Myszkowski, and K. Pulli,
Perceptual depth compression for stereo applications, in CGF, Vol. 33 (2014) pp.
195-204.

T.-J. Mu, J.-J. Sun, R. R. Martin, and S.-M. Hu, A response time model for abrupt
changes in binocular disparity, The Visual Computer 31, 675 (2015).

K.-Y. Lee, C.-D. Chung, and Y.-Y. Chuang, Scene warping: Layer-based stereoscopic
image resizing, in CVPR (IEEE, 2012) pp. 49-56.

Pftrack, http:/ /www.thepixelfarm.co.uk/pftrack.
Mistika, http:/ /www.sgo.es/mistika-ultima.
Ocula, http://www.foundry.com/products/ocula.

O. Wang, M. Lang, M. Frei, A. Hornung, A. Smolic, and M. Gross, Stereobrush:
interactive 2d to 3d conversion using discontinuous warps, in Proc. SBIM (ACM,
2011) pp. 47-54.

M. Wang, X.-J. Zhang, J.-B. Liang, S.-H. Zhang, and R. R. Martin, Comfort-
driven disparity adjustment for stereoscopic video, Computational Visual Media 2,
3 (2016).

BIBLIOGRAPHY 87

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

P. Kellnhofer, P. Didyk, K. Myszkowski, M. M. Hefeeda, H.-P. Seidel, and W. Matusik,
Gazestereo3d: seamless disparity manipulations, ACM Trans. Graph. 35, 68 (2016).

M. Lang, A. Hornung, O. Wang, S. Poulakos, A. Smolic, and M. Gross, Nonlinear
disparity mapping for stereoscopic 3d, ACM Trans. Graph. 29, 75 (2010).

P. Kellnhofer, T. Ritschel, K. Myszkowski, and H.-P. Seidel, Optimizing disparity for
motion in depth, in CGF, Vol. 32 (2013) pp. 143-152.

P. Kellnhofer, P. Didyk, T. Ritschel, B. Masia, K. Myszkowski, and H.-P. Seidel, Mo-
tion parallax in stereo 3d: model and applications, ACM Trans. Graph. 35, 176
(2016).

P. Pérez, M. Gangnet, and A. Blake, Poisson image editing, ACM Trans. Graph. 22,
313 (2003).

P Bhat, C. L. Zitnick, M. Cohen, and B. Curless, Gradientshop: A gradient-domain
optimization framework for image and video filtering, ACM Trans. Graph. 29, 10
(2010).

S.Fleishman, D. Cohen-Or, 1. Drori, T. Leyvand, and H. Yeshurun, Video operations
in the gradient domain, Tel-Aviv Univ, Tech. Rep (2004).

A. Levin, A. Zomet, S. Peleg, and Y. Weiss, Seamless image stitching in the gradient
domain, Computer Vision-ECCV 2004 , 377 (2004).

S.-J. Luo, L. Shen, B.-Y. Chen, W.-H. Cheng, Y.-Y. Chuang, et al., Perspective-aware
warping for seamless stereoscopic image cloning, ACM Trans. Graph. 31, 182 (2012).

S. M. Anstis, I. P Howard, and B. Rogers, A Craik-O’Brien-Cornsweet illusion for
visual depth, Vision Research 18 (1978).

C.L.Lawson and R. J. Hanson, Solving least squares problems, Vol. 15 (Siam, 1995).

P. Didyk, T. Ritschel, E. Eisemann, K. Myszkowski, and H.-P. Seidel, Adaptive
image-space stereo view synthesis. in VMV (2010) pp. 299-306.

E. Eisemann and E Durand, Flash photography enhancement via intrinsic relight-
ing, ACM Transactions on Graphics 23, 673 (2004).

G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen, H. Hoppe, and K. Toyama, Dig-
ital photography with flash and no-flash image pairs, ACM Trans. Graph. 23, 664
(2004).

C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images, in Proc. of
the International Conference on Computer Vision (1998) pp. 839-846.

J. Bolz, 1. Farmer, E. Grinspun, and P. Schrooder, Sparse matrix solvers on the gpu:
conjugate gradients and multigrid, ACM Trans. Graph. 22, 917 (2003).

citeseer.ist.psu.edu/tomasi98bilateral.html
citeseer.ist.psu.edu/tomasi98bilateral.html

88 BIBLIOGRAPHY

[140] K. Templin, P. Didyk, K. Myszkowski, M. M. Hefeeda, H.-P. Seidel, and W. Matusik,
Modeling and optimizing eye vergence response to stereoscopic cuts, ACM Trans.
Graph. 33, 145 (2014).

[141] C. Crassin, E Neyret, M. Sainz, S. Green, and E. Eisemann, Interactive indirect
illumination using voxel cone tracing, in Computer Graphics Forum, Vol. 30 (Wiley
Online Library, 2011) pp. 1921-1930.

[142] E. Sintorn, V. Kdmpe, O. Olsson, and U. Assarsson, Compact precomputed vox-
elized shadows, ACM Transactions on Graphics (TOG) 33, 150 (2014).

[143] V.K&e, S. Rasmuson, M. Billeter, E. Sintorn, and U. Assarsson, Exploiting coher-
ence in time-varying voxel data, in Proceedings of the 20th ACM SIGGRAPH Sym-
posium on Interactive 3D Graphics and Games (ACM, 2016) pp. 15-21.

EPILOGUE

Computer graphics is an amazingly interesting field where math, physics, computer en-
gineering, and other disciplines come together. As such, there is a feeling of constant
marvel at the new techniques and methods that are published every year. The great
community behind these works are thus always enthusiastic about what can be achieved
next, since they know there is still much more to discover.

It is my sincere hope that you, the reader, will have learned something new by the
time this book is put back into its place in your bookshelf, or safely archived in your
computer. Hopefully the work presented in the preceding pages will spark new ideas,
encourage some further reading, or at least trigger the thought ’oh, that’s clever, maybe
I should try something similar’. And, after all, that is what research is all about.

89

ACKNOWLEDGEMENTS

A years-long endeavor such as a PhD can never be accomplished without the invaluable
help of family, friends and colleagues.

I'was very lucky to get a position at the Computer Graphics and Visualization group
in TU Delft under the supervision of Prof. Elmar Eisemann. His easy-going attitude
combined with his large knowledge on all topics related to my work meant any discus-
sions we had about my work were always very productive. For a large part of my time
here I was also lucky enough to work under the supervision of Dr. Pablo Bauszat and
Dr. Sungkil Lee. Their technical and theoretical knowledge, but most importantly their
never-ending imagination and constant stream of ideas meant we would always find
new ways to tackle problems.

I'was very lucky to be involved in some projects outside my main line of research. For
that I mostly have Dr. Christopher Brandt and Dr. Klaus Hildebrandt to thank, who ap-
proached me to work on applications of their amazing research line on geometry mod-
eling. Working with Christopher was always a delight, because of his quick wits, great
work ethic and deep scientific knowledge.

Of course, everyone in the graphics group was, to different degrees (but always pos-
itively), influential. So, to Changgong, Thomas(x2), Renata, Noeska, Jingtang, Philip,
Nicola, Anna, Jean Marc, Bert, Michael, Timothy, Ruud, Bart, Niels, Nestor, Leo, Ahmad,
Faizan, Peiteng, Baran, Markus, Julian, Tom, Victor, Annemieke, Jerry, Xuejiao, Ricardo,
a big thanks for all the fun I had during my time with you. I would like to especially
mention the great secretaries at our group: Stefanie, Sandra and Marloes. They went
above and beyond trying to help me and everyone else with all the administrative has-
sle, and, most importantly for some of us, with setting up our life as expats. A special
mention to Dr. Timothy Kol, who was the first person I randomly found when coming
for the first time to TU Delft and would sit across from me for the next three years, chat
with me about anything and everything, and help me out with anything Dutch (or other-
wise) related. Another special mention goes to Dr. Michael Stengel, who became a great
influence and friend during his time at Delft.

Finally, I would like to thank all of my family for their unending support on my long
way here. From early on they instilled in me the value of education, the importance of
hard work, and encouraged me to follow my dreams. Without them I would not have
made it this far. And last but not least to Maru, who stood by my side all these years, I
have no words to express my gratitude.

91

CURRICULUM VITA

LEONARDO SCANDOLO

Leonardo Scandolo was born in Rosario, Argentina.

He graduated as an electronics technician in
2002 and as a Licenciate in Computer Science in
2013 at the National University of Rosario (UNR).
During his studies, he performed research intern-
ships at the IMDEA! Software institute in Madrid,
Spain, researching topics of parallel program-
ming, and also at INRIA? Rhone-Alpes in Greno-
ble, France, on the topic of trajectory planning for
autonomous wheelchairs. He also interned at Evo-
lution Robotics (now part of iRobot®) in Los An-
geles, United States. During and after his stud-
ies he also worked as a software engineer building
systems for energy distribution companies at Tesis
S.A., and precision agriculture display software at
Forkworks S.A. in Argentina. He also worked as a
teaching assistant at UNR, teaching topics of data
structures, computer architecture, algorithms and
linear algebra.

In 2015, he started his PhD at TU Delft, un-
der the supervision of Prof. Elmar Eisemann, re-
searching a variety of topics relating to real-time
rendering, animation, and editing. That work re-
sulted in the current dissertation.

1
2
3

www.software.imdea.org
www.inria.fr/centre/grenoble
www.irobot.com

93

10.

LIST OF PUBLICATIONS

L. Scandolo, P. Bauszat, E.Eisemann, Gradient-Guided Local Disparity Editing, Computer
Graphics Forum, Vol. 38, No. 1 (2019).

. L. Scandolo, S. Lee, E.Eisemann, Quad-Based Fourier Transform for Efficient Diffraction

Synthesis, Computer Graphics Forum, Vol. 37, No. 4 (2018).

. C. Brandt, L. Scandolo, E. Eisemann, K. Hildebrandt, Modeling n-Symmetry Vector Fields

using Higher-Order Energies, Computer Graphics Forum, Vol. 37, No. 2 (2018).

. C.Brandt, L. Scandolo, E. Eisemann, K. Hildebrandt, Spectral processing of tangential vector

fields, Computer Graphics Forum, Vol. 36, No. 6 (2017).

. R. Baravalle, L. Scandolo, C. Delrieux, C. Garcia Bauza, E. Eisemann, Realistic modeling of

porous materials, Computer Animation and Virtual Worlds, Vol. 28, No. 2 (2017).

. L. Scandolo, P. Bauszat, E.Eisemann, Merged multiresolution hierarchies for shadow map

compression, Computer Graphics Forum, Vol. 35, No. 7 (2016).

L. Scandolo, P Bauszat, E.Eisemann, Compressed Multiresolution Hierarchies for High Qual-
ity Precomputed Shadows, Computer Graphics Forum, Vol. 35, No. 2 (2016).

Q. Hendrickx, L. Scandolo, M. Eisemann, E. Eisemann, Adaptively layered statistical volu-
metric obscurance, Proceedings of the 7th Conference on High-Performance Graphics (2015).

L. Scandolo, T. Fraichard, An anthropomorphic navigation scheme for dynamic scenarios,
Proceedings of the IEEE International Conference on Robotics and Automation (2011).

L. Scandolo, C. Kunz, M. Hermenegildo, Program parallelization using synchronized pipelin-
ing, Proceedings of the International Symposium on Logic-Based Program Synthesis and
Transformation (2009).

95

http://dx.doi.org/10.1111/cgf.13537
http://dx.doi.org/10.1111/cgf.13537
http://dx.doi.org/10.1111/cgf.13484
http://dx.doi.org/10.1145/3177750
http://dx.doi.org/10.1111/cgf.12942
http://dx.doi.org/10.1002/cav.1719
http://dx.doi.org/10.1111/cgf.13035
http://dx.doi.org/10.1111/cgf.12835
http://dx.doi.org/10.1145/2790060.2790070
http://dx.doi.org/10.1109/ICRA.2011.5979772
http://dx.doi.org/10.1007/978-3-642-12592-8_13
http://dx.doi.org/10.1007/978-3-642-12592-8_13

	Summary
	Samenvatting
	Preface
	Introduction
	Image-based resolution strategies
	Presented applications
	Personal contributions

	Compressed Multiresolution Hierarchies
	Introduction
	Related Work
	Compressed Multiresolution Hierarchies
	Construction
	Compressed Quadtrees
	Filtering

	Shadow map stacks
	Multiresolution Hierarchies Evaluation
	Merged Multiresolution Hierarchies
	Hashing
	Subtree Matching
	Serialized Tree Creation
	Merged Multiresolution Hierarchies Evaluation

	Conclusion and Future Work

	Quad-Based Fourier Transform
	Introduction
	Related Work
	Diffraction Modeling and Rendering
	Acceleration Techniques for Fourier Transform

	Background
	Standard Fourier Transform
	Diffraction with Fourier Transform

	Our approach
	Primitive-based Fourier Transform
	Far-Field Diffraction Rendering
	Accelerations
	Occlusion and Area Lights
	Near-Field Diffraction

	Results
	Far-Field Diffraction
	Near-Field Diffraction

	Applications
	Glare Rendering
	Ringing at Dynamic Aperture Edges
	Bloom/Glow Rendering

	Discussion and Limitations

	Gradient-Guided Local Disparity Editing
	Introduction
	Related Work
	Disparity Editing
	Disparity Map
	Disparity Tools
	Disparity Map Optimization
	Stereo image creation
	Implementation Details

	Results
	Memory usage
	Timing
	User studies
	Limitations and Future Work

	Conclusion

	Conclusion
	Epilogue
	Acknowledgements
	Curriculum Vitæ
	List of Publications

