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Abstract. To increase the contribution of offshore wind energy to the global energy mix in an economically
sustainable manner, it is required to reduce the costs associated with the production and operation of offshore
wind turbines (OWTs). One of the largest uncertainties and sources of conservatism in design and lifetime
prediction for OWTs is the determination of the global damping level of the OWT. Estimation of OWT damping
based on field measurement data has hence been subject to considerable research attention and is based on
the use of (preferably operational) vibration data obtained from sensors mounted on the structure. As such,
it is an output-only problem and can be addressed using state-of-the-art operational modal analysis (OMA)
techniques, reviewed in this paper. The evolution of classical time- and frequency-domain OMA techniques
has been reviewed; however, the literature shows that the OWT vibration data are often contaminated by rotor
speed harmonics of significantly high energy located close to structural modes, which impede classical damping
identification. Recent advances in OMA algorithms for known or unknown harmonic frequencies can be used to
improve identification in such cases. Further, the transmissibility family of OMA algorithms is purported to be
insensitive to harmonics. Based on this review, a classification of OMA algorithms is made according to a set of
novel suitability criteria, such that the OMA technique appropriate to the specific OWT vibration measurement
setup may be selected. Finally, based on this literature review, it has been identified that the most attractive
future path for OWT damping estimation lies in the combination of uncertain non-stationary harmonic frequency
measurements with statistical harmonic isolation to enhance classical OMA techniques, orthogonal removal of
harmonics from measured vibration signals, and in the robustification of transmissibility-based techniques.

1 Introduction

The European Union has set a goal to reduce greenhouse
gas emissions by 80 %–95 % by 2050 (European Commis-
sion, 2011). Thus, nearly two-thirds of the energy production
by 2050 is required to be supplied by renewable sources, of
which (offshore) wind is expected to be a major contributor.
Globally, 2019 was a record year for offshore wind energy in-
stallation, with nearly 6.1 GW installed offshore and a cumu-
lative global wind capacity of 29.1 GW. According to GWEC
(2020), the total capacity will rise to 234 GW by 2030. Tech-
nical innovation is predicted to be one of the major drivers
for this growth.

While the definition of external costs includes uncertain-
ties, it has been shown by Alberici et al. (2014) that wind
energy has the lowest external costs of all evaluated energy
sources. The levelised cost of onshore wind energy is now
at grid parity with the levelised cost of coal and natural
gas, and in Europe it lies within the range of EUR 0.045–
0.087 kWh−1. However, the levelised cost of offshore wind
energy is between EUR 0.06–0.111 kWh−1, which is more
expensive than natural gas. As offshore wind energy in Eu-
rope enters a subsidy-free phase, it becomes more important
for the wind industry to reduce costs to remain economically
sustainable.
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According to Blanco (2009), nearly 80 % of project costs
for onshore wind projects are directly related to the turbine
costs. The tower and major support structure components
can contribute to nearly 25 % of the total turbine costs. For
offshore wind projects, the contribution of the turbine costs
is typically lower, roughly around 33 % of the total project
costs. However, offshore turbine foundations are correspond-
ingly much more complex, contributing to nearly 21 % of the
total project costs. From these numbers, it is clear that the
economic construction of turbine towers, foundations, and
major support structure components can play a major role in
determining the economic feasibility of an offshore wind en-
ergy project. Excessive conservatism in structural design is
hence desired to be held to a minimum. Further, for offshore
wind energy projects, operation and maintenance, including
turbine downtime, can contribute to up to 30 % of the to-
tal project costs. Precise planning of such activities, and an
ability to accurately predict the lifetime of turbine compo-
nents, hence also forms an important factor influencing the
economics of wind energy.

The design of wind turbine support structures is a multi-
disciplinary task that requires the evaluation of various loads
faced by the turbine in its lifetime, including but not lim-
ited to wind loads, extreme wind events and wave loads,
and extreme sea states, seismic events, and loads exerted by
self-weight and flexible deflections. As described in Nichol-
son et al. (2013), support structure design is then performed
by considering stress analyses, including stress concentra-
tions, buckling analyses, extreme deflection analysis, soil-
bearing capacity calculations, and balancing these analy-
ses against practical considerations such as manufacturabil-
ity, transportability, and resonance avoidance considerations.
According to Van der Tempel (2006), support structure anal-
ysis can be performed in the frequency domain, but the cal-
culation of structural loads as an initial step may also be per-
formed in the time domain, using dedicated aeroelastic sim-
ulation environments.

As per Rao (2005), structures like wind turbines demon-
strate several “modes” of natural vibration, each associated
with a natural frequency of oscillation. If the structure re-
ceives input energy, such as from wind or wave loading, at a
frequency close to its natural frequency of oscillation, “res-
onant” behaviour is said to occur, and significant amplitudes
of oscillation are observed. Sustained high-amplitude oscilla-
tions may cause progressive failure or “fatigue” of the struc-
ture. Design for a sufficient fatigue lifetime (typically 20–
30 years) is one of the key requirements for turbine structural
design.

One of the most important structural properties that is re-
quired to be defined in both fatigue and extreme loads analy-
sis of wind turbines is the damping ratio of the structure. The
damping ratio or damping of the structure is proportional to
the rate of decrease of the frequency response function when
close to the natural frequency (Rao, 2005). Default values
are often assumed in finite-element or multi-body simula-

Figure 1. Comparison of the effect of the damping on OWT fatigue
lifetime (Rezaei et al., 2018).

tions for damping ratios of vibrating structures. However, the
fatigue life of vibrating structures shows a high sensitivity
to the assumed damping ratio, and the structural damping
needs to be chosen with care. An example of the effect of
the damping on the fatigue lifetime of a 5 MW OWT can be
found in Fig. 1, which indicates that having a good estimate
of the damping is important to accurately predict the turbine
lifetime. Therefore, using for instance experimental data as
shown in Kihm et al. (2018) could improve accuracy of these
estimates.

All phenomena that add damping to the offshore wind
turbine (OWT) structure are enumerated in Koukoura et al.
(2015):

1. aerodynamic damping, or damping introduced by the
aeroelastic interaction of the incident wind on the tur-
bine structure;

2. control damping, or damping introduced by the con-
troller actively in feedback to various measured quanti-
ties such as rotor speed, nacelle acceleration, or blade
loads – the damping is effectuated through actuators
such as generator torque, active blade pitch, or other
more advanced actuators;

3. mass or liquid dampers – such dampers are often specif-
ically designed to add damping to specific modes of the
turbine structure and are typically located near the tower
top, where motions are maximal;

4. structural damping, or material damping – this damping
is an inherent property of any physical structure;

5. hydrodynamic damping, or radiation damping – for off-
shore turbines, the motion of the submerged compo-
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Table 1. Prescribed structural damping by different standards (Van
der Tempel, 2006).

Standard Damping (% critical)

ISO 19902 DIS (2004) For fatigue: 1 %–2 %
American Petroleum Institute (2000) For fatigue: 2 %
Germanischer Lloyd (2000) 1 %
DNV (2004) 1 %

nents of the support structure is directly connected with
this kind of damping;

6. soil damping, or damping induced by the soil on the
piles driven into the sea bed.

Of all sources of damping, items (1)–(3) are often im-
plicitly included in most modern turbine simulation envi-
ronments that work in the time domain. When working in
the frequency domain, it often becomes necessary to include
the effect as an explicit additional damping ratio; see for in-
stance the work of Van der Tempel (2006) on the inclusion
of aerodynamic damping in frequency-domain support struc-
ture models. Structural damping has to be included explicitly
as an additional material damping ratio in most simulation
environments. Hydrodynamic and soil damping may be in-
cluded implicitly in the form of additional dashpots in the
structural model, or they may be subsumed directly into an
explicit structural damping ratio. Please refer to Versteijlen et
al. (2011) for an in-depth treatment of the modelling of soil
damping.

Depending on the damping components included, the ex-
plicit structural damping ratio used for structural design is
defined by various standards and codes to lie within 1 %–
5 % critical damping, with the lower values typically recom-
mended for fatigue design (Van der Tempel, 2006). The paper
summarises the damping recommendations of various stan-
dards as per Table 1.

Although these damping values are prescribed to be used
for design, they may be considerably more conservative
than the actual damping found in the field. For instance,
field experiments from Versteijlen et al. (2011) specifically
show that the soil damping found experimentally is typi-
cally higher than that used by the industry. Further, Martinez-
Luengo et al. (2016) mentions that overall turbine damping
may undergo changes in turbine lifetime. For more accurate
and economical design, and for the precise monitoring of
fleet turbine structural lifetimes, it is hence necessary to esti-
mate turbine damping directly from measured data. It should
be noted here that all forms of OWT damping are consid-
ered in the rest of the paper to be subsumed under the term
“structural damping”. The identification of individual forms
of damping using measurement data is not covered here.

The identification of damping from measurement data
can be performed following two philosophies: experimen-

tal modal analysis (EMA) and operational modal analysis
(OMA). EMA uses input and output data from dedicated
system experiments to obtain estimates of system damping.
Such experiments may involve the use of dedicated vibration
shakers or impact hammers such that the input excitation or
impulse is known. A recent example of the use of EMA for
determining ice mass accumulation on wind turbine blades
has been given in Gantasala et al. (2018), where both vibra-
tion shakers and impact hammers are used. With sufficient in-
strumentation, the data collected during such an experiment
is rich in information, and it is possible to estimate modal
frequencies and damping ratios and even the mode shapes
themselves. One possibility to extend this methodology for
OWT damping estimation is the use of transient load cases
such as a rotor stop test Devriendt et al. (2013) to generate
an OWT impulse response.

However, generating impulse responses only permits
OWT damping estimation in the idling state. In general, it is
expensive or infeasible to artificially excite the OWT in nor-
mal operation or to measure all sources of input excitation.
Hence, the estimation philosophy of OMA is considered in
the literature to be a more viable alternative for damping es-
timation (Devriendt et al., 2013). As the name suggests, this
approach uses turbine data from normal operation for damp-
ing estimation. This approach necessarily requires the use
of output-only data and makes the assumption that all input
sources of excitation are Gaussian white noise and therefore
by definition wide-sense stationary with zero mean and finite
variance.

While the scope of this paper is limited to a review of
OMA algorithms in the context of damping estimation of
offshore wind turbines, the considered algorithms can be ap-
plied to onshore wind turbines as well. Furthermore, it needs
to be noted that the inspiration for several classical OMA al-
gorithms originates from EMA techniques. EMA techniques
could be directly adapted for OMA approaches using the nat-
ural excitation technique (NExT) developed by James et al.
(1995), which is able to convert stationary output signals
from the plant into decaying impulse response signals, di-
rectly amenable to a log-decrement analysis of system damp-
ing. Another breakthrough for systems with multiple modes,
which are still able to admit a linear time-invariant (LTI) sys-
tem realisation, came with the development of the stochas-
tic subspace identification (SSI) family of algorithms (Van
Overschee and De Moor, 1991). These algorithms provide a
noniterative solution to the identification problem, using nu-
merically stable linear algebra techniques like the QR and
singular value decompositions.

However, significant challenges persist in the use of OMA
for the damping identification of offshore wind turbines. One
of the main assumptions of most OMA algorithms is that the
plant is LTI. However, as detailed in Ozbek et al. (2013),
due to several dynamic characteristics of the wind turbine,
including rotor rotation and wind speed-based variation of
plant dynamics, this OMA requirement is not strictly ful-
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filled by offshore wind turbines. Also, nonlinearities or non-
stationarities might arise during certain environmental condi-
tions complicating application of LTI-assuming OMA meth-
ods. For instance, as elaborated in Rezaei et al. (2016), this
might occur with large deflections resulting in geometric
non-linearity in long slender modern blades, requiring the
analyst to apply dedicated treatment. Further, due to the pres-
ence of rotor speed-dependent harmonics in measured data,
the white-noise assumption of input excitation is violated.

If data are used only from an idling OWT, the issue of har-
monic interference does not occur (Devriendt et al., 2014;
Kramers et al., 2016; Van der Hoek, 2017). Here, the LTI
approximation is relatively good, and the input excitation is
close to random. However, using only idling data severely re-
stricts the amount of data available. Further, a change in soil
or structural dynamics that may occur under operation cannot
be estimated. Hence, operational data for damping estimation
is often preferred, especially for structural health monitoring
purposes where structural issues may be more visible under
operation. A consequence of using operational data is that
the turbine is now a closed-loop system. However, as the am-
bient excitation is uncorrelated with the output vibrations,
no closed-loop measures need to be taken as is the case with
EMA methods. It should be noted that as the turbine operates
in closed-loop with the control system, the identified damp-
ing value also includes the damping effects of controller ac-
tivity. The separation of controlled–induced damping from
damping introduced by other sources is non-trivial and not
within the scope of this paper.

For stationary harmonics, many OMA algorithms directly
identify the harmonic peaks as the ones with zero damping.
However, as shown in El-Kafafy et al. (2014), as a result
of temporal variations in turbine rotor speed, the harmonic
peaks seen in a finite set of data may often appear damped
and difficult to distinguish from structural peaks. A second
issue occurs when the frequency of the harmonic coincides
with structural frequencies. Classical OMA algorithms may
fail to differentiate between the two, and the structural mode
may be estimated based on either mode or an incorrect com-
bination of the two. Finally, if the harmonic energy is signif-
icantly high, classical OMA algorithms may fail entirely in
identifying a structural mode close to the harmonic. In recent
literature, researchers have developed several methods to cir-
cumvent these problems or include harmonics explicitly in
the upgraded estimation algorithms. This paper provides an
overview and comparison of OMA algorithms intended to
handle the challenges raised in the damping identification of
offshore wind turbines. Note that only “black-box” identifi-
cation OMA algorithms are considered. “Grey-box” identifi-
cation algorithms where additional physics model represen-
tations are used could provide additional benefits but are out
of the scope of this paper. Furthermore, the authors evalu-
ated several of the considered algorithms on operational data
from an offshore wind farm and confirmed algorithm-specific
properties. However, the conclusions drawn in this paper are

motivated only by existing literature. The results from this
practical study will be considered in a future publication (Van
Vondelen et al., 2022).

The rest of the paper is organised as follows: Sect. 2 gives
an overview of the wind turbine structure and details the in-
strumentation for data collection. Section 3 discusses classi-
cal OMA algorithms, developed for general model parameter
estimation. Section 4 specifically discusses the case where
the harmonics are known and can be directly integrated into
OMA algorithms. Section 5 does not assume known harmon-
ics but instead defines statistical and other pre-processing
techniques that can be used to enhance damping identifica-
tion. Section 6 describes transmissibility-based identification
algorithms which should in principle be entirely insensitive
to harmonic interference. Section 7 defines suitability crite-
ria that may aid in the choice of a suitable OMA algorithm
for the specific use cases. Finally, Sect. 8 provides a practical
implementation discussion, and Sect. 9 concludes this review
paper.

2 Context and definition of the damping
identification problem

The OWT is a complex assembly of several components that
demonstrate several load-relevant modes of vibration. This
section briefly summarises the most relevant OWT structural
components and the relevant modes for the damping identifi-
cation problem. Further, the instrumentation desired and nec-
essary for high-fidelity estimation of OWT structural damp-
ing is also enumerated.

2.1 Components of an offshore wind turbine

For support structure design, an OWT may be considered to
consist of the following main components as shown in Fig. 2
(Van der Tempel, 2006).

– Rotor. This is the rotating part of the wind turbine, typi-
cally consisting of three rotor blades mounted on a hub.
The blade may be pitched along its longitudinal axis us-
ing hydraulics or electrical motors.

– Nacelle. This is the housing of the shaft and the drive
train, including the generator and gearbox, if any. The
nacelle is able to yaw in such a manner that the rotor can
be oriented as desired with respect to the wind direction.
Together, the rotor and nacelle form the rotor nacelle
assembly (RNA) of the wind turbine.

– Tower. Onshore, this is the part of the turbine support
structure located above the ground. Offshore, this part
of the support structure is typically located above sea
level and connects via a transition piece to the offshore
foundation.

Wind Energ. Sci., 7, 161–184, 2022 https://doi.org/10.5194/wes-7-161-2022
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Figure 2. Components of an OWT relevant for support structure
design (Van der Tempel, 2006).

– Foundation. The foundation is the part of the support
structure embedded directly into the seabed. Founda-
tions may be of multiple types as shown in Fig. 3 –
from left to right a monopile foundation, a gravity-
based foundation, a tripod, and a jacket-type founda-
tion. By far the most commonly installed foundation
type for offshore wind projects is the monopile foun-
dation. However, as water depths increase for offshore
wind projects, it is expected that more complex founda-
tion types will become more widely used. The here de-
picted foundation types are all of the fixed-bottom cat-
egory. Floating foundations are not covered within the
scope of the current review paper.

The integrated wind turbine structure comprising the
above-mentioned components shows different load-relevant
dynamic structural modes described in the next subsection.

2.2 Modal behaviour and harmonics of an offshore wind
turbine

As the objective of this paper is to identify the modal damp-
ing of an OWT from measured data, it is first required to
define the turbine modes that are most relevant for the loads
derived from turbine aeroelastic simulations. As described in
El-Kafafy et al. (2014), the first five structural modes of an
OWT are depicted in Fig. 4. These modes are listed below:

Figure 3. From left to right, a monopile foundation, a gravity-based
foundation, a tripod, and a jacket-type foundation (Van der Valk,
2014).

– first fore–aft and side–side bending modes;

– coupled blade-tower mode;

– second fore–aft and side–side bending modes.

Apart from these modes, the first two torsion modes typi-
cally fall within the frequency range of interest. For an OWT
design with a monopile foundation, torsion is rarely design-
driving, and torsional damping has not been studied to a sig-
nificant extent in literature. However, precise modelling of
torsion may become relevant for more complex foundation
types.

The third fore–aft and side–side bending modes are typ-
ically seen to reveal higher damping and correspondingly
lower contribution to the overall structural vibrational en-
ergy. It is expected that the algorithms reviewed in this pa-
per can be extended directly to the identification of third-
bending-mode damping; however, these modes have also not
received significant attention in current literature. With larger
and more flexible OWT structures, it is expected that the con-
tribution of these modes to total fatigue lifetime will increase.
Other structural modes, especially those corresponding to
frequencies higher than 5 Hz, are expected to have a low
impact on the overall turbine dynamic behaviour and have
hence not been studied to a significant extent in the context
of OWT global damping estimation. Sophisticated sensing
equipment and sufficient excitation might create opportuni-
ties for damage detection in this high-frequency range.

From Fig. 4 it can be observed that some of the structural
modes are relatively close to each other. This modal proxim-
ity may cause issues in damping estimation. As described by
Ozbek et al. (2013), the estimation problem is also compli-
cated by the following harmonic interference (here “P” refers
to the fundamental period of rotor rotation).

– 1P. This harmonic originates from mass, pitch, and
other rotor imbalances. This harmonic may interfere
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Figure 4. Dominant modes of an OWT. The fore–aft and side–side bending pairs are significantly close to each other (El-Kafafy et al., 2014).

with the first turbine bending modes, especially when
the tower is of the so-called “soft” type (first eigenfre-
quency lower than 1P).

– 3P. This harmonic originates from the rotational sam-
pling of turbulence, wind shear, tower shadow, and other
aerodynamic phenomena. This harmonic typically inter-
feres with the first turbine bending modes for low wind
speeds.

– 6P. This is a multiple of the 3P harmonic and may inter-
fere with the second turbine bending modes in practice.

– Higher harmonics are usually not relevant for damping
identification, although 9P, 12P, and so on may interfere
with the third structural bending modes of the OWT.

The above-defined structural modes and rotor harmonics
can be observed to varying extents in the measured data avail-
able from the OWT, as described in the next subsection.

2.3 Measurement data acquisition

The structural modes described in the previous section are
typically captured by the tower top/nacelle accelerometers
that are mandated by IEC61400 to be placed in all commer-
cial OWTs. As such, the information regarding structural fre-
quencies and damping may possibly be extracted from OWT
supervisory control and data acquisition (SCADA) data as
collected by most turbine manufacturers and wind farm own-
ers. However, these IEC-mandated sensors may not be ade-
quate for the current purpose for the following reasons.

– Sampling frequency. To extract the requisite information
from such SCADA data, it is required that the sampling

frequency of the data must be at least 5–10 Hz. In order
to save storage space, it is common practice to decimate
the data to 10 min signal statistics, which is clearly in-
adequate to perform dynamic analyses.

– Low-frequency fidelity. Accelerometers may have a
high-pass behaviour that may affect the frequency range
of interest. It is required that at least the frequency range
between 0.1–5 Hz is accurately represented in the mea-
sured data.

– Signal-to-noise ratio (SNR). while these accelerometers
typically have sufficient range to capture high acceler-
ation levels, they may not for economical reasons have
adequate resolution to be able to capture low accelera-
tion levels. Idling at low wind speeds leads to relatively
low levels of tower top motion, and the SNR of com-
mercial tower top accelerometers may be far too low to
extract useful modal information from this data.

– Modal amplitude. While the first bending modes of an
OWT show maximal amplitude at the tower top, this
is not typically the case for the higher bending modes.
As such, a location midway down the tower may show
cleaner signals with lower SNR that may be more suit-
able for data collection than the default tower top ac-
celerometers.

While additional sensors add significant cost, dedicated
damping measurement campaigns like Devriendt et al.
(2013); Manzato et al. (2014) often use a much more heavily
instrumented tower. Figure 5 shows a tower that is equipped
with 10 accelerometers, divided over four levels, with each
level measuring horizontal plane accelerations and the top
level also measuring torsion. It should be noted that as the
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Figure 5. Example of tower instrumentation for damping estima-
tion, with sensor locations and orientations (Manzato et al., 2014).

nacelle is permitted to yaw during the campaign, the mea-
sured accelerometer signals shall no longer be strictly fore–
aft or side–side but necessitate a coordinate transformation in
order to retrieve the fore–aft and side–side behaviour of the
tower. As such, it is also necessary for the yaw angle mea-
surement to be available for this coordinate transformation
and that this measurement is correctly synchronised with the
accelerometer data.

Other sensors that can be used for structural health mon-
itoring and damping estimation have been reviewed by
Wymore et al. (2015). Apart from accelerometers, the tower
can also be instrumented with displacement sensors or strain
sensors. Strain sensors show the highest sensitivity and SNR
when located at the base of the tower or the root of the blades,
and these may be of the electrical or optical (fibre Bragg)
type, which show different reliability and temperature sensi-
tivity characteristics.

Locating sensors on the foundation has so far been limited
to research applications since durability and accessibility can
be a major issue. These sensors may be of the same type as
tower sensors, (i.e. strain or acceleration sensors), but they
require special packaging to withstand being submerged in
seawater, and they may require diver-based maintenance.

Figure 6. Example of turbine instrumentation with reflective mark-
ers for photogrammetry or laser interferometry (Ozbek and Rixen,
2013).

Nontraditional sensors have also been reviewed in
Wymore et al. (2015); for instance, a microwave radar-based
system has been reviewed that is able to detect modal be-
haviour from a distance of 1 km. Lidar solutions have also
been proposed for data collection for modal analysis. Ozbek
and Rixen (2013) demonstrate the use of reflective mark-
ers located on a 2.5 MW turbine structure for the purpose
of modal analysis, as shown in Fig. 6. These markers do not
require any further electrical or optical instrumentation on
the turbine but can be used for deformation measurement us-
ing photogrammetric principles. With the use of cameras lo-
cated roughly 220 m away from the turbine, it is possible to
measure marker deformation with a resolution of 2.5 mm. At
standstill, this method shows low SNR, but it can be replaced
by laser interferometry measurements. In this technique, a
laser beam is projected on different markers, and the reflected
light is collected. Based on the change in the frequency of the
reflected beam, the velocity of the marker can be determined.
Although these techniques have been used in the paper for an
onshore turbine, an offshore application has so far not been
reported.

While input excitations, in the form of wind and wave
measurements, can also be incorporated in the estimation of
structural damping, the remaining part of the paper focusses
on output-only damping estimation and hence a description
of such sensors is omitted.

3 Classical operational modal analysis algorithms

Turbine vibration data available via measurement setups as
described in the previous section can be used to perform
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modal analysis and damping estimation of the turbine struc-
ture. The dynamics of an OWT can be modelled using first
principles, and the unknown model parameters, including
structural damping, can be estimated from measurement data
using system identification techniques described in Ljung
(1987). However, the damping term often appears nonlin-
early in such first-principles models of structural systems
and requires an iterative estimation method. Furthermore, un-
less good initial estimates are available, the optimisation of
such nonlinear cost functions can get stuck in local minima
that give incorrect damping estimates. The identification of
damping from vibration data is also an application where the
input to the dynamic system (i.e. the OWT) is typically un-
known or unmeasurable. For this reason, the focus of the cur-
rent and subsequent sections is on identification techniques
that can handle output-only identification and preferably use
linear-least-squares formulations or noniterative linear alge-
bra techniques to arrive at the damping estimate of the OWT
structure.

“Classical” OMA algorithms are covered in this section,
and they are defined as algorithms that do not pay specific
attention to the presence of rotor harmonics in measure-
ment data. Chronologically, these precede and form the ba-
sis for the algorithms that are described in subsequent sec-
tions which are able to specifically address rotor harmon-
ics. Classical OMA may perform damping estimation either
from time-domain or frequency-domain data (Rainieri and
Fabbrocino, 2014).

In the rest of the paper, the term “poles” of the identified
system and “eigenvalues” of the state evolution matrix corre-
spond to physical or fictional modes of the dynamic system
identified using measured data. The natural frequency of the
mode is given by the magnitude of the pole or eigenvalue,
while the ratio between the real part of the pole and the nat-
ural frequency provides a measure of modal damping.

3.1 Time-domain algorithms

As also described in the introduction, the first time-domain
algorithms described in the literature perform EMA, which
requires the structure to be excited using a vibration shaker
or an impact hammer. The impulse response and the free
decay or natural vibrations are used for damping estima-
tion in Ibrahim (1973), in the Ibrahim time domain (ITD)
method where the damping of different modes is identified
based on multiple impulse response measurement stations on
a vibrating structure. Zaghlool (1980) extends this work by
showing that with an accelerometer at a single measurement
station on a vibrating structure, it is possible to deduce all
relevant modal frequencies and dampings using impulse re-
sponse data, as long as all such modes are observable at that
station. This approach, named the single-station time-domain
(SSTD) technique, assembles the discretely sampled avail-
able acceleration data ÿk for time step k ∈ Z in the following

manner:

Ÿ (t1)=


ÿt1 ÿt2 · · · ÿt2n
ÿt1+T ÿt2+T · · · ÿt2n+T
...

...
. . .

...

ÿt1+2nT ÿt2+2nT · · · ÿt2n+2nT

 , (1)

where t1, t2, . . ., t2n are arbitrary instants of time and

¨Y (t1)= Ÿ (t1+1t),
¨
Y (t1)= ¨Y (t1+1t). (2)

T and 1t are arbitrary time lags. The modal frequencies
and dampings of the dynamic system can be estimated as the
eigenvalues of the following matrix:

Z =

[
Ÿ
¨Y

][
¨Y
¨
Y

]−1

. (3)

While these expressions refer to acceleration data, they can
also be used for velocity or displacement response data.

Brown et al. (1979) worked specifically on single-input
single-output (SISO) systems or on multivariable systems
that can be decomposed into decoupled SISO systems. This
paper lays out the framework of the complex exponential al-
gorithm which uses the discretely sampled experimental im-
pulse response yk to deduce a set of autoregressive coeffi-
cients a0· · ·a2n−1 for the underlying dynamic system repre-
sentation of the structure, in the following manner:
y2n−1 y2n · · · y4n−2
y2n−2 y2n−1 · · · y4n−3
...

...
. . .

...
y0 y1 · · · y2n−1




a0
a1
...

a2n−1

=

y4n−1
y4n−2
...
y2n

 . (4)

With the autoregressive coefficients, the eigenvalues can be
determined as the complex roots of

2n∑
k=0

akx
k
= 0, (5)

where a2n = 1 without loss of generality. It follows per def-
inition that the damping of each mode is the negative of the
normalised real part of the corresponding eigenvalue.

It is interesting to note that in this algorithm, as in many
subsequent algorithms, the chosen order of the autoregres-
sive system n is a user choice, and the rank of the data matrix
may be used as an indication of model order. Brown et al.
(1979) recommend using 1.5 times the number of expected
modes as the value of n. Per definition, this approach will
find artificial or mathematical poles as well as physical poles.
Artificial poles are likely to be found in areas of low mode
density, and the algorithm may be unable to identify closely
spaced modes with fidelity. Filtering of data is suggested as
a palliative for this issue, and indeed this may also improve
the performance of several approaches mentioned in this pa-
per. In this algorithm, using different data samples may lead
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to variance in the identified modes. Hence, a least-squares
approach, the least-squares complex exponential (LSCE) al-
gorithm, has also been presented in this paper to improve the
robustness of the solution.

The above algorithms deal specifically with one single-
output channel. For the case where multiple output channels
are available from the measurement system on the vibrat-
ing structure, the eigensystem realisation algorithm (ERA)
was developed by Juang and Pappa (1985). In this algo-
rithm, given the multivariable impulse response of the sys-
tem Yk ∈ Rny , the following (block Hankel) matrix can be
defined:

Hk−1(r,s)=


Yk Yk+1 · · · Yk+s−1
Yk+1 Yk+2 · · · Yk+s
...

...
. . .

...

Yk+r−1 Yk+r · · · Yk+r+s−2

 . (6)

The state evolution A matrix of the underlying dynamic
system can be estimated from a singular value decomposition
(SVD) of the data matrix in the following manner:

H0(r,s)= U6V T , (7)

A=6−
1
2UTH1(r,s)V6−

1
2 . (8)

The eigenvalues of A give the modal frequencies and damp-
ing of the system. Here, it is important to note that the pair
(r,s) needs to be larger than the expected order n of the sys-
tem. For an ideal system with no noise, the (n+ 1)th and
higher singular values in the diagonal matrix 6 will be zero.
Practically, due to noise, these values will be nonzero. How-
ever, the order of the system n can typically still be identified
by a jump in the magnitude of the singular values of this
matrix. Hence, the eigenvalues of A beyond the first nmodes
can be neglected, as they are assumed to be artificial. This or-
der identification step is widely used in algorithms that rely
on an SVD step in the identification procedure.

While in this review paper it is assumed that the OWT is
LTI, this assumption can be relaxed if one were to use the
extension of ERA for linear time-varying (LTV) systems ac-
cording to Majji et al. (2010). This algorithm uses a coordi-
nate transformation to enable the use of ERA for LTV sys-
tems.

The literature above requires impulse response data to gen-
erate damping estimates. However, generating a pure OWT
impulse response, uninfluenced by wind and waves, is not
feasible. Hence, it is preferable to use operational turbine
data for damping estimation. It was proven by James et al.
(1995) that the cross-correlation Rijk(t) of two output se-
quences i and j , given an unknown input k, shows the same
frequencies and exponential decay as the impulse response of
the structure. If the input k is a zero-mean white-noise signal
of constant covariance αk ,

Rijk(t)=
n∑
r=1

Arijke
−ζ rωrN t cosωrDt +B

r
ijke
−ζ rωrN t sinωrDt, (9)

[
Arijk
Brijk

]
=

n∑
s=1

αk9ir9kr9js9ks

mrωrDm
sωsD

∞∫
0

e(−ζ rωrN−ζ
sωsN )λ

sinωsDλ
[

sinωrDλ
cosωrDλ

]
dλ. (10)

Here, ζ r , ωrN , ωrD , and mr are the damping, natural fre-
quency, damped natural frequency, and modal mass corre-
sponding to the rth mode. Further, 9∗ corresponds to the
constant modal matrix that transforms structural model co-
ordinates into the modal coordinates of the system.

Given this insight that cross-correlation of two output se-
quences behaves in the time domain in the same manner as
an impulse response, James et al. (1995) extend the impulse-
response-based modal analysis methods like ERA, described
above, with the natural excitation technique (NExT) and can
successfully perform the damping estimation of a wind tur-
bine based purely on operational output data. The NExT al-
gorithm has also been combined with the LSCE algorithm
and used for the identification of OWT damping in Ozbek
and Rixen (2013) and Ozbek et al. (2013). The authors iden-
tify the first two modal frequencies and damping of an OWT
from operational data; however, they point out that signif-
icant variance is seen in the fore–aft damping estimate. It
must be noted here that the NExT technique requires at least
two concurrent sets of measurement channels (e.g. two sets
of strain sensors at different structural locations), of which
all relevant structural modes must be observable in at least
one of these measurement channels.

As distinct from the methods described above, subspace
identification does not treat the underlying system as an
input–output transfer matrix but focusses on attaining a (min-
imal) state-space realisation of the plant. This identification
technique relies on the principle that the state of the system
can be retrieved from the measured data. Based on such a
(Kalman optimal) state estimate, the state evolution matrix
A of the system can be estimated. As they work with state-
space models, all subspace identification algorithms are in-
herently multivariable. For the MOESP (multivariable output
error state space) and the N4SID (numerical algorithms for
subspace state-space system identification) families of sub-
space identification algorithms, it has been formally shown
by Verhaegen and Dewilde (1992) and Van Overschee and
De Moor (1994) respectively that asymptotically unbiased
estimates of model parameters are achieved as long as the
system input has adequate persistency of excitation. These
two concepts are relevant for all identification techniques re-
viewed herein.

– Damping estimation of an OWT is only possible if the
(unmeasurable) inputs sufficiently excite all structural
modes of interest. For a typical operating wind turbine,
the wind/wave excitation is typically sufficient to excite
the lower structural modes, but the excitation response
at the third and higher structural modes may not con-
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tain enough energy to separate them from measurement
noise.

– Asymptotic unbiasedness implies that a sufficient num-
ber of data are necessary to perform the damping iden-
tification. Although formal proofs do not exist for all
methods reviewed, the quality of damping estimation
improves with an increasing amount of measurement
data for most algorithms. Ozbek et al. (2013) recom-
mend that for the LSCE and SSI algorithms, a minimum
of 200 cycles of the lowest frequency of interest are re-
quired for adequate identification quality, for the appli-
cation of OWT damping estimation.

Verhaegen and Dewilde (1992) also prove formally that the
MOESP approach is less sensitive to measurement noise as
compared to the non-subspace methods, especially for lightly
damped structures.

Stochastic subspace identification (SSI) algorithms, as de-
veloped by Van Overschee and De Moor (1991), are suitable
for the damping identification of structures subject to unmea-
surable disturbances. SSI arranges the obtained measurement
data Yk ∈ Rny into so-called “past” and “future” block Han-
kel data matrices, H (0, i−1) and H (i,2i−1) defined as fol-
lows:

H (k, i)=


Yk Yk+1 · · · Yk+j−1
Yk+1 Yk+2 · · · Yk+j
...

...
. . .

...

Yk+i Yk+i+1 · · · Yk+i+j−1

 . (11)

For the construction of the past Hankel data matrix H (0, i−
1), it is sufficient to consider a reduced number of reference
outputs as long as observability is retained (Peeters and De
Roeck, 1999). The column size of both Hankel matrices re-
mains j , and the quality of the damping estimate increases
as j →∞. Further, as in ERA, the choice of i must be made
such that it is larger than the expected model order of the
underlying system.

The primary postulate of the SSI algorithms is that the
state can be retrieved from the row space of the orthogo-
nal projection of the row space of the future data on the row
space of the past data, as long as the unknown input excita-
tion is zero-mean white noise. Under the approximation that
j →∞ is valid, the state of the system can be retrieved from
the matrix Zi in the following:

E[H (i,2i− 1)H (0, i− 1)T ](E[H (0, i− 1)

H (0, i− 1)T ])−1H (0, i− 1)=OiCiL−1
i H0,i−1︸ ︷︷ ︸
Zi

. (12)

Here, E[∗] is the expectation operator for stochastic signals.
Thus, the row space of the left-hand side of the above equa-
tion gives the Kalman optimal state estimates of the system.
In the equation above, Li ∈ Riny×iny is the constant output

covariance matrix, and the (unknown) system forward and
backward observability matrices are defined as

OT
i =

[
CT ATCT · · · (Ai−1)TCT

]
, (13)

CTi =
[
Ai−1G Ai−2G · · · G

]
. (14)

Here, A ∈ Rn×n is the state evolution matrix to be deter-
mined, C ∈ Rny×n is the unknown system output matrix, and
G ∈ Rn×ny is the unknown backwards Kalman gain. Once
the states Zi have been estimated, A is given by

A= E[Zi+1Z
T
i ](E[ZiZ

T
i ])
−1. (15)

Here it needs to be noted that neither the states Zi nor the
matrix A are unique. Subspace identification algorithms can
only estimate the states and the state evolution matrix up to
a similarity transformation. However, as the system eigen-
values remain invariant under similarity transformations, this
limitation is not expected to affect the estimation of struc-
tural damping. The covariance of the resultant SSI damping
estimates has been defined by Reynders et al. (2008) and val-
idated by Reynders et al. (2016).

One of the conditions for low estimate covariance is that
the row size i of the Hankel data matrix is required to be
larger than the expected order n of the system. However, ex-
cessively large model order estimates may lead to overfitting
of the measurement data. Van der Veen et al. (2013) show
that the Akaike information criterion can be used to deliver a
good first estimate of this SSI identification hyperparameter.

Ozbek et al. (2013) compare the performance of SSI and
LSCE using OWT simulation data obtained using a nonlin-
ear aeroelastic tool. In Kramers et al. (2016) and Van der
Hoek (2017), MOESP and predictor-based subspace identi-
fication (PBSID) SSI approaches (Van der Veen et al., 2013)
were used for damping estimation of OWTs from field data,
respectively. In both cases, the measurement data were ob-
tained from an idling wind turbine; hence no harmonics were
present in the data, and first-mode damping estimation could
be performed successfully.

While this subsection focussed on the use of time-domain
data for the estimation of system damping, frequency-
domain data have also been classically used for this purpose,
as summarised in the next subsection.

3.2 Frequency-domain algorithms

While time-domain algorithms extract damping information
from time-domain data, the techniques introduced in this sec-
tion use the frequency response function (FRF) or frequency-
domain vibration data to perform modal analysis. While
these techniques can make direct use of operational OWT
data, they make the implicit assumption that the underlying
dynamical system is LTI. For an OWT, this implies that the
data collected must not include significant changes in oper-
ating conditions such as wind speed, turbulence intensity, ro-
tor thrust, or rotational speed. While the original frequency-
domain modal analysis algorithms were developed for SISO
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systems, recent literature also includes extensions to the mul-
tivariable case.

One of the first frequency-domain techniques was peak-
picking or basic frequency domain (BFD), as described
in Bendat and Piersol (1980) and Rainieri and Fabbrocino
(2014). The user is here required to identify the structural
peak in frequency-domain data manually and then fit the
damping parameter to achieve the measured intensity and
roll-off of this peak. While this algorithm clearly requires
significant expert user intervention, it also forms the basis
for subsequent algorithms developed in literature, such as
the frequency-domain decomposition (FDD) technique de-
veloped by Brincker et al. (2000b). This method works on
the principle that for a lightly damped structure in a nar-
row frequency band of interest around an expected struc-
tural mode, the frequency-domain structural response of the
system Gyy(jω) can be approximated as the superposition
of a very few modes k ∈ Sub(ω), typically only one or two
modes:

Gyy(jω)=
∑

k∈Sub(ω)

dkφkφ
T
k

jω− λk
+
dkφkφ

T

k

jω− λk
, (16)

where dk is a scalar constant, ω is the frequency, and φk and
λk are the mode shape vectors and system eigenvalues re-
spectively. The ∗ indicates a complex conjugate. The FDD
method states that the dominant mode shape vector φi in the
frequency range of interest can be directly estimated from the
SVD of Gyy(jωi) at the expected natural frequency ωi :

Gyy(jωi)= Ui6iUHi , φ̂i = ui1, (17)

where Ui =
[
ui1 ui2 · · · uin

]
. From the mode shape

vector and the FRF, the damping can be estimated. In the
event that two modes are dominant at the frequency ωi , the
FDD algorithm may have an issue in estimating the mode
shape of the dominant mode. However, as for an OWT with
a monopile foundation, if the closely spaced modes (fore–aft
and side–side) are orthogonal, then the first two vectors ui1
and ui2 give an unbiased estimate of both mode shape vec-
tors. Brincker et al. (2000b) demonstrate this concept with
the modal analysis of a prismatic structure. In general, as de-
scribed by Rainieri and Fabbrocino (2014), FDD is not able
to perform unbiased estimation of closely spaced modes or
harmonics, especially if one of the structural modes is non-
dominating in the frequency domain.

Jacobsen et al. (2007) extend this concept in the technique
enhanced frequency-domain decomposition (EFDD), which
involves an inverse Fourier transform (IFT) of the power
spectral density function in the narrow frequency band as de-
scribed above. The damping of the structural mode of inter-
est is then obtained as the logarithmic decrement of the au-
tocorrelation function. This extension is visualised in Fig. 7
and enhances the robustness of the damping estimates ob-
tained using this technique. However, as reported in Rainieri

et al. (2010), the damping estimation using EFDD also suf-
fers from reduced accuracy for closely spaced modes.

While the FDD algorithms described above typically fo-
cus on a localised frequency band, the least-squares complex
frequency domain (LSCF) or PolyMAX algorithm developed
by Guillaume et al. (1996) fits a dynamic system model to the
entire FRF spectrum in a least-squares sense. This algorithm
as described by Peeters and Van der Auweraer (2005) works
on the assumption that the underlying dynamic system ad-
mits a (multivariable) realisation of the form

G(ω)= B(ω)A(ω)−1, (18)

where the numerator and denominator can be parameterised
using the exponential basis functions �r (ω) as

Bo(ω,β)=
n∑
r=0

�r (ω)βor , (19)

A(ω,α)=
n∑
r=0

�r (ω)αr , (20)

�r (ω)= ejω1tr , (21)

where Bo(ω), o ∈ [1, . . .ny] is each row of the matrix B and
1t is the sampling time of the data. Based on the available
FRF data, the parameters (αr ,βor ) can be estimated by for-
mulating the estimation error for each output channel at each
frequency as εo(ωk,βo,α) in the following manner:

εo(ωk,βo,α)= wo(ωk)(Bo(ωk,βo)−Gyy(ωk)A(ωk,α)), (22)

where wo(ω) is a frequency-varying weighting function that
can be shaped by the user to force the algorithm to focus
on the frequency range of interest and ignore the more un-
certain parts of the frequency spectrum. Based on the esti-
mation error defined above, the parameters can be estimated
by minimising the following suboptimal linear-least-squares
problem:

min
αr ,βor

ny∑
o=1

Nf∑
k=1

tr(εo(ωk,βo,α)H εo(ωk,βo,α)), (23)

where Nf is the total number of data points available in the
FRF Gyy(ω). The parameters α can be obtained by minimis-
ing this expression as the nontrivial solution to the following
equation:

ny∑
o=1

(To− STo R
−1
o So)α = 0, (24)

where the terms in the equation are determined as

Ro = Re(XHo Xo), So = Re(X
H
o Yo), To = Re(Y

H
o Yo), (25)

Xo =

 wo(ω1)
[
�0(ω1) · · · �n(ω1)

]
...

wNf (ωNf )
[
�0(ωNf ) · · · �n(ωNf )

]
 , (26)
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Figure 7. Peak-picking and FDD in the frequency domain (left) and the resultant correlation function from the IFT in the time domain (right)
(Jacobsen et al., 2007).

Yo =


−wo(ω1)

[
�0(ω1) · · · �n(ω1)

]
⊗Gyy (ω1)

.

.

.

−wNf (ωNf )
[
�0(ωNf ) · · · �n(ωNf )⊗Gyy (ωNf )

]
 . (27)

Based on the identified parameters α, the modal damping of
the system can be determined.

One of the advantages of working in the frequency do-
main is that the FRF can be smoothed using windowing of
the FRF data. It should be noted, however, that the window
type should be chosen with caution, as a Hanning window
may cause bias in the estimate of the structural damping. Fur-
ther, with the help of the weighting function in the algorithm,
the desired frequency range can be weighted more heavily,
while higher frequencies corresponding to noise and nonlin-
earities can be weighted to a much lighter extent. As a result
of these characteristics, it was shown in Peeters and Van der
Auweraer (2005) that cleaner identification of modal proper-
ties can be achieved by the PolyMAX algorithm as compared
to an SSI algorithm without any pre-processing or enhance-
ment techniques. Figure 8 presents a stabilisation diagram
showing identified mode against modal order, superimposed
on the FRF data used for identification, where it is evident
that PolyMAX performs clear and stable identification of the
main structural modes of the underlying system for a wide
range of chosen model orders.

All modal analysis methods using operational data de-
scribed above make the assumption that the input excitation
is zero mean white noise, but this assumption is no longer
valid for operational wind turbine data due to the presence of
harmonics, as described in Tcherniak et al. (2011). The study
by Gasparis (2019) evaluates selected classical OMA algo-
rithms, specifically ERA, SSI, FDD, and LSCF for the es-
timation of damping from simulated operating wind turbine
data. It concludes that although some modes may be iden-
tifiable with classical techniques, they are typically not able
to distinguish between closely spaced harmonics and modes.
Hence, the subsequent sections will focus on the enhance-
ments made to classical OMA methods to allow high-fidelity
estimation of OWT structural damping in the presence of har-
monics.

4 Operational modal analysis algorithms for data
with known harmonics

The presence of harmonics in the operational OWT data
available can cause an issue for the classical OMA algo-
rithms described in the previous section. For the case where
OWT structural modes and harmonics are widely separated,
and when the rotor speed is constant over time, harmonics
are identified by the OMA algorithms as artificial modes
with zero damping. However, if the rotor speed changes over
time, it may not be possible to distinguish between structural
modes and harmonics in this manner. Further, if the struc-
tural modes and harmonics are closely spaced, the harmonic
may affect the damping estimation of the structural mode. In
recent literature, several authors have attempted to enhance
classical OMA algorithms to account for harmonics in mea-
sured data. If the harmonics are known, by way of a known
and correctly synchronised rotor speed signal, the harmonics
can either be removed from the data or directly incorporated
into the OMA algorithm.

Removal of known harmonics from OWT data may not
be trivial, especially in the case of closely spaced structural
modes and extraneous harmonics. The use of filters may
strongly alter the structural damping information contained
in measurement data.

To some extent, the drawbacks of harmonic filtering can
be alleviated by using time synchronous averaging (TSA)
(Peeters et al., 2007), where harmonics can be removed by
isolating them from the measurement data. In this method,
given the known rotor speed, the response data are resam-
pled into the “angle” domain using constant angular speed
increments. In this domain, vibration data are sampled over
the rotor azimuth instead of time. Synchronous averaging is
then performed over multiple angle-domain data series so
that harmonic components are clearly separated, and the ran-
dom components are averaged out; see Fig. 9. Once isolated,
the harmonic components can be removed from the raw data
in the angle domain, and the signal can be resampled back
into the time domain for use with classical OMA algorithms.
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Figure 8. Stabilisation diagram using SSI (left) and PolyMAX (right) (Peeters and Van der Auweraer, 2005).

Figure 9. Impact of time synchronous averaging (TSA) in the angle domain (left) and the effective frequency response function of TSA
(right) (Braun, 2011).

TSA requires that the rotor speed is known exactly and
stationary, which may not always be the case for OWT mea-
surement data. Another limitation of TSA is that it is ap-
plicable only to cases where the spectrum shows sharp har-
monic peaks. However, for OWT measurement data, the phe-
nomenon of “thick-tailed” harmonic peaks described by Tch-
erniak et al. (2011) limits the applicability of TSA. An appli-
cation of TSA to damping estimation from operating OWT
data has been presented in Manzato et al. (2014), where it is
shown that TSA can significantly reduce harmonic peaks in
the spectrum of the measurement data, but for the 3P peak
and its harmonics, a small peak may remain with significant
damping. As an alternative to TSA, OMA algorithms can
also be extended to include signal generators, or artificial si-

nusoidal signals with frequency equal to the known harmonic
frequency, directly into the identification procedure.

For instance, Mohanty and Rixen (2004a) extend the
LSCE algorithm to include signal generators of the known
harmonics present in the measured vibrational data. As mo-
tivated above, it is expected that this OMA algorithm will
identify the harmonics of known frequency ω with zero
damping as one of the solutions to the linear set of equations.
To enforce this behaviour, the authors explicitly include two
extra roots that correspond to this harmonic component into
Eq. (4) as xk = e±ω1t , where 1t is the sampling time of the
measured data. This equation is hence modified by the fol-
lowing block of linear equations for each known harmonic
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expected to be present in the measurement data:

[
0 sin(ω1t) · · · sin(ω(2n− 1)1t)
1 cos(ω1t) · · · cos(ω(2n− 1)1t)

]
a0
a1
...

a2n−1


=−

[
sin(2nω1t)
cos(2nω1t)

]
. (28)

Herewith, form known harmonics, the least-squares prob-
lem from Eq. (4) becomes



R2n−1 · · · R2n+2m−1 R2n+2m · · · R4n−2

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.
R0 · · · R2m−1 R2m R2n−1
0 · · · sin(ω1(2m− 1)1t) sin(ω12m1t) · · · sin(ω1(2n− 1)1t)
1 · · · cos(ω1(2m− 1)1t) cos(ω12m1t) · · · cos(ω1(2n− 1)1t)
.
.
.

.
.
.

.

.

.

.

.

.
.
.
.

.

.

.
0 · · · sin(ωm(2m− 1)1t) sin(ωm2m1t) · · · sin(ωm(2n− 1)1t)
1 · · · cos(ωm(2m− 1)1t) cos(ωm2m1t) · · · cos(ωm(2n− 1)1t)




a0
.
.
.

a2m−1
a2m
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(29)

It can be seen in the equation above that the impulse response
y∗ from Eq. (4) has been replaced by the cross-correlationR∗
following the NExT philosophy. As before, the solution to
the equation

∑2n
k=0akx

k
= 0 gives the eigenvalues of the so-

lution, including the zero-damping harmonics x = e±jω∗1t

enforced by the additional constraint. Note that, to imple-
ment this extension successfully, the harmonics should be
stationary and known a priori. Mohanty and Rixen (2004a)
show that a minor deviation from the exact value of the har-
monic can already produce incorrect identification results.
A similar extension of the ERA algorithm has been pre-
sented in Mohanty and Rixen (2006), where the harmonic
solution xk = e±jω∗1t is included in the block Hankel ma-
trix. The same authors have also extended the ITD and the
SSTD algorithms to include known harmonics in a similar
manner in Mohanty and Rixen (2004b) and Mohanty and
Rixen (2004c), respectively. As in the modified LSCE algo-
rithm, these modified algorithms are able to identify struc-
tural modes more accurately, as long as the harmonics in-
cluded in the algorithm are stationary and accurately known
a priori.

Similarly, for harmonics in the input spectrum, the SSI ap-
proach was modified to the harmonic modification SSI (HM-
SSI) approach by Dong et al. (2014). This algorithm incor-
porates harmonics in the procedure in a manner similar to
the modified LSCE, namely, by extending the Hankel data
matrix to include the known harmonic signals. HM-SSI can

Figure 10. Stability diagram of system excited by white noise and
three harmonic components. HM-SSI identified the harmonics as
false modes, while SSI identifies them as structural modes. The true
modal frequency is found by HM-SSI (Dong et al., 2014).

successfully distinguish between structural modes and har-
monics, where classical SSI fails, as shown in Fig. 10.

For all algorithms described above, it is necessary to ex-
tend the Hankel data matrix to include harmonics. Accurate
a priori knowledge of harmonics is required, and the algo-
rithms degenerate to the classical algorithms if such informa-
tion is not available. When harmonics are not known a priori,
statistical techniques may be needed and are discussed in the
next section.

5 Operational modal analysis algorithms for data
with unknown harmonics

If harmonics of unknown frequency are present in the data,
classical OMA algorithms identify both structural modes and
harmonics as system modes. Harmonics can typically be
identified as the estimated modes with zero damping. How-
ever, due to variations in OWT rotor speed, turbine harmon-
ics might be more difficult to identify as such in the mea-
surement spectrum, especially in below-rated operation. Sta-
tistical indicators may be used for differentiating harmonics
from structural modes. This section summarises three such
indicators: the signal cepstrum, the probability density func-
tion (PDF), and kurtosis.

5.1 Cepstrum

The concept of the cepstrum has been described by Ran-
dall and Hee (1982) and applied for OMA by Randall et
al. (2012). The original definition of the cepstrum was as
a “spectrum of a spectrum”. Harmonics appear as periodic
peaks in the typical spectrum, while the structural peaks are
broadly and randomly distributed. If the cepstrum of the sig-
nal is derived, the harmonics are converted into clearly iden-
tifiable cepstral peaks, the so-called “rahmonics”. The struc-
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Figure 11. Schematic diagram of the cepstral method for removing
harmonics from time-domain signals (Randall et al., 2012).

tural modes are no longer visible in the cepstrum, and hence
isolation of harmonics is achieved.

To ensure that the cepstral transformation is fully re-
versible and the original spectrum and time series can be re-
trieved from the cepstrum, the cepstrum has been redefined
by Randall et al. (2012) as the inverse Fourier transform of
the logarithm of the power spectrum of the signal. The cep-
strum Cc(τ ) of a signal x(t) with spectrum X(ω) is hence
defined as

X(ω)= F(x(t)), (30)

Cc(τ )= F−1(log(X(ω))), (31)

where F is the Fourier operator.
The concept of cepstral rahmonics corresponding to data

harmonics remains valid in this new definition. Once identi-
fied, the rahmonics can be edited out. The original data har-
monics are then eliminated if a time-domain signal is recon-
structed from this edited cepstrum. This process is depicted
schematically in Fig. 11, and a practical example is shown in
Fig. 12.

Apart from selectively editing rahmonics in the signal cep-
strum, Randall et al. (2012) also describe the use of a low-
pass “lifter” (filter in the cepstral domain). This implies the
removal of the higher end of the signal cepstrum using a rect-
angular or exponential window, as this part of the signal is
expected to correspond to noise. One advantage of this ap-
proach is the ease of automation since specific rahmonics
do not need to be identified and edited. It should be noted
that exponential liftering alters the damping of the modes in
the signal, and a post-processing correction is required to the
damping estimates. A combination of liftering and rahmonic
editing can increase the quality of damping estimation.

Automated low-pass liftering of OWT measurement data
has been described in Manzato et al. (2014). It is shown in
this case that if sufficient spacing is not present in the original
data between the structural mode and the harmonic, cepstral
liftering can strongly alter the structural information content
of the signal and lead to poor damping estimates. However,

the combination of notch liftering of rahmonics and subse-
quent low-pass liftering of OWT measurement data in Man-
zato et al. (2013) combined with a PolyMAX modal iden-
tification step shows significant improvement in identifica-
tion fidelity. Specifically, the cepstral pre-processing step in-
creases the number of structural frequencies identified by the
PolyMAX algorithm, as described by Peeters et al. (2004).
Furthermore, harmonics are no longer identified as structural
modes by this algorithm.

In the references above, the cepstrum makes use of the
periodicity of unknown harmonics for their removal. Alter-
native approaches for identifying unknown harmonics ex-
ploit the difference in the statistical distribution of the struc-
tural response and harmonic response to perform the pre-
processing harmonic isolation, as described in the next sub-
sections.

5.2 Probability density function (PDF)

Once the system poles have been estimated using a classical
OMA algorithm, the structural modes can be distinguished
from harmonics based on the PDF. The differentiation is
based on the difference between the shape of the PDF of a
stochastic structural response and that of a harmonic excita-
tion, as depicted in Fig. 13. As described in Brincker et al.
(2000a), the structural response PDF is approximately Gaus-
sian, while the ideal harmonic PDF g(y) is

g(y)= (π cos(sin−1 y

a
))−1, (32)

where a is the amplitude of the harmonic signal. This in-
sight can be directly applied in conjunction with classical
frequency-domain identification techniques such as FDD to
separate structural modes from harmonics. Determining the
PDF of the signal treated with a narrow band-pass filter
around the spectrum peak of interest directly gives informa-
tion on whether the peak corresponds to a structural mode or
a harmonic.

It has been shown in Motte et al. (2015) that the harmon-
ics from operational turbine data may not fully conform to
the shape shown in Fig. 13. Further, because the evaluation
of the PDF is to some extent qualitative, automation of this
procedure is considered to be difficult.

5.3 Kurtosis

Kurtosis has been proposed as a numerical indicator for dis-
tinguishing between the PDF of a structural mode and a har-
monic. Kurtosis γ is defined as the fourth central moment of
stochastic variable x:

γ (x|µ,σ )=
E[(x−µ)4

]

σ 4 , (33)

where µ and σ are the mean and standard deviation of x, re-
spectively. The kurtosis of the signal can be calculated, after
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Figure 12. Cepstral method for removal of harmonics. The harmonics are indicated by H, the structural modes by S, and the rahmonics in
the cepstral domain by R (Motte et al., 2015).

Figure 13. Comparison between the different shapes of a nor-
malised PDF of a structural mode (left) and a harmonic (right)
(Motte et al., 2015).

band-pass filtering the signal around the spectrum peak of in-
terest. If the band-pass-filtered signal corresponds to a struc-
tural mode, it shows a normal PDF as in the above section,
and the kurtosis value will be close to 3. On the other hand,
for pure harmonic signals of zero mean and unit variance, the
kurtosis is close to 1.5. Based on this difference in kurtosis
values, identified modes can be classified as structural modes
and harmonics.

This approach has been used to identify and edit har-
monics from the frequency spectrum before applying the
frequency-domain EFDD algorithm by Jacobsen et al. (2007)
for the identification of structural modes. While this ap-

proach shows better results compared to classical EFDD,
the performance deteriorates as the harmonics and structural
modes get closer. Editing harmonics is also a nontrivial ex-
ercise – while the authors use linear interpolation to replace
the edited harmonics, polynomial interpolation has also been
suggested for better spectral quality of the input data to the
EFDD algorithm.

Statistical indicators like kurtosis can also be used to iso-
late harmonics in SSI algorithms. Once the harmonics are
identified, the damping estimate can be enhanced using an
algorithm like the Kalman-filter-based SSI (KF-SSI) tech-
nique developed by Greś et al. (2021). Here, a Kalman fil-
ter is used to obtain an estimate of the harmonic component
of the system state. Subsequently, as in several classical sub-
space identification algorithms like MOESP, the row space
of the raw output data is projected onto the complement of
the row space of the harmonic subsignal estimate, to remove
the influence of harmonic perturbation. A refined damping
estimate can now be obtained by applying classical SSI tech-
niques to the projected data.

Greś et al. (2021) demonstrate the advantage of KF-SSI
over classical SSI techniques experimentally with measure-
ments from a vibrating plate, excited with a harmonic signal
with its frequency close to the first structural frequency of
the plate. As seen in Fig. 14, classical SSI is unable to distin-
guish between the structural frequency and the harmonic for
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model order below 20, while KF-SSI is able to identify the
structural frequency also at low model orders.

While the extensions above reduce the sensitivity of clas-
sical OMA algorithms to the presence of harmonics, there
also exist algorithms based on transmissibility that are by
construction insensitive to rotor harmonics. These will be re-
viewed in the next section.

6 Transmissibility-based algorithms

Transmissibility-based OMA algorithms identify the struc-
tural parameters of the OWT in a manner completely inde-
pendent of the load spectrum. This recently developed fam-
ily of algorithms can be exemplified by the transmissibility-
based operational modal analysis (TOMA) algorithm intro-
duced by Devriendt and Guillaume (2007). These algorithms
are based on the transmissibility function Tij , defined as the
ratio between two structural responses Xi(ω) at location i
and Xj (ω) at location j , under loading condition k:

T kij (ω)=
Xi(ω)
Xj (ω)

=
Hik(ω)
Hjk(ω)

. (34)

Here,H∗k(ω) is the (unknown) transfer function from the un-
measured force inputs to the responses measured at ∗. Trans-
missibility functions do not require a strictly white noise in-
put force spectrum (Devriendt and Guillaume, 2008) and are
hence ideal for OWT damping estimation. The points of in-
tersection of multiple transmissibility functions correspond
to the poles of the underlying dynamic system; see Fig. 15.
Hence, the poles of the system are the same as those of
1−1T k`ij (ω) defined as

1−1T k`ij (ω)=
1

T kij (ω)− T `ij (ω)
. (35)

Since the frequency response of this system can be
constructed from measurement data, a classical frequency-
domain OMA method can subsequently be used for damping
estimation using the transmissibility concept. The concept of
transmissibility has been extended to multivariable systems
by Maia et al. (2001), and TOMA for multivariable systems
has been presented by Devriendt et al. (2010). As long as per-
sistency of excitation is ensured, damping estimation can be
performed independent of the presence of harmonics in the
measurement data. However, to ensure a well-conditioned
intersection of transmissibility functions, the loading condi-
tions used for generating each function should be sufficiently
different, as described by Weijtjens et al. (2014a). The au-
thors present a polyreference version of TOMA (pTOMA),
which uses a polynomial parametric model to perform modal
identification based on the frequency response function of
1−1T k`ij (ω) for a limited number of loading conditions. The-
oretically, the authors prove that damping estimation can be
performed based on the data from only two different load-

ing conditions, but identification fidelity improves when data
from multiple different loading conditions are available.

Since multiple datasets for different loading conditions
may not be trivial to obtain for OWT data, Weijtjens et
al. (2014b) introduce time-varying TOMA analysis (TV-
TOMA), which uses time-varying transmissibility functions.
Here, the assumption of stationarity of data is relaxed, and
the loading is permitted to be varying continuously. It is
then possible to use different time sample periods from the
same dataset to determine system damping using transmis-
sibility functions, as shown in Fig. 16. This significantly re-
duces the overall amount of measurement data required for
transmissibility-based damping estimation.

An extension of frequency-domain identification using the
power spectral density transmissibility (PSDT) concept was
developed by Yan and Ren (2011) to relax the TOMA re-
quirement of multiple loading conditions. The PSDT is de-
fined in a manner similar to the definition of the transmissi-
bility (Eq. 34), using the cross power spectral density (PSD)
Sxzxu (jω) between the measured output xu and the reference
output xz which admits the following modal description:

Sxzxu (jω)= ϕ∗z1[
N∑
r=1

N∑
s=1

H1fr (jω)∗Sfrfs (jω)H1fs (jω)ϕu1+ ·· ·

+

N∑
r=1

N∑
s=1

H2fr (jω)∗Sfrfs (jω)Hnmfs (jω)ϕunm ] + · · ·

+ϕ∗z2[

N∑
r=1

N∑
s=1

H2fr (jω)∗Sfrfs (jω)H1fs (jω)ϕu1+ ·· ·

+

N∑
r=1

N∑
s=1

H2fr (jω)∗Sfrfs (jω)Hnmfs (jω)ϕunm ] + · · ·

+ϕ∗znm [

N∑
r=1

N∑
s=1

Hnmfr (jω)∗Sfrfs (jω)H1fs (jω)ϕu1+ ·· ·

+

N∑
r=1

N∑
s=1

Hnmfr (jω)∗Sfrfs (jω)Hnmfs (jω)ϕunm ],

where ϕ∗` represents the mode shape vectors of mode `,
and H`fr is the `th component of the transfer function be-
tween the unknown input force fr and the output. The num-
ber of modes is nm, while the number of input forces is N .
The PSDT T xzxuxk (jω) is defined in terms of two cross-PSDs
Sxzxu (jω) and Sxzxk (jω) for the reference output xz as

T
xz
xuxk = Sxzxu (jω)T (Sxzxk (jω)T )†, (36)

where † represents the Moore–Penrose pseudo-inverse for
a rectangular matrix. It can be observed that the PSDT of
the system can be constructed purely based on measurement
data.

Like the transmissibility, the PSDT is also independent of
the input loading spectrum and the reference outputs at the
system poles. The system poles are now located at the inter-
section of PSDTs with different reference outputs. As such,
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Figure 14. Stabilisation diagram of the signal after applying classical SSI (top) and KF-SSI (bottom). For orders lower than 20, SSI fails
to distinguish between the structural mode and harmonic and presents a merged version, while KF-SSI exclusively identifies the structural
mode (Greś et al., 2021).

Figure 15. Transmissibility functions for three different loading conditions T k , for outputs 1 and 2 (left) and outputs 2 and 3 (right). The
systems poles lie at the intersection of the functions indicated by vertical dashed lines (Devriendt and Guillaume, 2007).

this approach does not require different loading conditions
for the estimation of the structural parameters, as long as dis-
tinct reference outputs are available, unlike the TOMA algo-
rithm described above.

PSDT was improved to an SVD-based algorithm
(PSDTM-SVD) by Araújo and Laier (2014) to enhance its
numerical robustness. These PSDT algorithms primarily fo-
cus on the identification of structural frequencies. To deter-
mine the structural damping of the system, it is required to
perform model estimation of (T xzxu xk,1 − T

xz
xuxk,2 )−1 using a

classical (frequency-domain) algorithm like LSCF, as incor-
porated into the enhanced PSDT (EPSDT) algorithm by Yan
and Ren (2015). The algorithm has been extended to multi-
variable system identification by Araújo and Laier (2015).

Like all transmissibility-based algorithms, the PSDT ap-
proaches are insensitive to data contamination caused by the
presence of harmonics in the OWT measurement data. All
OMA approaches described in the foregoing sections are
now compared based on their suitability for OWT damping
estimation in the next section.
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Figure 16. Instantaneous transmissibility functions T12 (right) shown for the case where the input location of the load varies over time from
position 1 to 2 (left). Instantaneous values of T12 show the same property as time-invariant transmissibilities in that they converge at the
system poles (Weijtjens et al., 2014b).

7 Algorithm suitability for OWT identification

For the express purpose of OWT damping estimation based
on measurement data, all algorithms described in the above
sections can be evaluated in terms of their suitability. It is ex-
pected that the most suitable algorithm shall satisfy the fol-
lowing suitability criteria to the largest extent possible.

1. The algorithm shall be able to perform identification
based on output-only measurement data.

2. The algorithm shall be able to estimate OWT damping
accurately using finite durations of measurement data.

3. The algorithm shall be able to distinguish between
closely spaced structural modes, especially if they are
orthogonal.

4. The computational complexity of the algorithm shall be
as minimal as possible.

5. The algorithm shall be able to handle harmonics present
in operational OWT measurement data.

6. The algorithm shall be able to identify structural modes
accurately even when they are located close to harmon-
ics in the spectrum of the measurement data.

7. The algorithm shall be able to handle the non-
stationarity of harmonics, which predominantly charac-
terises the harmonics present in operational OWT data
in ordinary turbulent wind climates.

8. The algorithm shall be able to handle high harmonic en-
ergy content since harmonics in OWT data spectra are
often of the same magnitude as structural modes.

9. The algorithm shall preferably not require a priori
knowledge of harmonics, since accurate and perfectly
synchronised measurements of OWT rotor speed may
not be available.

The first four criteria are desirable for any robust OMA
algorithm. From the fifth criterion onwards, attention is di-
rected primarily to the harmonics that typically contaminate
OWT measurement data. The algorithms described in the
foregoing sections may or may not meet all nine of the suit-
ability criteria here defined. However, depending on the ex-
act nature of instrumentation of the turbine and availability
of data in different operating conditions, some of the crite-
ria above may be relaxed in regards to the suitability of the
OMA algorithms for OWT damping estimation.

Table 2 evaluates each of the algorithms described in this
paper according to the suitability criteria defined above. The
X and × indicate whether or not the criterion is satisfied,
while the ∼ indicates that a firm conclusion cannot be drawn
based on the current literature review. As described in the
foregoing sections, the classical OMA algorithms are typi-
cally not able to handle harmonic contamination of data, al-
though the harmonic is easier for an analyst to exclude in
the case of frequency-domain techniques like FDD/EFDD.
When the harmonic or OWT rotation speed is known accu-
rately, the modified family of algorithms or HM-SSI can be
used by including the harmonics directly into data Hankel
matrices.

For the case where harmonics are unknown, statistical
measures can be used to isolate harmonic data, where kurto-
sis and cepstral techniques are easier to automate and hence
preferred over the PDF approach. KF-SSI can make use of
any of these techniques to orthogonally remove the harmonic
contamination. It is hence able to satisfy nearly all suitabil-
ity criteria, apart from the ability to deal with non-stationary
harmonics. The presence of harmonics theoretically does not
affect the transmissibility-based algorithms; however, litera-
ture results have shown insufficient identification accuracy in
the case of high harmonic energy in the measurement data.

In conclusion, based on the above table, a selection of dif-
ferent algorithms may be adopted by the user as per the avail-
ability and characteristics of the (operational) measurement
data, for the damping estimation of the OWT structure.
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Table 2. Algorithm suitability for damping estimation from (operational) OWT data

Algorithm Category Reference Suitability criterion

1 2 3 4 5 6 7 8 9

ITD Classical (time domain) Ibrahim (1973) × – – – – – – – -
(p)LSCE Classical (time domain) Brown et al. (1979) × – – – – – – – –
SSTD Classical (time domain) Zaghlool (1980) × – – – – – – – –
ERA Classical (time domain) Juang and Pappa (1985) × – – – – – – – –
SSI Classical (time domain) Van Overschee and De Moor (1991) X X Xd

∼ × × × – –
ITD-NExT Classical (time domain) James et al. (1995) X X ×

a
∼ × × × – –

(p)LSCE-NExT Classical (time domain) James et al. (1995) X X ? ∼ × × × – –
ERA-NExT Classical (time domain) James et al. (1995) X X ×

e
∼ × × × – –

FDD Classical (freq. domain) Brincker et al. (2000b) X × ×
d X X × X × ×

EFDD Classical (freq. domain) Jacobsen et al. (2007) X X ∼
c X X × X × ×

LSCF Classical (freq. domain) Guillaume et al. (1996) X X ×
d X × × × – –

PolyMAX Classical (freq. domain) Peeters and Van der Auweraer (2005) X X Xd X × × × – –

Modified ITD Known harmonics Mohanty and Rixen (2004b) X X ×
a
∼ X X × × ×

Modified (p)LSCE Known harmonics Mohanty and Rixen (2004a) X X ? ∼ X X × ? ×

Modified SSTD Known harmonics Mohanty and Rixen (2004c) X X ×
a
∼ X X × ? ×

TSA Known harmonics Peeters et al. (2007) X – – ∼ X X × ? ×

HM-SSI Known harmonics Dong et al. (2014) X X Xd
∼ X X × X ×

PDF Unknown harmonics Brincker et al. (2000a) X × ×
d X X × X × X

Kurtosis Unknown harmonics Jacobsen et al. (2007) X X ∼
c X X × X × X

Cepstral editing Unknown harmonics Randall et al. (2012) X – – X X × X X X

KF-SSI Unknown harmonics Greś et al. (2021) X X Xd
∼ X X × X X

TOMA Transmissibility based Devriendt and Guillaume (2007) X X ∼
f X X X × ? X

pTOMA Transmissibility based Weijtjens et al. (2014a) X X ∼
f X X X X ? X

TV-TOMA Transmissibility based Weijtjens et al. (2014b) X X ∼
f X X X X ? X

PSDT Transmissibility based Yan and Ren (2011) X × ∼
f X ∼

b X X ? X

EPSDT Transmissibility based Yan and Ren (2015) X X ∼
f X ∼

b X X ? X

Multivariable EPSDT Transmissibility based Araújo and Laier (2015) X X ∼
f X ∼

b X X ? X

a Algorithm evaluated by Malekjafarian et al. (2010). b Algorithm evaluated by Weijtjens et al. (2014b). c Algorithm evaluated by Rainieri et al. (2010) and d by Rainieri and Fabbrocino
(2014). e Algorithm evaluated by Bajric et al. (2015). f Algorithm evaluated by Araújo et al. (2018).

8 Discussion and practical implementation issues

For the OMA algorithms defined above, one of the post-
processing approaches common to all is the stabilisation di-
agram, which plots all “stable” modes identified (Reynders
et al., 2012). This approach often uses heuristics to classify
the stability of poles, and the final damping estimates are
strongly influenced by this classification. A rigorous math-
ematical interpretation of such a diagram is missing, as is the
proof that such a diagram will converge asymptotically to the
true OWT damping.

Classical time-domain OMA methods such as ERA-NExT
can be used to perform OWT damping estimation when the
turbine is idling. However, the level of excitation is low, and
the total OWT idling lifetime spent is a small fraction of its
total lifetime. As such, it is more desirable to consider damp-
ing estimation from operational measurement data.

Operational measurement data are typically contaminated
by strong harmonics that may be spaced close to the struc-
tural modes and may hence impede identification using clas-

sical time-domain techniques. Classical frequency-domain
techniques, both local (e.g. EFDD) and global (e.g. LSCF),
generally fare better, in that the harmonic is easier to pick
out and separate from the structural modes. Although global
frequency-domain techniques are easier to automate than lo-
cal techniques, both suffer from the drawback that manual
intervention may be needed to eliminate harmonic peaks, and
such spectral editing can strongly alter the information con-
tent of nearby structural modes.

For the case where the harmonic content is known, it can
be accounted for by including this information in the meth-
ods like HM-SSI. The drawback here is that unless the har-
monics are known with high precision, these methods degen-
erate to their classical counterparts. For OWT data, with typ-
ically non-stationary harmonics, these approaches may not
deliver good results unless the wind/wave climate is excep-
tionally stable.

Statistical alternatives exist to estimate unknown harmonic
content, for instance, based on the PDF or kurtosis of the
(filtered) data. The non-stationarity of OWT harmonics may
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still render these steps non-trivial and may warrant signifi-
cant manual intervention for successful harmonic isolation.
Potential future work lies in the direction of combining un-
certain and non-stationary rotor speed measurements with
statistical techniques for robust and automated elimination of
harmonic contamination of OWT data using OMA methods
such as KF-SSI.

The transmissibility-based algorithms were developed
specifically for their insensitivity to harmonics. However,
unless the loading conditions or measurement channels are
sufficiently separated, they may suffer from a lack of well-
conditioned transmissibility measures, leading to increased
uncertainty in the final damping estimates as compared to
SSI (Yan et al., 2019).

It should be noted that apart from the classical SSI tech-
niques, very few of the above-mentioned techniques have a
formal proof of convergence to the true underlying structural
parameters. However, it has been shown with several studies
that, given sufficient data, a good estimate of the OWT struc-
tural damping may be obtained under certain limiting condi-
tions of stationarity and sufficient persistency of excitation.
Future work would need to focus on the relaxation of the
condition of stationarity, which severely limits the amount of
data usable for identification.

9 Conclusions

Significant attention has been devoted in recent literature
to the development of OMA methods for the estimation of
OWT structural damping, a property that has a significant
influence on turbine loads but remains difficult to quantify
using first-principles approaches. To validate these damping
values, one has to resort to the identification of OWT damp-
ing based on measurement data, typically obtained from mo-
tion or load sensors located on the turbine structure. Due to
the lack or inadequacy of input data, it is also required to fo-
cus on output-only OMA techniques for damping estimation
from OWT measurement data.

Depending on the exact OWT configuration and measure-
ment data available, a choice can be made out of several dif-
ferent OMA techniques, based on the novel suitability crite-
ria table developed in this paper. For increased identification
fidelity, a multidisciplinary design of experiment is essential
in order to define the optimal choice of a minimum number of
sensors and a minimum number of datasets for determining
the solution of the damping estimation problem with mini-
mum uncertainty. For a modern OWT, a consistent bench-
mark comparison of all OMA techniques for damping esti-
mation would also prove to be a useful tool for accurate life-
time prediction of installed turbines. Additionally, it would
provide an invaluable starting point for OWT structural engi-
neers so that these high-quality damping estimates could sub-
sequently be used for the structural design of the increasingly
cost-competitive new generation of offshore wind turbines.
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