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A B S T R A C T

Cracking is inevitable during the service period of concrete structures. They are preferential ingression channels
for aggressive ions. It is difficult or even impossible to repair all the cracks due to the limitation of practical
conditions. However, cracks have potentials to self-heal due to further hydration and carbonization. The effect of
autogenous self-healing on the properties of cementitious materials has been studied experimentally by many
researchers. However, researches on modelling of the autogenous self-healing processes are still limited. In this
paper, a Lattice Boltzmann single component model is proposed to simulate the self-healing caused by further
hydration in cement paste matrix at mesoscale. The model simulates not only the healing efficiency but also the
geometry change. The simulation result shows that even when the filling efficiency is low, some locations in the
crack could be completely blocked. This may lead to lower effective diffusion coefficient of ions via the cracked
sample.

1. Introduction

Concrete is the most widely used man-made material, but cracking
is inevitable during the service period of concrete structures. Cracks are
preferential ingression channels for aggressive ions, e.g., chloride, sul-
phate, etc., which accelerate the degradation of concrete. The repair of
cracks is difficult or even impossible to be executed due to the limita-
tion of practical conditions. For instance, the location of damage may
be not accessible in the damaged structure. Besides, many infra-
structures such as highways and tunnels are in continuous service
which makes repairing work very difficult. Even if such work were
possible in principle, the cost and amount of labour required for diag-
nosis and repair works could be prohibitive, especially in the case of
large-scale infrastructures [1].

Fortunately, cracks have potentials to self-heal due to the con-
tinuous hydration of unhydrated cement and carbonization [1-4]. The
self-healing of cracks in fractured concrete was noticed by the French
Academy of Science in 1836 already in water retaining structures,
culverts and pipes [2]. The self-healing phenomenon was further stu-
died by Hearn, Hyde and Smith [3, 5] at the end of the nineteenth
century. A more systematic analysis of healing phenomena dates back
to 1926 and was executed by Glanville [6].

Several possible causes can be responsible for the self-healing

phenomena [7], which is described in Fig. 1 and explained as followed:

a. Formation of calcium carbonate or calcium hydroxide.
b. Blocking cracks by impurities in the water and loose concrete par-

ticles resulting from crack spalling.
c. Further hydration of the unreacted cement or cementitious mate-

rials.
d. Expansion of the hydrated cementitious matrix in the crack flanks

(swelling of C-S-H due to water absorption).

Among these possible causes, the primary self-healing mechanism is
attributed to further hydration and carbonization [1, 8], which is called
autogenous self-healing.

The effect of autogenous self-healing on the properties of cementi-
tious materials has been studied experimentally by many researchers
[9-12]. However, modelling of the autogenous self-healing processes is
still limited. The difficulty in the modelling of autogenous self-healing
is that the healing process involve a series of chemical and physical
processes, including dissolution of unhydrated cement particles, trans-
port of dissolved ions and formation of hydration and carbonization
product. It is difficult to mimic these complex processes precisely. Only
a few numerical models were proposed to address this complicated
issue [13-16].
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Huang et al. [13, 14] proposed a reactive transport model, taking
into account the particle distribution and further hydration of cement.
In their model the microstructure formation of cement paste was si-
mulated by existing hydration model [17]; the diffusion and thermo-
dynamic laws were applied to simulate the healing process by im-
plementing Fick's second law and employing the geo-chemical model
JCHESS [18]. The calculated result of filling fraction by the healing
products in microcracks was in good agreement with their experimental
results.

A coupled thermo-hygro-chemical model was proposed by Chitez
and Jefferson [15] to characterize the autogenous healing in ordinary
cementitious materials. They concluded that the available database
from existing geochemical systems cannot be used since it does not
contain sufficient information for the relevant solids and aqueous spe-
cies for the healing process of cementitious materials; therefore, the
clinker was modelled as a single solute in the model. Their simulation
results were also in good agreement with experimental data.

Aliko-Benitez et al. [16] proposed a chemical-diffusive model to
simulate the self-healing behaviour in concrete, of which the healing
mechanism of precipitation of calcium carbonate inside the cracks was
proposed. The model simulated that CO2 enriched water permeated
through the specimen, and carbonate −CO3

2 reacted with the calcium
ions Ca2+ embedded in the cement matrix, to produce precipitation of
calcium carbonate to fill the void volume. The diffusion coefficients of
ions in the matrix were assumed to be independent on the damage and
healing process of cracking, and the damages were assumed to be
uniformly distributed within the concrete structure.

From above mentioned models, most researchers implicitly assumed
that the filling product was evenly distributed along the crack. This
assumption is reasonable when the crack width is small, so the crack
can be completely healed. However, the filling mechanism will play a
vital role when the crack can not be healed completely. According
to [19], the assumption is invalid in this case: some locations of the
crack is blocked completely, even though the total volume of hydration
product is quite limited. The influences of autogenous self-healing on
the transport properties may be underestimated in existing studies. It is
vital to simulate the autogenous self-healing of individual crack, so the
influences of self-healing effect on the transport properties can be
evaluated.

In this paper, a Lattice Boltzmann single component model is pro-
posed to simulate the autogenous self-healing of the crack caused by
further hydration in cement paste matrix at mesoscale. The model si-
mulates not only the filling efficiency, but also the geometry change
during the healing process. Simulation result shows that even when the
filling efficiency is low, some locations in the crack could be completely
blocked, as observed from experiments [19]. This may lead to the de-
crease of the effective diffusion coefficient of ions via the cracked
sample.

2. Methodology

The simulation of autogenous self-healing is to mimic the physical

and chemical processes of self-healing at mesoscale. The simulation
focuses on mesoscale because that all hydration products contribute to
the filling of crack. The phase of hydration products, such as calcium
silicate hydrates (C-S-H) and potlandite (CH), were not separated in the
simulation but identified as high density (HD) hydration product and
low density (LD) hydration product. This also reduces the computa-
tional burdens in the simulation when the physical length of the crack
reaches thousands micrometers.

The simulation flow chart is given in Fig. 2. The proposed model
process consists of several aspects as follows. Firstly, the domain with
crack is obtained from previous experiments [19] by image analysis.
Secondly, the dissolution rates of individual cement particles are cal-
culated according to [17]. Thirdly, the dissolved ions are transported in
the domain simulated by using Lattice Boltzmann Method (LBM).
Fourthly, the nucleus formation is simulated based on nucleation
probability distribution. Lastly, the growth of nucleus is calculated
according to the growth rate and the concentration of ions. Each cycle
of the simulation includes dissolution, transport, nucleus formation and
growth. All these steps will be explained in detail in the following
sections.

2.1. Initialization

In the previous experiment [19], pre-cracked cement paste samples
were monitored under light microscope to quantify the effects of au-
togenous self-healing. The images from the experiment are used in this
paper as input to simulate the self-healing processes and to validate the
model. A brief introduction of the experiment is given at following
paragraphs.

Fig. 1. Possible mechanisms for self-healing in cementitious materials [7].

Fig. 2. The simulation flow chart.
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2.1.1. Materials and sample preparation
The cement paste samples were casted with Portland cement CEM I

42.5N. The chemical composition of cement is given in Table 1. The
information of the sample is given in Table 2. The hydration degree is
about 77.4%, which is approximated from [17].

The experiment was carried out with following procedure:

• the cement paste was casted and cured under sealed condition at
room temperature;

• the thin-section of cement paste with the thickness of 100± 10 μm
was made by cutting, grounding and polishing with ethanol;

• the thin-section was cracked under light microscope to obtain de-
sired crack width;

• the cracked thin-section was glued on the glass to maintain the
stability of the crack;

• the sample was saturated with deionized water and sealed im-
mediately to avoid carbonization;

• the autogenous self-healing process was monitored under light mi-
croscope continuously;

• both images under the polarized filter and under the crossed po-
larized filters were taken to carry out petrographic analysis.

2.1.2. Image analysis
The image, shown in Fig. 3a, was taken from the experiment under

the polarized filter. The resolution is 0.433 μm/pixel. It is analyzed to
obtain the simulation domain, representing the initial state before self-
healing.

Image segmentation is performed by using the threshold method,
which is based on a threshold value of grey scale to turn a grayscale
image into a binary image. Colour images can also be thresholded. One
approach is to designate a separate threshold for each of the red green
and blue (RGB) components of the image and then combine them with
an AND operation. Both methods are used in this paper to segment the
image into different phases, i.e., the crack, unhydrated cement, HD
product and LD product.

The origin image shown in Fig. 3a is converted into grayscale image
and segmented into different phases where the crack mask is given in
Fig. 3b and unhydrated cement particles are shown in Fig. 3c. A few
parameters can be calculated from these images.

For instance, the effective area AEff is the area before the cracking,
which is defined in Eq. (1). Initial cement area AIC and initial liquid area
are the initial phases before the hydration. The gap between initial
cement area AIC and current unhydrated cement particles is the HD
product [20]. Initial cement area AIC and initial liquid area AIW are
calculated according to hydration degree DH and water to cement ratio
(w/c ratio) with Eqs. (2) and (3).

In the simulation, the solid phase consists of HD product, LD pro-
duct and unhydrated cement. According to cement hydration
model [17], the HD C-S-H will form in the place originally occupied by
unhydrated cement. It is assumed that the space between the dissolu-
tion front and the original edge of the particle is HD product, given in

Fig. 3d. The rest area of solid phase is LD product. The whole simulation
domain is given in Fig. 3e, consisting of the crack, unhydrated cement,
HD and LD product.

To reduce the computation burden, the concept of effective zone
proposed by [21] is adapted in this study. The length L and width W of
the effective zone are 842 μm and 211 μm, respectively. The effective
zone is shown in Fig. 3f.

= −A A AEff Domain Crack (1)

=
−

A A
D1IC

Un

H (2)

=
⋅
⋅

w c ratio
ρ A
ρ A

/ w IW

c IC (3)

where:

• AEff is the effective area in the domain without crack

• AIC and AIW are areas of initial cement and water, respectively

• w/c ratio is water to cement ratio

• ρwater and ρcement are densities of water and cement particle, re-
spectively

2.2. Discretisation of space and time

Based on the image processing, the unit of the simulation domain L0
is 0.433 μm. Each pixel in the image is considered as a node in Lattice
Boltzmann model. The discretisation of time is carried out via unit
conversion of Lattice Boltzmann (LB) with dimensionless parameter
Fourier number Fo, with Eqs. (4) and (5). The relaxation time of LB is
calculated with DHD

LB , with Eq. (6).

=F Dt
Lo 2 (4)

= =
D t

L
F

D T
L

HD
P

o
HD
LB

lb
2 2 (5)

= ⎛
⎝

− ⎞
⎠

D τ1
3

1
2HD

LB
(6)

where:

• D is the diffusion coefficient (unit: m2/s)

• t is the characteristic timescale(unit: s)

• L is the length scale of interest(unit: m)

• DHD
P and DHD

LB are the diffusion coefficient of ions in high density
phases in reality and LB, respectively

• LLB is the dimension length of the domain in LB

• τ is the relaxation time

• T is the total simulation cycles

The diffusion coefficients of single solute in HD and LD products and
liquid are measured experimentally by [22] and [23], given in Table 3.
Unhydrated cement is assumed to be impermeable.

2.3. Dissolution of unhydrated cement

The dissolution rate of unhydrated cement kr,x is calculated with Eq.
(7), according to [17].

Table 1
Chemical composition of CEM I 42.5N.

CaO SiO2 Fe2O3 Al2O3 MgO Na2O K2O CuO
Composition (% wt) 64.99 17.11 3.59 3.8 1.56 0 0.16 0.02

ZnO P2O5 TiO2 Cl SO3 Other LOI (550 °C) LOI (950 °C)
Composition (% wt) 0.15 0.63 0.27 0.02 3.96 2.01 1.64 3.1

Table 2
The information of sample.

Sample w/c ratio Age (days) Average crack width (μm)

A30S07W15 0.30 7 15
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⎜ ⎟= ⎛
⎝

⎞
⎠

k k δ
δr x

tr

t x

λ

, 0
, (7)

The basic dissolution rate k0 is 0.045μm/h, and the transition
thickness δtr is 3.6 μm [17]. δt,x is the thickness between node x to
nearest liquid node. λ equals to 0 when δt,x is smaller than δtr, otherwise
it equals to 1.

It is assumed that the thickness of the domain is one unit length L0,
so L0

2 is the area of node x. dt is the time incremental. dvc,x is the dis-
solution volume of cement at node x in the time incremental dt, cal-
culated with Eq. (8).

=dv k L dtc x r x, , 0
2 (8)

The HD product is assumed to form in the place originally occupied
by unhydrated cement. The volume of HD product equals to the dis-
solved cement, given in Eq. (9).

=dv dvHD x c x, , (9)

During the microstructure development of cement hydration, the
volume of hydration products is about 2.2 time of the volume of hy-
drated cement, according to [20]. This implies that the total volume of
HD and LD products is 2.2 times the counterpart of dissolved cement,
given in Eq. (10).

+ =dv dv dv2.2HD x LD x c x, , , (10)

It is assumed that the formation of HD product is at the same mo-
ment of dissolution of cement particle, so the mass of the solute is equal
to the mass of potential LD product which will form later in the crack.
The volume of potential LD product can be deduced from Eqs. (9) and
(10), and the mass of solute dmi,x is deduced from Eq. (11).

= =dm dm dv ρ*i LD x LD x LD, , (11)

The solution field of the domain is updated by adding the mass of
solute dmi,x to each node x.

2.4. Ions transport

Similar to the model proposed by [15], in this paper the dissolved
cement is considered as a single solute. A single component LB node
system is implemented to simulate the ions transport. For simplifica-
tion, it is assumed that the domain is saturated with water during the
simulation. Hereinafter,the diffusion coefficients are the effective
coefficients of single solute in the phases under water-saturated con-
dition, including liquid phase and porous media. The fluid flow is ig-
nored, and the boundary of domain is periodic.

Fig. 3. Image process of the image taken during self-healing experiment: (a) Origin image; (b) crack pattern; (c) unhydrated cement; (d) HD product; (e) full domain;
(f) final domain (effective zone).

Table 3
Different phases in the simulation.

Phase HD product LD product Unhydrated cement Liquid

Diffusion coefficient (m2/s) 1.0×10−12 [22] 9.0× 10−12 [22] – 7.2× 10−10 [23]
Density(kg/m3) [24] 2195 1850 3120 1000

J. Chen and G. Ye Cement and Concrete Research 123 (2019) 105782
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2.4.1. Lattice Boltzmann Method
The ion transport can be described by the following lattice BGK

equation:

+ + = − −f x e δ t δ f x t f x t f C u τ( , ) ( , ) [ ( , ) ( , )]/i i t t i i i
eq

x (12)

where fi is the distribution function of the solute concentration; δt is the
time increment; τx is the relaxation time; C is the solute concentration; u
is the velocity of fluid flow; ei are the discrete velocities, and fi

eq is the
corresponding equilibrium distribution function. The nine-speed
(D2Q9) model is used, which ei have the following form:

=
⎧

⎨
⎩

=
− − =

− + − + =
e

i
i π i π i

i π π i π π i

0 1,
(cos[( 1) /2, sin[( 1) /2]]) 1 – 4,

2 (cos[( 5) /2 /4], sin[( 5) /2 /4]) 5 – 8,
i

(13)

The relaxation time τx is related to the diffusion coefficient Dx, so τx
is calculated with Eq. (14).

= −D τ( 1/2)/3x x (14)

The equilibrium distribution function fi
eq has the following form:

= + ⋅ + ⋅ −f C u w C e u e u u( , ) [1 3 4.5( ) 1.5 ]i
eq

i i i
2 2 (15)

Because the velocity u of the fluid flow is negligible in the self-
healing process, following equation is yielded:

=f C w C( )i
eq

i (16)

where wi is the associated weight coefficients, which

=
⎧
⎨
⎩

=
=
=

w
i

i
i

4/9 0,
1/9 1 – 4,

1/36 5 – 8,
i

(17)

The solute concentration is calculated with Eq. (18)

∑+ = +C x t δ f x t δ( , ) ( , )t
i

i t
(18)

2.4.2. Relaxation time
The effective diffusion coefficients of solute in different phases

under water-saturated condition are varying. To take into account the
influence of different features, e.g., capillary and gel pores, and mi-
crocracks, etc., diffusion coefficient for each node is assigned based on
the phase type of the node. The relaxation time is related to diffusion
coefficient with Eq. (14) in LB, so τx is assigned and updated according
to phase type of the node with Eq. (19). This approach has been studied
by many researchers [25-27].

=
⎧

⎨
⎪

⎩⎪

+
+
+

τ
D
D
D

3 1/2 x is liquid node,
3 1/2 x is high density node,
3 1/2 x is low density node

x

W
LB

HD
LB

LD
LB

(19)

The diffusion coefficient of ions in high density product in Lattice
Boltzmann simulation DHD

LB is calculated according to unit conversion
with Eq. (5), while the counterparts in LD product DLD

LB and liquid DW
LB

at Lattice Boltzmann simulation are calculated based on their ratios
with diffusion coefficient in HD product in reality with Eqs. (20) and
(21).

=D D
D
DLD

LB
HD
LB LD

P

HD
P (20)

=D D
D
DW

LB
HD
LB W

P

HD
P (21)

where DLD
P , DHD

P and DW
P are the effective diffusion coefficients of solute

in LD and HD products and liquid, respectively; DLD
LB, DHD

LB and DW
LB are

their counterparts in LB simulation, respectively.

2.5. Boundary condition

The domain of interest is part of the whole sample, so a periodic
boundary condition is applied for solute transport in the simulation.

2.6. Nucleation and growth of hydration product

According to classical nucleation theory, phase transformations in
the region of metastability are initiated within the original phase by the
nucleation of small regions of the new phase, which then grow to
macroscopic dimensions. Nucleation is characterized by large ampli-
tude fluctuations, which are localized and stochastic in both space and
time [28].

Generally the fluctuation is taken to be a cluster of a few atoms or
molecules in the configuration of the new phase. The probability that a
fluctuation occurs is governed by thermodynamic conditions, specially
the minimum work, i.e., the nucleation barrier, required to create the
cluster. It is assumed that nucleus are formed independently, thus the
probability of forming a nuclei in the solution can be calculated via
nucleation probability distribution.

2.6.1. Nucleation probability distribution
When the appearance of nuclei is independent, the probability Pm of

forming m nuclei in a time interval is described by the Poisson dis-
tribution [29].

= −P N
m

N
!

exp( )m
m

(22)

The probability that at least 1 nuclei P≥1 can be found in the so-
lution equals to 1 minus the probability that no nuclei P0 is formed at
all. P≥1 can be calculated with Eqs. (23)–(25).

= − = − −≥P P N1 1 exp( )1 0 (23)

=N JVt (24)

= ⎛
⎝

− ⎞
⎠

J S AS B
S

( ) exp
ln2 (25)

where N is the average number of nuclei formed in time interval t; V is
the volume of solution;J is the nucleation rate; S is the saturation de-
gree; A and B are kinetic and thermodynamic parameters for nuclea-
tion, respectively.

∬=N N dxdtt x t, (26)

The location of nuclei formation is also important to simulate the
self-healing process. To determine the location of newly formed nu-
cleus, each node of LB is considered as individual solution, of which the
probability is calculated individually. The total number of nucleus Nt

formed at time t is the integral of Nx,t over all nodes and the time with
Eq. (26). Nx,t is the number of average nucleus formed in solution of
node x at time t. The location of newly formed nucleus (lattice node) is
chosen randomly based on the probability of individual nodes.

2.6.2. Nucleation and growth parameters
Kinetic parameter A and thermodynamic parameter B for nucleation

can be obtained via the experiment in [29]. Growth rate kg can be
measured via the experiment in [30]. Those parameters are the essen-
tial properties of material, thus they are constant values.

In this paper these parameters are determined through parameter
studying.

3. Parameter studying

In this parameter study, the maximum saturation degree (maxSD),
kinetic parameter A and growth rate kg are explicitly determined. The
maxSD is the upper limit of the saturation degree for the solution. Both

J. Chen and G. Ye Cement and Concrete Research 123 (2019) 105782
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kinetic parameter A and thermodynamic parameters B influence the
nucleation rate, but A is dominant in Eq. (25). The impact of B is less
significant and keep constant in this study.

The range of each parameter is given in Table 4. The combinations
of different parameters are simulated. A few results are shown at fol-
lowing sections to demonstrate the influence of each parameter when
other parameters are constant.

The dimension of LB domain is 1944×487, and the iterative cycles
are 104,999. The average computational time is 23 h per simulation.

During the parameter studying, the healing pattern is given to show
the location and growth of formed nucleus. Similar to the experi-
ments [19], the statistic analysis of crack filling is then executed: the
filling ratios are calculated along the crack, and the results are sorted
and then grouped according to the filling efficiency, e.g., 0%, from 0%
to 10%, etc.

3.1. The impacts of maximum saturation degree

The simulation results with two different maxSD (2.5 and 3.0) are
shown in Fig. 4a and b, respectively. The results are compared with
each other to study the impacts of maxSD, i.e., the upper limit of sa-
turation degree. The healing product in the crack is highlighted in the
images to distinguish existing crack edge and newly formed product. It
is clear that the simulation with higher maxSD has more healing pro-
duct in the crack space. Fig. 4c is the statistic analysis of healing effect:
the x axis is the efficiency, the columns are the length of locations with
these filling efficiencies divided by the total length of the crack in
percentage. It is clear that when maxSD is greater, the length of crack
with no healing product is also shorter. This is because that maxSD
determines the ion reserved in the solution: higher saturation degree
means higher concentration of solute. At the same healing time, the
simulation with greater maxSD has higher number of nucleus, ac-
cording to Eqs. (24) and (25), thus the formation of hydration product

is faster.

3.2. The impacts of kinetic parameter A

The simulation results with different kinetic parameter A are given
in Fig. 5. From Fig. 5a and b, the simulation with higher A shows
greater number of nucleus and the hydration product is distributed
more evenly along the crack when all other parameters are fixed. It can
be observed from Fig. 5c, that the average size of the hydration product
is smaller for the simulation with higher A, which indicates that the
hydration product is more evenly distributed; therefore it is difficult to
bridge the crack. The regaining of mechanical property is especially
relied on the bridging of cracking. Further study is required to quan-
titatively investigate the properties regaining due to self-healing, e.g.,
in terms of mechanical and transport properties.

3.3. The impacts of growth parameter

The simulations with different growth rates are given in Fig. 6, and
their other parameters are constant. With the same dissolution rate of
cement and maxSD, the total mass of solute is at similar level for nu-
cleation. The numbers of formed nucleus are also alike, based on Eqs.
(24)–(26). From Fig. 6d it can be observed that the shapes of healing
product distribution show good agreement with these observations.
Meanwhile, the simulation with higher growth rates has shorter length
of crack without any hydration product, i.e., the length of crack with
0% healing efficiency is shorter. But this effect is limited by the amount
of ions available for growth. When the growth rate of the simulation is
doubled from kg=80 to kg=160, the filling efficiency is not improved
significantly.

3.4. The impacts of initial saturation condition

The simulations with different initial saturation conditions are given
in Fig. 7. Fig. 7a is initialised with water, while Fig. 7b is initialised
with saturated solution. The total healing efficiencies are 22.94% and
25.62%, respectively. The nucleation probability accumulates sig-
nificantly when saturation degree increases and time elapses, based on
Eqs. (23)–(25). When the simulation is initialised with saturation so-
lution, it has greater number of nucleus at the beginning, compared to
the counterpart of simulation initialised with pure water. This leads to
higher rate of ions consumption and cement dissolution, thus higher
healing efficiency.

Table 4
The range of parameters.

Level maxSD A B kg Initial
saturated

(Unit: 1) (Unit:
m−3 s−1)

(Unit: 1) (Unit:
kgm−2 s−1)

1 2.5 1012 0.4 40 Yes
2 3 1013 80 No
3 160

Fig. 4. The impacts of maximum saturation degree: (a) maxSD=2.5, (b) maxSD=3.0, (c) statistic analysis.

J. Chen and G. Ye Cement and Concrete Research 123 (2019) 105782
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Fig. 5. The impacts of nucleation parameters: (a) A=1012, (b) A=1013, (c) statistic analysis.

Fig. 6. The impacts of growth parameters: (a) kg=40, (b) kg=80, (c) kg=160, (d) statistic analysis.

Fig. 7. The impacts of initial saturation condition: (a) Initialised with water, (b) initialised with saturated solution, (c) statistic analysis.
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4. Results and discussion

To valid the self-healing model, the simulation is compared with
two experiments, i.e., the autogenous self-healing experiments carried
out by [19] and the experimental results by [14]. Based on the afore-
mentioned parameters study, the parameters used in the simulation are
given in Table 5.

The simulation results shown in Fig. 8a has similar filling pattern
compared to the experiment in Fig. 8b [19]. The healing fraction dis-
tributions show similar trend in Fig. 8c, except for the efficiency be-
tween 5% and 20%. This may be attributed to the experimental method
used in [19]. When the sample is very thin, the embedded crystal
products on the crack edge are also highlighted under crossed-polarized
filters of the light microscope. These crystals are sorted out in image
analysis as healing products, even though they exist before the self-
healing experiment.

The filling efficiency γ of the simulation is compared with the ex-
periment data from [14]. Both results are normalized with Eq. (27) to
the crack width wref 10 μm. The simulation at early age experiences low
filling fractions, while it shows good agreements at later age with ex-
periment from [14]. It may be attributed to the existing nucleation sites
at the crack age. In the simulation, all the nucleus are formed in-
dependently according to nucleation probability distribution. However,
the crack edge in the experiment with defects are prone to nucleation

and growth [31]. Random seeding at initial condition may address this
problem, because the hydration product can form around the seeds
directly when the solution is saturated.

= ⋅γ γ w
wnorm
crack

ref (27)

Generally, both simulation and experiment show that the crack can
be blocked efficiently with limited healing product, which may lead to
lower effective diffusion coefficient of the cracked sample. A following
research is proposed to evaluate the self-healing effect, e.g., the re-
gaining of transport and mechanical properties.

5. Conclusion

The self-healing effect due to further hydration is simulated, taking
into account the dissolution of unhydrated cement particle, ions
transport, and nucleation and growth of hydration product. In this
mesoscale model, the dissolved ions are considered as a single solute
and the phase of individual product is not separated. This also reduces
the computational burdens in the simulation when the physical length
of the crack reaches to thousands micrometers. The model simulates not
only the healing efficiency but also the geometry change due to self-
healing. The changing geometry can be used to simulate the chloride
migration test, in order to obtain the effective diffusion coefficients and
chloride profiles.

The dissolution rate of unhydrated cement is calculated, taking into
account the transition thickness. Lattice Boltzmann Method is used to
simulate the dissolved cement. The nucleation probability distribution
is employed to quantify and locate the formation of nucleus. The
thermodynamics is used to calculate the growth rate of the nucleus.

The simulation shows good agreements with the experiments, in

Table 5
The parameters of validation simulation.

maxSD A B kg Initial saturated
(Unit: 1) (Unit: m−3 s−1) (Unit: 1) (Unit: kgm−2 s−1)

3 1012 0.4 160 Yes

Fig. 8. Comparison of simulation and experiment results: (a) simulation 3 days: healing product is highlighted in the crack; (b) experiment 3 days: healing product is
highlighted in white with crossed-polarized filters [19]; (c) healing product distribution analysis of simulation and experiment; (d) comparison of filling fraction
between simulation and result from [14].
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terms of healing patterns and healing product distributions. A following
study will be proposed to evaluate the self-healing effects, e.g.,re-
gaining of mechanical and transport properties of cementitious mate-
rials.
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