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THE EXACT SEISMIC RESPONSE OF AN OCEAN
AND A N-LAYER CONFIGURATION*
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ABSTRACT

DRUKONINGEN, G.G. and Fokkema, J.T. 1987, The Exact Seismic Response of an Ocean and
a N-Layer Configuration, Geophysical Prospecting 35, 33-61.

The space-time acoustic wave motion generated by an impulsive monopole source is
calculated with the aid of the Cagniard-de Hoop technique. Two contigurations with plane
interfaces are discussed: an air/fluid/solid configuration with the source and the receiver
located in the fluid layer; and a stack of n fluid layers between two acoustic half-spaces where
the source and the receiver are located in the upper half-space. Synthetic seismograms are
generated for the pressure of the reflected wavefield, using the source signature of an airgun.

INTRODUCTION

The acoustic wavemotion for two different configurations is analyzed. In one con-
figuration a fluid layer is bounded on the upper side by a half-space of air, while the
lower half-space is filled with an isotropic, perfectly elastic material. In this configu-
ration an impulsive monopole point source or line source is located in the fluid. The
receiver is positioned in the fluid layer. The second configuration consists of a stack
of fluid layers bounded on both sides by an acoustic half-space, where the source
and receiver are located in the upper half-space (Aki and Richards 1980). The
acoustic response to the source excitation has been calculated by the Cagniard-de
Hoop technique.

The Cagniard-de Hoop technique, introduced by Helmberger (1968), is now well
established in pure seismology. The mathematical foundations were developed by
Cagniard (1939, 1962) and de Hoop (1960). (The latter gives a clear discussion of the
technique.) Its application to seismic prospecting, however, has not been so common
although the technique is highly valuable for forward modeling since it gives the
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exact solution, Here the exact solutions are evaluated but faster programs, with
about the same accuracy, could be achieved by introducing high-frequency approx-
imations (see Helmberger 1968).

In the three-layer problem the two boundaries together are the cause of multiply
reflected waves. In a stack of fluid layers only the primary reflections are considered,
thus no internal multiply reflected waves will be involved. To apply the Cagniard-de
Hoop technique, we assumed the fluids to be homogeneous, ideal and lossless and
the solid, if present, to be isotropic, homogeneous and perfectly elastic.

We begin our analysis by presenting the general framework. Then we discuss the
two configurations separately, the first more extensively. We introduce the funda-
mental wavemotion in the media on which our model depends. The different wave-
fields are connected by the boundary conditions for the media, which leads to a final
wavefield representation. With this method Green’s function in the space-time
domain is determined. The two-dimensional case (the line source problem) and the
three-dimensional case (the point source problem) are presented. Firstly the space-
time Green’s function is computed and then convolution with a known source
signature is performed.

ParT |. AIR/FLUID/SOLID CONFIGURATION WITH THE SOURCE
AND RECEIVER IN THE FLUID

1.1. General framework

To specify space and time x, y and z are the spatial coordinates and ¢ the time
coordinate. We chose a right-handed Cartesian coordinate system with the z-axis
pointing downwards and the x-y plane forming the interface between the air and
fluid layers (fig. 1). Both the source and receiver are positioned in the fluid. The
source and receiver depths are denoted by h, and h,, respectively, while the layer
thickness is given by h,,. The quantities which describe the properties of the media

i Air (pg, cq)
>
- 4 — W
)
’ . _ Receiver
u Source ,
e Fluid (pf'C")

Fig. 1. The first configuration to be considered.
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Table 1. Quantity description.

Quantity Description Sl-units
Pas Prs Py volume density of mass (¢ = air, f = fluid, s = solid) kg/m?
K,, K, bulk modulus of compression (a = air, [ = fluid) N/m?
Au Lamé coefficients N/m?
¢, = (K /p)'? wave velocity in air m/s?
¢ =K /p)'? wave velocity in fluid m/s?
¢, = (A + 2w/p)"* compressional-wave velocity in solid m/s?
e, = (u/p)'? shear-wave velocity in solid my/s?

can be found in table 1. The fluid is assumed to be lossless, homogeneous and ideal,
while the lower half-space is filled with an homogeneous, isotropic, perfectly elastic
solid. The source starts to act at time +0. With these assumptions the equations can
be transformed from time (t) to Laplace domain (s) where s is chosen positive real,
and from x and y to the spatial Fourier domain (so, sf5) through

Sy, 25 09) =J f(x, 3, 23 1) exp (—st) di, (1)
Q-
+ 2
fls, 5P, z; ) = fjf'(x, ¥, z; 8) exp {js(ex + fy)} dx dy. )
The transformation back to the space-Laplace domain is written as
+ w0
. 5\? x .
Jx, y, 2 8) = <57;> Hf(soc, sf, z; s) exp { —js(oax + fy)} da dp. (3)

Note that a circumflex (0) refers to a Laplace transformed quantity, while a tilde (7)
denotes a Laplace-Fourier transformed quantity.

The total wavefield in the fluid is decomposed into an incident field and a
reflected field (indicated by superscripts i and r), where the incident field is the field
which would be present if the fluid were of infinite extent, and the reflected field is
the difference between the actual wavefield and the incident field.

Let p denote the pressure (Pa). We start with the inhomogeneous wave equation
for the incident field,

1 .
<0% + 65 + 03 3 0’2)[)1 = —p_/'atz(pu(t) 5()6, ¥,z - hs), (4)
¢
where
¢,(t) = volume density of injected fluid volume, (5)

and the partial derivative 9?7 is given by

2 N ;
0 = pr (i=x,,zt). (6)
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Then performing the Laplace and Fourier transformations,

dﬁpi - Szyfi’i = “Szpf(?)u oz — hy), (7)
where

yp=(1/ck f+oa® + )12 with Re (y,) = 0. (8)
The solution of this inhomogeneous differential equation is well known:

p'= A’ exp (—syplz — hyl), 9)
where

A= 520,028y, (10)

We can apply the Cagniard-de Hoop technique to the incident field (de Hoop
1960). Thus we write the pressure field in terms of the transform-domain expression
of Green’s function:

ﬁi'—"sapf(?)uéi (1])
where
G' = (1/2 s*p)) exp (=sy, |z = hl). (12)

We transform (12) back to the space-Laplace domain with the aid of (3),

N S 2 + + w0

Gl = (ﬂ) J dp J (1/2 s*y,) exp { —jsox — jsBy — sy;|z — byl } do. (13
For the above technique we write G in the form

G = J‘ (%) exp (—s7) dt (14)
0

by transforming the path of integration in the complex p plane such that the term in
the exponent is purely real and positive:

{Re (ox + iBy + v,z — hyl) =1,

. . 15
Im (ox + jBy +y,lz — hy|)= 0. =

Because © is purely real, we can identify it with time and we can also use Lerch’s
uniqueness theorem (Widder 1946) which states

if
meﬂﬂexp(—Sﬂdt=.[mwﬂﬂeXp(—swdu
0- 0-

(s is positive real and in common region of convergence)

then

@ ,(t) = @,t).
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Then (%) in (14) can be recognized as the desired space-time Green's function. Thus
we have evaded two integrals.

1.2. Description of the field quantities in the different media

In the air, the domain z <0, the pressure is the fundamental unknown. The
transfprm-domain representation of the transmitted field, characterized by the pres-
sure P% is given by (for convenience)

Pt = A¢ exp (—sy,hs + sy,2), (16)
where
va=(1/c2 + o + A2 with Re (y,) = 0. (17)

With the aid of the equation of motion, the vertical particle displacement is
described by

U° = —(1/s%p,) 8,5 (18)

In the fluid, the domain 0 < z < h,,, the fundamental unknown is the pressure.
For the pressure we can write

Pr=P4pP
= A'exp (—sy,lz— hl) + A" exp (—sy,z) + A7 exp {syz — h)} (19)

where y, is defined by (8). At the boundaries we need the vertical displacement in
the fluid, so we substitute (19) in the equation of motion. We arrive at

UL = —(1/s’py) 0.P”. (20)

In the solid, the domain z > h,,, the wavemotion can be described by the particle
displacement u as the fundamental unknown quantity. The total wavemotion can be
decomposed into a divergence-free part and a curl-free part, the so-called shear and
compressional waves, respectively. Hence

(o, o, 0y =10, 08, 08} + (OF, OF, 073, (21)
where the shear part (div u = 0) can be written (for convenience) as

{05, 05, U5} = {3, A%, 7, 45, —joAs — A3} exp {—sylz — h) — sv,lhy — B},

(22)
with
=(1/¢2 + o+ p%)Y*  withRe (y) =0 (23)
and the compressional part (rot u = 0) as
{08, OF, 08} = {jo, B, 7,3 A" exp { —syylz = ) = sp,dhw = ho)}, (24)

where

y,=(1/c + a2 + )"  with Re (3,) = 0. (25)
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For the boundary conditions we need the xz, yz and zz components of the stress
tensor. They are determined by using the constitutive relation for an isotropic,
perfectly elastic medium. In the transform domain these components are

T = p(—JosU + 0, U, (26)
% = p(—ipsUt + 2.0Y), (27)

1.3. Determination of the amplitude factors

In the description of the wavemotion in the media, we still have six unknown
amplitude factors, viz., 45, 45, AP, A% A' and A~. We also have six boundary
conditions so we can solve for these factors. At the air/fluid interface we require the
continuity of the pressure and the continuity of the vertical displacement. Hence,

lim P/ = lim P°, (29)
z]l O zt0
lim U/ = lim 0% (30)
210 z10

At a fluid/solid interface the tangential components of the traction must vanish, the
normal component of the traction in the solid must be equal to the opposite of the

pressure in the fluid and the normal component of the particle displacement must be
continuous. Hence,

lim % =0, , (31)
z 4 hw
lim %, =0, (32)
z | hw
lim %, = lim (— &),
z | by z T by

- "_Ai exXp {—Svf(hw - hs)} - A+ €Xp (—Syfhw) - A ) (33)
lim U, = lim U/
z | hw zthy

= —(p/sp AL — A" exp {—sylh, — h)} — A* exp (s h,) + 471,
To solve these equations, we introduce the reflection coefficients R, and R,:
AT =R, [A exp (—sy h) + A™ exp (—sy, h,)], (35)
A™ =R,[A exp {—sy,(h, —h)} + A" exp (—syp, b)) (36)

With the boundary conditions (31) and (32) we can express 4} and 4} in terms of
AP

A5 = —{joyp/e® + B* + 1/(2c2)}1 A", (37)
A = —{jPyplle® + p + 1/(2c2)}A". (38)
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Now we substitute these resuits in the boundary conditions which require the
continuity of the pressure and the vertical displacement, viz., (29), (30), (33) and (34).
So,

Ru = (}’f/pj - ya/pu)/(')lf/pf + vu/l)a)’ (39)

Rs = ( “/)f}’P/4Ps ‘)‘f (,.? + AR)/Asch H (40)
where

Ap = (@ + B2 + 12D = (@ + FP)yp . (41)

is the Rayleigh-wave determinant, associated with surface waves along a traction-
free boundary, and

Agen = pyyeldngys i+ Ag (42)

is the Scholte-wave determinant associated with surface waves along a fluid/solid
boundary.

Now we solve for 4" and 4~ with the aid of the definitions (35) and (36). We
arrive at

A* = 1/(1 = R R, exp {— 2y, h A

X [Ra exp (—'S'})fhs) + Ra Rs Cxp {"" Syf(Zhw - h.s)}]a (43)
A =1/l — R, R, exp {—2sy h,})A'
x [R,R,exp {—sy,(h, + h)} + R, exp { —sy,(h, — h)}]. (44)

For the Cagniard-de Hoop technique we expand the denominator, occurring in the
right-hand sides, in a power serics of exponential functions. As in practical situ-
ations the recording time is finite, we observe a finite number of multiply reflected
waves, The resulting expansion is convergent when R, and R, are real since then
IR\ < 1, |Rs| < 1 and | exp (—sy,h,)| <1 when 5 is real and positive. When we
substitute these factors in the equation for the total pressure (19), we arrive at

Pih) = A exp {—sy;|z — hl} (43)
+ Af i R RN exp [—sy,(2mh,, + hy + h,)] (i)
m-=0
+ 4 i RrIRMVexp [—sypi2m + Dhy, + h, — h}] (i1)
m-0
+ A i RIRM Y exp [—sy, {2(m + Dh,, — hy — h,}] (iii)
m=0
+ A Z RHIRM L exp [—sy,{2(m + Dh, + h, — h}). (iv)
m=0

The latter four terms can be recognized as certain kinds of multiply reflected waves
(fig. 2). From now on these reflections and the direct wave will be written symboli-
cally as R*R! and the corresponding exponentials as exp (—sy, Dy, ().
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Fig. 2. The separated multiply reflected waves; the numbers refer to the terms in (45).

So far there is no special difference between the three-dimensional and the
two-dimensional case because to obtain the two-dimensional from the three-
dimensional case we simply omit all the y-terms or in the transform domain the
p-terms, because d, = 0. In the two-dimensional case one factor, s, has also to be
dropped in the definition of Green’s function. The modified Cagniard-contours for
the two-dimensional and three-dimensional case are now determined separately.

1.4. Determination of Green's function for the line source problem

One element of Green's function in the (x, z; s) domain has the form

. s + o0 .

W= (i;)f (1/23Vj)RﬁRL exp {—s(ja + y; Dy, )} do. (46)
The factors R, and R, in the integrand do not depend on s and therefore we can
proceed with the Cagniard-de Hoop technique by substituting

p = ja, (47)

{Re (p+7y,D =1 ( = real and positive) "

(

((Im (P‘*'Vka,i):O- )
(47) means a transformation so that the integration path is along the imaginary axis
instead of the real axis. Note that p is not the pressure but an integration variable.
(48) implies that the path of integration is deformed and care should therefore be
taken to transform the path continuously. An extra integration should be made
around any branchcut or pole that is passed (fig. 3).

Physically, the extra integrations around these branchcuts represent the so-
called head waves (seismology) or lateral waves (optics) and the contribution from
poles represent the surface waves. Head waves exist when the wave velocity in the
second medium is larger than the velocity of the wavefront along the interface with
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Im (p)

l
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Original path of
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contour

—~ Re (o)

Fig. 3. The transformation in the complex p-plane according to the Cagniard-de Hoop tech-
nique.

the first medium. These waves can only be observed in certain regions in the first
medium (fig. 4). The two branches of the hyperbola in the complex p-plane, rep-
resenting the body waves, are supplemented by circular arcs at infinity. The contri-
bution of this arc vanishes provided that the algebraic factors in the integrand are
zero at infinity. In the case of acoustic wavefield excitation this condition will always
be satisfied.

(48) implies a path in the complex p-plane that is located symmetrically with
respect to the real p-axis, because Schwarz’s reflection principle applies to the left-
hand side.

Let r denote the horizontal distance between the source and receiver and let Ry,
be the total travel path, defined by

Ry, = (r* + Di )2 (49)

With Lerch’s theorem the space-time Green’s function can be recognized as

10 when —o0 <t < T,
gh (©) = - Im {RERYP/")}20( T3, — o2)'1? when T, <t< T}, (50)
Re {RERYp!N)}2m(z* — T3, when T, <1< o0;
where
Ty, = r/c, + Dy, ,(I/C% - I/Cﬁ)”z (510)

is the arrival time of the head wave (if present),

Typ = Ry fey (52)
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Head waves
/ \/__\/
—
P P

Fig. 4. The development of the wavefront in time when head waves occur. The wavespeed ¢,
is larger than the wavespeed of the wavefront along the interface in medium f.
is the arrival time of the body wave in the fluid and
p’" = t/R}y — Dy, I(RJ%, 1/6% - Tz)l/z/R%, I (53)
p =r/R} |+ Dy (z* — R DR, (54)

The head-wave contribution is only present in regions where r/R, ;> ¢ /c,. In
marine seismics this only occurs when the P-wave velocity of the material of the
sea-bed is higher than the wave velocity in sea water, and the horizontal distance is
large enough.

1.5. Determination of Green's function for the point source problem

This case is more complicated than the line source equivalent because a double
integral is involved. The (x, y, z; s)-domain representation of one element of Green’s
function is

~ s\ [ @ . .
G, = (57;) J dljj (1/2SZVf)R’a(RL exp { —s(ox +jfy + Yr Dy )} do. (55)

- -0

r? 1T 1N\ r? 11 1
D2 \c? ¢%) c2N\Di, \eZ ¢2) 2

Fig. 5. Relationship between ¢ and r.
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As previously we follow the Cagniard-de Hoop technique but now substitute

& = w cos () — ¢ sin (@),

B = w sin (@) + q cos (@), (56)

where ¢ follows from the polar coordinate specification of the point of observation:
X = rcos (¢}, y = r sin (@),

p = jw, (57
{Re(pr+y, Dy )=r1 (= real and positive)

{Im (pr + 7, Dy.) = 0. (58)

Now our integrals need to be in such a form that we can use Lerch’s uniqueness
theorem. To change the order of integration we use the relationship between g and
7, shown in fig. 5. The integral over g is the desired space-time Green’s function:

0 when 0 <1< Ty,

@fpt
4[ “m {RERYPN /(20T (g) — )1} dg

Qe fp

when Ty, <t < T},

orpl?)
J Im {RE RUp/ M}/ 20T, ) — 7)1} dg (59)
" wyrit)
Ik, 1( )= or ()
+ f Re {RERI(p)}/20? — T2 q)?} dg
1]

when T, <1< T

@rf)
J Re {RRYp/)/(2n%(1 ~ T2, (q)'*} dgq
0

when T, < 1 < 0

in which the limits of integration are

@,,(0) = [tfr — Dy ((1cF = e Py — 1/c2]M? (60)
and

o) = (P/RE — 1/ep'?, (61)
while

Typ = t/¢y + Dy (1/c} — 1fep)' (62)

is the arrival time of the head wave if present,

Tff = Rk. l/cf (63)
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is the arrival time of the body wave in the fluid and

= RI%. ,(1/c12- - 1/05)1/2/Dk,1 (64)
is the time after which there are no further head-wave contributions,

p’P =1/RE, — Dy (RE g + RY fcf — t)*/RE . (65)

p/l = r/RE |+ Dy (7 — Rp%, I/C% - Rl%,zqz)m/Rl%,x- (66)
As in the line-source case, the head-wave contribution is only present if r/R, ; >
cplc,.

Shear head-waves can also occur with the compressional head waves that so far
have only been considered. Expressions for shear head-waves are found by replacing
¢, by ¢, in (60), (62) and (64), which give (1), T); and T;, respectively. These are
also drawn in fig. 5.

For numerical computation we used the transformation shown in appendix A
because (inverse) square-root singularities occur at the end points of the
g-integration. All the integrations are then over the interval (G, /2).

1.6, Numerical results for the fluid/fluid/solid configuration

We now show some numerical results following from the theory. So far, both the
line source and the point source problem with only one fluid/solid boundary have
been discussed extensively by de Hoop and van der Hijden (1983, 1984). The com-
puter program to evaluate Green's function has been developed independently of
these authors and we compared their program and ours. We chose the input para-
meters to reproduce the figures presented by de Hoop and van der Hijden. Agree-
ment up to three significant digits was achieved. The differences originated from the
time values at which the Green’s function was evaluated, and from different evalu-
ations of the integralf(s).

In all figures, the total Green’s function was evaluated to include the direct wave.
The travel path of the direct wave is denoted by R, ,and its arrival time by T,

First, we discuss the two-dimensional case. In the numerical evaluation of Green’s
function every multiply reflected wave is treated separately because the modified-
Cagniard contour differs for each one. For every multiply reflected wave we have
another vertical travel path D, ,, so different expressions for p// and p/” arise.

We discuss a few figures for the two-dimensional case. There is a disadvantage in
the two-dimensional case: for every multiply reflected wave Green's function has a
discontinuity at time t = T, so it often shows a bigger value for a multiply reflec-
ted wave than the direct wave, But the two-dimensional case requires relatively littie
computation time.

In fig. 6, we chose the rounded-off values derived from a borehole log for the
velocities. In this case we are in the region where we have no contributions from
head waves. Head waves occur only when the horizontal distance from source to
receiver is larger than 208 m. The offset in fig. 6a is 180 m which is not very large in
comparison with the water depth, 100 m. The direct wave arrives at t = 0.12 s and
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Fig. 6. Two-dimensional space-time Green’s function with: ¢, =334 m/s, ¢, = 2000 m/s,
¢, = 1500 m/s, ¢, = 600 m/s, p,/p, = 00013, p/p, =25 h;=9m, hy=75m, h,= 100 m;
(a) r = 180 m and (b) r = 500 m.

then a few milliseconds later the ghost reflection of the source. Neither arrival is
disturbed by any head-wave contributions, However, when the offset is larger,
fig. 6b, head-wave contributions are present in the first reflections.

In fig. 7a, the case of a solid with high wavespeeds is shown. Head waves are
abundantly present even with a small offset. When the receiver is located farther

gr(5-|)101 i LL L AL A . - (a)

t 0 I T Ty T T v
. V% ,/ 2 ] =t {ms)
f
T

T;

g' (s7") ‘

" 10 }

0 (b)

-/ (ms)

201 .

Fig. 7. Two-dimensional space-time Green’s function with: ¢, = 334 m/s, ¢, = 1500 my/s,
¢y = 2000 m/s, ¢, = 3500 m/s, p,/p; = 0.0013, p/p; = 2.5, hy=9m, h,="75m, h, =100 m;
(a) r = 180 m and (b) r = 500 m.
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Table 2. The five relevant intervals when compressional and shear
head-wave conrributions occur.

7 interval g interval

Tip <t < T 0<g<o;,
Ffs<r<Tff O<q<(pfs, Pps<q <@y,

Tp<t<T, O0<qg<@r, @rp<q<op, 0<qg<og,
T, <t<T, O<q<os, @p<q<qg,
T, <1< O0<q<oy

away from the source, fig. 10, the first arrival is a compressional head wave but
shear head waves also arrive at the receiver before the direct wave. These first
arrivals are used in refraction seismics. A shear head wave arriving before the body
wave occurs when the shear-wave velocity is larger than the compressional-wave
velocity in the fluid. Even in high-order, multiply reflected waves, head-wave contri-
butions are visible. Note that in figs 6 and 7 there are times when the Green's
function has a larger amplitude for a multiply reflected wave than the direct wave
because of the inverse square-root singularity for each multiply reflected wave,

To compute Green’s function with the contribution of 24 multiply reflected
waves on a Gould 32/67 computer takes about 1 minute, for 1 s recording time,
with a sampling interval of 0.5 ms.

We now discuss the point source problem. In the integrand (inverse) square-root
singularities occur at the end points of the integration interval. With the aid of the
transformation shown in appendix A these disappear. When the shear-wave velocity
is larger than the fluid-wave velocity, the integrand shows a discontinuity in slope at

4107 ]
g (m™)
' 0
0 : . 'Inu : -
Ué § .5: ~ ' (ms)
2.107
gh(m=") U
1
0 T n L T r nu _— (b)
3 | s V g~ (ms)
~ f - ©

Fig. 8. Three-dimensional space-time Green’s function with: ¢, = 334 m/s, ¢p = 1500 m/s,

¢, = 2000 m/s, ¢; = 600 m/s, p,/p, = 0.0013, p/p, =25 hy=9m, h,=75m, h, = 100 m;
(a) r = 180 m and (b) r = 500 m,
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time ¢ = T,,. This is why we decompose the relevant integral into three integrals
over the intervals Ty <t < Ty, Ty <t < T, and T; <t < T, as long as shear
head-wave contributions occur. This means that the evaluation of Green’s function
consists of five relevant intervals, given in table 2. In fig. 8 the values are the same as
for fig. 6, except that the source is a point instead of a line. The first part of the trace
to 320 ms is enlarged in fig. 9a and is decomposed into all its components as shown
in figs 9b—f. Figure 9b shows the direct wave, which has an amplitude of 1/4nR, ,
and is time-shifted from the origin by an amount of R, o/c,. This is the well-known
monopole solution of the wave equation for an infinite homogeneous medium. In
fig. 9c the ghost reflection of the source arrives just after the direct wave but with a
smaller amplitude because of the angle-dependent reflection coefficient R,. This
figure corresponds to the multiply reflected wave (45.1). Figures 9d—{ are the multiply
reflected waves (45.1i)~(45.iv).

(a)

101. |
A—
201, |
;
-
E)
g
o1

4.10 (
g™ )
[
0 r T T (b)
s ] = fms) 3
=~ /{ms)
0 . , . (c)
' . 2 2
g(m'l) = & 2
—— T e
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first 320 ms, (b) the direct wave, (¢) multiple 1, (d) multiple 2, (¢) multiple 3 and () multiple 4.



48 G.G. DRIJKONINGEN AND J.T. FOKKEMA

10
gt (s L |
T R ag A B (@)
Nt r g g "7 (ms)
Z
g’ (s
10 H
0 .‘ 'Ljr P — (B)
g ‘ §T g~/ (ms)

Fig. 10. Three-dimensional space-time Green’s function with: ¢, = 334 m/s, ¢, = 1500 m/s,
¢, = 3500 m/s, ¢; = 1400 m/s, p,/p; = 0.0013, py/p, = 2.5, hy=9 m, h,=75m,h, =100 m;
(a) r = 180 m and (b) r = 500 m.
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Fig. 11. Three-dimensional space-time Green’s function with: ¢, = 334 m/s, ¢, = 1500 m/s,
¢, = 3500 m/s, ¢, = 2000 m/s, p,/p, = 0.0013, p/p, = 2.5, hy=9 m, h, = 7.5 m, h, = (00 m;
(a) r = 180 m and (b) r = 500 m.
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Figure 8b shows the response with the same input parameters and the offset
increased to 500 m.

In fig. 10 onwards the compressional-wave velocity is increased. Figure 10 shows
the response for shear-wave velocity still lower than the fluid-wave velocity. An
increase in offset for this configuration causes more compressional head waves to be
present (fig. 10b). For fig. 11 both the compressional and the shear-wave velocity are
larger than the fluid-wave velocity. The first 450 ms are very complicated so again
the components are separated (figs. 12a~f), The direct wave arrives at ¢ = 0.33 s and
then the ghost reflection given in fig, 12¢c. Figures 12d—f are the reflections as given
in {45). An increase in offset only makes the recognition of the different arrivals
more difficult (see fig. 11b).

To compute Green'’s function for one of these figures with the contributions of
30 multiply reflected waves takes about 30 minutes on a Gould 32/67 computer.
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Fig. 12. The first 450 ms of fig. 11b decomposed into its components, according to (45):

(a) the first 450 ms, (b) the direct wave, (¢) multiple 1, (d) multiple 2, (¢) multiple 3 and (f)
multiple 4.
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1.7. Conwvolution

To make a synthetic seismogram, a convolution of the three-dimensional Green’s
function with a source signature is performed. A source signature from a source
modeling program (Metselaar 1984) simulates the signature of an airgun with a
chamber volume of 0.981 (= 60 cu inch) and firing pressure of 1.379 - 107 Pa
(= 2000 psi). This source signature, is such that convolution with Green’s function,
apart from a factor, gives what would be measured in practice. The signature, shown
in fig. 13a, is the pressure as a function of time, but what we want is an expression in
terms of ¢, . (9) gives the solution for the incident field. In order to gather informa-
tion about the system we write, for the reflected acoustic pressure—in accordance
with the three-dimensional Green’s function (55)—

Pr=sp,0,0". (67)

The same kind of expression was derived in the general framework for the incident
field, but now Green’s function looks more complicated because of the large number
of reflections. We want to write this equation with p' instead of ¢,. Thus we
transform (9) back to the space-Laplace domain analytically with the aid of the
Cagniard—de Hoop technique (de Hoop 1960):

P = (Szpf Bu/4TR o) €xp (—sRy, o/cy). (68)
The term s°p @, in front of Green’s function in (67) can now be written as
S3Pf @, = 4nR, 4 sp’ exp (sRo, o/cy). (69)
" Rg,0=tm
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Fig. 13. {a) The simulated airgun signature as a function of time and (b) its term p 0},
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Fig. 14. The convolution of term p, 3} ¢, for the simulated airgun signature with Green’s
function as in fig, 8a for (a), while for (b) Green's function as in fig. 11b has been taken.

This term is reproduced in the space-time domain in fig. 13b. Because the pressure is
measured at 1 m distance from the source, Ry o = 1 m. The multiplication can be
performed in the Laplace domain and p’ can be transformed back to the space-time
domain. This has been done in fig. 14; in (a) convolution was performed with fig. 8a,
while in (b) fig. 11a was taken as input function.

PArRT 2. STACK OF FLUID LAYERS WITH THE SOURCE AND
RECEIVER IN THE UPPER HALF-SPACE

2.1. The solution in the transform domain

We now consider a stack of acoustic layers between two elastic half-spaces. The
source and receiver are situated in the upper half-space, fig. 15. The origin of the
right-handed Cartesian coordinate system is chosen in the upper half-space with the
z axis pointing downwards and the source starting at ¢t = +0. h is the source depth
and h, the receiver depth, the depth of the nth interface is h,; hy applies to the
receiver or source depth. The total number of layers is N, which includes the two
half-spaces. We only calculate the primary reflections (and head wave, if present), so
no internal multiply reflected waves are involved. The properties of the media are
characterized by

e, =(K,Jp)"?*  n=1,2...N, (70)
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Fig. 15. The second configuration to be considered: N fluid layers.

where K, is the bulk modulus of compression, p, the volume density of mass and ¢,
the wave speed. The total pressure in each medium is written as

P= A} exp {—=sy(z — h,_ )} + Ay exp {—sy,(h,~2)} n=1,2...N, (71)

where

Ay =0 (72)
and

Af = AL (73)

The factors A,F and 4, denote downgoing and upgoing waves, respectively. To
solve for A} and A4, we apply the boundary conditions at each interface where we
require the continuity of the pressure and the continuity of the vertical displace-

ment. Hence,

lim P!, = lim P! n=12...N—1, (74)
z | by 2zt hy
lim 0 ,,,=lim U, n=12...N—1. (75)

z | hy z?t hy
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We introduce the reflection coefficients R} and transmission coefficients T, and
T, through

A: = T:* IA:—I exXp {_S‘y"—l(hn—-l - hn‘Z)} n=2.. N7 (76)
An_ = RITA)T 29Y {—S')‘"(h" - hn“l)} -+ Trr_Ar:-Fl eXp {’_-S'))n+l(hn+l - hn)}

n=1...N-1 (77)

The coefficients R;} and T} are found by substituting these equations in the bound-

ary conditions (74) and (75), while the coefficient T, is found by placing the source

in the lower half-space. Note that no reflection coefficient for reflection against the

lower side of an interface is present, because we consider only primary reflections.
We arrive at

Ry = (0lpy = Yus 1/ Pn s VOl P+ Vs 1/ Pns 1) (78)

T = 200/ Val P + Vs 1/Pus1) (79)
and

Ty =20+ 1/Pur W0/ 0t Vi 1/ Prv 1) (80)

We now determine the space-time Green’s function for the two-dimensional and the

three-dimensional case. Therefore we write the reflections symbolically as 7,_,R,,,
where

n—1

T = H T Ty . (81)

k=1

2.2. Green'’s function for the line source problem

Now we must transform the solution back to the space-Laplace domain. The same
kind of expression as (46) results, only the reflection factors and the exponential
differ. As in part 1, we substitute p = jo and require the exponential Lo be of the
form exp (—st). Thus

Re {jar + 23 ylhy — by 1)} =1,
o (82)
Im {jocr +2)
k=

Yl — by - 1)} =0.

1

Except from the first reflection, all contributions from other reflections contain more
than one propagation coefficient in the exponential, so in those cases a simple
analytical expression for the modified Cagniard contour does not exist. The contour
can be calculated with the aid of a numerical technique (de Hoop 1979) given in
appendix B.
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With our substitutions, for one contribution of Green's function in the space-
time domain we arrive at

0 when —oo <7< THW
1
—Im {T,_,R, 8 p""/2 hen THY <1< T,

g;(r);_ 277.' m{ n—14vn tp /’yl} w n T (83)
él—lm {T,_R,0.p"%/2y,} when T <1<
J

where
T = Flegrr + 2 z (1/6';% - 1/":2;+1)U2(hk = hy_y) (84)
k=1

is the arrival time of the head wave (if present), while
T =2 (hy — by )f(cy cos 6)) (85)
k=1

is the arrival time of the body wave. This value is found by determining the point of
intersection of the contour with the real p-axis, where the minimum value of ¢ leads
to an infinitely large value of @, p®". This is accomplished by a numerical technique
(appendix B). :

2.3. Green's function for the point source problem

In the three-dimensional case, an expression equivalent to (55) results. To determine
our space-time Green's function, we follow the procedure of the Cagniard-de Hoop
technique. We follow the steps for the three-dimensional case in part 1 by intro-
ducing polar coordinates, integrating along the imaginary p-axis instead of along
the real p-axis, requiring the exponential to take the form exp (—st) and finally,
interchanging the order of integration. One element of Green’s function is repre-
sented in the space-time domain by

0 when — o < ¢ < THY
1 gHW(r)
Ei J Im {7:,_1R" an"W/2?1} dq when TIIW <1< THW
0
1 R W(z)
gult) = —2—";',—2- .[nw Im {7:" lR” a‘pHW/:z"Vl} dq (86)
13 1 q (t)
1 (4"
* m? J Im {T,_,R,8.p"/2y,} dg when T™" <1 < T},
0

1 qiW(r)
FJ Im {T,_ R, 0.p%/2y,} dq when Ty, <1<«

0



EXACT SEISMIC RESPONSES 55

0| A A

‘ ‘ * 7
g’(s"l) 8 8 8 - t(ms)
-1

Fig. 16, Two-dimensional space-time Green’s function for the case of four layers with only

primary reflections. Further, ¢, = 1500 m/s, ¢, = 3000 m/s, ¢ = 5000 m/s, ¢, = 9000 m/s,

Py = 1010 kg/m?, p, = 200 kg/m3, p, = 400 kg/m?, p, = 2000 kg/m?, h, =9 m, h, = 7.5 m,
“hy =300 m, hy =900 m, hy = 1650 m, r = 50 m.

when the limit of integration ¢®"(1) follows from T2%(g) as expressed in (B7). The
time TUY, the arrival time of the head wave, is given by (84), while the time T5", the
arrival time of the body wave, is given by (85). The time T,

n

Ty= Y (L} = 1/c2 ) P2(h — hy ) + r tan (0,01 /eT — Yep o )Y3, (87)

k=1

is the time beyond which head-wave contributions no longer occur.

2.4. Numerical results for a stack of fluid layers

The results from this configuration approximate a practical case of exploration
seismology. The wavespeeds derived from a borehole log can now be used to
calculate the forward problem. The assumptions are still restricting, i.e., homoge-
neous plane fluid layers, but the results are accurate.

In figs 16 and 17 we have used a model of four layers, so there are three
reflecting interfaces. The two-dimensional case is shown in fig. 16, the three-
dimensional case in fig. 17. For clarity, we have decomposed Green’s function into
its components (figs 17b-d). To show a seismic trace, we have convolved this
Green’s function with a synthetic source signature, as found in fig. 18a. The result of
the convolution and the factor p,d}¢, for this signature is given in fig. 18b. The
result of the convolution of this function leads to fig. 19.

Another two-dimensional case is shown in fig. 20, where nine layers are involved.
Figure 21 shows the corresponding three-dimensional one. Again, we have con-
volved this function with the synthetic function, fig. 18. The result is shown in fig. 22,

With this technique we can concentrate on only an interesting part of the seismic
section or some important reflecting interfaces, but still take into account the wave
propagation in the upper layers. This considerably lowers the computation time.

To compute Green’s function for a nine-layer case on a Gould 32/67 computer
takes about 2 minutes for the two-dimensional case and for the three-dimensional
case about 30 minutes.
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Fig. 17. Three-dimensional space-time Green’s function for the case of four layers with only
primary reflections. (a) shows the total function, which is decomposed into its components in
(b)-(d). Further, ¢, = 1500 m/s, c, = 3000 m/fs, c¢3= 5000 m/s, ¢, =9000 m/s, p, =
1010 kg/m?, p, = 200 kg/m?, p, = 400 kg/m?, p, = 2000 kg/m3 h,=9m, h,=75m, h, =

300 m, h, = 900 m, hy = 1650 m, r = 50 m.

{(b)

Fig. 18. The synthetic source signature with the pressure as a function of time (a), and its
derived function p,a> o, (b).
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Fig. 19. The convolution of the four-layer case as in fig. 17a, with the synthetic function, as in
fig. 18b.

3. CONCLUSIONS

With the aid of the Cagniard-de Hoop technique a simple closed-form expression is
derived for the acoustic pressure in the fluid in space-time when an air/fluid/solid
configuration or a stack of fluid layers is excited by an impulsive monopole source.
A straightforward expression arises in the two-dimensional configuration (line
source problem) and a single bounded integral in the three-dimensional case (point
source problem) have to be evaluated. Reflected and refracted waves have been
illustrated by numerical results. In contrast to the standard time-space Fourier and
Fourier-Bessel inversion integrals, our expressions do not show any oscillatory
behaviour, and computation times are much lower. In the case of fluid layers, the
computation times are longer, but the method remains very accurate. Therefore, the
Cagniard-de Hoop technique is recommended as a check on approximate methods
for the same problem or for inverse modeling pertaining to these configurations.
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Table 3. The depths, densities and wave velocities
Jor the nine-layer case.

hll l)n C"
Layer no. (m) (kg/m3) (m/s?)
1 70 1000 1500
2 100 1010 1600
3 135 1200 1700
4 175 1200 1800
5 210 1250 1700
6 260 1150 1600
7 340 1200 1900
8 415 1300 2000
9 0 1500 2200

contour. Finally, thanks to discussions with René du Cloux and Professor Ziol-
kowski, both of Delft University of Technology, many improvements were made.

APPENDIX A

The integrals in the three-dimensional case, as in (55), are of the general form

Pa(t)
I= j Int (¢) dg. (A1)

@1(1)

In the evaluation, problems arise at the end points of the integration due to (inverse)
square-root singularities. These problems are avoided by changing the variable of
integration through

g% = @}(t) cos? () + p3(r) sin® (). (A2)

Then the interval of integration is mapped on to the fixed interval (0, /2), while

dg = {@3(t) — @3()} cos () sin (W)/{@i(r) cos® () + @3(1) sin? (W)} dyp.  (A3)

0 T 1 T

501.

2 o - /{ms)
Fig. 21. Three-dimensional space-time Green’s function for the case of nine layers with only
primary reflections. The wave speeds, densities and depths are given in table 3, while h, =

9m,h =7 mandr=50m
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Fig. 22. The convolution of the nine-layer case as in fig. 21, with the synthetic function as in
fig. 18b.

APPENDIX B

We show how to determine a modified Cagniard contour when more than one
propagation coefficient is involved. We follow the procedure given by de Hoop
(1979) for a n-layer case extended to the three-dimensional case by de Vries (1984).
The requirement for the modified Cagniard contour for n layers is

N
Re (pr + Y d,,> =T (is purely real and positive),

n=1

N (B1)
Im <pr + Z Vu d,,) = 0,

n=1

where d, = h, — h,_, is the vertical distance through layer n. Consider the part of
the Cagniard contour which tends to infinity, corresponding to a body wave. Let

p=p""() with T?" <t < o (B2)

represent the body wave in the first quadrant of the complex p-plane. Because
Schwarz’s reflection principle applies to the left-hand side of (B1), we can say that if
(1) is a solution p®"*(¢) is also a solution to the same problem (* denotes
complex conjugate). T7% in (B2) denotes the arrival time. This value is reached at
the point of intersection of (B2) with the real p-axis, where the minimum of ¢ leads to
an infinitely large value of @_p®" By differentiating (B1) with respect to ¢, we get

N -1
0.p" = [r -7 (p”w/v.,)d,l : (B3)
n=1

Let 0, ... Oy be angles that are mutually related through Snell’s law of refraction;
then

p=~0,sin (#,)= 0, sin (0,) = -- = 0y sin (0y) (B4)

makes the denominator of the right-hand side of (B3) vanish provided that

N

r— Y d, tan (0,) = 0. (BS)

n=1



60 G.G. DRIJKONINGEN AND J.T. FOKKEMA

Substitution of (B4) in (B1) yields

gy = T el (B)
n=1 cos (011),
which is the total traveltime for a disturbance to propagate from the source to the
point of observation along a trajectory that is in accordance with Fermat’s prin-
ciple.

So far only the body-wave arrivals are considered. It is possible that a propaga-
tion coefficient is involved in the reflection/transmission coefficients which is not
present in (B1), because d, is zero. When the branchcut due to this propagation
coefficient is less than the intersection point of the contour p = p®% with the real
p-axis, then an additional loop integral along the branchcut must be included. This
part of the modified Cagniard contour corresponds to a head wave. Let

p=p"")  with T <1< T (B7)

denote its parametric representation in the first quadrant of the complex p plane,

then the head-wave part of the modified Cagniard contour consists of p = p"¥ and
HW %
p=p".
The calculations must be determined with the aid of a numerical technique when
N is larger than one. A numerical technique of an iterative nature can be speeded up
by choosing the starting value judiciously. Therefore, the values p = P®" and
p = P™ oblained from

pr+(QF — pH2p =1, (B8)

where D and Q are chosen such that (B7) approximates (B1), are suitable. In (B8) we
select the values of D and Q so that (B8) coincides with (B1) as | p|— oo and at
p = 0. From

N
PR ~ r/(r -y, d,,), as T — 0 (B9)
n=1
and
PEW ~ 7)r —jH), ast— o (B10)
it follows that
N
D=} d, (B11)
n=1
while the conditions,

N
P =0 att= Y Qd, (B12)
1

n=
and

PEY =0 at 7 =QD (B13)
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lead to

N
Z Qn dn
Q=" (B14)
dﬂ
nzl

In these equations Q, = (1/c2 + ¢*)'/? is real and positive. Solving (B7) and (B8), the
starting value P¥ of p" in the iteration process is then given by

PPW = 1r/(r* + D?) + jD{t* — (r* + DHQ*} '/ + D?), (B15)
when
(r* + DHY2Q <1 < w0,

and the starting value P of p" by

PHY — 1yj(#? + D?) — D{(r* + DHQ? — 23112/ + D?), (B16)
when
DQ < © < (r* + DHV2Q, (B17)

Note that in the two-dimensional case, Q, is simply 1/c,.
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