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SUMMARY

Newton-Krylov Methods in

Power Flow and Contingency Analysis

Reijer Idema

A power system is a system that provides for the generation, transmission,
and distribution of electrical energy. Power systems are considered to be
the largest and most complex man-made systems. As electrical energy is
vital to our society, power systems have to satisfy the highest security and
reliability standards. At the same time, minimising cost and environmental
impact are important issues.

Steady state power system analysis plays a very important role in both
operational control and planning of power systems. Essential tools are power
flow (or load flow) studies and contingency analysis. In power flow studies,
the bus voltages in the power system are calculated given the generation and
consumption. In contingency analysis, equipment outages are simulated to
determine whether the system can still function properly if some piece of
equipment were to break down unexpectedly.

The power flow problem can be mathematically expressed as a nonlinear
system of equations. It is traditionally solved using the Newton-Raphson
method with a direct linear solver, or using Fast Decoupled Load Flow
(FDLF), an approximate Newton method designed specifically for the power
flow problem. The Newton-Raphson method has good convergence proper-
ties, but the direct solver solves the linear system to a much higher accuracry
than needed, especially in early iterations. In that respect the FDLF method
is more efficient, but convergence is not as good. Both methods are slow for
very large problems, due to the use of the LU decomposition.
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We propose to solve power flow problems with Newton-Krylov methods.
Newton-Krylov methods are inexact Newton methods that use a Krylov
subspace method as linear solver. We discuss which Krylov method to use,
investigate a range of preconditioners, and examine different methods for
choosing the forcing terms. We also investigate the theoretical convergence
of inexact Newton methods.

The resulting power flow solver offers the same convergence properties
as the Newton-Raphson method with a direct linear solver, but eliminates
both the need for oversolving, and the need for an LU factorisation. As a
result, the method is slightly faster for small problems while scaling much
better in the problem size, making it much faster for very large problems.

Contingency analysis gives rise to a large number of very similar power
flow problems, which can be solved with any power flow solver. Using the
solution of the base case as initial iterate for the contingency cases can help
speed up the process. FDLF further allows the reuse of the LU factori-
sation of the base case for all contingency cases, through factor updating
or compensation techniques. There is no equivalent technique for Newton
power flow with a direct linear solver. We show that Newton-Krylov power
flow does allow such techniques, through the use of a single preconditioner
for all contingency cases. Newton-Krylov power flow thus allows very fast
contingency analysis with Newton-Raphson convergence.



SAMENVATTING

Newton-Krylov Methoden in

Loadflow en Contingency Analyse

Reijer Idema

Het energievoorzieningssysteem is het systeem dat zorgt voor de opwekking,
transmissie en distributie van elektrische energie. Energievoorzieningssys-
temen vormen de grootste en ingewikkeldste systemen die door de mens
zijn gemaakt. Omdat elektriciteit van cruciaal belang is voor onze samen-
leving, moeten energievoorzieningssystemen aan de hoogste veiligheids- en
betrouwbaarheidseisen voldoen. Tegelijkertijd moet er rekening gehouden
worden met de kosten en het milieu.

De analyse van een energievoorzieningssysteem in stationaire toestand is
zeer belangrijk voor de planning en het operationele beheer van het systeem.
Loadflow-studies en contingency analyse zijn hierbij essentieel. Gegeven
het opgewekte en verbruikte vermogen kan de spanning in elk knooppunt
van het systeem worden berekend door het loadflow-probleem op te lossen.
Bij contingency analyse wordt het uitvallen van materieel gesimuleerd, om
te bepalen of het systeem nog steeds naar behoren kan functioneren bij
ongeplande uitval van dat materieel.

Het loadflow-probleem kan wiskundig worden beschreven als een niet-
lineair stelsel van vergelijkingen. Het wordt gewoonlijk opgelost met behulp
van de Newton-Raphson methode met een directe methode voor de lineaire
vergelijkingen, of door middel van Fast Decoupled Load Flow (FDLF), een
speciaal voor het loadflow-probleem ontwikkelde benadering van de Newton-
Raphson methode. De Newton-Raphson methode heeft goede convergentie-
eigenschappen, maar de directe methode lost de lineaire stelsels op tot een
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veel hogere nauwkeurigheid dan nodig is. De FDLF methode is in dat opzicht
efficiënter, maar de convergentie is minder goed. Beide methodes zijn traag
voor zeer grote problemen omdat ze gebruik maken van de LU-decompositie.

Wij stellen voor het loadflow-probleem op te lossen met Newton-Krylov
methoden. Newton-Krylov methoden zijn inexacte Newton methoden die
een Krylov-deelruimte methode gebruiken om de lineaire stelsels op te lossen.
We bespreken welke Krylov-methode gebruikt dient te worden, onderzoeken
een scala aan preconditioneringen, en bekijken verschillende methoden voor
de keuze van de nauwkeurigheid waarmee de lineaire stelsels opgelost moeten
worden. Daarnaast onderzoeken we ook de theoretische convergentie van
inexacte Newton methoden.

Het resultaat is een oplosmethode voor loadflow-problemen met dezelfde
convergentie-eigenschappen als de Newton-Raphson methode, die de lineaire
stelsels niet tot een hogere nauwkeurigheid dan nodig op hoeft te lossen en
die geen LU decompositie nodig heeft. Hierdoor is de methode iets sneller
voor kleine problemen en schaalt deze veel beter in de probleemgrootte,
waardoor hij veel sneller is voor zeer grote problemen.

Contingency analyse leidt tot een groot aantal, zeer op elkaar gelijkende
loadflow-problemen, die onafhankelijk van elkaar kunnen worden opgelost.
Het proces kan vaak worden versneld door de oplossing van het basispro-
bleem te gebruiken als startoplossing voor de afgeleide problemen. FDLF
staat verder toe dat de LU-decompositie van het basisprobleem wordt her-
gebruikt voor de afgeleide problemen, door middel van het bijwerken van
de factoren of met behulp van compensatietechnieken. Bij gebruik van de
Newton-Raphson methode kunnen deze technieken niet worden benut. Wij
laten zien dat de Newton-Krylov methode zulke technieken wel toelaat, door
dezelfde preconditionering te gebruiken voor alle afgeleide problemen in de
contingency analyse. Newton-Krylov loadflow maakt het daardoor moge-
lijk contingency analyse zeer snel uit te voeren, met behoud van de goede
Newton-Raphson convergentie-eigenschappen.
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CHAPTER 1

Introduction

Electricity is a vital part of modern everyday life. We plug our electronic
devices into wall sockets and expect them to get power. This power is mostly
generated in large power plants, in remote locations. Power generation is
often in the news. Developments in wind and solar power generation, as well
as other renewables, are hot topics. But also the issue of the depletion of
natural resources, and the risks of nuclear power, are often discussed. Much
less discussed is the transmission and distribution of electrical power, an
incredibly complex task that needs to be executed very reliably and securely,
and highly efficiently. To achieve this, both operation and planning require
complex computational simulations of the power system network.

In this work we investigate the base computational problem in steady-
state power system simulations—the power flow problem. The power flow
(or load flow) problem is a nonlinear system of equations that relates the bus
voltages to the power generation and consumption. For given generation and
consumption, the power flow problem can be solved to reveal the associated
voltages. The solution can be used to assess whether the power system can
function properly for the given generation and consumption. Power flow is
the main ingredient of many computations in power system analysis.

Monte Carlo simulations with power flow calculations for many different
generation and consumption inputs, can be used to analyse the stochastic
behaviour of a power system. This type of simulation is becoming especially
important due to the uncontrollable nature of wind and solar power.

Contingency analysis simulates equipment outages in the power system,
and solves the associated power flow problems to assess the impact on the
power system. Contingency analysis is vital to identify possible problems,
and solve them before they have a chance to occur. Many countries require
their power system to operate in such a way that no single equipment outage
causes interruption of service.
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2 Chapter 1. Introduction

Operation and planning of power systems further lead to many kinds of
optimisation problems. What power plants should be generating how much
power at any given time? Where to best build a new power plant? Which
buses to connect with a new line or cable? All these questions require the
solution of an optimisation problem, where the set of feasible solutions is
determined by power flow problems, or even contingency analysis and Monte
Carlo simulations.

Traditionally, power generation is centralized in large power plants that
are connected directly to the transmission system. The high voltage trans-
mission system then transports the generated power to the lower voltage
local distribution systems. In recent years decentralized power generation is
emerging, for example in the form of small wind farms connected directly to
the distribution network, or solar panels on the roofs of residential houses.
It is expected that the future will bring a much more decentralized power
system. This leads to many new computational challenges in power system
operation and planning.

Meanwhile, national power systems are being interconnected more and
more, and with it the energy markets. The resulting continent-wide power
systems lead to much larger power system simulations.

Both these developments have the potential to lead to a whole new scale
of power flow problems. For such problems, current power flow solution
methods are not viable. Therefore, research into new solution techniques is
very important.

In this work, we develop a Newton-Krylov solver that is much faster
for large power flow problems than traditional solvers. Further, we use the
contingency analysis problem to demonstrate how a Newton-Krylov solver
can be used to speed up the computation of many slightly different power
flow problems, as found not only in contingency analysis, but also in Monte
Carlo simulations and some optimisation problems.

The research presented in this work was also published in [26, 28, 27, 29].
Further research on the subject of Newton-Krylov power flow for large power
flow problems is presented in [30].



CHAPTER 2

Solving Linear Systems of

Equations

A linear equation in n variables x1, . . . , xn ∈ R, is an equation of the form

a1x1 + . . . + anxn = b, (2.1)

with given constants a1, . . . , an, b ∈ R. If there is at least one coefficient
ai not equal to 0, then the solution set is an (n − 1)-dimensional affine
hyperplane in R

n. If all coefficients are equal to 0, then there is either no
solution if b 6= 0, or the solution set is the entire space R

n if b = 0.
A linear system of equations is a collection of linear equations in the same

variables, that have all to be satisfied simultaneously. Any linear system of
m equations in n variables can be written as

Ax = b, (2.2)

where A ∈ R
m×n is called the coefficient matrix, b ∈ R

m the right-hand side
vector, and x ∈ R

n the vector of variables or unknowns.
If there exists at least one solution vector x that satisfies all linear equa-

tions at the same time, then the linear system is called consistent; otherwise,
it is called inconsistent. If the right-hand side vector b = 0, then the system
of equations is always consistent, because the trivial solution x = 0 satisfies
all equations independent of the coefficient matrix.

We focus on systems of linear equations with a square coefficient matrix:

Ax = b, with A ∈ R
n×n and b,x ∈ R

n. (2.3)

If all equations are linearly independent, i.e, if rank (A) = n, then the matrix
A is invertible and the linear system (2.3) has a unique solution x = A−1b.

3



4 Chapter 2. Solving Linear Systems of Equations

If not all equations are linearly independent, i.e., if rank (A) < n, then A is
singular. In this case the system is either inconsistent, or the solution set
is a hyperplane of dimension n − rank (A) in R

n. Note that whether there
is exactly one solution or not can be deduced from the coefficient matrix
alone, while both coefficient matrix and right-hand side vector are needed
to distinguish between no solutions or infinitely many solutions.

A solver for systems of linear equations can either be a direct method, or
an iterative method. Direct methods calculate the solution to the problem
in one pass. Iterative methods start with some initial vector, and update
this vector in every iteration until it is close enough to the solution. Direct
methods are very well-suited for smaller problems, and for problems with a
dense coefficient matrix. For very large sparse problems, iterative methods
are generally much more efficient than direct solvers.

2.1 Direct Solvers

A direct solver can consist of a method to calculate the inverse coefficient
matrix A−1, after which the solution of the linear system (2.3) can simply
be found by calculating the matvec x = A−1b. In practice, it is generally
more efficient to build a factorisation of the coefficient matrix into triangu-
lar matrices, which can be used to easily derive the solution. For general
matrices, the factorisation of choice is the LU decomposition.

2.1.1 LU Decomposition

The LU decomposition consists of a lower triangular matrix L, and an upper
triangular matrix U , such that

LU = A. (2.4)

The factors are unique if the requirement is added that all the diagonal
elements of either L, or of U , are ones.

Using the LU decomposition, the system of linear equations (2.3) can be
written as

LUx = b, (2.5)

and solved by consecutively solving the two linear systems

Ly = b, (2.6)

Ux = y. (2.7)

Because L and U are triangular, these systems are quickly solved using
forward and backward substitution respectively.
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The rows and columns of the coefficient matrix A can be permuted freely
without changing the solution of the linear system (2.3), as long as the vec-
tors b and x are per mutated accordingly. Using such permutations during
the factorisation process is called pivoting. Allowing only row permutations
is often referred to as partial pivoting.

Every invertible matrix A has an LU decomposition if partial pivoting
is allowed. For some singular matrices an LU decomposition also exists, but
for many there is no such factorisation possible. In general, direct solvers
have problems with solving linear systems with singular coefficient matrices.

More information on the LU decomposition can be found in [19, 23, 25].

2.1.2 Solution Accuracy

Direct solvers are often said to calculate the exact solution, unlike itera-
tive solvers, which calculate approximate solutions. Indeed, the algorithms
of direct solvers lead to an exact solution in exact arithmetic. However,
though the algorithms may be exact, the computers that execute them are
not. Finite precision arithmetic may still introduce errors in the solution
calculated by a direct solver.

During the factorisation process, rounding errors may lead to substantial
inaccuracies in the factors. Errors in the factors can, in turn, lead to errors
in the solution vector calculated by forward and backward substitution.
Stability of the factorisation can be improved by using a good pivoting
strategy during the process. The accuracy of the factors L and U can also
be improved afterwards, by simple iterative refinement techniques [23].

2.1.3 Algorithmic Complexity

Forward and backward substitution operations have complexity O (nnz (A)).
For full coefficient matrices, the complexity of the LU decomposition is
O
(

n3
)

. For sparse matrix systems, special sparse methods improve on this,
by exploiting the sparsity structure of the coefficient matrix. However, in
general these methods still do not scale as well in the system size as iterative
solvers can. Therefore, good iterative solvers will always be more efficient
than direct solvers for very large sparse coefficient matrices.

To solve multiple systems of linear equations with the same coefficient
matrix but different right-hand side vectors, it suffices to calculate the LU
decomposition once at the start. Using this factorisation, the linear problem
can be solved for each unique right-hand side by forward and backward
substitution. Since the factorisation is far more time consuming than the
substitution operations, this saves a lot of computational time compared to
solving each linear system individually.
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2.1.4 Fill-In and Matrix Ordering

In the LU decomposition of a sparse coefficient matrix A, there will be a
certain amount of fill-in. Fill-in is the number of nonzero elements in L and
U , of which the corresponding element in A is zero. Fill-in not only increases
the amount of memory needed to store the factors, but also increases the
complexity of the LU decomposition, as well as the forward and backward
substitution operations.

The ordering of rows and columns—controlled by pivoting—can have a
strong influence on the amount of fill-in. Finding the ordering that minimises
fill-in has been proven to be NP-hard [57]. However, many methods have
been developed that quickly find a good reordering, see for example [13, 19].

2.1.5 Incomplete LU decomposition

An incomplete LU decomposition [33, 34], or ILU decomposition, is a fac-
torisation of A into a lower triangular matrix L, and an upper triangular
matrix U , such that

LU ≈ A. (2.8)

The aim is to reduce computational cost by reducing the fill-in compared to
the complete LU factors.

One method simply calculates the LU decomposition, and then drops
all entries that are below a certain tolerance value. Obviously, this method
does not reduce the complexity of the decomposition operation. However,
the fill-in reduction saves memory, and reduces the computational cost of
forward and backward substitution operations.

The ILU(k) method determines which entries in the factors L and U are
allowed to be nonzero, based on the number of levels of fill k ∈ N. ILU(0)
is an incomplete LU decomposition such that L + U has the same nonzero
pattern as the original matrix A. For sparse matrices, this method is often
much faster than the complete LU decomposition.

With an ILU(k) factorisation, the row and column ordering of A may
still influence the number of nonzeros in the factors, although much less
drastically than with the LU decomposition. Further, it has been observed
in practice that the ordering also influences the quality of the approximation
of the original matrix. A reordering that reduces the fill-in, often also reduces
the approximation error for the ILU(k) factorisation.

It is clear that ILU factorisations are not suitable to be used in a direct
solver, unless the approximation is very close to the original. In general,
there is no point in using an ILU decomposition over the LU decomposition
unless only a rough approximation of A is needed. ILU factorisations are
often used a preconditioners for iterative linear solvers, see Section 2.2.4.
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2.2 Iterative Solvers

Iterative solvers start with an initial iterate x0, and calculate a new iterate in
each step, or iteration, thus producing a sequence of iterates {x0,x1,x2, . . .}.
The aim is that at some iteration i, the iterate xi will be close enough to the
solution to be used as approximation of the solution. Since the true solution
is not known, xi cannot simply be compared with that solution to decide if
it is close enough; a different measure of the error in xi is needed.

The residual vector in iteration i is defined by

ri = b − Axi. (2.9)

Let ei denote the difference between xi and the true solution. Then it is
clear that the norm of the residual

‖ri‖ = ‖b − Axi‖ = ‖Aei‖ = ‖ei‖AT A (2.10)

is a measure for the error in xi. The relative residual error ‖ri‖
‖b‖ can be used

as a measure of the relative error in the iterate xi.

2.2.1 Krylov Subspace Methods

The Krylov subspace of dimension i, belonging to A and r0, is defined as

Ki (A, r0) = span
{

r0, Ar0, . . . , A
i−1r0,

}

. (2.11)

Krylov subspace methods are iterative linear solvers that generate iterates

xi ∈ x0 + Ki (A, r0) . (2.12)

The simplest Krylov method consists of the Richardson iterations,

xi+1 = xi + ri. (2.13)

Basic iterative methods like the Jacobi, Gauss-Seidel, and Successive Over-
Relaxation (SOR) iterations, can all be seen as preconditioned versions of
the Richardson iterations. Preconditioning is treated in Section 2.2.4. More
information on basic iterative methods can be found in [23, 40, 55].

Krylov subspace methods generally have no problem finding a solution
for a consistent linear system with a singular coefficient matrix A. Indeed,
the dimension of the Krylov subspace needed to describe the full column
space of A is equal to rank (A), and is therefore lower for singular matrices
than for invertible matrices.

Popular iterative linear solvers for general coefficient matrices include
GMRES [41], Bi-CGSTAB [54, 44], and IDR(s) [45]. These methods are
more complex than the basic iterative methods, but generally converge a lot
faster to a solution. All these iterative linear solvers can also be characterised
as Krylov subspace methods. For an extensive treatment of Krylov subspace
methods see [40].
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2.2.2 Optimality and Short Recurrences

Two important properties of Krylov methods are the optimality property,
and short recurrences. The first is about minimising the number of iterations
needed to find a good approximation of the solution, while the second is
about limiting the amount of computational work per iteration.

A Krylov method is said to have the optimality property, if in each itera-
tion the computed iterate is the best possible approximation of the solution
within current the Krylov subspace, i.e., if the residual norm ‖ri‖ is min-
imised within the Krylov subspace. An iterative solver with the optimality
property, is also called a minimal residual method.

An iterative process is said to have short recurrences if in each itera-
tion only data from a small fixed number of previous iterations is used. If
the needed amount of data and work keeps growing with the number of
iterations, the algorithm is said to have long recurrences.

It has been proven that Kylov methods for general coefficient matrices
can not have both the optimality property and short recurrences [21, 56].
Therefore, the Generalised Minimal Residual (GMRES) method necessarily
has long recurrences. Using restarts or truncation, GMRES can be made
into a short recurrence method without optimality. Bi-CGSTAB and IDR(s)
have short recurrences, but do not meet the optimality property.

2.2.3 Algorithmic Complexity

The matrix and vector operations used in Krylov subspace methods are
generally restricted to matvecs, vector updates, and inner products (see
Sections A.2 and A.3). Of these operations, matvecs have the highest com-
plexity with O (nnz (A)). Therefore, the complexity of Krylov methods is
O (nnz (A)), provided convergence is reached in a limited number of steps.

The computational work for a Krylov method is often measured in the
number matvecs, vector updates, and inner products used to increase the
dimension of the Krylov subspace by one and find the new iterate within the
expanded Krylov subspace. For short recurrence methods these numbers are
fixed, while the computational work for methods with long recurrences grow
with the iteration count.

2.2.4 Preconditioning

No Krylov subspace method can produce iterates that are better than the
best approximation of the solution within the progressive Krylov subspaces,
which are the iterates attained by minimal residual methods. In other words,
the convergence of a Krylov subspace method is limited by the Krylov sub-
space. Preconditioning uses a preconditioner matrix M to change the Krylov
subspace, in order to improve convergence of the iterative solver.
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Left Preconditioning

The system of linear equations (2.3) with left preconditioning becomes

M−1Ax = M−1b. (2.14)

The preconditioned residual for this linear system of equations is

ri = M−1 (b − Axi) , (2.15)

and the new Krylov subspace is

Ki

(

M−1A,M−1r0

)

, (2.16)

Right Preconditioning

The system of linear equations (2.3) with right preconditioning becomes

AM−1y = b, and x = M−1y. (2.17)

The preconditioned residual is the same as the unpreconditioned residual:

ri = b − Axi. (2.18)

The Krylov subspace for this linear system of equations is

Ki

(

AM−1, r0

)

. (2.19)

However, this Krylov subspace is used to generate iterates yi, which are not
solution iterates like xi. Solution iterates xi can be produced by multiplying
yi by M−1. This leads to vectors xi that are in the Krylov subspace as with
left preconditioning.

Split Preconditioning

Split preconditioning assumes some factorisation M = MLMR of the pre-
conditioner. The system of linear equations (2.3) then becomes

M−1
L AM−1

R y = M−1
L b, and x = M−1

R y. (2.20)

The preconditioned residual for this linear system of equations is

ri = M−1
L (b − Axi) . (2.21)

The Krylov subspace for the iterates yi now is

Ki

(

M−1
L AM−1

R ,M−1
L r0

)

. (2.22)

Transforming to solution iterates xi = M−1
R yi, again leads to the same

Krylov subspace as with left and right preconditioning.
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Choosing the Preconditioner

Note that the explanation below assumes left preconditioning, but can be
easily extended to right and split preconditioning.

To improve convergence, the preconditioner M needs to resemble the
coefficient matrix A such that the preconditioned coefficient matrix M−1A
resembles the identity matrix. At the same time, there should be a com-
putationally cheap method available to evaluate M−1v for any vector v,
because such an evaluation is needed in every preconditioned matvec in the
Krylov subspace method.

A much used method is to create an LU decomposition of some matrix
M that resembles A. In particular, an ILU decomposition of A can be used
as a preconditioner. With such a preconditioner it is important to control
the fill-in of the factors, so that the overall complexity of the method does
not increase by much.

Another method of preconditioning, is to use an iterative linear solver
to calculate a rough approximation of Ã−1v, and use this approximation
instead of the explicit solution of M−1v. Here Ã can be either the coeffi-
cient matrix A itself, or some convenient approximation of A. A station-
ary iterative linear solver can be used to precondition any Krylov subspace
method, but nonstationary solvers require special flexible methods such as
FGMRES [39].

2.2.5 Starting and Stopping

To start an iterative solver, an initial iterate x0 is needed. If some approx-
imation of the solution of the linear system of equations is known, using it
as initial iterate usually leads to fast convergence. If no such approximation
is known, then usually the zero vector is chosen:

x0 = 0. (2.23)

Another common choice is to use a random vector as initial iterate.
To stop the iteration process, some criterion is needed that indicates

when to stop. By far the most common choice is to test if the relative
residual error has become small enough, i.e., if for some choice of δ < 1

‖ri‖
‖b‖ < δ. (2.24)

If left or split preconditioning is used, it is important to think about whether
the true residual or the preconditioned residual should be used in the stop-
ping criterion.



CHAPTER 3

Solving Nonlinear Systems of

Equations

A nonlinear equation in n variables x1, . . . , xn ∈ R, is an equation

f (x1, . . . , xn) = 0, (3.1)

that is not a linear equation.
A nonlinear system of equations is a collection of equations of which at

least one equation is nonlinear. Any nonlinear system of m equations in n
variables can be written as

F (x) = 0, (3.2)

where x ∈ R
n is the vector of variables or unknowns, and F : R

n → R
m is

a vector of m functions in x, i.e.,

F (x) =







F1 (x)
...

Fm (x)






. (3.3)

A solution of a nonlinear system of equations (3.2), is a vector x∗ ∈ R
n such

that Fk (x∗) = 0 for all k ∈ {1, . . . ,m} at the same time. In this work, we
restrict ourselves to nonlinear systems of equations with the same number
of variables as there are equations, i.e., m = n.

It is not possible to solve a general nonlinear equation analytically, let
alone a general nonlinear system of equations. However, there are iterative
methods to find a solution for such systems. The Newton-Raphson algorithm
is the standard method to solve nonlinear systems of equations. Most, if not
all, other well-performing methods can be derived from the Newton-Raphson
algorithm. In this chapter the Newton-Raphson method is treated, as well
as some common variations.

11
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3.1 Newton-Raphson Methods

The Newton-Raphson method is an iterative process used to solve nonlinear
systems of equations

F (x) = 0, (3.4)

where F : R
n → R

n is continuously differentiable. In each iteration, the
method solves a linearisation of the nonlinear problem around the current
iterate, to find an update for that iterate. Algorithm 3.1 shows the basic
Newton-Raphson process.

Algorithm 3.1 Newton-Raphson Method

1: i := 0
2: given initial iterate x0

3: while not converged do
4: solve −J (xi) si = F (xi)
5: update iterate xi+1 := xi + si

6: i := i + 1
7: end while

In Algorithm 3.1, the matrix J represents the Jacobian of F , i.e.,

J =







∂F1

∂x1
. . . ∂F1

∂xn

...
. . .

...
∂Fn

∂x1
. . . ∂Fn

∂xn






. (3.5)

The Jacobian system

−J (xi) si = F (xi) (3.6)

can be solved using any linear solver. When a Krylov subspace method is
used, we speak of a Newton-Krylov method.

The Newton process has local quadratic convergence. This means that
if the iterate xI is close enough to the solution, then there is a c ≥ 0 such
that for all i ≥ I

‖xi+1 − x∗‖ ≤ c‖xi − x∗‖2. (3.7)

The basic Newton method is not globally convergent, meaning that there
are problems for which it does not converge to a solution from every initial
iterate x0. Line search and trust region methods can be used to augment
the Newton method, to improve convergence if the initial iterate is far away
from the solution, see Section 3.2.

As with iterative linear solvers, the distance of the current iterate to
the solution is not known. The vector F (xi) can be seen as the nonlinear
residual vector of iteration i. Convergence of the method is therefore mostly
measured in the residual norm ‖F (xi) ‖, or relative residual norm ‖F (xi)‖

‖F (x0)‖ .
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3.1.1 Inexact Newton

Inexact Newton methods [15] are Newton-Raphson methods in which the
Jacobian system (3.6) is not solved to full accuracy. Instead, in each Newton
iteration the Jacobian system is solved such that

‖ri‖
‖F (xi) ‖

≤ ηi, (3.8)

where

ri = F (xi) + J (xi) si. (3.9)

The values ηi are called the forcing terms.
The most common form of inexact Newton methods, is with an iterative

linear solver to solve the Jacobian systems. The forcing terms then deter-
mine the accuracy to which the Jacobian system is solved in each Newton
iteration. However, approximate Jacobian Newton methods and Jacobian-
free Newton methods, treated in Section 3.1.2 and Section 3.1.3 respectively,
can also be seen as inexact Newton methods. The general inexact Newton
method is shown in Algorithm 3.2.

Algorithm 3.2 Inexact Newton Method

1: i := 0
2: given initial solution x0

3: while not converged do
4: solve −J (xi) si = F (xi) such that ‖ri‖ ≤ ηi‖F (xi) ‖
5: update iterate xi+1 := xi + si

6: i := i + 1
7: end while

The convergence behaviour of the method strongly depends on the choice
of the forcing terms. Convergence results derived in [15] are summarised
in Table 3.1. In Chapter 4 we present our own theoretical results on local
convergence for inexact Newton methods, proving that the local convergence
factor is arbitrarily close to ηi in each iteration, for properly chosen forcing
terms. This result is reflected by the final row of Table 3.1, where α > 0
can be chosen arbitrarily small. The specific conditions under which these
convergence results hold, can be found in [15] and Chapter 4 respectively.

If a forcing term is chosen too small, then the nonlinear error generally
reduces much less than the linear error in that iteration. This is called
oversolving. In general, the closer the current iterate is to the solution, the
smaller the forcing terms can be chosen without oversolving. Over the years,
a lot of effort has been invested in finding good strategies for choosing the
forcing terms. Some examples can be found in [16], [20], [24].
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forcing terms local convergence

ηi < 1 linear

lim supi→∞ ηi = 0 superlinear

lim supi→∞
ηi

‖F i‖p < ∞, p ∈ (0, 1) order at least 1 + p

ηi < 1 factor (1 + α) ηi

Table 3.1: Local convergence for inexact Newton methods

3.1.2 Approximate Jacobian Newton

The Jacobian of the function F (x) is not always available in practice. For
example, it is possible that F (x) can be evaluated in any point by some
method, but no analytical formulation is known. Then it is impossible to
calculate the derivatives analytically. Or, if an analytical form is available,
calculating the derivatives may simply be too computationally expensive.

In such cases, the Newton method may be used with appropriate approx-
imations of the Jacobian matrices. The most widely used Jacobian matrix
approximation is based on finite differences:

Jij (x) =
∂Fi

∂xj
(x) ≈ Fi (x + δej) − Fi (x)

δ
, (3.10)

where ej is the vector with element j equal to 1, and all other elements equal
to 0. For small enough δ, this is a good approximation of the derivative.

3.1.3 Jacobian-Free Newton

In some Newton-Raphson procedures the use of an explicit Jacobian matrix
can be avoided. If done so, the method is called a Jacobian-free Newton
method. A Jacobian-free Newton method is needed if the nonlinear problem
is too large for the Jacobian to be stored in memory explicitly. Jacobian-free
Newton methods can also be used as an alternative to approximate Jacobian
Newton methods, if no analytical formulation of F (x) is known, or if the
Jacobian is too computationally expensive to calculate.

Consider Newton-Krylov methods, where the Krylov solver only uses the
Jacobian in matrix-vector products of the form J (x) v. These products can
be approximated by the directional finite difference scheme

J (x) v ≈ F (x + δv) − F (x)

δ
, (3.11)

removing the need to store the Jacobian matrix explicitly. For more infor-
mation see [31], and the references therein.
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3.2 Newton-Raphson with Global Convergence

Line search and trust region methods are iterative processes that can be
used to find a local minimum in unconstrained optimisation. Both methods
have global convergence to such a minimiser.

Unconstrained optimisation techniques may be used to find roots of ‖F ‖,
which are the solutions of the nonlinear problem (3.2). Since line search and
trust region methods ensure global convergence to a local minimum of ‖F ‖, if
all such minima are roots of F , then these methods have global convergence
to a solution of the nonlinear problem. However, if there is a local minimum
that is not a root of ‖F ‖, then the algorithm may terminate without finding
a solution. In this case, the method is usually restarted from a different
initial iterate, in the hope of finding a different local minimum that is a
solution of the nonlinear system.

Near the solution, line search and trust region methods generally con-
verge much slower than the Newton-Raphson method, but they can be used
in conjunction with the Newton process to improve convergence farther from
the solution. Both methods use their own criterion which the update vector
has to satisfy. Whenever the Newton step satisfies this criterion then it is
used to update the iterate normally. If the criterion is not satisfied, then
some alternative update vector is calculated that does satisfy the criterion.

3.2.1 Line Search

The idea behind augmenting the Newton-Raphson method with line search
is simple. Instead of updating the iterate xi with the Newton step si, it is
updated with some vector λisi along the Newton step direction, i.e.,

xi+1 = xi + λisi. (3.12)

Ideally, λi is chosen such that ‖F (xi + λisi) ‖ is minimised over λi.
Below a strategy is outlined for finding a good value for λi, starting with
the introduction of a convenient mathematical description of the problem.
Note that F (xi) 6= 0, as otherwise the nonlinear problem is already solved
with solution xi. In the remainder of this section, the iteration index i
dropped for readability.

Define the positive function

f (x) =
1

2
‖F (x) ‖2 =

1

2
F (x)T

F (x) , (3.13)

and note that

∇f (x) = J (x)T F (x) . (3.14)

A vector s is called a descent direction of f in x, if

∇f (x)T
s < 0. (3.15)
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The Newton direction s = −J (x)−1
F (x) is a descent direction, since

∇f (x)T
s = −F (x)T J (x)J (x)−1

F (x) = −‖F (x) ‖2 < 0. (3.16)

Now define the nonnegative function

g (λ) = f (x + λs) =
1

2
F (x + λs)T F (x + λs) . (3.17)

A minimiser of g also minimises the value of ‖F (x + λs) ‖. Thus the best
choice for λ is given by

λ̂ = arg min
λ

g (λ) . (3.18)

It is generally not possible to solve minimisation problem (3.18) analytically,
but there are plenty methods to find a numerical approximation of λ̂. In
practice, a rough estimate suffices.

The decrease of f is regarded as sufficient, if λ satisfies the Armijo rule [5]

f (x + λs) ≤ f (x) + αλ∇f (x)T s, (3.19)

where α ∈ (0, 1). A typical choice that often yields good results is α = 10−4.
Note that for the Newton direction, we can write the Armijo rule (3.19) as

‖F (x + λs) ‖2 ≤ (1 − 2αλ) ‖F (x) ‖2. (3.20)

The common method to find a satisfactory value for λ, is to start with
λ0 = 1, and—while relation (3.19) is not satisfied—backtrack by setting

λk+1 = ρkλk, ρk ∈ [0.1, 0.5] . (3.21)

The interval restriction on ρk is called safeguarding.
Since s is a descent direction, at some point the Armijo rule should be

satisfied. The reduction factor ρk for λk, is chosen such that

ρk = arg min
ρk∈[0.1,0.5]

h
(

ρkλk
)

, (3.22)

where h is a quadratic polynomial model of f . This model h is made as
a parabola through either the values g (0), g′ (0), and g

(

λk
)

, or the values
g (0), g

(

λk−1
)

, and g
(

λk
)

. Note that for the Newton direction

g′ (0) = ∇f (x)T
s = −‖F (x) ‖2. (3.23)

Further note that the second model can only be used from the second it-
eration onward, and λ1 has to be chosen without the use of the model, for
example by setting λ1 = 0.5.

For more information on line search methods see for example [18]. For
line search applied to inexact Newton-Krylov methods, see [8].
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3.2.2 Trust Regions

Trust region methods define a region around the current iterate xi that
is trusted, and require the update step si to be such that the new iterate
xi+1 = xi + si lies within this trusted region. In this section again, the
iteration index i is dropped for readability.

Assume the trust region to be a hypersphere, i.e.,

‖s‖ ≤ δ. (3.24)

The goal is find the best possible update within the trust region.
Finding the update that minimises ‖F ‖ within the trust region may be

as hard as solving the nonlinear problem itself. Instead, the method searches
for an update that satisfies

min
‖s‖≤δ

q (s) , (3.25)

with q (s) the quadratic model of F (x + s) given by

q (s) =
1

2
‖r‖2 =

1

2
‖F + Js‖2 =

1

2
F T F +

(

JT F
)T

s +
1

2
sT JT Js, (3.26)

where F and J are short for F (x) and J (x) respectively.
The global minimum of the quadratic model q (s), is attained at the

Newton step sN = −J (x)−1 F (x), with q
(

sN
)

= 0. Thus, if the Newton
step is within the trust region, i.e., if ‖sN‖ ≤ δ, then the current iterate is
updated with the Newton step. However, if the Newton step is outside the
trust region, it is not a valid update step.

It has been proven that problem (3.25) is solved by

s (µ) =
(

J (x)T J (x) + µI
)−1

J (x)T F (x) , (3.27)

for the unique µ for which ‖s (µ) ‖ = δ. See for example [18, Lemma 6.4.1],
or [10, Theorem 7.2.1].

Finding this update vector s (µ) is very hard, but there are fast methods
to get a useful estimate, such as the hook step and the (double) dogleg step.
The hook step method uses an iterative process to calculate update steps
s (µ) until ‖s (µ) ‖ ≈ δ. Dogleg steps are calculated by making a piecewise
linear approximation of the curve s (µ), and taking the new iterate as the
point where this approximation curve intersects the trust region boundary.

An essential part of making trust region methods work, is using suitable
trust regions. Each time a new iterate is calculated it has to be decided if it
is acceptable, and the size of the trust region has to be adjusted accordingly.

For an extensive treatment of trust regions methods see [10]. For trust
region methods applied to inexact Newton-Krylov methods, see [8].





CHAPTER 4

Convergence Theory

The Newton-Raphson method (see Chapter 3) is usually the method of
choice to solve systems of nonlinear equations. In power system analysis,
power flow computations lead to systems of nonlinear equations, which are
also mostly solved using Newton methods (see Chapters 5 and 6). In our
research into improving power flow computations for large power systems,
we have investigated the application of inexact Newton-Krylov methods to
power flow problems (see Chapter 7).

In the analysis of our numerical power flow experiments, some interest-
ing behaviour surfaced. Our method converged quadratically in the Newton
iterations, as expected from Newton convergence theory. At the same time,
however, the convergence was approximately linear in the total number of
linear solver iterations performed during the Newton iterations. This obser-
vation led us to investigate the theoretical convergence of inexact Newton
methods. The results of this investigation are presented in this chapter.

In Section 4.1 the theoretical convergence of general inexact iterative
methods is investigated. In Section 4.2 the result is formalised for the inexact
Newton method, which also allows the explanation of the linear convergence
observed in our power flow experiments. In Section 4.3 some numerical
experiments are presented to illustrate how the theoretical results translate
to practice. Finally, in Section 4.4 some applications are discussed.

4.1 Convergence of Inexact Iterative Methods

Assume an iterative method that, given current iterate xi, has some way to
exactly determine a unique new iterate x̂i+1. If instead an approximation
xi+1 of the exact iterate x̂i+1 is used to continue the process, we speak of an
inexact iterative method. Inexact Newton methods (see Section 3.1.1) are

19
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examples of inexact iterative methods. Figure 4.1 illustrates a single step of
an inexact iterative method.

xi

xi+1

x̂i+1

x∗

δc

δn

εc

εnε̂

Figure 4.1: Inexact iterative step

Note that

δc = ‖xi − x̂i+1‖ > 0, (4.1)

δn = ‖xi+1 − x̂i+1‖ ≥ 0, (4.2)

εc = ‖xi − x∗‖ > 0 (4.3)

εn = ‖xi+1 − x∗‖, (4.4)

ε̂ = ‖x̂i+1 − x∗‖ ≥ 0. (4.5)

Further, define γ as the distance of the exact iterate x̂i+1 to the solution,
relative to the length δc of the exact update step, i.e.,

γ =
ε̂

δc
> 0. (4.6)

The ratio εn

εc is a measure for the improvement of the inexact iterate
xi+1 over the current iterate xi, in terms of the distance to the solution x∗.
Likewise, the ratio δn

δc is a measure for the improvement of the inexact iterate
xi+1, in terms of the distance to the exact iterate x̂i+1. As the solution is
unknown, so is the ratio εn

εc . Assume, however, that some measure for the

ratio δn

δc is available, and that it can be controlled. For example, for an

inexact Newton method the relative linear residual norm ‖rk‖
‖F (xi)‖ , controlled

by the forcing term ηi, can be used as a measure for δn

δc .

The aim is to have an improvement in the controllable error translate
into a similar improvement in the distance to the solution, i.e., to have

εn

εc
≤ (1 + α)

δn

δc
(4.7)

for some reasonably small α > 0.

The worst case scenario can be identified as

max
εn

εc
=

δn + ε̂

|δc − ε̂| =
δn + γδc

|1 − γ| δc
=

1

|1 − γ|
δn

δc
+

γ

|1 − γ| . (4.8)
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To guarantee that the inexact iterate xi+1 is an improvement over xi, using
equation (4.8), it is required that

1

|1 − γ|
δn

δc
+

γ

|1 − γ| < 1 ⇔ δn

δc
+ γ < |1 − γ| ⇔ δn

δc
< |1 − γ| − γ. (4.9)

If γ ≥ 1 this would mean that δn

δc < −1, which is impossible. Therefore, to
guarantee a reduction of the distance to the solution, it is required that

δn

δc
< 1 − 2γ ⇔ 2γ < 1 − δn

δc
⇔ γ <

1

2
− 1

2

δn

δc
. (4.10)

As a result, the absolute operators can be dropped from equation (4.8).
Note that if the iterative method converges to the solution superlinearly,

then γ goes to 0 with the same rate of convergence. Thus, at some point in
the iteration process equation (4.10) is guaranteed to hold. This is in partic-
ular the case for an inexact Newton method, if it converges, as convergence
is quadratic once the iterate is close enough to the solution.

Figure 4.2 shows plots of equation (4.8) on a logarithmic scale for several
values of γ. The horizontal axis shows the number of digits improvement in
the distance to the exact iterate: dδ = − log δn

δc . The vertical axis depicts
the resulting minimum number of digits improvement in the distance to the
solution: dε = − log

(

max εn

εc

)

.

dδ0 1 2 3

dε

1

2

γ = 1
4

γ = 1
10

γ = 1
100

γ = 0

Figure 4.2: Number of digits improvement

For fixed dδ, the smaller the value of γ, the better the resulting dε is. For
γ = 1

10 , there is a significant start-up cost on dδ before dε becomes positive,
and a full digit improvement on the distance to the solution can never be
guaranteed. Making more than a 2 digit improvement in the distance to
the exact iterate results in a lot of effort with hardly any return at γ = 1

10 .
However, when γ = 1

100 there is hardly any start-up cost on dδ any more,
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and the guaranteed improvement in the distance to the solution can be taken
up to about 2 digits.

The above mentioned start-up cost can be derived from equation (4.10)
to be dδ = − log(1 − 2γ). The asymptote to which dε approaches is given
by dε = − log ( γ

1−γ
) = log ( 1

γ
− 1), which is the improvement obtained when

taking the exact iterate.

The value α, as introduced in equation (4.7), is a measure of how far
the graph of dε deviates from the ideal dε = dδ, which is attained only in
the fictitious case that γ = 0. Combining equations (4.7) and (4.8), the
minimum value of α can be investigated that is needed for equation (4.7) to
be guaranteed to hold:

1

1 − γ

δn

δc
+

γ

1 − γ
= (1 + αmin)

δn

δc
⇔ (4.11)

1

1 − γ
+

γ

1 − γ

(

δn

δc

)−1

= (1 + αmin) ⇔ (4.12)

αmin =
γ

1 − γ

[

(

δn

δc

)−1

+ 1

]

(4.13)

Figure 4.3 shows αmin as a function of δn

δc ∈ [0, 1) for several values of γ.
Left of the dotted line the equation (4.10) is satisfied, i.e., improvement of
the distance to the solution is guaranteed, whereas right of the dotted line
this is not the case.

γ = 1/2

γ = 1/4

γ = 1/16
δn

δc0 0.5 1

αmin

0

1

2

3

Figure 4.3: Minimum required value of α

For given γ, reducing δn

δc increases αmin. Especially for small δn

δc , the
value of αmin grows very rapidly. Thus, the closer the inexact iterate is
brought to the exact iterate, the less the expected return in the distance to
the solution is. For the inexact Newton method this translates into over-
solving whenever the forcing term ηi is chosen too small.
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Further, it is clear that if γ becomes smaller, then αmin is reduced also.
If γ is small, δn

δc can be made very small without compromising the return
of investment on the distance to the solution. However, for γ nearing 1

2 , or

more, any choice of δn

δc no longer guarantees a similar great improvement,
if any, in the distance to the solution. For such γ oversolving is therefore
inevitable.

Recall that if the iterative method converges superlinearly, then γ rapidly
goes to 0 also. Thus, for such a method, δn

δc can be made smaller and smaller
in later iterations, without oversolving. Or, in other words, for any choice
of α > 0 and δn

δc ∈ [0, 1), there will be some point in the iteration process
from which on forward equation (4.7) is satisfied.

For the inexact Newton method, equation (4.7) translates into

‖xi+1 − x∗‖ ≤ (1 + α) ηi‖xi − x∗‖. (4.14)

In the next section this equation is formally proven to hold for the inexact
Newton method, in a certain norm.

4.2 Convergence of Inexact Newton Methods

Consider the nonlinear system of equations F (x) = 0, where:

• there is a solution x∗ such that F (x∗) = 0,

• the Jacobian matrix J of F exists in a neighbourhood of x∗,

• J (x∗) is continuous and non-singular.

In this section, theory is presented that relates the convergence of the
inexact Newton method for the above problem directly to the chosen forcing
terms. The following theorem is a variation on the inexact Newton conver-
gence theorem presented in [15, Thm. 2.3].

Theorem 4.2.1. Let ηi ∈ (0, 1) and choose α > 0 such that (1 + α) ηi < 1.
Then there exists an ε > 0 such that, if ‖x0 − x∗‖ < ε, the sequence of

inexact Newton iterates xi converges to x∗, with

‖J (x∗) (xi+1 − x∗) ‖ < (1 + α) ηi‖J (x∗) (xi − x∗) ‖. (4.15)

Proof. Define

µ = max[‖J (x∗) ‖, ‖J (x∗)−1 ‖] ≥ 1. (4.16)

Recall that J (x∗) is non-singular. Thus µ is well-defined and we can write

1

µ
‖y‖ ≤ ‖J (x∗)y‖ ≤ µ‖y‖. (4.17)

Note that µ ≥ 1 because the induced matrix norm is submultiplicative.
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Let

γ ∈
(

0,
αηi

5µ

)

(4.18)

and choose ε > 0 sufficiently small such that if ‖y − x∗‖ ≤ µ2ε then

‖J (y) − J (x∗) ‖ ≤ γ, (4.19)

‖J (y)−1 − J (x∗)−1 ‖ ≤ γ, (4.20)

‖F (y) − F (x∗) − J (x∗) (y − x∗) ‖ ≤ γ‖y − x∗‖. (4.21)

That such an ε exists follows from [36, Thm. 2.3.3 & 3.1.5].

⋆ ⋆ ⋆ ⋆ ⋆

First we show that if ‖xi − x∗‖ < µ2ε, then equation (4.15) holds.
Write

J (x∗) (xi+1 − x∗) =
[

I + J (x∗)
(

J (xi)
−1−J (x∗)−1

)]

· [ri +

(J (xi)−J (x∗)) (xi−x∗) − (F (xi)−F (x∗)−J (x∗) (xi−x∗))] . (4.22)

Taking norms gives

‖J (x∗) (xi+1 − x∗) ‖ ≤
[

1 + ‖J (x∗) ‖‖J (xi)
−1−J (x∗)−1 ‖

]

· [‖ri‖+

‖J (xi)−J (x∗) ‖‖xi−x∗‖ + ‖F (xi)−F (x∗)−J (x∗) (xi−x∗) ‖] ,
≤ [1 + µγ] · [‖ri‖ + γ‖xi − x∗‖ + γ‖xi − x∗‖] ,
≤ [1 + µγ] · [ηi‖F (xi) ‖ + 2γ‖xi − x∗‖] . (4.23)

Here the definitions of ηi (equation (3.8)) and µ (equation (4.16)) were used,
together with equations (4.19)–(4.21).

Further write, using that by definition F (x∗) = 0,

F (xi) = [J (x∗) (xi − x∗)] + [F (xi) − F (x∗) − J (x∗) (xi − x∗)] . (4.24)

Again taking norms gives

‖F (xi) ‖ ≤ ‖J (x∗) (xi − x∗) ‖ + ‖F (xi) − F (x∗) − J (x∗) (xi − x∗) ‖
≤ ‖J (x∗) (xi − x∗) ‖ + γ‖xi − x∗‖. (4.25)

Substituting equation (4.25) into equation (4.23) then leads to

‖J (x∗) (xi+1 − x∗) ‖
≤ (1 + µγ) [ηi (‖J (x∗) (xi − x∗) ‖ + γ‖xi − x∗‖) + 2γ‖xi − x∗‖]
≤ (1 + µγ) [ηi (1 + µγ) + 2µγ] ‖J (x∗) (xi − x∗) ‖. (4.26)

Here equation (4.17) was used to write ‖xi − x∗‖ ≤ µ‖J (x∗) (xi − x∗) ‖.
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Finally, using that γ ∈
(

0, αηi

5µ

)

, and that both ηi < 1 and αηi < 1—the

latter being a result from the requirement that (1 + α) ηi < 1—gives

(1 + µγ) [ηi (1 + µγ) + 2µγ] ≤
(

1 +
αηi

5

)

[

ηi

(

1 +
αηi

5

)

+
2αηi

5

]

=

[

(

1 +
αηi

5

)2
+
(

1 +
αηi

5

) 2α

5

]

ηi

=

[

1 +
2αηi

5
+

α2η2
i

25
+

2α

5
+

2α2ηi

25

]

ηi

<

[

1 +
2α

5
+

α

25
+

2α

5
+

2α

25

]

ηi

< (1 + α) ηi. (4.27)

Equation (4.15) follows by substituting equation (4.27) into equation (4.26).

⋆ ⋆ ⋆ ⋆ ⋆

Given that equation (4.15) holds if ‖xi −x∗‖ < µ2ε, we now proceed to
prove Theorem 4.2.1 by induction.

For the base case

‖x0 − x∗‖ < ε ≤ µ2ε. (4.28)

Thus equation (4.15) holds for i = 0.

The induction hypothesis that equation (4.15) holds for i = 0, . . . , k − 1
then leads to

‖xk − x∗‖ ≤ µ‖J (x∗) (xk − x∗) ‖
< µ (1 + α)k ηk−1 · · · η0‖J (x∗) (x0 − x∗) ‖
< µ‖J (x∗) (x0 − x∗) ‖
≤ µ2‖x0 − x∗‖
< µ2ε. (4.29)

Thus equation (4.15) also holds for i = k, completing the proof.

In words, Theorem 4.2.1 states that for an arbitrarily small α > 0, and
any choice of forcing terms ηi ∈ (0, 1), equation (4.15) will hold if the current
iterate is close enough to the solution.

Note that this does not mean that for a certain iterate xi, one can choose
α and ηi arbitrarily small and expect equation (4.15) to hold, as ε depends
on the choice of α and ηi. On the contrary, a given iterate xi—close enough
to the solution to guarantee convergence—imposes the restriction that, for
Theorem 4.2.1 to hold, the forcing terms ηi cannot be chosen too small.
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Recall that it was already shown in Section 4.1 that choosing ηi too small
leads to oversolving.

If we define oversolving as using forcing terms ηi that are too small for a
certain iterate xi, in the context of Theorem 4.2.1, then the theorem can be
characterised by saying that a convergence factor (1 + α) ηi is attained if ηi

is chosen such that there is no oversolving. Using equation (4.18), ηi > 5µγ
α

can then be seen as a theoretical bound on the forcing terms that guards
against oversolving.

Corollary 4.2.1. Let ηi ∈ (0, 1) and choose α > 0 such that (1 + α) ηi < 1.
Then there exists an ε > 0 such that, if ‖x0 − x∗‖ < ε, the sequence of

inexact Newton iterates xi converges to x∗, with

‖J (x∗) (xi − x∗) ‖ < (1 + α)i ηi−1 · · · η0‖J (x∗) (x0 − x∗) ‖. (4.30)

Proof. The stated follows from the repeated application of Theorem 4.2.1.

A relation between the nonlinear residual norm ‖F (xi) ‖ and the error
norm ‖J (x∗) (xi − x∗) ‖ can be derived, within the neighbourhood of the
solution where Theorem 4.2.1 holds.

Theorem 4.2.2. Let ηi ∈ (0, 1) and choose α > 0 such that (1 + α) ηi < 1.
Then there exists an ε > 0 such that, if ‖x0 − x∗‖ < ε, then

(

1 − αηi

5

)

‖J (x∗) (xi − x∗) ‖ < ‖F (xi) ‖ <
(

1 +
αηi

5

)

‖J (x∗) (xi − x∗) ‖.
(4.31)

Proof. Using that F (x∗) = 0 by definition, again write

F (xi) = [J (x∗) (xi − x∗)] + [F (xi) − F (x∗) − J (x∗) (xi − x∗)] . (4.32)

Taking norms, and using equations (4.21) and (4.17), gives

‖F (xi) ‖ ≤ ‖J (x∗) (xi − x∗) ‖ + ‖F (xi) − F (x∗) − J (x∗) (xi − x∗) ‖
≤ ‖J (x∗) (xi − x∗) ‖ + γ‖xi − x∗‖
≤ ‖J (x∗) (xi − x∗) ‖ + µγ‖J (x∗)xi − x∗‖
= (1 + µγ) ‖J (x∗) (xi − x∗) ‖. (4.33)

Similarly, it holds that

‖F (xi) ‖ ≥ ‖J (x∗) (xi − x∗) ‖ − ‖F (xi) − F (x∗) − J (x∗) (xi − x∗) ‖
≥ ‖J (x∗) (xi − x∗) ‖ − γ‖xi − x∗‖
≥ ‖J (x∗) (xi − x∗) ‖ − µγ‖J (x∗)xi − x∗‖
= (1 − µγ) ‖J (x∗) (xi − x∗) ‖. (4.34)

The theorem now follows from (4.18).
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For the nonlinear residual norm ‖F (xi) ‖, a similar result can now be
derived as presented in Theorem 4.2.1 for the error norm ‖J (x∗) (xi − x∗) ‖.

Theorem 4.2.3. Let ηi ∈ (0, 1) and choose α > 0 such that (1 + 2α) ηi < 1.
Then there exists an ε > 0 such that, if ‖x0−x∗‖ < ε, the sequence ‖F (xi) ‖
converges to 0, with

‖F (xi+1) ‖ < (1 + 2α) ηi‖F (xi) ‖. (4.35)

Proof. Note that the conditions imposed in Theorem 4.2.3, are such that
Theorems 4.2.1 and 4.2.2 hold. Define µ and γ again as in Theorem 4.2.1.

Using equation (4.33), Theorem 4.2.1, and equation (4.34), write

‖F (xi+1) ‖ ≤ (1 + µγ) ‖J (x∗) (xi+1 − x∗) ‖
< (1 + µγ) (1 + α) ηi‖J (x∗) (xi − x∗) ‖

≤ (1 + µγ)

(1 − µγ)
(1 + α) ηi‖F (xi) ‖. (4.36)

Further, using (4.18), write

1 + µγ

1 − µγ
<

1 + αηi

5

1 − αηi

5

=
1 − αηi

5 + 2
5αηi

1 − αηi

5

= 1 +
2
5αηi

1 − αηi

5

< 1 +
2
5αηi

4
5

= 1 +
αηi

2
.

Finally, using that both ηi < 1 and 2αηi < 1—the latter being a result from
the requirement that (1 + 2α) ηi < 1—gives

1 + µγ

1 − µγ
(1 + α) <

(

1 +
αηi

2

)

(1 + α) = 1 +
(

1 +
ηi

2

)

α +
1

2
ηiα

2 < 1 + 2α.

Substitution into equation (4.36) completes the proof.

Theorem 4.2.3 shows that the nonlinear residual norm ‖F (xi) ‖ con-
verges at similar rate as error norm ‖J (x∗) (xi − x∗) ‖. This is important,
because Newton methods use ‖F (xi) ‖ to measure convergence of the iterate
to the solution.

4.2.1 Linear Convergence

The inexact Newton method uses some iterative process in each Newton
iteration, to solve the linear Jacobian system J (xi) si = −F (xi) up to
accuracy ‖J (xi) si +F (xi) ‖ ≤ ηi‖F (xi) ‖. In many practical applications,
the convergence of the iterative linear solver turns out to be approximately
linear. That is, for some convergence rate β > 0

‖rk
i ‖ ≈ 10−βk‖F (xi) ‖, (4.37)

where rk
i = F (xi) + J (xi) sk

i is the linear residual after k iterations of the
linear solver in Newton iteration i.



28 Chapter 4. Convergence Theory

Suppose that the linear solver indeed converges linearly, with the same
rate of convergence β in each Newton iteration. Let Ki be the number of
linear iterations performed in Newton iteration i, i.e., Ki is minimum integer
such that 10−βKi ≤ ηi. Further, let Ni =

∑i−1
j=0 Kj be the total number of

linear iterations performed up to the start of Newton iteration i. Then,
using Corollary 4.2.1,

‖J (x∗) (xi − x∗) ‖ < (1 + α)i ηi−1 · · · η0‖J (x∗) (x0 − x∗) ‖
= (1 + α)i 10−βNi‖J (x∗) (x0 − x∗) ‖, (4.38)

Thus, if the linear solver converges approximately linearly, with similar
rate of convergence in each Newton iteration, the forcing terms are such that
there is no oversolving, and if α can be chosen small enough, i.e., the initial
iterate is close enough to the solution, then the inexact Newton method will
converge approximately linearly in the total number of linear iterations.

Note that this result is independent of the rate of convergence in the
Newton iterations. If the forcing terms are chosen constant, the method
will converge linearly in the number of Newton iterations, and linearly in
the total number of linear iterations performed throughout those Newton
iterations. If the forcing terms ηi are chosen properly, the method will
converge quadratically in the Newton iterations, while converging linearly
in the linear iterations. The amount of Newton iterations needed in these
two scenarios may differ greatly, but the total amount of linear iterations
should be approximately equal.

4.3 Numerical Experiments

Both the classical Newton-Raphson convergence theory [36, 18], and the in-
exact Newton convergence theory by Dembo et al. [15], require the current
iterate to be close enough to the solution. What exactly is close enough is
problem dependent, and generally too hard to calculate in practice. How-
ever, decades of practice have shown that the theoretical convergence is
reached within a few Newton steps for most problems. Thus the theory is
not just of theoretical, but also of practical importance.

In this section, practical experiments are presented to illustrate that
Theorem 4.2.1 also has practical merit, despite the elusive requirement that
current iterate has to be close enough to the solution. Moreover, instead of
convergence relation (4.15), an idealised version is tested, in which the error
norm is changed to the 2-norm, and α is neglected:

‖xi+1 − x∗‖ < ηi‖xi − x∗‖. (4.39)

If relation (4.39) is satisfied, that means that any improvement of the
linear residual norm in a certain Newton iteration, improves the error in the
nonlinear iterate by an equal factor.
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The experiments in this section are performed on a power flow problem.
The power flow problem, and how to solve it, is treated in Chapters 5–7. The
actual test case used is the uctew032 power flow problem (see Appendix B).
The resulting nonlinear system has approximately 256k equations, and the
Jacobian matrix has around 2M nonzeros. The linear Jacobian systems are
solved using GMRES, preconditioned with a high quality ILU factorisation
of the Jacobian.

In Figures 4.4–4.6, the uctew032 problem is solved with different amounts
of GMRES iterations per Newton iteration. In all cases, two Newton steps
with just a single GMRES iteration were performed at the start, but not
shown in the figures. In each figure, the solid line represents the norm of
the actual error ‖xi −x∗‖, while the dashed line depicts the expected error
norm following the idealised theoretical relation (4.39).

Figure 4.4 shows the distribution of GMRES iterations for a typical
choice of forcing terms that leads to a fast solution of the problem. The
practical convergence nicely follows the idealised theory. This suggests that
the two initial Newton iterations with a single GMRES iteration each, lead
to an iterate x2 close enough to the solution for practice to follow theory, for
the chosen forcing terms ηi. Note that x2 is in actuality still very far from
the solution, and that it is unlikely that it satisfies the theoretical bound on
the proximity to the solution required in Theorem 4.2.1.
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Figure 4.4: GMRES iteration distribution 1,1,4,6,10,14
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Figure 4.5 has a more exotic distribution of GMRES iterations performed
per Newton iteration, illustrating that practice can also follow theory nicely
for such a scenario.
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Figure 4.5: GMRES iteration distribution 1,1,3,4,6,3,11,3

Figure 4.6 illustrates the impact of oversolving. Practical convergence
is nowhere near the idealised theory, because extra GMRES iterations are
performed that do not further improve the nonlinear error. In terms of
Theorem 4.2.1 this means that the iterates xi are not close enough to the
solution, to be able to take the forcing terms ηi as small as they were chosen
in this example.
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Figure 4.6: GMRES iteration distribution 1,1,9,19,30
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In Figure 4.7, the convergence in the number of Newton iterations is
compared with the convergence in the number of GMRES iterations. For the
uctew032 test case, the convergence of the GMRES solves is approximately
linear, with similar rate of convergence in each Newton iteration. Thus the
same figure can be used to also illustrate the theory from Section 4.2.1.

The top figure shows the true error norm in the number of Newton
iterations, for five different distributions of GMRES iterations per Newton
iteration, i.e., for five different sets of forcing terms. The graphs are as
expected; the more GMRES iteration are performed per Newton iteration,
the better the convergence. A naive interpretation might conclude that
option (A) is the best of the considered choices, and that option (E) is by
far the worst. However, this is too simple a conclusion, as illustrated below
by the bottom figure.

The bottom figure shows the convergence of the true error in the total
number of GMRES iterations for the same five distributions. In this figure,
the convergence of option (A) is worse than that of option (E), revealing
that option (A) imposes a lot of oversolving. Option (E) is still the worst
of the options that do not oversolve much, but it no longer seems as bad as
suggested by the top figure. Options (B), (C), and (D) show approximately
linear convergence, as predicted by the theory of Section 4.2.1. As the
practical GMRES convergence is not exactly linear, nor exactly the same in
each Newton iteration, the convergence of these options is not identical, and
option (E) is still quite a bit worse. The strong influence of the near linear
GMRES convergence is nonetheless very clear.

It is clear that neither the top figure, nor the bottom figure in Figure 4.7
tells the entire story on its own. If the set-up time of a Newton iteration—
generally mostly determined by the calculation of J and F —is very high
compared to the computational cost of iterations of the linear solver, then
the top figure approximates the convergence in the solution time. However,
if these set-up costs are negligible compared to the linear solves, then it is
the bottom figure that better approximates the convergence in the solution
time. The practical truth is generally in between, but knowing which of
these extremes a certain problem is closer to can be important to make the
correct choice of forcing terms.
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4.4 Applications

In this section, ideas are presented to use the knowledge from the previous
sections to design better inexact Newton algorithms. First, optimising the
choice of the forcing terms is explored, and after that, possible adaptations
of the linear solver within the Newton process are treated.

4.4.1 Forcing Terms

The ideas for the choice of the forcing terms ηi rely on the expectation
that in Newton iteration i—provided that there is no oversolving—both the
unknown true error, and its known measure ‖F (xi) ‖, should reduce with
an approximate factor ηi, as indicated by Theorem 4.2.1.

Theoretically, this knowledge can be used to choose the forcing terms
adaptively by calculating ‖F

(

xi + sk
i

)

‖ in every linear iteration k, and
checking whether the reduction in the norm of F is close enough to the
reduction in the linear residual. Once the reduction in the norm of F starts
lagging that of the linear residual, the linear solver is oversolving, and the
next Newton iteration should be started. Obviously, this adaptive method
only makes sense if ‖F

(

xi + sk
i

)

‖ can be evaluated cheaply, compared to
the cost of doing extra linear iterations, which is often not the case.

Theorem 4.2.1 can also be used to set a lower bound for the forcing terms.
Assume that the aim is to solve up to the nonlinear tolerance ‖F ‖ ≤ τ . A
forcing term ηi = τ

‖F (xi)‖ should be sufficient to approximately reach the
desired nonlinear tolerance, provided that there is no oversolving. Choosing
ηi significantly smaller than that, always leads to a waste of computational
effort. Therefore, it makes sense to enforce

ηi ≥ σ
τ

‖F (xi) ‖
, (4.40)

in every Newton iteration, for some sensible choice of σ ∈ (0, 1).

Knowledge of the computational cost to set up a new Newton iteration,
and of the convergence behaviour of the used iterative linear solver, can
further help to choose better forcing terms. If the set-up cost of a Newton
iteration is very high, it then makes sense to choose smaller forcing terms
to get the most out of each Newton iteration. Similarly, if the linear solver
converges superlinearly slightly smaller forcing terms may be preferred, to
maximise the benefit of this superlinear convergence. On the other hand if
the set-up cost of a Newton iteration is low, then it may yield better results
to keep the forcing terms a bit larger to prevent oversolving, especially if
the linear solver does not converge superlinearly.
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4.4.2 Linear Solver

Given a forcing term ηi, which linear solver is used may be adapted to the
value of this forcing term. For example, if it is expected that only a few
linear iterations are needed, then GMRES is often the best choice. On the
other hand, if many linear iterations are anticipated it might be better to
use Bi-CGSTAB or IDR(s). If the nonlinear problem is not too large, it may
even be best to switch to a direct solver in later iterations, if ηi becomes
very small. See Chapter 2 for information about linear solvers.

Instead of changing the entire linear solver between Newton iterations,
it is also an option to change just the preconditioning. For example, higher
quality preconditioners could be used in later iterations. Alternatively, a
preconditioner can be kept through multiple Newton iterations, updating it
depending on ηi.



CHAPTER 5

Power System Analysis

A power system is a system that provides for the generation, transmission,
and distribution of electrical energy. Power systems are considered to be
the largest and most complex man-made systems. As electrical energy is
vital to our society, power systems have to satisfy the highest security and
reliability standards. At the same time, minimising cost and environmental
impact are important issues.

Thermal power plants generate electrical power using heat, mostly from
the combustion of fossil fuels, or from a nuclear reaction in the case of nuclear
power plants. Most thermal power stations heat water to produce steam,
which is then used to power turbines. Kinetic energy from these rotat-
ing devices is converted into electrical power by means of electromagnetic
induction. Hydroelectric power plants run water through water turbines
(typically located in dams), wind farms use wind turbines, and photovoltaic
plants use solar panels to generate electrical power. Hydroelectric, wind,
and solar power are examples of renewable energy, as they are generated
from naturally replenished resources.

The transmission network connects the generating plants to substations
near the consumers. It also performs the function of connecting different
power pools, to reduce cost and increase reliability. High voltage alternat-
ing current (AC) is used to reduce voltage drops and power losses, and to
increase capacity of the transmission lines. The three-phase system is used
to reduce conductor material.

Finally, the distribution network connects the transmission network to
the consumers. The distribution network operates at lower voltages than the
transmission network, supplying three-phase AC to industrial consumers,
and single-phase AC for common household consumption. Figure 5.1 shows
a schematic representation of a power system.

35
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Figure 5.1: Schematic representation of a power system
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Power systems have to operate very close to a fixed frequency, mostly
50Hz in Europe. Whenever an electrical appliance is turned on, the load
on the power system increases. In the case of a thermal power plant, the
extra power is taken from the kinetic energy of a rotating device, slowing
down the rotation. Extra steam has to be fed to the turbines to keep the
rotation at the desired frequency for the power system. Automated controls
make it possible for the power system to operate at near fixed frequency,
making steady state power system models—where the frequency is regarded
constant—a useful approximation of reality.

Steady state power system analysis, by means of simulations on math-
ematical models, plays an important role in both operational control and
planning. This chapter first treats the required mathematical models of
electrical power, and power system components. Using these models, power
flow (or load flow) study and contingency analysis are treated. Power flow
study calculates the bus voltages in the power system, given the generation
and consumption. Contingency analysis simulates equipment outages, to
determine if the system can still function reliably if such a contingency were
to occur.

5.1 Electrical Power

To model a power system, firstly models of the underlying quantities are
needed, as well as mathematical relations between these quantities. This
sections treats voltage, current, and power quantities in steady state power
system analysis, as well as quantities related to electrical resistance. Using
these quantities, Ohm’s law, and Kirchhoff’s laws for AC circuits are treated.

5.1.1 Voltage and Current

In a power system in steady state, the voltage and current can be assumed to
be sinusoidal functions of time with constant frequency ω. It is conventional
to use the cosine function to describe these quantities, i.e.,

v (t) = Vmax cos (ωt + δV ) = Re
(

Vmaxe
ιδV eιωt

)

, (5.1)

i (t) = Imax cos (ωt + δI) = Re
(

Imaxe
ιδI eιωt

)

, (5.2)

where ι is the imaginary unit1, and Re is the operator that takes the real
part. See section A.1 for a short introduction to complex numbers.

1The imaginary unit is most commonly denoted by i in mathematics, and by j in
electrical engineering because i is reserved for the current. In this work, the imaginary
unit is sometimes part of a matrix or vector equation, where i and j are used as indices.
To avoid ambiguity, the imaginary unit is therefore denoted by ι (iota).
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Since the frequency ω is assumed constant in steady state analysis, the
term eιωt is not needed to describe the voltage or current in a particular
steady state system. The remaining complex quantities V = Vmaxe

ιδV and
I = Imaxe

ιδI are independent of the time t, and are called the phasor rep-
resentation of the voltage and current respectively. These quantities are
used to represent the voltage and current in circuit theory. In power system
theory, instead the effective phasor representation is used:

V = |V | eιδV , with |V | =
Vmax√

2
, (5.3)

I = |I| eιδI , with |I| =
Imax√

2
. (5.4)

Note that |V | and |I| are the RMS values of v (t) and i (t), and that the
effective phasors differ from the circuit theory phasors by a factor

√
2.

This thesis is about power system calculations, and thus V and I will be
used to denote the effective voltage and current phasors, as defined above.

5.1.2 Complex Power

Using the voltage and current equations (5.1) and (5.2), choose the reference
time such that the voltage can be written as v (t) = Vmax cos (ωt), and the
current as i (t) = Imax cos (ωt − φ). The quantity φ = δV − δI is called the
power factor angle, and cos φ the power factor.

The instantaneous power p (t) then is given by

p (t) = v (t) i (t)

=
√

2 |V | cos (ωt)
√

2 |I| cos (ωt − φ)

= 2 |V | |I| cos (ωt) cos (ωt − φ)

= 2 |V | |I| cos (ωt) [cos φ cos (ωt) + sin φ sin (ωt)]

= |V | |I|
[

2 cos φ cos2 (ωt) + 2 sin φ sin (ωt) cos (ωt)
]

= |V | |I| cos φ
[

2 cos2 (ωt)
]

+ |V | |I| sin φ [2 sin (ωt) cos (ωt)]

= |V | |I| cos φ [1 + cos (2ωt)] + |V | |I| sin φ [sin (2ωt)]

= P [1 + cos (2ωt)] + Q [sin (2ωt)] , (5.5)

where P = |V | |I| cos φ, and Q = |V | |I| sin φ.
Thus the instantaneous power is the sum of a unidirectional component

that is sinusoidal with average value P and amplitude P , and a component
of alternating direction that is sinusoidal with average 0 and amplitude Q.
Note that integrating the instantaneous power over a time period T = 2π

ω

gives

1

T

∫ T

0
p (t) dt = P. (5.6)
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The magnitude P is called the active power, or real power, or average power,
and is measured in W (watts). The magnitude Q is called the reactive power,
or imaginary power, and is measured in var (volt-ampere reactive).

Using the complex representation of voltage and current, we can write

P = |V | |I| cos φ = Re
(

|V | |I| eι(δV −δI)
)

= Re
(

V I
)

, (5.7)

Q = |V | |I| sin φ = Im
(

|V | |I| eι(δV −δI)
)

= Im
(

V I
)

, (5.8)

where I is the complex conjugate of I. Thus we can define the complex
power in AC circuits as

S = P + ιQ = V I, (5.9)

where S is measured in VA (volt-ampere).
Note that strictly speaking VA and var are the same unit as W, however it

is useful to use the different unit names to distinguish between the measured
quantities.

5.1.3 Impedance and Admittance

Impedance is the extension of the resistance notion to AC circuits. It is a
measure of opposition to a sinusoidal current. The impedance is denoted by

Z = R + ιX, (5.10)

and measured in ohms (Ω). The real part R ≥ 0 is called the resistance,
and the imaginary part X the reactance. If X > 0 the reactance is called
inductive and we can write ιX = ιωL, where L > 0 is the inductance. If
X < 0 the reactance is called capacitive and we write ιX = 1

ιωC
, where

C > 0 is the capacitance.
The admittance

Y = G + ιB (5.11)

is the inverse of the impedance and is measured in siemens (S), i.e.,

Y =
1

Z
=

R

|Z|2
− ι

X

|Z|2
. (5.12)

The real part G = R

|Z|2 ≥ 0 is called the conductance, while the imaginary

part B = − X

|Z|2 is called the susceptance.

The voltage drop over an impedance Z is equal to V = ZI. This is the
extension of Ohm’s law to AC circuits. Alternatively, using the admittance,
we can write

I = Y V. (5.13)

Using Ohm’s law, we find that the power consumed by an impedance Z is

S = V I = ZII = |I|2 Z = |I|2 R + ι |I|2 X. (5.14)
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5.1.4 Kirchhoff’s circuit laws

Kirchhoff’s circuit laws are used to calculate the voltage and current in
electrical circuits.

Kirchhoff’s current law (KCL)

At any point in the circuit, the sum of currents flowing towards that point is
equal to the sum of currents flowing away from that point, i.e.,

∑

k Ik = 0.

Kirchhoff’s voltage law (KVL)

The directed sum of the electrical potential differences around any closed
circuit is zero, i.e.,

∑

k Vk = 0.

5.2 Power System Model

Power systems are modelled as a network of buses (nodes) and branches
(edges). At each bus i, four electrical quantities are of importance:

|Vi| : voltage magnitude,
δi : voltage phase angle,
Pi : injected active power,
Qi : injected reactive power.

Each bus can hold a number of electrical devices. The bus is named
according to the electrical magnitudes specified at that bus, see Table 5.1.

bus type known unknown

load bus or PQ-bus Pi, Qi |Vi|, δi

generator bus or PV-bus Pi, |Vi| Qi, δi

slack bus or swing bus δi, |Vi| Pi, Qi

Table 5.1: Bus types with electrical magnitudes

Local distribution networks are usually connected to the transmission
network at a single bus. In steady state power system models, such networks
generally get aggregated into that connecting bus, which then gets assigned
the total load of the distribution network.

Further, balanced three-phase systems are represented by one-line dia-
grams of equivalent single-phase systems, and voltage and current quantities
are represented in per unit. For more details see for example [7, 42].
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5.2.1 Generators, Loads, and Transmission Lines

A physical generator usually has P and |V | controls and thus specifies these
magnitudes. Likewise, a load will have a negative injected active power P
specified, as well as a reactive power Q. However, the name of the bus does
not necessarily indicate what type of devices it consists of. A wind turbine,
for example, is a generator but does not have PV controls. Instead, it is
modelled as a load bus with positive injected active power P . When a PV
generator and a PQ load are connected to the same bus, the result is a PV-
bus with a voltage amplitude equal to that of the generator, and an active
power equal to the sum of the active power of the generator and the load.
Also, there may be buses without a generator or load connected, such as
transmission substations, which are modelled as load with P = Q = 0.

In any practical power system there are system losses. These losses have
to be taken into account, but since they depend on the power flow they
are not known in advance. A generator bus has to be assigned that will
compensate for the difference between the total generation specified, and
the total specified load plus the losses. This bus is called the slack bus,
or swing bus. Obviously it is not possible to specify the real power P for
this bus. Instead the voltage magnitude |V | and angle δ are specified. Note
that δ is merely the reference phase to which the other phase angles are
measured. As such, for the slack bus it is usually set that δ = 0.

Branches are the network representation of the transmission lines, that
connect the buses in the power system. From a modelling viewpoint, lines
define how to relate buses through Kirchhoff’s circuit laws. Lines generally
incur losses on the transported power and must be modelled as such.

A transmission line from bus i to bus j has some impedance. This
impedance is modelled as a single total impedance quantity zij on the
branch. The admittance of that line is thus yij = 1

zij
. Further, there is

a shunt admittance from the line to the neutral ground. This shunt admit-
tance is modelled as a total shunt admittance quantity ys that is split evenly
between bus i and bus j. Figure 5.2 shows a schematic representation of the
transmission line model.

i

Vi

j

Vj

yij

ys

2
ys

2

Figure 5.2: Transmission line model
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It is usually assumed that there is no conductance from the line to the
ground. This means that the shunt admittance is due only to the electrical
field between line and ground, and is thus a capacitive susceptance, i.e.,
ys = ιbs, with bs ≥ 0. For this reason, the shunt admittance ys is also
sometimes referred to as the shunt susceptance bs. See also the notes about
modelling shunts in Section 5.2.2.

5.2.2 Shunts and Transformers

Two other devices that are commonly found in power systems are shunts
and transformers. Shunt capacitors can be used to inject reactive power,
resulting in a higher node voltage, whereas shunt inductors consume reactive
power, thus lowering the node voltage. Transformers are used to step-up
the voltage to a higher level, or step-down to a lower level. A phase shifting
transformers (PST) can also change the voltage phase angle.

A shunt is modelled as a reactance zs = ιxs between the bus and the
ground, see Figure 5.3. The shunt admittance thus is ys = 1

zs
= −ι 1

xs
= ιbs.

If xs > 0 the shunt is inductive, if xs < 0 the shunt is capacitive. Note that
the shunt susceptance bs has the opposite sign of the shunt reactance xs.

i

Vi

ys

Figure 5.3: Shunt model

Transformers can be modelled as depicted in Figure 5.4, where T : 1 is
the transformer ratio. The modulus of T determines the change in voltage
magnitude. This value is usually around 1, because the better part of the
differences in voltage levels are incorporated through the per unit system.
The argument of T determines the shift of the voltage phase angle.

i

Vi

j

VjE

T : 1
yij

Figure 5.4: Transformer model



5.2. Power System Model 43

5.2.3 Admittance Matrix

The admittance matrix Y is a matrix that relates the injected current at
each bus to bus voltages, such that

I = Y V , (5.15)

where I is the vector of injected currents at each bus, and V is the vector
of bus voltages. This is in fact Ohm’s law (5.13) in matrix form. As such
we can also define the impedance matrix Z = Y −1.

To calculate the admittance matrix Y , we look at the injected current Ii

at each bus i. Let Iij denote the current flowing from bus i in the direction
of bus j 6= i, or to the ground in case of a shunt. Applying Kirchhoff’s
current law now gives

Ii =
∑

k

Iik. (5.16)

Let yij denote the admittance of the line between bus i and j, with
yij = 0 if there is no line between these buses. For a simple transmission
line from bus i to bus j — without shunt admittance — Ohm’s law states
that

Iij = yij (Vi − Vj) , and Iji = −Iij, (5.17)

or in matrix notation:
[

Iij

Iji

]

= yij

[

1 −1
−1 1

] [

Vi

Vj

]

. (5.18)

Now suppose that there is a shunt s connected to bus i. Then, according
to equation (5.16), an extra term Iis is added to the injected current Ii.
From Figure 5.3, it is clear that

Iis = ys (Vi − 0) = ysVi. (5.19)

This means that in the admittance matrix an extra term ys has to be added
to Yii. Recall that ys = ιbs, and that the sign of bs depends on the shunt
being inductive or capacitive.

Knowing how to deal with shunts, it is now easy to incorporate the line
shunt model as depicted in Figure 5.2. For a transmission line between the
buses i and j, half of the line shunt admittance of that line, i.e., ys

2 , has to
be added to both Yii and Yjj in the admittance matrix. For a transmission
line with shunt admittance ys, we thus find

[

Iij

Iji

]

=

(

yij

[

1 −1
−1 1

]

+ ys

[

1
2 0
0 1

2

])[

Vi

Vj

]

. (5.20)
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The influence on the admittance matrix of a transformer between the
buses i and j, can be derived from the model depicted in Figure 5.4.

Let E be the voltage induced by the transformer, then

Vi = TE. (5.21)

The current from bus j to the transformer device—and thus in the direction
of bus i—then is

Iji = yij (Vj − E) = yij

(

Vj −
Vi

T

)

. (5.22)

Conservation of power within the transformer gives

ViIij = −EIji ⇔ TIij = −Iji ⇔ TIij = −Iji. (5.23)

Therefore, the current from bus i to the transformer device—and thus in
the direction of j—is

Iij = −Iji

T
= yij

(

Vi

|T |2
− Vj

T

)

. (5.24)

The total contribution to the admittance matrix, of a branch between
bus i and bus j, thus becomes

[

Iij

Iji

]

=

(

yij

[

1
|T |2 − 1

T

− 1
T

1

]

+ ys

[

1
2 0
0 1

2

]

)

[

Vi

Vj

]

, (5.25)

where T = 1 if the branch is not a transformer.
The admittance matrix Y can now be constructed as follows. Start with

a diagonal matrix with the shunt admittance value on diagonal element i
for each bus i that has a shunt device, and 0 on each diagonal element for
which the corresponding bus has no shunt device. Then, for each branch
add its contribution to the matrix according to equation (5.25).

5.3 Power Flow

The power flow problem, or load flow problem, is the problem of computing
the flow of electrical power in a power system in steady state. In practice,
this amounts to calculating the voltage in each bus of the power system.
The problem arises in many applications in power system analysis and is
treated in many books on power systems, see for example [7, 38, 42].

Mathematical equations for the power flow problem can be obtained by
combining the complex power (5.9), with Ohm’s law (5.15). This gives

Si = ViIi = Vi

(

Y V
)

i
= Vi

N
∑

k=1

Y ikV k, (5.26)
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where Si is the injected power at bus i, Ii the current through bus i, Vi the
bus voltage, Y is the admittance matrix, and N is the number of buses in
the power system

The admittance matrix Y is easy to obtain, and generally very sparse.
Therefore a formulation using the admittance matrix has preference over
formulations using the impedance matrix Z, which is generally a lot harder
to obtain and not sparse.

In Chapter 6 two traditional methods to solve the power flow prob-
lem (5.26) are treated. In Chapter 7 we investigate power flow solvers based
on inexact Newton-Krylov methods, and show such solvers scale much better
in the problem size, making them much faster than the traditional methods
for large power flow problems.

5.4 Contingency Analysis

Contingency analysis is the act of identifying changes in a power system that
have some non-negligible chance of unplanned occurrence, and analysing the
impact of these contingencies on power system operation. The most common
contingencies are single generator and branch outages.

A power system that will still operate properly on the occurrence of any
single contingency, is called n−1 secure. In some cases n−2 security analysis
is desired, i.e., analysis of the impact of any two contingencies happening
simultaneously.

Contingency analysis generally involves solving power flow problems in
which the contingencies have been modelled. In Chapter 8 we investigate
how the Newton-Krylov power flow solver can be exploited to speed up
contingency analysis calculations.





CHAPTER 6

Traditional Power Flow Solvers

As long as there have been power systems, there have been power flow
studies. This chapter discusses the two traditional methods to solve power
flow problems: Newton power flow and Fast Decoupled Load Flow (FDLF).

Newton power flow is described in Section 6.1. The concept of the power
mismatch function is treated, and the corresponding Jacobian matrix is
derived. Further, it is detailed how to treat different bus types within the
Newton power flow method.

Fast Decoupled Load Flow is treated in Section 6.2. The FDLF method
can be seen as a clever approximation of Newton power flow. Instead of the
Jacobian matrix, an approximation—based on the practical properties of
power flow problems—is calculated once, and used throughout all iterations.

Finally, Section 6.3 discusses convergence and computational properties
of the two methods, and Section 6.4 describes how Newton power flow and
the FDLF method can be interpreted as basic Newton-Krylov methods,
motivating how Newton-Krylov methods can be used to improve on these
traditional power flow solvers.

6.1 Newton Power Flow

Newton power flow uses the Newton-Raphson method (see Chapter 3) to
solve power flow problems. Traditionally, a direct solver is used to solve
for the linear system of equations (3.6) that arises in each iteration of the
Newton method [49, 50].

47
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In order to use the Newton-Raphson method, the power flow equations
have to be written in the form F (x) = 0. The common procedure to get
such a form is described in Section 6.1.1. This procedure leads to a function
F (x) called the power mismatch function. The power mismatch function
contains the the injected active power Pi and reactive power Qi at each bus,
while the vector parameter x consists of the voltage angles δi and voltage
magnitudes |Vi|.

Another element required for the Newton-Raphson method, is the Ja-
cobian matrix J (x). In Section 6.1.2 the Jacobian matrix of the power
mismatch function is derived. Further, it is shown that this matrix can be
computed cheaply from the building blocks used in the evaluation of the
power mismatch function.

For load buses the voltage angle δi and voltage magnitude |Vi| are the
unknowns, see Table 5.1 (page 40). However, for generator buses the voltage
magnitude δi is known, while the injected reactive power Qi is unknown.
And for the slack bus, the entire voltage phasor is known, while the injected
power is unknown. Thus, the power mismatch function F (x) is not simply
a known function in an unknown parameter. Section 6.1.3 deals with the
steps needed for each of the different bus types, to be able to apply the
Newton-Raphson method to the power mismatch function.

6.1.1 Power Mismatch Function

Recall from Section 5.3 that the power flow problem can be described by
the equations

Si = Vi

N
∑

k=1

Y ikV k. (6.1)

As it is not possible to treat the voltage phasors Vi as variables of the
problem for the slack bus and generator buses, it makes sense to rewrite
the N complex nonlinear equations of equation (5.26) as 2N real nonlinear
equations in the quantities Pi, Qi, |Vi|, and δi.

Substituting Vi = |Vi| eιδi , Y = G + ιB, and δij = δi − δj into the power
flow equations (6.1) gives

Si = |Vi| eιδi

N
∑

k=1

(Gik − ιBik) |Vk| e−ιδk

=

N
∑

k=1

|Vi| |Vk| (cos δik + ι sin δik) (Gik − ιBik) . (6.2)

Now define the real vector x of voltage variables as

x = [ δ1, . . . , δN , |V1| , . . . , |VN | ]T . (6.3)
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For the purpose of notational comfort, further define the matrix functions
P (x) and Q (x) with entries

Pij (x) = |Vi| |Vj | (Gij cos δij + Bij sin δij) , (6.4)

Qij (x) = |Vi| |Vj | (Gij sin δij − Bij cos δij) , (6.5)

and the vector functions P (x) and Q (x) with entries

Pi (x) =
∑

k Pik (x) , (6.6)

Qi (x) =
∑

k Qik (x) . (6.7)

Note that Pij (x) = Qij (x) = 0 for each pair of buses i 6= j that is not
connected by a branch.

Using the above definitions, equation (6.2) can be written as

S = P (x) + ιQ (x) . (6.8)

Now, the power mismatch function F is the real vector function

F (x) =

[

P − P (x)
Q − Q (x)

]

, (6.9)

and the power flow problem can be written as the system of nonlinear equa-
tions

F (x) = 0. (6.10)

6.1.2 Jacobian Matrix

The Jacobian matrix J (x) of a function F (x), is the matrix of all first
order partial derivatives of that function. The Jacobian matrix of the power
mismatch function has the structure, where Pi (x) and Qi (x) are as in
equations (6.6) and (6.7) respectively:

J (x) = −































∂P1

∂δ1
(x) . . . ∂P1

∂δN
(x) ∂P1

∂|V1|(x) . . . ∂P1

∂|VN |(x)
...

. . .
...

...
. . .

...

∂PN

∂δ1
(x) . . . ∂PN

∂δN
(x) ∂PN

∂|V1|(x) . . . ∂PN

∂|VN |(x)

∂Q1

∂δ1
(x) . . . ∂Q1

∂δN
(x) ∂Q1

∂|V1|(x) . . . ∂Q1

∂|VN |(x)
...

. . .
...

...
. . .

...

∂QN

∂δ1
(x) . . . ∂QN

∂δN
(x) ∂QN

∂|V1|(x) . . . ∂QN

∂|VN |(x)































. (6.11)
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Note that the Jacobian matrix (6.11) consist of the negated first order
derivatives of Pi (x) and Qi (x), but that the Newton-Raphson method uses
the negated Jacobian. Therefore, the coefficient matrix of the linear system
solved in each iteration of the Newton method consists of the first order
derivatives of Pi (x) and Qi (x). These partial derivatives are derived below,
where it is assumed that i 6= j whenever applicable.

∂Pi

∂δj
(x) = |Vi| |Vj | (Gij sin δij − Bij cos δij) = Qij (x) , (6.12)

∂Pi

∂δi
(x) =

∑

k 6=i

|Vi| |Vk| (−Gik sin δik + Bik cos δik)

= −
∑

k 6=i

Qik (x) = −Qi (x) − |Vi|2 Bii, (6.13)

∂Qi

∂δj
(x) = |Vi| |Vj | (−Gij cos δij − Bij sin δij) = −Pij (x) , (6.14)

∂Qi

∂δi
(x) =

∑

k 6=i

|Vi| |Vk| (Gik cos δik + Bik sin δik)

=
∑

k 6=i

Pik (x) = Pi (x) − |Vi|2 Gii, (6.15)

∂Pi

∂ |Vj |
(x) = |Vi| (Gij cos δij + Bij sin δij) =

Pij (x)

|Vj |
, (6.16)

∂Pi

∂ |Vi|
(x) = 2 |Vi|Gii +

∑

k 6=i

|Vk| (Gik cos δik + Bik sin δik)

= 2 |Vi|Gii +
∑

k 6=i

Pik (x)

|Vi|
=

Pi (x) + |Vi|2 Gii

|Vi|
, (6.17)

∂Qi

∂ |Vj |
(x) = |Vi| (Gij sin δij − Bij cos δij) =

Qij (x)

|Vj|
, (6.18)

∂Qi

∂ |Vi|
(x) = −2 |Vi|Bii +

∑

k 6=i

|Vk| (Gik sin δik − Bik cos δik)

= −2 |Vi|Bii +
∑

k 6=i

Qik (x)

|Vi|
=

Qi (x) − |Vi|2 Bii

|Vi|
. (6.19)

Observe that the Jacobian matrix entries consist of the same building
blocks Pij and Qij as the power mismatch function F . This means that
whenever the power mismatch function is evaluated, the Jacobian matrix
can be calculated at relatively little extra computational cost.
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6.1.3 Handling Different Bus Types

Which of the values Pi, Qi, |Vi|, and δi are specified, and which are not,
depends on the associated buses, see Table 5.1 (page 40).

Dealing with the fact that some elements in P and Q are not specified
is easy. The equations corresponding to these unknowns can simply be
dropped from the problem. The unknown voltages in x can be calculated
from the remaining equations, after which the unknown power values follow
by evaluating the corresponding entries of P (x) and Q (x).

Dealing with specified voltage values is less straight-forward. Recall that
the Newton-Raphson method is an iterative process that, in each iteration,
calculates a vector si and sets the new iterate to be xi+1 = xi + si. Now,
if some entries of x are known—as is the case for generator buses and the
slack bus—then the best value for the corresponding entry of the update
vector si is clearly 0.

To ensure that the update for known voltage values is indeed 0, these
entries in the update vector, and the corresponding columns of the coefficient
matrix, can simply be dropped. Thus for every generator bus, one unknown
in the update vector and one column in the coefficient matrix are dropped,
whereas for the slack bus two of each are dropped.

The amount of nonlinear equations dropped from the problem, is always
equal to the amount of variables, and corresponding columns, dropped from
the linear systems. Therefore, the linear systems that are actually solved
have a square coefficient matrix of size 2N − NG − 2 = 2NL + NG, where
NL is the number of load buses, and NG is the number of generator buses
in the power system.

Another method to deal with different bus types is not to eliminate any
rows or columns from the problem. Instead the linear systems are built
normally, except for the linear equations that correspond to power values
that are not specified. For these equations, the right-hand side value and
all off-diagonal entries are set to 0, while the diagonal entry is set to 1. Or,
the diagonal entry can be set to some very large number, in which case the
off-diagonal entries can be kept as they would have been.

This method also ensures that the update for known voltage values is
0 in each iteration. The linear systems that have to be solved are of size
2N , and thus larger than in the previous method. However, the structure of
the matrix can be made independent of the bus types. This mean that the
matrix structure can be kept between runs that change the type of one or
more buses. Bus-type switching is used for example to ensure that reactive
power limits of generators are satisfied.
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6.2 Fast Decoupled Load Flow

Fast Decoupled Load Flow (FDLF) is an approximation of Newton power
flow, based on practical properties of power flow problems. The general
FDLF method is shown in Algorithm 6.1.

Algorithm 6.1 Fast Decoupled Load Flow

1: calculate the matrices B′ and B′′

2: calculate LU factorisation of B′ and B′′

3: given initial iterates δ and |V |
4: while not converged do
5: solve B′∆δ = ∆P (δ, |V |)
6: update δ := δ + ∆δ

7: solve B′′∆ |V | = ∆Q (δ, |V |)
8: update |V | := |V | + ∆ |V |
9: end while

The original derivation of the method is presented in Section 6.2.1, and
in Section 6.2.2 notes on dealing with shunts and transformers are added.
Finally, Section 6.2.3 treats different choices for the matrices B′ and B′′,
called schemes, and explains how the BX and XB schemes can be interpreted
as an approximation of Newton power flow using the Schur complement.
The techniques described in Section 6.1.3 can again be used to handle the
different bus types.

6.2.1 Classical Derivation

In Fast Decoupled Load Flow, the assumption is made that for all i, j

δij ≈ 0, (6.20)

|Vi| ≈ 1. (6.21)

In the original derivation in [46] it is further assumed that

|Gij | ≪ |Bij| . (6.22)

Using assumption (6.20), the following approximations can be made:

Pij (x) = |Vi| |Vj| (Gij cos δij + Bij sin δij) ≈ + |Vi| |Vj|Gij , (6.23)

Qij (x) = |Vi| |Vj| (Gij sin δij − Bij cos δij) ≈ − |Vi| |Vj|Bij. (6.24)

Note that for i = j these approximations are exact, since δii = 0.
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From assumption (6.22) it then follows that

|Gij | ≈ |Pij (x)| ≪ |Qij (x)| ≈ |Bij| . (6.25)

This leads to the idea of decoupling, i.e., neglecting the off-diagonal blocks
of the Jacobian matrix, which are based on Gij and Pij , as they are small
compared to the Bij and Qij based diagonal blocks.

By the above assumptions, the first order derivatives that constitute the
Jacobian matrix of the Newton power flow process can be approximated as
follows. Note that it is assumed that i 6= j whenever applicable, and that
assumption (6.21) is used in the first two equations, though only on |Vj |.

∂Pi

∂δj
(x) = Qij (x) ≈ − |Vi| |Vj |Bij ≈ − |Vi|Bij, (6.26)

∂Pi

∂δi
(x) = −

∑

k 6=i

Qik (x) ≈
∑

k 6=i

|Vi| |Vk|Bik ≈ |Vi|
∑

k 6=i

Bik, (6.27)

∂Qi

∂δj
(x) = −Pij (x) ≈ 0, (6.28)

∂Qi

∂δi
(x) =

∑

k 6=i

Pik (x) ≈ 0, (6.29)

∂Pi

∂ |Vj|
(x) =

Pij (x)

|Vj|
≈ 0, (6.30)

∂Pi

∂ |Vi|
(x) = 2 |Vi|Gii +

∑

k 6=i

Pik (x)

|Vi|
≈ 0, (6.31)

∂Qi

∂ |Vj|
(x) =

Qij (x)

|Vj |
≈ − |Vi|Bij , (6.32)

∂Qi

∂ |Vi|
(x) = −2 |Vi|Bii +

∑

k 6=i

Qik (x)

|Vi|
≈ −2 |Vi|Bii −

∑

k 6=i

|Vk|Bik. (6.33)

The last equation (6.33) still requires some work. To this purpose, define
the negated row sum Di of the imaginary part B of the admittance matrix:

Di =
∑

k

−Bik = −Bii −
∑

k 6=i

Bik. (6.34)

Note that, if the diagonal elements of B are negative and the off-diagonal
elements are nonnegative, then Di is the diagonal dominance of row i. In
a system with only generators, loads, and transmission lines without line
shunts, Di = 0 for all i.
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Now, use assumption (6.21) on equation (6.33) to approximate |Vk| by
|Vi| for all k. This gives

∂Qi

∂ |Vi|
(x) ≈ −2 |Vi|Bii −

∑

k 6=i

|Vk|Bik

≈ −2 |Vi|Bii − |Vi|
∑

k 6=i

Bik

= |Vi|
∑

k 6=i

Bik − 2 |Vi|



Bii +
∑

k 6=i

Bik





= |Vi|
∑

k 6=i

Bik + 2 |Vi| Di. (6.35)

The only term left, in the approximated Jacobian matrix, that depends
on the current iterate, is |Vi|. Because of assumption (6.21) this term can
be simple set to 1. Another common strategy to remove the dependence
on the current iterate from the approximated Jacobian matrix, is to divide
each linear equation i by |Vi| in every iteration of the FDLF process. In
both cases, the coefficient matrices are the same and constant throughout
all iterations. The off-diagonal blocks of these matrices are 0. The upper
and lower diagonal blocks are referred to as B′ and B′′ respectively:

B′
ij = −Bij (i 6= j), (6.36)

B′
ii =

∑

k 6=i

Bik, (6.37)

B′′
ij = −Bij (i 6= j), (6.38)

B′′
ii =

∑

k 6=i

Bik + 2Di. (6.39)

Note that, in a system with only generators, loads and transmission lines,
B′ is equal to −B without any line shunts incorporated, while B′′ is equal
to −B with double line shunt values.

Summarising, the FDLF method calculates the update for the iterate in
iteration k by solving the following linear systems:

B′∆δk = ∆P k, (6.40)

B′′∆ |V |k = ∆Qk, (6.41)

with either

∆P k
i = Pi − Pi

(

δk, |V |k
)

and ∆Qk
i = Qi − Qi

(

δk, |V |k
)

, (6.42)

or

∆P k
i =

Pi − Pi

(

δk, |V |k
)

|Vi|
and ∆Qk

i =
Qi − Qi

(

δk, |V |k
)

|Vi|
. (6.43)
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6.2.2 Shunts and Transformers

A few additional notes can be made with respect to shunts and transformers,
the treatment of which is different between B′ and B′′.

Shunts have the same influence on the system as transmission line shunts,
i.e., they only change the diagonal entries of the admittance matrix. Thus,
shunts are left out in B′, and doubled in B′′.

The modulus |T | of the transformer ratio changes the voltage magnitude,
and is therefore generally simply set to 1 in the calculation of B′, which
works on the voltage phase angle. Likewise, the argument arg (T ) changes
the voltage phase angle, and is usually set to 0 for the calculation of B′′,
which works on the voltage magnitude.

6.2.3 BB, XB, BX, and XX

The Fast Decoupled Load Flow method derived in Section 6.2.1 is commonly
referred to as the BB version, because the susceptance values

Bij = Im

(

1

Rij + ιXij

)

=
−Xij

R2
ij + X2

ij

. (6.44)

are used for both B′ and B′′.
Stott and Alsac [46] already reported improved convergence in many

power flow problems, if the series resistance R was neglected in B′, i.e., if
for B′ the values

BX
ij = Im

(

1

ιXij

)

=
−1

Xij
(6.45)

are used instead of the full susceptance. This methods is called the XB
scheme, because B′ is derived from the reactance values Xij , and B′′ from
the susceptance values Bij.

Van Amerongen [52] found that the BX scheme, where B′ is derived
from the susceptance values Bij, and B′′ from the reactance values Xij ,
yields convergence that is comparable to XB in most cases, and considerably
better in some. Further, he noted that an XX scheme is never better than
the BX and XB schemes.

Monticelli, et al. [35] presented mathematical support for the good results
obtained with the XB and BX schemes. Their idea is the following. Starting
with assumptions (6.20) and (6.21), the Jacobian system of the Newton
power flow method can be approximated by

[

−B G

−G −B

] [

∆δ

∆ |V |

]

=

[

∆P

∆Q

]

. (6.46)
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For simplicity, the differences between the diagonals of the upper-left and
lower-right blocks, as well as those of the lower-left and upper-right blocks,
are neglected.

It should be noted, that the remarks on the incorporation of line shunts
described in Section 6.2.1, and those on shunts and transformers described
in Section 6.2.2, remain useful to improve convergence.

Using downward block Gaussian elimination on the Jacobian system
approximation (6.46) gives

[

−B G

0 −
(

B + GB−1G
)

][

∆δ

∆ |V |

]

=

[

∆P

∆Q − GB−1∆P

]

. (6.47)

This linear system is solved in three steps, that are then combined into the
two steps of the BX scheme.

Step 1: Calculate the partial voltage angle update ∆δk
B from

−B∆δk
B = ∆P

(

δk, |V |k
)

⇒ ∆δk
B = −B−1∆P

(

δk, |V |k
)

, (6.48)

where k is the current FDLF iteration.

Step 2: Calculate the voltage magnitude update ∆ |V |k from

−
(

B + GB−1G
)

∆ |V |k ≈ ∆Q
(

δk + ∆δk
B, |V |k

)

. (6.49)

This is an approximation of the lower block of linear equations in (6.47),
since the first order Taylor expansion can be used to write

∆Q
(

δk + ∆δk
B , |V |k

)

≈ ∆Q
(

δk, |V |k
)

+
∂∆Q

∂δ

(

δk, |V |k
)

∆δk
B

≈ ∆Q
(

δk, |V |k
)

− GB−1∆P
(

δk, |V |k
)

. (6.50)

Here it is used that the partial derivative of ∆Q with respect to δ is in the
bottom-left block of the Jacobian matrix (6.11), which is approximated by
the matrix −G in accordance with equation (6.46).

Step 3: Calculate a second partial voltage angle update ∆δk
G from

B∆δk
G = G∆ |V |k ⇒ ∆δk

G = B−1G∆ |V |k. (6.51)

Then the solution of the upper block of equations in (6.47) is given by

∆δk = −B−1∆P
(

δk, |V |k
)

+ B−1G∆ |V |k = ∆δk
B + ∆δk

G. (6.52)
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The next step would be step 1 of the next iteration, i.e.,

∆δk+1
B = −B−1∆P

(

δk+1, |V |k+1
)

. (6.53)

However, note that

∆δk+1
B + ∆δk

G (6.54)

= −B−1∆P
(

δk+1, |V |k+1
)

+ B−1G∆ |V |k (6.55)

= −B−1
(

∆P
(

δk + ∆δk
B + ∆δk

G, |V |k+1
)

− G∆ |V |k
)

(6.56)

≈ −B−1
(

∆P
(

δk + ∆δk
B, |V |k+1

)

+ B∆δk
G − G∆ |V |k

)

(6.57)

= −B−1∆P
(

δk + ∆δk
B , |V |k+1

)

, (6.58)

where a first order Taylor expansion—similar to that in (6.50)—is used to
go from equation (6.56) to (6.57). Thus, instead of calculating δk

G to update
the voltage angle with it, and then calculating δk+1

B from equation (6.53)
to again update the voltage angle, instead a single combined voltage angle
update ∆δk+1

B + ∆δk
G can be calculated from equation (6.58).

The above observations lead to the following iteration scheme:

solve −B∆δ = ∆P (δ, |V |),
update δ := δ + ∆δ,
solve −

(

B + GB−1G
)

∆ |V | = ∆Q (δ, |V |),
update |V | := |V | + ∆ |V |.

Note that ∆δ here denotes the combined update from equation (6.54).
It thus remains to show that the matrix −

(

B + GB−1G
)

is properly
represented in the FDLF method. To this purpose, write B = AT dBA and
G = AT dGA, where A is the incidence matrix of the associated graph (see
Section A.4) and the matrices dB and dG are the diagonal matrices of edge
susceptances and edge conductances respectively.

There are two special cases in which this notation can be used to simplify
the matrix −

(

B + GB−1G
)

. First, if the network is radial then A can be
set up as a square nonsingular matrix, see [35], and

−
(

B + GB−1G
)

= −AT dBA − AT dGA
(

AT dBA
)−1

AT dGA

= −AT dBA − AT dGAA−1dB−1A−T AT dGA

= −AT dBA − AT
(

dG2dB−1
)

A. (6.59)

For the second case, note that

Bij =
−Xij

R2
ij + X2

ij

= −Xij

Rij

Rij

R2
ij + X2

ij

= −Xij

Rij
Gij . (6.60)
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Therefore, if the R/X ratio ρ =
Rij

Xij
is equal on all branches of the power

system, then dB = −1
ρ
dG, and

−
(

B + GB−1G
)

= −AT dBA − AT dGA
(

AT dBA
)−1

AT dGA

= −AT dBA + ρAT dGA
(

AT dGA
)−1

AT dGA

= −AT dBA + ρAT dGA

= −AT dBA − AT
(

dG2dB−1
)

A. (6.61)

Both cases lead to the same result, which can be further simplified to

−
(

B + GB−1G
)

= −AT dBA − AT
(

dG2dB−1
)

A

= −AT
(

dB2 + dG2
)

dB−1A

= −AT
(

dX−1
)

A, (6.62)

where AT
(

dX−1
)

A is equal to the matrix BX , as defined in equation (6.45).

For general networks, if the R/X ratios do not vary a lot, the matrix
constructed from the inverse reactances X−1

ij can therefore be used as an

approximation of the Schur complement matrix
(

B + GB−1G
)

. This leads
to the BX scheme of the Fast Decoupled Load Flow method.

Similar to the above derivation, starting with the linear system (6.46),
and applying Gaussian elimination upward instead of downward, the XB
scheme can be derived. However, when there are PV buses, the convergence
of this scheme becomes less reliable than that of the BX scheme. This can
be understood by analysing what happens to the XB scheme if all buses are
PV buses. In this case the vector |V | is known, and the linear system from
equation (6.46) reduces to

−B∆δ = ∆P . (6.63)

In the BX scheme, this is indeed the system that is solved. However, in the
XB scheme, the coefficient matrix −BX is used instead of −B, leading to
unnecessary extra approximation errors.

Summarising, with the assumptions that δij ≈ 0 and |Vi| ≈ 1, and the
assumption that the R/X ratio does not vary too much between different
branches in the network, the BX and XB schemes of the Fast Decoupled Load
Flow method can be derived. The assumption on the R/X ratios replaces the
original assumption (6.22). The BX and XB schemes of the Fast Decoupled
Load Flow method are not decoupled in the original meaning of the term,
because the off-diagonal blocks are not disregarded, but are incorporated
in the method. As such, these schemes generally have better convergence
properties than the BB scheme.
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6.3 Convergence and Computational Properties

The convergence of Newton power flow is generally better than that of Fast
Decoupled Load Flow, since the FDLF method is a direct approximation
of Newton power flow. The Newton-Raphson method has quadratic con-
vergence when the iterate is close enough to the solution. Fast Decoupled
Load Flow often exhibits convergence that is approximately linear. FDLF
convergence may be close to the Newton power flow convergence in early
iterations, when the iterate is still relatively far from the solution, but closer
to the solution Newton power flow converges much faster. Furthermore, in
some cases FDLF may fail to converge, while Newton power flow can still
find a solution.

Newton power flow and Fast Decoupled Load Flow both evaluate the
power mismatch equations in every iteration. The FDLF method calculates
the coefficient matrices B′ and B′′ only once at the start. In the case of New-
ton power flow, the Jacobian matrix has to be calculated in every iteration.
However, the Jacobian matrix can be computed at relatively little extra
cost when evaluating the power mismatch function, see Section 6.1.2. Thus,
there is no significant computational difference in terms of the evaluation of
the power mismatch and coefficient matrices.

Both algorithms traditionally use a direct method to solve the linear sys-
tems of equations. Newton power flow needs to make an LU decomposition
of the Jacobian in each iteration. In case of the FDLF method, the LU
decomposition of B′ and B′′ can be made once at the start. Then, in every
iteration, only forward and backward substitutions are needed to solve the
linear systems, reducing computational cost (see Section 2.1.3). Further-
more, the FDLF coefficient matrices B′ and B′′ each hold about a quarter
of the number of nonzeros that the Jacobian matrix has, reducing memory
requirements and computational cost compared to Newton power flow.

Summarising, the choice between Newton power flow and Fast Decoupled
Load Flow is about reducing computational and memory cost per iteration,
at the cost of convergence speed and robustness.

In practice, Newton power flow is usually preferred because of the im-
proved robustness. In the discussion of [11], it was also agreed upon that for
the large complex power flow problems of the future, the focus should be on
Newton power flow, rather than Fast Decoupled Load Flow. As discussed—
both in theory and experiments—in the remainder of this work, Newton-
Krylov power flow methods offer the best of both.
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6.4 Interpretation as Elementary Newton-Krylov

Methods

Both traditional Newton power flow and Fast Decoupled Load Flow can
be interpreted as simple Newton-Krylov power flow solvers, that perform
a single Richardson iteration (see Section 2.2.1) in each Newton step. In
the case of Newton power flow the Richardson iteration is preconditioned
using an LU factorisation of the Jacobian matrix. For Fast Decoupled Load
Flow the preconditioner instead is the FDLF operator, consisting of LU
factorisations of B′ and B′′. This interpretation shows a clear path of in-
vestigation, towards improving on the traditional power flow solvers. The
single Richardson iteration should be replaced by the combination of a more
efficient Krylov method, like GMRES, Bi-CGSTAB, or IDR(s), and a good
strategy for choosing the forcing terms.

For Fast Decoupled Load Flow this directly leads to a proper Newton-
Krylov method, preconditioned with the FDLF operator. Provided that
the used Krylov method converges linearly or better, the total amount of
linear iterations performed is no larger than the total amount of Richardson
iterations needed for FDLF (see Chapter 4), while the amount of nonlinear
iterations goes down, and the convergence and robustness improve to the
level of Newton power flow.

Newton power flow needs some more work. Since the preconditioner
is a direct solve on the coefficient matrix, a single linear iteration leads
to convergence independent of the Krylov method and the forcing terms.
Thus the preconditioner has to be relaxed. Obvious candidates are using an
incomplete LU factorisation of the Jacobian matrix in each Newton iteration,
or a single LU or ILU factorisation of the initial Jacobian J0 throughout all
Newton iterations. A relaxed preconditioner leads to more linear iterations
being needed. However, if the calculation of the relaxed preconditioner
is sufficiently faster than the direct solves of the traditional method, the
method may be faster overall.

In Chapter 7 we investigate the use of Newton-Krylov solvers for power
flow problems in detail, and compare the performance of such methods with
that of traditional Newton power flow.



CHAPTER 7

Newton-Krylov Power Flow Solver

Newton power flow solvers traditionally use a direct solver for the linear
systems [49, 50] (see also Chapter 6). Iterative linear solvers are generally
more efficient than direct solvers for large linear systems of equations with
a sparse coefficient matrix (see Chapter 2). Using a Krylov method to solve
the Jacobian systems in the Newton-Raphson method, leads to an inexact
Newton-Krylov method (see Chapter 3). It has been recognised that such
solvers can offer advantages over the traditional implementation for large
power systems [43, 37, 22, 14, 9, 58].

In this chapter, all aspects of an inexact Newton-Krylov power flow solver
are discussed, using the numerical experiments in Chapter 9 as a reference.
Section 7.1 focuses on which Krylov method to use, followed by a discussion
on preconditioning in Section 7.2, and a treatment of different strategies to
choose the forcing terms in Section 7.3. Section 7.4 gives an overview of the
speed and scaling of the Newton-Krylov power flow solver, and Section 7.5
discusses the robustness of the solver.

We show that direct solvers, and other methods using the LU factorisa-
tion, scale very badly in the problem size. The alternatives proposed in this
chapter are faster for all tested problems and show near linear scaling, thus
being much faster for large power flow problems. The largest test problem,
with one million buses, takes over an hour to solve using a direct solver,
while our Newton-Krylov solver can solve it in less than 30 seconds. That
is 120 times faster.

Furthermore, the Newton-Krylov power flow solver offers more options
to tweak settings and reuse information when solving many closely related
power flow problems, as is done for example in contingency analysis. This
can lead to a significant reduction of computation time (see Chapter 8).

61
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7.1 Linear Solver

In every Newton iteration, a linear system of the form

−Jisi = F i (7.1)

has to be solved. The Jacobian matrix Ji can be calculated at very little ex-
tra cost when evaluating the power mismatch F i (see Section 6.1.2). There-
fore, there is no need to resort to an approximate Jacobian, or Jacobian-free
method (see Section 3.1).

The linear solver considered in this chapter is preconditioned GMRES
(see Section 2.2). GMRES has the optimality property, and thus solves the
linear problem in the minimal number of iterations generally needed by a
Krylov method. The number of iterations needed to converge says some-
thing about the quality of the preconditioner. Whether restarted GMRES,
or other Krylov methods—like Bi-CGSTAB or IDR(s)—should also be con-
sidered, can be derived from the performance of GMRES.

In our experiments, the best results were attained with high quality
preconditioners. Then, only a low number of GMRES iterations are needed
per Newton iteration. At such low iteration counts there is no reason to
restart GMRES, nor to drop the optimality property for a method with
short recurrences. Bi-CGSTAB proved faster than GMRES for lower quality
preconditioners; however, GMRES with a high quality preconditioner was
still faster than Bi-CGSTAB with lower quality preconditioners. IDR(s) can
be expected to lead to a similar result for the tested power flow problems.

7.2 Preconditioning

Preconditioning is essential to the performance of Krylov methods such as
GMRES, see Section 2.2.4. Our solver uses right preconditioning, meaning
that the linear system

JiP
−1
i zi = −F i, (7.2)

is solved and the Newton step si follows from solving Pisi = zi. For fast
convergence the preconditioner matrix Pi should resemble the coefficient
matrix Ji. At the same time, a fast way to solve linear systems of the form
Piui = vi is needed, as such a system has to be solved in each iteration of
the linear solver.

In this work we consider preconditioners in the form of a product of
a lower and upper triangular matrix Pi = LiUi. Any linear system with
coefficient matrix Pi can then simply be solved using forward and backward
substitution. To get such a preconditioner, we choose a target matrix Qi

and construct either the LU factorisation (see Section 2.1.1) or an ILU(k)
factorisation (see Section 2.1.5). Section 7.2.1 presents the different choices
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for the target matrix. In Section 7.2.2 quality and fill-in are discussed for
the two factorisation methods.

Other preconditioners that are known to often work well for large prob-
lems are preconditioners based on iterative methods. Only stationary itera-
tive methods can be used as a preconditioner for standard implementations
of GMRES, Bi-CGSTAB, and IDR(s). Nonstationary iterative methods, like
GMRES itself, can only be used with special flexible iterative methods, like
FGMRES [39]. The use of FGMRES with a GMRES based preconditioner
was explored in [58].

Algebraic Multigrid (AMG) methods can also be used for as precondi-
tioner. A cycle of AMG, with a stationary solver on the coarsest grid, leads
to a stationary preconditioner. Such a preconditioner is very well suited for
extremely large problems. For more information on AMG see [51, App. A].

7.2.1 Target Matrices

The target matrix Qi is the matrix used to derive the preconditioner from.
In this work three options are considered. These are the Jacobian matrix
Qi = Ji, the initial Jacobian matrix Qi = J0, and Qi = Φ, where

Φ =

[

B′ 0
0 B′′

]

, (7.3)

with B′ and B′′ as in the BX scheme of the Fast Decoupled Load Flow
method (see Section 6.2).

The FDLF matrix Φ can be seen as an approximate Schur complement
of the initial Jacobian matrix, as discussed in Section 6.2.3. This matrix has
already been shown to be a good preconditioner [22]. It is a lower quality
preconditioner than the initial Jacobian matrix itself. However, it consists
of two independent blocks with each about a quarter of the nonzeros found
in the Jacobian matrix. The structure, and the lower nonzero count, provide
benefits in computing time and memory usage.

7.2.2 Factorisation

The preconditioners used in our solver are LU factorisations and ILU(k)
factorisations of the target matrices discussed in Section 7.2.1. For the LU
factorisation this leads to preconditioners Pi = LiUi = Qi, whereas with the
ILU factorisation the preconditioners Pi = LiUi only resembles the target
matrix Qi. An ILU factorisation is generally cheaper to build than the LU
factorisation, whereas the LU factorisation will result in a higher quality
preconditioner.

With the LU factorisation the quality of the preconditioner is prede-
termined by the target matrix, since Pi = Qi. The LU decomposition of a
sparse matrix generally leads to a certain amount of fill-in (see Section 2.1.4).
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The more fill-in, the more memory and computational time are needed for
the factorisation and the forward and backward substitutions. It is therefore
important to try to minimise the fill-in of the LU factorisation, by choosing
a proper ordering of the rows and columns of the target matrix Qi.

With the ILU(k) factorisation, the fill-in ratio is influenced both by the
number of levels k, and the row and column ordering. The effect of the
matrix ordering on the fill-in is much less pronounced than with the LU
decomposition. However, the ordering also influences the quality with which
the ILU factorisation approximates the target matrix Qi (see Section 2.1.5).

In our experiments, using no reordering was compared with the PETSc
implementations of Nested Dissection (ND), One-way Dissection (1WD),
Reverse Cuthill-McKee (RCM), Quotient Minimum Degree (QMD), and Ap-
proximate Minimum Degree (AMD). Of these, the AMD reordering [3] was
a clear winner, being the fastest to compute while yielding the least fill-in
with a full LU factorisation and the best quality ILU factorisations at the
same time. Reordering methods provided in UMFPACK [12], SuperLU [17],
SuperLU DIST [32], and MUMPS [4] were also tested, but none yielded an
improvement over the PETSc AMD reordering for our test problems. See
Section 9.1 for an overview of the experiments that led to these conclusions.

7.3 Forcing Terms

Inexact Newton methods solve the Jacobian system in iteration i such that

‖F (xi) + J (xi) si‖ ≤ ηi‖F (xi) ‖, (7.4)

where ηi is called the forcing term (see Section 3.1.1). Choosing the forcing
terms correctly is very important, as discussed in detail in Chapter 4. Below,
three strategies for choosing the forcing terms are discussed.

The first strategy is based on work by Dembo and Steihaug [16]:

ηi = min

{

1

2i
, ‖F i‖

}

. (7.5)

This method allows for superlinear convergence when the iterate is far from
the solution, switching to quadratic convergence when nearing the solution.

The second strategy is by Eisenstat and Walker [20]. This method starts
with some choice of initial forcing term η0, and for i > 0 sets

ηi =

∣

∣

∣

∣

‖F i‖ − ‖F i−1 + Ji−1si−1‖
‖F i−1‖

∣

∣

∣

∣

, (7.6)

while safeguarding from oversolving by adding the rule

if η
1

2
+ 1

2

√
5

i−1 >
1

10
, then ηi = max

{

ηi, η
1

2
+ 1

2

√
5

i−1

}

. (7.7)

In our experiments η0 = 0.1 was used.
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The final strategy discussed here, is the affine contravariant strategy
derived in the work of Hohmann [24]:

ηi =
εi

1 + εi
, (7.8)

where
εi =

β

2
min {1, hi} , (7.9)

with

hi =

{

2−β
1+β

i = 0,
1+β

2(1−εi−1)
h2

i−1 i > 0.
(7.10)

For our experiments we used β = 1. Note that the forcing terms of this
strategy—unlike the other two strategies—do not depend on the problem.
This strategy was also applied to power flow problems in [14].

Some authors have used fixed forcing terms throughout all Newton iter-
ations for power flow problems [43, 37, 22, 9]. This is generally not a good
idea. If the chosen forcing terms are small, then a lot of oversolving is done
in early iterations, leading to many extra GMRES iterations. If the forcing
terms are large, then there is a lot of undersolving in later iterations, leading
to many extra Newton iterations. And anything in between leads to both
oversolving in early iterations, and undersolving in later iterations.

The strategy by Eisenstat and Walker is successfully being used in prac-
tice on many different types of problems. It also provided very good results
in our power flow experiments. The method based on the work of Dembo
and Steihaug also gave good results for our test cases, but generally led to
undersolving. The Hohmann strategy also performed quite well, but gener-
ally yielded smaller forcing terms, resulting in oversolving. For more details
see Section 9.2, and the numerical experiments in Section 9.3.

7.4 Speed and Scalability

This section gives an overview of the speed and scalability of our Newton-
Krylov power flow solver. The numerical experiments, on which this section
is based, can be found Section 9.3.

For the smaller test cases, using the LU factorisation of the J0 target
matrix led to the best results for all forcing term strategies. The Eisenstat
and Walker forcing terms performed slightly better than the tested alterna-
tives. Table 7.1 compares the resulting solution times in seconds, with those
of the traditional implementation with a direct solver.

Solving a single power flow problem of these sizes is so fast, that all
tested methods are acceptable. However, when using the power flow solver
as part of a larger system that has to solve many power flow problems, as
for example in contingency analysis, using the LU factorisation of J0 can
lead to a significant reduction of computing time.
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problem uctew001 uctew002 uctew004 uctew008

direct 0.077 0.16 0.33 0.69
LU of J0 0.060 0.12 0.25 0.52

Table 7.1: Power flow for small test cases

For the larger test cases, any method using the LU decomposition is slow
due to the bad scaling of that operation (see Section 9.1.1). The best results
were attained using ILU(12) factorisations of the J0 and Φ target matrices.
Again, the Eisenstat and Walker forcing terms generally performed slightly
better than the other tested methods. Figure 7.1 shows the solution time in
seconds for LU and ILU(12) factorisations of the J0 and Φ target matrices,
using Eisenstat and Walker forcing terms.
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Figure 7.1: Power flow for all test cases

The bad scaling of the LU factorisation is clearly visible. It is worse
for J0 than for the Φ target matrix, because the Φ matrix consists of two
independent blocks of half the dimension, see also Section 9.1.1.

The ILU(12) factorisation leads to near linear scaling. Which of the two
target matrices leads to the fastest solution, using ILU(12), differs per test
case. This has to do with being a bit lucky, or unlucky, at how the inexact
Newton step turns out exactly for a certain problem and forcing term, much
more than it has to do with the quality of the preconditioner.
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7.5 Robustness

This section investigates the robustness of the Newton-Krylov power flow
solver, and compares it with that of traditional Newton power flow. Conver-
gence of exact and inexact Newton methods are generally very close. There-
fore, to compare the robustness of the methods, the linear solvers should be
compared. Direct linear solvers are very robust. Thus the question is how
robust the used iterative linear solver is.

The convergence of Krylov solvers depends on the Krylov subspace,
which is determined by the coefficient matrix and starting solution (see Sec-
tion 2.2.1). The condition number of the coefficient matrix can give some
indication on how fast Krylov solvers will converge. The Jacobian systems
of our test cases are quite ill-conditioned. For example, the condition num-
ber of the initial Jacobian J0 of the uctew001 test case is 1.2 × 109. This is
exactly why preconditioning is such an important part of the solution pro-
cess. Due to the large condition number, low quality preconditioners lead
to very slow convergence. However, with the preconditioners Pi based on
LU and ILU(12) factorisations, the condition numbers of the preconditioned
coefficient matrices JiP

−1
i drop below 10, leading to very fast convergence.

To test the robustness of the methods used in this work in the context of
the power flow problem, experiments were conducted on the uctew032 test
case under different loading levels. Both the Newton-Raphson method with
direct solver and the inexact Newton methods were able to solve the problem
up to a loading level of 160%, but failed to converge at 170% without the
help of line search or trust region techniques. It should be noted here that
the solution of the power flow problem at the highest loading levels had such
large voltage angles not to be of practical value, indicating that the solvers
are well up for any practical loading levels of the power system.

Table 7.2 shows test results for the uctew032 problem at different loading
levels, using the LU factorisation of J0 as preconditioner. Presented are the
number of Newton iterations N , the GMRES iterations (total amount and
amount per Newton iteration), and an estimate σ̃ of the condition number
of the preconditioned coefficient matrix in the last Newton iteration.

load N GMRES iterations σ̃

100% 6 21 [1,3,2,3,5,7] 3.5
110% 6 21 [1,3,2,3,5,7] 3.5
120% 6 22 [1,3,2,3,5,8] 4.1
130% 7 35 [1,3,2,3,6,7,13] 4.6
140% 7 37 [1,3,2,4,5,8,14] 5.4
150% 7 35 [1,3,2,4,6,7,12] 6.8
160% 7 34 [1,3,2,4,6,5,13] 10.4

Table 7.2: Convergence at different loading levels
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The solution of the problem with higher loading levels lies farther away
from the flat start than with lower load. Since the preconditioner is based on
the Jacobian at a flat start, the Jacobian near the solution also differs more
from the preconditioner for high loading levels. As a result the condition
number of the preconditioned coefficient matrix in the last Newton iteration
goes up with the loading level. However, overall the condition number stays
very small and GMRES convergence does not deteriorate visibly. It does
take longer to solve the systems with high load, but this is due to Newton
convergence suffering and not the linear solver, and is thus the same when
using a direct linear solver. Similar results hold for the other preconditioners
suggested in this work.



CHAPTER 8

Contingency Analysis

Secure operation of a power system requires not only that the power system
operates within specified system operating conditions, but also that proper
operation is maintained when contingencies occur. Contingency analysis
simulates credible contingencies to analyse their impact.

Contingency analysis consists of three phases: definition, selection, and
evaluation. In the definition phase, a list of contingencies that have a non-
negligible chance of occurring is constructed. These contingencies mostly
consist of single or multiple generator and branch outages. Then, in the
selection phase, fast approximation techniques are used to cheaply identify
contingency cases that will not violate system operation conditions. These
contingencies can be eliminated from the list made in the definition phase.
Finally, in the evaluation phase, the power flow problem for the remain-
ing contingencies is solved, and the solution analysed. For more detailed
information, see for example [47].

In this work we focus on the evaluation phase. In particular we focus on
using the Newton-Krylov power flow solver to speed up the calculation of
many closely related power flow problems. Speeding up consecutive solves
generally involves reusing information from earlier solves. The information
that can be reused in contingency analysis, that is not available in traditional
Newton power flow, is the preconditioner. We show that this can lead to a
significant reduction of the computational time.

The methodology proposed in this chapter for branch outages in con-
tingency analysis, can be used whenever power flow problems have to be
solved that only differ slightly from each other. This includes other outages,
Monte Carlo simulations, and optimization problems, but also handling re-
active power limits of generators and tap changing transformers. Similar
techniques were proposed for contingency screening in [2].
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8.1 Simulating Branch Outages

A branch outage can be simulated by removing the branch from the power
system model, and then solving the associated power flow problem normally.
In contingency analysis, this leads to a large amount of power flow problems
to be solved. Solving all these problems can take a huge computational
effort. Therefore, it is important to look at ways to speed up this process,
beyond the efforts of speeding up the power flow solver itself. The general
methodology here, is to treat the branch outage as an update of the base
case—that is, the case without any outages—instead of treating it as a
separate problem.

A simple improvement that can be made, is to update the admittance
matrix Y , instead of recalculating it. Let i and j be the buses that the
removed branch used to connect. Then only the values yii, yij, yji, and yjj

in the admittance matrix need to be updated.

Since the power system with branch outage very closely resembles the
base case, it seems logical to assume to solutions of the associated power flow
problems are relatively close to each other. Therefore, instead of using a flat
start, using the solution of the base case as initial iterate for the contingency
case can be expected to significantly reduce the number of Newton iterations
needed to converge.

The above two techniques can be equally exploited in classical Newton
power flow, Fast Decoupled Load Flow, and Newton-Krylov power flow.
Fast Decoupled Load Flow further allows the reuse of the factorisation of
the base case coefficient matrices B′ and B′′ for the contingency cases, either
through updates of the factors, or compensation [48, 1, 53].

Newton-Krylov power flow offers some extra options in the form of pre-
conditioning and forcing terms. A preconditioner based on the base case
can be used for all contingency cases, eliminating the need to perform a
factorisation for each contingency. This preconditioner will generally not
be as good for the contingency cases as one derived from the contingency
cases themselves, but the resulting extra GMRES iterations are relatively
cheap. The techniques used to update the coefficient matrices for simulating
branch outages using Fast Decoupled Load Flow, can also be used to update
the preconditioner for each contingency case. The convergence of the base
case may be analysed, to derive an educated guess of forcing terms for the
contingency cases.

Numerical experiments, simulating branch outages using Newton-Krylov
power flow, can be found in Section 9.4. These experiments focus on reusing
the LU factorisation of some Jacobian matrix as preconditioner. Updates
of the factorisation, as used in FDLF, have not been tested. Analysis of
the forcing terms yielded only minor improvements over the Eisenstat and
Walker forcing terms, as these forcing terms already adapt to the problem
very well.
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Figure 8.1 gives an overview of the results for the UCTE winter 2008
study model test case, using Eisenstat and Walker forcing terms. PCSetUp
is the time spent on LU factorisations, PCApply is the time spent on forward
and backward substitutions, and KSPRest is the remaining time spent on
linear solves. CalcJac stand for the the calculation of the Jacobian system,
i.e., the power mismatch and the Jacobian matrix, and CARest is whatever
computing time remains.

The left three bars represent methods using a flat start, while the right
three bars use the solution of the base case as initial iterate for the contin-
gency cases. The methods used are:

A : Newton power flow with a direct linear solver,
B : Newton-GMRES with the contingency cases preconditioned

with their own initial Jacobian,
C : Newton-GMRES with the contingency cases preconditioned

with the base case Jacobian evaluated in the vector that is
used as initial iterate for the contingency cases.

Classical Newton power flow (A) is chosen here to serve as a reference.
Method B is chosen because it proved the fastest for a single UCTE test case
in Section 9.3. Finally, method C illustrates the benefits of using a single
preconditioner for all contingency cases.
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Figure 8.1: Contingency analysis
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With the classical Newton power flow, most of the computational effort
goes into the LU factorisation of the Jacobian matrices (PCSetUp). Such
a factorisation has to be made in every Newton iteration. The rest of the
linear solution time consists of a single forward-backward substitution per
Newton iteration (PCApply). With Newton-GMRES, preconditioned with
the initial Jacobian of the case that is being solved, only one LU factorisation
has to be made per contingency case, at the cost of some other computational
effort provided by the GMRES iterations. When preconditioning Newton-
GMRES with the base case Jacobian, the time spent on LU factorisations
becomes negligible, at the cost of some extra GMRES iterations.

Starting with the solution of the base case has a clear advantage over
a flat start for this test case. Many fewer Newton iterations are needed
when using the base case solution as initial iterate, leading to a significant
computational speed-up.

The Newton-Krylov method B outperforms classical Newton power flow.
However, the difference is much less distinct when starting from the base
case solution than when using a flat start. Because there are less Newton
iterations needed per contingency case, the benefit of doing only a single
LU factorisation per case is less pronounced. Also, because the solution of
the base case provides a much better initial iterate the Newton process is
started closer to the solution, and the direct solver is doing less oversolving
in the initial steps than when using a flat start. This further lessens the
advantage of the inexact Newton method over Newton with a direct solver.

The best results are attained using the base case solution as start, and
the base case Jacobian in that solution as preconditioner, for the contingency
cases (C,base). This method is about 3.8 times faster than classical Newton
power flow with a flat start, and 1.7 times faster than classical Newton power
flow started with the solution of the base case. Note that the methods only
differ in the linear solver. Looking purely at the time spent in the linear
solver, this method is 6.2 and 2.7 times faster than classical Newton power
flow with a flat start, and with the base case solution start, respectively.

8.2 Other Simulations with Uncertainty

The methodology described in Section 8.1 can also be used in many other
power flow simulations that include some element of uncertainty. This in-
cludes optimisation problems and Monte Carlo simulations, but also the
handling of tap transformers and reactive power limits of generators. Two
examples are outlined below.

The most obvious example is dealing with uncertainty in load. This is
a very topical problem, as wind turbines—which have a high uncertainty
in the amount of generated power—are often modeled as negative loads.
Using Monte Carlo simulations to handle these stochastic factors requires
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the solution of a lot of power flow problems with different load values, but the
same network topology. Since the load values do not influence the Jacobian
matrix, all these power flow problems have the same initial Jacobian matrix
when started with the same initial iterate. As such, that Jacobian matrix
can be expected to be a very good preconditioner for all problems within
the Monte Carlo simulation.

The other example is bus-type switching, due to the violation of reactive
power limits of generators. Again, the preconditioner of the base case can be
used to solve the derived case. However, this does require an implementation
of the power flow solver, in which bus-type switching does not lead to a
change in the dimension of the linear system (see Section 6.1.3).





CHAPTER 9

Numerical Experiments

In this chapter, numerical experiments with our Newton-Krylov power flow
solver are discussed. Section 9.1 treats experiments with the LU and ILU(k)
factorisation, using different reordering methods, to determine the relevant
options. Section 9.2 analyses some experiments with different forcing term
strategies. Section 9.3 discusses experiments with the power flow solver for
all target matrices and forcing terms. Finally, section 9.4 treats contingency
analysis experiments.

The implementation of our solver is done in C++ using PETSc (Portable,
Extensible Toolkit for Scientific Computation) [6], a state of the art, award
winning C library for scientific computing. PETSc can be used to produce
both sequential programs, and programs running in parallel on multiple
processors.

All experiments are performed on a single core of a machine with Intel
Core2 Duo 3GHz CPU and 16Gb memory, running a Slackware 13 64-bit
Linux distribution. For info on the used test set of power flow problems see
Appendix B.
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9.1 Factorisation

This section discusses numerical experiments with LU and ILU(k) factori-
sations, and different row and column ordering methods. In Section 9.1.1
different ordering methods are tested for the LU decomposition, and the
scaling of this factorisation is investigated. Section 9.1.2 treats the impact
of matrix ordering on the ILU(k) factorisation, and tests the speed and
scaling for different levels k.

All experiments conducted in this section consist of solving the Jaco-
bian system of the first Newton iteration, J0s0 = F 0, using preconditioned
GMRES up to an accuracy of 10−5. The scaling experiments solve all test
cases. The other experiments all use the uctew032 problem, but similar
results were obtained for all test cases.

The discussion of the experiments includes computation times spend on
the relevant PETSc functions. See Table 9.1 for an explanation of these
PETSc functions. All computational times are measured in seconds. Fur-
ther, the notation nnz (L + U) is used for the number of nonzeros in the
factors L and U combined, and the term fill ratio is used for the number
of nonzeros in the factors divided by the number of nonzeros in the target
matrix.

MatGetOrdering : matrix reordering
MatLUFactorSym : symbolic LU factorisation
MatILUFactorSym : symbolic ILU factorisation
MatLUFactorNum : numeric factorisation for LU or ILU
PCSetUp : reordering and factorisation
PCApply : forward and backward substitution
KSPSolve : linear solve

Table 9.1: PETSc functions

9.1.1 LU Factorisation

Table 9.2 shows the results of the direct solution of the first Jacobian system
of the uctew032 test case. The direct solver of PETSc was tested together
with the provided matrix ordering methods. PETSc was also used to call
the UMFPACK, MUMPS, SuperLU, and SuperLU Dist solvers, with their
respective ordering methods. Note that for the SuperLU and SuperLU Dist
packages the natural row ordering was used, as the alternative yielded no
improvement. Further note that PETSc, UMFPACK, and SuperLU only
provide sequential implementations of the LU factorisation. If parallel com-
puting is desired, MUMPS and SuperLU Dist can be used. For details on
the tested ordering methods, see the manuals of the respective packages.
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package PETSc SuperLU
ordering none ND 1WD RCM QMD AMD none MMD ATA MMD AT+A COLAMD

MatGetOrdering 0.01 0.20 0.04 0.05 5.91 0.09 0.20 0.20 0.20 0.20
MatLUFactorSym 1.63 2.52 7.56 7.56 0.18 0.13 0 0 0 0
MatLUFactorNum 31.92 287.44 925.83 922.26 0.56 0.31 32.83 1.79 3.98 1.37

PCSetUp 33.56 290.16 933.43 929.87 6.65 0.53 33.03 1.99 4.18 1.57
PCApply 0.22 0.35 1.02 1.03 0.02 0.02 0.29 0.06 0.09 0.06
KSPSolve 33.78 290.51 934.45 930.90 6.67 0.55 33.32 2.05 4.27 1.63

nnz (L + U) 70.4M 110M 328M 328M 5.28M 4.67M 71.8M 8.21M 15.4M 8.46M
fill ratio 35.03 54.89 163.10 163.26 2.63 2.32 35.72 4.08 7.68 4.21

package UMFPACK MUMPS SuperLU Dist
ordering AMD AT+A AMD AMF PORD METIS QAMD none MMD ATA MMD AT+A

MatGetOrdering 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
MatLUFactorSym 0.48 0 0 0 0 0 0 0 0
MatLUFactorNum 0.90 1.26 1.21 2.07 1.90 1.27 84.07 2.23 1.27

PCSetUp 1.59 1.46 1.41 2.27 2.11 1.48 84.28 2.44 1.48
PCApply 0.03 0.12 0.12 0.12 0.12 0.13 0.66 0.17 0.13
KSPSolve 1.62 1.59 1.54 2.40 2.23 1.60 84.94 2.61 1.61

nnz (L + U) 4.63M 4.91M 4.64M 5.02M 5.56M 4.91M 70.8M 8.09M 5.26M
fill ratio 2.30 2.44 2.31 2.50 2.77 2.44 35.24 4.02 2.61

Table 9.2: Direct linear solve using different solver packages and ordering methods
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From the fill ratio, it is clear that AMD (and related methods) provide
the best reordering in terms of fill-in. Using such a method reduces the fill-in
from a factor 35, to around 2.3. Some of the methods lead to a fill ratio much
worse than that for the original ordering. These methods generally expect a
much more structured matrix, as arises for example from the discretisation
of differential equations on structured grids.

In terms of computational time, the PETSc solver with AMD ordering
performed the best. The difference with AMD ordering of other packages
may well be due to the overhead of calling that package from PETSc. It is
possible to use external packages for the matrix reordering only, and then
solve the problem with the PETSc solver. However, with the AMD reorder-
ing of PETSc leading to such good results, there is no need to do so.

Figure 9.1 shows the factorisation time for the initial Jacobian matrix
and the FDLF matrix Φ of the uctew032 test case. The bad scaling of
the LU decomposition is clearly visible. Recall from Section 7.2.1, that the
matrix Φ consists of two independent blocks with each about a quarter of
the nonzeros found in the Jacobian matrix. These blocks—which have half
the dimension of the Jacobian matrix—can be factorised independently. As
a result, the LU decomposition of Φ scales similar to that of the Jacobian
matrix of a problem of half the size.
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Figure 9.1: LU factorisation of J and Φ
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9.1.2 ILU Factorisation

Table 9.3 shows the results of numerical experiments on the effect of matrix
reordering on the ILU(k) factorisation method. The initial Jacobian system
of the uctew032 test case was solved using GMRES, preconditioned with
an ILU(8) factorisation of the coefficient matrix, using different ordering
methods.

ordering none ND 1WD RCM QMD AMD

MatGetOrdering 0.01 0.20 0.04 0.05 5.90 0.09
MatILUFactorSym 1.81 0.69 0.45 0.46 0.27 0.21
MatLUFactorNum 0.94 0.41 0.25 0.25 0.18 0.12

PCSetUp 2.76 1.31 0.74 0.77 6.36 0.42
PCApply 0.58 0.42 0.31 0.32 0.22 0.16
KSPSolve 3.54 2.01 1.29 1.32 6.76 0.74

GMRES iterations 12 15 13 13 11 10

nnz (L + U) 15.0M 7.62M 5.84M 5.96M 3.71M 3.56M
fill ratio 7.47 3.79 2.90 2.97 1.85 1.77

Table 9.3: Linear solve with ILU(8) and different orderings

The fill ratio clearly illustrates that the ordering method influences the
fill-in of the ILU(k) factorisation much less drastically than it did for the
LU decomposition. Further note that all the tested reorderings improve the
fill-in compared to the natural ordering, whereas with the LU factorisation
some ordering methods led to more fill-in. However, the ordering methods
that led to worse fill-in here need more GMRES iterations to converge. This
indicates that the ILU(8) preconditioner is of lesser quality for these ordering
methods.

The AMD ordering again performs the best. It leads to the lowest fill
ratio and the lowest amount of GMRES iterations. Thus it produces the
highest quality preconditioner, with the least amount of nonzeros. Fur-
thermore, both the calculation and the application of the AMD reordered
preconditioner are faster than any of the alternatives, leading to the fastest
overall solution time.

Table 9.4 holds the results of numerical experiments with different ILU
levels. Again, the initial Jacobian system of the uctew032 test case was
solved using ILU(k) preconditioned GMRES. The AMD reordering was used
in all cases because it gave the best results, as was illustrated above for
ILU(8). The last column holds the data of a direct solve for comparison.

Using less than 4 levels leads to a preconditioner of too low quality. The
factorisation is fast and the fill ratio is low, but due to the amount of GMRES
iterations needed the solution time is much higher than with more levels.
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Using more than 16 levels leads to a very high quality preconditioner. With
64 levels the factorisation even becomes the same as the LU decomposition.
Few GMRES iterations are needed to solve the linear problem, but the
factorisation takes more time and the fill ratio is larger, making the overall
solution time higher than with 4 to 16 levels.

factorisation ILU(0) ILU(2) ILU(4) ILU(8)

Mat(I)LUFactorSym 0.08 0.14 0.17 0.21
MatLUFactorNum 0.08 0.10 0.11 0.12

PCSetUp 0.24 0.33 0.37 0.42
PCApply 2.30 0.71 0.35 0.16
KSPSolve 24.94 2.94 1.28 0.74

GMRES iterations 215 55 25 10

nnz (L + U) 2.01M 2.85M 3.21M 3.56M
fill ratio 1 1.42 1.60 1.77

factorization ILU(16) ILU(32) ILU(64) LU

Mat(I)LUFactorSym 0.26 0.47 0.85 0.31
MatLUFactorNum 0.14 0.26 0.31 0.13

PCSetUp 0.50 0.81 1.25 0.53
PCApply 0.09 0.07 0.04 0.04
KSPSolve 0.67 0.94 1.31 0.59

GMRES iterations 5 3 1 1

nnz (L + U) 3.93M 4.52M 4.67M 4.67M
fill ratio 1.96 2.25 2.32 2.32

Table 9.4: Linear solve with different factorisations using AMD

Figure 9.2 show the scaling behaviour of different ILU(k) levels. The
ILU(2) and ILU(8) factorisations both scale very well in the problem size,
but ILU(8) is approximately twice as fast as ILU(2). Higher ILU levels start
to lose the linear scaling behaviour, as illustrated by the ILU(32) graph,
which is nearing that of the LU factorisation.

Figure 9.3 inspects the scaling of ILU factorisations with around 8 levels.
ILU(4), ILU(8), and ILU(12) all scale approximately linearly, with ILU(4)
being slightly slower than the other two. The graphs of ILU(8) and ILU(12)
are practically on top of each other. ILU(16) is still very fast, but no longer
scales linearly. Therefore, in the remainder of this chapter only 4, 8, and 12
levels of ILU factorisations are considered.
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Figure 9.2: Linear solve for different problem sizes
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9.2 Forcing Terms

This section takes a look at the general behaviour of the three forcing term
strategies presented in Section 7.3. Their performance is illustrated by
analysing a representative case, solved with each of the forcing term strate-
gies. The uctew032 test problem is solved using GMRES, preconditioned
with the ILU(8) factorisation of the FDLF matrix Φ.

Figures 9.4, 9.5, and 9.6 show the resulting nonlinear convergence in
the total number of GMRES iterations, for Dembo and Steihaug, Eisenstat
and Walker, and Hohmann forcing terms respectively. The legend of these
figures is explained in Table 9.5. If the forcing residual mark is below the
actual residual, then the method is oversolving in that iteration. If the best
residual mark is below the actual residual, then it is undersolving. Note that
when there is no oversolving, the forcing residual mark is mostly on top of
the actual residual norm, as expected from the theory in Chapter 4.

actual : actual nonlinear residual norm in each Newton iter-
ation

forcing : nonlinear residual norm resulting from multiplying
the previous nonlinear residual norm by the forcing
term used in the current Newton iteration

best : nonlinear residual norm resulting from doing a full
accuracy linear solve in the current Newton iteration

Table 9.5: Nonlinear residual norm legend
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Figure 9.4: Dembo and Steihaug forcing terms
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Figure 9.5: Eisenstat and Walker forcing terms
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Figure 9.6: Hohmann forcing terms
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The following conclusions can be drawn from the above experiments.
The Dembo and Steihaug forcing terms lead to undersolving. The Eisenstat
and Walker forcing terms are spot-on for the first 4 Newton iterations, while
there is some undersolving in iteration 5, and oversolving in iteration 6. The
Hohmann forcing terms lead to oversolving in the later Newton iterations.
These conclusions are consistent with the general behaviour of these forcing
terms strategies in our power flow experiments, see Section 9.3.

The Eisenstat and Walker strategy includes the nonlinear residual norm
of the current and previous Newton iterations, and the latest linear residual
norm in its calculation; all the ingredients needed to determine whether
there was undersolving or oversolving in the previous iteration. Using this
information, the method tends to correct itself. If there is a lot of oversolving
in the previous iteration, then the forcing term will be chosen larger, often
leading to some undersolving, and vice versa.

9.3 Power Flow

This section reports on numerical experiments with the inexact Newton-
Krylov power flow solver, solving the full nonlinear problem. In each Newton
iteration, the linear system is solved using preconditioned GMRES. LU,
ILU(4), ILU(8), and ILU(12) factorisations of the target matrices Ji, J0,
and Φ are all tested as preconditioner. The problems are solved from a flat
start, up to an accuracy of 10−6 p.u.

Tables 9.6, 9.7, and 9.8 shows the results for Dembo and Steihaug forc-
ing terms, Eisenstat and Walker forcing terms, and Hohmann forcing terms
respectively (see Section 7.3). For each of the experiments, the number of
Newton iterations p and GMRES iterations q are given in the format p/q,
and the solution time in seconds. In each table, the number of Newton iter-
ations and solution time when using a direct solver are added as a reference.

For the smaller test cases, the best results were generally attained using
an LU decomposition of J0 as preconditioner. For the largest problems, the
LU decomposition becomes too slow due to the bad scaling, as demonstrated
in Section 9.1.1. For these cases, ILU(12) factorisations of Ji and Φ gave
the best results.

The Dembo and Steihaug forcing terms generally led to undersolving,
as can be seen from the higher amount of Newton iterations needed. The
Hohmann forcing terms on the other hand mostly led to a minimal amount
of Newton iterations, but higher amounts of GMRES iterations, indicat-
ing oversolving. The Eisenstat and Walker forcing terms usually showed
behaviour somewhere in between the other two strategies. For the largest
test cases, the Hohmann forcing terms sometimes were smaller than machine
precision allowed. Some form of safeguarding would be needed to catch such
cases.
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For each individual test case, the smallest solution time was attained
using some Ji or Φ based preconditioner together with the Eisenstat and
Walker forcing terms. These best solution times are marked with a grey
background in the tables. Note that in all the cases where a preconditioner
based on Φ gave the best result, this is due to the Ji based alternative
needing one or two extra Newton iterations.

9.3.1 Scaling

The number of Newton iterations needed to solve the problem generally did
not increase much when the problem size increased. For some combinations
of preconditioner and forcing terms the largest problems required a few
more iterations, but for other combinations the number of Newton iterations
stayed constant. This suggests that any increased number of iterations are
more due to getting a bit unlucky with the Newton steps, than it being a
fundamental result of the increased problem size.

Similarly, for each combination of preconditioner and forcing terms, the
total number of GMRES iterations was fairly constant for increasing problem
sizes. Whenever a significantly higher amount of GMRES iterations was
needed, it was generally due to an extra Newton iteration being used.

The basic operations of the Newton-Krylov power flow solver, are all
vector operations and operations on the Jacobian matrix. A larger power
system has more buses, but generally not more connections per bus. As a
result, the number of nonzeros per row in the Jacobian matrix do not grow
for larger problems. Thus the total number of nonzeros scales linearly in
the problem size, and so does the computation time of operations on the
Jacobian matrix like the calculation of that matrix and the multiplication
with a vector. The exception is the factorisation operation, see Section 9.1.

When the number of Newton and GMRES iterations are constant in
the problem size, the scaling of the Newton-Krylov power flow solver can
therefore be expected to be linear if the factorisation scales linearly. If the
factorisation scales badly, as is the case for the LU decomposition, the power
flow solver also scales badly.

Figures 9.7, 9.8, and 9.9 show the scaling behaviour of the solution time
using different factorisations of, respectively, Ji, J0, and Φ as preconditioner.
Indeed, the solver exhibits approximately linear scaling when using ILU(k)
factorisations with 4 to 8 levels, which were shown to scale linearly up to a
million buses in Section 9.1.2. The LU factorisation leads to bad scaling, as
expected from the results of Section 9.1.1.
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power flow problem uctew001 uctew002 uctew004 uctew008 uctew016 uctew032 uctew064 uctew128 uctew256

direct iterations 7 7 7 7 7 7 7 6 8
time 0.077 0.16 0.33 0.69 1.54 3.96 20.89 305.41 3810.80

Ji ILU(4) iterations 7/76 7/79 7/75 7/79 7/80 7/77 7/72 8/108 8/107
time 0.12 0.26 0.53 1.14 2.40 4.81 9.43 27.09 54.91

Ji ILU(8) iterations 7/43 7/47 7/38 7/42 7/39 7/39 7/39 8/46 9/49
time 0.10 0.21 0.42 0.89 1.76 3.62 7.42 18.43 42.78

Ji ILU(12) iterations 7/24 7/28 7/27 7/27 7/26 7/24 7/24 7/22 9/32
time 0.089 0.19 0.39 0.81 1.64 3.27 6.75 15.07 42.25

J0 LU iterations 7/23 7/22 7/22 7/19 7/21 7/23 7/28 8/40 9/47
time 0.068 0.14 0.28 0.57 1.21 2.70 7.89 65.13 517.90

J0 ILU(4) iterations 7/83 7/84 7/81 7/79 7/82 8/136 8/118 8/128 8/135
time 0.11 0.23 0.49 1.01 2.14 7.08 12.56 27.73 58.90

J0 ILU(8) iterations 7/40 7/38 7/35 7/35 8/58 8/55 8/68 8/72 9/88
time 0.082 0.16 0.33 0.68 1.84 3.66 8.51 18.03 42.93

J0 ILU(12) iterations 7/27 7/27 7/24 7/24 7/24 8/36 7/32 8/56 9/65
time 0.073 0.15 0.30 0.62 1.25 3.08 5.75 16.09 36.87

Φ LU iterations 7/34 7/33 7/33 7/33 7/35 7/33 7/35 8/59 8/56
time 0.081 0.13 0.28 0.58 1.22 2.54 5.84 23.22 113.18

Φ ILU(4) iterations 7/107 7/101 8/160 8/161 8/164 8/162 8/142 8/146 8/178
time 0.12 0.23 0.78 1.68 3.68 7.77 13.76 29.29 73.77

Φ ILU(8) iterations 7/61 7/54 7/50 7/52 7/56 7/55 8/93 8/95 8/94
time 0.083 0.16 0.32 0.70 1.49 3.11 9.65 20.08 40.20

Φ ILU(12) iterations 7/44 7/40 7/40 7/41 7/44 7/45 7/47 8/60 8/69
time 0.073 0.14 0.30 0.63 1.32 2.81 5.97 14.57 32.57

Table 9.6: Power flow experiments using the Dembo and Steihaug forcing terms
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power flow problem uctew001 uctew002 uctew004 uctew008 uctew016 uctew032 uctew064 uctew128 uctew256

direct iterations 7 7 7 7 7 7 7 6 8
time 0.077 0.16 0.33 0.69 1.54 3.96 20.89 305.41 3810.80

Ji ILU(4) iterations 7/102 7/113 7/116 7/123 7/128 7/127 7/117 7/115 7/114
time 0.15 0.34 0.74 1.65 3.56 7.34 13.87 28.10 57.74

Ji ILU(8) iterations 7/44 7/44 7/53 7/50 7/50 7/50 7/48 7/40 9/50
time 0.10 0.21 0.48 0.96 1.97 4.04 8.15 16.55 43.42

Ji ILU(12) iterations 7/25 7/28 7/27 7/31 7/32 7/32 7/33 7/29 8/22
time 0.090 0.19 0.39 0.84 1.75 3.56 7.45 16.18 36.57

J0 LU iterations 6/18 6/18 6/18 6/18 7/29 6/21 6/26 7/40 8/37
time 0.060 0.12 0.25 0.52 1.34 2.50 7.51 64.55 511.08

J0 ILU(4) iterations 7/112 7/121 7/126 7/128 7/141 7/167 7/139 7/150 7/165
time 0.14 0.33 0.72 1.54 3.55 8.95 15.30 33.16 76.14

J0 ILU(8) iterations 7/53 7/59 7/55 7/56 7/61 7/63 7/73 7/73 8/67
time 0.092 0.20 0.41 0.86 1.83 3.88 8.73 18.16 35.78

J0 ILU(12) iterations 7/39 7/43 6/26 6/26 6/28 6/30 6/35 7/52 8/50
time 0.082 0.18 0.29 0.60 1.24 2.61 5.69 15.01 31.61

Φ LU iterations 6/35 6/35 6/35 6/36 6/37 6/40 6/44 6/49 6/54
time 0.063 0.13 0.26 0.56 1.18 2.62 6.16 20.39 110.05

Φ ILU(4) iterations 6/119 6/115 6/121 6/137 6/143 6/141 6/135 6/145 6/152
time 0.12 0.24 0.57 1.40 3.17 6.76 13.36 29.42 62.61

Φ ILU(8) iterations 6/68 6/71 6/64 6/70 6/70 6/75 6/89 6/90 6/91
time 0.085 0.18 0.35 0.79 1.66 3.67 9.07 18.79 37.58

Φ ILU(12) iterations 6/55 6/55 6/54 6/60 5/41 6/58 6/68 6/62 6/61
time 0.076 0.15 0.32 0.72 1.15 3.07 7.16 13.69 27.54

Table 9.7: Power flow experiments using the Eisenstat and Walker forcing terms
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power flow problem uctew001 uctew002 uctew004 uctew008 uctew016 uctew032 uctew064 uctew128 uctew256

direct iterations 7 7 7 7 7 7 7 6 8
time 0.077 0.16 0.33 0.69 1.54 3.96 20.89 305.41 3810.80

Ji ILU(4) iterations 6/95 6/104 6/102 6/107 6/107 6/107 6/96 6/95 6/95
time 0.13 0.31 0.65 1.45 3.06 6.35 11.84 24.43 49.69

Ji ILU(8) iterations 6/42 6/46 6/45 6/47 6/48 6/48 6/48 6/42 7/434
time 0.093 0.20 0.41 0.87 1.82 3.72 7.68 15.53 719.50

Ji ILU(12) iterations 6/26 6/28 6/28 6/29 6/30 6/30 6/30 6/27 7/423
time 0.083 0.17 0.36 0.76 1.58 3.21 6.62 14.40 722.93

J0 LU iteration 6/26 6/26 6/24 6/27 6/27 6/29 6/34 7/437 7/441
time 0.065 0.13 0.27 0.59 1.23 2.76 8.14 425.69 1297.50

J0 ILU(4) iterations 6/94 6/104 6/101 6/107 6/110 6/116 6/118 6/126 6/136
time 0.12 0.28 0.60 1.34 2.96 6.44 13.23 29.28 64.69

J0 ILU(8) iterations 6/50 6/54 6/52 6/53 6/58 6/58 6/63 6/65 7/467
time 0.085 0.18 0.38 0.79 1.76 3.57 7.80 16.43 720.85

J0 ILU(12) iterations 6/36 6/38 6/35 6/35 6/39 6/40 6/47 6/50 7/454
time 0.075 0.16 0.32 0.66 1.43 2.95 6.57 14.16 721.61

Φ LU iterations 6/49 6/49 6/49 6/49 6/51 6/53 6/54 6/59 6/65
time 0.071 0.14 0.31 0.64 1.41 3.10 7.05 22.35 115.54

Φ ILU(4) iterations 6/129 6/145 6/146 6/152 6/155 6/162 6/153 6/164 6/173
time 0.14 0.35 0.75 1.69 3.78 8.69 16.85 37.80 82.07

Φ ILU(8) iterations 6/70 6/73 6/72 6/73 6/74 6/78 6/82 6/90 6/95
time 0.086 0.18 0.39 0.83 1.80 3.99 8.63 19.27 41.22

Φ ILU(12) iterations 6/56 6/58 6/55 6/53 6/55 6/62 6/67 6/72 6/78
time 0.077 0.16 0.33 0.67 1.46 3.34 7.34 15.87 34.71

Table 9.8: Power flow experiments using the Hohmann forcing terms
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Figure 9.7: Power flow with Ji based preconditioning
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Figure 9.8: Power flow with J0 based preconditioning
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Figure 9.9: Power flow with Φ based preconditioning
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9.4 Contingency Analysis

This section treats numerical experiments with the Newton-Krylov power
flow solver, applied to the contingency analysis problem (see Section 5.4 and
Chapter 8). The UCTE winter 2008 study model is used as base case. The
contingency cases consist of the base case with a single pair of buses (that
were connected in the base case) disconnected, simulating branch outages.
This constitutes 6784 contingency cases, of which 95 cases could not be
solved because they had two disconnected subnetworks, leaving 6689 con-
tingency cases. The base case power flow problem is solved first, after which
the power flow problem of each of the contingency cases is solved, making a
total of 6690 power flow solves.

Table 9.9 presents the results using Eisenstat and Walker forcing terms.
A maximum of 12 Newton iterations was allowed per case, and no line search
was used to keep results as clean as possible. All cases were solved up to an
accuracy of 10−4 p.u., and all times are measured in seconds.

The top half uses a flat start for all cases, while the bottom half solves
the base case using a flat start, and then uses the solution of the base case
as initial iterate for the contingency cases.

The left column shows the results using classical Newton power flow with
a direct linear solver. The middle column solves each case with Newton-
GMRES, preconditioned with the LU factorisation of the initial Jacobian of
that case, which proved the fastest option for the base case in Section 9.3.
The right column again uses the Newton-Krylov solver, but preconditions
GMRES with the LU factorisation of the base case Jacobian evaluated in
the vector that is used as initial solution for the contingency cases. With
a flat start, the contingency cases are thus preconditioned with the initial
Jacobian J0 of the base case. And when starting with the solution of the
base case, they are preconditioned with the base case Jacobian in the base
case solution, denoted by J∗.

The converged and diverged rows, show the number of contingency cases
that converged and diverged respectively, and the average amount of nonlin-
ear iterations and linear iterations per case. A total of 23 contingency cases
could not be solved by the Newton method. This is a common problem in
contingency analysis, that we will not go into further here. One case was
solved with some methods, but failed to converge with others.

For an explanation of PCSetUp, PCApply, and KSPSolve see Table 9.1.
CalcJac stands for the calculation of the Jacobian system, i.e., the mismatch
vector and the Jacobian matrix. The abbreviation CA is used for the entire
contingency analysis process.

The Eisenstat and Walker forcing terms generally performed the best in
this test, especially when using the base case solution as initial solution for
the contingency cases. Their adaptive nature makes them very well-suited
to handle the resulting varying initial residual norms.
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initial solution flat start
preconditioning direct own J0 base J0

count iter count iter count iter

converged 6665 7/7 6665 6/15 6666 6/20
diverged 24 12/12 24 12/73 23 12/88

count time count time count time

PCSetUp 46948 191 6690 57.6 2 0.02
PCApply 46948 16.2 142263 48.9 176899 62.0

KSPSolve 46948 208 40287 135 40360 99.8
CalcJac 53638 98.9 46977 86.2 47050 86.2
CA 1 320 1 238 1 198

initial solution base case solution
preconditioning direct own J0 base J∗

count iter count iter count iter

converged 6666 2.2/2.2 6666 2.3/3.3 6665 2.4/6.3
diverged 23 12/12 23 12/73 24 12/88

count time count time count time

PCSetUp 14975 85.0 6686 57.8 2 0.02
PCApply 14975 5.18 38335 13.2 60661 21.3

KSPSolve 14975 90.3 15472 77.6 16418 33.5
CalcJac 21665 43.0 22162 42.1 23108 43.7
CA 1 140 1 132 1 84.4

Table 9.9: Contingency analysis using Eisenstat and Walker forcing terms

We have looked at two methods to improve on these forcing terms. One is
to reduce the initial forcing term value of the Eisenstat and Walker strategy
when using the base case solution as initial iterate. Because this initial
iterate is generally much closer to the solution than a flat start, it is expected
that a greater improvement can be attained in the first Newton iteration
than the default 0.1 that we have been using for the Eisenstat and Walker
strategy. The other is to log the convergence of the base case, and use this
as a model for the expected convergence of the contingency cases. Both
methods showed only very minor improvements over using plain Eisenstat
and Walker forcing terms.





CHAPTER 10

Conclusions

The power flow problem is a computational problem that arises in power
system operation and planning. In contingency analysis and Monte Carlo
simulations, many slightly varying power flow problems have to be solved.
The trends of international connection of power systems and decentralised
power generation, have the potential to lead to power flow problems of a
whole new scale.

Traditionally, the power flow problem is solved using Newton power flow
or the Fast Decoupled Load Flow method. Newton power flow possesses
the quadratic convergence behaviour of the Newton-Raphson method, but
needs a lot of computational work per iteration. FDLF needs relatively very
little computational work per iteration, but convergence is only linear. In
practice, Newton power flow is generally preferred, because for some power
flow problems FDLF fails to converge at all, while Newton power flow can
still solve the problem. Both these methods are not viable for very large
power flow problems, due to the use of the LU decomposition.

In this work, a Newton-Krylov power flow solver has been developed that
is much faster than traditional solvers for large power flow problems, and is
also much faster when solving many slightly varying problems of any size.

The theory behind Newton-Krylov methods has been treated, and some
convergence theory was developed for inexact iterative methods in general,
and inexact Newton methods in particular. This theory provides a better
understanding of Newton-Krylov methods, and helps to make good choices
for the Krylov method, preconditioning, and forcing terms.

Newton-Krylov power flow solvers have been discussed and tested using
many combinations of choices for the Krylov method, preconditioning, and
forcing terms. For large power flow problems, the best results were obtained
using GMRES, preconditioned with an ILU(12) factorisation of the initial
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Jacobian matrix J0 or the FDLF matrix Φ, in conjunction with forcing
terms based on the work of Eisenstat and Walker. For smaller problems,
the best results were obtained with the same method, but using a complete
LU factorisation of the initial Jacobian matrix as preconditioner.

It was shown that the resulting solver is as fast as Newton power flow for
small problems, and many times faster for large problems, while convergence
and robustness is equally good. Furthermore, it was demonstrated that the
Newton-Krylov solver allows the reuse of the preconditioner between solves
of slightly varying problems, much like the FDLF method, but without the
need for factor updating or compensation techniques.

Further, it was shown how the traditional power flow solvers—Newton
power flow and FDLF—can be interpreted as Newton-Krylov methods. This
revealed that the developed Newton-Krylov power flow solver can be seen
as a direct theoretical improvement on these traditional solvers, within the
class of Newton-Krylov methods.

Summarizing, the Newton-Krylov power flow solver has no drawbacks
compared to Newton power flow in terms of speed and convergence. When
solving very large power flow problems it is many times faster than Newton
power flow, and for contingency analysis and Monte Carlo simulations on
power systems of any size, it also offers a great computational advantage.



APPENDIX A

Fundamental Mathematics

A.1 Complex Numbers

A complex number α ∈ C, is a number

α = µ + ιν, (A.1)

with µ, ν ∈ R, and ι the imaginary unit defined by ι2 = −1. The quantity
Reα = µ is called the real part of α, whereas Im α = ν is called the imaginary
part of the complex number. Note that any real number can be interpreted
as a complex number with the imaginary part equal to 0.

Negation, addition, and multiplication are defined as

− (µ + ιν) = −µ − ιν, (A.2)

µ1 + ιν1 + µ2 + ιν2 = (µ1 + µ2) + ι (ν1 + ν2) , (A.3)

(µ1 + ιν1) (µ2 + ιν2) = (µ1µ2 − ν1ν2) + ι (µ1ν2 + µ2ν1) . (A.4)

The complex conjugate is an operation that negates the imaginary part:

µ + ιν = µ − ιν. (A.5)

Complex numbers are often interpreted as points in complex plane, i.e.,
2-dimensional space with a real and imaginary axis. The real and imaginary
part are then the Cartesian coordinates of the complex point. The same
point in complex space can be described by an angle and a length. The
angle of a complex number is called the argument, while the length is called
the modulus or absolute value:

arg (µ + ιν) = tan−1 ν

µ
, (A.6)

|µ + ιν| =
√

µ2 + ν2. (A.7)
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Using these definitions, any complex number α ∈ C can be written as

α = |α| eιϕ, (A.8)

where ϕ = arg α, and the complex exponential function is defined by

eµ+ιν = eµ (cos ν + ι sin ν) . (A.9)

A.2 Vectors

A vector v ∈ Kn is an element of the n-dimensional space of either real
numbers (K = R) or complex numbers (K = C), generally denoted as

v =







v1
...

vn






, (A.10)

where v1, . . . , vn ∈ K.
Scalar multiplication and vector addition are basic operations that are

performed elementwise. That is, for α ∈ K and v,w ∈ Kn,

αv =







αv1
...

αvn






, v + w =







v1 + w1
...

vn + wn






. (A.11)

The combined operation of the form v := αv + βw is known as a vector
update. Vector updates are of O (n) complexity, and are naturally paral-
lelisable.

A linear combination of the vectors v1, . . . ,vm ∈ Kn is an expression

α1v1 + . . . + αmvm, (A.12)

with α1 . . . αm ∈ K. A set of m vectors v1, . . . ,vm ∈ Kn is called linearly
independent, if none of the vectors can be written as a linear combination
of the other vectors.

The dot product operation is defined for real vectors v,w ∈ R
n as

v · w =
n
∑

i=1

viwi. (A.13)

The dot product is by far the most used type of inner product. In this work,
whenever we speak of an inner product, we will be referring to the dot
product unless stated otherwise. The operation is of O (n) complexity, but
not naturally parallelisable. The dot product can be extended to complex
vectors v,w ∈ C as v · w =

∑n
i=1 viwi.
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A vector norm is a function ‖.‖ that assigns a measure of length, or size,
to all vectors, such that for all α ∈ K and v,w ∈ Kn

‖v‖ = 0 ⇔ v = 0, (A.14)

‖αv‖ = |α| ‖v‖, (A.15)

‖v + w‖ ≤ ‖v‖ + ‖w‖. (A.16)

Note that these properties ensure that the norm of a vector is never negative.
For real vectors v ∈ R

n the Euclidean norm, or 2-norm, is defined as

‖v‖2 =
√

v · v =

√

√

√

√

n
∑

i=1

v2
i . (A.17)

In Euclidean space of dimension n, the Euclidean norm is the distance from
the origin to the point v. Note the similarity between the Euclidean norm
of a 2-dimensional vector and the modulus of a complex number. In this
work we omit the subscripted 2 from the notation of Euclidean norms, and
simply write ‖v‖.

A.3 Matrices

A matrix A ∈ Km×n is a rectangular array of real numbers (K = R) or
complex numbers (K = C), i.e.,

A =







a11 . . . a1n

...
. . .

...
am1 . . . amn






, (A.18)

with aij ∈ K for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.
A matrix of dimension n × 1 is a vector, sometimes referred to as a

column vector to distinguish it from a matrix of dimension 1 × n, which is
referred to as a row vector. Note that the columns of a matrix A ∈ Km×n

can be interpreted as n (column) vectors of dimension m, and the rows as
m row vectors of dimension n.

A dense matrix is a matrix that contains mostly nonzero values; all n2

values have to be stored in memory. If most values are zeros the matrix
is called sparse. For a sparse matrix A, the number of nonzero values is
denoted by nnz (A). With special data structures, only the nnz (A) nonzero
values have to be stored in memory.

The transpose of a matrix A ∈ Km×n, is the matrix AT ∈ Kn×m with

(

AT
)

ij
= (A)ji . (A.19)

A square matrix that is equal to its transpose is called a symmetric matrix.
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Scalar multiplication and matrix addition are elementwise operations,
as with vectors. Let α ∈ K be a scalar, and A,B ∈ Km×n matrices with
columns ai, bi ∈ Km respectively, then scalar multiplication and matrix
addition are defined as

αA =
[

αa1 . . . αan

]

, (A.20)

A + B =
[

a1 + b1 . . . an + bn

]

. (A.21)

Matrix-vector multiplication is the product of a matrix A ∈ Km×n and
a vector v ∈ Kn, defined by







a11 . . . a1n

...
. . .

...
am1 . . . amn













v1
...

vn






=







∑n
i=1 a1ivi

...
∑n

i=1 amivi






. (A.22)

Note that the result is a vector in Km. An operation of the form u := Av is
often referred to as a matvec. A matvec with a dense matrix has complexity
O
(

n2
)

, while with a sparse matrix the operation has O (nnz (A)) complexity.
Both dense and sparse versions are naturally parallelisable.

Multiplication of matrices A ∈ Km×p and B ∈ Kp×n can be derived as
an extension of matrix-vector multiplication by writing the columns of B as
vectors bi ∈ Kp. This gives







a11 . . . a1n

...
. . .

...
am1 . . . amn









 b1 . . . bn



 =



 Ab1 . . . Abn



 . (A.23)

The product AB is a matrix of dimension m × n.

The identity matrix I is the matrix with values Iii = 1, and Iij = 0, i 6= j.
Or, in words, the identity matrix is a diagonal matrix with every diagonal
element equal to 1. This matrix is such, that IA = A and AI = A for any
matrix A ∈ Km×n, and identity matrices I of appropriate size.

Let A ∈ Kn×n be a square matrix. If there is a matrix B ∈ Kn×n such
that BA = I, then B is called the inverse of A. If the inverse matrix does
not exist, then A is called singular. If it does exist, then it is unique and
denoted by A−1. Calculating the inverse is—with O

(

n3
)

complexity—very
costly for large matrices.

The column rank of a matrix A ∈ Km×n is the number of linearly in-
dependent column vectors in A. Similarly, the row rank is the number of
linearly independent row vectors in A. For any given matrix, the row rank
and column rank are equal, and can therefore simply be denoted as rank (A).
A square matrix A ∈ Kn×n is invertible, if and only if rank (A) = n.
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A matrix norm is a function ‖.‖ such that for all α ∈ K and A,B ∈ Km×n

‖A‖ ≥ 0, (A.24)

‖αA‖ = |α| ‖A‖, (A.25)

‖A + B‖ ≤ ‖A‖ + ‖B‖. (A.26)

Given a vector norm ‖.‖, the corresponding induced matrix norm is defined
for all matrices A ∈ Km×n as

‖A‖ = max {‖Av‖ : v ∈ Kn with ‖v‖ = 1} . (A.27)

Every induced matrix norm is submultiplicative, meaning that

‖AB‖ ≤ ‖A‖‖B‖ for all A ∈ Km×p, B ∈ Kp×n. (A.28)

A.4 Graphs

A graph is a collection of vertices, any pair of which may be connected by an
edge. Vertices are also called nodes or points, and edges are also called lines.
The graph is called directed if all edges have a direction, and undirected if
they do not. Graphs are often used as the abstract representation of some
sort of network. For example, a power system network can be modelled as
an undirected graph, with buses as vertices and branches as edges.

Let V = {v1, . . . , vN} be a set of N vertices, and E = {e1, . . . , eM} a set
of M edges, where each edge ek = (vi, vj) connects two vertices vi, vj ∈ V .
The graph G of vertices V and edges E is then denoted as G = (V,E).
Figure A.1 shows a simple graph G = (V,E) with vertices V = {1, 2, 3, 4, 5}
and edges E = {(2, 3) , (3, 4) , (3, 5) , (4, 5)}.

1 2

3

4 5

Figure A.1: A simple graph

The incidence matrix A of a graph G = (V,E) is an M × N matrix in
which each row i represents an edge ei = (p, q), and is defined as

aij =







−1 if p = vi,
1 if q = vj,
0 otherwise.

(A.29)
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In other words, row i has value −1 at index p and value 1 at index q. Note
that this matrix is unique for a directed graph. For an undirected graph,
some orientation has to be chosen. For example, the matrix

A =









0 −1 1 0 0
0 0 −1 1 0
0 0 −1 0 1
0 0 0 −1 1









(A.30)

is an incidence matrix of the graph shown in Figure A.1. Such a matrix is
sometimes referred to as an oriented incidence matrix, to distinguish it from
the unique unoriented incidence matrix, in which all occurrences of −1 are
replaced with 1.

Note that some authors define the incidence matrix as the transpose of
the matrix A defined here.



APPENDIX B

Power Flow Test Cases

For numerical experiments with power flow solvers, a test set of power flow
problems is needed. Test problems with up to a few hundred busses are
readily available on the web, but problems of realistic size are hard to come
by. Transmission systems are vital to our way of life, and can be vulnerable
to attacks if the attackers know where to strike. Therefore, the models of
the actual transmission systems used in industry are not publicly available.

For our research, we were able to use the UCTE1 winter 2008 study
model, which consists of 4253 busses and 7191 lines. Larger test cases were
constructed by copying the model and interconnecting the copies with new
transmission lines, as detailed in Section B.1. This proved much easier than
generating realistic models of virtual power systems from scratch.

The test cases are named uctewXXX, where XXX is the number of copies
of the original problem used in the construction of the test case. Table B.1
shows the number of buses, branches, and nonzeros in the Jacobian matrix
for each of the constructed test cases.

B.1 Construction

Each test case is constructed by connecting two copies of the previous test
case. The important choices in this process are the choice of buses to connect
and how to connect them, and how to deal with the slack buses. Figure B.1
shows a schematic representation of the construction process.

1UCTE is a former association of transmission system operators in Europe. As of July
2009, the European Network of Transmission System Operators for Electricity (ENTSO-
E), a newly formed association of 42 TSOs from 34 countries in Europe, has taken over
all operational tasks of the existing European TSO associations, including UCTE. See
http://www.entsoe.eu/
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name buses branches nnz (J)

uctew001 4,253 7,191 62,654
uctew002 8,505 14,390 125,372
uctew004 17,009 28,796 250,872
uctew008 34,017 57,624 502,000
uctew016 68,033 115,312 1,004,512
uctew032 136,065 230,752 2,010,048
uctew064 272,129 461,760 4,022,144
uctew128 544,257 924,032 8,048,384
uctew256 1,088,513 1,849,088 16,104,960

Table B.1: Test cases

A1

A2

A3

A4

As

B1

B2

B3

B4

Bs

A1

A2

A3

A4

B1

B2

B3

B4

ABs

Figure B.1: Test case construction process

The two network copies A and B each have their own slack bus, denoted
by As and Bs respectively. If one slack bus is simply removed, together
with all branches connected to it, all the generation in that slack bus has
to be provided for by the other slack bus. Because the other slack bus is in
a totally different area of the network, this may lead to an imbalanced test
case. Therefore, it is better to combine both slack busses into one new slack
bus ABs, that is connected to all the buses that either of the old slack buses
was connected to.

When two existing power systems are connected in practice, the network
connection is generally made at the highest voltage level. Thus it makes
sense to do the same when constructing test cases by connecting existing
networks. We select a number of load busses at the highest voltage level,
approximately uniformly distributed by bus index, with a small random
element.
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Connecting completely different regions of the network copies might lead
to a serious imbalance. Thus, each bus in A should be connected to a bus in
B that corresponds to a nearby bus in A. If each bus is connected directly
to the corresponding bus in the other network, no current would be flowing
between A and B. The solution of the newly constructed problem would
simply consists of the original network solution in both A and B. Therefore,
we choose to connect the buses per pair A1 and A2 close to each other, to
the corresponding buses B1 and B2 in the other network, such that A1 is
connected to B2, and A2 is connected to B1.

The number of buses connected between the two network copies is of
some importance. In our test cases the number of buses selected in A is 8
times the amount of original UCTE models incorporated in A. If too few
buses are chosen, the networks A and B are nearly decoupled. This results
in an admittance matrix with two blocks on nonzeros on the diagonal, and
only a few nonzeros outside of these blocks. This structure continues into
the Jacobian matrix, and factorising such a Jacobian is similar to factorising
the two diagonal blocks independently. Any issues with the scaling of the
factorisation method would be lost.
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