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Abstraci—In this article, we study the nonlinear Fokker—
Planck (FP) equation that arises as a mean-field (macro-
scopic) approximation of bounded confidence opinion dy-
namics, where opinions are influenced by environmental
noises and opinions of radicals (stubborn individuals).
The distribution of radical opinions serves as an infinite-
dimensional exogenous input to the FP equation, visibly
influencing the steady opinion profile. We establish math-
ematical properties of the FP equation. In particular, we,
first, show the well-posedness of the dynamic equation,
second, provide existence result accompanied by a quan-
titative global estimate for the corresponding stationary
solution, and, third, establish an explicit lower bound on
the noise level that guarantees exponential convergence of
the dynamics to stationary state. Combining the results in
second and third readily yields the input-output stability of
the system for sufficiently large noises. Next, using Fourier
analysis, the structure of opinion clusters under the uni-
form initial distribution is examined. The results of anal-
ysis are validated through several numerical simulations
of the continuum-agent model (partial differential equation)
and the corresponding discrete-agent model (interacting
stochastic differential equations) for a particular distribu-
tion of radicals.

Index Terms—Distributed parameter systems, nonlinear
systems, opinion dynamics, stability of nonlinear systems,
stochastic systems.

[. INTRODUCTION

ECENT decades have witnessed enormous progress in
R study of complex systems and their system-theoretic prop-
erties [1], [2]. The main effort has been invested into the study of
“self-organization” and “spontaneous order”’ phenomena [3] that
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have inspired the development of synchronization and consensus
theory [4], [5]. Paradoxically, these regular behaviors arising
from local interactions between subsystems (agents, nodes) of a
complex system are studied much better than various “irregular”
dynamic effects such as persistent disagreement and cluster-
ing, exhibited by many real-world systems. Although some
culprits of this asynchrony and dissent (e.g., symmetries and
other special structures in the coupling mechanisms, exogenous
forces acting on some nodes, heterogeneous dynamics of nodes,
etc.) have been revealed in the literature [6]-[10], only a few
mathematical models have been proposed that are sufficiently
“rich” to capture the diversity of clustering behaviors in real-
world networks and, at the same time, admit rigorous analysis.
Long before the recent “boom” in complex systems, the lack
of such models was realized in mathematical sociology. The
problem of disclosing mechanisms preventing consensus and
maintaining enduring disagreement between individuals [11] is
nowadays referred to as the community cleavage problem or
Abelson’s diversity puzzle [12], [13]. The interdisciplinary area
of sociodynamical modeling [13]-[20] has attracted enormous
attention of the research community and is primarily concerned
with mechanisms of opinion formation under social influence.
Only few models, proposed in the literature to describe opin-
ion formation processes, have been secured by experimental
evidence. Such models, however, play an important role and
contribute, in various aspects, in comprehending complex sys-
tems’ behaviors such as birth, death, and evolution of clusters in
systems of interacting particles, and in developing algorithms for
control of these behaviors. This explains explosion of interest
in models of “opinion formation” in the systems and control
literature. From the control-theoretic prospect, most of these
models are simply networks of interacting agents, obeying the
first-order integrator model. However, the term “opinion” is now
widespread and used to denote the scalar or multidimensional
state of an agent, even if this state does not have a clear sociologi-
calinterpretation' (belonging, e.g., to an abstract manifold [21]).
The opinion is, thus, some value of interest, held by an agent and
updated, based on displayed opinions of the other agents.
Nowadays, linear models of opinion dynamics, extending
the classical French-DeGroot system in various directions (al-
lowing, e.g., stubborn agents, asynchronous interactions, and

"From the sociological viewpoint, mechanisms of social influence alter cog-
nitive orientations of individuals toward some objects or topics [13], and the
“opinion” is a quantitative characteristics of such an orientation.
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repulsion of opinions [13], [17], [22], [23]) have been thor-
oughly studied. These models are sufficient to explain consensus
and disagreement in social groups, as well as formation of
special opinion profiles (e.g., bimodal distributions, standing
for opinion polarization), however, general mechanisms leading
to emergence and destruction of unequal clusters are still far
from being well understood. To explain them, more compli-
cated nonlinear models have been proposed, mimicking some
important features of social influence. One feature observed in
social and biological systems is the homophily [24], or tendency
of individuals to bond with similar ones. Homophily is related
to biased assimilation [25] effects: individuals readily accept
opinions consistent with their views and tend to dismiss and
discount opinions contradicting to their own views. Mathemat-
ically, coupling between close opinions is stronger than that
of distant opinions, which is modeled by introducing opinion-
dependent influence weights. Although the possibility of such
nonlinearities in opinion dynamics models was mentioned in the
pioneering work [11], substantial progress has been primarily
achieved in the analysis of bounded confidence models proposed
several decades later as extensions of the deterministic [26]
and randomized gossip-based [27] consensus algorithms for
multiagent networks. Bounded confidence models stipulate that
a social actor is insensitive to opinions beyond its bounded
confidence set (usually, this set is an open or closed ball, cen-
tered at the actor’s own opinion), which makes the graph of
interactions among the agents distance-dependent. A detailed
survey of bounded confidence models and relevant mathematical
results can be found in [18]. Bounded confidence models exhibit
convergence of the opinions to some steady values, which can
reach consensus or split into several disjoint clusters. If the state-
dependent interaction graph of the system is symmetric, this fol-
lows from general properties of iterative averaging procedures,
and can alternatively be proved by exploring a special Lyapunov
function (“kinetic energy”) [18], [28], [29]. In the general case
of asymmetric interaction graphs, such a convergence has been
proved only in special situations [29], [30], but seems to be a
generic behavior [30]-[32].

Opinions in real social groups, however, usually do not ter-
minate at steady values yet oscillate, which is usually explained
by two factors. The first reason explaining opinion fluctuation is
exogenous influence, which can be interpreted as some “truth”
available to some individuals [33] or a position shared by a
group of close-minded opinion leaders or stubborn individ-
uals (“radicals™) [34]-[36]. Important results on stability of
the Hegselmann—Krause model with radicals and more general
“inertial” bounded confidence models were obtained in [30].
Typically, the exogenous signal is supposed to change slowly
compared to the opinion evolution and is, thus, replaced by
a constant; the main concern is the dependence between the
constant input and the resulting opinion profile. Numerical re-
sults, reported in [34] and [35] demonstrate high sensitivity of
the opinion clusters to the radical’s opinion, and reveal some
counter-intuitive effects; e.g., an increase in the number of
radicals sometimes decreases the number of their followers. The
second culprit of persistent opinion fluctuation is uncertainty in
the opinion dynamics, usually modeled as a random drift of each

opinion. The presence of a random excitation can be interpreted
as “free will” and unpredictability of a human’s decision [37];
besides this, randomized opinion dynamics models are broadly
adopted in statistical physics [38]-[41] to study phase transitions
in systems of interacting particles.

Even for the classical models from [26], [27], disclosing
the relation between the initial and the terminal opinion pro-
files remains a challenging problem (including, e.g., the 2R-
conjecture [42], [43]). In presence of noise, the analysis becomes
even more difficult; some progress in the study of the interplay
between confidence range and noise level has been achieved
in recent works [44], [45]. One of the important directions in
analysis of bounded confidence models is examination of their
asymptotic properties as the number of social actors becomes
very large N — oo and their individual opinions are replaced
by infinitesimal “elements.” The arising macroscopic approx-
imations of agent-based models describe the evolution of the
distribution of opinion (usually supposed to have a density) and
are referred to as density-based [46], continuum-agent [47],
[48], Eulerian [49], [50], kinetic [51], hydrodynamical [28],
or mean-field [43], [52] models of opinion formation. In the
continuous-time situation, the density obeys a nonlinear Fokker—
Planck (FP) equation. To study clustering behavior of the macro-
scopic bounded confidence models, efficient numerical methods
have been proposed that are based on Fourier analysis [40],
[43], [53].

From practical viewpoint, itis convenient to consider opinions
staying in a predefined interval, e.g., [0,1]. The Hegselmann—
Krause and Deffuant—Weisbuch models, as well as their
continuous-time counterparts [18], imply that starting within the
interval, opinions never escape from it. This property, however,
is destroyed by arbitrarily small noises. To keep the opinions
bounded, some “boundary conditions” are usually introduced.
The absorbing boundary condition assumes that the opinions are
saturated at the extreme values 0 and 1 [40], [45]; an important
result from [45] demonstrates that arbitrarily small noises in
this situation destroy clusters and lead to approximate consensus
(the maximal deviation of opinions is proportional to the noise
level). More interesting are opinion dynamics with the periodic
boundary condition, wrapping the interval [0,1] into a circle. The
opinion density on the circle corresponds to a /-periodic solution
of the FP equation on the real line [43], [53], [54]. A disadvantage
of the simple periodic boundary condition is the merging of
two extreme opinion values 0 and 1. To distinguish between
these extreme opinions, we incorporate an “almost reflective”
(precisely, an even 2-periodic) boundary condition. Dealing
with the macroscopic FP equation, the opinion density is then
conveniently represented by an even 2-periodic solution on the
real line. This article is primarily concerned with mathematical
properties of such solutions.

Main contributions: In this article, we advance the theory of
macroscopic modeling of bounded confidence dynamics. We
consider a bounded confidence model with environmental noise
that also includes radical opinions, which are not concentrated
at a single point (as in [33], [34], and [49]) but rather dis-
tributed over the interval [0, 1]. The FP equation acquires an
(infinite-dimensional) exogenous input, describing the density
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and the total mass of the radical opinions. This setup allows us
to consider the interplay between the noise and the distributed
radicals concerning the behavior of the system. In particular, for
the macroscopic FP equation,

1) the criteria for the existence, uniqueness, and regularity of
an even periodic solution are establish (see Theorem II.1);

2) the existence of stationary solution is studied and a global
estimate is provided that bounds the deviation of the
stationary state from the uniform distribution (see The-
orem I1.2);

3) a sufficient condition is presented for exponential con-
vergence of the dynamics to stationary state (see The-
orem II.3), entailing [in combination with 2)] also the
input—output stability of the system (see Corollary 11.4),

Developing ideas from [40], [43], [53], we then use Fourier
analysis to characterize the clustering behavior of the system
under the uniform initial distribution and some particular distri-
butions of radical opinions. Specifically,

4) a numerical scheme is provided to analyze the impact
of the noise and the radical opinions density on the
number and timing of the initial clustering behavior (see
Section V-B).

In the preliminary version of this article [55], we reported
the results of Theorems I1.2 (Estimate) and I1.3 without detailed
technical proofs. In this article, we provide the details along with
several necessary preparatory lemmas. In [55, Sec. IV], we also
used Fourier Analysis to study the interplay between the relative
number (mass) of radical agents with respect to (w.r.t.) normal
agents and the critical noise level for order-disorder transition.

This article in organized as follows. Section II introduces the
macroscopic opinion dynamics model in question. Here, we also
present our main theoretical results regarding well-posedness
and stability of the model. The next two sections are concerned
with technical proofs of these results. Section III is devoted to
the proof of well-posedness of the dynamics. In Section IV, we
examine the properties of the corresponding stationary equa-
tion and provide the technical proofs for theoretical results
on stability of stationary state. In Section V, Fourier analysis
is used for characterization of the clustering behavior of the
model. This general scheme is then used in Section VI for a
particular distribution of the radical opinions. These results are
accompanied by numerical simulations of both the agent-based
and the macroscopic models.

Notations: The convolution of two functions f and ¢ is
denoted by f x g. We note that in our case, one of the functions
has a compact support, so the convolution integral always exists.
For a function f (¢, z), we use f, (resp. f;) to denote the (partial)
derivative w.r.t. x (resp. t), so that f,. is the second derivative
w.r.t. . We also use 9: f for the ith order derivative w.r.t. 7. Let
X =[0,1]and X = [~1, 1]. Weuse P(X) to denote the space of
probability densities on X . Thatis, p € P(X)if [ p(x)dz =1
and p(z) > 0 for all z € X. We also use P.(X) to denote the
space of probability densities on X, extended evenly to X . That
is, P.(X) is the space of all functions p: X — [0, 00) such
that [ p(z) dz =1 and p(z) = p(—z) > 0 for all z € X.

L?(X) denotes the Banach space of all measurable functions

f: X — R for which the L,-norm £l 1oy is finite. H*(X)

for k € N is used to denote the Sobolev space W*2(X). We
use the subscripts per (resp. ep) to denote the closed subspace
of periodic (resp. even periodic) functions in the correspond-
ing function space. We denote the dual space of H;er(X ) by

1/ v . .
H; (X) and we use (-, -) to denote the corresponding paring

of Hl(X) and Hy}(X). We use — and — to denote strong
and weak convergences, respectively, in an appropriate Banach
space. A brief overview of function spaces relevant to this article

is provided in Appendix A.

[I. MODEL DESCRIPTION AND MAIN RESULTS
A. Macroscopic Model of Opinion Formation

The conventional bounded confidence model describes opin-
ion formation process in a network of N > 1 agents. All agents
have the same confidence range R > (0. Agent i’s opinion at
time ¢ > 0, denoted by x;(¢) € R, is (directly) influenced only
by the opinions of agents 7, such that |z, (¢) — z;(t)| < R. One
of the simplest continuous-time bounded confidence models is
as follows [28]:

N
Fi(t) = ZM w(é) = {g |§|| i 1;. 0

Jj=1

It can be shown [18] that the opinions obeying model (1) al-
ways converge z;(t) — xf ast — oo, with w(z] — x3) = 0 for
all 4, 7, corresponding to either consensus or fragmentation of
opinions into multiple clusters. Dynamics of real opinions (as
well as physical processes, portrayed by “opinion dynamics”
models) often do not exhibit convergence to steady values, and
the fluctuation of opinions persists. In order to capture this effect,
random uncertainties can be introduced into the model mimick-
ing “free will” and unpredictability of a human’s decision [37].
The simplest of these uncertainties is an additive random noise.
Model (1) is then replaced by the system of nonlinear stochastic
differential equations (SDEs)

N

dri(t) = o S w (ay(0) — (1) At + 0dWilt) @)
j=1

where W; are independent standard Wiener processes and ¢ > 0

characterizes the noise level.

Since the dynamics of the stochastic system (2) becomes
quite complicated as the number of agents grows, the stan-
dard approach to examine it is the mean-field (or macroscopic)
approximation, considering the opinion profile (z;(t))¥ | as a
random sampling drawn from some (time-varying) probability
distribution of the opinion. Precisely, it can be shown [56]-[58]
that empirical distributions N ! Zfil dz,(¢) converge (in the
weak sense) as N — oo to a distribution, whose density p(t, x)
obeys the FP equation

pr=(p(wkp)), +%pes, t>0, 2R (3)

A natural extension of the bounded confidence dynamics al-
lows the presence of N,. > 1 radicals (stubborn agents, zealots)
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that do not assimilate others’ opinions, however, influence
them directly or indirectly. Typically, the radicals’ opinions are
supposed to be constant (or changing very slowly compared
to the opinion formation of “normal” agents). Indexing the
“normal” individuals by ¢ € Z,, = {1,..., N} and the radicals
byieZ.={N+1,...,N + N,}, the opinion dynamics be-
comes as follows:

N+N,. . o

dri(t)y= Y deadm(t), i€,
j=1

#5(t) =0, i € T,. €5

Often it is supposed that the radicals share a common opinion
x; = T fori € 7., which may also be considered as “truth” per-
ceived by some individuals [33] or some exogenous signal [34].
The ratio M = N,./N can be treated as the relative “weight”
or “strength” of this external opinion. More generally, one can
assume that the radicals’ opinions are spread over R. Supposing
that N, N,, — oo, the relative mass of the radicals M remains
constant, and their empirical distribution N, ! Zf\ﬁl Oz n4; CON-
verges (in the weak sense) to a distribution with sufficiently
smooth density p,., the density of the “normal” opinions obeys
the modified FP equation

2

pe = (p(wx(p+Mp,))), + %

Note that the classical bounded confidence dynamics (1),
being a special case of continuous-time consensus protocol,
has an important property: the minimal and maximal opinions
min; z;(t) and max; x;(t) are, respectively, nondecreasing and
nonincreasing. In particular, if the initial opinions are confined
to some predefined interval, e.g., ;(0) € [0, 1], then one has
x;(t) € [0,1] for all £ > 0. The additive noise leads to random
drift of the opinion profile, thus destroying the latter important
property. Since in practice bounded ranges of opinions are
usually considered, the dynamics (2) and (4) are usually com-
plemented by boundary conditions [40], preventing the opinions
from leaving the predefined range.

A typical boundary condition is the periodic condition, where
the opinion domain [0,1] is wrapped on a circle of circumference
1 (formally, replacing areal opinion value € R by its fractional
part{z} =  mod 1). A disadvantage of the periodic boundary
condition is that there is no distinction between the extreme
opinions 0 and 1. In this article, we address this issue by
considering another type of boundary condition, which we call
even 2-periodic. Precisely, a real opinion € R is replaced by
f(x), where f is an even 2-periodic function, such that f (z) = x
on [0,1] (and hence f(x) = —z for z € [-1,0], f(z) =2 —=
for x € [1,2] and so on). In other words, we first evenly extend
the opinion domain [0,1] into the interval [—1, 1] and then wrap
it on a circle of circumference 2 so that the extreme opinions
0 and 1 correspond to the antipodes of this circle. We note that
with this even 2-periodic extension, the “effective” boundary
condition experienced by the agents is an almost reflective one,
that is, when an agent leaves the opinion domain from one end,
it is reflected back into the domain from the same end. This
is different from the behavior under simple periodic boundary

pzz; 20, z€R. (5)

0 x=1

: /\\ plxt)

PTG N e

~

1
1
1
1
T
1
1
X1 X0

Fig. 1. Even 2-periodic extension of the system. The opinion value
zo € [R,1 — R] effectively experiences a reflective boundary condition,
while for the opinion value z; € [0, R] there is also a boundary effect
due to the even extension. In particular, the influence of more extreme
neighbors of x; is reinforced by introducing artificial ones (the shaded
area in blue). The same boundary effect exists for opinion values in
[1-R,1].

condition where the agents leaving the domain form one end,
enter the domain from the other end. However, the introduced
boundary condition is “almost” reflective since the even ex-
tension causes some boundary effects: the influence of more
extreme neighbors of opinion values in the R-neighborhood of
extreme opinions 0 and 1 is reinforced. This is due to the even
extension that introduces more extreme “artificial” neighbors;
see Fig. 1.

As discussed in [43], [53], and [54], the FP equation (3)
under the periodic conditions retains its validity, however, p(t, x)
is not a probability density on R but a 1-periodic function
p(t,z +1) = p(t,z) > 0, such that fo (t,x)dx = 1 (that is,
p(t, -) serves as a density on the interval [0,1]). Similarly, for the
even 2-periodic boundary condition, (3) retains its validity when
we replace the probability density p(¢, «) with an even 2-periodic
function, that is, p(t, —z) = p(t,z) and p(t,z + 2) = p(t, z).
On the interval [0,1], the function p(t,-) again serves as a
probability density: fo x)dz = 1. We also assume that the
initial density po(z) = p(O, x) and the density of radical opin-
ions p, (), defined on [0,1], are extended (in the unique possible
way) to even 2-periodic functions on R.

In this article, without loss of generality, we take X = [0, 1]
and X = [—1, 1] to be the bounded opinion domain and its even
extension, respectively. To summarize the discussion mentioned
above, the macroscopic model for opinion dynamics considered
in this article is fully described by the following partial differ-
ential equation (PDE)

0.2

pr=(pGpla+ 5 pez in X x (0,T)
p(-+2,t) = p(-,t) on X x (0,T) (©)
pla,") = po(x) on X x {t=0}
where
Gplx,t) = w(x) * (p(x,t) + Mpr(x)). @

Note that in (6), we are considering the dynamics over a
finite time horizon 7' for the sake of analysis, however, T’
can be chosen arbitrarily large. We again emphasize that the
initial density py and the radical density p, are the unique
even 2-periodic extensions of the corresponding densities from
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X to X. In essence, we are considering the same dynamics
as in [54] with the extra requirement for py (and the newly
introduced density p,) to be even. Finally, we note that [59]
also provides a detailed treatment of this dynamics (without
radicals) for a class of interaction potentials on a torus in higher
dimensions.

B. Main Theoretical Results

To recapitulate, we are interested in even 2-periodic solutions
of PDE (6), where py and p, are even 2-periodic. A natural
question arises as to whether the model is well-posed in the sense
that every (sufficiently smooth) initial condition pg and input p,.
correspond to a unique solution. The affirmative answer is given
in the following theorem.

Theorem II.1 (Well-posedness of dynamics): Let the initial
density of normal opinions and the radical opinions density
satisfy po € H3(X) NPe(X) and p, € HZ(X) NPe(X), re-
spectively. Then PDE (6) has a unique, even, strictly posi-
tive, classical solution p € C'*(0, oc; C’fp(f( )) such that p(t) €
P.(X) forall t > 0.

This result implies that p(t) := p(¢,-) is a (strictly positive)
probability density on X = [0, 1] for all ¢ > 0, as required. For
the autonomous systems (without radicals), the authors in [54]
and [59] provide a sufficient condition for exponential conver-
gence of the dynamics toward uniform distribution p =1 as
an equilibrium of the system. Unlike those studies, the uniform
distribution is not an equilibrium of the model considered in this
article. However, it is possible to extend this stability result to
our model. To this end, we first consider the stationary equation
corresponding to PDE (6) given by

2

We are particularly interested in even stationary solutions p° €
Pe(f( ) of (8). Our next result characterizes the stationary state
of the system.

Theorem I1.2 (Stationary behavior): Let
P.(X) be the radical opinions density.

1) Existence: the stationary equation (8) has an even, strictly

positive, classical solution p* € C2,(X) N Pe(X).
2) Estimate: for any n > 0, if 02 > 0 + ncp, then

pr € Hclp(X) N

. 1
lp® =12 < = llprll 2
n

where

2
= i (M+R+2) and ¢p 1= M
™ V3 /3

Notice how the global estimate in Theorem I1.2 bounds the
difference between the stationary solution and the uniform dis-
tribution. This result shows that, even in presence of radical
opinions, the stationary solution can be made arbitrarily close to
the uniform distribution by increasing the noise level beyond a
minimum level o;,. We note that the minimum noise level oy, is
directly related to the confidence range R—similar to the results
previously reported for the autonomous system in [54] and [59].

€))

Asexpected, oy, is also directly related to the mass M of radicals.
Moreover, as the “energy” M ||p,|| 2 of the radicals increases,
in order to counteract their effect and keep the stationary profile
in a somewhat uniform state, one must increase the noise level
further beyond oy,

With this result in hand, we can now consider the asymptotic
stability of stationary state. The next result provides a sufficient
condition for exponential convergence of the dynamics to sta-
tionary state for arbitrary (and sufficiently smooth) initial density
po and radical density p,.

Theorem I1.3 (Stability): Let py € H3,(X) N Pe (X X) be the
initial density of normal opinions and p, € HZ (X X)N 7P, ( X)
be the radical opinions density. Also, letp € C 1(0 00; G2, (X))
with p(t) € P.(X) be the solution to the dynamic equation (6).
Then, p(t) converges to a stationary state p* € CZ,(X) NPe(X)
exponentially in L? ast — coif 0 > o, where o5 > 0 uniquely
solves

o, AR(B+M) 4AR? (8R(1+M))
o, = + exp| ————| .
s 7r ™3 o2

An immediate result of Theorems I1.2 and I1.3 is that for suf-
ficiently large noises, the dynamics will converge to a stationary
state that can be made arbitrarily close to uniform distribution
by increasing the noise level.

Corollary 11.4 (Input—output stability): For any n >0, if
0? > max{o? + ncp, 02}, where o, and ¢, are defined in (9)
and o > 0 uniquely solves (10), then it holds that

Ip(t) = Lllze < Be™ +

(10)

1
~llorllza (11)
n

where the constant S > 0 depends on pg and p,., and the con-
vergence rate A > 0 depends on o, R, and M.

Remark I1.5 (Connection to existing works): The stability
result of Corollary I1.4 corresponds to the result reported in [54,
Th. 2.3] on global stability of uniform distribution p = 1 for
sufficiently large noises in the autonomous system without
radicals. In particular, by setting M = 0 in the estimate given
in Theorem II.2, one has ¢, = 0, hence p =1 is the unique
stationary state of the system for o2 > O'b B2+ R/V3).
We note that oy, is the same minimum noise level given in [54,
Th. 2.3], taking into account a multiplicative factor of two due
to the even extension considered in the current article. However,
direct application of Theorem II.3 for stability of p* = 1 leads
to a sufficient minimum noise level o4 > op. This is due to
the fact that this result is based on conservative estimates for
p°. Indeed, if we incorporate the fact that p° = 1 (and modify
some of the arguments provided in the proof of Theorem II.3
in Section IV-C), then we can show that, in the absence of
radical agents, the uniform distribution p® = 1 is also globally
exponentially stable for ¢ > 03, and reproduce the result of
[54, Th. 2.3].

Finally, we note that, based on the results provided in [59], the
input—output stability result of Corollary II.4 can be generalized
to multidimensional first-order stochastic interacting particle
systems for a particular class of interaction potentials.

The following two sections are mainly concerned with the
technical proofs of the theoretical results listed earlier.
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[ll. WELL-POSEDNESS OF DYNAMICS

This section is devoted to the proof of Theorem II.1 con-
cerning the well-posedness of the dynamics (6). Throughout
this section, all the norms are w.r.t. X = [—1, 1] (as opposed to
X =[0,1]), unless indicated otherwise. We use C, Cy, C1, ...
to represent a generic constant (depending on the model param-
eters), which actual values may change from line to line. In case
these constants depend on a particular object of interest, say 6,
this dependence is explicitly indicated by C[0].

Let us first note that because of periodicity, the mass is
preserved in (6), that is, [ p(z,t) dz = [ po(x) do = 2, for
all ¢ > 0. In particular, we have

Hmmue;ép@wdx=2>u

We will be using this property in the sequel.

We begin with presenting some useful estimates for the object
G, defined in (7) that make it possible to extend the results
provided by [54] to our model.

Lemma I11.1 (Estimates for G,): Let G, be the function de-
fined in (7) with p, € Po(X). If p(t) € Léer()z), then

1Gollz~ < R(llp(8)][ L1 +2M). (12)

If, moreover, ||p(t)||1 > 0, then
Gl < Cllp(®)llzr < C llp@)] L2 (13)
Proof: See the proof of [60, Lemma 3.1]. |

Using the estimate (13) in Lemma III. 1, one can follow similar
arguments as in [54, Lemma 2.1] to show ||p(t)||L1 = 2 and
p(t) > Oforallt > 0 (see also [54, Corollary 2.2]). Specifically,
assuming PDE (6) has a solution p € C'(0,T; Ca (X X)), one
can derive a priori estimate, which in turn implies that the
solution is nonnegative so that p(t) is a probability distribution
on X =10,1] for all ¢ > 0. We will be using these a priori
properties in the sequel.

Lemma II1.2 (Estimates for OF G p): Let G, be the function
defined in (7) with p, € P.(X).

i) For1 < p < 00,if p(t), pr € Lher(X) with [|p(t)]| 11 > 0,
then

1(Gp)allLr < Cillp(®)llze + C2 llpr| e
< Clllprllze] lo®)llr-

€ HEY(X) with [|[p(t)]| 1 > 0,

per

14)

ii) For k > 2, if p(t),p
then
105G ollzz < Clllorllas] o) prr-s-

Proof: See the proof of [60, Lemma 3.2].
The following Lemma extends [54, Proposition 4.1] for our
system with exogenous input.

5)

Lemma II1.3 (More estimates for G,,): Let v € err(f()

Hlferl( X)NP.(X), and p(t) € Hgferl(X) with
||p( )|+ > 0. Then, for k > 2,

[vGollare < Clllorllze] |V 1) | i1 (16)

Proof: See the proof of [60, Lemma 3.3].

With these estimates in hand, we can follow the same ar-
guments as in [54] to show well-posedness of the dynamics
described by PDE (6). In the sequel, we provide the sketch of
the proof of Theorem II.1. For a more detailed version, see [60,
Sec. 3].

Proof sketch for Theorem I1.1: Consider the PDE sequence

2
o . ~
(pn)t = (pnGpn D+ 7(1071)21 in X x(0,7)

pn(-+2,1) = pn(,t) on 0X x (0,7
;) =po(z) on X x {t=0}

with smooth data po, p, € Cpe (X X) NP.(X) for now. By stan-
dard results on linear parabolic PDEs [61, Ch. 7], there exists a
sequence {p,, : n > 0}inC>(0, T; ngr( )) that satisfies (17).
Furthermore, using the estimate (13) in Lemma III.1, one can
follow the same procedure provided in [54, Proposition 3.1] to
show || pn (t) || 2 = ||pn(0)]| L2 = 2,and hence, p,, (t) > O forall
n > 1andt > 0 (see also [54, Corollary 3.2]).

Remark 111.4 (Evenness of p,,): One can use the evenness of
po and p,. to show that the unique solutions p,, to PDEs (17) are
alsoevenin x forall ¢ > 0. However, since this property will not
be used for existence, uniqueness, and regularity results provided
as follows, we will postpone this argument to later when we deal
with the evenness of the unique solution to PDE (6).

Existence with smooth data. Using Lemmas I1I.1 and I11.2 and
following a similar idea as in [54, Lemmas 3.5 and 3.7], we can
obtain the following convergence results for a limiting object p

a7

pn(

pn—p in LY(0,T;LL (X))

pun =5 in L2(0,T5 HL (X)) (18)

8tpnk — Pt in L2(0 T Hper (X))

where nj, denotes a subsequence. Moreover, we have the fol-
lowing estimate for {p,, : n > 1} and p

llollL<o,rse2y + 1ol 20,1510y + lpell 220,551
< C1]|pollL2-

We claim that p is the unique weak solution to (6). That is, p
solves the weak formulation of (6) defined as

/npt dt+/ /( pm+pG>nzdxdt0<20>
0

forany n € L?(0,T; H.,(X)). To this end, we multiply (17) by
n with n = ny and integrate to obtain

T o2 [T
/ (0, Opn,,) dt + 7/ / O P, Mz dxdt
0 2 Jo Jx
T
+/ / P G,y M dadt = 0. (21)
0o JX

Using the convergence results (18) and the estimate (19), one
can show that the limits of the three terms in (21) are zero as
k — oo, that is, p indeed satisfies the weak formulation (20).
It remains to show p(x,0) = po(z). Note that this condition
makes sense since p € C(0,T; L2 (X X)) by [54, Th. 3.8] and
the last two items in convergence results (18). Pick some

19)
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n € CY(0,T; Hy, (X)) with n(T) = 0 and rewrite the weak for py € HE (X)NP(X) and p, € HEH(X) N Pe(X), we
formulation (20) as have

p € L0, T Hih (X)) N L¥(0, T; Hyg (X)) (24)

—/ dt+/ /( pm—i-pG)nIdxdt

= /Xﬁ(m,O) n(z,0) dz.

Similarly, since p,, (x,0) = po(x), we have

_/ Pnkﬂlt dt +/ / ( acpnk +pnkG ) Nedadt
0

— [ oo(a) a.0)
X

Let k — oo in (23). Then, for arbitrary 7(z,0), we obtain
from (23) and (22) that

[ o0y nte0) de = [ pofe) nGe0)
X X

This implies that p(z, 0) = po(z).

Relaxed regularity on data: In order to relax regularity as-
sumption on data to pg, p, € L2 (X) N P.(X), we can use the
mollified version of the distributions pj = ¢ x pg and pf. =
o * p, with the standard positive mollifier ¢, follow the same
procedure and take the limit € — 0 at the end (see also [54, Th.
3.12] for the details of this process).

Uniquness: Let £ = p1 — pa where Pl and P2 are two weak
solutions to (6) with pg, p, € L2, (X) N P(X). Then, for every

! per(
n € L*(0,T; Hy (X)) we have

o2 (T
/<77a§t>dt+*/ /~§znmdxdt
0 2 Jo Jx
T
+/ /_(pl Gﬁl — P2 sz)’ﬂg; dzdt = 0.
0o JXx

Setting 7 = ¢ and using Lemma III.1, we can follow similar
arguments to ones provided in [54, Th. 3.10] to obtain

(22)

(23)

T
| 6.6 dt < (€ Calt] i) el r

By [54, Th. 3.8], we know (&, &) =
T, we have

1 [Td )
- - 5 <
2/0 g I€@llz2dt <

This implies that, for a.e. t € [0, 7]

2 411€(t)[22. Thus, for all

d
@72 < CIT. po] €D
Hence, by Gronwall’s inequality

lE@®NZ2 < CIT, pol 1€(O)[1Z> = CIT, po] llpo = pollz> = 0.

That is, [|(t)]|z2 = ||p1(t) — p2(t)|| L2 = 0. Then, from conti-
nuity of p; and p2 in time (by [54, Th. 3.8]), we have p; = p»
forallt € [0,T7].

Regularity: Employing Lemma II1.3, we can extend the im-
proved regularity results in space in [54, Th. 4.2]. To be precise,

T
(C1 + Ca[T] [lpol|22) / IE)|2dt.

Moreover, since p, is constant in time, we can also employ the
results on improved regularity in time provided by [54, Th. 4.3]
for our model. That is, for pg € H25(X)NP.(X) and p, €

» per
L2 (X)NP.(X

per
0ip € L*(0,T; HE 1 (X)) N L™(0,T; HXE (X)) (25)

), we have for i < k

and

Oftp e L2(0, Ty HyH (X)). (26)

With these regularity results in space and time, we can derive the
required regularity on the solution as stated in Theorem IL.1. Let
po € H (X)N P.(X) and p, € HZ, (X) N P.(X) and also
let p be the unique weak solution to PDE (6). By (24), we

have 5 € L>(0,T; H3 (X)). Hence, by the Sobolev embed-

per
ding theorem [62, Sec. 4.12], we have p(t) € Cp( X) (after
possibly being redefined on a set of measure zero). This gives
the required regularity in space. Also, (25) and (26) imply that
pr € L*(0,T; HL (X)) and py € L*(0,T; HyL(X)). Hence,
by [54, Th. 3.8], we have p, € C(0,T'; L2, (X)) (after possibly
being redefined on a set of measure zero). This gives the re-
quired regularity in time. Putting these results together, we have
p € CH0,T; Cl(X).

Evenness: The evenness imposed on pg and p,. implies that if
p(,t)is asolution of (6), then p(—x,t) is also a solution. Then,
assuming po € Hg, (X )ﬂP( ) and p, € H2(X) N Pe(X)

(notice that HF (X ) C Hp. (X)), the uniqueness of the solution
pe€CH0,T; 02 (X

er X)) to PDE (6) implies that the solution is
even, that is, p € C* (0,7 C%(X)).

Positivity: Using the same approach as in [59], we consider
the following version of (6) in the unknown function p with p
being the nonnegative weak solution

o2

pe=(pGp), + 5 Poa-

This is a linear parabolic PDE with smooth and bounded co-
efficients (by Lemmas III.1 and III.2) for which p is a clas-
sic nonnegative solution. Thus, by parabolic Harnack inequal-
ity [61, Sec. 7.1.4, Th. 10], we have sup, ¢ p(z,t1) < c-
inf__¢ p(x,tz) for 0 < ¢; <ty < oo and some constant ¢ > 0.
Nonnegativity of p(x,t) implies that inf__¢ p(z,t), and thus,
p(x, t) are positive for all ¢ > 0. [ |

[V. STATIONARY BEHAVIOR AND STABILITY
A. Existence of Stationary Solution

This section mainly concerns the proof of existence result
in Theorem II.2 for stationary equation (8). Throughout this
section, the norms are w.r.t. X = [0,1] (as opposed to X =
[—1, 1]), unless indicated otherwise. We note that norms on the
even 2-periodic spaces computed w.rt. to X and X differ by

a multiplicative constant, e.g., [[ul|, ) = 2%||u\|Lp(X). We
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again use C, Cp, C, ... to represent a generic constant whose
actual values may change from line to line. Also, C'[f] denotes
the dependence of the constant C' on a particular object 6.

Let us begin with providing a fixed point characterization
of the solution to stationary equation (8). We note that, corre-
sponding to the solution to dynamic equation (6), we are par-
ticularly interested in even solutions p® € P.(X) of stationary
equation (8).

Lemma IV.1 (Fixed point characterization): p* € Cg, (X)n
P.(X) is a solution of stationary equation (8) if and only if p*
is a fixed point of the operator T : P.(X) — P.(X) defined as

Tp = eXp( / G, )

where the constant K is determined by the normalizing condition

1 T
K :/ exp <22/ G,(2) dz> dz.
0 9= Jo

Proof: See the proof of [60, Lemma 4.1]. |

This characterization allows us to use tools from operator
theory, in particular, Schauder fixed point theorem, to show
existence of stationary solution. Before that, we present some
preliminary results for the operator 7.

Lemma IV.2 (Estimates for T ): Let T be the operator on
P.(X) defined by (27).

1) If p, p, € Po(X), then

27)

1Tl < A0/ (28)
and

4R(1+ M 2

ool < SR ranret )
o
2) Fork > 3,if p, pr € HE2(X) N Pe(X), then
k—

1T ol < Z il orll e 1ol (30)
Proof: See the proof of [60, Lemma 4.2]. |

Proposition IV.3 (Lipschitz continuity of T): Let T be the
operator on P.(X) defined by (27) with p, € P.(X). Then,
7T is Lipschitz continuous in L? for 1 < p < oo with Lipschitz

1 SR(1+ M)(p —

LTexp( ( +2)(p

a°p

constant
1) 16R/0?
> > (e 71> . G

Proof: See the proof of [60, Proposition 4.3]. |

With this preliminary results in hand, we next move on to the
proof of existence of stationary solution.

Proof of Theorem I1.2 (Existence): Following the same ar-
gument as in [59, Th. 2.3] and using Lemma IV.1, we can
present the existence result for the stationary solution as the fixed
point of the operator 7. First note that using the estimate (28)
in Lemma IV.2, we have || T p||z2 < C || Tp||r= < c for some
positive constant c. Thus, for the purpose of finding the fixed
points of T, we can restrict 7 to act on the closed and con-
vex set B := {p € Lgp()z') NPe(X) : |lpllzz < ¢}. Now, from

inequalities (28) and (29) in Lemma IV.2, we have, forall p € FE
IToll7r < I Tpll72 + 10:Tpl22

32)
< G Tollis + Coll0uTollf~ < ¢

for some constant ¢ > 0. That is, 7(E) C E is uniformly
bounded in Help(X' ). Thus, by the Rellich-Kondrachov com-
pactness theorem [61, Sec. 5.7, Th. 1], T(E) is precompact
in L2 (X). Since E C L2(X) is closed, this implies 7 (E)
is also precompact in E. Also T is Lipschitz continuous by
Proposition IV.3. Hence, by Schauder fixed point theorem [61,
Sec. 9.2.2, Th. 3], it has a fixed point p° € F, which by (32)
belongs to L (X).

Regularity: The estimate (30) in Lemma (IV.2) 1mp11es that
if p. € HE 2(X), then the fixed point p* = Tp* € HE(X).

In partlcular if p, € HY(X), then p € H3(X). Hence by

Sobolev embedding theorem, p* € C, (
redefined on a set of measure zero).
Positivity: Strict positivity of the fixed point (stationary solu-
tion) immediately follows from the representation (27). |
Remark IV.4 (Uniqueness): By Proposition IV.3, T is Lips-
chitz continuous in LP with Lipschitz constant L+ given by (31),
and thus, is a contraction for L+ < 1. Hence, by Banach fixed-
point theorem [61, Sec. 9.2.1, Th. 1], 7 has a unique fixed point
for L+ < 1. Setting p = 1 in (31) gives the sufficient condition
0% > 16 R/ In 3 for uniqueness of stationary solution. This result
corresponds to the sufficient condition provided in [52, Th. 2].

) (after possibly being

B. Global Estimate for Stationary Solution

This section is devoted to the proof of the estimate given in
Theorem II.2. In this section, all the norms are w.r.t. the domain
X = [—1, 1], unless indicated otherwise.

Proof of Theorem I1.2 (Estimate): Let ¢ = p® — 1 so that
J% ¥(z) dz = 0. From the stationary equation (8), we obtain

—%z/zm = [ +1) Gyl = [ Gyl, + [Gylz

where we used the fact that w x 1 = 0. Next, we multiply this

last equation by ® and integrate by part over X to derive (extra
terms are zero due to periodicity)

0.2
Tl == [ 620 Gydo— [ 4. Gy,
X X

Thus,
o? 9
Flelts < | [ o Gode|+| [ v Gy do
be be

< NGyl 1allzz 19llz2 + [YellL2 [|GyllLa-

Now, using inequality (12) in Lemma III.1, we obtain

(33)

1Gylle~ < 2R (¥l Lrx) + M)

<2R (|lpllprx) + 14+ M) <2R(M +2). (34)
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Also, we have

z+R 2
Gy(a)? = ( [ w0 @)+ M) dy)

-R
z+R
< / (x—y)dy [T W(y) + Mp.(y)? dy
z—R
z+R
< (2/3)R / () + M) dy. (35
rz—R

Hence,

IGull2: < (2/3) R//
= (2/3) RS/ /

= (4/3)R*|[¢ + Mp,| 7.

Using estimates (34) and (36) in (33), we have (recall that
uniform distribution is not an equilibrium of the system and
hence ||¢; ||z # 0)

)+ Mp,.(y))? dydx

(x+y) + Mp,(x +y))?* dyda

(36)

2
Tl < 2RO +2)[[¢ll2z + (2B /V3) | + Mpy |12

< 2R(M +2)|[¢]| 2 + (2R?/V3) (Il 2 + M| pr | 12)
R 2R2M
=2k (M 4+ 25+ 2) ol + 22 o
V3 V3
Now, since ff( ¥ (x) da = 0, Poincaré inequality [61, Sec. 5.8.1,
Th. 1] implies that [|2)||z2 < C' ||4)2 ]| 2. The optimal value for

the Poincaré constant for X = [—1,1] is C' = 1/. Using this
for inequality (37), we have

(37

4R R 4R?M

2

ol — —(M+-—=+2 < ——|lprllLe-

(o= 2 (304 Tt 2) oo < Lol
(38)

Defining o, and ¢;, as in (9) gives the desired inequality ||¢|| L2 <

+llorllze, where n = (02 — o7) /cp. |

C. Stability of Stationary State

This section is devoted to the proof of Theorem II.3 concern-
ing the stability of stationary state. All the norms in this section
are w.r.t. the domain X = [—1,1] (as opposed to X = [0,1]),
unless indicated otherwise.

Proof of Theorem 11.3: We follow a similar argument as
in [54], except we consider a general stationary state p°, instead
of the uniform dlStI'lbuthH considered in [54]. Let ¢ = p — p*

so that [ ¢ ¥(x) dz = 0. Using the fact that p° is a solution to
the stationary equation (8), that is,
2
[0° Gpely + =5 P2 =0

and inserting p = 1 4 p° into equation (6), we obtain

0.2

wt:[¢(w*¢+Gps)]m+ 7

[0° (W), + = Vaa-

Multiplying this equation by ¢/ and integrating by part over X,
we obtain (the extra terms are zero due to periodicity)

2
Lz + < 1= l72

2dt

< ’/~ Yo Y (W + Gpe) da
%

—|—‘/X¢I p° (w=1) de

< (lwxglloe +1Gpellz=) 19allLz 19]lz2
F 0% = ez 1wl 2.

Now, from inequality (12) in Lemma III.1, we have
[wx L= < 2R ||[9]| 1 (x)
<2R (llpllorx) + 1071l (x)) = 4R

(39)

and

1Gelle < 2R (0" 11 (x) + M) = 2R(1 + M).

Also, following a similar procedure as in (35) and (36) with M =
0, we obtain ||w * || > < (2R?/+/3) ||1)|| 2. Finally, from (28)

inLemmalV.2, wehave ||p* ||~ < e3E(+M)/o* Tosave space,
let us define
a = 2R(3+ M) + (2R?//3) UM/ (40)

Using these estimates and the Young’s inequality, we can
rewrite (39) as

2
S S0l + Tllals < o allza 91

2 2
a 2 g 2
< S 1% + Tl 3o

Hence,

2 5 0.2 5
S0l < G913 — Tl

Once again, since f e Y(x) de = 0, we can use the Poincaré
inequality |||/ 2 < C ||tz 2 with optimal Poincaré constant
C = 1/m, to obtain

d 202 w202
Gl < (35 - 5 ) i

Then, by Gronwall’s inequality, we have

2 2 2 2
Y @)]|172 < [1(0)]]72 em{(; B WQU >t}

Now, notice that ||1)(0)|| 2 < ||pollzz + ||p°]| 12 is finite. Thus,
if the constant factor in the exponential is negative, then
|4 (t)[|2, — 0 as t — oo. Negativity of the this constant factor
corresponds to the condition o > o, where o5 > 0 solves (10)
— the object « is defined in (40). |

V. CLUSTERING BEHAVIOR: FOURIER ANALYSIS

In this section, we exploit the periodic nature of the system
and use Fourier analysis to study the behavior of the solution to
the PDE (6) with uniform initial condition py = 1. To this end,
we derive a system of ordinary differential equations (ODEs)
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describing the evolution of Fourier coefficients of the normal
opinion density p. These ODEs are then used to provide an
approximation scheme for characterizing the initial clustering
behavior of the system including the number and the timing of
possible clusters. This numerical scheme is in essence similar to
the linear stability analysis previously employed by [37], [40],
[43], [53], [63] for analysis of noisy bounded confidence models
without radicals.

A. Finite-Dimensional Approximation in
Frequency Domain

Notice that the set {cos(mnz)};, is an orthogonal basis
for the space LZ,(X) containing even 2-periodic functions on

X = [-1,1]. Then, the even 2-periodic extension of the prob-
ability densities in the model allows us to consider the Fourier
expansions of p and p, in the form of

{p(x,t) = Zf:o Pn(t) cos(mnz)
pr(z) =300 qn cos(mna).

By inserting the expansions (41) into (6) and setting the
inner product of the residual with elements of the basis to
zero (in other words, taking inverse Fourier transform), we can
obtain a system of quadratic ODEs describing the evolution of
Fourier coefficients p,, (¢). Considering only the first frequency
components n = 1,..., Ny of the expansion, these ODEs are
expressed as

(41)

pn =cp + bz;p + pTan (42)

where p = (p1,p2, ... ,pr)T. Note that for n = 0, i.e., the
constant term in the Fourier expansion, we obtain py = 0. This
is due to the periodic nature of the system that preserves the
zeroth moment. The coefficients in (42) are given by

Cn = QManqn

nMR(gntr + Gn-r), k#En
nRfy/k, l=n—k>1 (43)
(Qn)rs = nR(%—i—%), l=k-n>1
0, otherwise

where f; := — cos(miR) + sinc(miR) and g; := g, fi/i, with
sincx = sin z:/x. Recall that ¢,,,n € N are the Fourier coeffi-
cients of p,.

B. Initial Clustering Behavior

The possible clustering behavior of noisy interacting particle
systems is known to mainly depend on the noise level. That is,
for noises larger than a critical level, the random drifts due to
noise are expected to overcome the attractive forces among the
agent and suppress clustering behaviors (see Fig. 2 for numerical
simulations of the model under study for increasing levels of
noise). A detailed discussion on this phenomenon commonly
known as order-disorder transition for the system under study is
provided in [60, Secs. 5.2 and 6.2].

For noises smaller than the critical level corresponding to
order-disorder transition, agents start to form clusters. Here, we

are interested in the characterization of this initial clustering
behavior. To this end, we make use of the exponential growth rate
Y := (bn)n and linear growth rate c,, given in (43). The pro-
posed numerical scheme is as follows. We ignore the interactions
between different frequencies in (42), that is, for each frequency
n = 1...., Ny, we consider the equation p,, = ¢, + v,p, With
pr (0) = 0 for the initial evolution of the Fourier coefficient p,,.
Then, for a given set of model parameters (o, R, M) and radical
opinions density p,, we numerically compute the dominant
wave-number n* := arg max,,cn n With y,- > 0, that is, the
unstable mode with the largest exponential growth rate. We spec-
ulate that the corresponding trigonometric term p,, cos(mn*z)
is the dominant component of the initial clustering behavior and,
hence, determines the number of initially formed clusters. The
sign of p,,- depends on the linear growth rate c,-; precisely,
Prr > 01if ¢ > 0, and p,,« < 0 otherwise.

Considering the even 2-periodic extension of the model, the
dominant wave-form must be interpreted on the interval X =
[—1, 1]. Then, the number of initial clusters ny, in the interval
X = [0, 1], resulting from the wave-form 1 + p,,- cos(mn*z), is
given by

n .
ndu:{LQJJrL Cpe >0 44)

=1, Cnr < 0.

We also expect that the timing of this initial clustering behavior
to be inversely related to the corresponding exponential growth
rate 7,+. Indeed, by solving for the time for which the solution
to the equation p,, = ¢, + VP 1s equal to =1, we can approx-
imate the time to initial clustering t., as

1 -
~ I (1 + )
'Yn* |Cn*

A similar approximation has been used in [53] in order to derive
the time to the initial clustering using fluctuation theory.

tew ©= (45)

VI. NUMERICAL STUDY

In this final section, we provide a numerical study of
the model at hand for a particular distribution of radi-
cal agents/opinions through simulations of the corresponding
discrete- and continuum-agent models. In particular, we vali-
date the result of Fourier analysis for characterization of initial
clustering behavior presented in Section V-B.

A. Setup

The particular radical distribution considered in this section
is a triangular distribution with average A and width 25

pr(z) = w for |x — A] < S, 0 otherwise.  (46)
Although this choice may seem specific, it is rich enough for
our purposes. In particular, with this choice, the zeroth, first,
and second moments of the radical opinions density are simply
captured by the parameters M, A, and S, respectively. More-
over, we assume that the radicals are concentrated around their
average opinion, that is, we consider small values of S (w.r.t. the

confidence range R).
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Numerical simulation of the discrete-agent model (Disc.) and continuum-agent model (Cont.) for different values of noise o with model

parameters (R, M) = (0.1,0.1): (a) Distribution of opinions/agents at t = 10* (b) Evolution of the order parameter. The initial distribution of normal
agents/opinions is taken to be uniform and the distribution of radical agent/opinions is the triangular distribution of (46) with (A,.S) = (0.7,0.1).
As noise increases the number of clusters decreases so that for a large enough noise (e.g., o = 0.05), the clustering behavior almost disappears
(order-disorder transition). Moreover, in case of a clustered profile, the inverse of the order parameter is approximately equal to the number of
clusters; e.g., for o = 0.03 the system first forms a two-cluster profile (the flat area with order parameter around 0.5), and then converges to a

single-cluster profile (with order parameter equal to one).

For the discrete-agent model, the SDEs (4) are solved numer-
ically using the Euler—Maruyama method for NV = 500 normal
agents with time step At = 0.01. In particular, for the radical
agents, we produce a random sample of size N,, = M N from
the triangular distribution (46). The initial distribution of normal
agents is taken to be uniform, that is, the initial opinions are
randomly sampled from a uniform distribution on the interval
X = [0, 1]. For complete correspondence between the discrete-
and continuum-agent models, we also consider the effect of even
2-periodic extension in the simulations of the discrete-agent
model.

For numerical simulation of the continumm-agent model de-
scribed by PDF (6), we use the ODEs (42) to compute the coeffi-
cients of Fourier expansion of normal opinion density p using the
first Ny = 128 terms of the expansion. However, regarding the
radical opinion density, one notices that the considered triangular

distribution does not satisfy the conditions of Theorem II.1 for
well-posedness of PDE (6), that is p, ¢ He, (X). This will not
be an issue since we will be working with the projection of
the proposed p, in the Hilbert space LEP(X ). That is, we use
the Fourier coefficients of p,. in (42), which for the triangular
distribution (46) are given by

¢n = 2cos (nmA)sinc? (nrS/2) . (47)

To be precise, we need the Fourier coefficients ¢, of p, for
1 <n < 2Ny, that is, twice the length of Fourier expansion
of p [see the linear terms of (42)]. For the initial condition,
we again consider uniform distribution pg = 1, which corre-
sponds to po = 1 and p,,(0) = 0 for the Fourier coefficients. A
detailed description of the numerical scheme for simulation of
the discrete- and continuum-agent models is provided in [60,
Sec. 6].
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In the sequel, we use the order parameter

N
Qa(t)=N"7? Zl Lz, (t)—a;(0)| <R

i,j=

introduced in [43] and its continuum counterpart

Qc(t) = /X2 P(-’IJ, t)p(y, t)l\x—y\SR dzdy

to quantify orderedness in the clustering behavior of the model.
In particular, we use the evolution of the order parameter for a
better characterization of the timing of the clustering behavior
in the simulation results. In words, the order parameter () is the
(normalized) number/mass of agents that are in R-neighborhood
of and hence interacting with each other. In particular, in the
continuum case, ). = 2R for a uniform distribution of opinions
(absolute disorder), while Q). = 1 for a single-cluster distri-
bution with all agents residing in an interval of width R or
less (complete order). In case of a clustered behavior, roughly
speaking, the inverse of the order parameter is equal to the
number of clusters. For instance, the 2 R-conjecture [42], [43]
states that for a noiseless system without radicals and starting
from a uniform initial distribution (@) = 1), the dynamics will
converge to a clustered profile with the distance between clusters
being (approximately) 2R, or equivalently, with ﬁ clusters
(Q = 2R). In the presence of noise, however, the system expe-
riences a phase transition (order-disorder transition) depending
on the noise level [43], [53]. In particular, for noises larger
than a critical level (depending on R), the clustering behavior
disappears and the system converges to a (somewhat) uniform
state with ) ~ 1. As shown in Fig. 2, the same transition occurs
in noisy systems in presence of radicals, considered in this
article. We refer the reader to [60, Secs. 5.2 and 6.2] for a detailed
discussion on order-disorder transition for the system considered
in this article.

In all the simulation results reported in this section, the width
of radicals distribution and the confidence range are fixed at
S =0.1and R = 0.1, respectively.

B. Initial Clustering Behavior

For sufficiently small noises, agents start to form clusters (see
Figs. 2 and 3). In particular, we observe a cluster of normal
agents around the average radical opinion A due to the force
field generated by the radicals. Generally, the following three
types of clusters may form:

1) the cluster at the average radical opinion A;

2) the cluster(s) at the extreme opinions z = 0, 1;

3) the cluster(s) around opinion values other than z =
0,1, A.

The third type of clusters is expected to perform a random
walk with their center of mass moving like a Brownian motion
(assuming clusters do not interact). The effective diffusivity of
these Brownian motions is inversely related to the size of the
cluster, i.e., the number of agents in the cluster. This will result
in a process of consecutive merging between these clusters until
complete disappearance of them. Detailed descriptions of this
process are provided in [43] and [53]. Notice, however, that

this description does not apply to cluster(s) formed at x = A
and x = 0, 1. These clusters are affected by forces other than
the normal attractions among the agents within the cluster. The
cluster formed at x = A is under influence of radicals and the
possible clusters at the extreme opinions = 0, 1 are reinforced
due to the even 2-periodic extension considered in our model.
The behavior of these clusters (survival or dissolution) depends
on their size, the exogenous force acting on them, and the effect
of other clusters in their neighborhood.

We now use the analysis scheme provided in Section V-B to
investigate the effect of the zeroth and first moment of radicals
(M and A, respectively) on the initial clustering behavior of the
model for sufficiently small noises. In particular, we investigate
the effect of M and A on the number, position, and timing of
initial clusters for different values of o. We again emphasize
that we are considering a concentrated triangular distribution
for radical agents and a uniform initial distribution for normal
agents.

Following the provided scheme in Section V-B, we can com-
pute the dominant wave-number n*, number of initial clusters
Nen» and time to initial clustering ¢, for a general combination
of model parameter (o, M, A); recall that we fixed R =5 =
0.1. A detailed illustrative example on this process is provided
in [60, Sec. 6.3.1]. Fig. 4 shows the result of this analysis for
different values of M and A at three different noise levels o.
Here, we only consider the values A < 1 — R = 0.9 since for
1— R < A <1 the boundary effect due to even 2-periodic
extension comes into play.

Comparing the left, middle, and right panels of Fig. 4 for
different levels of noise, the analysis shows that as the level of
noise increases, the number of clusters in the possible clustering
behavior of the system is expected to decrease (see Fig. 4(b)),
while the timing experiences a general increase (see Fig. 4(c)).
In particular, with respect to the timing, we notice that as the
level of noise decreases, the initial clustered profile is expected to
emerge faster. Indeed, these effects can be seen in the simulation
results depicted in Fig 2(b).

For low levels of noise, e.g., o = 0.01 (see the left panels
in Fig. 4), the analysis shows that the dominant wave-number
does not depend on the M or A. However, both M and A are
expected to affect the timing of the initial clustering behavior.
In particular, as M increases, t., decreases. Fig. 3 shows the
simulation results for ¢ = 0.01 and compares the evolution of
opinions for different values of M and A. For the continuum
model in the top panels of Fig. 3, we observe that a four-cluster
profile has emerged in all systems, while the analysis predicts a
four-cluster profile for S; and S5 and a five-cluster profile for Ss
for the initial clustering (see the left panel of Fig. 4). Moreover,
comparing Fig. 3(a) and (b) shows that M only affects the timing
of clustering behavior. This effect is better seen in Fig. 3(g),
where we observe a faster convergence of order parameter for
Sy with larger M. On the other hand, comparing Fig. 3(b)
and (c) corresponding to A = 0.85 and A = 0.7, respectively,
we observe that the first moment of radical opinions density
A mainly affects the position of clusters. That is, the clustered
profile emerges in a way that we observe a particular cluster
formed at the average radical opinion A.
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Fig. 3. Numerical simulation of the model with o = 0.01 for different values of (M, A): (a,d) S1 : (0.05,0.85), (b,e) Sz : (0.15,0.85), and (c,f)

Ss : (0.15,0.7). The upper panels (a, b, and c) show the opinion distribution for continuum-agent model. The middle panels (d, e, and f) show the
the result of Monte Carlo simulation (average of 300 realizations) of discrete-agent model. The lower panels show the evolution of order parameter
for the corresponding (g) continuum-agent and (h) discrete-agent systems.

Monte Carlo simulations of the discrete-agent model reveal
that the same general description also holds for this system. This
is particularly seen in the time evolution of the order parameter
in the discrete-agent model as depicted in Fig. 3(h). However,
we note that there are differences between the behavior of the
continuum- and discrete-agent models. First, we observe an al-
most uniform distribution of normal agents in the opinion range
[0.1;0.5] in the middle panels of Fig. 3 for the discrete-agent
model. This is due to the fact that the exact position of the

corresponding clusters formed in the discrete-agent model varies
within this range. Individual realizations of the discrete model
show one, two, or three clusters in this range. This effect can be
clearly seen in the top panel of Fig. 2 for o = 0.01, and has also
been reported by [37] in Monte Carlo simulations of a noisy
Defuant model. Second, the evolution of order parameter in
Fig. 3(g) shows that the continuum-agent model has seemingly
converged to steady-state with four clusters, while this is clearly
not the case for the discrete-agent model as can be seen in
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wave-number n* (b) Number of initial clusters ng, (c) Time to initial clustering In(tg ).

Fig. 3(h). Indeed, in the discrete-agent model, as described in
the beginning of this section, all the possible clusters formed
around opinion values other than x = 0,1, A will necessarily
disappear in the steady-state profile, where the time required for
their disappearance depends on the noise level and particularly
the size of these clusters. Hence, unlike the discrete-agent model,
for the continuum-agent model (in the limit N — c0), the system
may require infinite time for this merging of the clusters to
occure. This, in turn, can lead to different behaviors in the
discrete- and continuum-agent models over exponentially large
times scales [43] (see also [60, Section 6]).

As shown in Fig. 4, for higher levels of noise, e.g., 0 = 0.03,
we observe nonlinear effects. That is, M and A start to affect
the dominant wave-number (see the middle and right panels of

Fig. 4). Nevertheless, these effects are limited as the number
of clusters is still 3 or 4 for 0 = 0.02 and 2 or 3 for 0 = 0.03.
Besides, we still observe a general increase in the timing of the
clustering behavior as M decreases. Numerical simulations of
the model for ¢ = 0.03 are also in general agreement with these
predictions (results not shown here, see [60, Sec. 6.3.2]).

To summarize the discussions mentioned above, for concen-
trated distribution of radicals, the main effect of the zeroth
and first moments of radical distribution is on the timing and
positioning of the possible clustering behavior, respectively.
The number of clusters (to be precise, the life-time of possible
transient clustered profiles) is mainly determined by the noise
level of the system. This is particularly the case for lower levels
of noise.
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APPENDIX A
PRELIMINARIES ON FUNCTION SPACES

The definitions provided in this section are mostly borrowed
from [61]. Let { ) } 32, be asequence in a Banach space B with
norm || - || 5. The strong convergence fi — f implies ||fx —
flls — 0, while the weak convergence fi, — fimplies g( fx) —

g(f) for all bounded linear functionals g : B — R.

Let f: X — R be a measurable function on X = (—1,1).

The LP-norm of f is defined as follows:

oy = 4 ([ r@r) 120 <o

esssupg |f(z)|, p=oc.

Lr( ~) denotes the Banach space of all measurable functions
I X—>Rf0rwh1ch||f||Lp ) < 00,

Let f,g € Li.(X) be locally summable functions (i.e., f, g
have a finite integral over every compact subset of X). We say
that g is the kth weak (partial) derivative of f, if

[ rotoar—cvr [ goan

for all test functions ¢ € C°(X ) (infinitely differentiable func-
tions ¢ : X — R with compact support in X).

H*(X) for k€ N is used to denote the Sobolev space
WH2(X) consisting of functions f € L2(X) whose weak
derivatives up to order k exist and belong to LQ(X ). Note that
H*(X) is a Hilbert space.

We use the subscript per to denote the closed subspace of
periodic functions in the corresponding function space, e.g.,

Lger( ~) ={fe L”(f() f(=1) = f(1)}
Hyee(X) = {f € HH(X) : f(=1) = F()}

Similarly, we use the subscript ep to denote the closed subspace
of even periodic functions in the corresponding function space,

e.g.,

LE(X) = {f € LX) : f(~2) = f(x)
Hy(X) = {f € Hy(X) : f(-2) = f(2)

We denote the dual space of H! (X) by H

per
the space of bounded linear functionals on HI}er

Vo e X}
Vo € X}.

per 1(X), that is,

(X). Moreover,
-) to denote the corresponding paring of ngr(f( ) and
Hoot (X). That is, for f € Hp (X) and g € Hy,} (X), we use
(g, f) to denote the real number g( f). Since periodic boundary
condition allows for integration by parts without extra terms,

H;}(X) has most of the properties of the space H '(X),

per -
the dual space of Hgl(X) (see [61, Sec. 5.9.1] for a detailed
description of the space H 1 (X)).

we use (-,
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