
Adaptive Caching with Follow The Perturbed Leader Replacement Policy

Mikkel Mäkelä
Supervisor(s): Georgios Iosifidis, Tareq Si Salem

EEMCS, Delft University of Technology, The Netherlands
22-6-2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering



Abstract
Caching is a widely relevant problem in the world
of ever-growing online traffic. In recent years, on-
line learning methods have inspired algorithms that
outperform more traditional, widely used policies
such as LRU and LFU. Furthermore, some of these
newly proposed policies have proven upper regret
bounds, offering guarantees on arbitrary request se-
quences. In this paper, we inspect one such policy
named Follow the Perturbed Leader (FTPL), which
we found to perform reasonably well among dif-
ferent traces but showcases poor ability to adapt to
changing file popularities. We propose a modifi-
cation to the algorithm which addresses this issue,
and although it comes with no performance guar-
antees, we leverage the expert problem to maintain
such a guarantee. More precisely, we utilize dif-
ferent configurations of FTPL, including the one
with a tight upper bound, as experts in an Incre-
mentally Adaptive Weighted Majority (IAWM) al-
gorithm. Our findings include simulation results
on the MovieLens trace, as well as multiple syn-
thetic traces, some with adversarial properties. We
record these in a setting where a single user is con-
nected to a single cache, which is then connected to
a server, but also in a bipartite network where mul-
tiple clients execute traces against multiple caches.

1 Introduction
Since its inception, internet traffic has been growing expo-
nentially year-over-year [1]. Increasing network loads have
adverse impacts on both server and client side parties, result-
ing in elevated costs and higher latencies. Caching is a widely
adopted mechanism to alleviate some of these issues by plac-
ing more frequently requested content closer to the end users,
thereby reducing overall network load as well as delivering a
better experience.

Traditional caching techniques emerged from local com-
puting problems, where a subset of the data is placed in
smaller, faster memory to reduce average access times. Some
of the most commonly used recency and frequency-based al-
gorithms, such as Least Recently Used (LRU) and Least Fre-
quently Used (LFU), originate from such problems. These
algorithms were constrained by hard computational perfor-
mance requirements because cache misses in low-level set-
tings e.g. translation lookaside buffers (TLB) often yield very
few additional CPU cycles [2]. Such constraints, however,
are less applicable to web caching because response times
are significantly higher due to I/O overhead. More recently,
driven by these relaxed constraints, novel intelligent caching
algorithms that make cache replacement decisions inspired
by machine learning methods have been proposed for use in
computer networks [3].

The field of Online Convex Optimization (OCO) has had a
significant impact on caching research, inspiring many state-
of-the-art algorithms [4–6]. An online learning setting in-
volves a decision maker who tries to predict events at every

Figure 1: Caching network from [11], where users can access caches
by routing requests along routers or other users.

time slot. After a prediction, the actual event gets revealed,
and the decision maker receives some reward proportional to
the correctness of the prediction [7]. This framework can
model many practical problems, such as caching. Content de-
livery networks, for example, usually have caches in different
geographical areas with drastically different request patterns
that change over time. No sound assumptions can therefore
be made against the order of incoming requests, raising the
need for algorithms that make decisions based on the histor-
ical sequence rather than assumed statistical properties. A
non-adaptable policy cannot be robust in such an uncertain
setting, and if these request sequences become adversarial,
deterministic policies such as LRU and LFU fare particu-
larly severely (see section 4). Mathematical worst-case per-
formance guarantees are desirable to counter against request
sequence uncertainty, and we provide them against an opti-
mal static cache configuration chosen with hindsight, called
regret. However, comparing against a benchmark with hind-
sight knowledge can be difficult, especially in the presence
of an adversary. Nonetheless, under the OCO framework, it
was shown that it is indeed possible to design a policy that
achieves sublinear regret [8], i.e., on average, the policy ex-
periences at most the equivalent loss as the benchmark with
complete knowledge of requests.

Recently, [6] proposed a Follow the Perturbed Leader
(FTPL) caching policy with a tight regret upper bound. It
works by caching most requested objects but adds some noise
to the decision process. Although it performs well in multi-
ple settings, a shortcoming of this algorithm is its inability
to adapt to changing object popularities, resulting in low per-
formance in several realistic scenarios (see section 4). We
propose an extension to FTPL that adds an aging dimension,
which reduces the relevance of once popular objects that lose
traffic over time. A similar notion can be found in time-to-
live (TTL) caching [9]. Furthermore, we pair multiple con-
figurations of this new technique in an Incrementally Adap-
tive Weighted Majority (IAWM) expert framework algorithm
from [10] and show that we maintain a sublinear regret bound.

In practice, web caches often deliver more value when de-
ployed as a network with nodes organized into geographical
regions [12]. Therefore, good network performance is a desir-
able property for any web caching policy. Figure 1 from [11]
shows an abstract example of a topology where multiple users
have access to small caches, which can download files from
the remote server. Users can use any nearby cache to sat-



Figure 2: Bipartite network from [11], which is a reduction from
figure 1 if we assume that users can access any cache within two
hops.

isfy their requests. An expensive request to the remote server
is necessary if none of the connected caches contain the re-
quested file. In theoretical scenarios, it often helps to simplify
such networks into bipartite networks, where a connection ex-
ists between a user and a cache if the cache was accessible to
the user in the original topology. Assuming that users in fig-
ure 1 can access any cache within two hops, we arrive at the
bipartite network in figure 2. FTPL retains sublinear regret in
a bipartite caching network if reward functions are assumed to
be linear (see section 2.2 for a reward function definition) [6].
A sublinear regret bound was also found for the non-linear
case in [11] with slight alterations to the algorithm. Expand-
ing on this, we show that our adaptive FTPL also performs
well in a bipartite setting and retains its single-cache bound
in a network.

The paper is structured as follows. Section 2 will formally
define the caching problem for both single and bipartite sys-
tems, section 3 lists the new contributions of the paper, sec-
tion 4 discusses the experimental setup and findings, section
5 reflects on the ethical considerations of the research, and
finally, section 6 draws the conclusions.

2 Problem Description
Before giving a formal definition of a hierarchical caching
network, it helps to begin with a single cache. Section 2.1 de-
fines caching in a setting where the only entities are a server,
a cache, and a client. Section 2.2 extends this to a bipartite
caching network.

2.1 Single cache
We consider caching over a catalog of N files denoted by the
set N . The system contains one cache whose maximum size
is C. In most cases, N is significantly larger than the cache
(i.e C ≪ N ).

For simplicity, we think of time as slots of indivisible units,
represented by the sequence {1, 2, ..., T}, with T being the
time horizon. At every time slot, the client requests one file,
one-hot-encoded as vector xt, picked by an adversary from

the following discrete request space.

X =

{
x ∈ {0, 1}N |

N∑
n=1

xn = 1

}
(1)

This request is stored by a policy π, which records a cache
hit when the file was present, or a miss if it was not. After
every incoming request, the policy selects a new cache con-
figuration yt+1 from the following cache configuration space.

Y =

{
y ∈ {0, 1}N |

N∑
n=1

yn ≤ C

}
(2)

A configuration y is an N-dimensional vector where ytf = 1
if the cache stores file f ∈ N at time slot t. We denote
the policy as a sequence of mappings {πt}Tt=1, which at
time t uses the map πt to map the sequence of past requests
{x1, x2, ..., xT } to the following cache configuration yt+1,
i.e.,

πt : X t −→ Y (3)

A reward function q : X×Y −→ {0, 1}measures the perfor-
mance of a policy. It returns 1 if the requested file is present
in the cache and 0 if it is not.

q(x, y) = x · y (4)

The cumulative reward of policy π at time T is Qπ
T , the sum

of rewards over all time slots up to and including T .

Qπ
T =

T∑
t=1

q(xt, yt) (5)

2.2 Multi-level caching
To expand our definition from one cache to a network of
caches, we introduce a new set, J , which denotes all J caches
in the system. We represent the configuration of some cache
j ∈ J at time t as ytj . Every cache can store an equal amount
of C files to increase convenience without loss of generality.
Set I represents all users that make requests, and the function
φ(i) will give us all caches connected to user i ∈ I. Time will
remain slotted, with one request per user per slot. We now de-
note requests by xt

i for some user i ∈ I. In a model inspired
by [13], every cache is accessible by d clients, which we call
the degree of the network. If we think of this model more
abstractly, we can easily see that it can model a hierarchical
graph of any complexity, such that there is a connection be-
tween a user and a cache if any path connects them.

The performance measure of this network is the cumula-
tive sum of rewards at every time slot. We can define the
reward function in two ways, depending on the type of con-
tent we cache. For example, in [6], the user is expected to
get some constant reward for every cache that can serve its
request, a realistic scenario when all caches hold layers of the
coded content and the benefit of the user (the final video qual-
ity, for example) is dependant on how many codes they can
retrieve. Coded content would result in the following linear
reward function.

q(xt, yt) =
∑
i∈I

xt
i · (

∑
j∈φ(i)

ytj) (6)



Paper [6] proved sublinear regret under this reward function
when every node in the network runs a decentralized instance
of FTPL.

In many situations, however, files are indivisible entities,
and having more than one copy creates no additional value
to clients. A reward function that captures this will award a
reward of 1 to a user when some reachable cache has the file
and 0 if it does not. The following reward function defines
this behavior.

q(xt, yt) =
∑
i∈I

xt
i ·min

1,
∑

j∈φ(i)

ytj

 (7)

The LeadCache algorithm introduced in [11] is a modification
of FTPL that achieves sublinear regret in this setting. Since
our paper is an extension [6], we consider our algorithm in
the context of a linear reward function, particularly relevant
in modern times where coded video makes up the majority of
traffic [1].

2.3 Regret
Intuitively, regret is the maximum difference between the to-
tal reward of an optimal stationary cache configuration y∗

(chosen with hindsight) and the actual dynamic cache config-
uration selected by some policy π. This OCO performance
metric enables us to prove upper bound guarantees in the
presence of an adversary. A sublinear regret bound implies
that in the worst-case scenario, the policy performs as well as
the optimal static configuration. We now give the formal def-
inition of regret in a single cache system with a time horizon
of T .

Rπ
T = sup

{x1,x2,...,xT }∈XT

{
max
y∗∈Y

T∑
t=1

q(xt, y∗)−Qπ
T

}
(8)

In a bipartite network, the reward is dependent on multiple
users and caches, so we require a corresponding regret defi-
nition. We compare the cumulative sum of all user rewards
against those achieved by an optimal static cache configura-
tion chosen with hindsight. In our bipartite system, the cache
configuration is a 2-dimensional J ×N vector. We define the
optimal configuration as y∗, enabling us to define regret for
a bipartite network formally. First, we define the reward of
some policy π with users I and time horizon T .

Qπ
T,I =

∑
i∈I

T∑
t=1

q(xt
i, y

t
i) (9)

Then, we can define regret as the maximum difference be-
tween the static optimal reward and the actual reward.

Rπ
T,I = sup

{x1,x2,...,xT }∈XT

{
max
y∗∈Y

∑
i∈I

T∑
t=1

q(xt, y∗)−Qπ
T,I

}
(10)

3 Contributions
This section summarizes the new contributions of the paper.
Section 3.1 describes the proposed adaptive FTPL replace-
ment policy, and section 3.2 describes the expert IAWM pol-
icy.

3.1 FTPL Algorithm
The FTPL algorithm proposed in [6] uses file request counts
to make cache admission decisions. Requests at any time slot
are equally relevant and increment the count of the corre-
sponding files by 1. Authors from [6] proved the following
expected upper regret bound.

E{yt}t≥1
(RFTPL

T ) ≤ 1.51(logN)1/4
√
CT (11)

Although FTPL captures fixed popularity traces well, it is less
suited for traces with changing popularities. Imagine, for ex-
ample, a trace where C files appear equally often for the first
T slots, followed by another different C equally frequently
appearing files until time slot 2T . FTPL would never (as-
sume a large T with insignificant noise) cache the latter files,
failing to achieve a high hit ratio in this seemingly trivial set-
ting. If this pattern were to continue indefinitely, the hit ratio
would approach zero.

We propose an extension in the form of a discount rate d in
the range (0, 1.5), which lowers (or increases) the relevance
of files depending on how old their requests are. At every
time slot t, we first update an N -dimensional count vector c
by ct+1 = dct. Then, to bring the total vector sum back to t,
we increment the value at the requested file by the following.

ct+1,f = ct+1,f + t− d(t− 1) | xt
f = 1 (12)

When d is < 1, counts are reduced exponentially on every
round, and a growing number increments the requested file at
each time slot. This behavior is suitable for traces with chang-
ing file popularities. Cyclical patterns, on the other hand, are
captured by d > 1, which exponentially increases the counts
of all files and then decreases the count of the requested file
by an increasing amount on every round. Maintaining the
same cumulative sum to FTPL keeps gaussian noise effective
for dealing with adversarial patterns. We knowingly omit the
upper bounds from equation 11 but regain a different sublin-
ear bound in section 3.2. Algorithm 1 presents FTPL with a
discount rate.

Algorithm 1 FTPL with discounting
counts← 0

η ← 1

(4π log |N |)
1
4

√
T
C

for t← 1 to T do
counts← d ∗ counts
countsf ← countsf + t− d(t− 1)
Sample yt ∼ N (0, η)
perturbed counts← perturbed counts + yt

SORTDESCENDING(perturbed counts)
Load first C files to cache from perturbed counts

end for

3.2 Expert Algorithm
Adaptability to different traces is a desirable quality of a
caching algorithm since request patterns can often be unpre-
dictable. The expert problem, an online learning problem that
decides which oracle’s advice to follow, can be adapted to



create a policy that works well in various settings by choosing
appropriate experts for different patterns. The modified FTPL
algorithm defined in section 3.1 requires a constant recency
factor, making it suitable for one specific pattern. When we
use multiple instances of FTPL with different discount rates
as experts, we arrive at an algorithm that can adapt to arbitrary
sequences.

In the experts’ problem, some event occurs at every time
slot t. An oracle receives predictions from a set of experts
Π with size |Π| and makes a prediction ŷ based on the ad-
vice. Afterward, the oracle observes the actual event y and
updates the losses for every expert by a function lπ,t =
lπ,t−1 + l(y, ŷ) | π ∈ Π. Algorithms vary in how they cal-
culate the loss and how they select advice from experts given
their losses.

An significant shortcoming of our proposed FTPL is that
sublinear regret no longer applies when d ̸= 1. With a rea-
sonable cost, however, we can place the original FTPL algo-
rithm into an expert algorithm with proven sublinear regret
and keep a tight upper bound. Moreover, this approach gives
a good balance between practical adaptability and adversarial
guarantees.

We choose to use the IAWM algorithm first proposed in
[10], which enjoys a tight state-of-the-art upper bound. Each
expert is associated with a weight that gets reduced propor-
tionally to others when they make a mistake. IAWM is out-
lined in algorithm 2. The algorithm randomly selects an ex-
pert proportionally to their weights and thus begins to favor
the expert with the optimal discount rate over time. Our adap-
tive FTPL inherits its regret bound, defined below [14].

RIAWM
T ≤ (2.83 + o(1))

√
L∗ ln |Π| (13)

It is sublinear with respect to the smallest loss L∗, which in
our case is the difference between the number of possible hits
JT and the hits of the best policy (the best reward Q∗), de-
fined as the following.

L∗ = min
π∈Π

T∑
t=1

l(yt, ŷtπ) = TJ −Q∗, (14)

where Q∗ = maxπ∈Π

∑T
t=1 q(x

t, ytπ).
With a tight bound for IAWM, we can prove the sublinear-

ity of our adaptive FTPL:

ROverall
T = max

y∗∈Y

T∑
t=1

q(xt, y∗)−
T∑

t=1

q(xt, yt)

= max
y∗∈Y

T∑
t=1

q(xt, y∗)−max
π∈Π

T∑
t=1

q(xt, ytπ)

+ max
π∈Π

T∑
t=1

q(xt, ytπ)−
T∑

t=1

q(xt, yt)

= min
π∈Π

Rπ
T +RIAWM

T

≤ RFTPL(d=1) +RIAWM
T

= O(
√
T ) +O(

√
T ). (15)

Algorithm 2 IAWM
wj,0 ← 1
Lj,0 ← 0
π ∈ Π
for t← 1 to T do

L∗
t−1 ← minπ∈Π(Lπ,t−1)

ϵt ← min{ 14 ,
√

2 lnP
L∗

t−1
}

at ← 1
1−ϵt

Wt ←
∑P

π=1 a
−Lπ,i−1

t

Wj,t ← a
−Lπ,t−1
t

Wt

SELECTEXPERT(π, probabilities = wt)
REVEALREQUEST
INCREMENTLOSSESBY(1)

end for

4 Results
Simulations were run on various traces and system topolo-
gies to evaluate the proposed algorithm. Section 4.1 gives
an overview of the simulator and the setup of experiments;
section 4.2 presents the findings.

4.1 Experimental setup
The source code for the simulator is written in Python3 and
can be accessed online at [15]. It contains the FTPL policy
described in algorithm 1 and LFU and LRU for comparison.
In addition, it includes our adaptive FTPL policy with IAWM
from algorithm 2. Multiple policies can be run concurrently
through an included simulation runner utility, which returns
and plots various statistics. A Jupyter notebook [16] provides
an interface to interact with the simulator.

Compatible datasets fall into two categories: single cache
datasets containing one continuous trace and multi-cache
datasets containing one trace for each client. Both have corre-
sponding interfaces that the runner expects. The source code
includes the ability to process the MovieLens dataset [17],
as well as synthetic datasets from [18] (including adversar-
ial traces). In a single cache setting, MovieLens movie id-s
are filtered to be below 100 ∗ C, a measure that results in
a cache that is 1% of the catalog size. All synthetic traces
are run on caches at 10% of the catalog. In the bipartite sce-
nario, a trace is assigned to every user. We use two partitions
of the MovieLens trace, two partitions of a synthetic fixed
popularity trace, and two adversarial traces. Cache sizes are
chosen to be at 10% of the catalog. We consider two different
edge patterns, an optimal and an adversarial one. In the op-
timal setting, users that share trace partitions connect to the
same cache, while users with adversarial traces also share a
cache. In the adversarial topology, every user with a partition
is paired with some adversarial trace to reduce the likelihood
of patterns emerging. Performance on both MovieLens and
synthetic traces in single and bipartite settings be seen in sec-
tion 4.2.

Single cache simulations plot data about every policy’s
(including static optimal) average regret and hit ratio at
every time slot. For multi-cache simulations, we plot the



(a) MovieLens (b) Synthetic fixed popularity (c) Synthetic changing popularity

Figure 3: Hit ratios for each time slot for non-adversarial realistic traces.

average reward instead. We choose to time average metrics
because doing so amplifies learning curves, making it easier
to interpret and compare results.

4.2 Findings
Non-adverserial traces
Figure 3 shows the performance of LRU, LFU, the opti-
mal fixed strategy, FTPL from [6], and our proposed IAWM
and FTPL combination. We obtained these results on non-
adversarial traces in a single-cache setting. The discount rates
for the experts are hand tuned to find optimal ranges. Figure
3a showcases performance on the MovieLens trace, while fig-
ures 3b and 3c feature synthetic traces that we use to show-
case some statistical properties.

All algorithms perform similarly on the MovieLens and
fixed catalog traces, with FTPL slightly ahead in both. Per-
haps interestingly, LFU significantly outperforms both FTPL
and IAWM at the start, but we can attribute this to the per-
turbations, which have a disproportionately large effect ini-
tially. As time increases, FTPL and IAWM emerge as lead-
ers. The flatness of the optimal line shows precisely how fixed
the popularity catalog is for the MovieLens trace, explaining
why discounting does not offer adaptive FTPL a significant
advantage in this scenario. Since we can see a slight decrease
in the line on close inspection, it is, in theory, possible that
there exists an optimal discount rate ̸= 1, but finding this re-
quires running more adaptive FTPL instances than we had at
our disposal.

The non-adversarial changing popularity catalog trace
from figure 3c displays the power of our adaptive FTPL
algorithm, which significantly outperforms its competitors.
The original FTPL algorithm fails to consider that once
popular items are not requested anymore, something that
often happens in realistic scenarios. A similar situation
could, for instance, arise in the case of new Netflix releases
that initially get high traffic, but as more and more users have
already seen them and new, more relevant content starts to
appear, their popularities fade over time. We should also
note that the hit ratio of adaptive FTPL is growing over time
rather than decreasing as it does for other algorithms.

Adverserial traces
Figure 4 illustrates how the chosen algorithms perform on

synthetic adversarial traces, which aim to reduce performance
intentionally. Figure 4a showcases an oscillator trace that
cyclically requests the same sequence of files. The chang-
ing oscillator in figure 4b follows multiple such sequences at
once and switches to different sequences periodically. The
sliding popularity trace from figure 4c cyclically changes the
popularity patterns of different files.

Adaptive FTPL performs similarly to FTPL on the oscilla-
tor trace in figure 4a. The trace intends to degrade LRU and
LFU, which both receive no hits. However, storing popular
files is a viable strategy due to a repeating pattern, leading to
a reasonable performance in FTPL. Adaptive FTPL can gain
an edge here by introducing a > 1 discount rate, which ele-
vates the likelihood that files that have not been used for some
time get admitted.

Both LRU and LFU perform very well relative to FTPL in
the changing oscillator trace in figure 4b. While FTPL must
remain close to the static optimum, an alternative approach is
far more effective. The trace is quite complex, and we do not
understand why adaptive FTPL performs so well. We config-
ured it with experts from an extensive discount rate range.

Like the oscillator trace, the sliding popularity trace from
figure 4c delivers no hits for either LRU or LFU. FTPL and
IAWM perform similarly and approximate the optimal static
strategy. Failure of adaptive FTPL to improve on FTPL
might be caused by the patterns in the trace being simply too
complex to address with a discounting mechanism.

Bipartite setting
Figure 5 presents different algorithms’ average rewards in a
bipartite setting assuming a linear reward function. Figure 5a
illustrates that when users with similar traces execute their re-
quests against the same cache, our adaptive FTPL algorithm
can capture the emerging patterns and significantly outper-
form other algorithms. While every other algorithm, even the
static optimal, is dropping in average reward over time, adap-
tive FTPL keeps learning and improving.

Figure 5b shows how different policies perform with edges
between users and caches that aim to degrade performance
intentionally. A significant difference from the previous set-
ting is the smaller amount by which adaptive FTPL outper-
forms other policies. Furthermore, it fails to outperform the
static benchmark. A likely cause is the absence of patterns to
which our FTPL can adapt. When many dissimilar patterns



(a) Oscillator (b) Changing oscillator (c) Sliding popularity

Figure 4: Hit ratios for each time slot for synthetic adversarial traces.

(a) Optimal edges (b) Adversarial edges

Figure 5: Average reward at each time slot for different edge configurations in a bipartite network.

merge into one, the sequence starts to act more and more ran-
domly. This finding highlight the importance of connecting
users with similar traces to the same caches. In addition to the
obvious benefit of a higher popularity overlap, it allows our
algorithm to perform at its best since it can learn an appropri-
ate discount rate. Matching users with caches is an issue that
deserves consideration for future research.

5 Responsibility
Improving caching performance is a relevant issue that can
significantly reduce technology-related costs and improve
services. Lowering barriers to entry can make technology
more accessible to people with a less fortunate socioeco-
nomic status, enabling them to acquire more products and
warrant new business models that cater to them. Growth in
the standard of living is not restricted to these groups and
can, of course, be felt in all classes of the society.

With many clear benefits, caching also proposes ethical is-
sues. How often to update objects in the cache was offered as
a dilemma in [19]. Refreshing the cache less often increases
the likelihood that the user receives inaccurate, outdated data.
In some cases, this might have severe consequences. On the
other hand, refreshes are expensive and degrade performance.
Although doing cache refreshes is not a part of the problem
description or the contributions discussed in this paper, it de-
serves some consideration. The more relevant items a cache
holds, the higher the impact of this question.

To ensure that the claimed benefits of our new replacement
policy are unbiased, we ran them on various traces. On some

occasions, not unexpectedly, it was slightly beat by the orig-
inal FTPL policy. Furthermore, we admit that in a realistic
setting, our proposed expert framework approach might be
very performance intensive (many FTPL instances must be
run concurrently) and that some other machine learning tech-
nique might be more appropriate for learning the discount
rate. Finally, we also admit that the range for discount rates
was slightly tuned for every figure to showcase our algorithm
at its best.

6 Conclusion
We propose a modification to the FTPL caching replacement
policy from [6] to make it more adaptive to changing file
popularities. We gain adaptability by introducing a discount
rate that can lower or increase the relevance of files based
on the ages of their requests. The algorithm maintains sub-
linear regret, learns the optimal discount rate by using the ex-
pert framework with the IAWM algorithm from [10], and uses
FTPL algorithms with various discount rates, including 1, as
experts. We empirically show that such adaptability can sig-
nificantly improve performance in a single cache setting and
a bipartite network, especially when file popularities change
over time. Future research should be directed towards learn-
ing the optimal discount rate via some reinforcement learning
technique as the algorithm is run instead of having these rates
preconfigured. It would leave IAWM with two experts, the
original FTPL with a tight upper bound and an expert that
continuously optimizes the discount rate. Doing this would
further increase adaptability and reduce the computational



overhead that comes from running multiple FTPL instances.
Another relevant research topic is optimally matching users
with caches in networks to direct traces with similar patterns
to the same caches. We show that such connections increase
learnable patterns and improve overall performance.

References
[1] T. Barnett, S. Jain, U. Andra, and T. Khurana, “Cisco

visual networking index (vni) complete forecast update,
2017–2022,” Americas/EMEAR Cisco Knowledge Net-
work (CKN) Presentation, pp. 1–30, 2018.

[2] T. H. Romer, W. H. Ohlrich, A. R. Karlin, and B. N.
Bershad, “Reducing tlb and memory overhead using on-
line superpage promotion,” in Proceedings of the 22nd
annual international symposium on Computer architec-
ture, 1995, pp. 176–187.

[3] J. Shuja, K. Bilal, W. Alasmary, H. Sinky, and
E. Alanazi, “Applying machine learning techniques for
caching in next-generation edge networks: A compre-
hensive survey,” Journal of Network and Computer Ap-
plications, vol. 181, p. 103005, 2021.

[4] G. S. Paschos, A. Destounis, and G. Iosifidis, “Online
convex optimization for caching networks,” IEEE/ACM
Transactions on Networking, vol. 28, no. 2, pp. 625–
638, 2020.

[5] T. S. Salem, G. Neglia, and S. Ioannidis, “No-regret
caching via online mirror descent,” in ICC 2021-IEEE
International Conference on Communications. IEEE,
2021, pp. 1–6.

[6] R. Bhattacharjee, S. Banerjee, and A. Sinha, “Funda-
mental limits on the regret of online network-caching,”
Proceedings of the ACM on Measurement and Analysis
of Computing Systems, vol. 4, no. 2, pp. 1–31, 2020.

[7] S. Shalev-Shwartz et al., “Online learning and online
convex optimization,” Foundations and Trends® in Ma-
chine Learning, vol. 4, no. 2, pp. 107–194, 2012.

[8] S. Müller, O. Atan, M. Van Der Schaar, and A. Klein,
“Smart caching in wireless small cell networks via con-
textual multi-armed bandits,” in 2016 IEEE Interna-
tional Conference on Communications (ICC). IEEE,
2016, pp. 1–7.

[9] J. Gwertzman and M. I. Seltzer, “World wide web cache
consistency.” in USENIX annual technical conference,
vol. 141, 1996, p. 152.

[10] P. Auer, N. Cesa-Bianchi, and C. Gentile, “Adaptive and
self-confident on-line learning algorithms,” Journal of
Computer and System Sciences, vol. 64, no. 1, pp. 48–
75, 2002.

[11] D. Paria and A. Sinha, “Leadcache: Regret-optimal
caching in networks,” Advances in Neural Information
Processing Systems, vol. 34, pp. 4435–4447, 2021.

[12] H. Che, Z. Wang, and Y. Tung, “Analysis and design
of hierarchical web caching systems,” in Proceedings
IEEE INFOCOM 2001. Conference on Computer Com-
munications. Twentieth Annual Joint Conference of the

IEEE Computer and Communications Society (Cat. No.
01CH37213), vol. 3. IEEE, 2001, pp. 1416–1424.

[13] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F.
Molisch, and G. Caire, “Femtocaching: Wireless con-
tent delivery through distributed caching helpers,” IEEE
Transactions on Information Theory, vol. 59, no. 12, pp.
8402–8413, 2013.

[14] R. Yaroshinsky and R. El-Yaniv, Smooth online learning
of expert advice. Citeseer, 2001.

[15] M. Mäkelä, “Caching simulator for CSE3000,” https:
//github.com/mikkel-makela/caching-simulator, 2022.

[16] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger,
M. Bussonnier, J. Frederic, K. Kelley, J. Hamrick,
J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, and
C. Willing, “Jupyter notebooks – a publishing format
for reproducible computational workflows,” in Position-
ing and Power in Academic Publishing: Players, Agents
and Agendas, F. Loizides and B. Schmidt, Eds. IOS
Press, 2016, pp. 87 – 90.

[17] F. M. Harper and J. A. Konstan, “The movielens
datasets: History and context,” Acm transactions on in-
teractive intelligent systems (tiis), vol. 5, no. 4, pp. 1–
19, 2015.

[18] Y. Li, T. Si Salem, G. Neglia, and S. Ioannidis, “Online
caching networks with adversarial guarantees,” Pro-
ceedings of the ACM on Measurement and Analysis of
Computing Systems, vol. 5, no. 3, pp. 1–39, 2021.

[19] G. Barish and K. Obraczke, “World wide web caching:
Trends and techniques,” IEEE Communications maga-
zine, vol. 38, no. 5, pp. 178–184, 2000.

https://github.com/mikkel-makela/caching-simulator
https://github.com/mikkel-makela/caching-simulator

	Introduction
	Problem Description
	Single cache
	Multi-level caching
	Regret

	Contributions
	FTPL Algorithm
	Expert Algorithm

	Results
	Experimental setup
	Findings

	Responsibility
	Conclusion

