
The monad and examples from Haskell
A computer-checked library for Category Theory in Lean

Csanád Farkas1

Supervisor(s): Benedikt Ahrens1, Lucas Escot1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Csanád Farkas
Final project course: CSE3000 Research Project
Thesis committee: Benedikt Ahrens, Lucas Escot, Kaitai Liang

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Category Theory is a widely used field of Math-
ematics. Some concepts from it are often used
in functional programming. This paper will fo-
cus on the Monad and a few implementations of
it from Haskell. We will also present the computer-
checked library we have written to help us in this
task.

Introduction
Category theory is a highly abstract field in mathematics. It
first arose from algebraic topology but has found wide ap-
plicability since. For example, it is a good tool for study-
ing functional programming languages. Turns out categories
can describe types, functions between types and a lot of other
concepts in functional programming.

This paper will focus specifically on monads, what they
are, and what laws they must follow. Further, we will look
at some examples of monads from Haskell (a functional pro-
gramming language). The reason for this is that while Haskell
has an interface called Monad, it has no way to ensure that
types implementing it do indeed follow the monad laws.

Our group was tasked with making a computer-checked li-
brary of definitions, proofs and examples. For this, we first
needed to define what a Category is, with examples. Then we
were able to define Functors between Categories and some
examples. Finally, we also made a definition for Natural
Transformations with examples. After that, we all started
to work on our individual questions. We had first to imple-
ment a definition for Monads. Then I looked at some ex-
amples of Monads used by the functional programming lan-
guage Haskell and tried to implement these as examples in
our library.

The paper will first discuss the technical background of
the paper briefly in the section 1. This section will explain
the choice of language and the details of our setup. Then
the paper will describe how each of the steps from the pre-
vious paragraph was achieved. This can be found in section
2. This section will also mention the necessary background
for the concepts discussed. Further, it will try to justify some
of our choices. Here we also mention any difficulties that
have popped up during the implementation. The section 4
will compare our library to the official one for lean.

This project has helped us understand both category theory
and writing proofs in a computer-checked language better.
While the library is not as readable and concise as the offi-
cial one, it is still correct and useable. It could be enhanced
and extended in the future.

1 Methodology
As the previous section has stated, one of the main aims of
this project was to create a library of category theory. To
achieve this we first needed to decide on what language we
were going to use, this is detailed in subsection 1.1. After
this the work was divided into two parts, the first was to es-
tablish a common base together with the whole team. This
can then be used by the team members in the second part,

where we each work mostly alone on our own question. Due
to the topics, there still are some overlaps, which led to peo-
ple still not having to work completely alone. The rest of this
section will detail what tools and processes we have used to
coordinate the project, this is in subsection 1.2.

1.1 Language Choice
To write we needed to find a language that supported
computer-checked proofs and had a robust type system. The
former means the developer can write proofs in the language
that are then checked by the computer for correctness. This
helps ensure that the proofs are actually sound, further, the
computer may aid the proof and thereby make the process
easier. A robust type system is needed to be able to correctly
translate concepts from theory into code.

We had multiple options for the language that we used for
the library. Mainly we considered either Agda or Lean. As
we did not have much experience with either, we decided to
go with Lean. This gave us one further choice to make since
Lean’s most recent stable version is Lean 3, but it also has a
nightly version, Lean 4.

We opted to use the stable version for our development.
This was done to ensure that our project will not get hung up
on some problem caused by the nightly version. Furthermore,
the differences between the versions are not too major [1], so
adopting the library to the new version, once it is stable, will
be fairly simple.

1.2 Coordination
Throughout the project, we have done most of the work re-
motely. This was no problem when we were studying Cat-
egory Theory, but to make a coherent library we needed to
coordinate the code we write.

The coordination between team members was done
through multiple means throughout the project. First were
multiple meetings every week, during which we discussed
and wrote code together. As we could not meet every day, we
also wrote code remotely. The remote code was reviewed by
the rest of the team either during the next meeting, or through
the merge requests on the project’s Gitlab page. This allowed
us to leave comments on the code directly. All these meth-
ods allowed us to work on our own, but in a coordinated and
controlled manner.

2 Category Theory
This section of the paper will detail some of the decisions
behind the library, as well as, the theoretical background of
the concepts discussed. We will be covering four main topics
within the field of Category Theory. First, subsection 2.1 will
discuss how we implemented Categories. Then we will move
on to Functors and some operations on functors that will be
useful later in subsection 2.2. Following that subsection 2.3
will present Natural Transformations with their implementa-
tion and some relevant operators. Finally, we will close off
with Monads in subsection 2.4, together with examples from
Haskell. Throughout all of these sections, we will give exam-
ples to illustrate the concepts.

The library was developed on a private Gitlab repository,
but all code has been moved to a public GitHub repository.



The move has conserved all commits, so the full develop-
ment history can be seen. The repository can be found as
sgciprian/ct.

2.1 Category
Categories as the name implies are one of the fundamental
concepts in Category Theory. They are useful in representing
the connections between ‘objects’.

2.1.1 Definition
A category C is defined as the following [2, sec. 2.1.1] :

• A collection of objects, denoted:

A,B, · · · ∈ C

• A collection of arrows, between objects, denoted:

f : A → B

• A composition operator between arrows:

f : A → B, g : B → C; g ◦ f : A → C

• The composition must follow two (or three, depending
on one counts them) laws:

associativity h ◦ (g ◦ f) = (h ◦ g) ◦ f (1)
left unit idB ◦ f = f (2)

right unit f ◦ idA = f (3)

The last two of which are sometimes combined into one
unit law. idA is the identity arrow on object A.

structure category :=
--attributes
(C0 : Sort u)
(hom : Π (X Y : C0), Sort v)
(id : Π (X : C0), hom X X)
(compose : Π {X Y Z : C0} (g : hom Y Z) (f : hom X Y), hom X Z)
--axioms
(left_id : ∀ {X Y : C0} (f : hom X Y), compose f (id X) = f)
(right_id : ∀ {X Y : C0} (f : hom X Y), compose (id Y) f = f)
(assoc : ∀ {X Y Z W : C0}
(f : hom X Y) (g : hom Y Z) (h : hom Z W),
compose h (compose g f) = compose (compose h g) f)

Listing 1: The definition of category

Our implementation can be seen in listing 1. The definition
for objects (Sort u) just states that they can be of any type, but
that type must be the same for all objects in the category. Also
worth noting is that we opted to model the category based on
the function C(A,B) that gives all arrows between objects
A and B in category C. Further, we enforce that all objects
have an identity arrow and that the arrows can be composed.
Finally, we also add the laws that we have listed above.

With the definition done, we have defined some examples
to confirm that our definition is correct. All of the examples
can be found in the folder src/instances, this is also true
for any future examples. Some of the examples implemented
include: the category of sets with functions between sets act-
ing as arrows1; the category of natural numbers2 with an ar-
row from x to y iff x ≤ y; and even the category of partially
ordered sets with monotone functions as arrows3.

1commit 7f024038, src/instances/Set_category.lean
2commit 7f024038, src/instances/Pre_Nat-le_category.lean
3commit 7f024038, src/instances/Pos_category.lean

2.2 Functor
Functors give us a way to map one category to another. This
is useful to show that two categories have a similar structure.
Further, some of these functors will come back directly in
section 2.4.

2.2.1 Definition
The functor definition will once again give us some new def-
initions and some laws for those definitions that must hold to
be a functor. The full definition is as follows [2, sec. 2.10, p.
28]:

• A functor F : C → D between categories C and D.
• F maps each C-object to a D-object.
• F maps each C-arrow to a D-arrow.
• It must follow the laws below:

unit law F (idA) = idF (A) (4)

composition law F (g ◦ f) = F (g) ◦ F (f) (5)

where

A,B,C,D ∈ C; f ∈ C(B,C); g ∈ C(C,D)

Our implementation of this definition can be found in list-
ing 2. Objects can be mapped with a simple function, but
due to our definition of arrows, mapping arrows need a bit
more effort to make work. The definition in the code is more
verbose than what we have above, but this is due to the need
to be more precise for the type checker. For example, in the
definition above we didn’t specify to which category the ids
belong, but we cannot skip this in the code.
structure functor (C D : category) :=
(map_obj : C → D)
(map_hom : Π {X Y : C} (f : C.hom X Y), D.hom (map_obj X)
(map_obj Y))

(id : ∀ (X : C), map_hom (C.id X) = D.id (map_obj X))
(comp : ∀ {X Y Z : C} (f : C.hom X Y) (g : C.hom Y Z), map_hom
(C.compose g f) = D.compose (map_hom g) (map_hom f))

Listing 2: The functor definition

2.2.2 Composition
Functors, similar to arrows can be composed. Given three
categories C,D, E and two functors between them F : C → D
and G : D → E there is a functor G⊚F from C to E that has
the combined effect of applying F and then G. This functor
must still satisfy the two laws we have shown in the definition
above.
def composition_functor {C D E : category} (G : D ⇒ E) (F :
C ⇒ D) : C ⇒ E :=

{
map_obj := λ X : C, G.map_obj (F.map_obj X),
map_hom := λ X Y : C, λ f, G.map_hom (F.map_hom f),
id := begin intro, rw F.id, rw G.id, end,
comp := begin intros, rw F.comp, rw G.comp, end,

}

Listing 3: Functor composition definition

As can be seen in listing 3, the mappings are just defined
by applying F and then G. The two proofs for the laws both
use that F and G satisfy the laws. Below is an explanation
of what is done in the proof for id. The first step is done

https://github.com/sgciprian/ct
https://github.com/sgciprian/ct/blob/main/src/instances/Set_category.lean
https://github.com/sgciprian/ct/blob/main/src/instances/Pre_Nat-le_category.lean
https://github.com/sgciprian/ct/blob/main/src/instances/Pos_category.lean


automatically by lean, whereas the second two steps use the
rw command.

G · F (idA)
?
= idG·F (A) using G · F (B) = G(F (B))

G(F (idA))
?
= idG(F (A)) using F (idB) = idF (B)

G(idF (A)
?
= idG(F (A)) using G(idB) = idG(B)

idG(F (A)) = idG(F (A)) done.

The proof for the composition law is done in a similar way.
Using this definition it can be shown that functor composition
is associative, meaning that the following holds:

F : C → D; G : D → E ; H : E → F
H · (G · F ) = (H ·G) · F

2.3 Natural Transformation
A natural transformation will be similar to what functor is to a
category, but to functors. A natural transformation is between
two functors that are between the same two categories. They
are natural because they satisfy a naturality condition, which
we will define later on.

2.3.1 Definition
As shown before, a transformation α is between two functors.
Assume the functors F,G are from C to D. The transforma-
tion must for each C-object A assign a D-arrow from F (A)
to G(A), denoted αA. To be natural, it must also:

∀f : A → B, (A,B ∈ C) ⇒ αB ◦ F (f) = G(f) ◦ αA (6)

Our definition in listing 4 is just a one-to-one implementa-
tion, though it once again is more verbose to satisfy the type
checks.
structure natural_transformation {C D : category} (F G : functor

C D) :=
(α : Π (X : C.C0) , D.hom (F.map_obj X) (G.map_obj X))
(naturality_condition : ∀ {X Y : C.C0} (f : C.hom X Y),
D.compose (G.map_hom f) (α X) =
D.compose (α Y) (F.map_hom f)

)

Listing 4: The definition of natural transformation

2.3.2 Composition
Similar to functors, natural transformations can also be com-
posed. The composition is defined as follows[3]:

• Given two categories C,D.

• Given three functors F,G,H from C to D.

• Given two natural transformations,
α : F

.→ G, β : G
.→ H .

• For each C-object A, (β ⊚ α)A = βA ◦ αA.

This was once again a simple definition to translate to code.
The definition can be seen in listing 5. A note on notation, to
shorten the definition, we use ⇒ for functors and =⇒ for
natural transformations.

def nt_composition {C D : category} {F G H : C ⇒ D}
(τ1 : G =⇒ H) (τ2 : F =⇒ G) : F =⇒ H :=
{

α := λ X, D.compose (τ1.α X) (τ2.α X),
naturality_condition := begin
intros,
rw D.assoc,
rw τ1.naturality_condition f,
rw ←D.assoc,
rw τ2.naturality_condition f,
rw D.assoc,

end,
}

Listing 5: The composition of natural transformations

2.3.3 Horizontal Composition
Natural transformations can also be composed in a different
way. An illustration of this can be found in figure 1. This will
be useful later when we will define the laws for the monad.

C D E

F G

G′F ′

G·F

G′·F ′

α ββ×α

Figure 1: Horizontal Composition

The code for this is rather involved, but an explanation is
provided in the repository4. The transformation part of the
code can be seen in listing 6.
def bimap {C D E : category} {F F’ : C ⇒ D} {G G’ : D ⇒ E}
(β : G =⇒ G’) (α : F =⇒ F’) : (G · F) =⇒ (G’ · F’) :=
{

α := λ X,
E.compose (β.α (F’.map_obj X)) (G.map_hom (α.α X)),

. . .
}

Listing 6: The definition for horizontal composition

2.3.4 Natural Isomorphism
A special natural transformation is a natural isomorphism. A
natural isomorphism has an ‘inverse’, another natural trans-
formation which has the assigned arrows reversed. It can be
therefore defined in terms of the arrows that it assigns. If all
arrows f : A → B it asigns are an isomorphism (meaning
that there is f−1 : B → A such that f−1 ◦ f = idA and
f ◦ f−1 = idB), then the transformation is also iso.

To help the type system, we need to define some natural
isomorphisms. The first of these is the associative transfor-
mation (later assoc\_nt), pointing from (H ·G)·F to H ·(G·F ).
As we have discussed before, the functor composition is as-
sociative (later left/right\_unit\_nt), so these two are just the
same functor, but the type system still considers them to be
different. The last two are the left and right unit transforma-
tions, pointing from Id · F and F · Id respectively to F . A

4commit cdfe5b62, /doc/natural_transformations.md

 https://github.com/sgciprian/ct/blob/cdfe5b628d4b0cac88a0dbd51fb9ef81c73d8b63/doc/natural_transformations.md 


note on Id is the identity functor, pointing to the same cate-
gory, and assigning everything to itself. With that definition,
it is easy to see that combining a functor with the identity
functor will not change it.

2.4 Monad
Monads are another construction from category theory that
turned out to be useful for programming, especially func-
tional programming. They turn out to be really useful when
we want to compose functions that return not the result di-
rectly, but return the result in a ‘container’. A nice expla-
nation of how that leads to the definition of monads can be
found in [4] and a video version can be found in [5].

2.4.1 Definition
The monad is defined by two natural transformations and
some laws that must apply to said transformations:

• Given a category C, and an endofunctor F : C → C.
• A natural transformation µ, from F 2 = F · F to F .
• A natural transformation η, from Id to F .
• With laws:

µ⊚ µ× IDF = µ⊚ IDF × µ (7)
µ⊚ IDF × η =IDF = µ⊚ η × IDF (8)

Here IDF is the identity natural transformation from F
to F .

Implementing the monad definition in the code was again
rather simple. The only caveat was the natural isomorphisms
needed to help the type checker succeed.
structure Monad {C : category} (T : C ⇒ C) :=
(µ : (T · T) =⇒ T)
(η : (Id C) =⇒ T)
(assoc : µ ⊚ µ × (ID T) = µ ⊚ (ID T) × µ ⊚ (assoc_nt T T
T))

(lu : µ ⊚ ID T × η = ID T ⊚ right_unit_nt T)
(ru : µ ⊚ η × ID T = ID T ⊚ left_unit_nt T)

Listing 7: The monad definition

2.5 Examples from Haskell
With all those definitions done, we can finally take a look at
examples from Haskell for monads. Haskell usually defines
an operator ≫=, that has type m a → (a → m b) → m b. But
using this operator, we can define µ as the following:
-- µ
join :: Monad m ⇒ m (m a) → m a
join x = x ≫= id

Here id is the identity function that just returns the input. In
this case, it will have type m a → m a.

2.5.1 Maybe
The Maybe is a type that allows functions to handle un-
expected inputs and errors. It has two constructors, noth-
ing/none: holds no value; just/some: holds some value. This
can be used to extend what inputs a function accepts, as an
example, we can implement a safe square root operation that
takes one integer, and produces a Maybe integer, with the
square root. When the input is negative, it can give nothing
instead of breaking.

To make handling the Maybe type easier, Haskell imple-
ments for it their Monad interface. This implementation fol-
lows the monad laws, though this is not proven in Haskell,
as the language is not equipped with such features. In this
section, we will mirror the implementation in lean, and prove
that it does indeed follow the laws.

The following is a simplified definition of monad for the
Maybe type:
-- Definition
data Maybe a = Nothing | Just a

-- µ
join :: Maybe (Maybe a) → Maybe a
join x = x ≫= id
(Just x) ≫= k = k x
Nothing ≫= _ = Nothing
-- Rewriting:
join (Just x) = x
join Nothing = Nothing

-- η
return :: a → Maybe a
return = Just

This can be easily translated to lean, as follows:
inductive Maybe (α : Type*)
| none : Maybe
| some : α → Maybe

notation (name := none) ∅ := Maybe.none

def Maybe.join {α : Type*} : Maybe (Maybe α) → Maybe α
| ∅ := ∅
| (Maybe.some x) := x

def Maybe.return {α : Type*} (x : α) : Maybe α := Maybe.some x

To be able to prove that Maybe with these operations does in-
deed follow the monad laws we need to first prove that it is an
endofunctor. This step will be omitted here, but the proof can
be found in src/instances/functors/Maybe_functor.lean.
With that, we get the maybe monad definition:
def Maybe.monad : Monad Maybe.functor :=
{

µ := {
α := λ X, Maybe.join,
naturality_condition := _,

},
η := {

α := λ X, Maybe.return,
naturality_condition := _,

},
ru := _,
lu := _,
assoc := _,

}

We removed the proofs here to keep the paper a manageable
size, but the full proof is available in the repository.

This is not the only way to handle errors using monads,
as some of the exceptions in Haskell also implement the in-
terface, but that has a lot more complex implementation than
maybe. For those reasons, and due to the short nature of this
project, we will not delve into those.

2.5.2 List
Another type that is commonly used and implements the
monad interface, is the List. We have also implemented this
in Lean and proved that it does indeed follow the laws. The
definition from Haskell simplifies to:

 https://github.com/sgciprian/ct/blob/main/src/instances/functors/Maybe_functor.lean 


-- Definition
data List a = [] | a : List a

-- µ
join :: [[a]] → [a]
join x = x ≫= id
xs ≫= f = [y | x ← xs, y ← f x]
-- Rewriting:
join xs = [y | x ← xs, y ← x]

-- η
return :: a → [a]
return x = [x]

This can be implemented in lean as:
inductive List (α: Type) : Type
| nil : List
| cons (head: α) (tail: List) : List

def List.merge {α : Type} : List α → List α → List α
| List.nil ys := ys
| (List.cons x xs) ys := List.cons x (List.merge xs ys)

def List.join {α} : List (List α) → List α
| List.nil := List.nil
| (List.cons l ls) := List.merge l (List.join ls)

def List.return {α} (a : α) : List α := List.cons a List.nil

The proof for this satisfying the laws can be found in the
repository. It is largely the same as the proof for maybe,
though perhaps more complicated, as List is an inductive
type. The inductivity combined with the triply nested lists
makes the proofs rather long.

3 Responsible Research
This paper has mostly only dealt with mathematical concepts
and their implementations in Lean. As such, we had no con-
cerns with collecting and storing any data. We did however
strive to make our results reproducible. To achieve this we
added instructions to the repository on how to verify our code.
The repository is publicly available on GitHub, a link to it can
be found in section 2. Further, we aimed to provide adequate
documentation for the repository for any future users. For
this reason, a lot of proofs have a lot of comments attached or
entire files attached in the doc folder.

4 Discussion
There are a lot of already existing libraries for Category the-
ory, in various computer-checked languages. Some examples
include [6], [7], [8], [9], among others, but to keep this sec-
tion doable, we will focus on comparing with [10]. To do this
we will reference the documentation [11]. We will disregard
differences in notation, as almost all libraries use different
symbols for the different operations.

4.1 Category
The definition5 is basically the same as our definition, in
terms of its contents. Though it can be easily seen in the code
that ours was written by some beginners with this language,
the lean library is written by people more familiar with the
language. The only difference that may affect the library, is
that we have the objects as a field of the category, while the

5Category Definition

library takes it as a parameter. Another minor difference is in
the syntax used for hom, but as far as we know this is purely a
difference in syntax, and both are interpreted the same.

A possible major difference could have been implementing
the arrows differently, as a reminder the definition we used:
hom : Π (X Y : C0), Sort v

Another possible implementation would have been to instead
implement it with two functions:

hom : Sort v -- The arrows
dom : hom → C0 -- Domain of the arrow
cod : hom → C0 -- Codomain of the arrow

This would have also worked, but the other definition felt sim-
pler and more intuitive to us when we were writing it.

4.1.1 Functor
The functor definition6 is largely also the same as our defini-
tion. There are no meaningful differences, only differences
in notation. Their definition of the identity functor is shorter,
as the laws for the functor are automatically derived, when
trivial. The same is true for the implementation of functor
composition. In fact, the library tries to utilise tactics and
other language features to their fullest, so they don’t need to
write out all proofs.

4.1.2 Natural Transformation
The definition7 again is essentially the same definition as
ours. This is also the case for the identity transformation as
well as the composition. However, while the documentation
does mention horizontal composition being in the library, the
definition is seemingly not there.

4.1.3 Monad
There are some significant differences in the monad defini-
tion8. They do not use the horizontal composition operator
in their definition, rather they focus on operations on arrows.
More importantly, instead of showing that the two transfor-
mations are equivalent, the law they choose is the equivalent
statement of the two transformations having the same effect,
for each object. This avoids having to define the natural iso-
morphisms to overcome the type checks. Further, this would
have made my proofs for the examples shorter, as my first
steps were exactly to focus only on µX and ηX instead of µ
and η.

5 Conclusions and Future Work
We have now discussed what monads are, and how we have
translated that definition into code. We showed for Maybe
and List from Haskell, that they do indeed follow the monad
laws, by reimplementing them in Lean. It would have been
nice to do this for even more types, but the shortness of the
project did not allow for this.

When in another course we first worked with Haskell,
we have already encountered interfaces named Functor and
Monad, but we did not get a thorough background on them.
Doing this project has helped us get a deeper understanding

6Functor Definition
7Natural Transformation Definiton
8Monad Definition

https://leanprover-community.github.io/mathlib_docs/category_theory/category/basic.html#category_theory.category_struct
https://leanprover-community.github.io/mathlib_docs/category_theory/functor/basic.html#category_theory.functor
https://leanprover-community.github.io/mathlib_docs/category_theory/natural_transformation.html#category_theory.nat_trans
https://leanprover-community.github.io/mathlib_docs/category_theory/monad/basic.html#category_theory.monad


of where these concepts come from. Further, we hope we
managed to convey this to the reader.

As for the future of the library, what code we have writ-
ten is definitely the most elegant way of writing some of the
proofs. The proofs could be made prettier and more concise
in the future. Moreover, this library is by no means complete,
while that is perfectly fine for the scope of the current project,
it may be nice to extend it.

References
[1] “Significant Changes from Lean 3,” Lean Manual.

(2023), [Online]. Available: https : / / leanprover .
github . io / lean4 / doc / lean3changes . html (visited on
05/26/2023).

[2] B. C. Pierce, “A taste of category theory for computer
scientists,” Feb. 2011. DOI: 10.1184/R1/6602756.v1.
[Online]. Available: https://kilthub.cmu.edu/articles/
journal_contribution/A_taste_of_category_theory_
for_computer_scientists/6602756.

[3] B. Milewski. “Natural transformations,” Bartosz
Milewski’s Programming Cafe. (), [Online]. Available:
https : / / bartoszmilewski . com / 2015 / 04 / 07 / natural -
transformations/.

[4] B. Milewski. “Monads: Programmer’s definition,” Bar-
tosz Milewski’s Programming Cafe. (Nov. 2016), [On-
line]. Available: https://bartoszmilewski.com/2016/11/
21/monads-programmers-definition/.

[5] B. Milewski. “Category theory 10.1: Monads,”
YouTube. (), [Online]. Available: https : / / www .
youtube . com / watch ? v = gHiyzctYqZ0 &
list = PLbgaMIhjbmEnaH _ LTkxLI7FMa2HsnawM _
&index=19.

[6] “Agda/agda-categories: A new categories library for
agda.” (), [Online]. Available: https://github.com/agda/
agda-categories.

[7] J. Z. Hu and J. Carette, “Formalizing category the-
ory in agda,” CPP 2021 - Proceedings of the 10th
ACM SIGPLAN International Conference on Certified
Programs and Proofs, co-located with POPL 2021,
pp. 327–342, Jan. 2021. DOI: 10 . 1145 / 3437992 .
3439922. [Online]. Available: https : / / github . com /
agda/agda-categories.

[8] “Copumpkin/categories: Categories parametrized by
morphism equality, in agda.” (), [Online]. Available:
https://github.com/copumpkin/categories.

[9] A. Timany and B. Jacobs, “Category theory in coq
8.5,” DROPS-IDN/6000, vol. 52, Jun. 2016, ISSN:
18688969. DOI: 10.4230/LIPICS.FSCD.2016.30.

[10] “The lean mathematical library,” CPP 2020 - Proceed-
ings of the 9th ACM SIGPLAN International Confer-
ence on Certified Programs and Proofs, co-located
with POPL 2020, pp. 367–381, Jan. 2020. DOI: 10 .
1145 / 3372885 . 3373824. [Online]. Available: https :
/ / dl - acm - org . tudelft . idm . oclc . org / doi / 10 . 1145 /
3372885.3373824.

[11] “Maths in lean: Category theory.” (2020), [Online].
Available: https : / / leanprover- community.github. io /
theories/category_theory.html (visited on 06/20/2023).

https://leanprover.github.io/lean4/doc/lean3changes.html
https://leanprover.github.io/lean4/doc/lean3changes.html
https://doi.org/10.1184/R1/6602756.v1
https://kilthub.cmu.edu/articles/journal_contribution/A_taste_of_category_theory_for_computer_scientists/6602756
https://kilthub.cmu.edu/articles/journal_contribution/A_taste_of_category_theory_for_computer_scientists/6602756
https://kilthub.cmu.edu/articles/journal_contribution/A_taste_of_category_theory_for_computer_scientists/6602756
https://bartoszmilewski.com/2015/04/07/natural-transformations/
https://bartoszmilewski.com/2015/04/07/natural-transformations/
https://bartoszmilewski.com/2016/11/21/monads-programmers-definition/
https://bartoszmilewski.com/2016/11/21/monads-programmers-definition/
https://www.youtube.com/watch?v=gHiyzctYqZ0&list=PLbgaMIhjbmEnaH_LTkxLI7FMa2HsnawM_&index=19
https://www.youtube.com/watch?v=gHiyzctYqZ0&list=PLbgaMIhjbmEnaH_LTkxLI7FMa2HsnawM_&index=19
https://www.youtube.com/watch?v=gHiyzctYqZ0&list=PLbgaMIhjbmEnaH_LTkxLI7FMa2HsnawM_&index=19
https://www.youtube.com/watch?v=gHiyzctYqZ0&list=PLbgaMIhjbmEnaH_LTkxLI7FMa2HsnawM_&index=19
https://github.com/agda/agda-categories
https://github.com/agda/agda-categories
https://doi.org/10.1145/3437992.3439922
https://doi.org/10.1145/3437992.3439922
https://github.com/agda/agda-categories
https://github.com/agda/agda-categories
https://github.com/copumpkin/categories
https://doi.org/10.4230/LIPICS.FSCD.2016.30
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3372885.3373824
https://dl-acm-org.tudelft.idm.oclc.org/doi/10.1145/3372885.3373824
https://dl-acm-org.tudelft.idm.oclc.org/doi/10.1145/3372885.3373824
https://dl-acm-org.tudelft.idm.oclc.org/doi/10.1145/3372885.3373824
https://leanprover-community.github.io/theories/category_theory.html
https://leanprover-community.github.io/theories/category_theory.html

	Methodology
	Language Choice
	Coordination

	Category Theory
	Category
	Definition

	Functor
	Definition
	Composition

	Natural Transformation
	Definition
	Composition
	Horizontal Composition
	Natural Isomorphism

	Monad
	Definition

	Examples from Haskell
	Maybe
	List


	Responsible Research
	Discussion
	Category
	Functor
	Natural Transformation
	Monad


	Conclusions and Future Work

