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Impact of Transforming Interface Geometry on Edge States in Valley Photonic Crystals
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We investigate how altering the interface geometry from a zigzag to a glide plane interface between two
topologically distinct valley Hall emulating photonic crystals (VPC), profoundly affects edge states. We
experimentally observe a transition from gapless to gapped edge states, accompanied by the occurrence of
slow light within the Brillouin zone, rather than at its edge. We numerically simulate the propagation and
measure the transmittance of the modified edge states through a specially designed valley-conserving
defect. The robustness to backscattering gradually decreases, suggesting a disruption of valley-dependent
transport. We demonstrate the significance of interface geometry to gapless edge states in a VPC.
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The discovery of topological phases in photonic crystals
provides a new degree of freedom to manipulate light-
matter interaction. Photonic crystals with nontrivial topo-
logical phases are called topological photonic crystals
(TPCs) [1]. TPCs support nontrivial edge states that inter-
face different topological phases. These edge states are
known as topological edge states (TESs). TESs feature
gapless dispersion and robust transport characteristics [2,3],
making them promising for broadband lossless on-chip
communication [4–7]. The bulk-boundary correspondence
relates the TESs to the topological order in the bulk of
TPCs [8,9]. By engineering the bulk of TPCs, TESs
associated with various topological orders have been
realized with various degrees of robustness [1,10–14].
Additionally, the interface geometry also plays an impor-
tant role in engineering the edge states. Proper design of the
interface can lead to, e.g., chiral interface [15] or broadband
low-loss waveguides [7,16].
The effect of transforming the interface geometry on

TESs depends on the type of TPCs. For nonreciprocal
TPCs, such as gyromagnetic photonic crystals [17,18], the
existence of TESs is guaranteed by the topological order in
bulk (i.e., topological protection) [17,19]. Therefore, the
precise interface structure has little impact on the TESs
[17]. For C6-symmetric TPCs [11,20,21], the topological
protection of TESs is conditional on the conservation of
pseudospin [11]. If an interface mixes different pseudo-
spins, it will be detrimental to the gapless dispersion and
the robustness of TESs [11]. A similar argument applies to
valley photonic crystals (VPCs), where the valley degree of
freedom plays the role of pseudospin [12,22]. Certain
interfaces of VPCs can couple different valleys and are
unable to support TES [23,24]. Conversely, it is widely
accepted that an interface of two topologically distinct
VPCs should exhibit TESs as long as it respects the
conservation of valleys [12,25,26]. This statement implies
that edge states of VPCs are robust against perturbations on

the interface geometry. However, recent studies have
demonstrated that modifying the interface of VPCs can
significantly influence the properties of edge states [27–
30]. This finding urges us to reassess the robustness of
these edge states to perturbations on the interface.
Here, we study the impact of gradually changing the

geometry of a VPC interface on edge states in a valley
photonic crystal, with a specific focus on the transformation
from a zigzag interface into a glide plane. Notably, this
variation in interface geometry neither alters the bulk
topology nor mixes different valleys. We fabricate VPCs
with these tailored interfaces and exploit near-field optical
microscopy to map the wave functions of their edge states.
The measurements demonstrate that the edge states
undergo a transition from gapless to gapped, even when
the conservation of valleys is preserved by the trans-
formation. Meanwhile, we observe that edge states slow
down within the Brillouin zone (BZ), in contrast with
typical valley-dependent edge states that only become slow
at the edge (kx ¼ �π=a) or in the center (kx ¼ 0) of the BZ
[25,31]. Next, we examine the valley-dependent transport
of these edge states by simulating their propagation through
a specially designed valley-conserving defect. The calcu-
lated transmittance of this defect experiences a significant
drop as the geometry of the interface is transformed. This
observation suggests that the transformation of the VPC
interface disrupts the valley-dependent transport of the edge
states. This transition of edge states breaks conventional
intuition of bulk-boundary correspondence, which attrib-
utes the existence of valley-dependent edge states in VPCs
to bulk topology while implicitly disregarding the role of
interface geometry.
We start with a VPC interface, as depicted in Fig. 1(a),

where two distinct VPCs are patterned on a silicon-on-
insulator slab. Each unit cell of these VPCs comprises two
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inequivalent triangular holes, with side lengths of d1 ¼ 300
and d2 ¼ 200 nm, respectively. The lattice constant of
both VPCs is a ¼ 500 nm. The two VPCs are inversion
images of each other, resulting in a difference in valley-
dependent topology between them [25]. To modify the
interface geometry, we shift one VPC along the direction of
the interface by a distance of t (glide). When t ¼ 0, we call
this interface a zigzag interface, which is mirror-symmetric
and supports valley-dependent gapless edge states
[12,25,31]. As t increases to 0.5a, the interface geometry
becomes glide-plane symmetric and has been transformed
into a glide plane. In particular, we refer to the interface
with t ¼ 0.25a as the shifted interface, which represents the
middle point of the transformation. It is important to note
that shifting the VPC preserves the bulk symmetry and,
as a result, does not affect the valley-dependent topo-
logy. Moreover, this perturbation also respects the con-
servation of valleys since it does not influence the
wave function overlap between states at different valleys
[12]. Consequently, we expect valley-dependent gapless
edge states to appear both at the shifted interface and the
glide plane.

We fabricate three VPC interfaces, corresponding to
t ¼ 0, 0.25a, and 0.5a, respectively. The in-plane electric
field distribution E over these interfaces is measured with
phase-sensitive near-field scanning optical microscopy
[32]. We apply a spatial Fourier transform to the measured
complex electric field E, denoted by F ðkxÞ, and repeat this
process for all wavelengths to obtain the dispersion relation
of the photonic modes [31]. Because of the periodic nature
of F ðkxÞ in reciprocal space, the data from a single BZ is
adequate for retrieving all dispersion curves. Nevertheless,
to enhance the signal-to-noise ratio, we employ BZ folding
by summing the intensities of all Bloch harmonics, which
involves data from all BZs. This technique yields the final
dispersion diagrams of the photonic modes of the VPC
interfaces. For t ¼ 0, we observe edge states with a gapless
dispersion curve for the zigzag interface (see Fig. S1 in
Supplemental Material [33] and Refs. [34–36] therein), as
expected from previous studies [25,31]. However, as t is
increased the dispersion curve changes dramatically. The
retrieved dispersion diagram of photonic modes of the
shifted interface is shown for t ¼ 0.25a in Fig. 1(b), where
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FIG. 1. Interface geometry and dispersion diagrams. (a) A SEM image of a shifted interface of two distinct VPCs for t ¼ 0.25a, with
a ¼ 500 nm the lattice constant of both VPCs. (b) Experimentally retrieved dispersion diagram of photonic modes of the shifted
interface, where log10jF ðEÞj2 is plotted versus kx and the frequency of excitation. A mode gap arises between the edge states (bottom of
the graph) and the bulk modes (top of the graph). A close-up of the measured dispersion curve of the edge states for a shift of 0.25a is
shown in (c), where jF ðEÞj2 is plotted in a linear scale. The measured dispersion has an M-shape and is consistent with the simulation
result (blue-dashed line). Remarkably, there is a slow light region around kx ¼ 0.8π=a, which is inside the Brillouin zone rather than at
its edge. As a result, the edge state also exhibits both a positive and negative group velocity within half a Brillouin zone. (d) Numerically
simulated dispersion curves of edge states for t ¼ 0 (orange), 0.25a (blue), and 0.5a (red). The gray regions represent bulk modes, and
the dark line corresponds to the light line ω ¼ ck. As t increases from 0 to 0.5a, the edge states transform from gapless to gapped.
(e) The group velocity of edge states. With an increase in t, a slow-light edge state with vg ¼ 0 transitions from the Brillouin zone edge
towards its interior.
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jF ðEÞj2 is plotted versus kx and excitation frequency (to
present all relevant features a logarithmic color scale is
used). Significantly, we observe that a mode gap has
opened up between 185 and 189 THz, which is absent
in the zigzag interface. Thus, the interface deformation by a
longitudinal shift can transform gapless edge states into
gapped ones. A close-up of the dispersion curve for the
edge states is displayed in Fig. 1(c), where jF ðkxÞj2 is
shown with a linear scale. The measured dispersion curve
has an M-shape centering at the BZ edge, consistent with
the simulation result indicated by the dashed line. This
dispersion curve has a slope of zero at approximately
kx ¼ 0.8π=a, demonstrating that slow light occurs within
the BZ, namely, kx < π=a. This slow light region is distinct
from the typical ones in a photonic crystal waveguide,
which typically lies either at the edge (kx ¼ π=a) or in the
center (kx ¼ 0) of the BZ [37,38]. Such nontrivial slow
light arises from the emergence of energy vortexes, leading
to a decrease in group velocity. For further information,
refer to [39]. In addition, we present the measured
dispersion diagram of photonic modes of the glide plane
for t ¼ 0.5a (Fig. S1 [33]), where edge states are not
observed as they fall below the operating frequency range
of our laser.
To investigate how the dispersion relation of edge states

changes with the glide of VPC interfaces, we numerically
simulate the dispersion relations of edge states using
COMSOL Multiphysics® software [40], as shown in
Fig. 1(d). We also present the calculated group velocities
of the edge states in Fig. 1(e). At the zigzag inter-
face (t ¼ 0), the edge states exhibit a gapless dispersion
curve, which becomes almost linear near the valley at
kx ¼ 2π=3a. After a glide of t ¼ 0.25a is applied, a mode
gap appears between the edge states and the upper bulk
modes. The group velocity of the edge states reduces
around the BZ edge (kx ¼ π=a), creating a slow light
region within the BZ. As t increases to 0.5a, the mode gap
widens further, and the slow light region gets closer to the
valley. More calculated dispersion curves are given in
Fig. S2 [33], underpinning the gradual change from gapless
to gapped edge states. In summary, transforming the zigzag
interface with a glide causes a transition from gapless edge
states to gapped ones, with slow light occurring within the
BZ. We expect the presence of comparable gapped edge
states in electronic valley-Hall systems. For example, a
domain wall of bilayer graphene, where the layer stacking
order changes, exhibits significant resemblances to our
shifted interface structure. Both configurations manifest as
line defects, characterized by an opposite Berry curvature
on opposing sides [41,42]. By introducing additional lattice
distortion to the domain wall of bilayer graphene, one may
observe the emergence of electronic gapped edge states.
We found that the edge states at the shifted interface

have a dispersion relation distinct from those of typical
valley-dependent edge states, which cross the band gap

around valleys. Usually, valley-dependent transport is
demonstrated with backscattering-free propagation through
a valley-conserving defect, such as a sharp waveguide bend
at a 120° angle [25,31,43]. However, in the case of the
shifted interface, a sharp waveguide bend cannot be
realized while preserving the interface geometry. To exam-
ine the valley-dependent transport of edge states at this
interface, we propose a valley-conserving lattice defect that
we call an L3 defect. This defect is introduced into a VPC
interface by replacing three small triangular holes with
three larger ones, as depicted in Fig. 2(a). According to
first-order perturbation theory, the L3 defect conserves the
valley degree of freedom and is thus ideally suited for
testing valley-dependent transport (a mathematical proof is
provided in Supplemental Material [33]).
We simulate light propagation along our various VPC

interfaces using the software mentioned earlier, both with
and without an embedded L3 defect. Figures 2(b) and 2(c)
show the amplitude of the simulated normalized electric
field jEj on the zigzag and shifted interfaces, respectively,
for an excitation frequency of f ¼ 168 THz. The input port
and output ports are located on the left and right sides,
respectively. The arrow indicates the position of the L3
defect. For the zigzag interface, the electric field amplitude
remains almost unchanged after passing the L3 defect,
indicating the absence of backscattering at that defect.
However, for the shifted interface, the electric field ampli-
tude reduces significantly after light passes the L3 defect,
indicating the occurrence of scattering at the defect. The
interference pattern in Fig. 2(c), which is not seen in
Fig. 2(b), before the defect demonstrates that most of the
scattering is actually backscattering.
The transmittance spectra of the VPC interfaces for two

cases, namely, t ¼ 0 (zigzag interface) and t ¼ 0.25a
(shifted interface), are presented in Figs. 2(d) and 2(e),
respectively. In these figures, the blue line represents the
transmittance of the VPC interfaces with an L3 lattice
defect, while the red line corresponds to the transmittance
without the L3 lattice defect. The gray domain represents
the band gap, whereas the dark domain represents the mode
gap. Within the band gap and outside the mode gap, the
transmittance values are considerably high, indicating the
propagation of light through the edge states of the VPC
interfaces. Furthermore, all transmittance curves exhibit
oscillating behavior at various levels. These oscillations
might stem from the coupling loss at the input and output
ports (not shown in the figure), which makes the trans-
mittance without defects frequency dependent. It is worth
mentioning that the band gap, which spans from 161 to
173 THz (see Fig. S3 [33]), does not match the one
displayed in Fig. 1(d). This inconsistency can be attributed
to the numerical errors in the two-dimensional simulations
for Fig. 2.
In the case of the zigzag interface, the two transmittance

curves are nearly overlapped for frequencies below
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170 THz, as shown in Fig. 2(d). This observation indicates
that the backscattering of light at the defect is negligible,
highlighting the robustness of the edge states at the zigzag
interface. This outcome aligns with expectations since
valley-dependent transport should exhibit resilience against
valley-conserving perturbations. In contrast, the transmit-
tance spectra of the shifted interface display a significant
response to the presence of a defect. Specifically, for the
shifted interface, the transmittance curve in the presence of
an L3 defect is considerably lower compared to the case
without the defect, as shown in Fig. 2(e). This discrepancy
suggests that substantial backscattering has occurred at the
defect, implying that the edge states at the shifted interface
are less robust against this lattice defect. By comparing the
transmittance spectra of the zigzag and shifted interfaces,
we can conclude that the deformations in the VPC interface
lead to a reduction in the robustness of the edge state
against valley-conserving defects. This reduction indicates
that the deformation disrupts the valley-dependent transport
of the edge states.
It is important to note that our systems bear close

resemblance to crystalline and delicate topological insula-
tors, that can support gapped edge states on transforming
the interface geometry. Crystalline topological insulators
[44,45] exhibit nontrivial topological phases that are
protected by crystal point group symmetries, and gapless
edge states are only observed at symmetry-preserving

interfaces. A recent study [16] demonstrated that variations
in interface geometry can significantly affect the robustness
of edge states in a photonic analog of crystalline topologi-
cal insulators. Delicate topological insulators [46,47] offer
another example where according to the bulk-boundary
correspondence gapless surface states can be transformed
into gapped ones when symmetry-breaking perturbations
are applied to the interface geometry. It is worth mentioning
that in delicate topological insulators, such transformation
can also result from a surface perturbation that preserves
both bulk and interface symmetries [47]. However, this
may not be applicable to crystalline topological insulators
and VPCs. Investigating these similarities and differences
requires a well-established bulk-boundary correspondence
in VPCs with explicit reference to the interface geometry,
which remains an open question and requires further
research.
Our work reveals that the existence of valley-dependent

gapless edge states depends on the interface geometry of
VPCs. By deforming a VPC interface while preserving the
conservation of valleys, we observe a transition of edge
states from gapless to gapped, which strongly suggests the
breaking of topological protection. Furthermore, we
observe the occurrence of slow light within the BZ, which
is distinct from the typical resonant zero-group-velocity
modes found at the BZ edge. We also provide strong
evidence for the disruption of valley-dependent transport of
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FIG. 2. Defect and transmittance. (a) The geometry of a valley-conserving L3 defect is introduced into a shifted interface, with three
small triangles replaced by three large ones (blue). (b) and (c) Simulated electric field amplitudes jEj on the zigzag interface (t ¼ 0) and
the shifted interface (t ¼ 0.25a), respectively, at an excitation frequency of 168 THz. The blue arrow indicates the position of the L3
defect. Light enters the VPC interface from the left side and exits from the right side. A decrease in jEj at the L3 defect and an
interference pattern are observed in (c) but not in (b), indicating a significant contrast in the transmittance of that defect between the two
VPC interfaces. The simulated transmittance spectra of the zigzag interface and the shifted interface are presented in (d) and (e),
respectively. The gray domain indicates the band gap, while the dark one represents the mode gap. The zigzag interface has a
transmittance spectrum almost unaffected by the L3 defect. In contrast, the shifted interface exhibits a significant decrease in its
transmittance after introducing the L3 defect.
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these edge states. Our results indicate that the valley-
dependent gapless edge states are not protected by val-
ley-dependent topology alone. Instead, interface geometry
is a critical factor in engineering edge states in VPCs.
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