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Abstract

Extensive research has been conducted in the literature for multi-agent networks due
to the advances in wireless communication, microfabrication, and integration. In many
applications of multi-agent networks, the physical systems consist of massive nonlin-
ear and non-Gaussian elements. Hence, in the first decade of this century, intensive
research on distributed particle filters (DPFs) has been conducted to address the dis-
tributed estimation problems. For distributed algorithms, communication overhead is
an important metric in terms of engineering feasibility. In previous work, the approach
to distributed particle filtering relies on a parameterization of the posterior probability
or likelihood function, to reduce communication requirements. However, as more and
more effective resampling algorithms are proposed, the dependence of particle filter
performance on particle set size is greatly reduced, so this thesis attempts to explore
the possibility of DPFs based on direct particle exchange. In this article, the Gaussian
process enhanced resampling algorithm is used. Meanwhile, several metaheuristic opti-
mization algorithms (i.e., genetic algorithm and firefly algorithm) are further adapted
to seek the global optimal particle set to improve the estimation performance. Further-
more, all algorithms are simulated in target tracking scenarios and are evaluated from
three aspects: time, space, and communication complexity.
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Notation

Symbol Description

m particle index
n time index
k agent index
d dimensions of the state space
|E| the number of links in the multi-agent network
xn target state at the nth time instant
xm
n the mth particle at the nth time instant

xm,k
n the mth particle of agent k at the nth time instant
ωm

n weight of particle m at the nth time instant

ωm,k
n weight of particle m of agent k at the nth time instant
yn overall measurements at the nth time instant
yn,k measurement taken at nth time instant by agent k

gn(·) state transition function at the nth time instant
hn,k(·) measurement function of agent k at the nth time instant
un process noise at the nth time instant
vn,k measurement noise of agent k at the nth time instant
z the number of reserved Laplacian transform coefficients in GLDPF

Nknn the number of nearest neighbors in k-NN algorithm
C the number of components in Gaussian mixture model
D degree matrix
ϵk,j Metropolis weight between agent k and agent j
ε/ε noise(scalar/vector)
M the number of particles
K the number of agents
T time length
L the number of iterations(under different conditions, there will be different subscripts)
(·)T transpose operator
(·)−1 inverse operator
⌈·⌉/⌊·⌋ ceiling function/floor function
∥ · ∥2 Euclidean norm
N (·) normal distribution
U[a,b] uniform distribution between a and b

E(·) Expectation operator
O(·) complexity operator
GP(·) Gaussian Process(GP) model
κ(·) covariance between points in GP model(refer to (3.7))
K(·) covariance matrix in GP model(refer to (3.7))
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Note:
(1) The subscript n of function g(·) and h(·) is usually omitted in this article because

the model we use is time independent.
(2) When the subscript k is missing, we default to only one agent.
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Introduction 1
1.1 Background

Extensive research has been conducted in the literature for multi-agent networks due to
the advances in wireless communication, micro-fabrication, and integration. In a multi-
agent network, different agents are allowed to cooperate to solve a given problem and
come up with solutions beyond the individual knowledge of each agent. A multi-agent
network usually has the following listed advantages over a single agent network.

• The computational burden of solving a given complex problem can be distributed
to multiple agents to reduce the computational resource requirements of a single
agent. It also means that the agent does not have to pursue high-performance
processors.

• Multi-agent networks address the situations where information from sources that
are spatially distributed.

• Multi-agent networks improve overall system performance, especially in terms of
scalability, robustness, flexibility, etc. For example, by distributing computing
tasks to multiple agents, the system can be protected from the ”single point of
failure” problem typically associated with centralized systems.

Some typical examples of multi-agent networks includes wireless sensor networks
[1], robot networks [2], unmanned aerial vehicles(UAVs) networks [3], satellite swarms
[4]. Possible application scenarios include but are not limited to:

• Target tracking [1]
In many practical applications such as military battlefield awareness and ware-
house management, locating and tracking moving objects through various mea-
surements such as bearings-angle gathered by sensor networks are the essential
capabilities. In the military, for example, by rapidly deploying wireless sensor net-
works, applying efficient target tracking algorithms can gather information about
the presence of enemy targets and track their actions on the battlefield. The tar-
get tracking problem presents the most important issues related to collaborative
processing, information sharing, and group management, including the communi-
cation frequency, which sensors should sense at a given time, which sensors have
useful information and should communicate.

• Environmental monitoring [1]
The sensor can be used to monitor the survival of wildlife in special areas such
as national nature reserves. Sensors can also monitor air quality and track en-
vironmental pollutants, providing scientific guidance for follow-up measures. In
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addition, sensors can monitor chemical plumes to provide early warning. Seis-
mic monitoring is another application area. Environmental monitoring is one of
the earliest applications of sensor networks. An important consideration is the
long-term durability of the sensor in an unattended environment.

• Surveillance [5]
surveillance systems assist the human security personnel to identify abnormal
conditions by performing object detecting and tracking tasks. Information from
heterogeneous cameras (such as vision, infrared, heat, etc.) is carefully exploited
and fused for video-surveillance applications. These sensors are usually used for
24-hour monitoring of indoor or outdoor environments, such as low luminosity
and suburbs.

The types of agents also vary according to their application scenarios, mainly including
but not limited to the following aspects: price, capacity, energy supply mode, comput-
ing, and communication capabilities.

In the context considered in this thesis, we mainly focus on distributed estimation
in multi-agent networks. Agents in the network cooperatively estimate certain param-
eters(or states) of the surrounding environment based on their local measurements.
Due to the limited information obtained by each agent (limitation in space or time,
singleness of sensor types, etc.), every agent needs to cooperate with others to obtain
reliable estimation results.

1.2 Filtering

Filtering problem consists of estimating the internal state of a dynamic system when
partial measurements are made and random disturbances are present in the sensor and
dynamic system. In a linear system with Gaussian noise, the Kalman filter(KF) [6]
can be exploited to calculate the mean vector and covariance matrix of the estimated
parameters recursively since the predicted posterior, as well as the posterior, are both
Gaussian. For nonlinear and non-Gaussian cases, extended Kalman filter(EKF) and
unscented Kalman filter(UKF) [6] are proposed as suboptimal solutions though the
approximation procedures may lead to large errors and even divergence in final results.
In the early 1990s, particle filtering turned out to be the preferred method for nonlinear
and non-Gaussian systems [6]. It is a Monte Carlo approximation of optimal sequen-
tial Bayesian estimation. Therefore, in this thesis, we focus our research on particle
filter(PF) due to the reason that the physical systems consist of massive nonlinear and
non-Gaussian elements in many applications of multi-agent networks.

1.2.1 Bayesian Filtering

Dynamic state estimation refers to estimating the state of a time-varying system under
a sequence of noisy measurements. In this thesis, we use the state-space approach to
model dynamic systems. The state vector, which is the focus of the state-space approach
to time-series modeling, contains all the relevant information about the system. For
example, in the tracking problem, the state vector includes some necessary kinematic
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characteristics of the target(e.g., velocities, accelerations). The measurement vector
stacks the measurements that relate to the state.

In order to infer the system state from the measurements, two models are necessary:
the transition model and the measurement model. The transition model describes the
evolution process of the state with time while the measurement model explains the
relationship between state vector and measurements. Bayesian filtering [7] is one of the
most commonly used tools in state estimation.

From a Bayesian perspective, dynamic state estimation is the process of computing
the confidence of the current state vector given a sequence of measurements. The
confidence is also called the posterior probability density(pdf) function. Such a process
contains two essential stages: prediction and update. The prediction stage utilizes the
information of the transition model and the estimated state vector at the last time
instant to predict the pdf of current state vector(see (1.3)). The update stage tries to
update the pdf by incorporating the measurement information. This process is usually
implemented based on Bayes’ theorem(see (1.4)).

Assume we have a system and we aim to estimate its state vector over time. The
transition model(1.1) and measurement model(1.2) are stated in below.

xn = gn(xn,un) (1.1)

yn = hn(xn,vn) (1.2)

In (1.1), xn is the state vector at time instant n, gn is the possibly nonlinear
transition function at time n, un is an i.i.d. process noise vector. In (1.2), yn is the
measurement vector at time n, hn is the possibly nonlinear measurement function at
time instant n, vn is an i.i.d. measurement noise vector.

The goal of filtering is to estimate state vector xn based on the set of measurements
y1:n = {yi, i = 1, · · · , n} up to time n. In order to do this, we construct the posterior
pdf p(xn|y1:n).

In the prediction stage, the posterior pdf at last time instant p(xn−1|y1:n−1) is
known. At the initial stage when n = 0, it is assumed that the initial pdf p(x0|y0) =
p(x0) and is known in advance. The prior pdf of the state can be computed via the
following Chapman-Kolmogorov equation:

p(xn|y1:n−1) =

∫
p(xn|xn−1)p(xn−1|y1:n−1)dxn−1. (1.3)

After measurement yn becomes available, we enter the update stage. The posterior
pdf can be acquired via Bayes’ theorem:

p(xn|y1:n) =
p(yn|xn)p(xn|y1:n−1)

p(yn|y1:n−1)
, (1.4)

where the normalization term in denominator ensures the integral of p(xn|y1:n) with
respect to xn equals 1 and can be calculated by

p(yn|y1:n−1) =

∫
p(yn|xn)p(xn|y1:n−1)dxn. (1.5)
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The statistics of both process noise and measurement noise are assumed known
and the (1.3) and (1.4) form the basis of Bayesian filtering. However, this recursive
propagation of the posterior density is only a conceptual solution, and in general we
cannot give a closed-form solution when a nonlinear and non-Gaussian state-space
model is adopted. Particle filtering is proposed to solve this problem.

1.2.2 Particle Filtering

Particle filtering is a method that uses a set of weighted particles to represent the pos-
terior distribution of the state vector to be estimated. As the number of particles goes
to infinity, the acquired description of the posterior approaches the optimal Bayesian
estimate. The following derivation comes from reference [7].

For the convenience of explanation, we use {xm
0:n, ω

m
n }Mm=1 to describe the posterior

pdf p(x0:n|y1:n) in a non-parametric way, where {xm
0:n,m = 1, · · · ,M} is a set of par-

ticles with corresponding weights {ωm
n ,m = 1, · · · ,M}. M is the number of particles.

The weights should be normalized, which means
∑M

m=1 ω
m
n = 1. To make it clear, x0:n

is the set of all state vectors up to time n. Then the posterior pdf can be approximated
as

p(x0:n|y1:n) ≈
M∑

m=1

ωm
n δ(x0:n − xm

0:n). (1.6)

The weights of particles are calculated based on importance sampling(IS). Impor-
tance sampling addresses the inability to sample from the target distribution. Assuming
the samples xm

0:n are drawn from an importance density q(x), which can be any form
of distribution, the weight defined in (1.6) should looks like

ω(xm
0:n) ∝

p(xm
0:n|y1:n)

q(xm
0:n|y1:n)

. (1.7)

Our goal is to approximate p(x0:n|y1:n) given p(x0:n−1|y1:n−1) and a new set of
particles at time n. If the importance density is factorized as

q(x0:n|y1:n) = q(x0:n−1|y1:n−1)q(xn|x0:n−1,y1:n), (1.8)

we can obtain sample xm
0:n from distribution q(x0:n|y1:n) by appending a new state

vector xm
n sampling from q(xn|x0:n−1,y1:n) to an already existing sequence state xm

0:n−1.
The benefit of doing so is that the weights per time instant can be calculated recursively,
and hence it is called sequential importance sampling(SIS).

p(x0:n|y1:n) =
p(yn|x0:n,y1:n−1)p(x0:n|y1:n−1)

p(yn|y1:n−1)

=
p(yn|x0:n,y1:n−1)p(xn|x0:n−1,y1:n−1)p(x0:n−1|y1:n−1)

p(yn|y1:n−1)

=
p(yn|xn)p(xn|xn−1)p(x0:n−1|y1:n−1)

p(yn|y1:n−1)

∝ p(yn|xn)p(xn|xn−1)p(x0:n−1|y1:n−1)

(1.9)
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By substituting (1.8) and (1.9) into (1.7), the recursive form of the calculation of
particle weight can be rewritten as

ω(xm
0:n) ∝

p(xm
0:n|y1:n)

q(xm
0:n|y1:n)

∝
p(yn|xm

n )p(x
m
n |xm

n−1)p(x
m
0:n−1|y1:n−1)

q(xm
n |xm

0:n−1,y1:n)q(x
m
0:n−1|y1:n−1)

∝ ω(xm
0:n−1)

p(yn|xm
n )p(x

m
n |xm

n−1)

q(xm
n |xm

0:n−1,y1:n)
.

(1.10)

Furthermore, if q(xn|x0:n−1,y1:n) = q(xn|xn−1,yn) holds, then only xm
n need be

stored.
So far, the weight calculation formula can be simplified as

ω(xm
n ) ∝ ω(xm

n−1)
p(yn|xm

n )p(x
m
n |xm

n−1)

q(xm
n |xm

n−1,yn)
, (1.11)

and the posterior pdf p(xn|y1:n) can be approximated using (1.6).
The pseudo-code of the SIS particle filtering is given by Algorithm 1. Besides, SIS

particle filters have a common problem called particle impoverishment, which means
that most particles will have negligible weights after several iterations, resulting in
a large performance degradation. This can be alleviated by introducing resampling
algorithms [8].

Algorithm 1 SIS Particle Filtering(PF)

Require: {xm
n−1, ω

m
n−1}Mm=1, yn

1: for m = 1, · · · ,M do
2: Draw xm

n ∼ q(xn−1|xm
n−1,yn)

3: Calculate the corresponding weight, ωm
n , using (1.11)

4: end for
5: return {xm

n , ωm
n }Mm=1

1.3 Scenario

In this thesis, the target tracking problem is used in the simulation part to check the
algorithms’ performance, and in this Section, we are going to introduce the specific
scenario we build, which is based on the Wiener process acceleration model [9].

We assume the state vector(1.12) of a certain target contains 6 elements, which are
the position, velocity and acceleration in two-dimensional space.

xn = [xn,1 xn,2 ẋn,1 ẋn,2 ẍn,1 ẍn,2]
T (1.12)

The target moves according to a specified transition function(1.13).

g(xn) = D · xn + un (1.13)
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The transition function is linear with respect to state vector and the matrix D is
time independent, hence we omit the subscript n of function g.

D =


1 0 t 0 1

2
t2 0

0 1 0 t 0 1
2
t2

0 0 1 0 t 0
0 0 0 1 0 t
0 0 0 0 1 0
0 0 0 0 0 1

 (1.14)

t is the state transition interval. un follows a multivariate Gaussian distribution
N (0,R), where

R = σ2
u



1
20
t5 0 1

8
t4 0 1

6
t3 0

0 1
20
t5 0 1

8
t4 0 1

6
t3

1
8
t4 0 1

3
t3 0 1

2
t2 0

0 1
8
t4 0 1

3
t3 0 1

2
t2

1
6
t3 0 1

2
t2 0 t 0

0 1
6
t3 0 1

2
t2 0 t

 . (1.15)

To estimate the unknown time-varying state vector of the moving target, we de-
ploy 9 agents(whose positions are known) in two-dimensional space to perform some
measurements, including two quantities(known): the target’s range and Doppler (range
rate). We assume that the position of the kth sensor is described by lk = (lk,1, lk,2),
then the measurement vector can be expressed as

hk(xn) = [hk,range(xn) hk,doppler(xn)]
T , (1.16)

where the two elements are stated as follows,

hk,range(xn) =
√
(xn,1 − lk,1)2 + (xn,2 − lk,2)2, (1.17)

hk,doppler(xn) =
ẋn,1(xn,1 − lk,1) + ẋn,2(xn,2 − lk,2)√

(xn,1 − lk,1)2 + (xn,2 − lk,2)2
, (1.18)

and the measurement noise vn,k follows N (

[
0
0

]
,

[
σ2
v 0
0 σ2

w

]
).

The parameter settings of the scenario is given in Tab.1.1 and Fig.1.1 shows the
sensor network and a realization of the target trajectory.
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Table 1.1: Scenario setup

parameter value

σu 0.5
σv 1
σw 1
t 1

time length 30
number of sensors 9

area size 200*200
origin state vector [0, 0, 4, 13,−1,−3]T

0 40 80 120 160 200

0

40

80

120

160

200

x

y

target trajectory
communication links
agents

Figure 1.1: Multi-agent network, communication links and target trajectory(We here have 9
agents with known positions, and our goal is estimate the 6D state vector of the unknown
agent. The dotted blue line is one unknown trajectory realization.)

1.4 Goals

The main goal of the thesis is to design energy-efficient distributed particle filtering algo-
rithms(DPFs) for distributed estimation problems that occur in multi-agent networks.
Energy consumption can be reduced from three directions: computation, communica-
tion, and memory. Our aim is to explore the possibility of directly exchanging particles
between connected agents in a distributed network, as doing so minimizes the reliance
on computational resources and strong assumptions. However, with the increase of the
dimension of the state space, the direct exchange of particles will undoubtedly bring
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great communication requirements. Therefore, how to select the exchanged particles
and how to optimize the particle set have become the core of the research. The most
canonical problem, target tracking, is used to test the performance of the proposed
algorithms.

1.5 Outline

The rest of the thesis is organized as follows.

• In Chapter 2, a literature review of state-of-the-art DPFs will be presented first,
followed by the reproduction work of two up-to-date DPFs. The above two al-
gorithms are evaluated under the same simulation setup. A discussion of their
performance comparison as well as limitations are also conducted.

• In Chapter 3, inspired by the work in [10], a Gaussian process enhanced DPF
algorithm based on direct particle exchange is proposed.

• In Chapter 4, various metaheuristic optimization algorithms are used to find the
global optimal particle set, so as to complete the fusion of the whole network
information and improve the estimation performance.

• In Chapter 5, a comprehensive comparison of all algorithms presented in this
thesis is given.

• In Chapter 6, the work in the thesis is concluded. The contributions as well as
the future directions are discussed.
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Distributed Particle Filtering 2
In this Chapter, we first present a literature review on DPF and then focus on repro-
ducing two of the most up to date DPFs, comparing their tracking performance under
the same simulation setup, and finally making a discussion on their contributions as
well as limitations.

In Section 2.1, the literature review is given and in Section 2.2, we formulate the
centralized particle filtering problem and extend it to the distributed manner. The
first DPF, graph Laplacian distribute particle filtering(GL-DPF), proposed in [11] is
introduced in Section 2.3 while the second DPF, Gaussian mixture distributed particle
filtering(GM-DPF), proposed in [12] is introduced in Section 2.4. In Section 2.5, both
of the above-mentioned DPFs are tested under the Wiener process acceleration model
and the simulation results are presented. In Section 2.6, a comparison and discussion
work has been conducted.

2.1 Literature Review

DPF arises due to the growing problems of distributed filtering occurring in massive
nonlinear, non-Gaussian systems and the goal is to compute the global posterior prob-
ability. In [6], you can find a survey of the previous contribution to DPF in multi-agent
networks by 2012. For distributed estimation algorithms, communication aspects of
the underlying network always come first. To be more concrete, these aspects usually
include the communication topology(how different agents are linked) and the properties
of the communication links(e.g., latency, transmission rate, packet loss ratio). To effec-
tively implement DPF, some approximation strategies must be utilized to reduce the
burden on communication and computation to adapt to practical applications. Though
there is no doubt that the estimation results would suffer from the degradation with
the introduction of various approximation techniques, designing an effective approxi-
mation strategy for DPF to seek a balance between estimation performance and cost
of energy(e.g., computation, communication) is of great importance.

Focusing on DPF, existing algorithms usually differ in the following aspects: the
type of communication signals(e.g., likelihood values, posterior values), the amount of
communication signals(in which many signals compressing techniques can be exploited)
and so on. Based on different underlying communication topology, DPF can be clas-
sified into three categories, FC(Fusion center)-based DPF, LA(Leading agent)-based
DPF, and consensus-based DPF(see Fig 2.1).

• FC-based DPF

FC-based DPF requires a central processing unit and thus can not work in a fully
distributed manner. In FC-based DPF, each agent would perform local particle
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filtering and transmit the assigned information to the FC. The main disadvantage
of FC-based DPF is its weak scalability and flexibility since every agent must
be able to access the FC. If there is no direct link between an agent and the
FC, multi-hop communication is then required, creating the need for an efficient
routing protocol which also needs to be updated with time if the network topology
is changing over time. To conclude, FC-based DPF is delicate to the change of
network topology and is easy to break down when the fusion center does not work
properly.

• LA-based DPF

In LA-based DPF, only the currently active agents(the LAs) perform particle
filtering and transmit the most up-to-date estimation information to the next
new LAs, thus the information accumulates sequentially. Based on the number of
LAs during the time interval, two different LA-based DPFs are investigated. In
the so-called single LA case, there is only one active LA in every discrete time step.
The single LA would perform particle filtering using its measurements, or possibly,
the measurements from its neighbors, and then execute the communication step,
transmitting the estimation to the selected new LA. In the aggregation chain(AC)
case, multiple LAs are activated sequentially and form an AC. At a discrete-time
instant n, LA selected first in the AC performs particle filtering only based on its
measurements and transmits the results to the next selected LA. The latter one
would come up with the updated estimation incorporating its measurement and
the posterior information sent by the former agent. In the end, the last LA in the
AC can hereby generate a solution reflecting the measurements of all the previous
LA in the nth AC as well as all previous ACs.

• Consensus-based DPF

In the consensus-based DPF, all agents perform particle filtering simultaneously
and would possess a particle representation of the global estimation after the com-
munication stage. The common goal is achieved by exploiting various consensus
algorithms to help agree on certain quantities across the network. Consensus-
based DPF is attractive in recent years due to the following reasons. First, it only
requires local communications between connected agents which makes it more ro-
bust to the change of the network topology and eliminates the need for routing
protocol design. Second, each agent would finally possesses a global estimate, and
it may be important for those applications where agents need to perform some
actions based on the estimation results. Third, it is also robust for link failure and
single-agent damage. However, the biggest challenge is its large communication
cost. Overlarge consensus iterations will also make it not suitable for real-time
applications.
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Figure 2.1: (a) FC-based DPF(the red node represents the FC and black arrows represent
communication links), (b.1) LA-based DPF: Single LA case(black arrows represent transmis-
sions between consecutive LA, dashed colored arrows represent transmissions from neighbor-
ing nodes to the certain LA, and different colors indicate different time steps), (b.2) LA-based
DPF: AC case(black arrows represent transmissions from the last LA in previous AC to the
first LA in current AC, colored arrows represents transmissions between consecutive LAs in-
side the same AC, and different colors indicate different time steps and different ACs as well),
(c) Consensus-based DPF(all agents communicate with their neighboring agents simultane-
ously and thus the black arrows are bidirectional).

This thesis focuses on the full distribution scheme of particle filtering, hence the
FC-based DPF and LA-based DPF are excluded. Considering the parameters com-
municated in the consensus algorithm, we could divide consensus-based DPFs into
the following three types according to [6]. (i) consensus-based calculation of particle
weights; (ii) consensus-based calculation of posterior parameters; (iii) consensus-based
calculation of likelihood parameters. In the next section, the above three kinds of
consensus-based DPF are further explained. Table 2.1 summarizes the existing up to
date researches on fully distributed DPFs.

2.1.1 Consensus-based DPF

• Consensus-based Calculation of Particle Weights

This method is based on factorizing the global likelihood function into multiple
local likelihood functions. Based on common statistical assumptions, measure-
ments taken at different sensors are conditionally independent given the state
vector. The detailed derivation can be found in [6]. The advantage of this al-
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gorithm lies in its simple theoretical derivation and proof. However, in practical
implementation, it has several limitations.

– Since the core idea is to exchange the particle weights, the prerequisite is to
ensure the identical set of particles in every agent and it, in turn, requires
the local random number generators at agents to be synchronized. However,
it is often not an easy task to synchronize all the agents in a large WSN.

– The communication overhead is proportional to the amount of particles that
dominates the estimate accuracy. To save communication overhead while
maintaining acceptable performance, lots of signal approximation algorithms
are proposed. In [11], a Graph Laplacian Signal Approximation algorithm is
proposed to approximate the particle weights by exploiting the inner struc-
ture of particle distribution. In [13], an auxiliary particle filter is used to
replace the bootstrap particle filer, making it possible to require fewer par-
ticles with the help of the more delicate design of the importance sampling
function, and selective gossip is used to further reduce communication cost.
A robust scheme for DPF is presented in [14] where an ”M-posterior” DPF
method based on the Weiszfeld algorithm is proposed to reduce the size of
the particle set. In [14], an additional communication step is again adopted
which comprises an extended communication range when an estimator is re-
quired at a specific sensor. Algorithms [15] [16] which are recently developed
to compress the particle set while guaranteeing the filtering performance can
also be applied to the distributed scheme to reduce the communication over-
head.

• Consensus-based Calculation of Likelihood Parameters

The goal of the filter is to obtain the posterior probability distribution of the state
vector given measurements. The global posterior probability can be calculated at
each node when giving the form of the global likelihood function(GLF) [17]. The
idea behind this kind of method is to compute or approximate the global likelihood
function with the help of a consensus algorithm. Since every agent can acquire the
GLP after some computation work and consensus algorithm, one of the benefits is
that the local agent can compute the estimated states independently without the
acquirement of synchronization when drawing particles. Another great advantage
is that the quantities in consensus algorithms are parameters describing the local
likelihood functions, thus uncorrelated to the particle numbers, bringing a great
reduction in communication cost. In [17], the algorithms only work under the
prerequisite that the local likelihood functions belong to the exponential family.
In [18], authors extend the exponential family local likelihood function to a more
general case.

• Consensus-based Calculation of Posterior Parameters

The idea of particle filtering is using the Monte-Carlo method to approximate the
posterior probability in a non-parametric way by introducing a great number of
particles. Here, we use the parametric approximation to describe the local pos-
terior and exchange these parameters instead of thousands of particles to reduce
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communication overhead but sacrifice some accuracy as a cost. In [19] [20], poste-
riors are approximated with Gaussian distributions which can be described with
only 2 variables, the mean and covariance matrix respectively. Since Gaussian
approximation is always too strong and not suitable for the nonlinear and non-
Gaussian applications, the Gaussian mixture model(GMM) is hereby introduced
to fit any kind of posterior distributions with an adjustable number of Gaussian
components. In [21], the GMM is used to represent the posterior function and the
distributed Expectation Maximization(EM) algorithm is adopted to fuse the local
information. However, the algorithm limits the number of mixed Gaussian to be
the same at each agent, and the fusion process is constrained to be linear. An
adaptive Gaussian mixture learning algorithm for DPF is proposed in [22], aiming
at adaptively choosing the Gaussian components in GMM for each local agent.
And in [12], an importance sampling based nonlinear fusion technique from the
optimal perspective is proposed.

2.1.2 Consensus vs. Diffusion

Apart from the consensus algorithm, diffusion strategy is also adopted in DPF in recent
years. The major problem of consensus-based strategy is its two time-scale implemen-
tations: one for measurements and the other for communications. Usually, the agents
need to go through a sufficient number of iterations in the second time-scale to make the
network reach the consensus which is impractical in online filtering. Therefore, diffusion
strategy is taken into account due to their nature of operating under a single time-scale
and the consensus doesn’t have to be reached during two consecutive measurements. By
local communication among adjacent agents, the information would gradually diffuses
through the whole network. Generally, the diffusion strategy consists of two phases at
each time instant [23]: (a) during the adaptation phase, each agent updates its local
estimates with the measurements of its neighbors; (b) during the combination phase,
the neighbors’ estimates are merged. A Bayesian interpretation of distributed diffusion
filtering algorithms can be found in [24]. In [25] [26], the adapt-then-combine(ATC)
diffusion strategy is introduced to distributed particle filtering.

2.1.3 Synchronous vs. Asynchronous

In distributed networks, synchronization is always a big issue. All the papers presented
above assume the agent network operates synchronously. It means measurements at all
sensors are performed simultaneously and the next stage begins after all agents have
finished their computation and communication tasks. These two assumptions are often
too strict in large networks. For the asynchronous measurements, there are two main
approaches. In [27], the extrapolation strategy(ES) is proposed. As its name suggests,
an extrapolation procedure is performed to fuse the measurements from neighbors and
a delay estimator is developed to assist the extrapolation. The disadvantage of this
method is it is too computational intense especially when the particle size is relatively
large. In [28], another algorithm called asynchronous batch estimation (ABE) is used
to tackle the asynchronous issue and saves a lot of computation energy. For the second
synchronization problem, there are two options. The first one is the whole network
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enters the next time instant until the slowest agent has completed all its tasks. By
doing this, the algorithm would be simpler to implement and analyze. But on the
contrary, a lot of time will be wasted if the computing power of different agents varies
greatly. The other option is when an agent completes its current task, it goes directly
to the next stage without waiting for the processing progress of other agents in the
network. Adopting this strategy usually results in faster convergence but the reliability
still needs to be further considered.

Table 2.1: Distributed Particle Filtering - Algorithm

Authors Quantities Strategies Synchronous Remark

Gu et al. [21] posterior consensus ✓ GMM approximation
Mohammadi et al. [20] posterior consensus ✓ Gaussian approximation

Li et al. [12] posterior consensus ✓ GMM approximation
Mohammadi et al. [25] posterior diffusion ✓ Gaussian approximation
Vázquez et al. [14] weights diffusion ✓ ”M-posterior” algorithm
Song et al. [26] posterior diffusion ✓ Dynamic Event-triggered

Rabbat et al. [11] weights consensus ✓ Graph Laplacian

Üstebay et al. [13] weights consensus ✓ selective gossip
Hlinka et al. [17] likelihood consensus ✓ only exponential family
Hlinka et al. [18] likelihood consensus ✓ extends to general functions

Mohammadi et al. [29] likelihood consensus ✓ consensus+innovations
Hlinka et al. [27] posterior consensus × ES
Li et al. [28] likelihood consensus × ABE

2.2 From PF To DPF

Different with PF, DPF aims at approaching the global posterior distribution p(xn|yn)
at every time instant n for each agent k. yn is the global measurement vector
and it is now given by the collection of all local measurement vectors, i.e., yn =
(yT

n,1, · · · ,yT
n,K)

T .
In one of the most popular particle filters, Sampling Importance Resampling Filter

(SIR) [30], the importance density q(·) is chosen to be the state transition probability
density function. The update equation of ω(1.11) then becomes

ω(xm
0:n) ∝ p(yn|xm

n )× ω(xm
0:n−1). (2.1)

If resampling is performed in every single step, since each particle holds the same
weight after the resampling step, we can even omit the weight value of the particle at
the previous moment when we compute the weight value at the current time instant.

In addition, for distributed sequential Bayesian estimation, we often assume mea-
surement noise at different sensors is uncorrelated and the following assumption holds.
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Assumption : [6] The measurements taken at different sensors at each time instant
n are conditionally independent given the state vector xn. And the global likelihood
function can be factorized into a product of local likelihood functions(2.2):

p(yn|xn) =
K∏
k=1

p(yn,k|xn), (2.2)

where yn,k denotes measurement taken at nth time instant by agent k.
We have already introduced some state-of-the-art DPFs in the previous Section.

First, consider the case in which particle weights are transmitted through the sensor
network to get the global estimation. Since the performance of the particle filter is
closely related to the number of particles, to obtain satisfactory results, drastically
increasing the number of particles often results in unbearable communication overhead.
In [11], the graph Laplacian approximation technique is exploited to reduce the size of
transmitted data (the transmitted data would be particles’ weights if no compression is
made, and the size would equal to the number of particles) while keeping the estimation
performance at a good level. To further save the communication bandwidth, in [12],
the author approximates the posteriors as a Gaussian mixture and transmits sufficient
statistics instead of particle weights to cut the cost considerably. Since the above two
DPFs fall into different categories and both show good performance, in the following, we
would first explain the algorithms in detail and then make a comprehensive comparison
from the communication and computation aspects.

2.3 Graph Laplacian Distributed Particle Filtering

In this Section, we would briefly introduce the core idea of the graph Laplacian dis-
tributed particle filtering(GL-DPF) proposed in [11]. Since it belongs to the category
of consensus-based calculation of particle weights, to fuse the information, we need to
make sure each sensor generates the same particle set at every time instant. Besides,
we also apply the log operation to (2.2) to transfer the geometric averaging to the
arithmetic averaging to enable a consensus algorithm.

p(yn|xn) = exp{
K∑
k=1

log(p(yn,k|xn))} (2.3)

Based on the global likelihood function (2.3), we can hereby calculate the global
particles’ weights incorporating all information from the sensor network.

Various kinds of distributed consensus algorithms then can be exploited to compute
the term p(yn|xn) by exchanging information with neighbors. We used the randomized
gossip algorithm [31] in our simulation. One more thing that needs to be mentioned is
that the total number of sensors has to be known in advance.
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Figure 2.2: A simple example of graph signal.

2.3.1 Graph Laplacian Approximation

We first briefly introduce the Graph signal which provides a nice compact format to
encode structure within the data. And with some operations, it is possible to compress
the signal by exploiting its inherent structure. The tutorial can be found in [32].

Fig 2.2 gives an intuitive illustration of graph signal. The edges together form the
structure while the values at vertices represent the data. The core idea of GL-DPF
is to compress the weights of M particles into z(z < M) scalars so that z scalars are
transmitted in the communication process instead of transmitting particle weights. We
first build a graph by taking particles as vertices and the corresponding weights as
signals attached to each vertex. It is reasonable to think that neighboring particles
should have similar weights and the graph signal is a good way to take this structure
within data into account. Then we place edges between particles under the guidance of
the k-nearest neighbors algorithm(k-NN) [33], which means each particle would connect
to its nearest k particles. So far, we have already successfully constructed the underlying
graph structure. The Laplacian matrix L ∈ RM×M of the graph, defined by D(Degree
Matrix)-A(Adjacent matrix), is the approximation of the Laplace operator and provides
a notion of ’frequency’ on graphs. If we multiply the L matrix with the data vector
f(which will be the particles’ weights in our case), we get

fTLf =
1

2

M∑
i,j=1

Lij(f(i)− f(j))2, (2.4)

where Lij is the entry of the ith row, jth column in matrix L and M is the number
of particles. Intuitively, (2.4) gives a measure of ”smoothness”. To analyze the signal
from the frequency(smoothness) perception, we first need to do an eigenvalue decom-
position(EVD) on graph Laplacian matrix. Since L is a symmetric matrix, the process
can be denoted as L = XΛX T , where columns in matrix X are right eigenvectors,
and the diagonal elements in Λ are the corresponding eigenvalues. Eigenvectors with
smaller eigenvalues vary less rapidly through the graph. Based on the above theory
analysis, we are now able to import the concept of Graph Fourier Transform(GFT).
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GFT:
f̂ = X Tf (2.5)

IGFT(Inverse GFT):

f = X f̂ (2.6)

In practical applications, instead of transmitting the entire signal, we could approxi-
mate the signal with frequency components to save communication overhead. However,
the prerequisite is that each agent should know the eigenvector matrix X to recover
the signal from the frequency domain, putting constraint on the identical particle set
for all agents. In [11], the author reserved the low-frequency part of the original signal
by taking z smallest Laplacian eigenvalues(Laplacian transform coefficients).

2.3.2 Algorithm

In this Section, the pseudo-code of GL-DPF algorithm is presented in Algorithm 2.
At the end of time instant n−1, we assume every agent holds an identical particle set,

denoted as {xm
n−1}Mm=1. After the measurements at time instant n become available, we

need to apply the GL-DPF to obtain an updated particle set {xm
n }Mm=1 integrating the

information of the whole sensor network for each agent. First, every agent performs
the local particle filter and end up with a new weighted particle set {xm

n , ω
m
n,k}Mm=1,

where k means the kth agent. Second, graph Laplacian approximation is exploited to
compress the weight information, including building the graph signal(with the help of
k-NN algorithm) as well as the GFT operation. Then the weights of M particles are
compressed into z(z < M) Laplacian transform coefficients for each agent(corresponds

to each column in F̂ n). Third, we use the randomized gossip algorithm [31] to compute
the formula (2.3), which is achieved by randomly selecting two connected agents and
averaging their Laplacian transform coefficients in each iteration. Since the convergence
of the average gossip is asymptotic, and we need all agents to have exactly the same
estimate, we then apply the max-consensus algorithm, which can be shown to reach
the same maximum value for all agents after a finite number of iterations [34]. After
the consensus is reached, every agent needs to perform the IGFT to recover the particle
weight information from the Laplacian transform coefficients which is denoted by f̂n

in the pseudo-code. Finally, the resampling algorithm is performed to obtain a particle
set {xm

n }Mm=1 with a weight equal to 1/M . Note, the standard resampling algorithm
through this thesis(functionResample in pseudo-code) refers to systematic resampling
in [7]. The basic idea of systematic resampling is to concentrate on particles with large
weights while abandon particles with small weights to prevent particle impoverishment.
The implementation of this algorithm is shown in Algorithm 3.
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Algorithm 2 GL-DPF

Require: {xm
n−1, ω

m
n−1}Mm=1, {yn,k}Kk=1, execute at all agents k = 1, · · · ,K in parallel:

1: Initialize M, z, Lg, Nknn(the number of nearest neighbors in k-NN)
2: {xm

n , ωm
n,k}Mm=1 = PF({xm

n−1, ω
m
n−1}Mm=1,yn,k)

3: Calculate the weight matrix W n, where entry Wmk
n = log(ωm

n,k)
4: Build graph for particles(based on k-NN)
5: Calculate the Laplacian matrix L and perform the EVD: L = XΛX T

6: Perform GFT: F n = X TW n

7: Approximate F n to F̂ n(extract z eigenvalues)
8: f̂n = GOSSIP(F̂ n, Lg)

9: Recover Ŵ n = X f̂n

10: for m = 1, · · · ,M do

11: ωm
n = exp(f̂

m
n )∑M

j=1 exp(f̂
j
n)

12: end for
13: {xm

n , ωm
n }Mm=1 = Resample({xm

n , ωm
n }Mm=1)

14: return {xm
n , ωm

n }Mm=1

Algorithm 3 Resample(Systematic Resampling)

Require: {xm
n , ωm

n }Mm=1

1: Initialize M, c1 = 0
2: for m = 2, · · · ,M do
3: Construct CDF: cm = cm−1 + ωm

n

4: end for
5: Start at the bottom of the CDF: m = 1
6: Draw a starting point: u1 ∼ U[0,M−1]

7: for m̂ = 1, · · · ,M do
8: Move along the CDF: um̂ = u1 +M−1(m̂− 1)
9: while um̂ > cm do

10: m = m+ 1
11: end while
12: xm̂

n = xm
n

13: ωm̂
n = M−1

14: end for
15: return {xm̂

n , ωm̂
n }Mm=1

2.4 Gaussian Mixture Distributed Particle Filtering

In this Section, we would briefly introduce the core idea of the Gaussian mixture
distributed particle filtering(GM-DPF) proposed in [12]. Different with GL-DPF, it
belongs to the category of consensus-based calculation of posterior parameter. To
facilitate the introduction of GM-DPF later, we roughly divide it into two sub-steps,
consensus and recovery respectively. The following derivation follows (2.2).

Considering the conditional independence of a Markov chain, the local likelihood
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can be written as

p(yn,k|xn) = p(yn,k|xn,y1:n−1) (2.7)

Using the Bayes’s theorem, it can be further factorized as

p(yn,k|xn) =
p(xn|yn,k,y1:n−1)p(yn,k|y1:n−1)

p(xn|y1:n−1)
(2.8)

Finally we get the global posterior, written as a function of local posterior,

p(xn|y1:n) =

∏K
k=1 p(xn|yn,k,y1:n−1)p(yn,k|y1:n−1)

p(xn|y1:n−1)
K−1p(yn|y1:n−1)

(2.9)

p(xn|y1:n) ∝
∏K

k=1 p(xn|yn,k,y1:n−1)

p(xn|y1:n−1)
K−1

(2.10)

In the following, we use ηk to represent p(xn|yn,k,y1:n−1).
The remaining problem is to calculate the geometric averaging of local posterior

distributions as well as the denominator. To avoid transmitting particles, Li et al. [12]
use Gaussian Mixture Model to parametrically describe the local posterior and instead
exchange the distribution statistics.

2.4.1 Gaussian Mixture Model

A Gaussian Mixture Model [35] is the convex combination of several Gaussian com-
ponents, as shown in (2.11), where C is the number of Gaussian components, {αc,
c = 1, · · · , C} are the mixture weights, and {N (xn;µc,Σc), c = 1, · · · , C} are the
Gaussian distributions. Each component is a multivariate Gaussian function. All the
local, global as well as intermediary posteriors appearing in the algorithm would be
approximated as Gaussian mixtures. Theoretically, the Gaussian mixture model can
represent any kind of distribution.

GMM(xn) ≈
C∑
c=1

αcN (xn;µc,Σc) (2.11)

The tracking performance of GM-DPF is closely related to the number of compo-
nents in Gaussian mixture models. In this Section, we would make a summary of the
techniques which are used to determine the number of Gaussian components and try
some of them. Here we mainly focus on the finite mixture models, whereas for infinite
mixture models, reference can be found in [36]. The expectation-maximization (EM)
algorithm is a commonly used algorithm to fit the Gaussian mixture models. The ad-
vantages of the EM algorithm are listed as follows. First, it is the fastest algorithm to
learn mixture models. Second, it can converge to the local optimal point. However, the
drawbacks are also obvious. First, the EM algorithm is sensitive to the choice of initial
points, which means the clustering result is not consistent. Second, we must set the
number of Gaussian components in advance with the help of other external techniques.
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Third, the singularities may occur if there are no sufficient points for every mixture,
and one may have to regularize the covariance matrix artificially.

To help us determine the optimal number of Gaussian components, some information
criteria in model selection [37] are proposed. We would introduce two of them, AIC
and BIC respectively. AIC(i.e., Akaike’s Information Criterion) selects the model with
minimal

−2 logL(Φ) + 2np (2.12)

where Φ consists of the unknown parameters such as the component mean and covari-
ance matrix, and the logL(Φ) is the log-likelihood function of Φ. np equals the number
of the total parameters we used in the mixture model. However, some researchers have
found that AIC tends to overestimate the number of correct components.

The Bayesian Information Criterion(BIC) is presented in (2.13),

−2 logL(Φ) + np log nm (2.13)

where the additional variable nm means the total number of measurements. Paper [38]
also shows that under the normal mixture model case, the result of using BIC to select
the appropriate number of components is consistent.

Although with the help of some information criteria, one can get a quite satisfying
guess on the number of components, it is heavily computational since one must run the
EM algorithm for every single guess. Besides, using information criteria doesn’t avoid
the singularity problem as well. To tackle the above problems, the variational Bayesian
Gaussian mixture appeared. The variational Bayesian approach bypasses the singular-
ity problem by enforcing prior probabilities on the involved parameters and resorting
to the Bayes’ theorem to perform the estimation. In [39], a way of applying the varia-
tional Bayesian approach to Gaussian mixture model approximation is presented. The
author introduced an auxiliary latent random vector indicating from which component
is every sample drawn. Besides, Gaussian and Wishart pdf are adopted as priors for
mean values and covariance matrices respectively. According to the paper, it shows
the number of mixtures can be determined by only giving a large enough number of
components prior, meaning the algorithm can automatically achieve a tradeoff between
model complexity and fitting performance.

2.4.2 Algorithm

We divide the process of computing the global posterior distribution into two sub-steps.
First, the geometric mean of the local posteriors is computed, which we name the
consensus step. Second, the global posterior is recovered by performing computations
according to (2.10) using the prediction term and the result obtained in the first step.
The second step is called the recovery step.

A. Consensus
Before the consensus step, each sensor should perform the local particle filtering

and approximate the posterior as a Gaussian mixture. The Gaussian mixture learning
algorithm based on EM is presented in Algorithm 4. Hence, the data transmitted by
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sensors in the communication process is restricted to the Gaussian mixture statistics. In
this step, the average consensus algorithm is used to compute the geometric averaging
of local posteriors. We use ηik to represent the fusing posterior at sensor k at ith
consensus iteration. As i approaches ∞, ηik approaches the result in centralized case.
In every iteration, sensor k communicates with its adjacent sensors and calculates the
fusing result according to (2.14)

ηi+1
k (xn) =

∏
j∈Nk

(ηij(xn))
ϵk,j , (2.14)

where ηi+1
k (xn) is the posterior of state vector xn at sensor k in the (i+ 1)th iteration

of the average consensus algorithm at nth time instant. Nk is the set of the neighboring
sensors of sensor k, and ϵk,j is the Metropolis weight.

Definition 2.1: [40] Metropolis weight

ϵk,j =


1/max(|Nk|, |Nj|), if (k, j) ∈ E

1−
∑
l∈Nk

ϵk,l, if k = j

0, otherwise

(2.15)

where E means the collection of communication links.
Since (2.14) involves the product of fractional powers of Gaussian mixtures, we

are not able to calculate analytically. Therefore, importance sampling is adopted.
At ith iteration, sensor k obtains the Gaussian mixture statistics of its neighboring
sensors after the communication step. The sensor first samples particles from each
Gaussian mixture and then calculates the corresponding weights based on (2.16). For
each Gaussian mixture at sensor j ∈ Nk, the sampling particle size is proportional to
the Metropolis weight. For example, the total sampling particles is restricted to M ,
then we draw Mj = ⌊Mϵk,j⌋ particles from ηij(xn), where ⌊·⌋ is the floor function.

ωj,m
n = (ηij(x

j,m
n ))−1

∏
l∈Nk

(ηil(x
j,m
n ))ϵk,l (2.16)

After the final average consensus iteration, each sensor holds several sets of particle
and weight pairs, and the Gaussian mixture learning algorithm(GML) is performed to
fit the distribution. Furthermore, to save the consensus iterations and promote the
convergence performance of the average consensus, an additional fine-tuning step is
incorporated. In the fine-tuning process, similar components between different Gaus-
sian mixtures are determined based on Kullback-Leibler divergence(KLD) criterion and
then averaged in the parameter-based level.

Definition 2.2: [41] KLD is a measure describing how similar a probability distri-
bution Q is to a second reference probability distribution P, and it is calculated based
on (2.17).

DKL(P ||Q) =

∫ ∞

−∞
p(x) log(

p(x)

q(x)
)dx (2.17)

23



In the fine-tuning process, the matched Gaussian components are used to form a
new Gaussian distribution with the help of Gaussian approximation technique. The
resulting Gaussian distribution is then scaled and serves as a new Gaussian component
in the Gaussian mixture after fine-tuning. After the fine-tuning step, all sensors are
expected to share the almost exact Gaussian mixture statistics. The pseudo-code for
fine-tuning is presented in Algorithm 5.

B. Recovery

Now we assume that consensus is reached after infinity average iterations, then
(2.10) can be reformulated as (2.18) and η(xn) is now available after the consensus
step.

f(xn|y1:n) ∝
η(xn)

K

f(xn|y1:n−1)
K−1

(2.18)

The prediction term f(xn|y1:n−1) in denominator can be calculated as follows,

f(xn|y1:n−1) =

∫
Rd

f(xn|xn−1)f(xn−1|y1:n−1)dxn−1, (2.19)

where f(xn|xn−1) can be calculated according to the transition model while
f(xn−1|y1:n−1) is the global posterior of the previous time instant and hence also avail-
able at each sensor. To recover the global posterior, importance sampling is again
adopted. In order to make sure the sampling particles cover most support of the
global posterior, we draw half of the particles from η(xn) while the remaining from
f(xn|y1:n−1). For the particles sampling from η(xn), the importance weight is calcu-
lated according to

ωm
n =

η(xn)
K−1

f(xn|y1:n−1)
K−1

. (2.20)

And for particles sampling from f(xn|y1:n−1), the importance weight is calculated
according to

ωm
n =

η(xn)
K

f(xn|y1:n−1)
K
. (2.21)

At last, a Gaussian mixture approximation of global posterior can be learned from
the obtained weighted particles {xm

n , ω
m
n }Mm=1. Here the total number of sensors also

has to be known in advance.

The pseudo code of GM-DPF algorithm is presented in Algorithm 6.
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Algorithm 4 Gaussian Mixture Learning(GML)

Require: {xm, ωm}Mm=1

1: Initialize C, {αc,µc,Σc}Cc=1

2: repeat
3: for m = 1, · · · ,M do ▷ E-step
4: for c = 1, · · · , C do
5: pm,c = αcN (xm|µc,Σc)
6: end for
7: normalize {pm,c}Cc=1

8: for c = 1, · · · , C do ▷ M-step
9: αc =

∑M
m=1 pm,cωm

10: µc = α−1
c

∑M
m=1 pm,cωmxm

11: Σc = α−1
c

∑M
m=1 pm,cωm(xm − µc)(x

m − µc)
T

12: end for
13: end for
14: normalize {αc}Cc=1

15: until convergence
16: return {αc,µc,Σc}Cc=1

Algorithm 5 Fine-tuning

Require: ∪j∈{k,Nk}{α
j
c,µ

j
c,Σ

j
c}Cc=1

1: Initialize Dk(the kth diagonal element of D)
2: for c = 1, · · · , C do
3: for j = 1, · · · , Dk do
4: calculate the KLD between {αk

c ,µ
k
c ,Σ

k
c} and every left Gaussian component of

node j
5: Select the Gaussian component {αj

cj ,µ
j
cj ,Σ

j
cj} with minimum KLD

6: Remove the selected Gaussian component
7: end for
8: {α̃dk

c }Dk+1
dk=1 = normalize({αk

c , {αdk
cdk

}Dk
dk=1})

9: µft
c =

∑Dk+1
dk=1 α̃dk

c µdk
cdk

(note : µ1
c1 = µk

c )

10: Σft
c =

∑Dk+1
dk=1 (Σ

dk
cdk

+ (µdk
cdk

− µft
c )(µdk

cdk
− µft

c )T ) (note : Σ1
c1 = Σk

c )

11: αft
c = (αk

c +
∑Dk

dk=1 α
dk
cdk

)/(Dk + 1)

12: end for
13: return {αft

c ,µft
c ,Σft

c }Cc=1
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Algorithm 6 GM-DPF

Require: {xm
n−1,k, ω

m
n−1,k}

M,K
m=1,k=1, {yn,k}Kk=1

1: Initialize M,Lb(iterations)
2: {xm

n,k, ω
m
n,k}Mm=1 = PF({xm

n−1,k, ω
m
n−1,k}Mm=1,yn,k) ∀k = 1, · · · ,K

3: ηk(xn) = GML({xm
n,k, ω

m
n,k}Mm=1) ∀k = 1, · · · ,K

4: f(xn|y1:n−1) = GML({xm
n,k, ω

m
n−1,k}Mm=1) ∀k = 1, · · · ,K

5: for i = 1, · · · , Lb do ▷ Fusion step
6: for k = 1, · · · ,K do
7: sensor k sends ηik(xn) to sensor j ∈ Nk

8: end for
9: for k = 1, · · · ,K do

10: ηi+1
k (xn) =

∏
j∈Nk

(ηij(xn))
ϵk,j ▷ average consensus

11: end for
12: end for
13: for i = 1, · · · , Lb do
14: for k = 1, · · · ,K do
15: sensor k sends ηik(xn) to sensor j ∈ Nk

16: end for
17: for k = 1, · · · ,K do
18: ηi+1

k (xn) = Fine-tuning(ηik(xn))
19: end for
20: end for
21: f(xn|y1:n) ∝

η(xn)K

f(xn|y1:n−1)
K−1 ∀k = 1, · · · ,K ▷ Recovery step

22: Sample {xm
n,k}Mm=1 from f(xn|y1:n) ∀k = 1, · · · ,K

23: return {xm
n,k, 1/M}M,K

m=1,k=1

2.5 Numerical Results

In this Section, we are going to test the above two DPFs under the same simulation
environment to check their tracking performance. First, we will explore the effect of
hyperparameters in each algorithm on the final estimate. The performance of the two
algorithms will then be compared in terms of computation, communication complexity.

2.5.1 Performance metrics

To quantify the performance the proposed algorithm can achieve, we introduce an index
called the time-averaged root mean square error(ARMSE).

Definition 2.3: [11] ARMSE:√√√√ 1

N

N∑
n=1

∥xn − x̂n∥22, (2.22)

where N denotes the time length while xn and x̂n denote the true state and estimated
state respectively.
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2.5.2 Graph Laplacian Distributed Particle Filtering

In this Section, we will show and analyze the simulation results of GL-DPF. Table 2.2
gives parameter settings we used in simulation.

Table 2.2: Simulation setup for GL-DPF

parameter value

particle size 2000
k-NN parameter 5
gossip iterations [50 100 200]

approximation parameter z [100 500 1000]
Monte Carlo experiments 100x

Fig 2.3 and Fig 2.4 show the estimated trajectory and state vector of the target
over time when the gossip iteration equals 100, approximation parameter z equals 500
respectively. The red dots and yellow dotted lines in Fig 2.3 represent the sensors and
communication links. As you can see, the target was well-tracked.
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Figure 2.3: A target trajectory and the corresponding estimated trajectory obtained with
GL-DPF.

Our goal is to reduce communication overhead while guaranteeing acceptable es-
timation performance. The communication overhead of the algorithm is determined
by the number of gossip iterations as well as the graph Laplacian approximation pa-
rameter z. We need to play with those two parameters to see changes of the tracking
performance, which is measured by the metric ARMSE and the result is shown in Fig
2.5.
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Figure 2.4: 6-D state tracking performance.
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Figure 2.5: The value of ARMSE as a function of the average size of transmitted data per
node per time step(the cross, diamond, circle and square marks correspond to 20, 50, 100,
200 randomized gossip iterations respectively).

In Fig 2.5, each curve corresponds to a fixed value of parameter z and the num-
ber of gossip iterations varies from 50 to 200(50, 100, and 200 in our case). What
is worth mentioning is that the blue curve in the figure shows the estimating perfor-
mance without applying the graph Laplacian approximation technique and serves as
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the benchmark. Different from the other three curves, we add additionally one more
choice of gossip iterations, i.e. 20 gossip iterations, as you can see from the figure that
the blue curve has four inflection points while the other three only have three. Besides,
for the 9-node sensor network, the averaging error is significantly small when 200 gossip
iterations are implemented. From the figure, we can deduce that choosing parameter z
and gossip iterations properly could lead to a big reduction in communication cost while
keeping the ARMSE still relatively slow. And for all three choices of z presented in the
figure, at least 100 gossip iterations are required. To sum up, if limited communication
resource is provided, the combination of small z and sufficient gossip iterations would
be a better choice. On the contrary, if better estimation performance always comes
first, then we can appropriately increase the parameter z.

2.5.3 Gaussian Mixture Distributed Particle Filtering

In this Section, we will show and analyze the simulation results of GM-DPF. Table 2.3
gives parameter settings we used in simulation.

Table 2.3: Simulation setup for GM-DPF

parameter value

particle size (local estimate) 2000
particle size(fusion) 5000

particle size(recovery) 5000
Gaussian components(C) 1(default)

EM iterations 100(default)
consensus iterations [1 2 3 4 5]
fine-tuning iterations [1 2 3 4 5]

Monte Carlo experiments 20x

To build a benchmark for GM-DPF, we implement the Gaussian mixture approxi-
mation in the centralized sense. In the centralized scenario, each sensor first performs
the local particle filtering and GMM approximation. Next, all sensors send their GMM
statistic of both prior and posterior to the fusion center. The fusion center performs
the fine-tuning step on the prior distribution and a fusion and recovery step on the
posterior information. Finally, it broadcasts the GMM statistic of the estimated global
posterior to all sensors to proceed to the next time instant.

In Fig 2.6, we present the simulation result of ARMSE as a function of both numbers
of consensus as well as fine-tuning iterations. Different from the randomized gossip
algorithm we used in GL-DPF, here each sensor communicates with all its neighbors in
each iteration. For comparison, we also implemented this algorithm in the centralized
manner which can serve as the benchmark. From the figure we can find that the
ARMSE decreases as the number of consensus iterations increases and the ARMSE
gradually approaches that in the centralized case.
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Figure 2.6: The value of ARMSE as a function of the number of consensus iterations.

In Section 2.4.1, we also introduce some techniques to help us determine the number
of Gaussian components, and we apply the information criteria to our learning process
of the Gaussian mixture model in the simulation to see the difference it brings. Since
the choice of the number of Gaussian components is not influenced by the distributed
setup, we decide to verify it under the centralized structure. The parameter settings are
given in Table 2.4 when AIC and BIC are used to determine the number of Gaussian
components. Compared to the Table 2.3, the number of EM iterations is larger to ensure
the EM algorithm will converge. Simulation results in Table 2.5 show that performance
improves when the number of Gaussian components is adaptively determined using the
information criteria.

Table 2.4: Simulation setup of GM-DPF using information criteria

parameter value

max Gaussian components 5
EM iterations 2000

consensus iterations 10
fine-tuning iterations 10

Monte Carlo experiments 20x

* the number of particles we used is consistent with that in Table 2.3.
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Table 2.5: Improvements to ARMSE when information criteria are used

Information criterion Absent AIC BIC

ARMSE 1.56 1.48 1.34

2.6 Summary

In this Chapter, extensive research on DPF is conducted, followed by the reproduction
work of 2 state-of-the-art DPFs, GL-DPF and GM-DPF respectively. Next, we will
briefly analyze and discuss the above algorithms.

2.6.1 Complexity Analysis

Table 2.6: Communication overhead and computational complexity analysis(Chapter 2)
(M : the size of the particle set; Nknn: the number of nearest neighbors in k-NN; d: the
dimension of the state space; Lg: the number of randomized gossip iterations in GL-DPF;
Lb: the number of consensus iterations in GM-DPF; z: the number of reserved Laplacian
transfer coefficients; K: the number of agents; C:the number of components in GMM; Lg:
the number of EM iterations; Lf : the number of iterations for fusion stage; Lft: the number
of iterations for fine-tuning.)

Algorithm GL-DPF GM-DPF

communication O(2Lgz/K) O(LbCd2)−O(KLbCd2)
computation O(M3 +NknnMd) O([(Lg +K)LfM +M +KLft]Cd2)

• GL-DPF

– Computation complexity
The complexity of particle filtering is omitted here, and we only focus on the
additional computation burden of the introduced approximation algorithm.
The computation process of GL-DPF can be divided into 2 subtasks, Eigen-
value decomposition, and k-NN search. The complexity of the eigenvalue
decomposition of an M by M matrix is O(M3). And the complexity of the
k-NN search algorithm is O(NknnMd). Hence, the particle set size is limited
to O(M3 +NknnMd).

– Communication complexity
In GL-DPF, the number of scalars transmitted across the network depends
on the approximation parameter z, and the randomized gossip algorithm is
used here to reach the consensus. In every gossip iteration, there are in total
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2z scalars transmitted on the chosen communication link since the informa-
tion exchange process is bidirectional. Hence, the average communication
complexity per agent during each time step is O(2Lgz/K).

• GM-DPF

– Computation complexity
The fusion part consists of three subtasks: namely local posterior learning
(GMM learning), GM fusion, and GM recovery. For Gaussian mixture
learning, it costs O(LgMCd2). In GM fusion, the complexity is O(KMCd2),
where O(K) means a sensor has at most K neighbors. In GM recovery, com-
plexity isO(MCd2). Besides, in fine-tuning step, the complexity isO(KCd2).
And we assume there are Lf and Lft iterations for fusion and fine-tuning re-
spectively. Thus the overall complexity is O([(Lg+K)LfM+M+KLft]Cd2).

– Communication complexity
In GM-DPF, Gaussian mixture statistics are transmitted across the net-
work. Let C denote the number of components in GMM we assign, then
(d2 + d + 1)C scalars need to be transmitted. Due to the symmetry of the
covariance matrix, the number of transmitted scalars of the covariance ma-
trix can be reduced to (d2 + d)/2. Besides, since all the component weights
sum to one, we only need to transmit C − 1 components number instead of
C. Hence, the total number of scalars representing a Gaussian mixture is
Cd2/2 + (C/2 + 1)d+C − 1). In a consensus iteration, every agent sends its
Gaussian mixture statistics to its neighbors and hence each communication
link is used twice. The total number of Gaussian mixtures transmitted during
a consensus iteration is 2|E|, where |E| is the number of links in the network.
Let Lb denote the number of consensus iterations and K denotes the number
of agents, the average communication complexity per agent during each time
step is 2|E|Lb(Cd2/2+ (C/2+ 1)d+C − 1)/K. Since |E| ranges from O(K)
to O(K2) for a connected network, the communication complexity should
between O(LbCd2) and O(KLbCd2).

2.6.2 Discussion

Both GL-DPF and GM-DPF are distributed particle filter algorithms proposed in the
last five years. However, both algorithms have some challenges in optimizing their pa-
rameters. For example, in the GL-DPF algorithm, how to choose the size of Nknn in the
k-NN search has not been fully studied. At the same time, in some state spaces, using
k-NN to build a graph signal may not be the optimal choice. For example, when the ob-
served quantities are extremely sensitive to certain dimensions in the state space, then
the weight correlation between particles is not simply related to the Euclidean distance
between particles. And in GM-DPF, the network should also be able to adaptively
learn the optimal number of Gaussian components in the Gaussian mixture model.

Next, we analyze the limitations and challenges of the two algorithms. In imple-
menting GL-DPF, we make a strong assumption that each agent must hold the same
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set of particles at every time instant. This requires each agent to hold a synchronized
random generator, which becomes impractical in large network architectures. If the
agents are not synchronized at the beginning, the max-gossip protocol is required to
make all agents agree on the common seed before each generation of a new particle set,
which introduces additional communication overhead. For GM-DPF, the author fits
the particle set in a parametric fashion, so that sufficient, yet possibly overabundant
particles are required to reduce the variance of the approximated GMM. In addition,
since the analytical solution of the geometric mean of the function cannot be given, the
author uses importance sampling. Still, at a cost, it greatly increases the computation
and memory resources. At the same time, the learning of the Gaussian mixture model
using the EM algorithm is also computationally intense.

2.6.3 Conclusion

The highlights of this Chapter are listed below.

• The literature review of DPF is conducted. We have classified the distributed
particle filter according to the topology of the communication and the type of
data transmitted in the communication process, and then summarized some of
the latest DPF algorithms, as shown in Table 2.1.

• We have reviewed and reproduced two state-of-the-art DPFs, GL-DPF and GM-
DPF respectively. And the numerical results confirm the contribution of both two
algorithms in reducing communication resources.

• A comparison of the computational and communication complexity of these two
DPFs has be given from a theoretical point of view. Additionally, their limitations
and challenges are also analyzed.
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Gaussian Process Enhanced
Distributed Particle Filtering 3
In the previous Chapter, we reproduced two recently proposed DPFs and in this Chap-
ter, inspired by the work in [10], we explore a new kind of DPF, where the particles
themselves served as exchange quantities. The difficulty of this idea is how to condense
the knowledge of local agents into as few particles as possible, so as to reduce the
communication overhead.

In Section 3.1, the motivation for direct particle exchange will be presented. In
Section 3.2, we will briefly introduce the Gaussian process(GP) enhanced resampling
algorithm proposed in [10], which makes it possible to use fewer particles for state
estimation. In Section 3.3, based on the above resampling algorithm and taking the
particles themselves as the exchange quantities, a fusion center required DPF is first
proposed and then decentralized. In Section 3.4, instead of fully accepting the received
particles, each agent further resamples the received particles based on its local mea-
surements to improve the tracking performance, and DPFs based on the consensus
and diffusive modes are proposed respectively. Simulations are carried out for each
algorithm.

3.1 Motivation

To reduce the communication resources of DPFs, we have reproduced two state-of-
the-art DPFs whose nature of transmitting quantities are weights and posteriors re-
spectively. And based on the limited information known to our current investigation,
little work has been done into the transmission of particles themselves as information
carriers since the performance of PF is positively related to the number of particles we
use. In addition, transmitting a single particle means transmitting as many scalars as
the number of dimensions, which can lead to unbearable communication overhead if
the state space dimension of the system is too high. However, with the gradual ma-
turity of research on particle filters, more and more types of proposal distribution and
resampling algorithms have been proposed [8][10][42][43][44][45], solving the problem
of particle impoverishment very well. These pleasing processes enable the particle fil-
ter algorithm to get rid of the high dependence on the number of particles. In other
words, even with a very limited number of particles, the diversity of particles can also
be well maintained. The above research advance makes it possible to exchange par-
ticles directly in the distributed particle filter architecture. At the same time, direct
particle exchange also has the following advantages. Compared with parameterized
expression, particle exchange better inherits the Monte Carlo idea of particle filtering
and has better flexibility in modeling distributions. Compared with the transmission
of compressed measurement data, it also works better in terms of privacy-preserving
since the measurement data usually contains some information about the agent itself
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(such as location, measurement function, etc.) and hence not suitable for some very
privacy-sensitive scenarios. The follow-up of this thesis will conduct in-depth research
on the DPF algorithm based on direct particle exchange.

3.2 Gaussian Process Enhanced Resampling

In this Section, we will mainly introduce the Gaussian process enhanced resampling
algorithm (GP-R) proposed in [10]. In Section 3.2.1, a brief introduction to Gaussian
process will be given. In Section 3.2.2, the resampling algorithm is formally introduced.
The effectiveness of the Gaussian process enhanced resampling algorithm has already
been verified in [10] compared to the standard resampling algorithm under the constant
velocity (CV) model. In Section 3.3, the performance improvement brought by GP-
enhanced resampling algorithm will be shown in the DPF case.

3.2.1 Gaussian Process

Gaussian process is an extension of multivariate Gaussian distribution when the di-
mension goes to infinity. From the probability theory perspective, a Gaussian process
should have the property that every finite collection of random variables follows a
multivariate normal distribution. In general, we can view the Gaussian process as dis-
tributions over functions. The three most popular applications for GP are regression,
classification, and dimensionality reduction [46], and in this thesis, we aim to exploit
the use of Gaussian process regression(GPR). Generally, there are two ways of viewing
GP, the weight space view and the function space view respectively [47], and we work
from the latter perspective.

In GPR, we first model our problem as follows,

y = f(x) + ε, (3.1)

where ε is the noise following N (0, σ2
n). Unlike other parametric regressors, GPR

has no assumptions on the underlying structure(e.g. linear, quadratic) of function
f . In GPR, we assume the signal to be predicted is also a random variable which
follows a particular distribution and the variance of the guessed distribution reflects
our uncertainty regarding the function. The uncertainty can be reduced by feeding
more supervised data into the model. In GPR, we use the following notation to show
that the function f is expressed as a GP.

f(x) ∼ GP(m(x), κ(x,x′)) (3.2)

A GP is determined by two terms, mean and covariance function. The mean func-
tionm(x) provides the expected function output at input x. The covariance models the
dependence between the function outputs at different inputs x and x′. The covariance
matrix is influenced by the choice of the kernel which is denoted by κ and the choice of
kernel is based on the prior knowledge on the given data, such as smoothness or other
patterns. One of the most popular kernels is the radial basis function(RBF), which is
defined as follows,
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κ(x,x′) = σ2
f exp(−

||x− x′||2

2λ2
) + σ2

nδ(x,x
′), (3.3)

where δ(·) is the Kronecker delta operator. The two adjustable hyperparameters are λ
and σf . λ is called the length scale. We can see from the definition, if x ≈ x′, then
κ(x,x′) approaches the maximum value, which means these two points are strongly
correlated. And if x is far way from x′, the variance becomes nearly zero, which means
x has negligible effect on x′. σf is the predefined maximum covariance of signals.

Although GP is defined in continuous space and has infinite dimensions, in practice,
there are always finite measurements. Before making the prediction, we first need to do
some preparation work. Let X be a matrix, and each row of it represents a new input
point xi, i = 1, ..., n. The function value y∗ at position x∗ is the prediction object. The
covariance information among all the inputs and x∗ can be integrated into the following
three matrices.

K(X,X) =


κ(x1,x1) κ(x1,x2) · · · κ(x1,xn)
κ(x2,x1) κ(x2,x2) · · · κ(x2,xn)

...
...

. . .
...

κ(xn,x1) κ(xn,x2) · · · κ(xn,xn)

 (3.4)

K(X,x∗) =
[
κ(x∗,x1) κ(x∗,x2) · · · κ(x∗,xn)

]
(3.5)

K(x∗,x∗) = κ(x∗,x∗) (3.6)

Remind yourself that every finite collection of random variables follows a multivari-
ate normal distribution in GP. We then have[

y
y∗

]
∼ N (0,

[
K(X,X) K(X,x∗)

T

K(X,x∗) K(x∗,x∗)

]
), (3.7)

where (·)T is the matrix transpose operator. After applying the Bayes’ theorem, the
conditional probability of the prediction value can be written as

p(y∗|y) ∼ N (K(X,x∗)K(X,X)−1y,K(x∗,x∗)−K(X,x∗)K(X,X)−1K(X,x∗)
T ).
(3.8)

where the mean value K(X,x∗)K(X,X)−1y is our best estimation for y∗, and the
variance K(x∗,x∗) − K(X,x∗)K(X,X)−1K(X,x∗)

T shows our uncertainty on the
estimation.

3.2.2 Gaussian Process Enhanced Resampling Algorithm

In this Section, the Gaussian process enhanced resampling algorithm [10] which uses the
GPR to model the posterior will be presented. The advantage of using GPR is that in
addition to its ability to provide the estimation(prediction) results, the uncertainty can
also be measured in forms of variance. This extra information can also be utilized in the
resampling stage and make it possible to use fewer particles to cover the information
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in the state space. In a word, a better exploration-versus-exploitation trade-off can
be achieved by deciding whether to sample from more accurate posterior features or
exploiting the uncertainty of this distribution. Exploitation means to focus the search
on a local space where a current good solution exists while exploration means to explore
the search space on a global scale.

Before the resampling stage, GPR is firstly used to model the posterior which is
represented by a set of weighted particles in PF. Given the pairs of particles and weights
{xm, ωm}Mm=1 where x

m corresponds to the mth row in X while ωm corresponds to the
mth entry in ω, the mean and covariance functions of the approximated GP(denoted
as GP1 in the pseudo-code) can be written as

µ(x) = K(X,x)α, (3.9)

s2(x) = K(x,x)− βTβ, (3.10)

where
α = K(X,X)−1ω = (LT )−1L−1ω, (3.11)

β = L−1K(X,x)T . (3.12)

X is the particle set following X = [x1; · · · ;xM ], and ω is the weight information
corresponding to X. To accelerate the matrix inverse operation, we here apply the
Cholesky decomposition to K(X,X), making K(X,X) = LLT . And the Gaussian
kernel in (3.13) is used in our regression.

κ(x,x′) = exp(
1

2σ2
||x− x′||2) (3.13)

Since the estimation results are the particles’ weights, the normalization step (3.14)
has to be performed afterward.

p(x) =
µ(x)∫
µ(x)dx

=
µ(x)∑M

m=1 αm

∫
K(x,xm)dx

(3.14)

To exploit the uncertainty knowledge provided by GPR and enable the exploration
round, we artificially build a second particle set using the function f(x) = µ(x)+3s(x).
According to the empirical rule, 99.7% of the values lie within three standard devia-
tions of the mean [48]. Hence, the information provided by the variance term is fully
exploited. The input set for the function is generated by selecting M − 1 intermediary
particles from the existing ones. By doing so, the points with high variances are also
taken into consideration. The second particle set can be denoted as {x̂m, f(x̂m)}M−1

m=1

and then approximated by another GP model(denoted as GP2 in the pseudo-code).
To perform the resampling, we need to resort to some strategy to efficiently sample

from the GP. Due to the choice of the Gaussian kernel, sampling from a GP is equivalent
to sampling from a GMM. To see this, we can first rewrite (3.14) as

p(x) =
M∑

m=1

α̃mκ(x,x
m), (3.15)
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where α̃m = αm/
∫
µ(xm)dx, and

∫
µ(x)dx = (σ

√
2π)d

∑M
m=1 αm. d is the dimension of

particles. Now it is easy to see that (3.15) is equivalent to a GMM with mixture weight√
2πσα̃m. Analogously to sampling from the first GP, the same operations should again

be applied to the second GP to complete the whole resampling stage. To decide whether
to sample from GP1 or GP2, we can first specify a parameter ζ and generate a scalar u
from a uniform distribution between 0 and 1, if u < ζ, we sample from GP2, otherwise
from GP1. By tuning the parameter ζ, we can decide whether the final resampling
results are more inclined to exploitation or exploration. The GP-enhanced resampling
algorithm is presented in Algorithm 7.

Algorithm 7 Gaussian process enhanced resampling(GP-R)

Require: {xm
n , ωm

n }Mm=1, ζ
1: Initialize M, {l, σ}(GP hyperparameters)
2: Fit a GP GP1 using particle set {xm

n , ωm
n−1}Mm=1

3: for m = 1, · · · ,M − 1 do
4: x̂m

n = (xm+1
n − xm

n )/2 + xm
n

5: {µ(x̂m
n ), s2(x̂m

n )} = GP1(x̂m
n )

6: Compute f(x̂m
n ) = µ(x̂m

n ) + 3s(x̂m
n )

7: end for
8: Fit a GP GP2 using particle set {x̂m

n , f(x̂m
n )}M−1

m=1

9: for m = 1, · · · ,M do
10: Draw u ∼ U[0,1]

11: if u < ζ then
12: Draw x̃m

n from GP2
13: else
14: Draw x̃m

n from GP1
15: end if
16: end for
17: return {x̃m

n }Mm=1

3.3 Direct Particle Exchange based Distributed Particle Fil-
tering

In the previous Section, we introduced the Gaussian process enhanced resampling al-
gorithm, which enables particle filtering to achieve good estimation results under a
limited number of particles. In this Section, we investigate DPF based on direct par-
ticle exchange. In Section 3.3.1, we conduct the research in a fusion center(FC)-based
network, followed by decentralization in Section 3.3.2. The simulation results are given.
As a reminder, our goal throughout the thesis is to design an algorithm that allows each
agent to approximate the global posterior probability p(xn|yn) at each time instant n.
And at time n, our known information includes the estimate of the global posterior
probability by each agent k at the previous time, denoted as {xm

n−1,k, ω
m
n−1,k}

M,K
m=1,k=1,

and the measurement information of the whole network, denoted as {yn,k}Kk=1.
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3.3.1 FC-based Network

First, we consider there is a fusion center, which is responsible for particle ”redistri-
bution”. The algorithm can be divided into 2 stages: local filtering and information
fusion. In the first stage, all agents perform local PF with the GP-enhanced resampling
algorithm after obtaining local measurements, and finally get a set of weighted parti-
cles(e.g., agent k would hold the particle set {xm

n,k, ω
m
n,k}Mm=1). In the second stage, every

agent sends a subset of particles (the size is determined by the pre-defined parameter
ϕ ∈ (0, 1]) to the fusion center, which finally ends up with a particle set, denoted as

∪K
j=1{xm

n,j}
ϕM
m=1. To fuse knowledge, M particles will be randomly picked at the fusion

center and broadcast to each agent. The algorithm is presented in Algorithm 8.

Algorithm 8 GP-DPF(FC-based)

Require: {xm
n−1, ω

m
n−1}Mm=1, {yn,k}Kk=1, ϕ ∈ (0, 1],

Execute at all nodes k = 1, · · · ,K in parallel:
1: Initialize M
2: {xm

n,k, ω
m
n,k}Mm=1 = PF({xm

n−1, ω
m
n−1}Mm=1,yn,k)

3: {xm
n,k, ω

m
n,k}Mm=1 = GP-R({xm

n,k, ω
m
n,k}Mm=1)

4: Randomly draw ϕM particles from {xm
n,k}Mm=1

5: Sensor k sends {xm
n,k}

ϕM
m=1 to central unit

6: Central unit randomly draw M particles from ∪K
j=1{xm

n,j}
ϕM
m=1

7: Central unit broadcasts {xm
n }Mm=1

8: xn = mean({xm
n }Mm=1)

9: return xn, {xm
n }Mm=1

Next, we briefly analyze the advantages and disadvantages of this algorithm. First,
since the GP-enhanced resampling algorithm is used to replace the standard resampling
algorithm, fewer particles are required to maintain the diversity of the particle set.
Second, because the algorithm is based on the direct exchange of the particles, there is
no need for a priori strong assumptions (such as synchronization of particle generation
in GL-DPF), making it easier to deploy in practical applications. The shortcomings of
the algorithm are also obvious. First, the existence of FC greatly reduces the scalability
and robustness of the network. Second, the algorithm is not carefully designed during
the information fusion stage. Since the operation is only to randomly select a part
of particles from each agent to form the final particle set, the performance may be
relatively poor. For the first point, we will use the local broadcast communication
protocol to achieve the decentralization which would be shown in Section 3.3.2. For
the second point, several ideas are proposed in both Section 3.4 and Section 4.

200 Monte Carlo trials have been run and Fig 3.1 shows the simulation results of
Algorithm 8. As a comparison, the simulation results of using the standard resampling
algorithm (systematic resampling in [7]) are also presented. In the initialization stage,
the parameter ϕ is set to 1/K to minimize communication overhead. However, in prac-
tical scenarios, since the number of agents in the network may be unknown, redundancy
should be introduced when initializing ϕ(ϕ should be greater than 1/K to ensure the
diversity of particles). Fig 3.1(a) shows the time-dependent tracking error for different
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Figure 3.1: Simulation results of Algorithm 8: GP-DPF(FC-based)

particle numbers. We can see that after using the GP-enhanced resampling algorithm,
150 particles are already enough to keep the tracking error around 3. However, if the
standard resampling algorithm is used, under the same conditions, the tracking per-
formance diverges over time. When the number of particles increases to 500, the error
begins to converge. It is only when the number of particles increases to 1000 that the
tracking performance is comparable to the GP-enhanced resampling algorithm using
150 particles. This result confirms the effectiveness of the GP-enhanced resampling
algorithm under the condition of a limited number of particles and this is achieved
by introducing the second particle set when fitting the Gaussian process, resulting in
a better exploration-versus-exploitation trade-off. Fig 3.1(b) shows the ARMSE as a
function of particle set sizes, indicating that the ARMSE converges faster and always
has a better tracking performance when GP-enhanced resampling is used.

3.3.2 Fully Distributed Network

In this Section, we decentralize the GP-DPF(FC-based) proposed in the previous Sec-
tion by enabling each agent to communicate only with its neighbors. In the distributed
particle filter based on the direct exchange of particles, in order to achieve the purpose
of information fusion of the whole network, we need to make the particle set of each
agent fully mixed and this can be achieved with the guidance of the diffusion strate-
gies. Later, in Section 3.4.2, the idea of diffusion strategies is also used. In order to
distinguish it from diffusion strategies, we call it diffusive mode. Under diffusive mode,
all agents communicate with their neighbors in each iteration to mix their particle sets.
If multiple communication iterations are performed in a single time instant, each agent
can gradually gain information from the entire network. In this Section, we carefully
design the communication protocol to minimize the communication overhead.

Compared with Algorithm 8, we perform L times local broadcast communications
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to fuse the information. At the same time, the degree matrix D ∈ RK×K of multi-agent
network is used to determine the local particle size. Before performing local particle
filtering and resampling, each agent first uses the local degree information to calculate
the number of particles it needs to sample using the following equation

Sk = ⌈M/(Dk + 1)⌉, (3.16)

which is based on the premise that each agent’s final set of particles is uniformly derived
from itself and connected agents. ⌈·⌉ is the ceiling function andDk is the degree of agent
k. To ensure that the particle set received by each agent meets the required number
of particles, each agent broadcasts the required number of particles to its neighbors
again. Finally, the number of particles to be broadcast at agent k is determined by
Rk = maxj∈{Nk,k}{Sj}. In the first iteration, each agent performs particle filtering and
GP-enhanced resampling according to the previously calculated Rk and broadcasts the
particle set to the connected agents.

After the communication process, each agent randomly reserves M particles from
the received particle set as the initial particle set for the next time instant (Lb = 0)
or the next communication iteration (Lb > 0). If multiple communication iterations
are performed in a single time instant, in subsequent iterations, each agent no longer
performs local particle filtering, and the GP-enhanced resampling is replaced by random
sampling. The flow of this algorithm is shown in Algorithm 9.

Algorithm 9 GP-DPF(fully distributed)

Require: {xm
n−1,k, ω

m
n−1,k}

M,K
m=1,k=1, {yn,k}Kk=1, ϕ ∈ (0, 1]

Execute at all nodes k = 1, · · · ,K in parallel:
1: Initialize M,D,Lb(iterations)
2: Determine Sk = ⌈M/(Dk + 1)⌉ and send it to neighbors
3: Determine Rk = maxj∈{Nk,k}{Sj}
4: {xm

n,k, ω
m
n,k}Mm=1 = PF({xm

n−1, ω
m
n−1}Mm=1,yn,k)

5: {xm
n,k, ω

m
n,k}

Rk
m=1 = GP-R({xm

n,k, ω
m
n,k}Mm=1)

6: Sensor k sends {xm
n,k}

Rk
m=1 to its neighbors

7: Sensor k randomly draw {xm
n,k}Mm=1 from ∪j∈{Nk,k}{x

m
n,j}

Rj

m=1

8: for i = 1, · · · , Lb do
9: Sensor k randomly keep Rk particles

10: Sensor k sends {xm
n,k}

Rk
m=1 to its neighbors

11: Sensor k randomly draw {xm
n,k}Mm=1 from ∪j∈{Nk,k}{x

m
n,j}

Rj

m=1

12: end for
13: xn,k = mean({xm

n,k}Mm=1)

14: return {xn,k}Kk=1, {xm
n,k}

M,K
m=1,k=1

500 Monte Carlo trials have been run and Fig 3.2 shows the simulation results of
Algorithm 9, focusing on the change of ARMSE with an increasing number of itera-
tions when M = 50, 100, 200, respectively. From the figure we can see that there is a
significant decrease in ARMSE as the particle set size increases. We can also see that
at the first several iterations, ARMSE also decreases with the increase of the number
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Figure 3.2: Simulation results of Algorithm 9, the value of ARMSE as a function of iterations.

of iterations since the information of the distant agents will be transmitted to the local
in a multi-hop manner. However, we find that when the number of iterations is around
2 or 3, ARMSE begins to diverge. This is because each agent randomly keeps M par-
ticles from the received and discards the excess in each iteration, making the diversity
of particles decrease after each iteration.

To avoid the divergence, two solutions are proposed here. The first is to increase
the size of the particle set as much as possible. Taking the green line in the figure as
an example, increasing the particle size can delay particle impoverishment and improve
the degree of information fusion in the network. But at the cost, the communication
and computing overhead will increase. The second solution is to control the number of
iterations, such as setting the number of iterations to the diameter of the network.

3.4 Improved Direct Particle Exchange based Distributed
Particle Filtering

In Section 3.3, direct particle exchange based DPF was proposed. Although the use of
the GP-enhanced resampling algorithm reduces the dependence of the particle filter on
the number of particles, the information fusion stage is not carefully designed, making
the estimation performance unsatisfactory. In this Section, we will use the measurement
information to filter out the particles that are the most representative or closest to the
true state, thereby improving the performance.

In Section 3.4.1, with the help of the average consensus algorithm, each agent has
access to information in the entire network at every moment. In Section 3.4.2, ideas
similar to Section 3.3.2 are adopted. Each agent only communicates with neighboring
agents, and the agent’s information continues to diffuse to every corner of the network
over time. The advantage of doing so is that the huge communication overhead brought
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by the consensus algorithm can be avoided.

3.4.1 Consensus-based Fusion

In this Section, we adopt an idea of having each agent in the network score each particle
generated in the network based on its local measurements. Then the sum of the scores
of each particle can be used as the criterion for filtering out the most representative
particles. Next, we briefly describe the flow of the algorithm.

The algorithm can be roughly divided into two stages. The goal of the first stage
is to make sure that each agent can obtain the particles of the whole network, and
the goal of the second stage is to calculate the global score(sum of scores from all
agents) for each particle. The above goals are achieved through average consensus, and
randomized gossip is used in our algorithm. Like the DPF algorithms in the previous
Section, each agent first performs local particle filtering and GP-enhanced resampling
to obtain a weighted particle set. After that, we randomly choose two connected agents
and perform particle exchange and averaging. For example, after the first iteration, the
particle set at connected agents i and j are as follows,

[0 · · · {
xm,1
n,i

2

xm,2
n,i

2
· · ·

xm,d
n,i

2
}ϕMm=1 · · ·0 · · · {

xm,1
n,j

2

xm,2
n,j

2
· · ·

xm,d
n,j

2
}ϕMm=1 · · ·0], (3.17)

where ϕM is the size of the local particle set and ϕ is the same as that in Algorithm
8. After sufficient iterations, every agent would have access to all particles, albeit with
a scaling scalar K. Till now, the first stage has finished and there are in total ϕMK
particles in each agent, denoted as {xm

n }
ϕMK
m=1 . Based on the local measurements, every

agent should calculate the score for each received particle and we use the likelihood
value as the score which is defined as follows,

smn = p(yn,k|xm
n ). (3.18)

The second average consensus round begins after the calculation procedure finishes.
Same as the previous round, in every iteration, each agent selects one of its connected
neighbors and performs the weight exchange and averaging. In the end, each agent
would hold the following score set integrating all information from the network if suf-
ficient iterations are conducted.

{smn }
ϕMK
m=1 = { 1

K

K∑
k=1

smn,k}
ϕMK
m=1 (3.19)

Finally, the resampling will be performed locally and M particles will be kept. The
particle with a higher global score would be more likely to be chosen.

The algorithm is shown in Algorithm 10. The two additional parameters Lp and Lω

in initialization step represent the number of gossip iterations in the first and second
average consensus rounds, respectively.
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Algorithm 10 Improved GP-DPF(consensus-based)

Require: {xm
n−1, ω

m
n−1}Mm=1, {yn,k}Kk=1, ϕ ∈ (0, 1]

1: Initialize M,Lp, Lω

2: {xm
n,k, ω

m
n,k}Mm=1 = PF({xm

n−1, ω
m
n−1}Mm=1,yn,k) ∀k = 1, · · · ,K

3: {xm
n,k, ω

m
n,k}Mm=1 = GP-R({xm

n,k, ω
m
n,k}Mm=1) ∀k = 1, · · · ,K

4: Randomly draw ϕM particles from {xm
n,k}Mm=1 ∀k = 1, · · · ,K

5: for i = 1, · · · , Lp do
6: Randomly choose 2 adjacent sensors k, j
7: {xm

n,k}
ϕMK
m=1 = {xm

n,j}
ϕMK
m=1 = {1

2(x
m
n,j + xm

n,k)}
ϕMK
m=1 ▷ average consensus

8: end for
9: {xm

n,k}
ϕMK
m=1 = K × {xm

n,k}
ϕMK
m=1 ∀k = 1, · · · ,K

10: Compute particle score {smn,k}
ϕMK
m=1 ∀k = 1, · · · ,K

11: for i = 1, · · · , Lω do
12: Randomly choose 2 adjacent sensors k, j
13: {smn,k}

ϕMK
m=1 = {smn,j}

ϕMK
m=1 = {1

2(s
m
n,j + smn,k)}

ϕMK
m=1 ▷ average consensus

14: end for
15: {smn,k}

ϕMK
m=1 = K × {smn,k}

ϕMK
m=1

16: {xm
n,k}Mm=1 = Resample({xm

n,k, s
m
n,k}

ϕMK
m=1 ) ∀k = 1, · · · ,K

17: xn,k = mean({xm
n,k}Mm=1) ∀k = 1, · · · ,K

18: return {xn,k}Kk=1, {xm
n,k}

M,K
m=1,k=1
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Figure 3.3: Simulation results of Algorithm 10(the value of ARMSE as a function of M and
ϕ).

50 Monte trials have been run and the simulation results are presented in Fig 3.3 and
3.4. Compared with Section 3.3, the tracking error has been greatly reduced. To plot
Fig 3.3, we ensure both Lp and Lω are sufficiently large. It is shown that the ARMSE
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Figure 3.4: Simulation results of Algorithm 10(M = 100).

decreases as the parameter ϕ increases due to the reason that particles in state space
can be sufficiently explored. When we increase the local particle size M , the ARMSE
would also decrease. Except for the reason that more particles can be exploited, another
reason is that the local sensor would be able to learn a more convincing and reliable
GP model if more data is fed.

In Fig 3.4(a), we present how ARMSE varies with an increasing number of gossip
in the first consensus round. We have tested our algorithm under 4 different choices of
parameter ϕ. Fig 3.4(a) shows that the ARMSE decreases as the number of gossip iter-
ations increases, and it implies the particles recovered at sensors are more similar to the
real exchanged particles and the consensus is reached at around 150 gossip iterations.
Besides, choosing relatively larger ϕ can acquire much better tracking performance even
though the average consensus has not been reached. To make the indicator, ARMSE,
converge, sufficient gossip iterations have to be performed. Note, to run the simula-
tion, we fix one of the iterations large enough and vary the other to see the changes
of ARMSE. How ARMSE varies with an increasing number of gossip iterations in the
second consensus stage is presented in Fig 3.4(b).

In some situations, the final estimation result may be very sensitive to some di-
mensions of the state space. For example, slight changes in acceleration will lead to
great differences in the trajectory of the target. Hence, it is necessary to iterate as
many times as possible in the first consensus round to ensure that the particles finally
restored at each agent are consistent with the original.

3.4.2 Fusion under Diffusive Mode

In this Section, we combine the ideas of Algorithm 9 and Algorithm 10, and make some
compromises. We don’t just perform the task of particle exchange as in Algorithm 9,
nor do we require each sensor to hold all the particles in the network as in Algorithm
10. Local broadcast communication is again adopted.
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Same as Algorithm 9, in the first communication iteration, each agent performs local
particle filtering as well as the GP-enhanced resampling, followed by broadcasting a
subset of particles to its neighbors. However, here agents no longer keepsM particles by
random. Based on its local measurement, each agent calculates the scores of the received
particles and uses scores as the criteria for selection. As you can see from Algorithm
11, in the final particle set composition, take agent k as an example, M/(Dk + 1)

particles are from the local particle set(i.e., {xm
n,k}

ϕM
m=1), and the remaining MDk/(Dk+

1) particles are from the particles received from connected agents. The purpose of
sampling separately is to make the final particles come from each agent evenly, to
better increase the diversity of particles. Although it does not integrate the knowledge
of all measurements when calculating the score of each particle, the knowledge of two
agents is fused in each iteration. Over time, or by performing multiple iterations in
each time instant, information will be diffused across the network. Parameters such
as local particle size and the number of iterations can be adjusted to seek a balance
between tracking performance and communication overhead. The algorithm is shown
in Algorithm 11 and the simulation result is presented in Fig 3.5.

Algorithm 11 Improved GP-DPF(diffusive mode)

Require: {xm
n−1, ω

m
n−1}Mm=1, {yn,k}Kk=1, ϕ ∈ (0, 1]

Execute at all nodes k = 1, · · · ,K in parallel:
1: Initialize M,Lb(iterations), D
2: {xm

n,k, ω
m
n,k}Mm=1 = PF({xm

n−1, ω
m
n−1}Mm=1,yn,k)

3: {xm
n,k, ω

m
n,k}Mm=1 = GP-R({xm

n,k, ω
m
n,k}Mm=1)

4: Randomly draw ϕM particles from {xm
n,k}Mm=1

5: Sensor k sends {xm
n,k}

ϕM
m=1 to its neighbors

6: Randomly draw M/(Dk + 1) particles from {xm
n,k}

ϕM
m=1(the first part of particle set)

7: Compute scores {smn,k}
ϕMDk
m=1 corresponding to ∪j∈Nk

{xm
n,j}

ϕM
m=1

8: {xm
n,k}

MDk/(Dk+1)
m=1 = Resample(∪j∈Nk

{xm
n,j}

ϕM
m=1, {smn,k}

ϕMDk
m=1 )(the second part of parti-

cle set)
9: Combine the two subsets of particles and get {xm

n,k}Mm=1

10: for i = 1, · · · , Lb do
11: Randomly draw ϕM particles from {xm

n,k}Mm=1

12: Sensor k sends {xm
n,k}

ϕM
m=1 to its neighbors

13: Randomly draw M/(Dk + 1) particles from {xm
n,k}

ϕM
m=1(the first part of particle set)

14: Compute scores {smn,k}
ϕMDk
m=1 corresponding to ∪j∈Nk

{xm
n,j}

ϕM
m=1

15: {xm
n,k}

MDk/(Dk+1)
m=1 = Resample(∪j∈Nk

{xm
n,j}

ϕM
m=1, {smn,k}

ϕMDk
m=1 )(the second part of

particle set)
16: Combine the two subsets of particles and get {xm

n,k}Mm=1

17: end for
18: xn,k = mean({xm

n,k}Mm=1)

19: return {xn,k}Kk=1, {xm
n,k}

M,K
m=1,k=1

20 Monte Carlo trials have been run and in simulations, we investigate the tracking
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Figure 3.5: Simulation results of Algorithm 11(ARMSE as a function of local particle size
and the number of iterations(ϕ = 0.5)).

error as a function of the number of iterations for three different-sized particle sets, 100,
200, and 300 respectively. We can see from Fig 3.5 that increasing the particle set size
or increasing the number of iterations can both improve the tracking performance of
the algorithm. At the same time, when the number of iterations reaches around 3, the
tracking error begins to gradually converge. To sum up, when the local measurements
are introduced to screen particles, the tracking performance is greatly improved.
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3.5 Summary

In this Section, we will briefly analyze and discuss the GP-DPF algorithms proposed
in this Chapter.

3.5.1 Complexity Analysis

Table 3.1: Communication overhead and computational complexity analysis (Chapter 3)
(M : the size of the particle set; d: the dimension of the state space; Dmin: the minimum
degree of the given multi-agent network; Lb: the number of broadcast iterations; ϕ: a scalar
between (0,1]; K: the number of agents; Lp: the number of gossip iterations in the first
consensus round in Algorithm 9; Lω: the number of gossip iterations in the second consensus
round in Algorithm 9.)

Algorithm Algorithm 9 Algorithm 10 Algorithm 11

communication 2dMLb/(Dmin+1)−
2KdMLb/(Dmin+1)

O(2LpϕMd+ 2LωϕM) O(2ϕdMLb) −
O(2ϕdMLbK)

computation O(M3 + (M − 1)3) O(M3 + (M − 1)3) O(M3 + (M − 1)3)

• Algorithm 9
In Algorithm 9, particles are transmitted across the network. Since the number of
particles to be transmitted is determined by the degree information of the network,
let Dmin denotes the minimum degree of the given network, and the maximum
particle set to be transmitted by every agent is bounded by M/(Dmin+1). Let Lb

denotes the number of broadcast iterations. There are 2|E|dM/(Dmin+1) scalars
that need to be transmitted in every iteration since the total number of commu-
nication rounds during an iteration is 2|E|. Finally, the average communication
complexity per agent during each time step is limited between 2dMLb/(Dmin+1)
and 2KdMLb/(Dmin + 1).

• Algorithm 10
In Algorithm 9, particles, as well as the corresponding ”weights”, are transmitted
across the network and the randomized gossip is used to achieve the consensus. In
the first consensus round, there are 2ϕMdK scalars that need to be transmitted
in every gossip iteration. Let Lp denotes the number of gossip iterations in the
first consensus round, the communication overhead turns to be 2LpϕMdK. In
the second consensus round, there are 2ϕMK scalars that need to be transmitted
in every gossip iteration. Let Lω denotes the number of gossip iterations in the
second consensus round, the communication overhead then turns to be 2LpϕMK.
Finally, the average communication complexity per agent during each time step
is O(2LpϕMd+ 2LωϕM).

• Algorithm 11
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In Algorithm 11, the randomized gossip algorithm Algorithm 9 is replaced by
local broadcast communication and there is also no need for ”weights” exchange.
Let Lb denotes the number of broadcast iterations. There are 2|E|ϕdM scalars
that need to be transmitted in every iteration. Finally, the average communica-
tion complexity per agent during each time step should between O(2ϕdMLb) and
O(2ϕdMLbK).

For computational complexity analysis, all three algorithms spend most of the com-
putational resources on GPR. Exact GP inference is quite computationally demanding,
requiring O(M3) time complexity and O(M2) space complexity [49], which prevents
us from using more particles. This is also the bottleneck of GP-enhanced resampling.
Finally, since GPR is performed twice in our algorithms, the computation complexity
is approximately O(M3 + (M − 1)3) for all three algorithms. Note: in computing the
computational complexity, we assume hyper-parameters training for GP is excluded
and that’s also not our focus in this thesis.

3.5.2 Discussion

We will evaluate algorithms from the following three perspectives, memory, computa-
tion, and communication overhead. In terms of memory, for all algorithms presented
in this Chapter, since we only use about one-tenth the number of particles used in
the algorithms presented in Chapter 2 (hundreds compared to thousands), the memory
consumption is greatly reduced. In terms of computational complexity, we use the ex-
ecution time of algorithms as the indicator. The algorithms proposed in this Chapter
are superior to GL-DPF, and the running time is much less than GM-DPF (explicit
data will be given in Chapter 5). In terms of communication overhead, Algorithm 10
requires two average consensuses which bring a huge challenge to the communication
overhead while Algorithm 11 abandons the pursuit of consensus and uses the idea of
diffusion strategies, which greatly reduces the communication overhead.

3.5.3 Conclusion

The highlights of this Chapter are listed below.

• The GP-enhanced resampling algorithm [10] is first introduced and then exploited
to enable the direct particle exchange based DPFs. The core idea behind it is to
utilize the variance information provided by GPR, which allows for a better trade-
off between exploration and exploitation. The performance improvement of the
GP-enhanced resampling algorithm over the standard one is validated in FC-based
networks.

• In Section 3.3.2, we removed the fusion center and make our GP-DPF fully dis-
tributed. However, the estimation performance is relatively poor and there is a
problem of non-convergence.

• In Section 3.4, we made some effort to improve the estimation performance. We
implement the improved GP-DPF under two communication strategies, i.e., con-
sensus and diffusive mode. The estimation performance is satisfying for both
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strategies, and the communication resource is greatly saved if diffusive mode is
adopted. Numerical results verified the feasibility of direct particle exchange based
DPF.

• A comparison of the computational and communication complexity of GP-DPFs
proposed in this Chapter has be given from a theoretical point of view. Addition-
ally, their limitations and challenges are also discussed.

51



52



Metaheuristic Optimization
Based Distributed Particle
Filtering 4
As a reminder, our goal throughout the thesis is to design an algorithm that allows
each agent to approximate the global posterior probability p(xn|yn) at each time in-
stant n, represented by M weighted particles. And at time n, our known information
includes the estimate of the global posterior probability at each agent k at the previous
time instant, denoted as {xm

n−1,k, ω
m
n−1,k}

M,K
m=1,k=1, and the measurement information yn

of the whole network, denoted as {yn,k}Kk=1. When the nature of the quantities ex-
changed between agents becomes particle, how to design algorithms to optimize the
local particle set(e.g., {xm

n,k, ω
m
n,k}Mm=1) to be consistent with the measurements of the

whole network(i.e., yn) becomes the focus of our research. We find it can be regarded
as a particle set optimization problem, that is, to seek the global optimal solution of
particles through some optimization algorithms. From the optimization perspective, in
the absence of communication, each agent that performs particle filtering based on local
measurements is effectively stuck in a local optimum. When the agent communicates
with other agents, the information located elsewhere in the network is transmitted in
the form of particle sets, and the local particle set is continuously evolved through a
designed algorithm so that the global optimal solution can be approached. That is the
guiding ideology of this Chapter.

Various optimization algorithms can be utilized to achieve the above goal. Due
to the similarities between particle filtering and particle swarm optimization (PSO),
we are inspired to use modern metaheuristic algorithms to search for globally optimal
particle set. In this Chapter, we first give a brief introduction to modern metaheuristic
optimization. Next, in Section 4.2, we adopted the famous genetic algorithm [50] in
the optimization process of particle set. In Section 4.3, we tried the newer firefly algo-
rithm [51], and the simulation results show that it makes up for the shortcomings of
the genetic algorithm, and it has a very satisfactory performance whenever in low com-
munication resources or high communication resources conditions. Finally, in Section
4.4, we analyze the complexity of the algorithms proposed in this Chapter and present
a discussion.

4.1 Metaheuristic Optimization

To solve the growing number of optimization problems, metaheuristics are proposed
as approximation methods that can find a good enough solution in a reasonable time.
The significant difference between heuristic and metaheuristic is that heuristic is more
problem-dependent while metaheuristic is considered to be a general algorithmic struc-
ture that can be applied to almost all optimization problems [52]. Two major compo-
nents of metaheuristic algorithms are exploitation and exploration [53], and achieving
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the balance between exploitation and exploration is the key to efficient search process.
Some properties that characterize most metaheuristics are listed below.

• Metaheuristics are strategies that guide the search process.

• Metaheuristics are problem-independent.

• Metaheuristics are approximate and non-deterministic.

• With metaheuristics, quality solutions to complicated optimization problems can
be found in a reasonable time, but there is no guarantee that the optimal solution
can be found.

Some of the best-known algorithms include simulated annealing [54], genetic algorithms
[50], ant colony optimization [55], particle swarm optimization(PSO) [56], firefly algo-
rithm [51]. Readers can refer to [53] for a brief introduction.

4.2 A Genetic Algorithm Based Distributed Particle Filter

The genetic algorithm is a metaheuristic inspired by the natural biological evolution
process, and it consists of three main operators: selection, crossover, and mutation.
In recent years, the application of genetic algorithms(GA) in particle filters has been
explored. In [42], an evolutionary particle filter has been proposed by using the idea of
the genetic algorithm when designing the proposal distribution in the sampling stage. In
[44], the genetic algorithm is used in the resampling stage. The particle impoverishment
issue has been mitigated in both algorithms. All previous work focused on applying
the genetic algorithms in the particle filter, while we extend the idea to distributed
particle filter by treating particles at different agents as different parents and fusing
the information through the crossover operator. In our case, we combine the GP-DPF
proposed in last Chapter with GA.

4.2.1 Genetic Algorithms

Genetic algorithms are population-based optimization methods based on Charles Dar-
win’s theory of natural selection. Three essential components of genetic algorithms are
selection, crossover, and mutation.

The selection operator selects candidate solutions according to the law of ”survival of
the fittest”. The quality of the candidate solutions is evaluated by the fitness value, and
it reflects the proximity between the candidate solution and the optimal solution. The
selected solutions are then fed into the mating pool to await the crossover operation.
Next, the crossover operator randomly selects two candidate solutions (i.e., parents)
from the mating pool and exchanges their partial information to create a new solution
(i.e., offspring). Like individuals in nature, the offspring in the genetic algorithm may
also mutate. The mutation operator is used to change part of the information in the
offspring, and this is very important since maintaining the diversity of the population
can prevent the genetic algorithm from falling into the local optimal solution.

The genetic algorithm used in the DPF in this Section refers to [44].

54



4.2.2 GA-DPF under Gossip Protocol

In this Section, we consider the use of a classical genetic algorithm, where each offspring
has exactly two parents. Therefore, we choose the gossip communication protocol in
this Section, that is, at each moment, each agent can only communicate with one agent
connected to it.

The proposed algorithm contains five stages, i.e., local filtering, communication,
mating, crossover, and mutation(the flowchart is given in Fig 4.1). Each stage is dis-
cussed in the following. Note, that the selection rule is omitted here since we assume
particles with high ”fitness” have already been screened out after applying GP-enhanced
resampling.

Figure 4.1: The flowchart of the GA-DPF under gossip protocol.

Local filtering

In this stage, each agent performs the particle filtering as well as the GP-enhanced re-
sampling based on the newly acquired measurements and ends up with a set of particles
{xm

n,k}Mm=1.

Communication

In this stage, the gossip communication protocol is adopted, and particle exchange is
executed. Taking agent k as an example, let agent j be one of its neighbors and be
selected, then the agent k would hold a particle set denoted as {xm

n,k,x
m
n,j}Mm=1 after the

communication stage.

Mating

To make full use of the two particle sets, we first perform a mating operation before
crossover. Again take agent k as an example, we first randomly select a particle from
{xm

n,k}Mm=1 as one of the parents, and then randomly select a particle from {xm
n,j}Mm=1

as the other parent. In this way, we can ensure that two parents come from different
particle sets, thus achieving the goal of information fusion. Note that after we select
a particle from a particle set, we need to remove that particle from the particle set to
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which it belongs. This ensures that all particles can be selected once. So far, we have
M pairs of successfully mated parents.

Crossover

Crossover is performed to fuse the information from different agents and prevent the
algorithm from trapping into the local optimum. For ease of explanation, at agent k,
we take a pair from the M pairs of parents, denoted as {xpar,1,xpar,2}. Note, the fitness
of a particle is defined as its local measurement likelihood. For example, the fitness of
particle xpar,1 is defined in (4.1). The superscript of f is consistent with the superscript
of its corresponding particle.

fpar,1 = p(yk|xpar,1), (4.1)

Then, we apply the arithmetic crossove with a probability pc. After the crossover
operation, an offspring particle is generated and can be written as

xcoff = αxpar,1 + (1− α)xpar,2 (4.2)

where α = fpar,1/(fpar,1 + fpar,2). The fitness of the offspring should also be calculated
and is denoted as f coff. The crossover probability pc is determined adaptively using the
Sigmoid function and is given by [44]

pc =

pc1 f ′ < favg
pc2 − pc2−pc1

1+exp{λ[ 2(f
′−favg)

fmax−favg
−1]}

f ≥ favg
, (4.3)

where pc1, pc2 are the predefined upper and lower bounds of crossover probability. λ
is a determined parameter. fmax, favg are the maximum and average fitness values of
the parental particles. f ′ is the larger fitness value of two selected parents, i.e., f ′ =
max{fpar,1, fpar,2}. The benefit of using this adaptively changing crossover probability
is that when particles run the risk of prematurely converging to a local optimum (i.e.,
f ′ ≈ favg), pc increases; when the particles are at risk of divergence in the solution
space(i.e., f ′ ≈ fmax), pc decreases. By doing so, the algorithm is more robust and would
have a higher probability for finding the global optimum. And the offspring is accepted
based on the Metropolis rule [57]. The idea of the rule is that the degraded offspring
(i.e., with poorer fitness value) is accepted with a certain probability. The specific
operation process is as follows. If f coff > f ′, the offspring is accepted. Otherwise, it is
accepted with the probability f coff/f ′. It is realized by generating a random number ζ
from a standard uniform distribution and comparing it with f coff/f ′. If ζ < f coff/f ′, the
offspring is accepted, otherwise, it is rejected. The new generated particle set should
include the offspring xcoff(if accepted) or the parent xpar,1 sampling from the original
particle set {xm

n,k}Mm=1(if rejected). The pseudo-code for standard crossover is presented
in Algorithm 14.

Mutation

The mutation operation aims at giving some randomness to the particles to enable
them to get rid of the local optimum. For each particle in the newly generated particle
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set after the crossover operation, the mutation is performed with the probability pm,
given by

xm,c
k = xm

k + ε, (4.4)

where xm
k is the mth particle from the newly generated particle set while xm,c

k is the
particle after applying the mutation. ε is the noise generated from from the same
distribution as the process noise. The mutation probability pm is given by

pm =

pm1 f < favg

pm2 − pm2−pm1

1+exp{λ[ 2(f−favg)

fmax−favg
−1]}

f ≥ favg
, (4.5)

where pm1, pm2 are the predefined upper and lower bounds of mutation probability. λ
is a determined parameter. fmax, favg are the maximum and average fitness values of
particles after crossover operation. f is the fitness value of xm

k . The fitness value for
xm,c
k should be also calculated and is denoted as f c(the calculation procedure can refer

to (4.1)).The mutated particle is accepted based on the Metropolis rule. If f c > f , the
particle is accepted. Otherwise, it is accepted with the probability f c/f . The accepted
mutated particle xm,c

k should replace xm
k in the new generated particle set. The pseudo-

code for mutation is presented in Algorithm 15. So far, after the above five stages, one
genetic algorithm execution is completed. The particle set of agent k has completed an
evolution by absorbing the information from agent j.

The algorithm GA-DPF under gossip protocol is presented in Algorithm 12. Stage
mating, crossover and mutation form the genetic algorithm based fusion(GAF) and is
presented in Algorithm 13. The parameter settings are given in Table 4.1.

Algorithm 12 GA-DPF(gossip protocol)

Require: {xm
n−1, ω

m
n−1}Mm=1, {yn,k}Kk=1

1: Initialize M,Lg(iterations)
2: {xm

n,k, ω
m
n,k}Mm=1 = PF({xm

n−1, ω
m
n−1}Mm=1,yn,k) ∀k = 1, · · · ,K

3: {xm
n,k, ω

m
n,k}Mm=1 = GP-R({xm

n,k, ω
m
n,k}Mm=1) ∀k = 1, · · · ,K

4: for i = 1, · · · , Lg do
5: Randomly select 2 adjacent sensors k, j
6: Sensor k, j exchange their particle sets
7: Run parallel at sensors k, j:{

{xm
n,k}Mm=1 = GAF({xm

n,k,x
m
n,j}Mm=1,yn,k)

{xm
n,j}Mm=1 = GAF({xm

n,j ,x
m
n,k}Mm=1,yn,j)

8: end for
9: xn,k = mean({xm

n,k}Mm=1) ∀k = 1, · · · ,K
10: return {xn,k}Kk=1, {xm

n,k}
M,K
m=1,k=1
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Algorithm 13 Genetic algorithm based fusion(GAF)

Require: {xm
n,k,x

m
n,j}Mm=1,yn,k

1: Calculate particle weight {fm
k = p(yn,k|xm

n,k), f
m
j = p(yn,k|xm

n,j)}Mm=1

2: {xm
n,k}Mm=1 = SCrossover({xm

n,k, f
m
k ,xm

n,j , f
m
j }Mm=1,yn,k)

3: Calculate particle weight {fm = p(yn,k|xm
n,k)}Mm=1

4: {x̂m
n,k}Mm=1 = Mutation({xm

n,k, f
m}Mm=1,yn,k)

5: return {x̂m
n,k}Mm=1

Algorithm 14 Standard Crossover(SCrossover)

Require: {xm
n,k, f

m
k ,xm

n,j , f
m
j }Mm=1,yn,k

1: Initialize pc1, pc2, λ
2: Calculate fmax = max({fm

k , fm
j }Mm=1), favg = mean({fm

k , fm
j }Mm=1)

3: for s = 1, · · · ,M do
4: Generate a pair {xpar,1,xpar,2} by randomly selecting two particles from

{xm
n,k,x

m
n,j}Mm=1

5: Calculate f ′ = max(fpar,1, fpar,2)
6: Calculate crossover probability pc according to (4.3)
7: Calculate α = fpar,1/(fpar,1 + fpar,2)
8: if U(0, 1) < pc then
9: xcoff = αxpar,1 + (1− α)xpar,2

10: Calculate f coff

11: if f coff > f ′ then ▷ accepted based on Metropolis rule
12: Replace xpar,1 in {xm

n,k}Mm=1 with xcoff

13: else
14: if U(0, 1) < f coff/f ′ then
15: Replace xpar,1 in {xm

n,k}Mm=1 with xcoff

16: end if
17: end if
18: end if
19: end for
20: return {xm

n,k}Mm=1
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Algorithm 15 Mutation

Require: {xm
n,k, f

m}Mm=1,yn,k

1: Initialize pm1, pm2, λ,Σ
2: Calculate fmax = max({fm}Mm=1), favg = mean({fm}Mm=1)
3: for s = 1, · · · ,M do
4: Select a particle xs

n,k from {xm
n,k}Mm=1 and determine its weight f

5: Calculate mutation probability pm according to (4.5)
6: if U(0, 1) < pm then
7: xc = xs

n,k + ε, ε ∼ N (0,Σ)
8: Calculate weight f c corresponding to xc

9: if f c > f then ▷ accepted based on Metropolis rule
10: x̂s

n,k = xc

11: else
12: if U(0, 1) < f c/f then
13: x̂s

n,k = xc

14: else
15: x̂s

n,k = xs
n,k

16: end if
17: end if
18: end if
19: end for
20: return {x̂m

n,k}Mm=1

Table 4.1: Simulation setup of GA-DPF.

parameter value

λ 9.903438
pc1 0.9
pc2 0.6
pm1 0.1
pm2 0.01
Σ R(see (1.15))

Monte Carlo trials 50x

The simulation results of GA-DPF given in Fig 4.2 show the effect of the number of
gossip iterations on the tracking error under three different particle set sizes. From the
figure we can see that the larger the number of particles, the smaller the error. At the
same time, as the number of gossip iterations increases, the tracking error gradually
decreases. We can surprisingly find that even when we set the local particle size of
each agent to a very small size, such as 10, the error can reduce to very small as long
as there are enough iterations. However, too many iterations will make the algorithm
difficult to apply to scenarios with high real-time requirements.
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Figure 4.2: Algorithm:GA-DPF(gossip-based)-ARMSE as a function of local particle size and
the number of iterations.

4.2.3 GA-DPF under Local Broadcast Protocol

In the previous Section, the proposed algorithm can only adapt to the gossip communi-
cation protocol, which means only information from two agents can be fused at a time.
At this Section, we make a few improvements to make the proposed GA-DPF adapt to
a more general communication protocol by exploiting multi-parent crossover operators.
Hence, local broadcast communication is used in this Section.

The modified algorithm also contains the same five stages but is slightly different
except for local filtering and mutation. Here we only briefly introduce the left three
stages. The flowchart of the algorithm is depicted in Fig 4.3.

Figure 4.3: The flowchart of the GA-DPF under local broadcast protocol.

60



Communication

Since now an agent can communicate with several connected agents at a time, an
offspring would simultaneously have multiple parents. Take agent k as an example and
let Nk denotes the neighbors of agent k. After one communication iteration, the agent
would hold a particle set denoted as ∪j∈{k,Nk}{xm

n,j}Mm=1.

Mating

This is the same as Section 4.2.2, except that the M pairs of parents consist of multiple
particles each.

Crossover

In recent years, several multi-parent crossover operators for real-coded Genetic al-
gorithms have been proposed [58][59], such as seed crossover operator(SX), multi-
parent feature-wise crossover operator(MFX), center of mass crossover operator(CMX)
etc. We test some of them in our application and pick the best performing one to
show here, which is MFX. First we take a pair of parents from agent k, denoted as
{xpar,1, · · · ,xpar,Dk+1}, where Dk is the number of agent k’s neighbors. Then, we
choose an individual xpar,v(v = 1, · · · , Dk + 1) from the set and one offspring is gen-
erated based on the following procedure. For each w(w = 1, · · · , d), where d is the
dimension of the state space, again we choose a particle xpar,u, where u is randomly
drawn from {1, · · · , Dk + 1} except for v. Then one dimension of the offspring is
calculated as follows,

xoff,v
w = αxpar,v

w + (1− α)xpar,u
w , (4.6)

where α = fpar,v/(fpar,v + fpar,u). The behind idea is to employ multiple parents for
generating one offspring using different feature-wise information and the (4.6) has to
be executed d times to generate an offspring. For the new generated offspring xoff,v,
the corresponding fitness value is denoted as f v(the calculation procedure can refer to
(4.1)). As we keep one parent fixed for generating a new offspring, we end up with a
total of Dk + 1 offsprings for each pair of parents. Since only one offspring is required
for each pair of parents, we then keep the offspring with the highest fitness value, i.e.,

v∗ = argmin
v

f v (4.7)

xcoff = xoff,v∗ (4.8)

The definition of the probability to perform a crossover is the same as that in the
previous Section. Besides, the newly generated offspring is also accepted according
to the Metropolis rule. The pseudo-code for multi-parent crossover is presented in
Algorithm 16.

The algorithm GA-DPF under local broadcast protocol is presented in Algorithm
18. Stage mating, multi-parent crossover and mutation form the multi-parent genetic
algorithm based fusion(MGAF) and is presented in Algorithm 17.

61



Algorithm 16 Multi-parent Crossover(MCrossover)

Require: ∪j∈{k,Nk}{x
m
n,j , f

m
j }Mm=1,yn,k

1: Initialize pc1, pc2, λ, d,Dk

2: Calculate fmax = max({fm
j }{k,Nk},M

j,m=1 ), favg = mean({fm
j }{k,Nk},M

j,m=1 )
3: for s = 1, · · · ,M do
4: Generate parents pool {xu

pool}
Dk+1
u=1 by selecting Dk + 1 particles from

∪j∈{k,Nk}{x
m
n,j}Mm=1

5: Calculate f ′ = max({fpar,u}Dk+1
u=1 )

6: Calculate crossover probability pc according to (4.3)
7: if U(0, 1) < pc then
8: for v = 1, · · · , Di do
9: xpar,1 = xv

pool

10: for w = 1, · · · , d do

11: determine xpar,2 by randomly choosing a particle from {xu
pool}

{Dk+1\v}
u=1

12: xoff,vw = fpar,1/(fpar,1 + fpar,2) ∗ xpar,1w + fpar,2/(fpar,1 + fpar,2) ∗ xpar,2w

13: end for
14: Compute the foff,v corresponding to the new offspring xoff,v

15: end for
16: Select the particle with max{foff,v}Dk+1

v=1 as the final offspring xcoff

17: end if
18: Calculate f coff

19: if f coff > f ′ then ▷ accepted based on Metropolis rule
20: Accept the generated offspring xcoff and replace the original particle in {xm

n,k}Mm=1

21: else
22: if U(0, 1) < f coff/f ′ then
23: Accept the generated offspring xcoff and replace the original particle in

{xm
n,k}Mm=1

24: end if
25: end if
26: end for
27: return {xm

n,k}Mm=1

Algorithm 17 Multi-parent Genetic algorithm based fusion(MGAF)

Require: ∪j∈{k,Nk}{x
m
n,j}Mm=1,yn,k

1: Calculate particle weight {fm
j = p(yn,k|xm

n,j)}
{k,Nk},M
j,m=1

2: {xm
n,k}Mm=1 = MCrossover(∪j∈{k,Nk}{x

m
n,j , f

m
j }Mm=1,yn,k)

3: Calculate particle weight {fm = p(yn,k|xm
n,k)}Mm=1

4: {x̂m
n,k}Mm=1 = Mutation({xm

n,k, f
m}Mm=1,yn,k)

5: return {x̂m
n,k}Mm=1
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Algorithm 18 GA-DPF(local broadcast protocol)

Require: {xm
n−1, ω

m
n−1}Mm=1, {yn,k}Kk=1

Execute at all agents k = 1, · · · ,K in parallel:
1: Initialize M,Lb(iterations)
2: {xm

n,k, ω
m
n,k}Mm=1 = PF({xm

n−1, ω
m
n−1}Mm=1,yn,k)

3: {xm
n,k, ω

m
n,k}Mm=1 = GP-R({xm

n,k, ω
m
n,k}Mm=1)

4: Sensor k sends {xm
n,k}Mm=1 to its neighbors

5: for i = 1, · · · , Lb do
6: {xm

n,k}Mm=1 = MGAF(∪j∈{k,Nk}{x
m
n,j}Mm=1,yn,k)

7: end for
8: xn,k = mean({xm

n,k}Mm=1)

9: return {xn,k}Kk=1, {xm
n,k}

M,K
m=1,k=1
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Figure 4.4: Algorithm:GA-DPF(local broadcast-based)-ARMSE as a function of local particle
size and the number of iterations.

The simulation results of GA-DPF under local broadcast communication protocol
given in Fig 4.4 show the effect of the number of broadcast iterations on tracking
error for three different particle set sizes. Increasing the particle set or increasing
the number of broadcast iterations can both reduce the tracking error. At the same
time, the algorithm does not have high requirements on the size of the particle set and
the number of iterations. As can be seen from the figure, 10 local particles and 10
iterations can already reduce the ARMSE to around 2. Different from GA-DPF based
on the gossip communication protocol in the previous Section, since all the agents can
perform information fusion with their connected agents once in each iteration under this
structure, ARMSE can be significantly reduced after the first few iterations. Besides,
execution time can be reduced due to the fact that all agents communicate in parallel
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in each iteration. It is worth mentioning that in the simulation, only after all agents in
the whole network have completed the communication and computing tasks, can they
together enter the next iteration. Hence, the performance of the algorithm under the
condition of ”asynchronous” communication (for example, when an agent observes that
all the connected agents have completed the current computing task, it directly go to
the next iteration without waiting for the rest of the agents in the network) can be
further investigated.

4.3 A Firefly Algorithm Based Distributed Particle Filter

In recent years, inspired by the behaviors of the flashing characteristics of fireflies, a
new bionic algorithm, Firefly Algorithm(FA), is proposed by Yang [51], and its superi-
ority to GA and PSO algorithms is confirmed by simulation experiments. In [45], FA
is also applied to the particle filter to prevent particle impoverishment and achieves
satisfactory results with a limited number of particles. Since FA outperforms GA in
other optimization applications, in this Section, we are motivated to adopt the FA in
DPF by treating particles as fireflies. In our case, we combine the GP-DPF proposed
in last Chapter with FA.

4.3.1 Firefly Algorithm

The Firefly Algorithm (FA) mimics the social behavior of fireflies flying through the
sky and is based on the following idealized behavior of firefly flashing characteristics:

• All fireflies are unisex, so one firefly will be attracted to other fireflies regardless
of their sex.

• Attractiveness is proportional to their brightness and they both decrease with
distance, so for any two flashing fireflies, the less bright one will move towards the
brighter one. If there is no brighter firefly than a particular firefly, it will move
randomly.

• The brightness of fireflies is influenced or determined by the landscape of the
objective function.

Attractiveness

The brightness I of a firefly at a certain location x is determined by the objective
function, i.e., I(x) ∝ f(x). However, the attractiveness β is relative and it should
be judged by other fireflies. For example, if we have 2 fireflies k and j, then the
attractiveness of the brighter of the two to the other should vary with the distance rkj
between the two, and the relationship usually can be described by the following formula

β(rkj) = β0e
−γr2kj . (4.9)

Since we can approximate exponential function as 1/(1 + r2) to save computation
resources, the above equation can be rewritten as

β(rkj) = β0/(1 + γr2kj). (4.10)
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where β0 is the attractiveness when rkj = 0 and γ is called light absorption coefficient,
which determines the strength of the influence of distance on attractiveness. The
distance can be defined using the Cartesian distance,

rkj = ||xk − xj||2 =

√√√√ d∑
i=1

(xi
k − xi

j)
2, (4.11)

where xi
k is the ith component of vector xk of the kth firefly and d is the dimension.

Movement

The movement of a firefly k towards a brighter firefly j can be modeled as

xk = xk + β0e
−γr2kj(xj − xk) + αS(rand− 1

2
), (4.12)

where the second term is due to the attractiveness and the third term is a random
term. S ∈ Rd×d is the scaling matrix whose dimension is consistent with that of term
rand. In the original paper, rand follows a uniform distribution between 0 and 1. For
most cases, we can take β0 = 1 and α ∈ [0, 1]. Furthermore, the random term rand can
also be extended to other distributions like Gaussian. Without the random term, the
system will evolve in a deterministic way. Conversely, the use of random term gives FA
the ability to explore the search space, helping agent get rid of local optima. Therefore,
it is possible to achieve a good balance between local intensive exploitation and global
exploration by adjusting α.

4.3.2 FA-DPF under Gossip Protocol

Here we explain how we apply FA to direct particle exchange based distributed particle
filtering. The algorithm FA-DPF is presented in Algorithm 19.

In this Section, the gossip communication protocol is adopted. For convenience,
in all the descriptions that follow, we default that in one iteration, agent k and agent
j are selected. Before we enter the communication stage, all agents need to perform
the particle filtering as well as GP-enhanced resampling locally same as the previous
Sections. After an iteration, the two selected agents will both have each other’s particle
sets and the final set is {xm

n,k,x
m
n,j}Mm=1. Since we want to fuse the information from

agent k and j, what we need to perform locally is, taking agent k as an example, letting
the particles in set {xm

n,k}Mm=1 move towards to the ”brighter” particles in set {xm
n,j}Mm=1.

Now the remaining question is how to define the brightness of a certain particle.
The deviation of the particle from the true state can be measured by the local

measurement likelihood. Based on this, we wish to define the brightness of a particle
as a function of the likelihood value. However, if only particle sets are exchanged
in the communication process, only local measurements can be used to calculate the
likelihood of locally generated or received particle sets. In this Section, to make the
defined brightness more convincing, in addition to exchanging particles, each agent
also needs to exchange the likelihood values of all particles calculated based on its local
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measurements. To sum up, each agent needs to perform two communication rounds in
each iteration, and each iteration consists of the following four stages. Note, we only
describe the behavior of agent k, the same for agent j. The flowchart of the algorithm
is depicted in Fig 4.5.

Figure 4.5: The flowchart of the FA-DPF under gossip protocol.

Communication round 1

Before the communication round, agent k holds data {xm
n,k, ω

m
n,kk}Mm=1, where the first

k of the subscript of ω means the particles are from agent k while the second k means
the likelihood is calculated based on the measurements from agent k. In the first
communication round, agent k would send the data {xm

n,k, ω
m
n,kk}Mm=1 to agent j and

receive {xm
n,j, ω

m
n,jj}Mm=1 from agent j. Before the next communication round, agent k

needs to calculate the likelihood of the received particles {xm
n,j}Mm=1 based on its local

measurements and end up with a data set {ωm
n,jk}Mm=1.

Communication round 2

In this communication round, agent k should send {ωm
n,jk}Mm=1 to agent j and receive

{ωm
n,kj}Mm=1 from agent j. Till now, the communication procedure has been finished.

The data hold by agent k is {xm
n,k, ω

m
n,kk, ω

m
n,kj,x

m
n,j, ω

m
n,jj, ω

m
n,jk}Mm=1.

Brightness calculation

Here we give the definition of brightness. For particle xm
n,k, the brightness I(xm

n,k) =
ωm
kk ∗ ωm

kj.

Firefly algorithm based fusion

After determining the particles {xm
n,k,x

m
n,j}Mm=1 and the corresponding brightness

{I(xm
n,k), I(x

m
n,j)}Mm=1, we can now introduce the FA. First, we draw a particle xp

n,k from
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the set {xm
n,k}Mm=1 and make a comparison between I(xp

n,k) with max({I(xm
n,j)}Mm=1). If

I(xp
n,k) < max({I(xm

n,j)}Mm=1), we randomly draw a particle xq
n,j from the set {xm

n,j}Mm=1

meeting the requirement that I(xq
n,j) > I(xp

n,k). The above operations can be per-

formed efficiently by introducing a sorting algorithm. Then we move the particle xp
n,k

towards xq
n,j based on the following movement rule

xp
n,k = xp

n,k + β0/(1 + γr2pq)(x
q
n,j − xp

n,k) + αε, (4.13)

where
rpq = ||xp

n,k − xq
n,j||2. (4.14)

As you can see (4.13) is slightly different with (4.12), it is because we use the process
noise ε ∼ N (0,R) to replace the random item S(rand − 1

2
). The above operation

needs to be repeated M times until each particle in the particle set {xm
n,k}Mm=1 has

been processed. So far, one iteration is finished. We can perform multiple iterations to
ensure information from the entire network is fully fused. The pseudo-code for firefly
algorithm based fusion is presented in Algorithm 20.

Algorithm 19 FA-DPF

Require: {xm
n−1, ω

m
n−1}Mm=1, {yn,k}Kk=1

1: Initialize M,Lg(iterations)
2: {xm

n,k, ω
m
n,k}Mm=1 = PF({xm

n−1, ω
m
n−1}Mm=1,yn,k) ∀k = 1, · · · ,K

3: {xm)
n,k}

M
m=1 = GP-R({xm

n,k, ω
m
n,k}Mm=1) ∀k = 1, · · · ,K

4: Calculate the particles’ weight {ωm
n,kk}Mm=1 ∀k = 1, · · · ,K

5: for i = 1, · · · , Lg do
6: Randomly select 2 adjacent sensors k, j
7: Sensor k, j exchange their particles and weights {ωm

n,kk}Mm=1, {ωm
n,jj}Mm=1

8: Run parallel at sensors k, j:{
Calculate weight ωm

n,kj of set {xm
n,k}Mm=1

Calculate weight ωm
n,jk of set {xm

n,j}Mm=1

9: Sensor k, j exchange weights {ωm
n,jk}Mm=1, {ωm

n,kj}Mm=1

10: Run parallel at sensors k, j:{
{I(xm

n,k)}Mm=1 = {ωm
n,kk ∗ ωm

n,kj}Mm=1

{I(xm
n,j)}Mm=1 = {ωm

n,jk ∗ ωm
n,jj}Mm=1

11: Run parallel at sensors k, j:{
{xm

n,k}Mm=1 = FAF({xm
n,k, I(x

m
n,k)}Mm=1, {xm

n,j , I(x
m
n,j)}Mm=1)

{xm
n,j}Mm=1 = FAF({xm

n,j , I(x
m
n,j)}Mm=1, {xm

n,k, I(x
m
n,k)}Mm=1)

12: end for
13: xn,k = mean({xm

n,k}Mm=1) ∀k = 1, · · · ,K
14: return {xn,k}Kk=1, {xm

n,k}
M,K
m=1,k=1
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Algorithm 20 Firefly algorithm based fusion(FAF)

Require: {xm
n,k, I(x

m
n,k)}Mm=1, {xm

n,j , I(x
m
n,j)}Mm=1

1: Initialize β0, α, γ
2: for p = 1, · · · ,M do
3: if max({I(xm

n,j)}Mm=1) > I(xp
n,k) then

4: Randomly draw a particle xq
n,j satisfying I(xq

n,j) > I(xp
n,k)

5: rpq = ||xp
n,k − xq

n,j ||2
6: xp

n,k = xp
n,k + β0/(1 + γr2pq)(x

q
n,j − xp

n,k) + αε
7: end if
8: end for
9: return {xm

n,k}Mm=1

Table 4.2: Simulation setup of FA-DPF.

parameter value

α 1
γ 0.03
β0 0.5

Monte Carlo trials 100x
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Figure 4.6: Algorithm:FA-DPF(gossip-based)-ARMSE as a function of local particle size and
the number of iterations.

The parameter settings are given in Table 4.2, and Fig 4.6 shows the simulation
results of FA-DPF. From the figure we can see that the ARMSE can be reduced by
increasing the particle set size or increasing the number of iterations. Compared with
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GA-DPF, the number of iterations required is greatly reduced. However, since FA-
DPF requires two communication rounds (particles and likelihoods) in sequence during
one iteration, this imposes higher requirements on the design of the communication
protocol. In addition, if you look closely at the figures, you will find that when the
number of iterations continues to increase after a certain number of times, the ARMSE
tends to saturate and rise slightly, this is because the measurement functions only
depend on the first 4 dimensions of the state space in our simulation data model.
Therefore, in each iteration, the estimations on the other two dimensions cannot be
corrected, leading to the increasing variance due to the presence of the random term,
resulting in a slight increase in the overall error. If we only calculate the error of the
first four dimensions from the true state, then the ARMSE always decreases as the
number of iterations increases. In the future, how to define brightness can be further
explored.

4.4 Summary

In this Section, we will briefly analyze and discuss the DPF algorithms proposed in this
Chapter.

4.4.1 Complexity analysis

Table 4.3: Communication overhead and computational complexity analysis(Chapter 4)
(M : the size of the particle set; d: the dimension of the state space; Dmax: the maximum
degree of the given multi-agent network; Lb: the number of broadcast iterations; K: the
number of agents; Lg: the number of gossip iterations.)

Algorithm GA-DPF(gossip) GA-DPF(broadcast) FA-DPF(gossip)

communication O(2LgMd/K) O(2LbMd)−O(2KLbMd) O(LgM(2d+ 4)/K)
computation O(2LgMd/K) O(LbMdDmax) O(2LgMlog(M)d/K)

• GA-DPF(gossip)
First we focus on the calculation on communication complexity. For GA-DPF,
in each iteration, a total of 2M particles are used for exchange. Let Lg denotes
the number of iterations, then the average communication complexity per agent
is O(2LgMd/K). Second, for computational complexity analysis, both GA-DPF
and FA-DPF use GP-enhanced resampling in local particle filtering stage, and the
complexity is O(M3). And in this part, we exclude the filtering part and only
focus on the comparison between two metaheuristic optimization algorithms. For
genetic algorithm, the time complexity is usually O(Md), where M is the size of
the population(i.e., the size of local particle set in our case) and d is the length of
the genotypes(i.e., the dimension of the state vector in our case). For GA-DPF
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under gossip protocol, the genetic algorithm is performed 2Lg times in total in
each time duration, hence the average complexity for each agent is O(2LgMd/K).

• GA-DPF(broadcast)
If we use the GA-DPF under the local broadcast protocol, then in each communi-
cation iteration, there would be 2|E|M particles used for exchanging and the com-
munication complexity per agent should be between O(2LbMd) and O(2KLbMd),
where Lb is the number of broadcast iterations. For computational complexity,
here the standard crossover operator is replaced by a multi-parent crossover, MFX.
Let Dmax denotes the maximum degree of the given network, and the complexity
of the genetic algorithm becomesO(MdDmax). Since every agent needs to perform
the GA Lb times per time duration, the total average computational complexity
is O(LbMdDmax).

• FA-DPF(gossip)
The quantities exchanged in FA-DPF are slightly different from that in GA-DPF.
In addition to exchanging particles, the likelihood values also need to be ex-
changed. Hence, in each iteration, a total of 2M particles as well as 4M likelihood
values need to be exchanged. The average communication complexity per agent
then should be O(LgM(2d + 4)/K). For computational complexity, the firefly
algorithm requires O(Mlog(M)d) [60] since a sorting algorithm is needed in our
implementation to seek ”brighter” fireflies. And under the gossip protocol, the
average complexity per agent should be O(2LgMlog(M)d/K).

4.4.2 Discussion

In this Chapter, we apply the metaheuristic algorithms to the distributed particle fil-
ter to optimize the local particle set and achieve good performance. Compared with
Chapter 3, the algorithms proposed in this Chapter further reduce the dependence on
the size of the local particle set and have better performance, making it feasible to
directly exchange particles in DPF. Next, we conduct a comparison between the algo-
rithms proposed in this Chapter. Using GA-DPF under local broadcast communication
conditions can obtain satisfactory tracking results with less communication overhead
than under gossip communication conditions. However, if the communication overhead
is further increased, under the condition of gossip, GA-DPF can further reduce the
tracking error at a faster speed. While under the condition of local broadcast com-
munication, the performance improvement of GA-DPF is limited. Therefore, we can
conclude that, given a certain communication overhead, compared with multiple agents
using the genetic algorithm for one-time information fusion, the operation of randomly
selecting two agents for information fusion multiple times can approach the global op-
timal solution faster. And compared with using GA, using FA can greatly improve the
tracking performance under low communication conditions. The disadvantage is that
if the measurements only reflect a part of the dimensions of the state space, for the
remaining part of the dimensions, as the number of iterations continues to increase, the
uncertainty and error of the estimated value will also slightly increase.
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4.4.3 Conclusion

The highlights of this Chapter are listed below.

• A genetic algorithm-assisted GP-DPF(GA-DPF) has been proposed under two
communication conditions, gossip and local broadcast respectively. The main
difference is the crossover operator we choose. Compared with the gossip commu-
nication condition, under the local broadcast condition, since each agent is able
to communicate with multiple neighboring agents, we will have more than 2 ”par-
ents” when generating new offspring. Hence a multi-parent crossover operator is
required. In this thesis, we use the MFX crossover operator.

• The simulation results show that the estimated performance will be improved
whether using GA-DPF under the gossip condition or the local broadcast con-
dition. Under local broadcast communication conditions, GA-DPF can obtain
satisfactory tracking results with less communication overhead. In the case of
gossip, although GA-DPF does not perform well with limited communication re-
sources, if the communication overhead is further increased, the tracking error
drops very fast. Numerical results verify the effectiveness of introducing the ge-
netic algorithm.

• A firefly algorithm-assisted GP-DPF(FA-DPF) has been proposed under gossip
communication condition. We omit the local broadcast condition here since there
is little difference in implementing the FA-DPF in different communication con-
ditions. Numerical results show that FA-DPF has very satisfactory performance
in both low communication and high communication conditions, verifying the
effectiveness of the firefly algorithm when being applied to DPF.

• A comparison of the computational and communication complexity of metaheuris-
tic optimization-assisted GP-DPFs proposed in this Chapter has be given from
a theoretical point of view. Besides, their limitations and challenges are also
discussed.
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Discussion 5
In this Chapter, we provide a comprehensive comparison and discussion of all the DPFs
presented in this thesis. The following content will be presented from three dimensions,
time, space, and communication complexity. To make it more compact, we use GP-
DPF(consensus), GP-DPF(diffusive) to denote Improved GP-DPF(consensus-based)
and Improved GP-DPF(diffusive mode) respectively in this Chapter.

5.1 Time Complexity

First, we compare and analyze the time complexity. At the end of each previous
Chapter, we have theoretically deduced the algorithms’ time complexity, i.e., the com-
putational complexity. Since it is hard to directly compare the time complexity of the
presented algorithms from a theoretical perspective due to reason that the hyperparam-
eters in each algorithm are mostly problem specific, in this Section, for a more intuitive
display, we plot the running time required for different algorithms to achieve a given
tracking error ARMSE (around 2), as shown in Fig 5.1. We conducted 50 Monte Carlo
experiments for each algorithm and visualized the experimental results with box plots.
From the figure we can see that the time complexity of the GM-DPF is much larger
than that of other DPFs, and hence, it is difficult to apply to application scenarios with
high real-time requirements. In contrast, the complexity of the GL-DPF algorithm is
relatively much lower but still higher than all the DPF algorithms proposed in this
thesis. In Fig 5.1(b), we compare all DPFs proposed in this thesis (note, the direct
particle exchange based algorithm proposed in Section 3.3 is not documented due to its
poor performance and failure to converge). Program runtimes vary from the shortest
of about 1 second (FA-DPF) to the longest of 15 seconds (GA-DPF under broadcast
manner).

5.2 Space Complexity

Second, we analyze and compare the space complexity. Since the memory consumption
of PF mainly depends on the size of the particle set, we use the particle set size as
an indicator to measure the memory demand of each algorithm. In Fig 5.2, we plot
the tracking performance of the algorithms proposed in Chapters 3 and 4 as a function
of particle set size. Since all the DPFs proposed in this thesis use the GP-enhanced
resampling algorithm, and it has been confirmed in Fig 3.1 that the GP-enhanced
resampling algorithm greatly reduces the dependence on particle set size compared
with the standard resampling algorithm, here we focus on the internal comparison
between the algorithms proposed in this thesis. Fig 5.2 shows that although Algorithm
10 (GP-DPF based on consensus fusion) performs poorly at extremely low particle set
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sizes, all 5 algorithms in the figure perform quite well at relatively low particle set
sizes. At the same time, it can be seen that when metaheuristic optimization is used,
the dependence of the particle filter on the size of the particle set is further reduced,
but at the cost, the communication requirements of the algorithm are strengthened(i.e.,
more iterations are needed during a single time instant).
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Figure 5.1: Time complexity comparison among all DPFs presented in this thesis.
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Figure 5.2: ARMSE as a function of varying particle size for all DPFs.

5.3 Communication overhead

Finally, we compare and analyze the communication resource requirements, which is
also one of the most important metrics in distributed algorithms. The requirements
for communication resources of different algorithms are usually affected by different
multiple parameters. For example, in GM-DPF, the number of Gaussian components in
the GMM and the number of iterations jointly determine the communication overhead.
Since the communication overhead is determined by both the particle set size and the
number of communication iterations in direct particle exchange based DPFs, when
studying the relationship between the communication overhead and the estimation
accuracy, we change the communication overhead by fixing the number of particles
and changing the number of communication iterations. For each algorithm, we use the
number of particles corresponding to its elbow point in Fig 5.2, i.e. 50 particles for GP-
DPF (consensus), 50 particles for GP-DPF (diffusive), and 20 particles for GA-DPF
(under gossip manner), 10 for GA-DPF (under broadcast manner) and 10 for FA-DPF
(under gossip manner).

In Fig 5.3, we show the trajectory error ARMSE for each method as a function of the
communication overhead. We quantify the communication overhead using the count of
scalars transmitted between sensors in the network. As expected, there is a trade-off
between estimation accuracy and communication overhead. From the figure, we can
see that since GM-DPF parameterizes the posterior probability, it has the smallest
communication overhead. While GL-DPF requires a higher communication overhead.
The direct particle exchange based distributed particle filters proposed in this thesis
can also obtain good estimation performance under limited communication resources.
Algorithm 8 proposed in Section 3.3 has poor performance because it only randomly
keeps the exchanged particles. The two improved versions proposed in Section 3.4
effectively overcome this limitation. However, we can see that the GP-DPF based
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on consensus fusion has a great demand for communication resources due to its need
to reach a global consensus, while the algorithm based on diffusive mode can greatly
reduce the communication overhead while maintaining good estimation performance.
In Chapter 4, to seek the global optimal particle set at each moment, we introduced
metaheuristic optimization and achieved good results. When adopting the genetic
algorithm in DPF, we consider two communication architectures, namely gossip, and
local broadcast. We find that under the gossip communication protocol, the uneven
selection of agents will lead to insufficient global information fusion at the beginning,
making the algorithm perform poorly in low traffic. However, when the traffic is further
increased, the performance of the GA-DPF algorithm based on gossip communication
is better than that based on local broadcast, which proves that the global optimal
particle set can be approached more effectively by randomly selecting two agents and
iterating for many times than by fusing the information of multiple agents at one time.
Finally, compared with GA, using the firefly algorithm achieves a faster convergence
rate in estimation error.
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Conclusion and Future Work 6
6.1 Conclusion

This thesis attempts to study the distributed particle filter based on direct particle
exchange. The proposed algorithms are all simulated in the scene of target tracking
and the effectiveness of the algorithms is verified. The main contributions of this thesis
are as follows.

• A resampling algorithm based on the Gaussian process is used for distributed
particle filtering to reduce the dependence of the filter on the size of the particle
set, which rationalizes the direct exchange of particles in low-dimensional state
spaces. In Chapter 3, we perform information fusion based on both the consensus
algorithm and diffusive mode and study the relationship between the performance
and the communication resource consumption.

• Two metaheuristic optimization algorithms, the genetic algorithm, and the firefly
algorithm are used to find the global optimal solution of the particle set in DPF.
Simulations have shown the performance improvement of the combination.

• We comprehensively compare all the direct particle exchange based distributed
particle filters proposed in this thesis with the state-of-the-art GL-DPF and GM-
DPF from the three dimensions of time, space, and communication complexity,
and present the necessary simulation results.

6.2 Future Work

The work of this thesis can be further studied and improved from the following aspects.
First, the DPFs proposed in this thesis are all based on the GP-enhanced resampling

algorithm. However, in the current research, we also found that a large number of
resampling algorithms also achieve the low dependence of particle filter on the particle
set size, such as the resampling algorithm based on the genetic algorithm in [44]. These
resampling algorithms can also be used in distributed scenarios and further studied.

Second, in Chapter 4, we use two metaheuristic optimization algorithms to search for
the optimal particle set and obtain better estimation results. Likewise, more optimiza-
tion algorithms [53] can be combined with direct particle exchange based distributed
particle filtering to explore more possibilities.

Third, when applying the genetic algorithm under the local broadcast communica-
tion protocol in Section 4.2.3, for the crossover operator in the multi-parent scenario,
we compared several existing algorithms and finally selected the MFX algorithm which
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showed the best effect in the simulation part. In the future, crossover operators cus-
tomized for distributed particle filter scenarios can be further studied.

Finally, the robustness of the proposed algorithms in harsh communication environ-
ments (e.g., link failures between nodes, communication delays, interruption in network
connectivity) can also be further tested.
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