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Abstract

Surface Registration is a registration problem that
handles the registration of two similar surfaces.
In most research that utilises Deep Learning (DL)
models to handle surface registration two theories
are investigated; the first being whether surfaces
sampled from the same origin can be registered to-
gether, and the second theory being whether the
models can register Point Clouds with low over-
lapping data for utilisation in Simultaneous Local-
isation and Mapping (SLAM) applications. How-
ever, the surface registration to be utilised in the
HoloNav Augmented Reality (AR) navigation sys-
tem will utilise Point Clouds sampled from differ-
ent origins with a high overlap ratio. This research,
therefore, aims to determine the viability of DL
methods for surface registration in HoloNav data.
To determine the viability, rotation and translation
errors in the match were used, with the aforemen-
tioned metrics later being evaluated manually with
the utilisation of a visualiser. The results indicate
that the models can generalise on the navigator data
for an initial Euler angle difference of 45 degrees,
but due to the difference in sampling density on
the utilised point clouds can not provide accurate
matches. Therefore, the utilisation of DL models
can be considered to be viable if the navigator data
has a sampling density similar to the pre-operative
model.

1 Introduction

Surgical navigation is a technology that aids surgeons in med-
ical procedures. This technology is utilised in order to deter-
mine the positioning of the surgical instruments with respect
to the surgical site of the patient. However, traditional surgi-
cal navigation tools have certain usage challenges that hinder
the hand-eye coordination of the surgeon. According to Ben-
mahdjoub et al.[1], conventional navigation systems have two
main limitations, which are ”the repeated switch of attention
between the intervention area and the 2D display” and “the
coordination between the hands and the images presented on
the screen”. Therefore, a system that enables the surgeon to
focus on the display data and the surgical system simultane-
ously would be able to improve the coordination of the sur-
geon and possibly simplify the surgical procedure.

In order to improve surgeon coordination, HoloNav aims to
utilise the Microsoft HoloLens, an Augmented Reality (AR)
system, as a surgical navigation system. Such a system would
be able to map virtual data onto real-life applications and
could improve the coordination of the surgeon by decreasing
the need to focus on multiple locations.

However, for the system to function properly certain solu-
tions to existing problems need to be addressed. One such
problem to be addressed is the problem of registration. The
registration problem is the computational problem of map-
ping different input data together in order to align them. The
solution to the registration problem is crucial in AR systems,

as the system requires information about the location to map
virtual data. As a solution to the registration problem, the
official documentation for HoloLens' states that the system
utilises landmarks, or features, in the environment to locate
itself in a space. However, a surgical environment may not
be suitable for landmark-based registration, and therefore a
solution for the registration problem without landmarks may
provide more utility value for HoloNav.

To this end, surface-based registration has been consid-
ered as a viable alternative. In contrast to Landmark based
registration, surface-based registration utilises matching from
sampled points from a surface originating from multiple
sources. In order to match the sampled points, an algorith-
mic approach such as the Iterative Closest Point (ICP) algo-
rithm has been utilised in the past[2]. However, a more re-
cent approach to the surface registration problem has been
by utilising Deep Learning (DL) models, with the work of Qi
and Su[3] demonstrating the capability of DL models in point
cloud data segmentation. Therefore, a DL model that can dis-
cern specific features from a point cloud can be modified to
match detected features robustly, providing an alternative to
the ICP algorithm.

Therefore the goal of this study is to investigate the feasi-
bility of using Deep Learning Algorithms for implementing
Point-Cloud Registration and Matching solutions. In order to
explore the feasibility of such systems, the question this study
aims to answer is ”’Can Deep-Learning methods improve the
patient-alignment registration for the HoloLens?”. To further
analyse this question, several sub-questions have been pro-
posed:

* ”What kind of Deep Learning models could be trained
for usage in patient-alignment registration?”

* "How would Deep Learning models be suitable for
patient-alignment registration perform in terms of align-
ment accuracy on a test set?”

e "How would Deep Learning models be suitable for
patient-alignment registration perform in terms of time
for evaluation?”

* "Why would Deep-Learning based approaches be used
for patient-alignment registration as opposed to using
traditional algorithmic-based approaches?”

This report has been structured accordingly to answer the
provided questions. Chapter 2 provides information about
past work related to this research with justification for the re-
search outlined by this paper. Chapter 3 contains the method-
ology of the research, including variable analysis and ex-
planations of the variables in detail. Chapter 4 contains in-
structions on how to replicate the conducted experiments,
while Chapter 5 contains the results of conducted experi-
ments. Chapter 6 contains an analysis of the research, out-
lining certain ethical issues related to how the experiments
were conducted. To conclude, Chapters 7 and 8 will contain
discussions of the results with a conclusion aiming to answer
the proposed questions with recommendations for further re-
search.

"https://docs.microsoft.com/en-us/hololens/hololens-
environment-considerations



2 Related Work

In this section existing work related to the utilisation of DL
models for utilisation in the registration problem in HoloNav
will be provided and discussed. Chapter 2.1 provides existing
research on Augmented Reality in surgical navigation sys-
tems, and discusses the issues with the aforementioned work
that this research aims to answer. Chapter 2.2 provides an
application for Deep Learning in registration problems, and
explains the main difference between current applications of
DL with surface registration in comparison to the considered
utilisation in HoloNav.

2.1 Augmented Reality and Surgical Navigation

The utilisation of Augmented Reality (AR) for surgical nav-
igation has been investigated in some works, and the results
indicate that AR can be a viable technology for surgical en-
vironments. To give an example, the report of Incekara et
al.[4] claims that surgeons reported “improved ergonomics
and focus” from the utilisation of the Microsoft HoloLens,
while Chen et al.[5] has reported that the accuracy of AR sys-
tems was sufficient to meet clinical requirements. This would
mean that AR-based systems are able to provide similar re-
sults to display-based navigation systems while improving
the performance of the surgeon. As a result, AR systems can
be considered a likely candidate for utilisation as a surgical
navigation technology.

However, AR-based navigation systems currently have cer-
tain drawbacks that might need to be resolved for them to be
more viable. One of the drawbacks of AR systems that this
research aims to find a solution for is the registration prob-
lem. Prior research in some AR systems handles the registra-
tion of the system by utilising methods that may not be viable
in a surgical environment. For example, Incekara et al.[4]
has reported that their registration was performed manually,
and Chen et al.[5] have utilised fiducial points for landmark-
based registration. While both reports employ viable meth-
ods for most surgeries, another approach may be necessary
for certain operations. Incekara’s method, while being viable
for purposes of experimentation and non-life-threatening sit-
uations, may prove unsuitable for life-threatening situations
where time is of the essence. By contrast, while Chen’s
method of Landmark-based registration is handled automati-
cally, in certain surgical operations it may not be possible to
utilise fiducial points as markers. In summary, to be able to
improve the performance of AR-based navigation systems it
would be viable to utilise a registration method that can han-
dle registration independent of human control and one that
does not utilise fiducial marking on the surgical site.

In summary, the existing work of Incekara et al. and Chen
et al. demonstrates the advantage of AR systems in improving
the hand-eye coordination of the surgeons during operations.
However, in both aforementioned works, the utilised regis-
tration systems have certain drawbacks in several situations,
indicating that a different approach to the registration prob-
lem that minimises the shortcomings of existing work could
be investigated for use in HoloNav.

2.2 Utilisation of Deep Learning for Registration

While research has been conducted in determining the via-
bility of utilising DL methods for surface-based registration
in AR systems, most of them utilise solutions for Simultane-
ous Localisation and Mapping (SLAM). For example, Arnold
et al.[6] utilise the KITTI dataset ? to register partially over-
lapping point clouds, while Gao et al.[7] investigate the util-
isation of DL models for solving SLAM for AR systems in
particular. Both systems, by utilising partially overlapping
data are able to demonstrate that DL. models can successfully
handle registration for the SLAM problem.

However, an important feature of the registration system of
HoloNav is the fact that registration is to be handled by utilis-
ing a handheld navigator. This feature implies that in contrast
to SLAM applications the inputs of HoloNav are guaranteed
to have a high overlap. However, a caveat of acquired nav-
igator data is that unlike sensor data utilised in SLAM the
navigator data is sparse compared to the pre-operative model.
Therefore, it is much more important for the model to gen-
eralise on input data in contrast to matching specific regions
of low-overlapping data. In summary, the utilisation of DL
models for HoloNav differs from past research in the utili-
sation of AR systems by utilising point clouds with uneven
density to determine the viability of utilising navigator data
for registration.

3 Methodology

In this section the utilised variables will be discussed and ex-
plained in detail. The variables will first be analysed as in-
dependent, dependent and controlled variables respectively,
and subsequent chapters will analyse each mentioned vari-
able type in detail.

3.1 Analysis of Variables

To answer the research questions outlined in the previous sub-
chapter, the measurements will be conducted using indepen-
dent, dependent and controlled variables. The system will
be set up using one controlled variable first, and subsequent
tests may be performed using different datasets, with each test
being recorded separately. By utilising these variables, the
experiment can be easily replicated since the user would be
aware of which models to test, which variable to keep static
and which values to measure.

Independent Variables

In the experiments to be conducted the primary independent
variable will be the Deep Learning models, with the only
exception of one algorithm-based approach to be compared.
The DL models considered for utilisation are RPMNet by
Yew and Lee[8], Overlap PREDATOR by Huang et al.[9],
MS-SVConv by Horache et al.[10], and PCRNet by Sarode et
al.[11]. From the considered models, RPMNet and PREDA-
TOR have been chosen for evaluation for this research. For
comparison with an ICP algorithm, the algorithms utilised
in research conducted by Weyns [12] were used. The main
justification behind utilising models and an ICP algorithm is

“http://www.cvlibs.net/datasets/kitti/



that the input dataset is sparse to be utilised as an indepen-
dent variable, and that the experiment concerns itself with
how Deep Learning models would perform in this situation.
Therefore, the independent variables for this experiment are
the models to be trained and evaluated.

Dependent Variables

The dependent variables to be measured in the experiments
are primarily the evaluation metrics provided by the tested
models and the duration of each model in evaluating the mod-
els. For evaluation during testing on HoloNav data the pri-
mary metrics used for the results are the rotation and transla-
tion errors provided by the models. The metrics utilised for
evaluating the rotation and translation errors of the predicted
matches are calculated with the equations

Error(Rot) = /RpreaRinit ey

Error(Trans) = ||Tyrea + Tinit||2 2

where Equation 1 calculates the absolute rotation error by cal-
culating the resulting angle from applying the initial trans-
form R;,;; with the predicted transform R,,.q; and Equa-
tion 2 calculates the translation error by calculating the norm
of the vector resulting from the sum of the initial transform
vector Tj,;; with the predicted transform vector T,,..q4. The
utilised equations for the aforementioned metrics are iden-
tical to the isotropic metrics utilised by Yew and Lee[8] and
are claimed to be isotropic. Therefore, these metrics calculate
the error independent of the transformations on each axes and
consequently provide an “absolute” error metric.

In order to utilise the aforementioned metrics, the models
require information about the metrics applied before evalua-
tion, which is achieved by applying the rotations and trans-
lations as part of the evaluation process. Therefore, in order
for the error metrics to be valid, the models require the initial
transformations that were applied. However, in unregistered
data said transformations are unknown. Therefore, for evalu-
ation, the experiments utilise a secondary metric in the form
of a modified Chamfer Distance metric, which has been de-
fined by Yew and Lee[8] as:

. 1
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where X denotes the transformed source point cloud, Y de-
notes the reference point cloud; while X jean and Y¢jean denote
the point clouds without any noise applied to them respec-
tively. The function returns the sum of the squared distances
between nearest-neighbour correspondences of the clean and
modified versions of the point clouds.

Since the navigation data is contained within the subspace
of the model data, the Chamfer Distance used by Yew and
Lee has been modified further with the removal of the cor-
respondence matching of the source point cloud. With this
modification, the match metrics focus on the correspondences

of the navigation data, leading to better matches. With the re-
duction, the metric is rewritten as:

1 . )
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which is the metric used for the evaluation of the navigator
data.

Controlled Variable

The controlled variable in the measurements is the datasets
that the models are trained and tested on. The initial experi-
ments can be executed using a modified version of the Mod-
elNet40 dataset from Princeton University *. Other datasets
can also be used, but some DL models such as RPMNet[8]
may have to be configured to be able to evaluate such sets.
For later evaluations, the models have been trained and tested
on input acquired from the HoloLens Navigator. If other
datasets are to be used, either for standalone experiments or to
complement existing results, it would be strongly advised to
keep said results separate and to mention incompatible mod-
els with said datasets. By utilising ModelNet the user can
evaluate the viability of a model without requiring the mod-
ification of the utilised models. To conclude, for the experi-
ments the datasets for training and testing are utilised as the
controlled variable, with the HoloNav data being the main
controlled variable. However, other datasets can be utilised
for the initial evaluation of the models if desired. Therefore,
the controlled variable for this experiment has been multiple
different datasets, with the evaluation results being kept sep-
arate as advised.

3.2 Analysis of Existing Deep Learning Models

RPMNet

RPMNet is a Deep-Learning-based approach for Point-Cloud
Registration by Yew and Lee[8]. The model implements
Point Cloud Registration by utilising two Multilayer Percep-
tron (MLP) networks that extract matching features and pre-
dicts values for the outlier parameter o and the annealing
schedule 3 for calculating the match matrix. For feature ex-
traction, the model utilises the neighbouring points at a con-
figurable distance to acquire sources of information from the
model. Once the model estimates the “soft” assignments,
the model estimates the rigid transformation by generating
a match matrix and applying singular value decomposition
(SVD) to factorise the matrix into its constituent transforma-
tion matrices. The model can be reevaluated with the ac-
quired transform metrics in the form of a new iteration by
supplying the previous iteration results. The authors state that
an accurate match is obtained for ModelNet in 5 iterations.

The fact that the model is able to evaluate parameters for
outlier parameters without any major parameter tuning be-
ing required may mean that the model may be able to gener-
alise on different datasets such as the HoloNav input. The
model also demonstrates the ability to match models with
non-corresponding points, which also makes it a suitable can-
didate for evaluation.

*https://modelnet.cs.princeton.edu



Overlap PREDATOR

Overlap PREDATOR is a Deep-Learning model developed by
Huang et al.[9]. The model utilises Graph Neural Networks
(GNN) to match sampled voxels of uniform density from the
source and reference point clouds. In order to utilise a GNN,
the data is encoded using a k-nearest neighbour search al-
gorithm. The encoded blocks are evaluated using the GNN
to determine the contextual information of the “superpoint”
evaluated from the block. The model then utilises a MLP to
establish correspondences between the superpoints. Finally,
the blocks are decoded with the established correspondences
to their original format, and the RANSAC registration algo-
rithm is applied globally based on the established “hard” cor-
respondences. The model does not perform registration in
an iterative manner and excels at matching models with low
overlap regions while performing well with fully overlapping
datasets such as ModelNet as well.

The model being able to perform matches in models with
low overlap regions by establishing neighbouring correspon-
dences means that it can be suitable to utilise in registering re-
gional correspondences. However, the model contains more
parameters in comparison to RPMNet and may require fur-
ther preprocessing and/or parameter adjustment to perform
accurate registration.

3.3 Analysis of Utilised Input Data

ModelNet40

ModelNet is a 3D Point Cloud classification dataset created
by Song et al.[13]. Tt consists of data from 40 different cat-
egories that can be utilised for classification, segmentation
or registration problems. For the experiments, the dataset
utilised is a modified version of the ModelNet40 by Qi et
al.[3]. The modified dataset consists of normalised mod-
els contained within a unit sphere at the origin. The mod-
els are sampled equally in every region, and most models
demonstrate symmetry. Due to the initial role of ModelNet
being a classification dataset, the data differ between cate-
gories. Therefore, due to major differences between cate-
gories a model utilising ModelNet for registration can demon-
strate its ability to generalise on data.

The models utilised in this research evaluate on ModelNet
by splitting the “raw” data into source and target point clouds
and applying transformations into the source cloud, with sam-
pling and noise generation applied to both point clouds re-
spectively. This means that the models utilise the same origin
and therefore can be matched more accurately due to both
the source and the target clouds containing the same feature
regions.

HoloNav Scan Input and Navigator Data

The input acquired from the HoloNav consists of two types
of data: the source and the target. The source data consists
of three 3D scans of human skulls with fiducial markers at-
tached. The source meshes have a high-quality version and a
version with a lower amount of vertices. The models have to
be converted into point clouds in order to apply registration
on them. Points can be sampled by sampling uniformly from
the mesh surface, or by utilising the vertices. Due to the size

Figure 1: Visual example of a correctly registered navigator output
with the pre-operative (Pre-Op) model. The Pre-Op model is Model
1, and the navigator data has the index of 5.

of the model, the source point cloud was sampled from the
vertex positions in order to achieve a faster evaluation time.

The target point cloud data initially consisted of three cate-
gories, and during the timeline of this research, an additional
category was added. The first category, the preoperative mod-
els, consists of sampled target point clouds from the preoper-
ative model. The second category, the raw point clouds, con-
sists of point clouds acquired from the navigator that has not
been registered. The third category is the registered navigator
data with landmark registration. The final category consists
of the depth sensor data that was obtained from the depth sen-
sor data of the HoloLens. In summary, the target point cloud
data consists of four different categories, with three different
sampling methods applied to them. An example of correct
registration of the model can be found in Figure 1, and every
visual output of the ideal registration of the navigator data can
be found in Appendix A.

Due to certain features of the provided data, as well as the
DL models, the registered navigator data was deemed most
fit for training and evaluating the DL. models. The main rea-
son for this decision lies in the fact that the models require
initially registered data to create accurate evaluation metrics,
and as a consequence generate accurate loss metrics to be
able to fit the data properly. However, in order to compare to
an ICP-based approach, the methodology outlined by Weyns
[12] was used, with minor differences. For the aforemen-
tioned comparison, all pre-operative models were used, in
contrast to the first pre-operative model utilised by Weyns.
For the evaluation metrics, due to differences in implemen-
tation, the reduced Chamfer Metric was utilised, as outlined
in Equation 4. Due to the evaluation results of the models
demonstrating robustness to noise, as well as tolerance to ro-
tational errors up to 45 degrees, the comparison metrics were
utilised as differing voxel sizes in order to evaluate the gener-
alisation abilities of the DL models.



4 Experimental Setup and Procedure

4.1 Experiment Setup

For a user to replicate the results of the experiments, hardware
and software limitations have to be considered.

Hardware Requirements

The DL models utilised for evaluation require first and fore-
most a Graphics Processing Unit (GPU) with the main con-
straint of memory size. For training the models with HoloNav
data an NVIDIA Tesla V100S # with an allocated memory of
32 gigabytes were used. However, for the experiments, a min-
imum GPU memory of 10 gigabytes would be satisfactory.
For obtaining evaluation metrics on HoloNav data it may be
possible to utilise less memory, however, the data may require
downsampling on points to be evaluated on low memory. For
both training and testing, it is recommended to utilise a pro-
cessor with x86 architecture and 64 bits.

Software Requirements

The DL models were trained on a High-Performance Com-
puter (HPC) utilising the Red Hat Enterprise Linux 8 operat-
ing system running on Linux kernel 4.18[14]. However, the
models can be trained and tested on a Debian-based distribu-
tion such as Ubuntu 20.04, and for RPMNet and PREDATOR
evaluation metrics have been obtained in a system utilising
Windows 10 in conjunction with a Linux subsystem for Win-
dows. The models were trained with Python version 3.8, and
for the ML library, PyTorch was utilised, albeit with differing
versions based on the requirements of the models. There-
fore, due to the differing requirements of each model, it is
highly recommended to utilise an environment management
system such as Anaconda. For this experiment, miniconda3
was used.

4.2 Experiment Procedure

The experiment follows a simple procedure of training and
evaluating the performance of a model on the utilised dataset;
with the dataset being subject to change. Initially, the exper-
iment can be conducted by training the Deep Learning mod-
els on the ModelNet40 dataset. For training, it is strongly
advised to utilise a High-Performance computer if available.
The model metrics are then evaluated by testing the models
on the test set of ModelNet. However, for this study, models
acquired from the HoloLens have been used, by preprocess-
ing said models and initially matching identical point clouds.
In later versions, the target model has been matched with a
non-identical source with substantially lower acquired points
in order to test the system’s performance in low-detail situa-
tions. The system has finally been tested in comparison to an
algorithm-based approach, in which the match performances
have been evaluated. To conclude, by utilising the procedure
outlined in this chapter the experiment could be replicated as
desired.

*https://images.nvidia.com/content/technologies/volta/pdf/volta-
v100-datasheet-update-us-1165301-r5.pdf

5 Experimental Results

In this section the evaluation results of the DL models will
be provided. Section 5.1 contains the results of RPMNet, and
section 5.2 contains the evaluation results of PREDATOR.

5.1 RPMNet

RPMNet when trained and tested on the scanned model with
navigator data, has been able to demonstrate a generalisation
ability on the provided source and target point clouds. The
model has been trained on the source and target points sam-
pled to an equal length of 1024 points, had random rotations
and translations applied to the source model (the sensor data)
and had the indices of the points shuffled to deter the model
from generalising upon them. The results of the utilised mod-
els can be viewed in Table 1.

Isotropic Isotropic Modified

Pre-Op Model | Navigator | Rotation Translation | Chamfer

Error Error Distance
1 1 9.450 231.4 38.30
1 2 19.63 459.6 44.74
1 3 3.956 108.1 41.30
1 4 16.09 371.5 64.10
1 5 4.690 65.81 49.56
2 1 23.01 657.6 48.22
2 2 4.994 84.01 46.52
2 3 13.89 397.0 52.65
3 1 14.77 480.7 35.16
3 2 11.90 3332 13.32
3 3 3.566 112.5 20.15

Table 1: Results of the Fifth Iteration for RPMNet. The model has
been trained and evaluated on initial Euler angle rotations of 45 de-
grees, with the skull models having a volume of 121000, 106000,
and 24000 cubic millimetres respectively. The isotropic errors were
calculated using equations 1 and 2, while the Chamfer Distance met-
ric was calculated by utilising Equation 3 respectively. The rotation
error is given in degrees, the translation error is given in millimetres,
and the Chamfer distance is given in millimetres squared.

The model has been trained on a mean rotational difference
of 45 degrees, and the maximum rotation difference has been
increased to 90 degrees for later evaluations. The evaluation
metrics, as well as visualised outputs, indicate that the model
is able to generalise certain regions incorrectly, and therefore
not suitable for large rotational differences. For example, the
less accurate match in Figure 2, which was obtained with an
initial Euler rotation of approximately 90 degrees, does not
contain any points in the eye cavities in contrast to the more
accurate match; indicating that the regions the model was
able to discern were most likely the aforementioned region
of eye sockets. In summary, the model is able to demonstrate
general matches in rotational differences of 45 degrees but
demonstrates incorrect regional generalisations in initial ro-
tational differences of 90 degrees.

In terms of time performance, the model is able to perform
with an efficiency of a mean of 1.2 seconds on average for
all runs with points sampled to 1024 points. However, on
non-sampled large point cloud data such as the high-quality
pre-operative models, the evaluation time has been observed
to exceed 60 seconds, with negligible performance difference.



Figure 2: Comparison of two evaluation results for Preoperative
model 1 matched on navigator data 5. The left model has been eval-
uated with an initial mean rotational error of 90 degrees for all axes,
while the model on the right had an error of 45 degrees. The right
model demonstrates a more accurate match result, with a rotational
error of 5.23 degrees. The less accurate match does not contain any
points in the eye cavity region of the skull, demonstrating a possible
generalisation around the aforementioned region.

In summary, the model is able to generate transformation pre-
dictions on sampled data in under 2 seconds, without result-
ing in a noticeable performance loss in accuracy.

In order to compare the DL approach to the results of the
ICP-based approach outlined by Weyns [12], RPMNet was
evaluated on the source and reference point clouds as out-
lined. For this experiment, due to the model demonstrating
tolerance to noise and rotations, the independent variable has
been the voxel volume. The modified Chamfer distance met-
ric outputs of the utilised models based on voxel volumes
used for downsampling can be found in Table 2.

Chamfer Metric Results

Mean

Voxel Size | Model 1 | Model 2 | Model 3 | Evaluation
Duration

4 4.75 5.06 114 2.53

5 16.0 52.5 34.7 1.26

6 10.6 5.43 64.8 1.13

7 11.2 721 8.28 1.61

8 7.37 5.27 8.96 1.89

9 6.79 941 7.70 2.07

10 47.6 4.93 394 2.04

Table 2: The evaluation results of RPMNet on voxel downsampled
data for the 3 Pre-Operative model data. The voxel sizes are in cubic
millimetres, the Chamfer metric results are given in square millime-
tres, and the evaluation duration is in seconds.

5.2 Overlap PREDATOR

PREDATOR has been able to demonstrate accurate results
when utilising ModelNet40. The model, when evaluated us-
ing the parameters provided by Huang et al., is capable of
achieving a rotational mean error of 1.806 degrees, with a
mean translation error of 0.01895 millimetres. The model

also returns a bidirectional Chamfer error of 0.0009024 mil-
limetres squared, indicating a successful match. Therefore,
based on the results of the evaluation of ModelNet the model
has been deemed a viable candidate for testing on HoloNav
data.

In contrast to results obtained from ModelNet, training and
testing PREDATOR on HoloNav data has not resulted in a
successful match. The initial approach in evaluating PREDA-
TOR by transforming the input data to conform to Model-
Net specifications has resulted in a successful match. The
model then was tested by training and testing on the first
Pre-Operative model without any preprocessing applied to
the model. The results indicate that PREDATOR is able to
register data with the same density perfectly in certain situa-
tions, but the currently utilised parameters return inconsistent
results. The metrics can be found in Table 3, and the visual
output of the third and fourth runs can be found in Figure 3.

Isotropic Isotropic Chamfer
Rotation Error | Translation Error | Distance
52.0718 0.0341 1288235
37.3291 0.1149 1241043
31.6535 493.0022 423.4916
0.074 0.7065 10.7983

71.3116 0.0814 2308491

Table 3: The evaluation results for PREDATOR in matching source
and target point clouds with random sampling. The model used for
evaluation is the first preoperative model, with 1024 points randomly
selected, and having applied different rotations and translations for
every run. For this evaluation, The third run resulted in a semi-
alignment; while the fourth run, highlighted in bold, resulted in a
perfect match. Due to the source and target point clouds originating
from the same origin, the Chamfer Distance proposed by Yew and
Lee has been utilised.

Figure 3: A visualisation of the parameters of the third and fourth
run of PREDATOR. The third run demonstrates a partial overlap by
the model, while the fourth run demonstrates a perfect match.

PREDATOR was also evaluated on the source and ref-
erence point clouds as outlined in subsection 5.1 for com-
parison with an ICP-based approach. The modified Cham-



fer distance metric outputs of the utilised models based on
voxel volumes used for downsampling on PREDATOR can
be found in Table 4.

Chamfer Metric Results

Voxel Size | Model 1 | Model 2 | Model 3 | Mean Evaluation Duration
2 658000 | 954000 | 418000 | 6.32
3 658000 | 954000 | 418000 | 2.21
4 932 303 418000 | 1.27
5 809 503 740 1.06
6 724 904 418000 | 1.04
7 578 954000 | 444 1.25
8 106 179 674 1.16
9 367 951000 | 418000 | 1.13
10 300 954000 | 119 1.2

Table 4: Modified Chamfer Metric results of PREDATOR based on
the work of Weyns[12]. The models were downsampled by utilising
voxel downsampling instead of random point selection, with voxel
size in cubic millimetres. Each pre-operative skull model was sam-
pled on “visible” points to generate the reference point cloud, with
noise applied on both source and target models to evaluate generali-
sation abilities. Voxel size of 1 cubic millimetre did not result in an
evaluation result due to memory limitations of the system utilised for
evaluation, while fields highlighted in bold have not resulted in a pre-
dicted match. The evaluation duration is in seconds, and the Cham-
fer metric results are given in square millimetres, approximated to 3
significant figures.

6 Responsible Research

This research has aimed to determine whether utilising DL
models could be viable for Point-Cloud registration for
HoloNav. Therefore, the data utilised for evaluation has been
created to be similar to how the system can be used when in-
tegrated into the environment. For example, the source data
utilised has been acquired by scanning a model of a skull with
attached fiducial points, while the reference point cloud has
been acquired by sampling points with the navigator. How-
ever, the utilised model has certain features that actual sensor
outputs would not have, which can affect the match quality
of the model. For example, the pre-operative model utilised
as the source Point Cloud for this research is a complete scan
of a 3D model that also contains surfaces that would be im-
possible to acquire with a depth scanner. Therefore, when
the model is trained on the aforementioned input, said sur-
faces are considered to be features as well; which can result in
lower expected performance. The surface for evaluation may
also be low in detail, which would also affect feature extrac-
tion. Therefore, it should be noted that the model evaluated
for this research does not reflect actual surgical environments,
and therefore utilising the models as a standalone system may
not be ethical when taking into consideration the fact that an
incorrect match may delay a life-saving surgery.

The methods are reproducible with some adjustments to
the DL models. First, the data loaders of the models need
to be adjusted in order to process the data into an acceptable
format. The users can acquire navigation data by utilising
the HoloNav navigator; however, in cases where the naviga-
tor cannot be used, points can be randomly sampled from the
surface of the source model. The evaluation metrics in the
models are calculated by comparing the initial alignment of

the source with the target, and therefore training the mod-
els utilising registered models is highly recommended. For
evaluation, the rotation and translation errors have been ob-
tained by utilising the registered point clouds. Therefore, the
metrics will be inaccurate for raw unregistered data, and util-
isation of a different metric such as the Chamfer Distance or
visual comparisons may prove more useful. Finally, a pub-
lic Git repository” will be included with this report in order
to replicate the results of this experiment. To conclude, the
research has been made to be reproducible, and with the out-
lined procedure, or by utilising the resources provided, the
users can acquire similar results to the ones that were used in
this research.

7 Discussion of Results
7.1 RPMNet

RPMNet is able to predict consistent but semi-accurate
matches on the HoloNav data. The model was able to pro-
vide consistent semi-accurate metrics in preprocessed pre-
operative data when inferred on a model trained on Model-
Net. A possible explanation of this result may be the fact that
the transformation generation for RPMNet is algorithmic in
origin; and due to the source and reference clouds originating
from the same data, the matching features can be determined
easily.

However, on data that does not conform to ModelNet stan-
dards, such as the HoloNav input, the model provides less
accurate results. The model relies heavily on inferred fea-
tures from neighbouring points to provide accurate registra-
tion, which indicates that in data with large distances between
points the model can struggle to determine features. How-
ever, due to the model utilising the Robust Point Matching
algorithm it is consistent in the results it provides and has a
reasonable evaluation time of approximately 1 second per 5
iterations per point cloud. To summarise, RPMNet is able to
achieve robust and semi-accurate results consistently with a
reasonable evaluation time, and therefore can be considered
for further research for utilisation in HoloNav.

In addition to the aforementioned issue, a major weakness
of RPMNet stems from the fact that the generalisation ability
of the model is heavily dependent on the training data pa-
rameters. Therefore, in situations where the parameters of
the test data do not conform to training parameters the model
demonstrates inaccurate results. As demonstrated in Figure 2
the model, trained on an initial Euler angle difference of ap-
proximately 45 degrees, demonstrates high inaccuracy with
an initial rotation of 90 degrees. A possible explanation may
stem from the symmetrical nature of the models, as well as
the random of the points utilised for evaluation, which may
cause the model to register incorrect voxels. This is supported
by the fact that the model performs better on non-symmetrical
data, as evident from Figure 4. To summarise, RPMNet can
be a viable candidate in environments where the initial data
is aligned symmetrically, or if the navigator acquires samples
non-symmetrically.

Shttps://github.com/alpcicimen/holonav-dl-registration



Figure 4: The visual output of Pre-Op model 3 on Navigation data
2, outlined in Table 1. The data had the lowest Chamfer Distance
error and was also the data that had a noticeable asymmetry.

7.2 PREDATOR

The results of PREDATOR differ from the results obtained
with RPMNet due to the architectural differences between the
utilised models. RPMNet implements a robust matching al-
gorithm by utilising nearest-neighbour clustering. In contrast,
PREDATOR utilises an encoder and decoder architecture in
order to establish correspondences. The encoded data is for-
matted as voxels of a specific volume, which is utilised in
the form of “’superpoints” located in the centre of each voxel.
The trained model utilises the aforementioned superpoints to
extract contextual information from the source and target sep-
arately in the form of bottleneck points”. The model conse-
quently establishes correspondences between the source and
target point clouds based on the aforementioned bottleneck
points. Therefore, for PREDATOR to perform registration,
Huang et al.[9] state that the overlap region, or the bottle-
neck, requires a certain density on both the source and target
point clouds. In summary, in contrast to RPMNet’s near-
est neighbour approach, PREDATOR’s “bottleneck match-
ing” approach is limited in scenarios where the utilised point
clouds have uneven point densities.

Therefore, the results of PREDATOR on the utilised data
showcase the aforementioned shortcoming of the model re-
ported by Huang et al. In data with even density, such as
the ModelNet dataset, as well as the HoloNav pre-operative
model, the model is able to demonstrate accurate registration,
even on data sampled from a specific region in the source
point cloud. However, the model is unable to establish ac-
curate contextual information on the unevenly sampled point
clouds of the pre-operative models and navigator outputs and
therefore is unable to establish bottleneck features to generate
correspondences. Therefore, the navigator data can be regis-
tered correctly if it is sampled with a similar density in com-
parison to the pre-operative model. In summary, due to inher-
ent issues contained within PREDATOR in matching point
clouds with uneven density, the utilisation of this DL for reg-
istration in HoloNav may not be suitable.

7.3 Discussion of the Results of the DL Models in
Comparison to a Registration Algorithm

In comparison to the work of Weyns[12], both RPMNet and
PREDATOR demonstrate less accurate results against the ap-
plication of fast-point feature histograms (FPFH) and ICP
for certain voxel volumes. For example, in Table 5 RPM-
Net demonstrates comparable results to FPFH with ICP for
most voxel sizes, while demonstrating its generalisation ca-
pability by demonstrating consistency in contrast to an algo-
rithmic approach. In contrast, PREDATOR was not able to
achieve comparable results. However, similar to algorithmic
approaches RPMNet also demonstrates a drop in accuracy in
large voxel sizes due to a possible lack of information to de-
termine correspondences.

Voxel Size RPMNet | FPFH FPEH
CD Only (With ICP)

4 4.75 519.7783 | 382.8319
5 16.0 150.9141 | 1.00298

6 10.6 186.9544 | 1.83306

7 11.2 1.09607 1.23063

8 7.37 7845.365 | 7887.997
9 6.79 109.4227 | 1.09453

10 47.6 2071.387 | 2109.046

Table 5: Comparison of evaluation results of RPMNet on data spar-
sity results to the results of an algorithmic approach outlined by
Weyns[12]. The results were obtained from the evaluation of pre-
operative model 1 utilising the Chamfer Distance for RPMNet and
Mean-Square error for algorithmic approaches. The results of algo-
rithmic approaches with more accuracy in comparison to RPMNet
are highlighted in bold. For voxel sizes less than 4 cubic metres
RPMNet was not able to evaluate, and therefore the results of algo-
rithmic approaches were not included.

However, due to differences in the evaluation metrics, the
difference in accuracy may be less than the results outlined
in Table 5. RPMNet utilises the reduced Chamfer Distance
for evaluation, while Weyns applies an addition of reference
points to the source cloud to ensure a ground-truth error of 0.
Therefore, the metrics differ in the lack of “correspondence
points” for RPMNet. In summary, RPMNet demonstrates a
similar performance to the algorithmic approaches outlined
by Weyns and therefore may be a viable candidate for utilisa-
tion.

8 Conclusions and Future Work

This research has proposed the utilisation of Deep Learning
models to handle the registration problem in HoloNav. To
determine the viability of utilising such a system the models
were evaluated based on their match accuracy and evaluation
time. From the considered DL models RPMNet has demon-
strated a more general but inaccurate match, while PREDA-
TOR has demonstrated an ability to precisely align point
clouds of similar density. Both models have demonstrated
an ability to generalise in data with noise, while PREDA-
TOR demonstrated further precision in matching data sam-



pled from a specific region of the Pre-Operative model. In
terms of evaluation time, PREDATOR has demonstrated a
slightly faster evaluation duration, with a mean evaluation
duration of 1.06 seconds in comparison to the duration of
1.87 seconds for RPMNet. In summary, both models demon-
strate a quick evaluation time, as well as general robustness
to noise, and therefore demonstrate that DL models can be
suitable for patient-alignment registration in terms of an ini-
tial robust match solution in conjunction with a precise algo-
rithm.

However, the DL models utilised demonstrate certain is-
sues that, if resolved, may ensure that DL-based approaches
can be viable as a standalone navigation system. The evalua-
tion metrics of RPMNet suggest that the model, due to its fea-
ture extraction method of nearest-neighbours, does not per-
form well on data with points sampled randomly. In contrast,
PREDATOR was not able to generalise in most cases. A pos-
sible explanation for the aforementioned issue is the fact that
the models were configured for cases where the data is uni-
formly sampled. RPMNet is configured to utilise ModelNet,
a dataset with uniformly sampled data, and the intended use
of PREDATOR is in SLAM applications, where sensor data is
in general uniformly sampled. Another issue is the fact that
the models become inaccurate in initial rotation differences
larger than 45 degrees, and therefore not being suitable for
utilisation in actual surgical environments where registration
may need to be performed on data with high rotational differ-
ences. In summary, the main issues in the utilisation of DL for
surface registration stem from the sampling of points from the
utilised data, as well as the architecture of the utilised models.
Further research can be conducted by evaluating the models
with more data to determine the validity of this claim, apply-
ing voxel downsampling on the source and target point clouds
to obtain similarly sampled data, or by utilising a DL model
that may be able to handle registration of point clouds with
non-uniform sampling.

However, in comparison to algorithm-based approaches
such as the Iterative-Closest-Point algorithm RPMNet was
able to demonstrate similar accuracy with better consistency.
In contrast, the methods utilised by Weyns have better ac-
curacy but result in less consistency. Therefore, the results
of RPMNet indicate that it may be possible to utilise a DL
learning model for a more general outcome for registration.
In summary, DL models demonstrate a generalisation abil-
ity in comparison to algorithmic approaches and can provide
generally accurate results while demonstrating fast evalua-
tion times. Therefore, a DL approach may be suitable for
HoloNav if it can demonstrate a generalisation ability on data
non-evenly sampled data.
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A Visual Outputs of Utilised HoloNav Data
A.1 Pre-Operative Model 1

Figure 5: Various outputs of Pre-Op model 1 with registered navi-
gator data.

A.2 Pre-Operative Model 2

Figure 6: Various outputs of Pre-Op model 2 with registered navi-
gator data.

A.3 Pre-Operative Model 3

Figure 7: Various outputs of Pre-Op model 3 with registered navi-
gator data.
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