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Summary 
An important process for navigating the uncertainties associated with the energy transition is power system 
planning. Energy system models are considered to be useful tools for supporting the power system planning 
process but are limited in several ways. Firstly, energy system models often have a high computational burden, 
limiting the possibility of conducting a large range of experiments. Secondly, to reduce their computational 
burden some energy system models have limited temporal detail, resulting in overestimation of VRE capacity in 
the system, underestimation of VRE curtailment, and undervaluation of flexible resources. Thirdly, many 
energy system models are considered to be ‘black boxes’ due to their high complexity and limited 
transparency. 

To address these problems related to models for power system planning, the Operation and Planning Model 
(OPM) has been developed in this study. The OPM is a myopic electricity system cost-optimisation model with 
a high level of temporal detail and a relatively low computational burden to allow for exploring the 
development of a national energy system, focussing on the interplay between demand, supply, and storage of 
electricity.  

The OPM has been applied to a reference case and two targeted experiments on the development of the Dutch 
electricity system from 2030 to 2050. The reference case showed that in case natural gas-fired power plants 
with carbon capture and storage are included in the OPM, the electricity system becomes highly dependent on 
this technology for the provision of electricity and flexibility. If this technology is not included in the OPM, the 
maximum number of additional generation and storage units per year is shown to have a major impact on 
system development. In case this factor is sufficiently high to not limit investments, the system becomes mainly 
dependent on onshore wind for the provision of electricity and energy storage in underground hydrogen 
storage facilities for flexibility. In case this factor is limited to a lower level, the system develops a more 
balanced technology mix.  

Multiple recommendations are made for future research continuing on the work presented in this report. 

1. Applying the OPM to more experiments can result in more in-depth insights into factors influencing the 
development path of the Dutch electricity system. This could entail analysing scenarios with variations of 
the costs for the different technologies to assess under which cost levels the system develops a 
favourable or unfavourable technology mix.  

2. The spatial scope of the OPM can be expanded to assess the importance of cross-border trade for 
ensuring system reliability and gaining insights into the co-evolution of interconnected electricity systems.  

3. The demand side is assumed to be inflexible in the OPM. Including demand side flexibility can result in a 
more accurate view of the electricity system's development between 2030 and 2050. 

4. The used time series data is based on a single year. An alternative approach is suggested in which time 
series data from multiple years is used which would better represent that perfect forecasting of capacity 
factors and electricity demand for a future year is not possible.   
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1. Introduction 
In 2015 the Paris Agreement was established to restrict global warming to levels below 2 degrees Celsius of 
preindustrial times, under the United Nations Framework Convention on Climate Change (UNFCCC, n.d.). To 
address climate change, signatories of the agreement must prepare and present their plans for climate action. 
In partnership with five sectors, the Dutch government developed the Klimaatakkoord (Climate Agreement) as 
their plans and goals for reaching the Paris Agreement goals (Klimaatakkoord, n.d.). The Dutch government's 
target for the electricity sector under the Klimaatakkoord is to generate 70% of electricity from renewable 
energy sources (RES) by 2030, with a 100% target for 2050 (Rijksoverheid, 2019; RIVM, n.d.). The 
Klimaatakkoord also sets the target to reach a 55% reduction of carbon emissions in 2030 compared to 1990 
levels (Rijksoverheid, 2019). To reach these targets, major changes to the Dutch electricity and energy system 
must be made in terms of developing renewable electricity generation capacity, electrical energy storage and 
other supporting infrastructure, requiring over 300 billion euros in investments, which will take years to 
develop (Duyster & Terwel, 2021). 

To ensure that these necessary investments and developments happen, the Minister of Energy and Climate, 
Rob Jetten, announced that the Dutch government will take on a more proactive role compared to the last 
decade (Hensen & van der Walle, 2023). As part of these efforts, a draft version of the Nationaal Plan 
Energiesysteem (NPE, National Energy System Plan) was published. This is a plan that presents the 
government's long-term vision for the climate-neutral Dutch energy system in the year 2050 (Ministerie van 
EZK, 2023b; RVO, 2023). The draft version of the NPE contains a description of the five main problems on which 
decisions have to be made and on which the Dutch government wants to act more pro-active to reach the 
envisioned energy system of 2050, being: 

1. Maximisation of renewable energy supply and development of required supporting infrastructure. 
2. Implementation of energy-saving measures. 
3. Allocation of available energy and infrastructure to where it is most needed from a systems perspective.  
4. International cooperation and increased interconnectedness of the European energy system.  
5. Allow for participation and initiatives from citizens in the decision-making process. 

One of the goals for electricity production in a supporting document to the draft NPE is to have a net-zero 
emission electricity system in 2035, which could include natural gas-fired power plants with carbon capture and 
storage (CCS) if the rate of development of renewable capacity is not sufficient (Ministerie van EZK, 2023a). 
While the NPE outlines the Dutch government's desired direction for the development of the energy and 
electricity system up to 2050, it is important to acknowledge that this path will not be without challenges and 
uncertainties. 

Exogenous uncertainties. The draft NPE indicates factors exogenous to the energy system that increase the 
uncertainties related to the development of the Dutch energy system, such as the transition to more circular 
production, changes in the labour market, demographic developments, and climate adaptation (Ministerie van 
EZK, 2023b).  

Endogenous uncertainties. The draft NPE also lists factors which are endogenous to the electricity system 
which result in uncertainty, such as the development of hydrogen production capacity, sustainable fuels, and 
other technological innovations (Ministerie van EZK, 2023b). 

Security of supply. The increasing rate at which operational thermal generation capacity is being 
decommissioned and variable renewable energy (VRE) electricity generation capacity is being developed, 
results in a decline in the security of electricity supply. The electricity system becomes more weather-
dependent and reliant on flexibility measures such as electrical energy storage and demand response (TenneT, 
2022). 

Investment planning. The decisions and investments that have to be made in the transition towards 2050 are 
highly interconnected and have to be made by both public and private parties, which poses a planning and 
coordination problem between the different stakeholders. The problem entails determining what the optimal 
mix of energy supply and storage is to meet electricity demand in the year 2050. Additionally, it entails 
determining how the optimal mix changes over time in the transition from the current system towards the 
system in 2050 and therefore, how the investments should be timed to maintain an optimal mix. Furthermore, 
it entails determining which actors are responsible for the realisation of the investments and development of 
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the technologies to realize this optimal mix. To navigate the planning and coordination problem of the energy 
transition, a long-term and consistent policy strategy of the government is considered to be necessary 
(Ministerie van EZK, 2023b). However, since the electricity and gas markets are liberalised to a large extent, the 
level of influence the government has on the developments in these markets is limited. 

Investment incentives. There are concerns that the design of the current liberalised electricity market provides 
insufficient incentives for investing in generation capacity. In a perfect energy-only market, rising electricity 
prices during times of scarcity should provide the market signal to investors to invest in new generation 
capacity (Ringler et al., 2017). The characteristics of VRE compared to conventional power plants result in a 
distortion of this market signal. Negligible marginal costs for electricity production from VRE technologies such 
as wind and solar power result in an adjusted merit order of generation capacity (Nicolosi & Fürsch, 2009; 
Sensfuß et al., 2008). VRE technologies are intermittent, which combined with their negligible marginal costs 
can result in higher price volatility and lower electricity prices in wholesale markets (Cevik et al., 2022; Lund et 
al., 2015). The combination of higher price volatility and lower price levels increases the investment risks for 
investing in new electrical generation capacity since there is more uncertainty about the expected returns on 
the investment. High investment risks may result in risk-averse investors deciding not to invest in new electrical 
generation capacity or postpone it until the need for new capacity is reasonably sure (Neuhoff & De Vries, 
2004). Therefore, the Dutch government must develop policies to reduce these risks, to ensure that sufficient 
investments in VRE generation capacity are made to transition to the envisioned future energy system while 
maintaining the security of supply at an acceptable level. 

1.1. Power System Planning 
An important process for navigating the uncertainties associated with the energy transition is power system 
planning, which is “a process in which the aim is to decide on new as well as upgrading existing system 
elements, to adequately satisfy the loads for a foreseen future” (Seifi & Sepasian, 2011, p. 7). The system 
elements that are considered in this process are amongst others the generation facilities, substations, and 
transmission lines (Seifi & Sepasian, 2011). The system can also be subdivided into four functionally 
independent subsystems that are interconnected, being the generation, transmission, distribution, and 
consumption subsystems (Demir & Hadžijahić, 2018).  

Short-term planning studies have time horizons of up to one year and consider issues such as economic 
dispatch, unit commitment, and day-ahead markets (Gaur et al., 2019; Seifi & Sepasian, 2011). Long-term 
studies have time horizons ranging between one year and up to a few decades and typically consider issues 
such as transmission and generation expansion planning, investment decisions, and policy development (Gaur 
et al., 2019; Seifi & Sepasian, 2011). The increasing share of decentralised intermittent VRE generation and 
decreasing share of centralised thermal power plants increases the complexity of the power system planning 
process and increases the importance of considering short-term system operations in long-term power system 
planning (Deng & Lv, 2020; IEA, 2022b).  

Power system planning studies are being conducted by both private and public actors, such as consulting firms, 
government agencies and academic institutions (e.g. DNV (n.d.), NREL (n.d.), Tallinn University of Technology 
(n.d.)). However, in the context of the current European liberalised electricity market, the decisions regarding 
investments in generation facilities are mainly made by actors from the private sector (Meeus, 2020). 
Therefore, the government does not have a direct influence on how the generation requirements of the system 
are met and in which generation technologies will be invested (Seifi & Sepasian, 2011). Through the 
development and implementation of energy policies, policymakers attempt to steer the decisions of these 
private sector actors to ensure that their energy policy goals are met.  

The Dutch government indicated in the concept NPE that its policy goals for the current and future energy 
system are that it is affordable, reliable, safe, sustainable, equitable, and participatory (Ministerie van EZK, 
2023b). These goals overlap to a large extent with the European Commission’s energy policy goals that are 
based on three pillars, being secure, sustainable, and competitively priced energy for Europe (European 
Commission, n.d., 2020). The combination of these three energy policy goals is often referred to as the ‘energy 
trilemma’, since the goals can be competing with each other and trade-offs have to be made (Heffron et al., 
2015). Therefore, policymakers should assess how policies affect the three pillars integrally and not focus on 
developing policies for each pillar in isolation. As earlier discussed, the current developments in the electricity 
sector result in an increase in price volatility, lower prices, higher investment risk, and therefore more 
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uncertainties in the process of power system planning. This results in an increasing need for decision support 
tools, such as quantitative energy systems models, to navigate these uncertainties.  

1.2. Energy System Modelling 
Energy system modelling is an important tool for supporting long-term power system planning, analysis of 
energy transition pathways, and for deducing policy advice (Mier & Azarova, 2021; Poncelet, Delarue, Six, 
Duerinck, et al., 2016). Energy system modelling allows decision-makers to evaluate the performance of 
alternative power system designs over a range of scenarios, such as changes in demand, the introduction of 
new technologies, and the integration of renewable energy sources.  

1.2.1. Differentiation Between Energy System Models 
The work of Siala et al. (2022) compared energy system models and more specifically power market models 
based on four characteristics, being the model type, the planning horizon, the temporal resolution, and the 
spatial resolution.  

Differentiating based on types of models results in the distinction between models that use either an 
optimisation or a simulation framework (Siala et al., 2022). In the case of an optimisation framework, the 
model attempts to minimize the overall system costs, consisting of investment costs, fixed operation and 
maintenance costs, and variable costs. Such models are based on the fundamental assumptions of a perfectly 
competitive market in which symmetric firms seek to maximise profits, which would lead to a minimisation of 
system costs in a perfectly competitive market (Siala et al., 2022).  In reality, these assumptions do not always 
hold in electricity markets, since they show characteristics of oligopoly markets with imperfect competition 
(Ahlqvist et al., 2022). On the other hand, simulation models do not necessarily follow the fundamental 
assumptions of a perfect market and determine dispatch and investment decisions on heuristics (Siala et al., 
2022). This allows for simulating strategic behaviour, such as firms seeking scarcity rents during periods when 
available generation capacity is limited. However, using a simulation model is a less suitable approach in case 
the purpose of a planning study is to determine the least-cost system configuration.  

Differentiation based on planning horizon relates to the foresight period a model has for determining the 
dispatch and investment decisions (Siala et al., 2022). A distinction can be made between two types of models. 
Firstly, there are perfect foresight models that have complete knowledge over the entire time horizon of the 
power system planning problem (Cuisinier et al., 2022; Poncelet, Delarue, Six, & D’Haeseleer, 2016). Some 
authors refer to these models as intertemporal models, since they consider all the periods of the entire 
planning problem simultaneously (Siala et al., 2022). Secondly, there are myopic models, which have a limited 
foresight period (Cuisinier et al., 2022; Poncelet, Delarue, Six, & D’Haeseleer, 2016). The term myopia is the 
medical term for near-sightedness (Foster & Jiang, 2014). In myopic models the optimisation problem is divided 
into sub-problems that are being solved consecutively, meaning that the investment and dispatch decisions 
within the period of foresight are made without information about later periods (Lopion et al., 2018; Siala et 
al., 2022). The results from the earlier sub-problems are then used as inputs for the later sub-problems.  

Distinguishing between model types based on temporal resolution relates to the number of timesteps to reflect 
fluctuations in supply and demand within a year (Siala et al., 2022). There are roughly two approaches, either 
using 8760 hourly timesteps for an entire year or using a heuristic or clustering algorithm for selecting 
representative hours or days. The advantage of a representative time-step approach is that it reduces the 
complexity of a model and therefore lowers the computational burden (Pfenninger, 2017; Siala et al., 2022). 
However, using 8760 hourly timesteps will result in model results showing more accurate storage behaviour 
(Nahmmacher et al., 2016; Siala et al., 2022).  

In the study by Siala et al. (2022), the spatial resolution of a model refers to the number and shape of the 
geographical regions that are modelled within the European power market based on the wholesale markets. 
However, when using a broader definition for the concept of spatial resolution, it can also relate to the spatial 
distribution of the demand and supply within a region, and whether to include constraints into the model 
resulting from network topology and available capacity on transmission lines, distribution grid, and 
interconnectors (Frew & Jacobson, 2016; Hess et al., 2018). Including these constraints allows for assessing the 
impact of limited infrastructure transport capacity on the functioning of the system but increases the 
computational burden. When these constraints resulting from transport infrastructure are neglected, the 
electricity system in the model can be considered to be a ‘copper plate’ (Hess et al., 2018). 
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1.2.2. Balancing Trade-Offs in the Design of Energy System Models  
Although energy system models are considered useful tools for supporting decision-making, it is shown that 
these models have shortcomings and that trade-offs have to be made when selecting or developing an energy 
system model. Energy system models used for conducting long-term planning studies often have limited 
temporal details to reduce the computational burden resulting from their large size and long planning horizon 
(Gaur et al., 2019; Kannan, 2011). Not sufficiently accounting for these short-term operational constraints can 
result in an overestimation of VRE capacity in the system, underestimation of VRE curtailment, and 
undervaluation of flexible resources (Deane et al., 2012; Gaur et al., 2019). To address these shortcomings, 
studies have assessed the effect an increase in time resolution and the addition of unit commitment 
constraints in long-term planning models has on simulation outcomes. These studies showed that there are 
significant differences in the generation mix that is the outcome of a long-term model when including short-
term operational factors (Haydt et al., 2011; Palmintier & Webster, 2011; Pina et al., 2011).  

A different approach to address the problems related to the limited temporal detail in the models used for 
long-term planning studies is by soft-linking of models to iteratively integrate a long-term system planning 
model with a short-term or operational model that addresses aspects such as hourly dispatch and intermittent 
VRE generation (Brouwer et al., 2015; Deane et al., 2012; Poncelet, Delarue, Six, Duerinck, et al., 2016). 
However, since the models used in such an approach are linked and not developed in an integrative fashion, 
the basic functioning of the linked models often differ, which can result in solutions not converging and the 
outcome being sub-optimal (Gaur et al., 2019; Helistö et al., 2019). Therefore, it is important to develop 
integrated energy system models that allow for long-term planning and account for detailed operational 
factors, without resulting in an excessive computational burden. 

Next to the drawbacks related to the lack of limited temporal detail, some energy system models can be 
considered ‘black boxes’ according to Mier & Azarova (2021). The first reason is that these models often consist 
of large numbers of variables and equations, which makes it hard or nearly impossible to trace back differences 
in model results to specific assumptions or equations (Mier & Azarova, 2021). Secondly, a majority of the 
models are not publicly available and often very little to no descriptions or source codes are provided (Mier & 
Azarova, 2021). This reduces the possibility for model comparison and replication of results, which is often 
indicated as a key reason for differences between results of similar studies or policy analyses based on different 
models (Mier & Azarova, 2021; Morrison, 2018; Müller et al., 2018). Moreover, Moallemi & Malekpour (2018) 
indicated that it is important that models used in the power system planning process are transparent and easy 
to work with to have private and public stakeholders and decision-makers make use of them. Therefore, energy 
system models must be transparent and not excessively complex, to allow for a clear understanding of the 
influence of assumptions and equations on the model outcomes and to allow for inter-model comparison. 

When addressing the influence of the level of foresight of models, it is useful to consider two concepts from 
the field of transition studies, being path dependency and technological lock-ins. Path dependency refers to the 
idea that past investment decisions shape future opportunities and can limit future options (Teece et al., 1997). 
This is related to the concept of a technological lock-in, which occurs when an existing technology becomes 
dominant and difficult to displace due to the infrastructure and investment already committed to it (Arthur, 
1989; Teece et al., 1997). These concepts have been widely used in transition literature for describing, 
identifying, and analysing mechanisms or variables that affect transition pathways (Goldstein et al., 2023). 

Intertemporal models can avert path dependencies and lock-ins since these models examine the entire time 
horizon, which is not the case for myopic models (Siala et al., 2022). In a real-world situation, the bounded 
rationality of investors may also lead to investment decisions that are myopic and therefore may result in 
suboptimal achievement of policy goals (Bhagwat et al., 2017). Although the intertemporal models with perfect 
foresight are useful for finding cost-optimal solutions, the results from myopic models with limited foresight 
are more likely to be close to the real economy and market behaviour (Lopion et al., 2018). An additional 
advantage of myopic models is that in general, they have a lower computational burden compared to models 
with perfect foresight, which makes them more usable for conducting analyses with higher temporal, spatial, or 
technological resolutions, while maintaining manageable computational times (Babrowski et al., 2014; Mier & 
Azarova, 2021; Poncelet, Delarue, Six, & D’Haeseleer, 2016).  

Sánchez Diéguez et al. (2021) present the IEASA-Opt model, an optimisation model used for analysing the 
impact of cross-sectoral flexibility for the energy transition in the Netherlands. The model comprised amongst 
others the simultaneous optimisation of the hourly dispatch for the power system of 20 European countries 
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and the multi-year planning of investment decisions for developing transport infrastructure, generation 
capacity, and energy storage. The run time of the IESA-Opt model for the transition from 2020 to 2050 took 8 
hours per run, while only performing a run for the year 2050 took 30 minutes1. Extensive models such as IESA-
Opt consider a wide range of factors, which makes them well suited for conducting in-depth and detailed 
analyses on the development of a national energy system. However, their high computational burden limits 
them in the possibility to perform a high number of runs consisting of a longer range of consecutive years, since 
this results in the need for a computer with high computational power or conducting all the runs will become a 
very time-consuming process.  

1.3. Research Objectives 
The main objective of this research is methodological in nature and aims to develop an energy system 
optimisation model for exploring the transition of a national electricity system, focusing on the interplay 
between demand, supply, and storage of electricity. The model needs to optimise both short-term operational 
and long-term investment decisions. The model must have a limited computational burden, to allow for 
running a range of runs within a manageable timeframe. Moreover, the working of the model has to be 
transparent and not overly complex, to ensure comprehension of how assumptions shape model outcomes. 

To assess whether the developed model is suitable for exploring the transition of a national electricity system, 
it will be applied to a reference case on the development of the Dutch electricity system from 2030 to 2050 to 
assess whether the model is fit for purpose. Additionally, it will be applied to two targeted experiments to 
assess potential alternative development paths for the Dutch electricity system. The two targeted experiments 
will focus on the effect of excluding CCS as a technology and varying the rate at which additional generation 
and storage capacity can be developed for the development of the Dutch electricity system from 2030 to 2050. 

1.4. Research Questions 
To guide the methodological objective for the development of the cost-optimisation model in this study, the 
following question will be answered:  

1. What is a suitable design for a cost-optimisation model for exploring the development of a national 
electricity system?  

Two additional research questions will guide the application of the model to a case study on the development 
of the Dutch electricity system from 2030 to 2050: 

2. Does the model provide credible results for the development of the Dutch electricity system from 2030 
to 2050? 

3. How does the exclusion of CCS and variations in the rate of development of additional generation and 
storage assets affect the development of the Dutch electricity system from 2030 to 2050? 

The next chapter will discuss the methodology used to reach the research objectives and answer the research 
questions. Additionally, the next chapter discusses the steps taken in this modelling study and how this results 
in the structure of the report.  

 
1 The researchers used a computer with “a six-core processor, 32 GB of RAM, and an unblocked solid state 
drive” (Sánchez Diéguez et al., 2021, p. 25). 
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2.  Methodology 
This study will use a quantitative research approach to address the research objectives and answer the 
research questions. More specifically, a modelling approach will be used as the research method. The study 
consists of two parts. The first part of the study entails constructing a cost-optimisation model for exploring the 
development of a national electricity system. In the second part of the study, this model is applied to a case 
study of the development of the Dutch electricity system from 2030 to 2050, consisting of a reference case and 
two targeted experiments. 

 

Figure 1: Modelling and simulation process. From Loper (2015). 

To guide the model development process, the modelling and simulation (M&S) life cycle process framework of 
Loper (2015) is used. A visual overview of the nine steps is shown in Figure 1.  

1. Establish the purpose and scope. This entails developing a problem statement, based on a real-world 
problem to be solved. This is presented in chapter 1, in which the societal problem is introduced, literature 
is discussed, research objectives are stated, and the resulting research questions are presented.  

2. Formulate the conceptual model. Loper (2015) distinguishes between an informal conceptual model and a 
formal conceptual model. The informal conceptual model is an abstract version of the real-world system 
which is being studied and described using natural language. The development of the informal conceptual 
model will be discussed in chapter 3. The formal conceptual model only contains an unambiguous 
description of the model, this will be presented in chapter 4 of this thesis report. 

3. Acquirement and analysis of data. The data used as input for the reference case is presented in chapter 6. 
4. Develop a simulation model and program. This consists of the implementation of the formal conceptual 

model into a programming language, a simulation language, or other computational software, which will be 
presented in chapter 5. 

5. Verification and validation of the model. Verification is the process of determining whether the model 
represents the conceptual description and specifications. Validation is the process of determining the 
degree to which a model and its outputs accurately represent the real-world system. This will be presented 
in section 5.5. 

6. Design of experiments. This entails determining the design of the different scenarios that will be simulated. 
In this study, the design of the reference case will be presented in chapter 6 and the design of the 
experiments will be presented in chapter 7. 

7. Execution of experiments. This consists of running experiments with the model and analysing the outputs. 
The results and analysis of the reference scenario and the experiments will be presented in chapters 6 and  
7. 

8. Configuration control. This is the process of keeping track of different versions of a model that is under 
development. This happened during the model development process, but only the finalised version of the 
model will be presented in this thesis. 

9. Model documentation. This is the report which presents all the M&S framework steps taken for developing 
the model and analysing results. In the case of this study, the model documentation is this entire thesis 
report.  

The next chapter will discuss the conceptualisation of the developed model. 
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3. Conceptualisation 
3.1. Spatial Scope and Resolution 

The objective of the study is to develop a cost-optimisation model for exploring the development path of a 
national electricity system, which will be applied to the Dutch electricity system. Therefore, the spatial scope of 
the optimisation model is the Dutch electricity system. It is assumed that there is no interconnection capacity 
with neighbouring countries. The advantage of this approach is that it reduces the complexity and 
computational burden compared to a model in which all interconnected electricity systems are modelled.  

However, in reality, the Dutch electricity system is interconnected with Denmark, Belgium, Germany, Norway, 
and the United Kingdom (CLO, 2022). TenneT (2022) reported that the interconnection capacity with the UK 
and Norway specifically will have an important role in ensuring the security of supply for the Netherlands in the 
years after 2030 when there are higher levels of intermittent VRE generation capacity. This is because these 
countries are less likely to have shortages in electricity supply simultaneously with the Netherlands compared 
to Germany, Belgium, and Denmark. Therefore, interconnection capacity has an important role in the 
functioning of the Dutch electricity system, which will become increasingly important in the post-2030 
electricity system. As a result of the modelling assumption that the Dutch electricity system is an isolated 
system, more electricity generation and storage assets are required compared to what can be expected in the 
real-world system. 

Next to the spatial scope of the model, the spatial resolution of the model has to be determined. It will be 
assumed that the electricity system functions as a copper plate, meaning that there are no constraints resulting 
from network topology or available capacity on the transmission and distribution grid. This also means that the 
spatial distribution of supply and demand is not taken into consideration. Similar to the assumption to model 
the national system in isolation, this assumption was made to reduce model complexity and the computational 
burden of the model. The disadvantage is that factors such as grid congestion cannot be accounted for, which 
is becoming an increasingly large problem for the development of solar photovoltaic (PV) projects in certain 
regions in the Netherlands (RVO, 2022; van den Berg, 2019). Hess et al. (2018) included the constraints 
resulting from grid capacity and the costs for grid expansion in a scenario study for a 100% renewable German 
energy system in 2050 and found that the grid makes up 12% of the total system cost. The model which is 
developed for the study presented in this thesis report will not be able to consider the grid constraints, nor the 
grid expansion costs that are necessary for increasing the share of VRE. However, this is considered to be 
outside the scope of this research. 

3.2. Technological Scope 
The model only includes domestic electricity supply and demand, and the assumption is made that the grid 
functions as a copper plate. From a technological perspective, this means that the model does not include 
transmission or distribution infrastructure, nor interconnectors with the electricity systems of other countries. 
The electricity demand in the model is aggregated on a national level, meaning no distinction is made between 
the electricity demand for specific purposes, industries, or geographic regions. Similarly, the electricity supply is 
aggregated on a national level, meaning that the location of generation and demand, and potential grid 
congestion are not considered.  

In principle, the model always tries to meet electricity demand. However, in case the costs for delivering the 
load are higher than the value of lost load (VoLL), the model will decide to shed the load. In EU Regulation 
2019/943 the VoLL is defined as “an estimation in euro/MWh, of the maximum electricity price that customers 
are willing to pay to avoid an outage” (European Parliament, 2019, p. 12). 

The main technological components which are included in the model are generation and storage assets. Three 
groups of electricity generation technologies will be included in the model, being VRE generation technologies, 
thermal generation technologies with carbon emissions, and thermal generation technologies without carbon 
emissions.  

The VRE technologies that are included are PV, offshore wind, and onshore wind. The thermal generation 
technologies with carbon emissions that are included are biomass and waste-fired power plants, and combined 
cycle gas turbines (CCGT). Coal-fired power plants are not included in the model, since the Duch government 
banned the use of coal for the generation of electricity starting from 2030 (Eerste Kamer der Staten-Generaal, 
2019; Rijksoverheid, 2018). The thermal generation technologies without carbon emissions that are included 
are nuclear power plants and combined cycle gas turbines with carbon capture and storage (CCGT CCS). In a 
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supporting document to the draft NPE, it is indicated that CCS may have a role in the energy transition as a 
backup, but that focus should be on the maximisation of the VRE capacity (Ministerie van EZK, 2023a). For 
CCGT CCS the specific operational characteristics and limitations of the storage of CO2 have not been included 
in the model, since this is outside of the scope of this study.  

A distinction will be made between storage assets for daily and seasonal storage. The conceptualisation of daily 
storage assets in the model is based on lithium-ion batteries. The conceptualisation of seasonal storage in the 
model is based on the conversion of electricity into hydrogen using electrolysers, underground hydrogen 
storage (UHS) in salt caverns and depleted gas fields, and the conversion of hydrogen into electricity using fuel 
cells.  

The conceptual model presenting the spatial and technological scope is shown in Figure 2.  

 

Figure 2: Conceptual Model Technological System 

3.3. Conceptualisation of Model Stages 
To allow for the optimisation of both short-term operational and long-term investment decisions, the 
developed optimisation model consists of two consecutive stages. The first stage of the model focuses on the 
operational short-term functioning of the system and the second stage focuses on investment planning. 
Therefore, the names of the stages are the Operation and Planning stage, and the name of the model is the 
Operation & Planning Model (OPM).  

The Operation stage aims to minimise costs for the generation of electricity and the charging and discharging of 
storage technologies to meet demand for a full year. The Planning stage focuses on a future year for making 
investment decisions for the additional generation and storage assets that are required for that year to 
minimise the costs of meeting electricity demand.  

The longest lead time for all technologies included in the model as an investment option is four years2. 
Therefore, the Planning stage focuses on a year four years into the future. This ensures that the nearest 

 
2 The lead times of the different technologies are presented in Table 13 in appendix B. 
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possible year in the future is considered for which it is possible to develop each investment option, given that 
the maximum lead time for developing each technology is four years. 

The two stages form an iterative loop in which the Operation stage and the Planning stage each move one year 
forward after solving the optimisation problem for their respective year. Both stages will have a limited amount 
of foresight outside of the stage it optimises. This is by the implementation of a look-ahead period of two 
months into the next year to prevent storage units from emptying at the end of the year. Figure 3 shows how 
the OPM moves through this iterative loop for three consecutive rounds. The designed optimisation approach 
is a rolling horizon approach, since the decisions made in both stages are based on the information available 
within the stage and a period of foresight outside of the stage (Cuisinier et al., 2022; Mier & Azarova, 2021). 
Since the foresight period outside of the stage is limited and does not stretch till the end of the entire 
optimisation period, this optimisation approach can be considered a rolling myopic horizon approach (Mier & 
Azarova, 2021). 

 

Figure 3: Conceptual Model Flow Diagram 

3.4. Key Performance Indicators 
When assessing the model outcomes based on Key Performance Indicators (KPIs), a distinction will be made 
between primary and secondary KPIs. This distinction has been observed in publications from the fields of 
public policy and business management (Chae, 2009; Cunningham & Pomfret, 2007). Primary KPIs are the most 
crucial metrics that directly reflect system performance. Secondary KPIs are supportive metrics that provide 
additional insights and context to the primary KPIs. While secondary KPIs might not have a direct impact on the 
core objectives of the system, they contribute to a deeper understanding of the factors influencing 
performance.  

The most important system performance characteristics for this study are the costs and reliability of the 
system. Therefore, the following four primary KPIs will be assessed. 

1. Annual Total System Costs. The objective of the optimisation model is to minimise total system costs 
while meeting all constraints, therefore the annual total system costs are the first primary KPI. 

2. Cost per MWh of Electricity Demand. To allow for easier comparison of system costs between years 
with different levels of electricity demand, the cost per MWh of electricity demand will be calculated. 
It is not expressed as cost per MWh of electricity delivered or generated, since loss of load and 
curtailment are possible. 

3. Expected Energy Not Served (EENS). To analyse the amount of lost load in a year, the EENS is 
assessed. 

4. Loss of Load Expectation (LOLE). To analyse the number of hours with loss of load during a year, the 
LOLE is assessed. 

TenneT (2022) states that the EENS and LOLE are the most important indicators for analysing the security of 
supply for the electricity system. The performance standard for the Dutch electricity system is a LOLE of four 
hours per year (TenneT, 2022).  

Next these four primary KPIs, two secondary KPIs will be assessed to develop an understanding of the 
development of the system and its performance.  
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1. Electricity Delivered to the Grid per Technology. To analyse the usage of the electricity generation 
and storage assets, the electricity delivered to the grid per technology is assessed.  

2. Installed Capacity per Technology. To analyse the development of the structural system, the installed 
electricity generation capacity and installed power capacity from storage technologies are assessed. 

It is important to explicitly note that the KPIs are only assessed for the Operation stages of the model, since 
those stages represent the actual day-to-day operation of the electricity system, while the Planning stage 
represents the decision-making process for investments in assets that become operational four years in the 
future. An overview of the KPIs with their respective units is presented in Table 1. Since the KPIs are considered 
to be straightforward, the formulas are not presented in this section but can be found in appendix A for 
reference.  

Table 1: Overview of the Primary and Secondary KPIs 

 Metric Unit 

Primary KPI 1 Annual Total System Costs € 
Primary KPI 2 Cost per MWh of Demand €/MWh 
Primary KPI 3 Expected Energy Not Served (EENS) MWh or GWh 
Primary KPI 4 Loss of Load Expectation (LOLE) hours/year 
Secondary KPI 1 Electricity Delivered to the Grid per Technology GWh or TWh 
Secondary KPI 2 Installed Capacity per Technology GW 

 

In the next chapter, the formalised model will be presented.  
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4. Formalisation of the Model 
4.1. Formalised Model Flow 

In this section, the formalised model flow of the OPM will be discussed to explain what inputs are used and 
what outputs are generated during each stage of the model. A diagram showing the detailed steps of the 
model is shown in Figure 4. The layout of this diagram is inspired by the model flow diagram of Groenewoud 
(2022).   

In the Operation stage, the model will solve an economic dispatch problem for the current full year with a two-
month look-ahead period. Based on the results of solving this problem, the KPIs are calculated. To reduce the 
computational burden of the model the temporal resolution consists of four-hour timesteps, as will be further 
discussed in section 5.4.1. The model uses six groups of data inputs for the Operation stage. 

1. Time series data which consists of data on hourly electricity demand and the capacity factors for the 
VRE technologies.  

2. Data on the number of operational units available in the first year per technology.  
3. Techno-economic data for the different technologies, such as the installed capacity per operational 

unit, the variable costs, and the carbon emissions per unit of electricity produced.  
4. The carbon emission cap for the current year.  
5. Development schedule of new units becoming available in the current year per technology.  
6. Decommissioning schedule for the units being decommissioned in the current year per technology.  

Note that there are two development schedules indicated in the model flow diagram in Figure 4, one being the 
‘predefined development schedule’ and one being the ‘solver development schedule’. The first contains the 
development schedule for new assets as an input dataset which can be adjusted for conducting experiments. 
The second contains the investment decisions made by the model while solving the optimisation problem. The 
decommissioning and development schedules are used to adjust the number of operational units per 
technology each year. 

The Planning stage also uses a four-hour timestep resolution and a two-month look-ahead period. In contrast 
to the Operation stage, this stage focuses on a year which is in the future, i.e., the focal year. For this year, the 
model solves an economic dispatch problem to determine what the cost-optimal usage is of the generation and 
storage units which are operational and possible additional units which can be invested in.  

At the start of the Planning stage, the same six groups of input data used for the Operation stage are updated. 
The input data used during this stage represents the focal year in the future instead of the current year. This 
means that the Planning stage accounts for the development in electricity demand and the change in 
operational assets in the system resulting from the decommissioning and development schedules.  

If the model decides to use new assets of a certain technology during the focal year, it will update the dataset 
which contains the development schedule of that technology. By doing so, an investment in the selected 
additional asset happens, which will become available at the start of the Operational stage four years in the 
future. After finishing the Planning stage, it will be checked whether additional years have to be optimised. If 
so, the model continues with the Operation stage in the next year. If the model has reached the last year of the 
entire optimisation problem, it stops. 

If the scope for an optimisation problem using the OPM is for example the years 2030 to 2050, the model 
should be run for the years from 2027 to 2050. Since the Planning stage decides to invest in units for a focal 
year that is four years in the future, starting the model in 2027 results in the first additional units becoming 
operational in 2031. The installed capacity mix that is set for 2030 is considered the start situation and 
therefore additional assets become available after this first year. If the model had been run from 2030 to 2050 
instead of 2027 to 2050, there would be a gap in the years from 2030 to 2033 in which no additional units can 
become available yet, but in which decommissioning of operational units can already happen based on input 
data.  
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Figure 4: Formalised Model Flow Diagram3 

  

 
3 The letters in the economic dispatch process blocks indicate the model settings during the respective stage.  
‘s’ = time step, ‘t’ = optimisation period, ‘b’ = block length, ‘l’ = look-ahead 
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4.2. Representation of Assets in the OPM 
In the OPM, generation and storage technologies are represented as single processes that represent all 
generation or storage capacity for that specific type of technology. Investments in additional units or 
decommissioning of operational units happen in discrete steps based on the standard unit capacity of the 
respective technology. For example, when one unit of a technology is decommissioned, the installed capacity 
of the process representing the technology is reduced by one time the standard unit capacity. The standard 
unit capacities used will be presented in section 6.3.1 

4.3. Decision Variables 
The first decision variable in the OPM is the level of electricity generation from the generation technologies and 
the level of charging or discharging of electrical energy from the storage technologies which is shown in 
Equation 1. The decision to invest in an additional unit of a technology by the model during the Planning stage 
is represented by the decision variable presented in Equation 2. The exact meaning of the terms in the 
formulations for the decisions variable, objective functions, and constraints that will be presented are listed in 
the Nomenclature list and will therefore not always be indicated or explained in the text in this section and the 
next few sections. 

Equation 1: Level of electricity generation, charging or discharging by technologies 

𝑝𝑖,𝑡,𝑦            ∀ 𝑖𝜖𝐼  ∀ 𝑡𝜖𝑇  ∀ 𝑦𝜖𝑌 

Equation 2: Number of additional units invested in by model solver 

𝑖𝑛𝑣𝑖,𝑦
𝑠𝑜𝑙𝑣𝑒𝑟               ∀ 𝑖𝜖𝐼    ∀ 𝑦𝜖𝑌 

4.4. Objective Function 
The objective function of the OPM is to minimise the total cost of meeting electricity demand, through a 
combination of dispatching generation assets, charging and discharging of the storage assets, and loss of load. 
The objective function also contains the costs for investment in additional units by the model solver, expressed 
as equivalent annual costs (EAC) for additional units and multiplied by a binary variable 𝑏. During the Operation 
stages, only the assets operational in that year can be used and therefore the binary variable 𝑏 is zero during 
the Operation stages. During the Planning stages, it is also possible for the model solver to invest in additional 
units, therefore 𝑏 has a value of one during the Planning stages. The objective function is formalised in 
Equation 3.  

Equation 3: Objective Function of the OPM 

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒  (𝑇𝑜𝑡𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐶𝑜𝑠𝑡𝑠 + 𝑏 ⋅ (𝐸𝐴𝐶 𝐶𝑜𝑠𝑡𝑠 𝑓𝑜𝑟 𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑈𝑛𝑖𝑡𝑠)) 

𝑇𝑜𝑡𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐶𝑜𝑠𝑡𝑠 =  ∑((∑ 𝑝𝑖,𝑡,𝑦
𝑖𝜖𝐼

𝑇

𝑡

⋅ (
𝑉𝐶𝑖

𝑓𝑢𝑒𝑙

𝜂𝑖
𝑡ℎ + 𝑉𝐶𝑖

𝑂𝑃𝐸𝑋) + 𝑉𝑜𝐿𝐿 ⋅ 𝑙𝑙𝑡) 

 𝐸𝐴𝐶 𝑓𝑜𝑟 𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑈𝑛𝑖𝑡𝑠 = ∑ 𝐸𝐴𝐶𝑖
𝑖𝜖𝐼

⋅ 𝑖𝑛𝑣𝑖,𝑦
𝑠𝑜𝑙𝑣𝑒𝑟   

The objective function contains all variable costs for electricity generation, charging and discharging of storage, 
costs for loss of load, and the EAC for additional units. Note that the objective function does not indicate a 
summation over all years of the optimisation problem, since the separate model stages are myopic and 
optimise for each year independently without considering later years. Only the two-month look-ahead period is 
considered for preventing the emptying of the storage assets at the end of the year. 

The threshold for investment in the objective function is the EAC, which accounts for both the capital 
expenditure (CAPEX) discounted over the lifetime of the asset and the fixed annual operational expenditures 
(OPEX). The EAC is similar to an annuity but also incorporates the fixed OPEX next to the CAPEX. The 
formalisation of the EAC as an investment threshold is based on Kenton & Kindness (2020) and is presented in 
Equation 4. The annuity factor used for the calculation of the EAC is shown in Equation 5. The lifetime of a 
technology in years is represented as 𝑑𝑖  and the discount rate as 𝑟𝑖.  
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Equation 4: Equivalent Annual Costs 

𝐸𝐴𝐶𝑖 =
𝐹𝐶𝑖

𝐶𝐴𝑃𝐸𝑋

𝐴𝐹𝑖

+ 𝐹𝐶𝑖
𝑂𝑃𝐸𝑋  

Equation 5: Annuity Factor 

𝐴𝐹𝑖 = 𝐴𝑛𝑛𝑢𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟𝑖 =  
1 − (1 + 𝑟𝑖)

−𝑑𝑖

𝑟𝑖

 

4.5. Constraints 
The first constraint to which the optimisation problem is subject is the energy balance constraint which dictates 
that the supply of electricity must always meet demand. The constraint is shown in Equation 6. The left-hand 
side of the equation includes the generation of electricity and charge or discharge from storage assets, 
curtailment, and loss of load. The right-hand side is the load per timestep. Charging of storage assets is 
represented as negative generation on the left-hand side of the equation.  

Equation 6: Energy Balance Constraint 

∑ (𝑝𝑖,𝑡,𝑦 − 𝑘𝑖,𝑡,𝑦) + 𝑙𝑙𝑡,𝑦 = 𝐿𝑡,𝑦          ∀ 𝑡𝜖𝑇
𝑖∈𝐼

 ∀ 𝑦𝜖𝑌 

The next constraint ensures that output from generators and storage technologies cannot exceed the installed 
capacity. During the Planning stage, the binary variable 𝑏 has a value of one, which allows the use of additional 
units invested in by the solver. This is formalised in Equation 7.  

Equation 7: Power Capacity Constraint  

 𝑝𝑖,𝑡,𝑦 ≤ 𝑝𝑖
𝑀𝐴𝑋 ⋅ (𝑂𝑈𝑖,𝑦 +  𝑏 ⋅ 𝑖𝑛𝑣𝑖,𝑦

𝑠𝑜𝑙𝑣𝑒𝑟)           ∀ 𝑡𝜖𝑇 ∀ 𝑖𝜖𝐼 ∀ 𝑦𝜖𝑌 

The number of operational units per technology in a year is indicated by 𝑂𝑈𝑖,𝑦. During the Operation stage, the 

number of operational units is determined by first taking the number of operational units in the Operation 
stage one year earlier, subtracting the number of units to be decommissioned, and adding the number of units 
to be developed. The number of units to be developed consists of the number of units invested in by the solver 
during the Planning stage four years ago and the number of units that were scheduled to be developed in that 
year as part of an experiment. 

During the Planning stage, the number of operational units is determined by taking the number of operational 
units in the Operation stage of the current year, subtracting the number of units to be decommissioned in the 
four upcoming years, and adding the number of units from the development schedule in the four upcoming 
years.  

The next constraint ensures that the level of energy stored in the storage assets cannot exceed the installed 
energy storage capacity from the operational units. During the Planning stage, the additional units that the 
model solver decides to invest in during that stage are also available. It is shown in Equation 8. 

Equation 8: Storage Capacity Constraint 

𝑠𝑙𝑖,𝑡,𝑦 ≤ 𝑠𝑙𝑖
𝑀𝐴𝑋 ⋅ (𝑂𝑈𝑖,𝑦  +  𝑏 ⋅ 𝑖𝑛𝑣𝑖,𝑦

𝑠𝑜𝑙𝑣𝑒𝑟)        ∀ 𝑡𝜖𝑇 ∀ 𝑖𝜖𝐼  ∀ 𝑦𝜖𝑌  

The last constraint is the carbon emissions cap, which is presented in Equation 9. The level of the carbon 
emissions cap is not equal each year. Therefore, the carbon cap is formulated with an index for the year that is 
being optimised.  

Equation 9: Carbon Emissions Cap 

∑ ∑ 𝑝𝑖,𝑡,𝑦 ⋅ 𝐶𝑂2𝑖
𝑖𝜖𝐼

≤  𝐶𝑂2𝑦
𝑀𝐴𝑋                ∀ 𝑦𝜖𝑌

𝑇

𝑡

 

The next chapter will present the implementation of the formalised model into Linny-R.  
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5. Implementation of OPM in Linny-R 
5.1. Why Linny-R 

The OPM is implemented in Linny-R, which “is an executable graphical specification language for mixed integer 
linear programming (MILP) problems, especially unit commitment problems (UCP) and generation expansion 
planning (GEP)” (Bots, 2023a). The Linny-R software has the advantage that it offers a high level of 
transparency due to the graphical visualisation of all processes, products, and flows in the model. Additionally, 
the Linny-R software is freely available (Bots, 2023a).  

The software is still being further developed and updated versions with new features are published quite 
frequently (Bots, 2023b). During the process of developing the OPM, this resulted in the advantage that some 
adjustments to the software were made on request. The disadvantage was that sometimes bugs were 
encountered when new versions of Linny-R were released. However, in most cases, these bugs were fixed 
within a few hours after reporting.  

A disadvantage to note is that the documentation on Linny-R is limited. There is a documentation website that 
contains a user guide explaining the functionalities, the graphical user interface (GUI), and the language 
reference for Linny-R (Bots, 2022). The information provided through this documentation website should be 
sufficient to understand how Linny-R works and how to develop models. Next to the documentation provided 
here no other formal materials are available. However, the advantages of using Linny-R are considered to 
largely outweigh these disadvantages. 

5.2. Key Concepts in Linny-R 
In Linny-R three basic modelling concepts are used for creating models: processes, products, and links. In the 
GUI of Linny-R, four main visual components are used, being processes, products, links, and clusters. The 
description of these components in this section is based on the information provided by Bots (2022). 

Products represent something which can be consumed and/or produced by processes. The product can be a 
tangible good, such as fuel or electricity, but also intangible information or data, such as carbon credits. At each 
timestep, the product has a certain level. Additionally, a product can be constrained by an upper and lower 
bound. Lastly, a product can have a certain price. Next to default products, there are four alternative types of 
products, being stocks, sinks, sources, and data products.  

• Stocks function as storage and can retain a certain level over multiple timesteps.  

• Sinks function as the destination or receiver in a model.  

• Sources function as the point of origin or the supply in a model and provide the necessary inputs into 
the system.  

• Data products represent intangible information and can be either default data products, stocks, sinks 
or sources. A visual representation of the different product types and their characteristics in Linny-R is 
shown in Figure 5. 

 

Figure 5: Products in Linny-R. From Groenewoud (2022). 

Processes represent the conversion of products into other products. For it to hold significance within a model, 
a process must be connected to at least one product. At each time step, a process has a production level, which 
may be constrained by a lower and upper bound. Additionally, a process may have a cost price. Figure 6 shows 
how a process is represented in Linny-R and how it is linked to products. 
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Links represent the potential flow of products or data. When a link is present from a product into a process, the 
process uses the product. When a link is present from a process to a product, the process produces the 
product. A link has a rate, which determines the efficiency of conversion of an input product into an output 
product. An overview of how processes, products, and links are represented in Linny-R is shown in Figure 6.  

 

Figure 6: Processes, products, and links in Linny-R. From Groenewoud (2022). 

The last relevant Linny-R component to introduce is the cluster, as shown in Figure 7. Clusters can be used to 
group processes in a subsystem, which helps create a clearer overview of a model but does not affect the 
optimisation problem itself. Processes can only be a part of one cluster, while products can be part of multiple 
clusters. Additionally, it is possible to have clusters within clusters to create multiple levels within a model.  

 

Figure 7: Cluster in Linny-R 

5.3. OPM Components 

5.3.1. Top Cluster of OPM in Linny-R 
The top cluster of the OPM as shown in Figure 8 contains all system components of the electricity system. The 
central component of the OPM is the ‘Grid balance’ product, which represents the ‘copper plate’ electricity 
grid. All generation technologies can deliver electricity to the ‘Grid balance’ product. Storage technologies are 
also able to use the ‘Grid balance’ product for charging the storage. The process ‘Electricity Consumption’ is 
only constrained by a lower bound which is set by a dataset that contains the time series data for the electricity 
consumption. Through the ‘Grid balance’ product the required electricity is supplied. The ‘Grid balance’ has a 
very small value for its lower and upper bound (-1*10-8 and 1*10-8)  to ensure proper solver functionality when 
running the model without slack. 

In case the generation technologies and storage assets are not able to meet demand, the ‘Accept Loss of Load’ 
process can supply to the ‘Grid balance’ to ensure that the energy balance constraint is met (Equation 6). The 
costs for loss of load are determined by the ‘VoLL’ data product, which represents the value of lost load. 
Therefore, the solver will only opt for loss of load when it results in lower costs than dispatching operational 
units, discharging the storage assets, or investing in additional units.  

During timesteps in which VRE generation exceeds demand, the solver has the option to either store the 
electricity in one of the storage technology units or curtail it. The curtailment of all operational units is 
combined in the ‘Total Curtailment Operational Units’ and the curtailment of all potential additional units 
during the Planning stage is combined in the ‘Total Curtailment Operational Units’ data product. 

Lastly, the top cluster of the OPM also contains a cluster ‘Total System Costs’. This cluster contains a range of 
data products for the calculation of the annual total system costs. 
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Figure 8: Top Cluster of OPM in Linny-R 

5.3.2. Thermal Generation Assets 
The cluster for the CCGT units is used as an example of the design of the clusters for the thermal generation 
assets and is shown in Figure 9. To distinguish between the electricity generation from the existing operational 
units and the additional units which can be invested in during the Planning stage, two processes in the cluster 
deliver electricity to the grid, ‘CCGT: Commit Operational Units’ and ‘CCGT: Commit Additional Units’.  

When generating electricity, the processes use fuel and have other variable costs, which are represented by the 
input products ‘CCGT: Fuel’ and ‘CCGT: Variable O&M’. Additionally, output data products for keeping track of 
the variable costs of operational units are included as well for calculation of the total annual system costs 
during the Operation stages. When units of fossil fuels are used, CO2 is emitted through the ‘CCGT: Emissions’ 
data product. In turn, this results in the ‘Carbon Credits’ data product filling up, which is capped on an annual 
basis for the entire OPM.  
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Figure 9: Thermal Generation Assets in OPM (CCGT) 

Since investment in new assets is only possible during the Planning stage, the upper bound of the ‘CCGT: 
Commit Additional Units’ process is zero during the Operation stages.  During the Planning stages, the process 
has an upper bound set at the maximum number of additional units multiplied by the standard unit capacity of 
the technology. Investment in an additional unit is triggered when the ‘CCGT: Commit Additional Units’ process 
is used. More units are invested each time the output level of the process surpasses a level which is a 
multiplication of the standard unit capacity. This is implemented through the use of the ‘peak-increase’ link 
between the ‘CCGT: Commit Additional Units’ process and the ‘CCGT: New units’ data product. The ‘CCGT: 
Invested Units’ stock data product is for keeping track of the number of invested units in the current 
optimisation block. The ‘CCGT: Unit EAC’ represents the EAC for an additional operational unit, which allows 
the model to determine which technology is the most cost-effective investment if an additional generation unit 
is required.   

The clusters for CCGT CCS and nuclear generation deviate slightly from the CCGT cluster. For CCGT with CCS, it 
is assumed that all CO2 emissions are captured and stored, which results in no emissions from the use of fossil 
fuels by this technology.  

Nuclear energy is a controversial energy source for electricity generation and social acceptance is low in the 
Netherlands (Sánchez Diéguez et al., 2021). Whether new nuclear plants will be developed depends highly on 
how public support and government policy develops. Therefore, nuclear generation is not included as an 
investment option for the solver. Accordingly, the nuclear cluster does not have a process for electricity 
generation from additional units, as can be seen in Figure 10. The only option for the development of 
additional nuclear power plants is through the predefined development schedule dataset, which allows for a 
predefined number of nuclear power plants to become operational in a certain year as part of an experiment. 
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Figure 10: Nuclear Generation in OPM 

5.3.3. VRE Generation Assets 
The cluster for PV generation is used as an example for explaining the design of the VRE generation asset 
clusters and is shown in Figure 11. The main difference between the design of the cluster for VRE generation 
assets compared to the thermal units is that the capacity factor determines the output. The data product 
representing the capacity factor is linked to the products ‘PV: Installed output’ and ‘PV: Max. available 
capacity’.  

The value of ‘PV: Installed output’ is the maximum PV output possible from the operational units during a 
timestep. Since curtailment must be possible, the ‘PV: Installed output’ product is a sink that is connected to a 
data product for curtailment and the process which feeds into the electricity grid. This gives the process ‘PV: 
Commit Operational Units’ the option to use any fraction of the maximum PV output during a timestep to the 
grid, allowing for curtailment.  

The product ‘PV: Max. available capacity’ represents the maximum possible PV output per timestep if the 
maximum number of additional units is invested during the Planning stage. Similar to the process for the 
operational units, the process for additional units can decide how much of this maximum available capacity per 
timestep is delivered to the grid, allowing for curtailment. To determine the number of investments in 
additional PV units required to deliver a certain amount of electricity to the grid, the data product ‘PV: 
Committed Additional Units’ is included. The level of this data product is determined per timestep by dividing 
the level of ‘PV: Commit Additional Units’ by the standard unit capacity and the capacity factor. The highest 
level this data product has during a Planning stage determines the number of additional units invested in. 
During the Operation stages, investment is not possible and the level of the process ‘PV: Committed Additional 
Units’ is zero by definition. 
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Figure 11: VRE Generation Assets in OPM (PV) 

5.3.4. Daily Storage Assets 
The highest level of the cluster for daily storage assets is divided into two subclusters, the ‘Storage: Daily: 
Operational’ cluster and the ‘Storage: Daily: Additional’ cluster as shown in Figure 12.  

 

Figure 12: Daily Storage Assets in OPM – Overview Cluster 

The cluster which represents the operational units is shown in Figure 13. The conceptualisation for the cluster 
design is based on a lithium-ion battery storage system. It consists of a process for charging the storage, a data 
product for the stored electrical energy and a process for discharging the storage and delivering electricity back 
to the grid. The rate of the links between the processes for charging and discharging the electricity and the 
stock product for storage represents the charging and discharging efficiency. Additionally, a process and 
product are included which represents the self-discharging losses of the daily storage.  
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Figure 13: Daily Storage Assets in OPM – Operational Units Cluster 

The configuration of investments in daily storage is slightly more complex compared to the configuration for 
the investment in generation technologies. The two processes for charging and discharging the storage and the 
stock product for storing the electrical energy can all three trigger investment in an additional storage unit. In 
case the ‘peak-increase’ link for triggering an investment was only linked to one of these three components, 
the level of the other two components could reach levels that would require an additional investment to 
happen, without triggering this additional investment.  

 

Figure 14: Daily Storage Assets in OPM – Additional Units Cluster 

5.3.5. Seasonal Storage Assets 
Similar to the daily storage assets, the highest level of the cluster for seasonal storage assets consists of two 
sub-clusters, as shown in Figure 15. 
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Figure 15: Seasonal Storage Assets in OPM – Overview Cluster 

The operational cluster for seasonal storage is presented in Figure 16. The conceptualisation for the cluster 
design is based on a hydrogen-based storage system consisting of an electrolyser, fuel cell, and UHS. The 
efficiency of the electrolysers in converting electricity into hydrogen by the electrolyser is incorporated into the 
link between the electrolyser process and the storage. The efficiency of converting hydrogen back into 
electricity is incorporated into the link between the fuel cell and the grid balance. The operational cluster for 
seasonal storage also includes input products for representing the variable costs for the electrolyser and the 
fuel cells. Additionally, output data products for keeping track of the variable costs for calculating the total 
system cost KPI are included as well. 

 

Figure 16: Seasonal Storage Assets in OPM – Operational Units Cluster 
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The configuration of the cluster for the investment in additional assets is shown in Figure 17. For seasonal 
storage, the solver can invest in additional fuel cells and/or electrolysers. Development of UHS facilities is not 
included as an investment decision but is determined based on an input dataset that dictates the available 
capacity in the UHS facilities in a certain year.  

There are multiple reasons for not including it as an investment decision in the model. Firstly, it is expected 
that the provision of flexibility in the system by a UHS project is not valued sufficiently in the current market to 
result in a viable business case (van Gessel, Huijskes, et al., 2021). Secondly, the development of such large-
scale infrastructural projects requires the development of sufficient societal support and supportive policy 
frameworks (van Gessel, Huijskes, et al., 2021). Lastly, while the production of hydrogen through electrolysis is 
mainly considered an activity for market participants and not for system operators, a larger role is expected for 
system operators in the development of UHS facilities (Ministerie van EZK, 2022). This is also apparent from the 
fact that the first large-scale UHS facility in the Netherlands is currently being developed by HyStock, a 
subsidiary of the Dutch gas system operator Gasunie (Gasunie, n.d.; HyStock, n.d.; Ministerie van EZK, 2022). 
Therefore, it is assumed that the government and system operators will have such a large role in the 
development of UHS, that it will not be considered as an investment decision in the OPM. Section 6.2.2 will 
further elaborate on how the available UHS capacity per year is determined for the reference case. 

 

Figure 17: Seasonal Storage Assets in OPM – Additional Units Cluster 

5.3.6. Total System Costs 
The last OPM cluster to discuss is the cluster for the total system costs. It consists completely of data products 
and does not affect solving the optimisation problem; it is merely added to visually represent the calculation of 
the total system costs. Linny-R does offer the possibility to calculate such costs using equations that are not 
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visually shown in a model. However, it was decided to include it in the OPM in a visual way to increase 
transparency. The overview of the cluster is shown in Figure 18. The cluster with all fixed costs for the EAC 
payments for the operational units of each technology is shown in Figure 19. Lastly, the cluster for all variable 
costs is shown in Figure 20. 

 

Figure 18: Total System Costs  in OPM – Overview Cluster 

 

 

Figure 19: Total System Costs in OPM – EAC Payments Cluster 
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Figure 20: Total System Costs  in OPM – Variable Costs Cluster 

5.4. Model Settings for the OPM Stages in Linny-R 
The Linny-R software allows for selecting model settings for solving the optimisation problem of the model. 
Determining which model settings to use for solving an optimisation problem is crucial since it has a significant 
impact on the efficiency, accuracy, and feasibility of the solution process. Within Linny-R there are four main 
model settings to set before running a model. 

1. Temporal resolution: This determines the size of each timestep in the model. It can range from a 
certain number of seconds to a certain number of years per timestep. A smaller timestep results in 
increased accuracy and detail but increases the computational burden.  

2. Optimisation period: This determines the specific time frame or duration over which the optimisation 
is performed. A longer optimisation period will result in a higher computational burden since it 
increases the number of timesteps for which the level of decision variables must be determined.  

3. Block length: This determines the number of timesteps in an optimisation block. An optimisation block 
is a sub-problem of the larger optimisation problem for which the solver will determine the level of 
decision variables for reaching an optimal solution. A longer block length results in a larger number of 
timesteps for which the decision variables and the impact on the outcomes have to be assessed, which 
increases the computational burden.  

4. Look-ahead period: This is the period following the end of the optimisation block for which the solver 
will consider the consequences of decisions made within the optimisation block. Increasing the look-
ahead period results in a higher computational burden similar to when the block length is increased. 

5.4.1. Temporal Resolution 
A temporal resolution of one-hour timesteps for the highest resolution possible, since the time series data used 
for demand and capacity factors are hourly data. Therefore, the model outcomes for the run with a one-hour 
timestep resolution for both stages will be considered the benchmark for comparing the other temporal 
resolution settings. The OPM has been run for the period from 2027 to 2050 using the same input data as has 
been used in the reference case presented in chapter 6.  

The impact of lowering the temporal resolution on total run time, average annual system costs, and the two 
loss of load metrics for the period from 2031 to 2050 are shown in Figure 21. The year 2030 is not included 
since the first additional units invested during the Planning stage of 2027 become available in 2031. Therefore, 
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there is a disproportionate amount of lost load and very high system costs in the year 2030 for all runs, which 
skews the data for average costs, EENS, and LOLE.  

It can be observed that the run time of the OPM is significantly higher when using a one-hour timestep 
resolution compared to the lower temporal resolutions. While the run time is 271 minutes for a one-hour 
timestep resolution, a four-hour timestep resolution results in a 90% lower run time of 26 minutes4. This major 
reduction in computational burden improves the usability of the model. However, it is important to assess the 
effect of reducing the temporal resolution on the accuracy of the model outcomes.  

Average annual total system costs reduce slightly when a lower temporal resolution is used. Using a one-hour 
timestep resolution results in average annual total system costs of 28.6 billion euros, which reduces by 6.9% to 
26.6 billion when using a four-hour timestep resolution, which is considered to be within a reasonable margin.  

Average annual EENS from 2031 to 2050 is reduced to a large extent by changes in temporal resolution. 
Reducing the timestep resolution results in a smoothing effect on the fluctuations in electricity demand and 
VRE capacity factors. Therefore, this has a direct effect on EENS and LOLE in the system, as can be observed in 
Figure 21. It decreases from 22.5 GWh when using a temporal resolution of one-hour timesteps to 2.6 MWh 
when using a temporal resolution of four-hour timesteps. It has to be noted that the high values for average 
annual EENS for the one-hour and two-hour temporal resolutions are skewed by high EENS in 2031, which were 
respectively 422.1 GWh and 102.2 GWh. However, reducing the temporal resolution does result in a decrease 
in EENS compared to the one-hour timestep resolution. 

The average annual LOLE reduces with temporal resolutions lower than a two-hour timestep. However, 
considering that the LOLE used as a performance standard for the Dutch electricity system is 4 hours per year 
(TenneT, 2022), the average annual LOLE for all temporal resolutions can be considered to be within a 
reasonable range.   

 

Figure 21: Impact of Temporal Resolution on Run Time, Total System Costs, Loss of Load, and LOLE 

The impact of lowering temporal resolution on the average electricity generation mix is shown in Figure 22. 
Compared to a one-hour timestep resolution, average annual generation from CCGT CCS units is slightly higher 
for a two-hour timestep resolution but reduces when lower temporal resolutions are used. However, the effect 
of reducing the temporal resolution on the overall electricity generation mix is limited.     

 
4 The used computer runs on an Intel Core i7 – 7700HQ CPU 2.80 GHz with 16 GB RAM. 
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Figure 22: Impact Temporal Resolution on Average Electricity Generation Mix (2031 - 2050) 

The average annual feed-in to the grid from daily and seasonal storage units is shown in Figure 23. The values 
for daily storage units are shown as negative values on this graph. Since daily storage units are designed to 
charge and discharge within short periods, the smoothing effect on the fluctuations from VRE capacity factors 
and demand results in a lower feed-in from daily storage units when the temporal resolution is reduced. 
Average annual feed-in to the grid from seasonal storage units is only affected to a small extent.  

 

Figure 23: Impact Temporal Resolution on Average Annual Feed-In from Storage Technologies (2031 - 2050) 

The impact of reducing the temporal resolution on the average installed capacity mix in the period from 2031 
to 2050 is shown in Figure 24. The installed power capacities from storage technologies are shown as negative 
values in this graph. As can be expected based on what is discussed on the lower average annual feed-in from 
daily storage units when temporal resolution is reduced, the average installed capacity from daily storage units 
in the period from 2031 to 2050 is also lower when the temporal resolution is reduced. The impact of the 
reduction of temporal resolution on the average installed capacity from other technologies is limited.  

 

Figure 24: Impact Temporal Resolution on Average Installed Capacity Mix (2031 - 2050) 

The major reduction in computational burden when using a four-hour timestep resolution compared to one-
hour timesteps is considered to outweigh the reduction in the accuracy of the model. Therefore, a four-hour 
timestep resolution will be used for running the OPM when conducting the model runs for the reference case 
in chapter 6 and the experiments in chapter 7.  

5.4.2. Optimisation Period and Block Length 
The entire optimisation problem in the OPM consists of multiple years. The Operation and Planning stage for 
each year are optimised in separate consecutive experiment runs in Linny-R. Therefore, the optimisation period 
of each stage is one entire year. Since the OPM has a temporal resolution of four-hour timesteps, this results in 
2190 timesteps in a year.  
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The block length covers the entire length of the optimisation period of each stage. Hence, the block length will 
have an identical number of timesteps as the optimisation period of a stage in the OPM, i.e., 2190 timesteps.  

5.4.1. Look-Ahead Period 
When the model does not have a look-ahead period, the model solver will empty all stock products, such as the 
energy storage assets, at the end of the optimisation period. This results in the storage assets being empty at 
the start of each optimisation period as well. For daily storage, this will likely not have a major influence on its 
functioning, since daily storage levels are fluctuating more in the short term than seasonal storage does. 
Seasonal storage is mostly used for storing electricity from VRE generation during longer periods of high VRE 
generation and feeding back into the grid during longer periods of low VRE generation. Therefore, preventing 
the emptying of storage at the end of an optimisation block is mainly relevant for the proper functioning of the 
seasonal storage units. 

Historical data on VRE capacity factors for the year 2019 from Pfenninger & Staffell (n.d.) and Staffell & 
Pfenninger (2016) has been used for assessing the seasonal variation in capacity factors for the VRE 
technologies. This is also the data used as input data for the reference case. Figure 25 shows that from the end 
of September (around hour 6500) till mid-March (around hour 1800) the weekly rolling average PV capacity 
factor is lower than the annual average PV capacity factor, except for a short period at the end of February 
(around hour 1250).  

Figure 26 and Figure 27 show that the weekly rolling average capacity factors for offshore and onshore wind 
are only below the annual average for an extended period during the middle of the year. During the rest of the 
year, the weekly rolling average capacity factors for offshore and onshore wind fluctuate around the annual 
average frequently. Given this more consistent fluctuation over the year and the above-average capacity factor 
levels at the end and beginning of the year, it is considered to affect the required look-ahead period to a 
smaller extent.  

In case seasonal storage is emptied at the end of the year, this may lead to insufficient electrical energy being 
available to cover the below-average PV generation from the start of the year till the period in mid-March 
(around hour 1800). Two options are considered for preventing the seasonal storage from being emptied at the 
end of the year. Firstly, a parameter can be added to ensure that the seasonal storage does not drop below a 
predefined level at the end of the year. Secondly, a look-ahead period can be used to ensure that seasonal 
storage at the end of a year is kept at a level that considers the need for stored energy during the look-ahead 
period at the beginning of next year.  

Since the need for seasonal storage depends on the development of the entire electricity system over the 
multi-year period, it is uncertain what the required amount of energy in the seasonal storage is in the first 
period of each year. In case the model decides to invest more in CCGT with CCS over the years, less seasonal 
energy storage is required compared to a case in which more investments in PV capacity happen. Therefore, 
the need for energy storage must be determined dynamically, to ensure that the storage level at the end of the 
year is determined based on the need for energy storage resulting from system development rather than that 
it is based on a predefined parameter value. 

Therefore, it is considered more suitable to opt for a look-ahead period than a predefined minimal level for 
seasonal storage at the end of a year. A look-ahead period of two months is selected, which covers the majority 
of the period in which there is low PV capacity at the beginning of the year. The two-month look-ahead period 
corresponds to 1460 hours or 365 four-hour timesteps. A longer look-ahead period is expected to increase the 
computational burden without adding much benefit for setting the seasonal storage level at the end of the 
year, based on the capacity factor patterns observed in Figure 25 to Figure 27. 
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Figure 25: Capacity Factor PV in the Netherlands in 2019. Data from Pfenninger & Staffell (n.d.) and Staffell & Pfenninger 
(2016). 

 

 

Figure 26: Capacity Factors Offshore Wind in the Netherlands in 2019. Data from Pfenninger & Staffell (n.d.) and Staffell & 
Pfenninger (2016). 

 

Figure 27: Capacity Factor Onshore Wind in the Netherlands in 2019. Data from Pfenninger & Staffell (n.d.) and Staffell & 
Pfenninger (2016). 

5.5. Verification and Validation of the OPM 
Verification involves assessing whether the model accurately represents the conceptual description and 
specifications. Throughout the process of implementing the OPM into Linny-R, test runs have been conducted 
to assess whether the model is still working correctly when adjustments are made. The results from the most 
important verification tests will be presented, being the verification of investment decisions in generation 
assets, investment decisions in daily storage assets, and investment decisions in seasonal storage assets. The 
input data that is used for verification of the model is the same as is used for the reference case as will be 
presented throughout chapter 6. In case other data is used, it will be indicated explicitly.  

The process of validation involves assessing the extent to which the model accurately captures the real-world 
system being modelled. Since the Dutch electricity system consists of a largely liberalized market, it can be 
expected that the actual development and operation of the Dutch electricity system is not cost-optimal, while 
the rationale behind the OPM is to dispatch and invest to minimise total system costs. Therefore, it should not 
be expected that the outcomes of the OPM can directly be compared to historic developments in the real-
world system. The OPM is intended as a tool for supporting ‘what-if’ scenarios and assessing how variations in 
variables affect the cost-optimal development of the electricity system. Therefore, validation in the context of 
this study is interpreted as assessing whether the model is developed in a way that allows for reaching the 
objective of this research. This will be assessed by applying the model to the reference case in chapter 6. 
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5.5.1. Verification of Investment Decisions in Generation Assets 
The verification of the functioning of investment decisions in generation assets is conducted using a simplified 
version of the model in which all clusters are ignored except for the CCGT CCS cluster. As a result, only the 
processes for electricity demand and loss of load, and the cluster for CCGT CCS units are operating. The CCGT 
CCS cluster is selected to verify investment behaviour since the technology is not affected by a carbon 
emissions cap or a capacity factor. Therefore, results can be analysed clearly. 

The verification run consists of the Operation and Planning stages for the years 2027 to 2031, with no CCGT CCS 
units being pre-installed. This allows us to assess whether the investment decision in the Planning stage of 
2027 for units that become operational in the Operation stage of 2031 is logical. Total electricity demand in 
2031 is based on the data presented in section 6.4.2, resulting in total electricity demand for 2031 being 136.2 
TWh and peak demand in one four-hour timestep being 84,656 MWh. The standard unit capacity for a CCGT 
CCS plant is 377 MW (see section 6.3.1). This results in the need for 57 units to meet peak demand. 

The result of the verification run was that the model solver decided to invest in 56 CCGT CCS units, which 
equals an installed capacity of 21,112 MW and a maximum output of 84,448 MWh in a four-hour timestep. This 
is lower than the peak demand of 84,656 MWh and therefore resulted in 206.5 MWh of lost load. Since the 
VoLL is  €69,000 per MWh, the costs incurred for this loss of load is 14.2 million euros. Considering that the EAC 
for a CCGT CCS unit is 94.8 million euros, the decision to not invest in the 57th unit can be considered logical 
investment behaviour by the model solver since the costs of the last unit would be higher than the costs for the 
loss of load it would have prevented.   

5.5.2. Verification of Investment Decisions in Daily Storage Assets 
A simplified version of the OPM is used for verifying the investment decisions in daily storage assets. All 
clusters are ignored by the model, except for the offshore wind cluster and the cluster for daily storage assets. 
As a result, only the processes for electricity demand and loss of load, the offshore wind cluster and the cluster 
for daily storage assets are operating. The Operation and Planning stages for the period from 2027 to 2031 are 
used to assess whether logical investments in daily storage units are made.  

To allow for a clear assessment of the functioning of investments in daily storage units some parameter values 
will be set at specific levels. The electricity demand is set at 120 GWh per four-hour timestep. There are no 
daily storage units pre-installed in 2027 and there is no limit on investment in additional units. At the start of 
2027, there are 100 offshore wind units and investment in additional offshore wind units is not possible. Each 
unit has an installed capacity of 400 MW, resulting in 160 GWh of maximum output per four-hour timestep. 
Instead of historic capacity factors, the capacity factor will alternate between 1 and 0.5 every three timesteps, 
resulting in the output per timestep alternating between 160 GWh and 80 GWh every three timesteps.  

This results in electricity generated by offshore wind units during the first interval of three timesteps exceeding 
demand in total by 120 GWh. During the second interval of three timesteps, generation from offshore wind is 
in total 120 GWh lower than demand. The cycle efficiency of the daily storage units in the OPM is 0.8 (see 
section 6.3.6). Therefore, the hypothesis is that if sufficient investments in daily storage units are made to store 
all excess electrical energy during the first interval of three timesteps, loss of load during the second interval of 
three timesteps should equal the efficiency losses, which would be 24 GWh.  

The verification run resulted in the investment in 537 daily storage units during the Planning stage of 2027, 
which became operational in the Operation stage of 2031. A plot showing an overview of inputs and outputs to 
the grid for the first 12 timesteps of the Operational run of 2031 is shown in Figure 28. It shows that no 
curtailment is happening during the first three timesteps and all excess electricity from offshore wind is being 
used to charge the daily storage units. During the second time interval, the stored electricity is fed back into 
the grid and 24 GWh of lost load occurs, as expected. Therefore, the investment decision for daily storage units 
is considered to be logical.   
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Figure 28: Verification Run Daily Storage - Operation Stage 2031 (s=4h, t=1-12) – Grid Balance 

5.5.3. Verification of Investment Decisions in Seasonal Storage Assets 
To verify investment decisions in seasonal storage assets, the same set-up is used as presented in the previous 
section describing verification of investments in daily storage assets. The only difference is that the cluster for 
seasonal storage will be operational and the cluster for daily storage units will be ignored by the model. There 
will be zero electrolysers and fuel cells pre-installed in 2027 and there will be no limit on additional investments 
in these units. UHS capacity will not have an upper bound, to prevent this from being a constraint for 
investments in electrolysers and fuel cells. 

Similar as was the case for verification of daily storage assets, generation from offshore wind units in the first 
interval of three timesteps exceeds demand in total by 120 GWh and during the second interval generation it is 
120 GWh lower than demand. The efficiency of converting electricity into hydrogen using electrolysers is 0.6 
and the efficiency of converting hydrogen back into electricity using fuel cells has an efficiency of 0.51, as will 
be presented in section 6.3.6. This results in the full cycle efficiency for seasonal storage being 0.31. Therefore, 
the hypothesis is that if sufficient investments in electrolysers and fuel cells are made for storing all excess 
electricity during the first interval of three timesteps and for reconversion in the second interval, that loss of 
load per full cycle should equal the conversion losses, which would be 83.3 GWh. 

The verification run resulted in the investment in 200 electrolysers and 62 fuel cells during the Planning stage 
of 2027, which became operational in the Operation stage of 2031. A plot showing an overview of inputs and 
outputs to the grid for the first 12 timesteps of the Operational run of 2031 is shown in Figure 29. Since no 
curtailment happens during the first three-timestep interval, all excess electricity is used for converting 
electricity into hydrogen. During the second three-step time interval, the electricity stored as hydrogen is 
converted back into electricity. In this interval, 83.3 GWh of lost load occurs, as expected. Therefore, the 
investment behaviour in electrolysers and fuel cells can be considered logical, since sufficient electrolyser and 
fuel cell units have been invested in for storing all electrical energy production which exceeded demand and 
the remaining loss of load can be explained based on the conversion losses. 

 

Figure 29: Verification Run Seasonal Storage - Operation Stage 2031 (s=4h, t=1-12) - Grid Balance 

Based on the three conducted verification runs, the OPM’s investment behaviour in generation assets, daily 
storage units, and seasonal storage units is considered to be logical and implemented accordingly to its 
conceptualisation and formalisation. 

In the next chapter, the design of the reference case of the development of the Dutch electricity system from 

2030 to 2050 will be presented and the OPM will be applied to this case.  
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6. Dutch Electricity System Transition from 2030 to 2050 
In this chapter, the OPM will be used to explore a reference case on the development of the Dutch electricity 
system from 2030 to 2050. Although the analysis of this case will result in insights into a cost-optimal 
development path for the Dutch electricity system, the main purpose of this chapter is to assess whether the 
OPM is fit for exploring the development of a national electricity system.  

6.1. Development of the Dutch Electricity System from 2015 to 2022 
To provide historical context for the transition of the Dutch electricity system from 2030 to 2050, we will 
outline the system's development from 2015 to 2022. The development of the capacity mix is shown in Figure 
30, which is based on data from ENTSO-E (2022). It shows that a large share of the Dutch capacity mix consists 
of fossil fuel-fired power plants and that there has been a large increase in capacity from PV systems in recent 
years. The development of the electricity generation mix is shown in Figure 31, which is based on data from 
CBS (2022, 2023b, 2023e). Upon comparing Figure 30 and Figure 31, it can be observed that while the share of 
renewables in the Dutch capacity mix is growing, the country remains heavily reliant on fossil fuels, particularly 
natural gas, as the primary energy source for electricity generation. This emphasizes the urgency for the 
Netherlands to increase the rate at which fossil fuels are replaced by renewable energy, to ensure reaching the 
goals for 2030 and 2050.  

 

Figure 30: Installed Generation Capacity per Technology in the Netherlands from 2015 to 2022. Data from ENTSO-E (2022).  

 

Figure 31: Electricity Generated per Technology in the Netherlands from 2015 to 2022. Data from CBS (2022, 2023a, 2023c). 

6.2. The Dutch Electricity System in 2030 

6.2.1. Generation Capacity Mix in 2030 
To determine the starting point for the development of the Dutch electricity system from 2030 onward, a 
projection for the installed capacity mix in 2030 based on the “Hogere Ambitie” (Higher Ambition) scenario 
from a report of TenneT (2022) has been used. This scenario is based on the current energy and climate goals 
of the Dutch government for reaching a 55% reduction in emissions in 2030 compared to 1990 levels. The 
installed capacity mix based on this scenario is shown in Figure 32 and Table 2. The natural gas-fired power 
plants are all assumed to be CCGT plants without CCS. Biomass and waste-fired plants are in reality two distinct 
types of generation technologies. However, in the capacity mix of 2030, they only reflect a small share of the 
total installed capacity mix. Additionally, biomass can be co-fired in waste incinerators or other power plants, 
such as coal-fired power plants (CBS, 2021; Rijksoverheid, n.d.-b). Therefore, the two technologies are 
combined into one asset type in the OPM to reduce the complexity and computational burden of the model. In 
the OPM, standard unit capacities are used for each technology type, which will be further discussed in section 
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6.3. Based on these standard unit capacities, the number of standard-sized units per technology in 2030 is 
determined as input for the OPM.  

 

Figure 32: Installed Capacity Mix 2030 in the Netherlands 

Table 2: Installed Capacity Mix 2030 in the Netherlands 

Technology Installed Capacity 
(GW) 

Standard- 
Sized Units 

Nuclear 0.5 1 
Natural Gas 12.8 32 
PV 46.2 308 
Onshore Wind 11.6 58 
Offshore Wind 17.5 44 
Biomass and 
Waste 

2.8 24 

6.2.1.1. Nuclear Energy Post-2030 
There currently is only one operational nuclear power plant in the Netherlands with an installed capacity of 485 
MW, which was intended to be closed at the end of 2033 but will remain operational for a longer duration 
(Ministerie van EZK, n.d.-a; Rijksoverheid, n.d.-a). Additionally, the Dutch government announced the plan to 
develop two new nuclear power plants, which are scheduled to become operational in 2035 (Ministerie van 
EZK, n.d.-b; Rijksoverheid, n.d.-a). It is currently unclear when the existing nuclear power plant will be closed. 
Therefore, it will be assumed that it will close in 2035 when the new nuclear power plants will become 
operational. 

In a letter to the Tweede Kamer (House of Representatives) the Minister of Climate and Energy stated that the 
two new reactors will each have an installed capacity in the range of 1.0 to 1.7 GW (Jetten, 2022). The standard 
unit capacity for a nuclear plant in the OPM is set at 485 MW, based on the currently operational nuclear plant. 
The new nuclear plants will have a combined capacity ranging from 2.0 to 3.4 GW, which would be around four 
to seven standard-sized units in the OPM. For the reference case, six standard-sized nuclear units are set to 
become available in 2035 through the predefined development schedule dataset. It has been decided to select 
a number above the average value in the projected bandwidth since the conservative assumption was made 
that the currently operational nuclear power plant will close when the new plants become operational.  

6.2.2. Daily and Seasonal Storage Capacity in 2030 
Similar to determining the generation capacity mix in the Netherlands in 2030, the storage capacity mix also 
has been determined using the “Hoger Ambitie” scenario from TenneT (2022). It is projected that there will be 
10.3 GW of installed power capacity from batteries by 2030. As will be indicated in section 6.3, the standard-
sized battery units are lithium-ion batteries with an installed power capacity of 50 MW and an installed storage 
capacity of 200 MWh. Additionally, it is projected that there will be 0.4 GW of installed capacity from 
electrolysers. It is assumed that the installed capacity from fuel cells will be equal to the installed capacity from 
electrolysers in 2030. An overview is presented in Table 3.  

Table 3: Storage Capacity Mix 2030 in the Netherlands 

Technology Installed Storage 
Capacity (GWh) 

Installed Power 
Capacity (GW) 

Standard 
Sized Units 

Daily Storage  
(Lithium-Ion Batteries) 

41.2 10.3 266 

Electrolysers - 0.4 120 
Fuel Cells - 0.4 120 

 

The seasonal storage cluster is composed of electrolysers, fuel cells, and UHS in salt caverns and depleted gas 
fields. The practical feasible UHS capacity in salt caverns and depleted gas fields that can be developed in the 
Netherlands from 2030 to 2050 has been estimated by van Gessel, Juez-Larré, et al. (2021) to be 47 TWh in 
total. This resulted in the creation of a development schedule for the UHS capacity in which 2.35 TWh of 
additional capacity would become available annually starting from 2030 onward, resulting in 47 TWh by 2050. 
Therefore, there is 2.35 TWh of UHS capacity in 2031, 4.70 TWh in 2032, etc. Since the development of UHS is 
not included as an investment decision in the OPM and the development of the UHS facilities will be ‘pushed’ 

Nuclear

Natural Gas

PV

Onshore Wind

Offshore Wind

Biomass and
Waste
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by the development schedule dataset based on the practically feasible potential no fixed or variable costs will 
be included for the development and operation of the UHS facilities. 

6.2.3. Decommissioning of Operational Units  
The assets operational in 2030 might be decommissioned in the period from 2030 to 2050 when they reach the 
end of their lifetime. To determine what the expected year of decommissioning is for the units operational in 
2030, an estimation of their age in 2030 must be made. Assumptions about the age of units have been made by 
analysing the development of the installed capacity mix in the Netherlands from 1990 to 2022 by combining 
data from multiple sources (CBS, 2023a, 2023e; ENTSO-E, 2022). The development of installed capacity from 
generation and storage units towards 2030 is based on a projection from TenneT (2022). Based on the resulting 
development pattern from 1990 to 2030 and their typical lifetime as shown in Table 4, it has been determined 
how much capacity is expected to be decommissioned in which year. Since the OPM uses standard-sized units, 
the amount of capacity is divided by the standard unit capacity sizes from Table 5. This resulted in the 
decommissioning schedules as shown in Figure 33 and Figure 34. The decommission schedule is indicated from 
2030 until 2054, to ensure that the Planning stage runs properly until the year 2050.  

Table 4: Lifetime of Technologies 

Technology Lifetime (years) Source 

Nuclear 40 (EIA, 2020) 
CCGT 25 (EIA, 2020) 
CCGT with CCS 40 (EIA, 2020) 
PV 30 (EIA, 2020) 
Onshore Wind 25 (EIA, 2020) 
Offshore Wind 25 (EIA, 2020) 
Biomass and Waste 40 (EIA, 2020) 
Daily Storage  
(Lithium-Ion Batteries) 

10 (EIA, 2020) 

Electrolysers 20 (Marocco et al., 2023) 
Fuel Cells 20 (Marocco et al., 2023) 

 

 

Figure 33: Decommissioning Schedule 2030-2054 in Nominal Capacity 

 

Figure 34: Decommissioning Schedule 2030-2054 in Units 
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6.2.4. Value of Lost Load in the Netherlands 
The average VoLL in the Netherlands has recently been assessed by van Benthem & Kreulen (2022) in a study 
for the Autoriteit Consument & Markt (Authority for Consumers and Markets). It was found that the average 
VoLL for a typical power interruption in the Netherlands is €69,000 per MWh. This value has been used as VoLL 
in the reference scenario presented in this chapter.  

6.3. Techno-Economic Characteristics 

6.3.1. Standard Unit Capacities 
An overview of the standard unit capacities for the different technologies is shown in Table 5. The standard 
unit capacity for electrolysers is based on Luo et al. (2015) and it is assumed that electrolysers have the same 
standard unit capacity as fuel cells. The standard capacity size of nuclear power plants is based on the only 
currently operational nuclear power plant in the Netherlands in Borssele (Rijksoverheid, n.d.-a).  

Table 5: Standard Unit Capacities 

Technology Standard Unit Capacity (MW) Source 

Nuclear 485 (Rijksoverheid, n.d.-a) 
CCGT 400 (EIA, 2023) 
CCGT with CCS 377 (EIA, 2023) 
PV 150 (EIA, 2023) 
Onshore Wind 200 (EIA, 2023) 
Offshore Wind 400 (EIA, 2023) 
Biomass and Waste 50 (EIA, 2023) 
Daily Storage  
(Lithium-Ion Batteries) 

50 (200 MWh storage) (EIA, 2023) 

Electrolysers 50 (Luo et al., 2015) 
Fuel Cells 50 (Luo et al., 2015) 

 

6.3.2. CAPEX and OPEX Costs 
In Table 5 the used values for the CAPEX and OPEX costs are presented. The values for CAPEX per MW are 
expressed in thousand euros and the values for CAPEX per standard-sized unit are in million euros.  

The CAPEX costs for electrolysers and fuel cells are based on data for proton-exchange membrane (PEM) 
electrolysers and fuel cells. Different estimates for fixed OPEX costs as a percentage of CAPEX for PEM 
electrolysers were found, ranging from 4% (KPMG, 2022), between 2% and 4% (Deloitte, 2021), and between 
1% and 3% (Christensen, 2020). Based on these numbers it is assumed to be 3% of CAPEX.  

Data which was provided in US dollars was converted into euro using the average conversion rate in the period 
from the 23rd of June 2022 to the 23rd of June 2023, which was 0.956 euros per USD (ECB, 2023).  

Table 6: CAPEX and OPEX Costs 

Technology 
CAPEX per 
MW (k€) 

CAPEX per 
Standard-Sized 
Unit (M€) 

Fixed OPEX 
(€/MW/year) 

Variable 
OPEX 
(€/MWh) Source 

Nuclear 7,094.8 3,441.0 130,889.10 2.55 (EIA, 2023) 
CCGT 1,271.5 508.6 15,172.08 2.74 (EIA, 2023) 
CCGT with CCS 3,001.9 1,131.7 29,694.07 6.28 (EIA, 2023) 
PV 1,384.7 207.7 16,405.35 0.00 (EIA, 2023) 
Onshore Wind 2,006.0 401.2 28,336.52 0.00 (EIA, 2023) 
Offshore Wind 5,103.3 2,041.3 118,365.20 0.00 (EIA, 2023) 
Biomass and Waste 4,776.3 238.8 135,277.3 5.20 (EIA, 2023) 
Daily Storage  
(Lithium-Ion Batteries) 

1,270.0 60.7 43,747.61 0.00 (EIA, 2023) 

Electrolysers 1,000.0 50.0 30,000.00 
 

0.00 (Christensen, 2020; 
Deloitte, 2021; KPMG, 
2022; Marocco et al., 2023) 

Fuel Cells 800.0 40.0 33,126.20 0.63 (Marocco et al., 2023) 
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6.3.3. Discount Rates 
For calculation of the annuity factor as shown in Equation 5, it is necessary to determine the discount rate per 
technology. The discount rate for most technologies was based on data from IEA (2022c), which provided a 
range for the discount rate for these technologies. The average value within that range has been used as input 
data for the model. The three technologies for which no discount rate was provided were lithium-ion batteries, 
electrolysers, and fuel cells. The discount rate used for these technologies was based on the average value of 
the entire bandwidth of discount rates provided by IEA (2022c). The used discount rates are provided in Table 
7. 

Table 7: Discount Rates 

Technology Discount Rate Source 

Nuclear 0.075 (IEA, 2022c) 
CCGT 0.075 (IEA, 2022c) 
CCGT with CCS 0.075 (IEA, 2022c) 
PV 0.045 (IEA, 2022c) 
Onshore Wind 0.045 (IEA, 2022c) 
Offshore Wind 0.055 (IEA, 2022c) 
Biomass and Waste 0.075 (IEA, 2022c) 
Daily Storage  
(Lithium-Ion Batteries) 

0.06 Assumption based on IEA (2022c) 

Electrolysers 0.06 Assumption based on IEA (2022c) 
Fuel Cells 0.06 Assumption based on IEA (2022c) 

 

6.3.4. Maximum Number of Additional Units per Year 
There are limitations to the available resources for developing electricity generation and storage assets, such as 
qualified personnel, machinery, and materials. Therefore, the assumption has been made that there is a 
maximum number of standard-sized units which can be developed per year, to prevent unrealistic spikes in the 
development of a single technology in certain years.  

The maximum is based on historical data on the development of installed capacity per generation technology in 
the period from 2015 to 2022 from ENTSO-E (2022). It was assessed what the maximum amount of growth in 
installed capacity was per technology in a single year. This was converted into the amount of additional 
standard-sized units in that year. This number has been used as the maximum number of additional units per 
year for the generation technologies.  

A growth projection for the installed capacity from lithium-ion batteries, electrolysers, and fuel cells from 2020 
to 2030 is provided in a report by TenneT (2022). The assumption is made that the maximum number of 
additional units per year is based on the average yearly increase of installed capacity per technology in this 
projection.  

No value will be indicated for nuclear energy since these units can only be developed based on an input dataset 
with the development schedule. The resulting input data is shown in Table 8. No sources are provided in this 
table since all values in the table are assumptions explained in this section.  

Table 8: Maximum Additional Standard-Sized Units per Year 

Technology Maximum Additional  
Units per Year 

 Maximum Additional  
Capacity per Year (MW) 

Nuclear Not applicable  Not applicable 
CCGT 8  3,200 
CCGT with CCS 8  3,016 
PV 51  7,650 

Onshore Wind 6  1,200 

Offshore Wind 4  1,600 
Biomass and Waste 4  200 
Daily Storage  
(Lithium-Ion Batteries) 

26  1,300 (3,200 MWh storage capacity) 

Electrolysers 12  600 
Fuel Cells 12  600 
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6.3.5. Other Input Data for Thermal Generation Technologies 
A few parameter values are specific for thermal generation technologies, being the thermal efficiency, emission 
intensity, fuel price, and the annual carbon cap. The data on thermal efficiency, carbon intensity, and fuel 
prices is shown in Table 9. The sources used are not provided in the table, since determining these parameter 
values consisted of combining data from multiple sources. 

The thermal efficiency of biomass and waste plants, CCGT plants, and nuclear plants is based on the average 
thermal efficiency of these types of power plants in Germany as provided by Open Power System Data (2020a). 

The emission intensity is expressed in tons of CO2 emitted per MWh produced. The emission intensity of 
biomass and waste plants is based on data from Vähk (2019), which provided the value for the emission 
intensity of waste plants. As previously mentioned, a majority of the currently installed capacity of biomass and 
waste plants is from waste-fired plants, so it is assumed that all plants in the biomass and waste plants 
technology group have the emission intensity of waste-fired plants. The emission intensity of CCGT plants is 
calculated using data from Blok & Nieuwlaar (2016) on the energy density and emission factor of natural gas, 
and the earlier-mentioned thermal efficiency of German CCGT plants.  

The fuel price has been expressed in euros per thermic MWh. The fuel price for natural gas is obtained from IEA 
(2022a), which provided a reference price based on 2021 data. The value for natural gas was provided in 
USD/MBtu, which was converted into euro per thermic MWh using the tool from Equinor (n.d.).  The fuel price 
for nuclear electricity generation was determined using data from the World Nuclear Association (2021), which 
provided an estimate of the price of a kilogram of uranium processed for use in a nuclear power plant. 
Additionally, data from Hore-Lacy (2007) is used to convert this into a value expressed in euros per thermic 
MWh. It was assumed that only biomass and waste would be used that does not have another purpose and 
therefore does not have a market price.  

Table 9: Thermal Efficiencies and Carbon Intensity 

Technology Thermal 
Efficiency 

Emission Intensity (tons 
CO2/MWhe) 

Fuel Price (€/MWhth) 

Nuclear 0.075 0.0 0.00147 
CCGT 0.50 0.4 30.00 
CCGT with CCS 0.50 0.0 30.00 
Biomass and 

Waste 
0.33 0.6 0.00 

 

In the NPE, the Dutch government indicated the ambition to have net zero carbon emissions in 2035 
(Ministerie van EZK, 2023b). Therefore, the annual carbon cap should be zero starting from 2035 onwards. One 
of the targets in the Klimaatakkoord is to reach 55% in carbon emissions reductions for 2030 compared to 1990 
levels. In 1990 the level of carbon emissions from electricity generation using fossil fuels was in total 39.6 
megatons of CO2 (CBS, 2023d). The emissions from coal, natural gas, and other power plants were respectively 
22.0, 13.3, and 4.3 megatons of CO2 (CBS, 2023d). It will be assumed that the category of other power plants 
consists of emissions from biomass and waste-fired power plants. The combined emissions level in 1990 from 
natural gas-fired and biomass and waste-fired power plants would be 17.6 megatons CO2. Assuming that the 
55% emissions reduction target is linked to specific generation technologies, the carbon emissions cap in 2030 
for natural gas-fired and biomass and waste-fired power plants would be 7.92 megatons of CO2. To stepwise 
move from a system with 7.92 megatons of CO2 emissions in 2030 to a net zero emissions system in 2035, the 
annual carbon cap will be reduced with steps of 1.58 megatons of CO2 per year.  

6.3.6. Other Input Data for Storage Technologies 
A few parameter values are specific for storage technologies, being the efficiency of charging and discharging 
the storage, and the self-discharge rate of the storage. An overview of these values is shown in Table 10. 
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Table 10: Efficiency and Self-Discharge Rate Storage Technologies 

Technology Efficiency Self-Discharge Rate per 
Day 

Source 

Daily Storage  
(Lithium-Ion Batteries) 

0.8 
(full cycle) 

0.001 (Kebede et al., 2022) 

Electrolysers 0.6 - (Marocco et al., 2023). 
Fuel Cells 0.51 - (Marocco et al., 2023). 
Underground Hydrogen 

Storage 
- 0.00001 

(almost zero) 
(Luo et al., 2015) 

 

6.4. Input Data Time Series 
In this section, the time series data used as capacity factors for the VRE technologies, and the time series data 
used for electricity demand will be discussed. 

6.4.1. VRE Capacity Factors 
The time series data for the capacity factors of the VRE technologies has been based on historical data from 
Pfenninger & Staffell (n.d.) and Staffell & Pfenninger (2016). The data for the hourly capacity factors in the year 
2019 has been used for this study. Plots of the weekly rolling average of the capacity factor and the annual 
average capacity factor for PV, offshore wind, and onshore wind have been presented in Figure 25 to Figure 27. 
It is important to note that using the data from a single historic year for determining the capacity factors comes 
with the disadvantage that changes in weather conditions between years and extreme weather conditions that 
may occur in some years are not accounted for. A Dunkelfaute is such a situation, in which electricity 
generation from both wind and PV is extraordinarily low for a long period.  

6.4.2. Electricity Demand 
The time series data for the electricity demand is based on a dataset from Open Power System Data (2020b) 
with data for the Netherlands for the year 2019. Since historic time series data for the VRE capacity and the 
electricity demand are used, the time series for the same year are selected. By doing so, the used data reflects 
that fluctuations in electricity usage can be a result of weather conditions and that weather conditions affect 
capacity factors. The relationship between renewable generation, electricity demand and weather patterns has 
for example been described for Great Britain by Staffell & Pfenninger (2018) and Thornton et al. (2017).  

To include growth in electricity demand due to further electrification of final energy use in the upcoming 
decades, the historic development trend of electricity demand in the Netherlands from 1980 to 2020 has been 
assessed using data from CBS (2023f). It is assumed that the development of electricity demand does not 
follow a linear growth rate, but rather a compound annual growth rate (CAGR). Therefore, data from CBS 
(2023f) has been used to find a CAGR which reflects the historic development of electricity demand and can be 
used to extrapolate this trend towards 2050. Figure 35 shows how using a value of 0.015 as the CAGR for the 
growth of electricity demand starting from the level in 1980 towards 2020 reaches a quite similar level by 2020 
as the actual 2020 level. 

 

Figure 35: Historic Electricity Demand Development and 
Development Based on CAGR of 0.015 

 

Figure 36: Extrapolation of 2020 Electricity Demand Using a 
CAGR of 0.015 

The CAGR of 0.015 has been used for extrapolation of the historic electricity demand level of 2020 towards 
2050, as shown in Figure 36. This has been compared to the projections for future electricity demand for 2025 
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and 2030 as estimated by TenneT (2022), which are respectively 120.0 and 133.0 TWh. The values found when 
extrapolating the 2020 demand with the CAGR of 0.015 for 2025 and 2030 are respectively 121.1 and 130.5 
TWh. Since these values are comparable to the projections of TenneT (2022) for 2025 and 2030, using the 
CAGR of 0.015 is considered to be an adequate assumption for this study. 

Scaling the demand time series with a CAGR factor for representing the development of electricity demand 
does not account for changes in demand patterns which may happen due to further electrification of energy 
use and because of technological innovations. Demand response, smart grid technologies, power-to-X, and 
other innovations change how the future electricity system functions. However, these technologies are outside 
the scope of this research. When assessing the results of runs conducted in the OPM, this is an important 
limitation to consider.  

6.5. Results Reference Case 

6.5.1. Primary KPI 1 & 2 – Total Annual System Costs & Cost per MWh 
The development of total annual system costs in the reference case for the period from 2030 to 2050 is shown 
in Figure 37. The first additional units which are invested in by the solver in 2027 become operational in 2031, 
which explains the disproportionately high system costs in 2030, which results from the high amount of lost 
load in this year. When the first additional units become operational in 2031 the system costs stabilise at a 
lower level. 

To gain a better understanding of the development of the total annual system costs for the period from 2031 
to 2050, the decomposition of the annual system costs for these years is shown in Figure 38. The total system 
costs show a slight decrease over time from 25.3 billion euros in 2031 to 24.3 billion euros in 2050. It is 
apparent from this graph that the EAC payments, which consist of the fixed OPEX costs and the annuity 
payments, are a large majority of the system costs.  

 

Figure 37: Total Annual System Costs - Reference Case 
(2030 – 2050) 

 

Figure 38: Decomposition of Total Annual System Cost – 
Reference Case  (2031 - 2050) 

Figure 39 shows that the development of the cost per MWh of electricity demand decreases from €186 in 2031 
to €135 in 2050. To assess whether the resulting costs per MWh are within a valid range, it will be compared to 
the average monthly consumer electricity prices in the Netherlands in 2021 and 2022, based on data from CBS 
(2023g). Until September 2021 the average electricity price was below €100 per MWh and increased to a peak 
of €658.80 per MWh in October 2022 as shown in Figure 40. The large increase in the electricity price from 
September 2021 to October 2022 is a result of the European gas crisis. Although this data does not directly 
reflect the costs for electricity generation, it does indicate an order of magnitude for electricity generation 
costs. The cost per MWh from 2031 to 2050 in the reference case ranges between €135 and €186. This is 
higher than the average consumer electricity price before September 2021, but still lower than the electricity 
prices during 2022. Therefore, the results for systems costs in the reference case from 2031 to 2050 are 
considered to be within a valid range.  
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Figure 39: Development of Cost per MWh - Reference Case 
(2031 – 2050) 

 

Figure 40: Average Consumer Electricity Price in the 
Netherlands in 2021 and 2022. Data from CBS (2023g). 

6.5.2. Primary KPI 3 & 4 – EENS & LOLE 
The annual loss of load expressed as EENS is shown in Figure 41. Since the first additional units which are 
invested in during the Planning stage of 2027 become operational in 2031, there is a disproportionately high 
amount of lost load in 2030. To get a clearer view of the development of EENS in the years 2031 to 2050, only 
the results for these years are presented in Figure 42. Note that the values in Figure 41 are expressed in GWh 
and Figure 42 in MWh.  

 

Figure 41: EENS - Reference Case (2030-2050) 

 

Figure 42: EENS – Reference Case (2031 - 2050) 

Figure 42 shows that there were occurrences of lost load in three years, which all occurred in single timesteps. 
Table 11 shows that the EENS during these years represents a negligible amount when expressed as a 
percentage of total annual demand for those years. Due to the temporal resolution being a four-hour timestep, 
it is not possible to determine whether the loss of load happened during all four hours within a timestep or a 
lower number of hours. Therefore, it will be assumed that the LOLE for these years is 4 hours with loss of load 
per year. The LOLE which is used as the performance standard for the Dutch electricity system by TenneT 
(2022) is 4 hours per year with lost load. Therefore, the system meets this performance standard for all years 
from 2031 to 2050.  

Table 11: Loss of Load in Reference Case (2031 - 2050) 

Year EENS  
(MWh) 

EENS as Percentage  
of Annual Demand 

Timesteps with  
Lost Load 

LOLE  

2035 19 0.00001% 1 4 

2037 2 < 0.00001% 1 4 

2043 32 0.00002% 1 4 

 

6.5.3. Secondary KPI 1 – Annual Electricity Delivered to the Grid per Technology 
The development of the annual electricity generation mix is shown in Figure 43. It is important to note that the 
electricity generated from VRE technologies does not include the electricity that is curtailed, but only the 
electricity delivered to the grid by generation technologies. Over the entire period from 2030 to 2050, there is 
a large increase in the share of electricity generated from CCGT CCS. The development of CCGT CCS units is 
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limited to an additional eight units or 3.0 GW per year, without limitations on the amount of emissions 
captured and stored. Generation from CCGT CCS units increases each year, except for 2035 when new nuclear 
units become available, which have a lower variable cost for generation. In the year 2050, the CCGT CCS and 
nuclear units generated respectively 35.7% and 11.5% of electricity delivered to the grid by generation 
technologies. In the year 2030, the electricity generated by VRE technologies accounted for 89.9% of electricity 
delivered to the grid by generation technologies. This share decreases to 52.7% by the year 2050, due to the 
increase of electricity generation by CCGT CCS and nuclear units. 

 

 

Figure 43: Electricity Generation Mix - Reference Case 

The electricity generated from CCGT units decreases from 8.9 TWh in 2030 to zero in 2035 as a result of the 
carbon emissions cap reducing from 7.92 megatons of CO2 in 2030 towards zero in 2035. Biomass and waste 
plants were only operational in the years 2032 and 2034, in which they generated respectively 0.01% and 
0.02% of electricity demand in these years. During 2032 and 2034, the CCGT units accounted for 2.57% and 
0.79% of electricity delivered to the grid. However, the variable generation costs for CCGT plants are €62.74 per 
MWh and only €5.20 per MWh for biomass and waste plants. The negligible usage of the biomass and waste 
units can be explained by their emission intensity, which is 1.5 times higher than the emission intensity of CCGT 
plants, based on the data presented and assumptions made in section 6.3.5. This difference in emission 
intensity is the cause for the model solver’s decision to dispatch the CCGT plants. If more electricity was 
generated using biomass and waste plants, a lower amount of electricity could be produced from flexible 
thermal generation assets before the annual carbon emissions cap was reached. Therefore, the model solver 
decides to mainly use the CCGT units which have a higher variable cost, but a lower emission intensity 
compared to biomass and waste plants. By doing so, it prevents loss of load from occurring, which has a high 
cost of €69,000 per MWh.  

The total annual feed-in to the grid from storage technologies is shown in Figure 44. For the period from 2030 
to 2050, it shows an overall declining trend for the feed-in of electricity from storage technologies to the grid. 
This can be explained by the large increase in the share of flexible electricity generation by CCGT CCS units, 
which reduces the importance of storage in the system for providing flexibility. 

 

Figure 44: Total Annual Feed-In from Storage Technologies - Reference Case 

Additionally, Figure 44 shows that there is an increase in feed-in for both technologies from the year 2030 to 
2031. This increase in feed-in from the seasonal storage units results from the first chunk of UHS capacity 
becoming available in 2031, as explained in section 6.2.2. Therefore, no seasonal storage capacity is available in 
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the year 2030. There is no increase in storage capacity from daily storage units from 2030 to 2031. Therefore, 
the increase in total feed-in from daily storage results from the increase in electricity generated in the system 
from 2030 to 2031. This results in more electricity being available to store in these units and feed back into the 
system at later timesteps.  

6.5.4. Secondary KPI 2 – Installed Capacity per Technology 
Figure 45 shows the development of the installed capacity mix from 2030 to 2050. As can be expected based 
on the observed development pattern of the annual electricity generation mix, the share of installed capacity 
from CCGT CCS and nuclear power plants increases most clearly. 

CCGT CCS capacity increases to 15.1 GW by 2050, which is 17.1% of the total installed capacity in 2050. The 
installed capacities from PV, offshore wind, and offshore wind increase slightly from 2030 to 2031 due to 
investments made by the model solver. However, no additional investments happen in these technologies in 
later years and their installed capacity decreases slightly over time due to their end-of-lifetime 
decommissioning schedules. 

 

Figure 45: Installed Capacity Mix - Reference Case 

 

Figure 46: Installed Power Capacity Storage Assets - 
Reference Case 

The development of the installed capacity from storage technologies is shown in Figure 46. Most of the daily 
storage units are being decommissioned between 2030 to 2040 due to them reaching the end of their expected 
lifetime. However, some investment happens, which results in a small amount of daily storage units being 
operational in the period from 2040 to 2050. The installed power capacity from electrolysers decreases from 
2040 to 2050, when units start to be decommissioned due to them reaching the end of their expected lifetime. 
The installed capacity from fuel cells increases slightly from 2030 to 2040 and stays stable towards 2050. The 
declining installed power capacity from storage units can be explained due to the large role of CCGT CCS units 
in the reference case for providing flexibility in the system. Therefore, the role of provision of flexibility by the 
daily storage units with relatively low storage capacity per unit and the seasonal storage with high conversion 
losses diminishes over time.  

6.6. Conclusions Based on the Reference Case 
The main findings based on applying the OPM to the reference case of the development of the Dutch electricity 
system in the transition from 2030 to 2050 relate to the role of CCGT CCS. This technology plays a major role in 
the functioning of the system in the reference case, due to its ability to provide flexible and emission-free 
electricity. This causes the role of storage technologies for the provision of flexibility in the system to reduce 
over time when the share of CCGT CCS capacity is increasing. Additionally, it was found that the cost per MWh 
in the reference case decreased from €186 in 2030 to €135 in 2050, which can be considered to be in a valid 
range when compared to historic Dutch consumer electricity prices. From 2031 to 2050, the amount of EENS 
was negligible during the three years in which loss of load occurred. During each of those three years, the LOLE 
had a level of four, which is within the performance standards expressed for the Dutch electricity grid as 
indicated by TenneT (2022). In the reference case, no system behaviour or patterns in system development 
were observed which are unexplainable or illogical. Therefore, it can be concluded that under the assumptions 
and input data used for the reference case, the OPM provides credible results. 

In the next chapter, the design of the two targeted experiments will be presented and the results of applying 
the OPM to these experiments will be compared amongst each other and with the reference case.  
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7. Experiments  
Based on the input data and assumptions made for the reference case, it was found that the Dutch electricity 
system becomes heavily reliant on CCGT CCS capacity for electricity generation and provision of flexibility. In a 
supporting document to the draft NPE, it was indicated that the storage capacity for CCS is limited and that the 
focus should be on the maximisation of generation capacity from VRE technologies (Ministerie van EZK, 2023a). 
Therefore, CCGT CCS will be excluded as technology for both experiments to investigate potential alternative 
trajectories for the Dutch electricity system to reach the zero-emission goal for 2035 and further development 
to 2050 without the use of CCS. Furthermore, the maximum additional units of VRE and storage technologies 
per year will be varied between the two experiments to assess the impact of the rate at which additional assets 
can be developed on the transition path of the Dutch electricity system.   

In the first experiment, the maximum number of additional units invested per technology per year is doubled 
compared to the values used for the reference case. For the second experiment, the maximum number of 
additional units is set to a sufficiently high number to ensure that it does not pose a restriction on investments 
in certain technologies. The arbitrarily high number of 1000 additional units is used, which did not pose a limit 
on investment in any technology during the entire run. Therefore, the first experiment will be referred to as 
“x2” and the second experiment as “1000”. The resulting maximum additional units and capacity per year for 
the two experiments are shown in Table 12.  

Table 12: Maximum Additional Units per Year for Experiments “x2” and “1000” 

Technology 
Maximum Additional Units per Year Maximum Additional Capacity per Year (GW) 

Experiment "x2" Experiment "1000" Experiment "x2" Experiment "1000" 

CCGT 16 1,000 6.4 400 
CCGT CCS 0 0 0 0 
PV 102 1,000 15.3 150 
Onshore Wind 12 1,000 2.4 200 
Offshore Wind 8 1,000 3.2 400 
Biomass and Waste 8 1,000 0.4 50 
Daily Storage  52 1,000 2.6 50 
Electrolysers 24 1,000 1.2 50 
Fuel Cells 24 1,000 1.2 50 

 

7.1. Comparison of Results Reference Case and Experiments 
In this section focus is on the comparison of results of the experiments and the reference case, rather than 
elaborately discussing the results per experiment in-depth. More detailed results of the experiments are 
provided in appendix C. 

7.1.1. Primary KPI 1 & 2 – Total Annual System Costs & Cost per MWh 
To analyse the differences in total annual system costs and the cost per MWh, the development in the period 
from 2033 to 2050 will be compared for the different cases. This period has been selected for comparing costs 
since system costs in the “x2” experiment are disproportionately high from 2030 to 2032. The exclusion of 
CCGT CCS as a technology results in a lower total generation capacity being operational in 2030. The limited 
possibility for additional investment per year in the “x2” experiment results in a longer period before sufficient 
investments are made to reach a lower stable system cost level. In the “1000” experiment this lower stable 
system cost level already is achieved in 2031 when the first additional units become operational. Therefore, 
focusing on the period from 2033 to 2050 prevents the high values for the “x2” experiment from 2030 to 2032 
from distorting the analysis. 

The development of total annual system costs is shown in Figure 47 and the cost per MWh in Figure 48. It 
clearly shows that system costs are lowest in the reference case, higher in the “1000” experiment and highest 
in the “x2” experiment. The development of total annual system costs and cost per MWh for the reference 
case shows a stable progression over the considered period, while the two experiments show years with higher 
costs due to loss of load occurring. Cost per MWh in the “x2” experiment ranged between €276 and €216, 
while it ranged between €200 and €168 in the “1000” experiment. However, the cost per MWh for all three 
cases is within the range of the average Dutch consumer electricity prices observed in the period from 2021 to 
2022 as previously shown in Figure 40. 
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Figure 47: Total System Costs - Reference Case and 
Experiments (2033 - 2050) 

 

Figure 48: Cost per MWh - Reference Case and 
Experiments (2033 - 2050) 

7.1.2. Primary KPI 3 & 4 – EENS & LOLE 
The development of EENS and LOLE for the three cases is presented in Figure 49 and Figure 50. While EENS in 
the reference case was limited to three years with a LOLE of 4 and a sum of EENS of 54 MWh, the experiments 
showed years with significantly higher EENS and LOLE. This higher level of EENS and LOLE can partly be 
explained by the exclusion of the flexible generation capacity from CCGT CCS in the “x2” and “1000” 
experiments. As a result, except for the nuclear electricity generation, all electricity generation from 2035 
onwards is from intermittent VRE technologies. During timesteps in which the capacity factor for VRE 
technologies is low, the storage assets are the main provider of electricity to the grid. 

In the reference case and the two experiments EENS and LOLE were zero from 2048 to 2050. Therefore, the 
development of the electricity system in all three cases does result in a final system composition which 
manages to meet demand during the entire year. However, they do so at different costs as discussed in section 
7.1.1. 

 

 

Figure 49: EENS - Reference Case and Experiments (2033 
- 2050) 

 

Figure 50: LOLE - Reference Case and Experiments (2033 
- 2050)

7.1.3. Secondary KPI 1 – Annual Electricity Delivered to the Grid per Technology 
The electricity generation mix and total feed-in to the grid from storage technologies for the two experiments 
and the reference case will be compared for the year 2050. The aim of focussing on the final year is to assess 
how differently the Dutch electricity system developed for the three cases at the end of the development 
trajectory. In Figure 51 the electricity generation mix in 2050 is shown and Figure 52 shows the total feed-in to 
the grid from storage technologies in 2050. Note that this consist of the electricity delivered to the grid and 
does not include the curtailed electricity. 
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In the “1000” experiment, the system becomes mainly dependent on onshore wind for the provision of 
electrical energy. Additionally, seasonal storage in UHS facilities has become the main storage technology used. 
The dominance of onshore wind can be explained by its relatively low costs compared to offshore wind and its 
average capacity factor being higher than the average capacity factor for PV. Since the limit for investments per 
technology per year is extremely high in this experiment, the model solver decides to mainly invest in onshore 
wind. Due to the capacity factor of onshore wind fluctuating over longer periods, usage of seasonal storage 
facilities is more suitable than the daily storage units with limited electricity storage capacity. 

The more limited investment options in the “x2” experiment resulted in an electricity generation mix which is 
more balanced between technologies compared to the “1000” experiment. Similarly, the “x2” experiment 
resulted in a mix of feed-in from storage technologies to the grid which is more balanced between daily and 
seasonal storage units compared to the “1000” experiment.  

These graphs also emphasize how limited the usage of storage technologies is in the reference case compared 
to the experiments. This is due to the availability of the flexible generation capacity from CCGT CCS units in the 
reference case, which reduces the need for storage.    

 

Figure 51: Electricity Generation Mix – Reference Case 
and Experiments (2050) 

 

Figure 52: Total Feed-In from Storage Technologies – 
Reference Case and Experiments (2050) 

When comparing the results on electricity generated per technology, it is also important to assess the 
curtailment per technology in the year 2050 for the different cases, which is shown in Figure 53. This shows 
that curtailment for all technologies is much higher in the “x2” experiment compared to the “1000” experiment 
and the reference case. 

 

Figure 53: Curtailment per Technology - Reference Case and Experiments (2050) 
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7.1.4. Secondary KPI 2 – Installed Capacity per Technology 
The comparison of the installed capacity mix and the installed power capacity from storage technologies for 
the different cases will also focus on the year 2050. The installed capacity mix is shown in Figure 54 and the 
installed power capacity from storage technologies is shown in Figure 55. 

 

Figure 54: Installed Capacity Mix – Reference Case and 
Experiments (2050) 

 

Figure 55: Installed Power Capacity Storage Technologies 
– Reference Case and Experiments (2050) 

As can be expected based on the results presented for the electricity generation mix and the feed-in from 
storage technologies, the “1000” experiment shows a high level of installed capacity from onshore wind, high 
levels of installed power capacity from electrolysers and fuel cells, and very limited installed capacity from daily 
storage units.  

The installed capacity mix in the “x2” experiment shows a majority of installed capacity from PV systems. The 
large share of PV systems can be explained by the fact that the maximum additional capacity per year for PV 
systems in the “x2” experiment is relatively high compared to the other technologies, as can be seen in Table 
12. In the “x2” experiment, it is possible to develop 15.3 GW of additional PV capacity per year, compared to 
3.2 GW of offshore wind and 2.4 GW of onshore wind per year. The large installed capacity from PV systems in 
the “x2” experiment did not result in a large share in the electricity generation mix in Figure 51, due to the high 
amount of curtailment as shown in Figure 53. 

In the “x2” experiment the installed power capacity from storage technologies consists of a majority of daily 
storage units and a smaller installed capacity from electrolysers and fuel cells. The daily fluctuation of the 
output from PV units is an explanatory factor for the higher level of installed power capacity from daily storage 
units. The daily storage units have a relatively small amount of electrical energy storage capacity per unit but 
have much lower efficiency losses compared to seasonal storage consisting of electrolysers, fuel cells and UHS. 
This makes the daily storage units more suitable for the frequent charging and discharging of electricity 
produced by the PV systems.  

7.1.5. Conclusions Based on Comparing Results Reference Case and Experiments 
The main finding of comparing the results of the two experiments and the reference case is that in case CCGT 
CCS is excluded, the maximum number of additional units per technology per year results in different 
development paths. If the maximum of additional units is sufficiently high to not restrict investments, the 
Dutch electricity system becomes mainly reliant on a combination of onshore wind and seasonal storage units. 
In case the maximum number of additional units that can be invested in is limited to twice the level of the 
reference case, a more balanced mix of electricity generation and storage units will develop.  

In the year 2050, there is no loss of load in the reference case, nor the two experiments. However, there are 
differences in the cost per MWh in 2050 for the three different cases. In the reference case, which has a large 
share of CCGT CCS, the cost per MWh in 2050 is €135. In the “x2” experiment, which has a balanced mix of 
electricity generation and storage technologies, the cost per MWh in 2050 is €216. In the “1000” experiment, 
which relies mainly on onshore wind and seasonal storage units, the cost per MWh in 2050 is €168.  

The next chapter will present the conclusions of this study.  
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8. Conclusion 
The main methodological objective of this thesis is to design a cost-optimisation model for exploring the 
development of a national electricity system. The developed model is applied to a reference case on the 
development of the Dutch electricity system from 2030 to 2050 to assess whether the model provides credible 
results. Additionally, it is assessed how the exclusion of CCS and variations in the rate of development of 
additional generation and storage capacity affect the development path of the Dutch electricity system from 
2030 to 2050.  

To reach the main methodological goal of this thesis, the first research question addressed in the study is: 

1.  What is a suitable design for a cost-optimisation model for exploring the development of a national 
electricity system?  

The design of the model developed in this study conceptualises the national electricity system as an isolated 
system without grid capacity constraints. The design of the cost-optimisation approach in the model is an 
iterative loop which optimises the short-term system operation and the long-term investment planning, which 
resembles a rolling horizon optimisation approach. Since the horizon of foresight does not span the entire 
optimisation period to 2050, but only two months, the optimisation approach can be considered myopic. This 
model design results in a low computational burden and allows for conducting model runs for cost-
optimisation of the development path of the Dutch electricity system from 2030 to 2050 in a manageable 
amount of time of 26 minutes5. 

To assess the credibility of the results generated by the model, the second research question addressed in this 
study is: 

2. Does the model provide credible results for the development of the Dutch electricity system from 2030 
to 2050? 

To answer this second research question, the model was applied to a reference case on the development of the 
Dutch electricity system from 2030 to 2050. This showed that under the assumptions made and with the input 
data used, the Dutch electricity system would become heavily dependent on CCGT CCS units for the provision 
of electricity and flexibility in the system. The cost per MWh in the reference case decreased from €186 in 2030 
to €135 in 2050, which is in a valid range when compared to the historic Dutch consumer electricity prices in 
2020 and 2021. EENS was limited to a negligible amount during the three years that loss of load occurred and 
LOLE during these three years was within the performance standard as indicated by TenneT (2022). Therefore, 
the model is considered to provide credible results for the reference case. 

To assess alternative development paths for the Dutch electricity system resulting from the exclusion of CCS 
and varying the rate at which additional investments in technology can be made, the third research question 
addressed in this study is: 

3. How does the exclusion of CCS and variations in the rate of development of additional generation and 
storage assets affect the development of the Dutch electricity system from 2030 to 2050? 

To answer this question, the model has been applied to two targeted experiments in which CCGT CCS units 
were excluded and the maximum of additional units per technology per year was adjusted compared to the 
reference case. This resulted in two alternative development paths for the Dutch electricity system compared 
to the reference case: 

a. In experiment “x2”, the maximum number of additional units per technology was doubled compared 
to the reference case. In this experiment, the system developed a balanced mix of electricity 
generation and storage technologies. The system costs were relatively high and there were years with 
significantly more loss of load compared to the reference case. The cost per MWh in this experiment 
ranged between €276 and €216.  

b. In experiment “1000”, the maximum number of additional units per technology was set at 1,000, 
which was sufficiently high to not limit investments made in a technology in any year. In this 
experiment, the system became mainly dependent on onshore wind for the provision of electricity, 

 
5 The used computer runs on an Intel Core i7 – 7700HQ CPU 2.80 GHz with 16 GB RAM. 
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while flexibility was provided by energy storage in seasonal storage units. The system costs in this case 
were in between the level of the reference case and the other experiment. Loss of load did occur in 
this experiment to a larger extent than in the reference case, but not as extreme as in the “x2” 
experiment. The cost per MWh in this experiment ranged between €200 and €168.  

Therefore, it can be concluded that the exclusion of CCGT CCS and adjustment of the number of possible 
investments results in different development paths for the Dutch electricity system towards 2050. In the 
reference case, the system in 2050 mainly relies on CCGT CCS units for the provision of electricity and flexibility, 
with a cost per MWh of €135 in 2050. In case CCGT CCS is excluded and the maximum number of additional 
units invested in per technology per year is limited to twice the level of the reference case, it results in a 
diverse mix of generation and storage technologies, with a cost per MWh in 2050 of €216. In case CCGT CCS is 
excluded and the maximum number of additional units is sufficiently high to not pose a limitation on 
investments, the system becomes mainly reliant on onshore wind and seasonal storage units, with a cost per 
MWh in 2050 of €168.  

In the next chapter, the results of the study will be discussed, limitations will be identified, and possibilities for 
future research will be suggested.   
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9. Discussion 
9.1. Discussion of Results 
The reference case and the two experiments presented in this report show that the OPM can be useful for 
gaining insight into the development path of a national electricity system. This was especially noticeable when 
comparing the results of the two experiments. It showed that in case CCGT CCS is excluded, a higher rate at 
which additional units per technology can be invested per year results in lower cost per MWh 2050 and a 
different system composition. This finding is relevant for policy-makers since it shows that stimulation of the 
rate at which VRE generation capacity and storage capacity can be developed, can support reaching the energy 
policy goals for an affordable energy system. Therefore, policy-makers should identify and reduce barriers to 
the development of the combination of generation and storage technologies which offers the cost-optimal 
solution for meeting electricity demand. This also supports the importance of the first of the five main 
problems listed in the draft NPE, which states that the development of renewable energy supply and the 
supporting infrastructure must be maximised (Ministerie van EZK, 2023b).  

The results of the reference case and two targeted experiments are too limited to develop specific policy 
recommendations on how the electricity system of the Netherlands should develop towards 2050. Additionally, 
some constraints are not included in the OPM which poses a limitation on the practical feasibility and social 
acceptability of the model outcomes. An example would be conflicting interests in land usage in a relatively 
small and densely populated country such as the Netherlands. In the “1000” experiment the installed capacity 
from onshore wind increases from 11.6 GW in 2030 to 33.0 GW in 2031 and up to 73.0 GW by 2050. However, 
the maximum potential for onshore wind in the Netherlands is estimated to be between 30 and 60 GW 
according to studies considering spatial constraints (Generation.Energy & PasadMaxwan, 2020; Vendrik et al., 
2023). Therefore, it is important to be aware of such constraints which are not included within the OPM. An 
optimisation approach that provides more insight into the spatial dimension of future designs of the electricity 
system is the SPORES method (Lombardi et al., 2020). This method allows for exploring spatially feasible system 
alternatives that are within a certain percentage of the total system costs of the cost-optimal solution.  

One of the objectives for the development of the model in this study was to ensure that the developed model 
is transparent and not overly complex, to prevent it from being considered a ‘black box’ and to increase its 
usefulness for public stakeholders and decision-makers in the power system planning process as suggested by 
Moallemi & Malekpour (2018). The implementation in Linny-R allows for a clear visualisation of the model, 
which increases the transparency of the model. However, many of these visualised products, processes and 
links within the model are defined by lengthy expressions. Therefore, it is debatable whether the functioning of 
the OPM is truly transparent and not overly complex, since completely understanding its precise functioning by 
assessing all the expressions embedded in the model would be very laborious work and likely not feasible for 
someone without modelling experience.  

The two targeted experiments showed significantly higher EENS and LOLE compared to the reference case. 
Although higher EENS and LOLE can be expected due to the exclusion of the flexible generation capacity of 
CCGT CCS units, other factors likely had an influence. A possible explanation is the decision to select a two-
month look-ahead period for setting the storage levels at the end and start of each year. In the reference case 
with CCGT CCS, these two months resulted in sufficient energy in the storage units to maintain EENS to a 
negligible level and the LOLE within the performance standards. However, in the two experiments without 
CCGT CCS, EENS was significantly higher, and LOLE exceeded the performance standards. A test run using a 
look-ahead period of six months did result in lower EENS and LOLE for the experiments. However, time 
limitations on the thesis project did not allow for thoroughly assessing what a suitable look-ahead period would 
be to prevent the loss of load which is attributable to the look-ahead period. Moreover, there could be other 
unidentified factors that explain a part of the high loss of load in the experiments. 

Next to the limited number of experiments conducted, other limitations in the study result from the fact that 
the OPM does not account for interconnection capacity with other electricity systems, that it does not 
incorporate demand side flexibility, and the used approach for selecting time series data. Based on these 
limitations, recommendations are made for future research in the next section. 

9.2. Recommendations for Future Research 
On experiments and policy recommendations. The first recommendation results from the limited number of 
experiments conducted in this study. Conducting additional experiments could result in more in-depth insights 
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into the impact of factors influencing the development path of the Dutch electricity system and help shape 
policy recommendations. An example could be to assess scenarios in which the CAPEX and OPEX costs for the 
different technologies are varied within a range of possible future cost projections. By doing so, it can be 
assessed at which cost levels for the different technologies the system starts developing towards favourable or 
unfavourable technology mixes. These insights can inform the development of policies such as a subsidy 
scheme to ensure that the developing system meets the Klimaatakkoord targets for the share of renewables in 
the electricity mix. 

On spatial scope and interconnection capacity. Expanding the spatial scope of the model by including the 
electricity system of one or multiple countries which have interconnection capacity with the Dutch electricity 
system could be a promising avenue for future research. Interconnection capacity is already important for the 
reliability of the Dutch electricity system, but its importance is expected to grow in the post-2030 electricity 
system with high levels of intermittent VRE generation. Including other national electricity systems and the 
interconnection capacity with these countries could result in insights related to the co-evolution of the 
different interconnected electricity systems and the importance of cross-border trade for ensuring system 
reliability in systems with high levels of intermittent VRE. Additionally, it would address the fourth main 
problem that the Dutch government wants to address as indicated in the draft NPE, which is increasing the 
interconnectedness of the European energy system (Ministerie van EZK, 2023b). 

On demand side flexibility. In this study, the demand side was considered inflexible and the demand pattern 
for all years from 2030 to 2050 was based on the time series data of the Netherlands in 2019. The only 
flexibility in the system resulted from storage technologies or from flexible electricity generation. It is expected 
that the electrification of different sectors such as mobility, heating, and industry result in the demand side of 
the electricity system becoming more flexible through demand response (De Wildt et al., 2022; Sijm et al., 
2022). This can be offered by different P2X technologies, such as power-to-hydrogen, power-to-heat in 
industry, power-to-heat in households, and power-to-mobility (Sijm et al., 2020). Including such technologies in 
the OPM for the provision of demand side flexibility could result in more realistic insights into the development 
of the electricity system in the period from 2030 to 2050. 

On the use of time series data. For this research, the time series data for electricity demand in each year is 
based on the 2019 data of the Netherlands which is scaled using a CAGR. Similarly, the capacity factors for the 
VRE technologies for each year are based on data from 2019. A recommended alternative approach would be 
to use hourly time series data from multiple different years for the electricity demand and capacity factors in 
the Operation stage to represent annual differences. The time series data for electricity demand and capacity 
factors for the Planning stage of the model would be a representative year that is compiled using a 
representative days method for multiple years (e.g., Poncelet, Delarue, Six, Duerinck, et al., (2016)). Thus, the 
Planning stage will make investment decisions based on time series data which approximates what will happen 
in the Operation stage four years into the future. The decisions made during the Planning stage will reflect that 
it is not possible to know what the exact demand and capacity factor will be for each hour of a year four years 
into the future. This will result in a more accurate representation of how perfect forecasting is impossible and 
how hours with extreme electricity demand or VRE supply in a year affect the reliability of the system. 

The next chapter will present a reflection on the process of conducting the research for this master’s thesis 
project.  
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10. Reflection 
Before starting this master’s thesis project, I had little to no experience with modelling in general and I had no 
experience yet with developing optimisation models. The courses in the first year of the CoSEM programme did 
help me develop my quantitative research skills and helped me gain basic knowledge about optimisation 
problems. Therefore, I considered it a challenge worth taking on to use the master’s thesis project as an 
opportunity to research a topic with optimisation models, since I considered it to be an interesting approach 
that I wanted to learn more about.  

During the first part of the research process for this thesis, the guidance of Pieter Bots was very helpful for 
understanding how to work in Linny-R and how to better structure my thinking when attempting to capture 
real-world processes in an optimisation model. The learning curve which I had to go through resulted in the 
process of model development taking up significantly more time than initially planned. Additionally, I 
experienced it to be quite challenging to implement some of the model functionalities, while ensuring proper 
operation of the entire model. When the model becomes more complex over time, thorough investigation of 
the functioning of the model is crucial but also becomes more demanding. Tracing back unexpected model 
behaviour to the implementation of a specific model component or an expression used in a certain link or 
process sometimes felt like looking for a needle in a haystack to me. The meetings I had with Pieter Bots in 
which I presented problems I encountered during model development were very enlightening for learning how 
to approach such issues. Unfortunately, not always being sufficiently thorough on the overall functioning of the 
model resulted in me identifying errors in the model in a late stage of the process, which resulted in an 
increased time pressure to adjust the model and simultaneously finalise the thesis. As a result, the scope of the 
thesis became a lot narrower compared to the original plan.  

When reflecting on the overall research process of my master’s thesis project, spending much time on some 
side paths and details is one of the pitfalls I fell into. Additionally, I made multiple changes to the scope of the 
thesis. These two factors combined resulted in a lot of time and effort being put into searching for information 
and developing model components which were not used for the final version of the model or the thesis. 
Therefore, it would have been beneficial to make more focused progress during the project if I had established 
the definitive research questions earlier in the process.  
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Appendices 
A. Formulas for Calculation of KPIs 

In this appendix, the formulas used for calculating the KPIs discussed in section 3.4 are presented.  

Equation 10: Primary KPI 1 - Annual Total System Costs 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑇𝑜𝑡𝑎𝑙 𝑆𝑦𝑠𝑡𝑒𝑚 𝐶𝑜𝑠𝑡𝑠 = 𝐴𝑛𝑛𝑢𝑎𝑙 𝑇𝑜𝑡𝑎𝑙 𝐹𝑖𝑥𝑒𝑑 𝐶𝑜𝑠𝑡𝑠 + 𝐴𝑛𝑛𝑢𝑎𝑙 𝑇𝑜𝑡𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐶𝑜𝑠𝑡𝑠 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑇𝑜𝑡𝑎𝑙 𝐹𝑖𝑥𝑒𝑑 𝐶𝑜𝑠𝑡𝑠 = ∑ 𝑂𝑈𝑖,𝑦 ⋅
𝑖𝜖𝐼

𝐸𝐴𝐶𝑖          ∀ 𝑦𝜖𝑌 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑇𝑜𝑡𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐶𝑜𝑠𝑡𝑠 = ∑ ∑ (𝑝𝑖,𝑡,𝑦 ⋅ (
𝑉𝐶𝑖

𝑓𝑢𝑒𝑙

𝜂𝑖
𝑡ℎ + 𝑉𝐶𝑖

𝑂𝑃𝐸𝑋)
𝑖𝜖𝐼

)

𝑇

𝑡

+ 𝑉𝑜𝐿𝐿 ⋅ 𝑙𝑙𝑡,𝑦        ∀ 𝑦𝜖𝑌  

Equation 11: Primary KPI 2 – Cost per MWh of Electricity Demand 

𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑀𝑊ℎ 𝑜𝑓 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝐷𝑒𝑚𝑎𝑛𝑑 =
𝐴𝑛𝑛𝑢𝑎𝑙 𝑇𝑜𝑡𝑎𝑙 𝑆𝑦𝑠𝑡𝑒𝑚 𝐶𝑜𝑠𝑡𝑠

∑ 𝐿𝑡,𝑦
𝑇
𝑡

             ∀ 𝑦𝜖𝑌  

Equation 12: Primary KPI 3 – Expected Energy Not Served (EENS) 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦 𝑁𝑜𝑡 𝑆𝑒𝑟𝑣𝑒𝑑 (𝐸𝐸𝑁𝑆) = ∑ 𝑙𝑙𝑡,𝑦

𝑇

𝑡

       ∀ 𝑦𝜖𝑌 

Equation 13: Primary KPI 4 - Loss of Load Expectation (LOLE) 

𝐿𝑜𝑠𝑠 𝑜𝑓 𝐿𝑜𝑎𝑑 𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛 (𝐿𝑂𝐿𝐸) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑢𝑟𝑠 𝑤𝑖𝑡ℎ 𝑙𝑙𝑡,𝑦 > 0

8760
      ∀ 𝑦𝜖𝑌 

Equation 14: Secondary KPI 1 - Installed Capacity per Technology 

𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑝𝑒𝑟 𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 =  𝑂𝑈𝑖,𝑦 ∗ 𝑝𝑖
𝑀𝐴𝑋                   ∀ 𝑖𝜖𝐼  ∀ 𝑦𝜖𝑌 

Equation 15: Secondary KPI 2 - Annual Electricity Delivered to Grid per Technology 

𝐴𝑛𝑛𝑢𝑎𝑙 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑡𝑜 𝐺𝑟𝑖𝑑 𝑝𝑒𝑟 𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 =  ∑(𝑝𝑖,𝑡,𝑦 − 𝑘𝑖,𝑡,𝑦)

𝑇

𝑡

   ∀ 𝑖𝜖𝐼  ∀ 𝑦𝜖𝑌 
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B. Lead Time of Technologies 
Section 4.1 presents that the Planning stage of the OPM focuses on a year four years in the future since this is 
the longest lead time of the technologies which are included as an investment option, except for nuclear power 
plants. Section 5.3.2 discusses that nuclear plants are not included as an investment option, due to their 
controversial nature, low social acceptance, and high dependence on government policies for the development 
of new units. Although the lead time of units is not included in the OPM as input data, it is presented in this 
appendix to support making the modelling decision for having the Planning stage focus on a year four years in 
the future.  
 

Table 13: Lead Time of Technologies 

Technology Lead Time (years)  Source 

Nuclear 6 (EIA, 2023) 
CCGT 3 (EIA, 2023) 
CCGT with CCS 3 (EIA, 2023) 
PV 2 (EIA, 2023) 
Onshore Wind 3 (EIA, 2023) 
Offshore Wind 4 (EIA, 2023) 
Biomass and Waste 4 (EIA, 2023) 
Daily Storage  
(Lithium-Ion Batteries) 

1 (EIA, 2023) 

Electrolysers 3 (EIA, 2023) 
Fuel Cells 3 (EIA, 2023) 
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C. Detailed Experiment Results 

C.1. Primary KPI 1 & 2 – Total Annual System Costs & Cost per MWh 
The results for the development of annual total system costs for the “x2” and “1000” experiments are shown in 
Figure 56 and Figure 57. Due to the first additional units becoming available in 2031, there were 
disproportionate high system costs in 2030 for both experiments. In the “x2” experiment, the more limited 
number of additional units which could be invested in per year resulted in a longer period before system costs 
reached a lower stable level, which happened in 2033.  

 

Figure 56: Total System Costs - "x2" Experiment 

 

Figure 57: Total System Costs - "1000" Experiment 

The decomposition of the total annual system costs for the period from 2033 to 2050 is presented for the two 
experiments in Figure 58 and Figure 59. Both experiments showed peaks in system costs in multiple years in 
which loss of load occurred. Total annual system costs in the “x2” experiment increased from 31.3 billion euros 
in 2033 to 39.1 billion euros in 2050. In the “1000” experiment, the total annual system costs in 2033 were 26.3 
billion euros and increased to 30.4 billion euros in 2050.  

 

Figure 58: Decomposition of Total Annual System Costs - 
"x2" Experiment (2033 - 2050) 

 

Figure 59: Decomposition of Total Annual System Costs - 
"1000" Experiment (2033 - 2050) 

In Figure 60 the development of cost per MWh is shown for both experiments. Over the entire period from 
2033 to 2050 the cost per MWh decreases in both experiments, but higher values are present in years in which 
loss of load occurs.  

 

Figure 60: Cost per MWh - "x2"and "1000" Experiment 
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C.2. Primary KPI 3 & 4 – EENS & LOLE 
In Figure 61 the development of the EENS is shown for both experiments. In Figure 62 the development of the 
LOLE is shown for both experiments. In the “x2” experiment, the peaks for EENS and LOLE are significantly 
higher than for the “1000” experiment, which is due to the lower possibility for investments in the “x2” 
experiment.

 

Figure 61: EENS - Experiments (2033 - 2050) 

 

Figure 62: LOLE - Experiments (2033 - 2050) 

C.3. Secondary KPI 1 – Annual Electricity Delivered to the Grid per Technology 
In Figure 63 the development of the electricity generation mix for the “x2” experiment is shown and Figure 64 
shows the development of the electricity generation mix for the “1000” experiment. 

 

Figure 63: Electricity Generation Mix - "x2" Experiment 

 

Figure 64: Electricity Generation Mix - "1000" Experiment 

The total annual feed-in to the grid from storage technologies is shown for the “x2” and “1000” experiments in 
respectively Figure 65 and Figure 66. 

 

Figure 65: Total Annual Feed-In from Storage 
Technologies - "x2" Experiment 

 

Figure 66: Total Annual Feed-In from Storage 
Technologies - "1000" Experiment 
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C.4. Secondary KPI 2 – Installed Capacity per Technology 
The development of the installed capacity mix from 2030 to 2050 for the “x2” and “1000” experiments is 
shown in Figure 67 and Figure 68. The development of the installed power capacity for storage technologies 
from 2030 to 2050 for the “x2” and “1000” experiments is shown in Figure 69 and Figure 70. 

 

Figure 67: Installed Capacity Mix - "x2" Experiment 

 

Figure 68: Installed Capacity Mix - "1000" Experiment

 

Figure 69: Installed Power Capacity Storage Assets - “x2” 
Experiment 

 

Figure 70: Installed Power Capacity Storage Assets - “1000” 
Experiment 
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