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CHAPTER 1

INTRODUCTION TO THE

MONTE CARLO METHOD

In this thesis we present a new method that we devised in order to tackle variance
reduction in Monte Carlo eigenvalue calculations.

The Monte Carlo method is used to evaluate the average or expected behaviour of
a system by simulating a large number of events responsible for its behaviour and
observing the outcomes. The principle of the Monte Carlo method, statistical simu-
lation, has been in use since the 18th century. In a well-known experiment(Holgate,
1981), Georges-Louis Leclerc, Compte de Buffon, calculated that if a needle of
length L is thrown randomly on a plane with parallel lines of distance D from each
other with D > L, the probability that it crosses one of the lines is

p =
2L

πD
. (1.1)

A few decades later, Laplace (1812) suggested that by repeating the process N times
and counting the number of crosses, one could calculate π:

Ncrossed

Ntotal
≈

2L

πD
⇒π≈

2L

D

Ncrossed

Ntotal
. (1.2)

Although the basis of the method was well-known, the first time it saw practical
use was just after World War II, where scientists in the Los Alamos National Lab in
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1. Introduction to the Monte Carlo Method

the United States, including John von Neumann, Stan Ulam and Nicholas Metropo-
lis, used it in neutronics in order to improve thermonuclear weapons development
(Metropolis and Ulam, 1949). The term Monte Carlo, referring to the famous hill in
Monaco where the casino is located, was coined by Metropolis, after a relative of
Ulam that enjoyed gambling.

With the constant improvement in computing power, Monte Carlo simulation
soon became mainstream, and gained popularity in several fields of research. The
ability to sample from a large number of possible scenarios and predict the outcome
quickly found use in finance, operations research and risk analysis (Fishman, 1996;
Rubinstein, 1981). Monte Carlo methods are currently used in a large and diverse
number of fields. Statistical physics and molecular modelling make extensive
use of Monte Carlo, as do finance and stock market analysis. Risk and reliability
assessment are well suited to stochastic approximations, while computer science
algorithms, artificial intelligence and game theory inherit its methodology. Finally,
particle transport is a natural target field for Monte Carlo, whether that includes ray-
tracing for graphics, γ-rays for radiation and biological studies or neutron transport
for nuclear and reactor physics, the subject of this thesis.

1.1 Probability distribution functions and sampling

The Monte Carlo method uses random numbers to model problems that can be
given a stochastic or probabilistic interpretation (Hammersley and Handscomb,
1964; Manno, 1999). Initially, one has to transform the problem to one that can be
solved stochastically and then, using random numbers, simulate a large number
of events in order to observe the behaviour of the system. Once we transform our
initial problem to a stochastic one, the processes characterizing the problem can
be defined by probability density functions.

If the probability that a single random variable X inside a domain Z has a value
between x and x +d x is

p (x <X < x +d x ) = f (x )d x , (1.3)

then f (x ) is called the probability density function, or pdf in short notation. Since X
must have a value in Z , the normalisation condition for f (x ) can be easily deduced:

∫

Z

f (x )d x = 1 (1.4)

2



1.1. Probability distribution functions and sampling

In order to take samples from a pdf, an easier way is using the cumulative distri-
bution function, or CDF:

P(x ) =

x
∫

xmin

f (x ′)d x ′ (1.5)

Being a cumulative function, P(x ) is monotonically increasing in the interval
xmin ≤ x ≤ xmax with boundary values

P(xmin) = 0 , (1.6)

P(xmax) = 1 . (1.7)

Since P(x ) ranges from 0 to 1, it is now simple to sample from it using a uniformly
distributed variable ξ on the interval [0,1]. There are several methods to sample
from P(x ): A simple, computationally efficient method, is to generate a tabulated
distribution of P(x ) values by interpolation and select from them using ξ.

Another method, very popular in the earlier days of Monte Carlo, is the rejection
method (von Neumann, 1951). According to the rejection method, samples are
taken from an arbitrary distribution g (x ), under the only condition that p (x ) <
M g (x ), where M > 1 is an appropriate upper bound on p (x )/g (x ). The results are
then accepted or rejected depending on whether they fall inside the domain of
p (x ).

In this work, we are mainly using the inversion method, in which we set the
cumulative probability of an event P(x ) equal to ξ and solve for P−1(x ). By selecting
ξ using random numbers, we can then repeatedly sample from P(x ) and therefore
p (x ). An example of the inversion method, and one we shall be using in this thesis,
is the selection of a neutron’s path length between collisions. The probability that a
neutron has an interaction in d x after having travelled a distance x is given by

p (x )d x =Σt e−Σt x d x , (1.8)

where Σt is the total interaction cross section. The pdf is then

p (x ) = Σt e−Σt x , (1.9)

and the CDF is

P(x ) =

x
∫

0

Σt e−Σt x d x = 1− e−Σt x . (1.10)

3
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Figure 1.1: Sampling the path length between interactions 106 times using random
numbers, for a total cross-section of 1cm−1.

We can now sample the path length x by equating the CDF to a random number ξ,
uniformly generated between 0 and 1, and solving for x :

ξ= 1− e−Σt x ⇒ x =
ln(1−ξ)
Σt

=
ln(ξ′)
Σt

. (1.11)

Rather than using 1−ξ, we can directly use ξ′, since ξ and ξ′ are selected from
a uniform distribution between 0 and 1. In Fig. 1.1, we can see (in histogram
form) the result of sampling the path length 106 times, using a Σt value of 1 cm−1

and random numbers uniformly distributed between 0 and 1. As expected, the
distribution approaches the analytical solution, which is an exponential.

1.2 Monte Carlo in neutronics

The aim of a Monte Carlo simulation in nuclear reactor physics is to calculate
the response of a detector (which can be a physical detector or a virtual detector
providing a response) at a point P = (r, E ,Ω), where r is the space, E the energy and
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1.2. Monte Carlo in neutronics

Ω the direction variable. The response is calculated according to

R =

∫

ηφ(P)φ(P)d P , (1.12)

where φ(P) = φ(r, E ,Ω) is the neutron flux at point P in the phase space, while
ηφ(P) is the detector response function (Cashwell and Everett, 1959; Kalos and
Whitlock, 1986; Lux and Koblinger, 1991; Spanier and Gelbard, 1969). Since the
flux φ(P) is the solution of the analytical transport equation, we begin by noting
the time-independent neutron transport equation, as we will not be dealing with
time-dependent problems in this thesis:

Ω ·∇φ(r, E ,Ω)+Σt (r, E )φ(r, E ,Ω) =
∞
∫

0

∫

4π

Σs (r, E ′→ E ,Ω′→Ω)φ(r, E ′,Ω′)d E ′dΩ′+S(r, E ,Ω) .
(1.13)

This is an integro-differential equation, which is not suitable for treatment by
Monte Carlo. We need the integral form, which we will now derive by looking at the
actual physical processes taking place in neutron transport.

A neutron begins its lifetime at a point P0 in phase space, selected from the source
S(P0). It then follows a path until its next interaction in phase-space. We calculate
its path by using the so called transition kernel T , where

T (r ′→ r , E ′,Ω′)d r

is the probability that a particle starting a flight path at r′ will have its next collision
in d r at r. After the new collision point has been sampled, the collision process
must be sampled. This is done by the collision kernel C , where

C (r , E ′→ E ,Ω′→Ω)d E dΩ

is the probability that a particle will exit a collision at r with direction Ω in dΩ and
energy E in d E .

In order to make use of those probabilities, we can define a number of event
densities, namely the collision density ψ(r, E ,Ω) and emission density χ(r, E ,Ω),
where

ψ(P)d V =ψ(r, E ,Ω)d V (1.14)

5



1. Introduction to the Monte Carlo Method

is the expected number of particles entering a collision at a point r in d V with
energy E and direction Ω, while

χ(P)d E dΩ=χ(r, E ,Ω)d E dΩ (1.15)

is the expected number of particles starting a flight path at r with energy E in d E
and direction Ω in dΩ.

We can use the concept of transition and collision kernel in order to directly
define the Boltzmann equation in terms of a Monte Carlo calculation. χ(P) is
defined as

χ(P) =S(P)+

∫

T (r ′→ r , E ′,Ω′)C (r, E ′→ E ,Ω′→Ω)χ(P ′)d P ′ (1.16)

where S(P) is source of the particles at P . We see that if by starting at a point P ′, we
can sample emission density of the next point P by first sampling the transition
kernel T (r′ → r, E ′,Ω′) in order to select a new collision point, and after that we
sample the collision kernel C (r, E ′→ E ,Ω′→Ω) in order to get the next sample of
the emission density. If we want to sample the collision densityψ(P), where

ψ(P) =S1(P)+

∫

C (r′, E ′→ E ,Ω′→Ω)T (r′→ r, E ,Ω)ψ(P ′)d P ′ (1.17)

we can start by sampling the collision kernel (since we are entering a collision, we
already know the position of the collision) and then sample the transport kernel for
the next collision. Also note that we use the term S1(P) instead of S(P) since in this
case the source density cannot be the initial source density, but the source of first
collisions. In order to make the formulation easier, we can combine the transition
and collision kernels into the transport kernel K , where

K (P′→P) = T (r′→ r, E ′,Ω′)C (r, E ′→ E ,Ω′→Ω) (1.18)

or a kernel L, where

L(P′→P) =C (r′, E ′→ E ,Ω′→Ω)T (r′→ r, E ,Ω) (1.19)

Now the integral equations for χ(P) andψ(P)will be as follows:

χ(P) =S(P)+

∫

K (P ′→ P)χ(P ′)d P ′ (1.20)

ψ(P) =S1(P)+

∫

L(P ′→ P)ψ(P ′)d P ′ (1.21)

6



1.3. Monte Carlo and eigenvalue problems

Figure 1.2: Schematic diagram of particle transport, where S is the source and T
and C the transition and collision kernels respectively.

Via this scheme it is easy to see when the collision and emission densities can be
sampled, as it is shown in Fig. 1.2. By using the relation between flux and collision
density,

ψ(P) = Σt (P)φ(P) , (1.22)

we can define the detector response in terms ofψ(P):

R =

∫

ηψ(P)ψ(P)d P (1.23)

where

ηψ(P) =
ηφ(P)
Σt

(1.24)

is the detector response function with respect toψ(P). So now, by samplingψ(P)
for a number of histories, we can obtain an estimate of the detector response R .

1.3 Monte Carlo and eigenvalue problems

A large category of problems that can be solved with the Monte Carlo method are
the k -eigenvalue or criticality problems. In eigenvalue problems, the fixed source
component in the neutron transport equation is replaced by the source comprised

7



1. Introduction to the Monte Carlo Method

of fission neutrons, resulting in the following equation:

Ω ·∇φ(r, E ,Ω)+Σt (r, E )φ(r, E ,Ω) =
∞
∫

0

∫

4π

Σs (r, E ′→ E ,Ω′→Ω)φ(r, E ′,Ω′)d E ′dΩ′

+
1

k

1

4π
χ f (E )

∞
∫

0

∫

4π

ν (E ′)Σ f (r , E ′)φ(r, E ′,Ω′)d E ′dΩ′ .

(1.25)

Here, χ f (E ) is the fission spectrum, ν is the average number of neutrons produced
per fission, Σ f (r , E ) is the fission cross-section and k is the k -eigenvalue, or k -
effective.

k -effective does have a physical meaning: it can be seen as the ratio of total
production rate of neutrons via fission over total neutron loss rate via leakage and
absorption. The value of k -effective is what determines the stationarity of a reactor:
when keff = 1, the system is self-sustaining, or critical. keff < 1 means a sub-critical
system that cannot be sustained without an external source, while keff > 1 is a
supercritical system that needs to be controlled.

1.4 Comparison between Monte Carlo and deterministic
methods

Apart from the Monte Carlo method, another common type of methods can be
used in order to solve the transport equation, called deterministic methods. Deter-
ministic methods typically require discretising the equations governing neutron
transport in all independent variables. The equations are then converted into large
algebraic systems and used in order to approximate the solution functions.

In deterministic methods, the energy variable of the transport equation is dis-
cretised by limiting the possible energies of neutrons and then dividing them
into energy groups. Cross-sections are then calculated per energy group, and the
equations are integrated over each group, resulting in the multigroup transport
equations. The angular variable is usually discretised by one of two methods: in
the discrete-ordinates, or Sn , method, the Gauss-Legendre quadrature set is used to
approximate integrals over angle, while in the spherical harmonics, or Pn method,

8



1.4. Comparison between Monte Carlo and deterministic methods

Item Deterministic Monte Carlo
Geometry representation (Usually) Discrete Exact

Energy representation Discrete Continuous/Exact
Direction representation Discrete/Series Continuous

Numerical issues Convergence Statistical uncertainty
Amount of information Large Limited

CPU memory requirements Large Small
CPU time cost Small Large

Parallel computing Complex Simpler
Scaling to multiple dimensions Costly Simple

Table 1.1: A summary of the main differences between Monte Carlo and determin-
istic methods.

the angular fluxes are expanded in a number of spherical harmonic functions. Sn

methods are arguably the closest form to analytically solving the transport equa-
tion, and are the most widely-used methods in neutronics. Spatial discretisation is
the most important consideration, since the truncation error is the main source of
error in a deterministic calculation. There are several methods used, such as the
finite differencing, finite element or nodal methods, each with its own strengths
and limitations. A detailed analysis of such methods is beyond the scope of this
thesis.

We have already discussed the main methodology of the Monte Carlo method,
so in order to summarize, we can mention the main differences between the two
methods and try to compare the merits of each. A summary of those differences is
shown in Table 1.1. The main advantage of the Monte Carlo method is that it is able
to model continuous energy, space, and angle in irregular, complicated geometries.
While deterministic methods become less exact (because of discretisation error)
or less efficient (because of vastly increased CPU and memory usage) with more
complex problems, Monte Carlo methods are able to handle them without penalties,
other than a reasonable increase in calculation time.

On the other hand, a significant advantage of the deterministic methods is that
they are able to provide a large amount of information on the solution functions
much faster than Monte Carlo. Since the equations governing transport are solved
at every node of the system, one can get information for any point in the domain via
the same calculation. Meanwhile, a Monte Carlo simulation is a lot more effective

9
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Figure 1.3: Speed-up in parallel computing as defined by Amdahl’s law, where F
defines the fraction of the total work done in parallel. For small values of F , using
more than a dozen CPUs does not improve the performance of the system.

when a limited amount of information, such as a detector response, is sought, and
very inefficient when multiple responses from the system are required. In addition,
when a large number of particles is required in order to obtain sufficient statistical
information in a Monte Carlo simulation, it can be much slower than a comparable
deterministic simulation, since the lifetime of all particles must be fully tracked,
while the deterministic simulation is only limited by the level of discretisation in all
variables.

One advantage of Monte Carlo over deterministic methods that can offset the
problem mentioned above is scalability. With the continuous advances in com-
puting, it is now simple to perform large-scale simulations using computing grids.
Amdahl’s Law (Amdahl, 1967) states that the speed-up in a parallel simulation can
be estimated as

Speed-up=
1

1− F + F
N

, (1.26)

where F is the fraction of work done in parallel and N is the number of CPUs. A

10



1.5. Aim of current work

plot of the speed-up versus the number of CPUs can be seen in Fig 1.3. Because
of the nature of the Monte Carlo method, multiple independent samples can be
calculated at the same time, and therefore F is much higher than deterministic
calculations, as it can reach up to 99.5%. In fact, the only limiting factor is the
data input/output speed between the systems performing the calculations and the
system collecting the results. This allows Monte Carlo simulations to efficiently
utilize larger computing clusters and further reduce the gap regarding CPU time
cost.

There is also the subject of reproducibility. In deterministic calculations, the
name itself suggests that one can reproduce the exact same result by feeding the
system with the same initial conditions. In a Monte Carlo calculation, since the
outcome of events is governed by random numbers, the results will never be exactly
the same, but will form a statistical distribution. In practice, especially when
concerning computer code development and debugging, it is advantageous not to
generate truly random numbers, but sequences of random numbers that can be
reproduced reliably. These numbers are called pseudo-random numbers.

1.5 Aim of current work

The estimation and reduction of statistical error in a Monte Carlo simulation has
long been a subject of investigation around the globe. Being the major limitation of
such a powerful tool, several methods for the reduction of this error, called variance
reduction methods, have been proposed. A review of those methods is given in
Chapter 2 of this thesis.

The Reactor Physics group of the Delft University of Technology has played an
active role in such research. Hoogenboom (1977) investigated the use of adjoint
functions in order to reduce the error in Monte Carlo source-detector problems
in neutronics. Serov (1996) managed to reduce the error by running forward and
adjoint Monte Carlo simulations and correlating the results. Ueki and Hoogenboom
(2001) used the correlation between forward and adjoint simulations in order to
perform perturbation analysis using Monte Carlo, while Légrády (2005) successfully
applied the technique to the field of borehole logging.

However, most of the work involving variance reduction is focused on source-
detector problems, and leaves out eigenvalue calculations. In such calculations,
additional issues arise when compared to source-detector problems: extra com-
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1. Introduction to the Monte Carlo Method

putational time is required to obtain a converged source distribution and a large
number of neutron generations must be simulated in order to eliminate the inter-
generation bias and obtain acceptable statistics. In addition, since the eigenvalue
problem is by default a global problem, Monte Carlo codes struggle to keep up
with deterministic ones in terms of calculation time. Finding a solution for such a
demanding problem can be very challenging and certainly less trivial than in the
case of source-detector simulations, something we are hoping to change with the
findings of this thesis.

Our method will attempt to make eigenvalue simulations more efficient not so
much by speeding up the calculation, but by reducing the variance of the estimate
for a given calculation time. We will show that by using the adjoint function as a
measure of the importance of a region in the spatial, angular and energy domains,
we can direct the simulated particles to those regions that matter for our simulation,
therefore reducing our global problem to a more localized one. We will discuss
how this is achieved by manipulating the transport kernels and particle weights
and how the localization of the contributions increases the information from the
system, bypassing the problem of a global simulation.

By applying the scheme to a simple system, it will become clear that the scheme
can indeed reduce the variance to zero, but only if specific, non-practical conditions
apply. We will then see how the scheme can still significantly decrease the variance
in more practical problems by using approximations. Finally, we will also integrate
the scheme into a production Monte Carlo code and see that the decrease in
variance is still obvious, but at the cost of much higher CPU time cost.

However, before we dwell into the subject of this thesis, we will first introduce
in Chapter 2 the concept of variance reduction in a Monte Carlo calculation and
discuss the merits and limitations of existing methods.

1.6 Bibliography

G. Amdahl. Validity of the single processor approach to achieving large-scale
computing capabilities. In AFIPS Conference Proceedings, volume 30, 483–485,
1967.

E. D. Cashwell and C. J. Everett. A Practical Manual on the Monte Carlo Method for
Random Walk Problems. Pergamon Press, 1959.

12



1.6. Bibliography

G. S. Fishman. Monte Carlo: Concepts, Algorithms, and Applications. Springer-
Verlag, 1996.

J. M. Hammersley and D. C. Handscomb. Monte Carlo Methods. Methuen & Co.,
1964.

P. Holgate. Studies in the history of probability and statistics XXXIX: Buffon’s cycloid.
Biometrika, 68, 712, 1981.

J. E. Hoogenboom. Adjoint Monte Carlo Methods in Neutron Transport Calculations.
Ph.D. thesis, Delft University of Technology, 1977.

M. H. Kalos and P. A. Whitlock. Monte Carlo Methods. John Wiley & Sons, 1986.

P. S. Laplace. Théorie analytique des probabilités. V. Courcier, Paris, 1812.

D. Légrády. Improved Monte Carlo Methods With Application to Borehole Logging
Simulations. Ph.D. thesis, Delft University of Technology, 2005.

I. Lux and L. Koblinger. Monte Carlo particle transport methods: neutron and photon
calculations. CRC Press, Boca Raton, 1991.

I. Manno. Introduction to the Monte Carlo method. Akadémiai Kiadó, Budapest,
1999.

N. Metropolis and S. Ulam. The Monte Carlo method. Journal of the American
Statistical Association, 44, 335, 1949.

J. von Neumann. Various techniques used in connection with random digits.
In Monte Carlo Methods, Applied Mathematics Series, volume 12, 36. National
Bureau of Standards, 1951.

R. Y. Rubinstein. Simulation and the Monte Carlo method. John Wiley & Sons, 1981.

I. Serov. Estimation of Detector Responses by Midway Forward and Adjoint Monte
Carlo Coupling in Nuclear Systems. Ph.D. thesis, Delft University of Technology,
1996.

J. Spanier and E. M. Gelbard. Monte Carlo Principles and Neutron Transport Prob-
lems. Addison-Wesley Publishing Co., 1969.

13



1. Introduction to the Monte Carlo Method

T. Ueki and J. E. Hoogenboom. Exact Monte Carlo perturbation analysis by forward-
adjoint coupling in radiation transport calculations. Journal of Computational
Physics, 171, 509, 2001.

14



CHAPTER 2

VARIANCE REDUCTION IN

MONTE CARLO

Monte Carlo simulation is a stochastic process, and as such there is always a
statistical error associated with the result. The determination and reduction of this
error is a major field of current research and the main subject of this thesis.

In this chapter we will deal with the basis of statistical analysis in Monte Carlo.
We will mention the main quantities required and give a definition of variance
reduction. We will introduce the concept of importance and relate it to variance
reduction. We will then show the significance of the adjoint function as impor-
tance function and will mention a number of commonly used variance reduction
techniques, some utilizing the adjoint function. Finally, most of the current vari-
ance reduction methods in Monte Carlo only apply to shielding problems and very
few are used when dealing with multiplying systems. We will discuss the short-
comings of the current methods regarding criticality problems and propose some
improvements.
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2. Variance Reduction in Monte Carlo

2.1 Estimated accuracy of the Monte Carlo results

As discussed in Chapter 1, the Monte Carlo method solves integral equations by
replacing them by sums of a large number of samples and calculating the mean val-
ues of the samples. We now need to know what the mean of the samples represents,
and how can we define the statistical accuracy of the approximation. We can use
two important theorems in statistics in order to answer these questions, the law of
large numbers (Bernoulli, 1713) and the central limit theorem (Laplace, 1812).

If we define the sample mean of a series of samples (m1, m2, . . . mN ) as

m =
1

N

N
∑

i=1

m i , (2.1)

according to the law of large numbers, the expected value E (m ) equals

E (m ) = lim
x→∞

1

N

N
∑

i=1

m i . (2.2)

Therefore, as the number of samples approaches infinity, the mean value converges
to the expected value we want to calculate. The variance is estimated by

σ2
m =

1

N −1

N
∑

i=1

(m i −m )2 , (2.3)

where the term 1
N−1 ensures thatσ2

m is an unbiased estimate of the variance. The
variance of the meanσ2 ≡σ2

m can be calculated from

σ2 =
σ2

m

N
=

1

N (N −1)

N
∑

i=1

(m i −m )2 . (2.4)

In practice, a more convenient form of equation (2.4) is used, which does not
require storage of all the m i until the final estimate:

σ2 =
1

N −1







1

N

N
∑

i=1

m 2
i −

 

1

N

N
∑

i=1

m i

!2





. (2.5)

Using this form, only the square of the sum and the sum of the squares of the
samples are required. The standard deviationσ of the mean is now defined as the
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2.2. Aim of variance reduction methods

square root of the variance. The error in a Monte Carlo simulation is typically given
as the relative standard deviationσm /m .

In addition, the central limit theorem states that the sample mean of a large
number of identically distributed independent random variables x i with finite
expectation valuesµ and varianceσ2, is itself a random variable that approximately
follows a Gaussian (also called normal) distribution, irrespective of the shape of
the distribution of x i . The pdf of x has the following form:

p (x ) =
1

σ
p

2π
e−

(x−µ)2

2σ2 (2.6)

The fact that, for sufficiently large N , m follows a normal distribution allows the
use of confidence intervals, which give a more practical description of the statistical
accuracy of the simulation.

P(µ−aσ< x <µ+aσ) =

µ+aσ
∫

µ−aσ

p (x )d x (2.7)

In a normal distribution around 68% of the values fall between 1σ of the mean,
while around 95% will be no further than 2σ from the mean.

2.2 Aim of variance reduction methods

As the name suggests, the target of any variance reduction method is to reduce the
variance of the estimate. As we can see from equation (2.4),

σ∼
1
p

N
. (2.8)

Therefore, one can argue that simply increasing the number of histories will provide
the reduction in variance needed.

On the other hand, in a Monte Carlo run, the computational time is directly
proportional to the number of histories N , for sufficiently large N and assuming
fully independent histories. Therefore, using the naive approach of increasing N in
order to get the reduction expected might not be practical or even possible, due to
time constraints.
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2. Variance Reduction in Monte Carlo

A better definition of the target in variance reduction could then be to reduce the
variance of a system for a given simulation time, or speed up the calculation for a
targetσ.

However, some schemes directly reduce the variance but increase the total time of
the simulation, while others reduce the simulation time, thus allowing more particle
histories to be simulated (therefore reducing the total variance). Therefore, it makes
sense to compare the performance of a Monte Carlo scheme not by comparingσ2

or T , but by using a combination of the two. We can define the figure of merit (or
efficiency) of a simulation(Glynn and Whitt, 1992) as

FOM ≡
1

σ2
relT

, (2.9)

whereσrel is the relative standard deviation and T the total time of the simulation.
In a normal, analogue Monte Carlo simulation, the figure of merit should remain
approximately constant, regardless of the number of histories used. Therefore, we
can now better define the target of any variance reduction scheme as to increase
the figure of merit of a simulation. Throughout this text, and in general, it is the
efficiency increase of a calculation that we will be referring to as variance reduction.

2.3 Basic variance reduction methods

From equation (2.9) we can deduct that there are two main paths towards variance
reduction, either reducing the simulation time or reducing the variance, while the
other one increases at a lesser rate. As there is a large number of techniques that can
be used for either path, a full review of the variance reduction techniques available
is beyond the scope of this thesis. We will now give a short overview of the most
important methods used and direct the reader to more in-depth reviews (Haghighat
and Wagner, 2003; Lux and Koblinger, 1991; Spanier and Gelbard, 1969).

2.3.1 Importance sampling

Intuitively, one can think of increasing the FOM of a Monte Carlo simulation by
encouraging particle histories which are more likely to contribute to the required
response, while the particle histories less likely to contribute are somehow dis-
carded, or given less consideration. This way, at least one of the aforementioned
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2.3. Basic variance reduction methods

conditions (reduction of variance or simulation time) can be satisfied. This can be
done by altering the pdf that describe the various processes sampled.

We start by recalling the target of a Monte Carlo simulation, to calculate the
expected value of a function f (x ):

Ep ( f ) =

b
∫

a

f (x )p (x )d x , (2.10)

with p (x ) the pdf of f (x ). Now, if we sample a modified pdf p ∗(x ), we are no longer
calculating Ep ( f ) but rather we are calculating the expected value of the modified
function Ep ∗( f ∗). In order for the result to be unbiased, i. e. for the estimator’s
expected value and the true value of Ep ( f ) to be the same, we need to compensate
for the change by assigning a weight w (x ) = p (x )/p ∗(x ). Now we are estimating
f ∗(x ) = f (x )w (x ) = f (x )p (x )/p ∗(x ) and the expected value of f ∗ is the same as the
original function:

Ep ∗ ( f ∗) =

b
∫

a

f ∗(x )p ∗(x )d x =

b
∫

a

f (x )w (x )p ∗(x )d x =

b
∫

a

f (x )p (x )d x = Ep ( f ) (2.11)

However, the variance is not the same, since:

V ( f ∗) = Ep ∗ ( f ∗
2)−Ep ∗ ( f ∗)2 =

b
∫

a

f ∗2(x )p ∗(x )d x −Ep ( f )2

=

b
∫

a

f 2(x )
p 2(x )
p ∗2(x )

p ∗(x )d x −Ep ( f )2 =

b
∫

a

�

p (x )
p ∗(x )

�

f 2(x )p (x )d x −Ep ( f )2 .

(2.12)

If we choose p ∗(x ) appropriately so that p (x )
p ∗(x ) < 1 in regions of interest, it is likely

from Eq. (2.12) that the variance is reduced, that is,

V ( f ∗)<V ( f ) . (2.13)

Since p (x ) and p ∗(x ) are pdfs, they are normalised to integral 1, which means that
there should also be regions where p (x )

p ∗(x ) > 1, or where the contribution of the region
to the variance is increased. Hence, we have managed to reduce the variance in our
region of interest by increasing it in different regions of the system.

19



2. Variance Reduction in Monte Carlo

If we take p ∗(x ) = f (x )p (x )/Ep ( f ), with p ∗(x ) appropriately normalised and
Ep ( f ) 6= 0, we can obtain a result with zero variance:

V ( f ∗) =

b
∫

a

�

f (x )
p (x )
p ∗(x )

−Ep ( f )
�2

p ∗(x )d x = 0 (2.14)

Of course, this choice of p ∗(x ) is not very practical, since it requires knowledge of
Ep ( f ), which is the target of our simulation.

The question now becomes how can we know which p ∗(x ) gives the highest
FOM for our system and which particle histories are more likely to contribute. The
answer to this question can only be given after we give particles a measure of that
“significance”, and only in terms of variance (since simulation time depends on
many more parameters). This measure is called importance of a particle.

The importance I (P) of a particle is defined as the expected contribution to the
detector response of a particle starting a flight path at point P = P(r, E ,Ω) (Lewins,
1965).

If we modify the pdf describing the interactions of a particle throughout its
lifetime by the appropriately normalised importance of the particle, we obtain a
biased pdf:

p ∗(x ) = p (x )I (x ) (2.15)

In order to keep our final estimate unbiased, we then apply a weight of

w (x ) =
p (x )
p ∗(x )

=
1

I (x )
(2.16)

to the particle when we are sampling p ∗(x ). We will see in the following sections
how to obtain I (P) and how it will affect the sampling process and the response
estimate we get from the detector.

2.3.2 Implicit capture

In highly-absorbing systems, such as thermal reactors, the particles can get ab-
sorbed after only a few interactions, therefore never reaching the scoring region.
In such cases, an easy way to reduce the variance of the simulation is to extend
the lifetime of particles by removing absorption and replacing it by a change in
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2.3. Basic variance reduction methods

the particle weight that accounts for the absorption probability. This technique is
called implicit capture.

If the absorption probability is Σa /Σt , the new weight of a particle after a scatter-
ing event is

w ′ =w (1−
Σa

Σt
) . (2.17)

Since the particle cannot be absorbed, the particle history will continue indefinitely,
unless it can escape from the system, or we apply a lower weight boundary at which
particles are killed. Implicit capture always reduces the variance, but the total
figure-of-merit may not improve, as the simulation time is increased because of
the longer particle histories. It is, however, widely used because of its simplicity
and ease of implementation.

2.3.3 Russian roulette

Russian roulette prevents particles with low expected contributions to the detector
response from being simulated for too long, thus decreasing the total simulation
time without an appreciable change in variance. When a particle has its statisti-
cal weight w drop below a predefined limit wRR , the particle undergoes Russian
roulette with probability of survival

psurv =
w

ws
. (2.18)

Should the particle survive, its statistical weight is increased to ws . Using this
weight correction, the average weight of particles after Russian roulette is

w =
w

ws
ws +

�

1−
w

ws

�

0=w (2.19)

which ensures a fair game. When the survival weight ws is set to twice the threshold
weight wRR , a common selection, a particle at the weight threshold has exactly 0.5
chance of survival.

Since Russian roulette manipulates weights, it is of no use in an analogue Monte
Carlo calculation, where particle weights do not exist, but must be used together
with implicit capture or another method that changes the particle weight.

Russian roulette can be applied at any time during the life of a particle, usually
after an interaction has taken place. The weight ws may also depend on the posi-
tion, energy and direction of a particle. Russian roulette always increases variance
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2. Variance Reduction in Monte Carlo

since it cuts off histories that could still contribute to the detector, but it also always
reduces the simulation time when compared to an implicit capture scheme without
weight thresholds.

2.3.4 Splitting

Splitting is a simple but effective method to decrease the variance of a simulation
by increasing the number of possible scores at some stage during the simulation.
When the simulation weight w of a particle exceeds a limit defined by the user, the
particle is split into a number of particles N , each with weight w /N . The particles
are then followed during their lifetime and the scores obtained added to that of the
original particle. Again, as with Russian roulette, splitting only works with methods
where the weight of the particles changes.

Due to the need for following the extra particles generated during the process,
splitting always increases the simulation time, however, the variance is decreased
because of the extra scores accumulated.

Splitting and roulette are very common techniques in Monte Carlo simulation
and not only because of their simplicity. Since they only deal with variance reduc-
tion via population control and do not modify pdfs, they can be used in addition to
most other techniques for an added effect.

2.3.5 Weight windows

One of the most used and effective variance reduction methods is the weight-
window method (Booth, 1982; Booth and Hendricks, 1984). Space and energy
dependent windows are generated, and the particles that are outside the window
when they cross a point in phase-space undergo splitting or Russian roulette,
depending on the ratio of the particle weight to the weight boundaries of the
window.

The weight-window method simultaneously deals with both the direct decrease
of variance via a large number of samples (through splitting) and the decrease
of simulation time via Russian roulette, and is therefore a very effective variance
reduction technique.

The weight windows can be set intuitively or via the use of importances. The
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2.3. Basic variance reduction methods

latter can be a non-trivial and time consuming task, but yields excellent results if
used correctly.

2.3.6 Exponential transform

The exponential transform method (Clark, 1966), also called path length stretching,
alters the path of a particle towards preferred directions through the use of a
modified cross-section Σ∗, where

Σ∗(r, E ) = Σt (r, E )[1−kΩdet ·Ω] , (2.20)

where Σ∗(r, E ) is the transformed total cross-section, 0 < k < 1 is the biasing
strength parameter, Ω is the current direction of a particle and Ωdet the direction of
the region where the particle score is calculated, i.e. the preferred direction. The
distance s to the next collision is now sampled from

p ∗(s ) = Σ∗e−Σ
∗s . (2.21)

Using this formulation, we can see that when Ωdet ·Ω approaches unity, i.e. when
the particle is moving towards the (virtual) detector, the interaction cross-section
becomes smaller, so that the particle travels further towards the detector before
a collision. Accordingly, when Ωdet ·Ω approaches−1, the cross-section becomes
large, so that the particle travels a small distance before a possible scattering event
sends it towards the detector. The weight of the particle must then be modified, in
order to compensate for the cross-section change. The new weight is

w =w ′
p (s )
p ∗(s )

=w ′
Σt e−Σt s

Σ∗e−Σ∗s
=w ′

e−Σt kΩ′·Ωs

1−kΩdet ·Ω
(2.22)

From Eq. (2.22), we can see that correlated sampling can lead to high particle
weights if kΩdet ·Ω→ 1, so it should be used with care.

2.3.7 Stratified sampling

The stratified sampling method (Neyman, 1934) attempts to reduce the variance
by dividing the full integration space into subspaces, performing a Monte Carlo
integration in each subspace, and adding up the results in the end. This allows a
larger number of samples to be taken in places where under-sampling could occur,
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2. Variance Reduction in Monte Carlo

which would normally result in underestimated variance. However, the technique
is quite sensitive to the choice of subspaces, since an incorrect choice can actually
increase the variance by oversampling regions of lower importance.

2.3.8 Forced collision

Forced collision (Cashwell and Everett, 1959) is a method used to sample collisions
in media where the mean free path is large enough that too few collisions are
sampled for satisfactory statistics, since particles escape very quickly from the
system. This is done by altering the statistical weight of a particle according to the
collision probability within a region and then sample a collision inside that region
with probability 1. The usual way to achieve this is by splitting the original particle
in two, with weights relative to the collision probability. In this way, the “original”
particle can continue its trajectory with its weight reduced by the non-collision
probability

Pnc = e−Σt d , (2.23)

where d is the distance to the boundary of the medium. Meanwhile, the other
particle is forced to collide by selecting its path length s using a biased pdf

p ∗(s ) = Σt
e−Σt s

1− e−Σt d
, 0≤ s ≤ d (2.24)

The particle’s weight is then reduced appropriately and Russian roulette is used to
ensure that the calculation time is not increased significantly by the technique.

2.3.9 Other methods

A different approach to variance reduction has been shown by Becker et al. (2007).
In this approach, the Monte Carlo simulation is performed as a correction to an
initial deterministic estimate of the flux. Therefore the method does not solve
the true Boltzmann equation by Monte Carlo, but rather uses virtual particles
called “correctons”, which are nevertheless related to real neutrons by a simple
mathematical expression. The correcton flux has a much lower spatial variation
than the physical neutron flux, which can significantly reduce the variance in deep
penetration problems, where the flux between the source and detector decreases
by several orders of magnitude.
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Another fundamental technique is correlated sampling (Spanier and Gelbard,
1969). This technique is used in order to avoid small changes in the expected
response (usually the result of a perturbation in the system) being masked by the
larger statistical errors because of a limited number of samples. The technique uses
the same random number sequences in order to estimate integrals via the Monte
Carlo method. This way, the difference in the response is most likely not due to the
statistical error but due to the difference between the integrals.

Correlated sampling is not a variance reduction technique in the same sense
as the others here, but it can nevertheless significantly assist in determining the
statistical accuracy of Monte Carlo simulations of perturbed systems.

2.4 Adjoint functions and importance

As we have seen in Chapter 1, the detector response in a forward Monte Carlo
simulation can be calculated from the collision densityψ by

R =

∫∫∫

ηψ(r, E ,Ω)ψ(r, E ,Ω)d rd E dΩ=

∫

ηψ(P)ψ(P)d P , (2.25)

where ηψ is the detector response function with respect to ψ and P is a point
in phase-space. However, we can also calculate the detector response using the
adjoint form of Eq. (1.21):

ψ∗(P) =ηψ(P)+

∫

L(P→ P ′)ψ∗(P ′)d P ′ . (2.26)

Using this formulation, R is given by

R =

∫

S1(P)ψ∗(P)d P . (2.27)

If we compare Eqs. (2.25) and (2.27), we see that ψ∗(P) is the contribution of a
particle entering a collision at P to the detector response R . Therefore, we define
ψ∗(P) as the importance of a neutron entering a collision at P .

The detector response can be similarly defined using the adjoint emission density
χ∗(P) as

R =

∫

S(P)χ∗(P)d P , (2.28)
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where

χ∗(P) =ηχ (P)+

∫

K (P→ P ′)χ∗(P ′)d P ′ (2.29)

is the importance of a neutron leaving a collision/source at P and starting a new
flight path. Here, ηχ is the detector response function with respect to χ . From
equations (2.26) and (2.29), through transformation of the kernels, we arrive to the
following relation betweenψ∗ and χ∗:

ψ∗(P) =ηψ(P)+

∫∫

C (r, E → E ′,Ω→Ω′)χ∗(r, E ′,Ω′)d E ′dΩ′ , (2.30)

The fact that the adjoint form of the collision and emission densities can be
explained as the importance of particles entering or exiting a collision (or the
source), respectively, means that we can make use of them as the importance
function I (P) in order to bias the pdfs and reduce the variance of our estimate. The
significance of the adjoint function as importance function was initially shown by
Coveyou et al. (1967), with further proof given by Hoogenboom (1979) and Noack
(1979). We will discuss the adjoint functions in more detail in Chapter 3, when we
develop our variance reduction scheme.

2.5 Variance reduction using adjoint functions

Since the basic variance reduction methods described in Sec. 2.3 are well estab-
lished and widely used, the use of adjoint functions is now the main focus of
research in Monte Carlo variance reduction. One of the most important aspects
of any scheme is the ease of use, since manual generation and optimization of the
importance functions can be a daunting task for a Monte Carlo code developer,
let alone a user of the code. Therefore, in most cases, the adjoint solution from a
deterministic calculation is used as an estimate of the importance. We will now
shortly mention some characteristic methods currently in use and direct the reader
to a more detailed review by Haghighat and Wagner (2003).

2.5.1 Tang’s method

One of the first attempts to use deterministically-derived adjoint functions was
made by Tang (1976). He used importance functions obtained from a 2D discrete
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ordinates adjoint calculation as biasing functions for the source location, transition
and collision kernel. Because of the direct biasing, the technique was limited to
multigroup configurations.

2.5.2 Automated importance generation

Since the introduction of the weight-window technique, many efforts have been
made to optimize the setting of the weight thresholds. Booth and Hendricks (1984)
initially suggested the use of forward Monte Carlo, but since the adjoint function
was established as an appropriate importance function, research shifted towards
the use of adjoint functions for determining the weight thresholds for weight win-
dows application. In addition, since a deterministic code can output space-, energy-
and angle-dependent adjoint fluxes (and therefore importances), a large number
of techniques have been developed that try to couple an adjoint deterministic cal-
culation with a forward Monte Carlo calculation for variance reduction purposes.

Some of the initial attempts were performed by using adjoint diffusion calcula-
tions to generate space- and energy-dependent weight windows (Mickael, 1995;
Miller et al., 1990). Although diffusion calculations are very efficient, they are not
well suited for some of the problems Monte Carlo deals with (such as duct stream-
ing problems) because of their inability to deal with highly absorbing systems or
systems where vacuum regions exist.

The AVATAR methodology (Van Riper, 1997) uses the adjoint solution from a 3-D
deterministic discrete-ordinates code, in order to generate space-, energy- and
angle-dependent weight windows.

The CADIS (Consistent Adjoint Driven Importance Sampling) methodology, de-
veloped by Wagner (1997), focuses on the automated generation of weight windows
for a forward Monte Carlo simulation via a completely automated system coupling
Monte Carlo and deterministic runs. The system initially generates geometrical
meshes and multigroup cross-sections for use by the deterministic code. The ad-
joint deterministic calculation is then ran and the results are used as inputs for the
weight-window generator. Finally, the Monte Carlo simulation is performed, mak-
ing use of the automatically generated weight windows. The CADIS methodology
is now successfully used in the SCALE/MAVRIC code system (Oak Ridge National
Laboratory, 2009).

A different approach towards an automated weight-window generator has been
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demonstrated by Shahdatullah et al. (2006). The authors use a weight-window
generator based on the finite elements method in order to process the output of an
adjoint deterministic calculation.

2.5.3 Local Importance Function Transform

Turner and Larsen (1997a) have developed a method utilizing the local importance
function transform. The method is based on the exponential transform technique
(see section 2.3.6). The exact adjoint solution is approximated by a piecewise-
continuous function containing parameters that are obtained from a deterministic
adjoint calculation, and the transport and collision processes of the transformed
Monte Carlo problem bias the source distribution, distance to collision, and se-
lection of post-collision energy groups and directions. The method claims to be
especially effective in shielding systems, surpassing the efficiency of the implicit
capture scheme by a factor of 106 (Turner and Larsen, 1997b). However it is limited
to multigroup energy configurations.

2.5.4 Variational Variance Reduction

Barrett and Larsen (2001) have introduced a variance reduction method which is
based on the variational method (Becker, 1964). The Variational Variance Reduction
(VVR) method employs a variationally-motivated functional that processes global,
“low-quality” forward and adjoint flux estimates into “high-quality” estimates, such
as the transmitted current through a shield or an eigenvalue. The VVR functionals
are more costly to evaluate than standard functionals used to obtain Monte Carlo
estimates, but they are more accurate. VVR can be used in combination with other
methods, such as the AVATAR method discussed earlier.

Another important feature of the VVR method is that every Monte Carlo particle
influences the estimate, even ones that do not reach the detector. This is because
every Monte Carlo particle contributes to the “global” variationally-derived terms
of the functional. The global character of the method allows it to improve the
variance in cases where other schemes fail, such as shielding systems with large
optical thickness or eigenvalue calculations.
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2.5.5 Other methods

There are several other methods worth mentioning when discussing variance re-
duction with adjoint functions.

One such method is the adjoint Monte Carlo method (Kalos, 1968), in which the
so-called adjoint particles start at the detector region and gain energy as they travel
towards the source where they are detected. In this respect, we can visualise those
particles as neutrons travelling backwards in phase-space and the real source and
real detector as the adjoint detector and adjoint source, respectively. At the adjoint
detector, an adjoint function is obtained with which numerically the same result
can be derived as with forward Monte Carlo.

The advantage of this technique is that in many cases the source of the system
is very large compared to the detector. Consequently, in the adjoint calculation,
many more particles will arrive at the adjoint detector (i.e. the forward source)
than in the forward calculation, hence decreasing the variance without significant
additional cost in CPU time.

Another method called the Midway method, proposed by Serov et al. (1999),
combines forward and adjoint Monte Carlo simulations. The responses in both
simulations are calculated on a surface enclosing either the source or the detector
(but not both) and the results are coupled in order to obtain the final estimate. The
advantage of the method is that the volume encompassed by the Midway surface
can be significantly larger than both the source and detector volumes, therefore im-
proving on both the forward and adjoint methods individually. However, matching
the responses is a non-trivial process.

2.6 Shortcomings regarding criticality

All of the variance reduction methods discussed before have been developed with
shielding calculations in mind. The reason, as we discussed in Chapter 1, is that
the Monte Carlo technique works better when a limited amount of information is
sought. Variance reduction techniques further enforce this notion by biasing parti-
cles towards limited regions of higher importance, such as detectors. However, crit-
icality problems are by nature problems where global information is required, since
the fission source of a new particle generation needs to be constructed throughout
the system, rather than detected at a remote point. In contrast, since deterministic
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2. Variance Reduction in Monte Carlo

techniques solve the transport equation everywhere in the system, they do not
differentiate between criticality and source-detector systems in that respect.

In addition, using an adjoint-based variance reduction method for criticality
problems brings some conceptual problems. As we discussed in Sec. 2.4, the adjoint
function can be interpreted as the expected contribution of a particle to the final
estimate. However, in a criticality calculation, we are estimating ratios of successive
generations. Therefore, it is much harder for us to determine the importance of
a particle, since it affects future generations, rather than only contributing to the
estimate of the current one.

Still, there are some ways towards solving the issue. As an example, techniques
which use global information in order to estimate responses, such as the correcton
method and techniques based on the variational method, can be used in an eigen-
value simulation in the same manner as in a source-detector simulation, and can
therefore also be effective in eigenvalue problems. Also, techniques such as implicit
capture, which allow longer total particle trajectories, can still be useful, since their
effect in the simulation is global, rather than localized to a scoring region. However,
particle weights do not change as much in criticality calculations as in shielding
ones, therefore such techniques do not provide significant reduction in variance.

In this thesis, we present a radical approach to variance reduction in eigenvalue
simulations. As we will see in Chapter 3, we can formulate an eigenvalue problem as
a virtual source-detector problem, which allows the use of adjoint-based variance
reduction. The advantage of this technique is that it can be combined with most,
if not all, of the above techniques in order to gain an appreciable reduction in the
variance.
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CHAPTER 3

ZERO VARIANCE AND CRITICALITY

A natural target in the quest for variance reduction is a scheme that estimates a
response with zero variance, i.e. the true answer to our problem. Although a Monte
Carlo scheme with zero-variance sounds like an oxymoron, such schemes can
indeed be devised, but they are not very practical for day-to-day simulations. In
this chapter, we will devise a zero-variance scheme for criticality calculations and
discuss how it can form the basis for a variance reduction technique.

3.1 The zero-variance scheme

The idea of a zero-variance scheme is not new in Monte Carlo. Already back in
1949, both Goertzel (1949) and Kahn (1949) were discussing a scheme, in which
appropriate biasing of the transition and collision kernels with an appropriate
importance function could lead to a result with zero variance. Almost 20 years later,
Coveyou et al. (1967) showed the significance of the adjoint function as importance
function. Zero-variance schemes for various estimators using the adjoint function,
starting with the last-event estimator, were later introduced by Hoogenboom (1979)
and Noack (1979).

Dwivedi (1982) and Gupta (1983) tried to generate a universal zero-variance
scheme that applies to more estimators. However, Hoogenboom (2008b) has re-
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3. Zero Variance and Criticality

cently shown that only one specific zero-variance scheme exists for a given estima-
tor.

A different approach towards a solution with zero variance was shown by Booth
(1989). Instead of biasing the transport kernels, he selected random numbers
from a biased phase space. In addition, he explored the zero-variance solution for
multiple correlated tallies (Booth, 1998).

Lux and Koblinger (1991) briefly touched upon the subject of a zero-variance
scheme, via the use of the moments equations, similar to the earlier authors. A more
readable approach, as well as a full literature review on the subject is presented
by Hoogenboom (2008b), where the reader is directed to for more background
information.

3.1.1 Theory

As we discussed in Chapter 2, an appropriate biasing function is the adjoint function
φ∗(P). However, since we are using the emission and collision densities, it is the
adjoint form of those that we should be using for biasing the transport of particles.

Following the lifetime of a particle, we start with its generation at the source.
Following the zero-variance scheme, particles should be selected by a distribution
biased by the adjoint emission density χ∗(P), rather than the true source S(P).
Therefore, the biased source function is

S(r , E ,Ω) =S(r , E ,Ω)
χ∗(r , E ,Ω)

R
, (3.1)

where the expected detector response R , given by Eq. (2.28), is introduced for
normalization. The simulation weight of the particles should be appropriately
changed by

WS =
S(P)

S(P)
=

R

χ∗(r , E ,Ω)
, (3.2)

in order to ensure an unbiased estimate.

In order to bias the transport kernel K (P ′→ P), it is simpler and more natural
to split the process in two. Initially, we bias the transition kernel T (r ′→ r , E ′,Ω′)
by the adjoint collision densityψ∗(r , E ′,Ω′), since it represents the importance of
particles entering a collision at (r , E ′,Ω′). Following, we bias the collision kernel
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C (r , E ′ → E ,Ω′ → Ω) by the adjoint emission density χ∗(r , E ,Ω), which can be
derived using Eqs (2.26) and (2.30):

χ∗(r , E ,Ω) =

∫

T (r → r ′, E ,Ω)ψ∗(r ′, E ,Ω)d V ′ . (3.3)

The biased transition kernel is then formulated as follows:

T (r ′→ r , E ′,Ω′) = T (r ′→ r , E ′,Ω′)
ψ∗(r , E ′,Ω′)
χ∗(r ′, E ′,Ω′)

. (3.4)

Again, a weight correction of

WT =
T (r ′→ r , E ′,Ω′)

T (r ′→ r , E ′,Ω′)
=
χ∗(r ′, E ′,Ω′)
ψ∗(r , E ′,Ω′)

(3.5)

is required. Similarly, for the biased collision kernel:

C (r , E ′→ E ,Ω′→Ω) =C (r , E ′→ E ,Ω′→Ω)
χ∗(r , E ,Ω)

ψ∗(r , E ′,Ω′)−ηψ(r , E ′)
. (3.6)

The normalization is obtained from the relation between χ∗ andψ∗:

ψ∗(r , E ,Ω) =ηψ(r , E )+

∫

C (r , E → E ′,Ω→Ω′)χ∗(r , E ′,Ω′)d E ′dΩ′ (3.7)

Therefore, the weight correction that needs to be applied for an unbiased estimate
of R is:

WC =
C (r , E ′→ E ,Ω′→Ω)
C (r , E ′→ E ,Ω′→Ω)

=
ψ∗(r , E ′,Ω′)−ηψ(r , E ′)

χ∗(r , E ,Ω)
. (3.8)

As has been proven for source-detector studiesHoogenboom (2008b) and as we
will show here for criticality studies, if we bias the kernels by the adjoint functions
as above, we reach a result with zero variance. However, it is obvious that the
zero-variance scheme is mostly of theoretical value. Indeed, in practice, if one
wishes to obtain the adjoint functions χ∗ and ψ∗ in order to bias the forward
solution, one must solve the adjoint problem, thus making the forward calculation
redundant. However, the scheme can still lead to a decrease in variance (never to
zero, of course) when approximate adjoint functions are used. That way, obtaining
a computationally cheap estimate of the adjoint function could help reduce the
variance of the expensive forward Monte Carlo simulation.

We will now show that the scheme leads to zero variance also in a criticality
case, first theoretically, then in practice, using a simplified transport model in a
homogeneous slab reactor.
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3.2 Proof of the zero-variance scheme for criticality

In a multiplying system, we can interpret the physical meaning of the eigenvalue
keff as the ratio of source neutrons of two successive neutron generations:

keff =

∫

Sn+1(P)d P

∫

Sn (P)d P

. (3.9)

The new fission source Sn+1(P) is calculated from the current generation n by

Sn+1(P) =
1

4π
χ f (E )

∫

νΣ f (r , E ′)
Σt (r , E ′)

ψn (r , E ′,Ω′)d E ′dΩ′ , (3.10)

where χ f (E ) is the fission energy spectrum, ν is the expected number of neutrons
produced by one fission and Σ f is the fission cross-section. Using this formulation,
for a certain generation we in fact treat a criticality simulation as a source-detector
problem, the detector response function of which we will see below.

For generation n we solve the equation

χn (P) =Sn (P)+

∫

K (P ′→ P)χn (P ′)d P ′ , (3.11)

with fission treated as absorption when sampling the collision kernel C . In order to
sample the kernel K , the transition kernel is sampled first, followed by the collision
kernel. Starting with a normalised source Sn (P), we can regard keff as the detector
response

R = keff =

∫

Sn+1(P)d P =

∫

νΣ f (P)
Σt (P)

ψn (P)d P (3.12)

if the source distribution is converged, so for sufficiently large n. The equation for
the collision density of the n-th generation is

ψn (P) =S1,n (P)+

∫

L(P ′→ P)ψn (P ′)d P ′ (3.13)

with S1,n the source of first collisions for the n-th generation.
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Now, if we follow the standard method of deriving the adjoint equation, the
source term in the equation adjoint to Eqs. (3.12) and (3.13) forψ∗ becomes

ηψ(P) =
νΣ f (P)
Σt (P)

(3.14)

and the adjoint function we are looking for is given by

ψ∗(P) =
νΣ f (P)
Σt (P)

+

∫

L(P→ P ′)ψ∗(P ′)d P ′ , (3.15)

which is an adjoint source-detector problem. Note that the adjoint function from
Eq. (3.15) is different from the adjoint eigenfunction of the criticality problem and
that Eq. (3.15) is independent of n .

Since we are concerned with a keff problem, the contribution of the particle to
the score at each fission event is the particle’s fission weight at that time, namely

w f (P) =w ηψ(P) (3.16)

In our case, since we use adjoint functions in order to bias the source and transport
kernels, we apply weight factors to the particle after each interaction in order to
keep the result unbiased. With Pk the coordinates of a particle entering the k -th
collision the contribution to the estimator from a particle’s history will now be

bRcol =
∞
∑

k=1

w (P0, P1, P2, . . . , Pk )ηψ(Pk ) . (3.17)

We can try to construct the scoring sequence of a particle, keeping in mind that
the particle will score every time after a transition and before scattering takes
place. The neutron weight at the source event is given by WS according to Eq. (3.2).
Between two successive events for starting a flight path at (rk−1, Ek ,Ωk ) and at
(rk , Ek+1,Ωk+1), the neutron weight is multiplied by WT WC according to Eqs. (3.5)
and (3.8).

WL(rk−1,Pk , Ek+1,Ωk+1) =WT WC =
χ∗(rk−1, Ek ,Ωk )
χ∗(rk , Ek+1,Ωk+1)

ψ∗(Pk )−ηψ(Pk )
ψ∗(Pk )

(3.18)

Before scoring at the next collision site another weight factor WT is applied for
selecting the path length. To simplify the equation we introduce the quantity

κ(P) =
ψ∗(P)−ηψ(P)

ψ∗(P)
. (3.19)
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κ can be considered as the equivalent of the non-absorption probability for biased
neutron transport with the transport kernel L

L(P ′→ P) = L(P ′→ P)
ψ∗(P)
ψ∗(P ′)

(3.20)

as

κ(P) =

∫

L(P→ P ′)d P ′ =
1

ψ∗(P)

∫

L(P→ P ′)ψ∗(P ′)d P ′ = 1−
ηψ(P)
ψ∗(P)

. (3.21)

Now the neutron weight when entering the k -th collision becomes

w (P1, P2, . . . , Pk ) =
R

χ∗(r0, E1,Ω1)
WL(r0, P1, E2,Ω2)× . . .

. . .×WL(rk−2, Pk−1, Ek ,Ωk )WT (rk−1, Pk )

=R
k−1
∏

i=1

κ(Pi )
1

ψ∗(Pk )

(3.22)

and the score over a neutron history becomes

bRcol =
∞
∑

k=1

R
k−1
∏

i=1

κ(Pi )
ηψ(Pk )
ψ∗(Pk )

=R

�

ηψ(P1)
ψ∗(P1)

+κ(P1)
ηψ(P2)
ψ∗(P2)

+ . . .

�

. (3.23)

Using Eq. (3.21) we can calculate 1− bRcol /R , to get:

1−
bRcol

R
= κ(P1)−κ(P1) [1−κ(P2)]−κ(P1)κ(P2) [1−κ(P3)]− . . .

= κ(P1)−κ(P1)+κ(P1)κ(P2)−κ(P1)κ(P2)+κ(P1)κ(P2)κ(P3)− . . .

= κ(P1)κ(P2)κ(P3) . . .

= 0 ,

(3.24)

since κ(Pi )< 1 for an infinite number of collision points i . Therefore, at all histories,
bRcol = R , and the variance will be zero, despite each history being different from
the others. The scheme requires the use of a collision estimator for scoring, which
means that it would not be valid in the special case of a point detector.
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3.3 Demonstration of the scheme

In order to demonstrate the scheme, there are some simplifications we need to
make. Since we need to use the converged and normalised source distribution, as
well as the exact adjoint functions, we need to be able to calculate the analytical
solutions for the above parameters, in order to reach zero variance. To this end, we
have used the two-direction model, thoroughly discussed by Hoogenboom (2008a).
Since the two-direction model uses several simplifications, it is therefore necessary
to initially show the use of adjoint functions for biasing in a multigroup, discrete
direction scheme, rather than the general continuous energy and direction Monte
Carlo scheme.

3.3.1 Biasing with the adjoint functions

In our scheme, when using a multigroup treatment, the energy of neutrons gener-
ated by fission at a point P(r, g ,Ω) is selected from the fission spectrum χ f biased
by the direction averaged adjoint function χ∗(r, g ). In general terms:

S(P) =S(P)
χ∗(P)

∫

S(P)χ∗(P)d P

. (3.25)

Since we want to have an unbiased estimate for keff , we need to weigh the particles
appropriately. As we have seen earlier, the correction weight is simply the ratio of
the initial and modified pdfs, and now becomes

WS =
S(P)

S(P)
=

∫

S(P)χ∗(P)d P

χ∗(P)
. (3.26)

The particle direction is then selected from the isotropic distribution biased by
the directional adjoint function, in a way similar to collision biasing, shown later.
As stated earlier, after biasing we need to alter the statistical weight of the particle.
In this case, it needs to be set inversely proportional to the adjoint function for the
selected energy group and direction. This requires appropriate normalisation of
the weights of all particles in a new batch. In practice, when using a multigroup
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treatment, the initial weight is set equal to

w init =

∑

g ′′
χ f (g ′′)χ∗(r, g ′′)

χ∗(r, g ,Ω)
(3.27)

For biasing the transition kernel to select a new collision site, the scheme requires
the adjoint functionψ∗ for particles entering a collision at P as the biasing function.
The new collision site is therefore selected from the biased transition kernel

T (r′→ r, g ,Ω) =
T (r′→ r, g ,Ω)ψ∗(r, g ,Ω)

∫

T (r′→ r′′, g ,Ω)ψ∗(r′′, g ,Ω)d V ′′
(3.28)

In practice, the new path length needs to be selected from the normalised proba-
bility

ξ=

s
∫

0

T (r→ r+ s ′Ω, g ,Ω)ψ∗(r+ s ′Ω, g ,Ω)d s ′

sm a x
∫

0

T (r→ r+ s ′Ω, g ,Ω)ψ∗(r+ s ′Ω, g ,Ω)d s ′

, (3.29)

where ξ is a random number, uniformly distributed between 0 and 1, Ω is the
direction and g is the current energy group of the particle. After selecting ξ, we can
now calculate the value of r using a root-finding iterative method until r converges.
A weight factor is then applied, in order to keep the final result unbiased:

WT =

sm a x
∫

0

T (r→ r+ s ′Ω, g ,Ω)ψ∗(r+ s ′Ω, g ,Ω)d s ′

ψ∗(r, g ,Ω)
(3.30)

In order to apply the biasing scheme to the collision kernel, we have to bias it by
χ∗(P). The biasing is done in two steps - initially, we select the new energy group g
after the collision with probability

p (g |r, g ′) =
Σs (r, g ′→ g )χ∗(r, g )

∑

g ′′
Σs (r, g ′→ g ′′)χ∗(r, g ′′)

. (3.31)
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After that, we need to select an outgoing direction, with probability

p (Ω|r, g ′, g ) =
Σs (r,Ω′→Ω|g ′, g )χ∗(r, g ,Ω)

∫

Σs (r,Ω′→Ω′′|g ′, g )χ∗(r, g ,Ω′′)dΩ′′
. (3.32)

The (combined) weight factor to be applied for the scattering biasing will then be

WC =

∑

g ′′
Σs (r, g ′→ g ′′,Ω′→Ω)χ∗(r, g ′′,Ω)

χ∗(r, g ,Ω)
. (3.33)

3.3.2 The two-direction model

The two-direction model is a model that limits the transport of particles to the ±x
direction. That way, although it remains a true transport model, the equations
describing the particle transport become differential, diffusion type equations, but
still suitable for Monte Carlo simulation. This means that, for simple geometries,
both forward and adjoint solutions can be obtained analytically, which makes
the model an excellent, although strongly simplified one for testing theories for
variance reduction.

By limiting our transport to the±x directions, the transition and collision kernels
become extremely simple, especially if we assume a mono-energetic case. In that
case, the distance between two interaction points x ′ and x becomes s = |x − x ′|,
while for the collision kernel all we need to select is a direction cosine µ=±1.

Let us first derive our detector response R = keff analytically, using the two-
direction model. From Eq. (3.12), we have

R =

∫

νΣ f (x )φ(x )d x . (3.34)

We can calculateφ(x ) by solving the eigenvalue differential equation for the two-
direction modelHoogenboom (2008a):

1

Σt r

d 2φ(x )
d x 2 −Σaφ(x )+

1

ke f f
νΣ f (x )φ(x ) = 0 , (3.35)

where the transport cross-section Σt r is defined as

Σt r ≡Σt −µ0Σs . (3.36)
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and µ0 the averaged cosine of the scattering angle. The solution of the eigenvalue
equation in a homogeneous slab system of half-width a is proportional to cos(Bx )
with the square root of the geometrical buckling B determined by the boundary
conditionHoogenboom (2008a)

�

�

�

�

dφ(x )
d x

�

�

�

�

±a

=Σt rφ(±a ) (3.37)

leading to the condition for B

B tan(B a ) = Σt r (3.38)

The normalised fission source distribution is

S(x ) =
B cos(Bx )
2 sin(B a )

, |x | ≤ a . (3.39)

and, using Eq. (3.35) and (3.39), the corresponding neutron fluxφ(x ) is equal to:

φ(x ) =
BΣt r cos(Bx )

2 sin(B a )(B 2+ΣaΣt r )
, (3.40)

which, using Eq. (3.34), gives us the final theoretical response:

k t h =R =
νΣ f Σt r

B 2+ΣaΣt r
. (3.41)

In practice, for one cycle, keff is calculated as follows:

kcycle =
N
∑

n=1

Rn , (3.42)

where N is the number of particles followed in the cycle, and Rn is the contribution
of a particle to the detector response:

Rn =
∑

collisions

w
νΣ f

Σt
, (3.43)

where w is the statistical weight of the particle at the collision.

In order to simulate this process by Monte Carlo, we need to sample the kernels.
We can write the two kernels (for a homogeneous medium) as follows:
The transition kernel will be

T±(x ′→ x ) = Σt e−Σt |x−x ′| , (3.44)
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while the collision kernel becomes equal to

C (x ,µ′→µ) =

(

Σ→
Σt

, µ′µ=+1
Σ←
Σt

, µ′µ=−1
(3.45)

where Σ→ and Σ← are the forward and backward scattering cross section, respec-
tively, with

Σ→+Σ← =Σs (3.46)

Σ→−Σ← =µ0Σs , (3.47)

Hence, µ0 follows from

µ0 =
Σ→−Σ←
Σ→+Σ←

. (3.48)

In the case of isotropic scattering, µ0 = 0 and therefore

Σ→ =Σ← =
1

2
Σs . (3.49)

From the equations above, it is clear that the model simplifies sampling of the
transition and collision kernels significantly. In addition, the scheme can still be
applied to heterogeneous systems, as well as with multigroup energy treatment,
although the analytical solutions become more involved. However, if we want to
implement the zero-variance scheme in the model, the most important issue is
obtaining the adjoint functions.

3.3.3 Adjoint equations in the two-direction model

For a homogeneous system, the differential equation for χ∗(x ) = 1
2

�

χ∗+(x )+χ
∗
−(x )

�

has the same form as the one for the adjoint functionφ∗(x )Hoogenboom (2008a):

−
1

Σt r

d 2χ∗(x )
d x 2 +Σaχ

∗(x ) =ηφ . (3.50)

Solving the equation for a 1-D slab reactor with half-width a in the two-direction
model, using the boundary conditionHoogenboom (2008a)

1

Σt r

�

�

�

�

dχ∗(x )
d x

�

�

�

�

a

=χ∗(a ) , (3.51)
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gives the analytical solution for χ∗(x ):

χ∗(x ) =
νΣ f

Σa



1−
Σt r cosh

p

ΣaΣt r x

Σt r cosh
p

ΣaΣt r a +
p

ΣaΣt r sinh
p

ΣaΣt r a



 . (3.52)

The directional adjoint χ∗±(x ) is then equal to Hoogenboom (2008a)

χ∗±(x ) =χ
∗(x )±

1

Σt r

dχ∗(x )
d x

. (3.53)

ψ∗(x ) can be obtained by χ∗(x ):

ψ∗(x ) =ηψ+
Σs

Σt
χ∗(x ) , (3.54)

whileψ∗±(x ) can be obtained from χ∗±(x ):

ψ∗±(x ) =ηψ+
Σ→
Σt
χ∗±(x )+

Σ←
Σt
χ∗∓(x ) . (3.55)

Using the above equations, χ∗(x ) was calculated for a homogeneous 1-D slab
reactor of half-width a = 10 cm. The following set of one-group cross-sections
was used: Σt = 1.1 cm−1, Σs = 0.6 cm−1 and νΣ f = 0.625 cm−1, while isotropic
scattering (µ0 = 0) was assumed. The resulting χ∗(x ) can be seen in Fig. 3.1.

As χ∗±(x ), the adjoint emission density for the ±x direction, becomes zero at
the right and left boundary, respectively, the probability of particles to escape the
system when using the biased transition kernel T according to Eq. (3.4) goes to zero.
In the centre of the slab, the importance for both directions is exactly the same
(since our system is symmetric around x = 0), and therefore the adjoint emission
density is flat. Setting dχ∗(0)

d x = 0 in Eq. (3.53) results in χ∗−(0) =χ
∗
+(0) =χ

∗(0). Note

that if our system was infinite, χ∗±(0) would be equal to k∞ =
νΣ f

Σt
, since it is the

expected contribution of a particle starting a flight path at x = 0. In our finite
slab, the value of χ∗±(0) is slightly lower, since there is still a small but finite leakage
probability at x = 0. When the particle approaches the boundary, the leakage
probability increases and therefore χ∗+(x ) or χ∗−(x ) decreases accordingly.

3.3.4 Sampling the biased kernels

In order to obtain a keff response using the zero-variance scheme, we need to
properly bias the source, transition and collision kernels and then sample from
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Figure 3.1: Adjoint emission density χ∗(x ) for a slab reactor.

the biased kernels. By applying the fact that the optimum weighting factor is the
adjoint emission density, we have already seen in Eq. (3.1) that the optimum source
biasing is equal to

Sµ(x ) =Sµ(x )×
χ∗µ(x )

R
=

1

2
S(x )

χ∗µ(x )

R
, µ=±1 (3.56)

with the factor R included to have a normalised biased source.

Using Eq. (3.39), (3.41), (3.52) and (3.53), we have an analytical form for Sµ(x ).
The starting position of the neutron is selected from S(x ):

S(x ) =
∑

µ

Sµ(x ) =S(x )
χ∗(x )

R
(3.57)

which can be sampled using a root-finding method. Once the position is selected,
the direction is sampled with probability

pµ =
χ∗µ(x )

χ∗(x )
(3.58)
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The weight of the particle then needs to be altered in order to account for the
biasing. The new weight is equal to

wS =
Sµ(x )

Sµ(x )
=

R

χ∗µ(x )
(3.59)

in accordance with Eq. (3.2). The biased transition kernel from Eq. (3.4) is equal to

T µ(x ′→ x ) = Tµ(x ′→ x )
ψ∗µ(x )

χ∗µ(x
′)

= e−Σt |x−x ′|
Σtηψ+Σ→χ∗µ(x )+Σ←χ

∗
−µ(x )

χ∗µ(x
′)

, µ(x ′−x )> 0

(3.60)

where χ∗µ(x
′) is a normalisation factor for the kernel T . In order to select from the

biased kernel, we have:

ρ = P(x ) =

x
∫

x ′

T µ(x ′→ x ′′)d x ′′ (3.61)

where ρ is a random number, uniformly distributed between 0 and 1. Since selec-
tion from Eq. (3.61) is not possible via direct inversion, we calculate the value of
x using a root-finding iterative method, such as the regula falsi method, until x
converges. The neutron weight must be multiplied by a weight factor

WT =
χ∗µ(x

′)

ψ∗µ(x )
(3.62)

By simplifying the biased collision kernel from Eq. (3.6) to fit the two-direction
model with appropriate normalization, we get:

C (x ,µ′→µ) =C (x ,µ′→µ)
χ∗µ(x )

ψ∗µ′ (x )−ηψ
. (3.63)

By use of Eq. (3.45) and (3.55) we arrive at the final form of the biased collision
kernel C :

C (x ,µ′→µ) =







Σ→χ∗µ(x )

Σ→χ∗µ′ (x )+Σ←χ
∗
−µ′ (x )

, µ′µ=+1

Σ←χ∗µ(x )

Σ→χ∗µ′ (x )+Σ←χ
∗
−µ′ (x )

, µ′µ=−1
(3.64)
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We can select from the collision kernel by simply calculating the probability of a
particle to change direction or not after a collision, since we are only interested
in the+x and −x directions. The neutron weight must be multiplied by a weight
factor

WC =
C

C
=
ψ∗µ′ (x )−ηψ
χ∗µ(x )

(3.65)

The zero-variance scheme, using the biasing functions above, should give a result
with zero variance for each neutron history. We will now see if this is obtained in
practice.

3.3.5 Numerical Demonstration

For demonstration of the principle of the zero-variance scheme, we have written a
simple code that simulates a Monte Carlo criticality calculation. The simulation
scheme for one cycle (or batch) of particles is shown in Fig. 3.2. The equations
used are exactly the same ones as for a source-detector problem, but now using the

detector response function ηψ =
νΣ f

Σt
.

In the scheme, particles were selected from the analytically calculated, biased
converged neutron source. The selection of the interaction location was done via
the biased transition kernel T , while the biased collision kernel C determined the
direction after scattering. The exact analytical forms of the adjoint equations were
used for the biasing of the kernels.

Because of the implicit capture used and the biasing of both the transition and
collision kernels, there are no leakage or absorption events in the system (leakage
is included in Fig. 3.2 for generality), so the only way to terminate a particle’s
history was by Russian roulette below a pre-set weight limit. Because of all this, the
contribution of each particle should be exactly the same and equal to the expected
detector response if the Russian roulette threshold goes to zero. We used a batch of
2000 particles, while the geometry and cross-section values are the same as stated
earlier in this text.

The results, shown in Fig. 3.3, show the average standard deviation for a cycle
using the converged source distribution, for different Russian roulette threshold
weights. When the threshold is relatively high, as seen in the right part of Fig. 3.3,
particles have had a relatively low number of interactions before being killed, which
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3. Zero Variance and Criticality

Figure 3.2: The Monte Carlo simulation scheme for one batch of particles.
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Figure 3.3: keff standard deviation for varying Russian roulette weight thresholds.

limits the amount of information they provide, and therefore increases the variance.
When we move towards lower RR limits, i.e. to the left, particles provide more
information (whereas information translates to scores), thus reducing the total
variance of the simulation. It is obvious that, by using an appropriately low weight
threshold, we can approximate a zero variance at least to the limit of computing
accuracy.

However, approximate implies that, in fact, a true zero variance scheme cannot
exist. We will now see which theoretical and practical issues might arise that
introduce a finite variance to our scheme, and in the next chapter we will discuss
in detail the effect of each in the performance of the scheme.

3.4 The need for approximations

The first objection to a true zero variance scheme is already seen at the proof of
the scheme itself, in Eq. (3.24): An infinite number of collision points is required
in order to get zero variance. This is of course not possible to use in any practical
form, so Russian roulette is used in order to terminate the histories at low weights.
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3. Zero Variance and Criticality

The use of Russian roulette (which cuts off histories that could still contribute to
the detector) therefore brings us the first source of variance, which is dependent on
the Russian roulette threshold weight, as can clearly be seen in Fig. (3.3).

In addition, we need to bias the source S(P) by χ∗(P) in order to reach zero
variance, as seen in Eq. (3.1). Since we want to have an unbiased estimate for keff ,
we need to weigh the particles appropriately, as per Eq. (3.2). According to the
zero-variance scheme, it is in fact this quantity (

∫

S(P)χ∗(P)d P) that we estimate
with zero variance. However, it is only when the true analytical source distribution
is used that we can equate this integral to R , as per Eq. (2.28). If not, what we
end up with after each cycle is a detector estimate with zero variance, but that
detector estimate does not represent keff . So although the zero-variance proof
given in Sect. 3.2 still holds, if we start with an approximation, we end up with an
approximation. This problem will be discussed further at the next chapter of this
thesis.

In addition to the theoretical problems discussed above, in practical simulations
there are more issues that need to be considered before determining an optimum
strategy for our variance reduction scheme.

Using extremely low Russian roulette thresholds might reduce variance, but it
can disproportionally increase the total CPU time of the simulation. It is therefore
necessary to decide whether absolute minimum variance is preferred compared to a
possibly higher figure of merit and modify the input weight thresholds accordingly.

An additional issue arises from the complexity of the simulation setup itself. In a
practical Monte Carlo simulation, a far more realistic model is used, rather than the
simplified 2-direction model we used for our demonstration. This model requires
special treatment in position (3-D transport), angle (anisotropy in scattering) and
energy (continuous energy configurations, resonance treatment). In such configu-
rations, several functions we used, such as the the converged source distribution,
the detector response and the adjoint functions used for biasing, are very hard (or
impossible) to calculate analytically.

Also, the adjoint functions used to bias the simulation are in general not exact.
This means that, even if all the previous requirements for the zero-variance scheme
were satisfied, the biasing with the non-exact adjoint function still leads to a non-
zero variance. Note that using the non-exact adjoint function does not lead to a
biased keff estimate, if the weight of the particles is still appropriately changed to
compensate for the biasing. The better we approximate the true analytical form of
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the adjoint functions, the smaller the variance for one cycle is. Since the adjoint
functions are in general output by a deterministic code, it is important to know how
the accuracy of the adjoint functions used for biasing affects the performance of
the scheme, in order to obtain the maximum FOM for our purpose.

Finally, although the adjoint functions can be approximated, in order for the
scheme to give zero variance, the converged source distribution S(P) should be ex-
act, and since in a practical Monte Carlo calculation we start with an approximated
source, additional problems regarding variance arise.

In the next chapter, we will see how these approximations affect the nature of the
scheme, their effect on variance reduction and whether they still allow the scheme
to be of practical use in more realistic configurations.
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CHAPTER 4

REDUCING THE VARIANCE

As we discussed in Chapter 3, despite the theoretical feasibility of a zero-variance
scheme for criticality, we were only able to apply it to a single-cycle estimate. There
are several theoretical and practical reasons why such a scheme cannot be used
to its full extent in a practical criticality simulation, in which the fission source is
constructed by simulating successive generations of particles, until a converged
distribution is achieved. A brief mention of those factors was given at the end of
Chapter 3. We will start our investigation with the assumption that the full zero-
variance scheme can be applied in practice, analyse the various factors and see the
problems that they could pose to the application of the zero-variance scheme in a
multiple-cycle, real criticality simulation.

4.1 Russian roulette threshold

This factor has already been discussed in Sect. 3.4: The zero-variance scheme we
have devised requires an implicit capture scheme, and in order to achieve true zero
variance, infinite particle histories. Since this is not practical, Russian roulette can
be used in order to terminate the histories at low weights. The effect of Russian
roulette is that information that could still contribute to the detector response
is possible discarded, therefore introducing variance into the system. Still, by
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lowering the threshold setting for application of Russian roulette, the variance it
introduces can be lowered to values limited only by the limits of CPU arithmetic
precision, as can be seen in Fig. 3.3.

4.2 Fission source iterations

In the previous chapter, the analytical expressions for the fission source distribution
and the adjoint functions were available, from which we could sample the starting
positions of neutrons for a single, converged cycle and perform the exact biasing of
the kernels. However, this will never be the case in practice and we will now discuss
the consequences if these functions are not available in an exact analytical form. If
we have available the adjoint function in approximate form, for instance as solution
of an approximate deterministic calculation, we can still use these functions for
biasing and obtain an unbiased estimate of keff by applying appropriate weight
factors. However, we cannot sample an approximate source distribution as we
cannot correct it by a weight factor to get an unbiased estimate.

If the converged source distribution is not known, the usual procedure is to
apply iterations using successive generations or cycles according to Eqs. (3.11) and
generate the source for the next cycle from Eq. (3.10), starting from an arbitrary
initial source distribution. This can also be applied in the case of zero-variance
biasing, but it requires a few modifications.

According to Eq. (3.42), our keff estimate is the average of the individual contri-
butions of the particles to the estimate for a cycle. As we have seen in Sect. 3.2,
when the exact biasing is used, the contribution of each particle should be exactly
the same and equal to the expected detector response, leading to a zero-variance
result, as we have already proven.

The distribution of particle contributions, when using the two-direction model
and for the system described earlier can be seen in Fig. 4.1. The majority of particles,
as expected, has a contribution equal to the theoretical keff . The particles that
deviate have a higher contribution because of repeated survival of the Russian
roulette. In fact, if we use a much lower Russian roulette threshold, down to the limit
of computing accuracy, and depending on the source sampled, the distribution
can approach a δ-function at x = k theory, thus reaching a result with zero variance.

Let us now assume that the same scheme can be directly applied to successive
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Figure 4.1: Distribution of contributions to keff for the first cycle, using a Russian
roulette threshold of 10−3. The analytically calculated value for keff is 1.00991.

cycles. The fission source for each cycle is now generated from the neutrons
simulated in the previous cycle. In our initial zero-variance scheme, let us call it
single-cycle scheme, the source S(P) is calculated analytically, which allows for the
calculation of the integral in Eq.(3.2), and therefore R . This, as we have seen in
Chapter 3, means that we actually start from R , in order to estimate R with zero
variance! Using the proof of the scheme in Sect. 3.2, we can see that what we end
up with after each cycle is a detector estimate with zero variance, but that detector
estimate does not represent keff , unless the analytical source distribution is used.

Now, in a criticality simulation, the source of a generation is constructed from
the fission events of the preceding generation, until the system converges to the
true (in a statistical sense) source distribution. This means that the numerator in
Eq. (3.2) is not equal to the detector response R , if not yet converged. In order to be
able to still apply a zero-variance scheme, we normalise the integral to the sum of
starting particle weights, which is then included in the estimation of keff . This is in
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contrast to sampling the biased analytical source distribution, where according to
Eq. (3.2), the expected initial weight of each particle is 1. From now on, this new
scheme we have devised will be referred to as the multiple-cycle scheme, and is the
scheme we will be using in practice for the rest of this thesis.

 1⋅10-6

 2⋅10-6

 3⋅10-6

 4⋅10-6

 5⋅10-6

 6⋅10-6

 7⋅10-6

 8⋅10-6

 0  10  20  30  40  50  60  70  80  90  100

S
ta

nd
ar

d 
de

vi
at

io
n

Cycle #

Single-cycle scheme
Multiple-cycle scheme

Figure 4.2: Standard deviation per cycle in the single- and multiple-cycle schemes,
using a Russian roulette threshold of 10−4. The standard deviation per cycle is on
average the same and only limited by the Russian roulette threshold.

Since in the multiple-cycle scheme we are still biasing the transition and collision
kernel by the analytically calculated adjoint function, the scheme should give a
zero-variance result within a cycle. Indeed, in Fig. 4.2, we can see a comparison of
the standard deviation per cycle between the single- and multiple-cycle schemes,
after convergence, for a Russian roulette threshold of 10−4. Both schemes perform
similarly, with the limiting factor being the Russian roulette threshold. The impor-
tant difference between the schemes is that in the multiple-cycle scheme, the result
is no longer the exact solution being replicated at each cycle. Rather, the initial
estimate converges slowly to the final solution, with a number of cycles required
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4.2. Fission source iterations

in order to converge the source distribution and eliminate the bias in keff . This
result can be seen in Fig. 4.3. Meanwhile, in our single-cycle scheme, it makes no

 1.007

 1.008

 1.009

 1.01

 1.011

 1.012

 1.013

 0  10  20  30  40  50  60  70  80  90  100

A
ve

ra
ge

 k
ef

f

Cycle #

Single-cycle scheme
Multiple-cycle scheme

Figure 4.3: Average keff per cycle for the two calculation schemes. In the single-
cycle scheme, the analytical result is effectively replicated at each cycle, while in
the multiple-cycle scheme, the estimate converges after a number of cycles to the
statistically expected one. Note that the error bars in the single-cycle scheme are
too small to discern in the graph.

difference whether we use one or more cycles. We are starting from an analytically
calculated R and, through biasing with the exact adjoint function, we are able to get
to the same R via Monte Carlo transport. Therefore, the fact that the distribution of
the particles is a statistical distribution plays no role.

Looking at the above results, one might pose the following question, regarding the
multiple-cycle scheme: Since we are starting the calculation with the exact source
(with an arbitrary normalization), using exact biasing, why do we get fluctuating
results which are statistically inferior to the ‘true’ zero-variance scheme?

A first attempt towards an answer can be made looking at the generation of new
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particles at fission events. The number of new particles per neutron history must
be an integer, since we can only simulate an integer number of particles, and that
integer is generated via the use of a random number. The result is that the number
of new particles per fission follows a broad discrete distribution, as seen in Fig. 4.4,
which introduces a finite variance to the calculation. This can be compared to the
distribution of particle contributions in the true zero-variance scheme, as seen in
Fig. 4.1.
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Figure 4.4: Distribution of expected number of new particles generated per neutron
history for a batch of 1000 particles.

However, this problem could be theoretically solved by sampling a large number
of new fission neutrons, either by sampling more histories per cycle or by artificially
increasing the number of new neutrons per fission. Yet, the variance still does not
drop to zero. We therefore need to look at what happens at the beginning of every
cycle.
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4.3 Weight normalisation

For a neutron entering a collision with weight w , the weight of fission neutrons for
the next cycle is given by

w f =w
νΣ f (r , E )
Σt (r , E )

(4.1)

Playing a Russian roulette game will result in 0, 1 or possibly more fission neutrons
of a preselected weight. The zero-variance scheme for a single cycle requires that
the weight of a source particle equals Rest/χ∗(r , E ,Ω) as is the case in Eq. (3.2). As
the theoretical value of R is not known exactly, we have to use an estimate of the
effective multiplication factor Rest, which can be obtained from a previous cycle
calculation. At this stage the energy E and direction Ω of the fission neutron are not
yet known. Therefore, we use the adjoint function weighed by the fission spectrum
χ f (E ) and (in the case of fission) isotropic direction probability

Q∗(r ) =

∫∫

1

4π
χ f (E )χ∗(r , E ,Ω)d E dΩ=

∫

χ f (E )χ∗(r , E )d E (4.2)

or in multigroup form

Q∗(r ) =
∑

g

∫

1

4π
χ f (g )χ∗(r , g ,Ω)dΩ=

∑

g

χ f (g )χ∗(r , g ) . (4.3)

To generate fission neutrons with a weight Rest/Q∗(r ) the number of fission
neutrons is chosen equal to

n f =
�

w f
Q∗(r )
Rest

+ρ
�

(4.4)

with [x ] denoting the integer part of x and ρ a uniformly distributed random
number between 0 and 1, which effectively performs the Russian roulette to get an
integer number of fission neutrons. The position and weight of the fission neutrons
are stored in a bank and this data is retrieved when starting the next cycle. When
starting a neutron history in the next cycle the neutron energy and direction have
to be sampled, biased by the adjoint function. For the energy selection, the biased
probability density function is

p (E |r ) =
χ f (E )χ∗(r , E )

Q∗(r )
. (4.5)

61



4. Reducing the variance

In multigroup form:

p (g |r ) =
χ f (g )χ∗(r , g )

Q∗(r )
. (4.6)

This requires the weight to be multiplied by a factor

Wg =
p (g )
p (g )

=

∑

g ′
χ f (g ′)χ∗(r , g ′)

χ∗(r , g )
=

Q∗(r )
χ∗(r , g )

. (4.7)

The biased pdf for the direction is

p (Ω|r , g ) =
1

4π

χ∗(r , g ,Ω)
χ∗(r , g )

, (4.8)

which requires a weight factor

WΩ =
p (Ω)
p (Ω)

=
Q∗(r , g )
χ∗(r , g ,Ω)

. (4.9)

The initial weight factor then becomes

w init =
Rest

Q∗(r )
×

Q∗(r )
χ∗(r , g )

×
χ∗(r , g )
χ∗(r , g ,Ω)

=
Rest

χ∗(r , g ,Ω)
. (4.10)

In a two-direction model, these equations simplify to the ones mentioned in
the previous sections. A starting weight of each neutron in any cycle inversely
proportional to the (exact) adjoint function guarantees a zero-variance estimate
(if the transition and collision kernels are biased by the exact adjoint functions).
However, the result of the estimate itself will be Rest instead of the true value R .

If the theoretical value of R was known, this value could be used instead of Rest

and an unbiased zero-variance estimate would have been obtained over the next
cycle. If only an estimate of R is known, we have to normalise the scores in the next
cycle to the averaged initial weight of the neutrons w init:

w init =
1

N f

∑

i

Rest

Q∗(r i )
, (4.11)

with r i the positions where a fission neutron is selected for the next cycle and N f

the total number of fission neutrons for the next cycle. The averaged initial weight
of a neutron in a next cycle is a random quantity as it depends on the selection
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of the collision sites in the current cycle and the outcome of the Russian roulette
to accept or discard the fission neutron. Note that the average is taken over the
fission neutron weight before selecting its energy and direction. It would have
been normal to average the initial weight after the biased selection of energy and
direction, which gives the actual starting weight of a neutron in a next generation,
but this would have add only more variance to the averaged initial weight due to
the selection of energy and direction and the corresponding weight factors.

According to the zero-variance proof given in Sect. 3.2, the estimate of the detec-
tor response in the next section, i.e. keff will have zero variance if proper biasing
of the transition and collision kernels is done and no histories are cut off due to
Russian roulette. The estimate itself is, however, not the true keff value, but Rest as
used in the initial weight of a fission neutron instead of the true value keff . During
the next cycle a new estimate of keff is obtained by summing up the contributions
of all particles throughout the cycle and then normalised by the averaged initial
weight w init.

This causes the estimate of keff to vary from cycle to cycle, which means it does
not have zero variance when considered over more cycles. It will only become a
zero-variance process if the averaged initial weight w init can be estimated with zero
variance.

A first step towards reducing the variance in w init has been introduced already by
averaging the initial neutron weight before selecting energy and angle. We can go
further by using an expected value estimator instead of the average of actual initial
neutron weights from Eq. (4.11). For a neutron with weight w starting a flight path
at P the expected number of fission neutrons generated in a volume element d V ′

at r ′ is equal to w T (r → r ′, E ,Ω)ηψ(r ′, E )d V ′.

Although the biased kernel T is actually sampled in the Monte Carlo simulation,
the neutron weight is corrected afterwards, so effectively the physical transition
kernel T is sampled. Hence, the expected number of fission neutrons over all
possible path lengths starting at P is

n f (P) =w

∫

reactor

T (r → r ′, E ,Ω)ηψ(r ′, E )d V ′ (4.12)

Note that integration is up to the outer boundary of the reactor because the biased
transition kernel T is zero outside the reactor. As we want fission neutrons for
the next cycle to have an initial weight equal to Rest/χ∗(r , E ,Ω) the probability for
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fission is multiplied by the inverse. Therefore, the expected total weight of fission
neutrons over all possible path lengths is

w f (P) =w

∫

reactor

T (r → r ′, E ,Ω)ηψ(r ′, E )
χ∗(r ′, E ,Ω)

Rest
d V ′ (4.13)

All fission neutrons generated for the next cycle are considered as independent.
To estimate the average initial weight of neutrons of the next cycle we add up all
contributions n f (Pi ) and w f (Pi ), respectively, from all neutrons starting a flight
path during their history and from all neutron histories. Then the expected value
estimate of the initial weight becomes

w init =

Nfs
∑

i

w f (Pi )

Nfs
∑

i

n f (Pi )

, (4.14)

with Nfs the total number of positions from which a neutron starts a flight path
during the current cycle. It is not simple to determine the variance in w init as
the numerator and denominator are statistically dependent. However, as their
correlation is very high (from an actual Monte Carlo simulation it turned out to be
> 0.99) we can expect that the variance is much lower than that for the averages of
n f and w f itself.

4.4 Adjoint functions

The adjoint functions used to bias the simulation are generally not exact. This
means that, even if all the previous requirements for the zero-variance scheme
were satisfied, the biasing with the non-exact adjoint function still leads to a non-
zero variance. In addition, the weight correction for the particles after biasing the
kernels can produce abnormal weights, especially in phase-space regions where
the adjoint function varies rapidly. This can influence the contribution of particles
to the detector response and therefore the final variance of the response, so special
care should be taken when setting Russian roulette or splitting limits, to avoid the
loss of particle information. We will be discussing the effect of the approximate
adjoint biasing later in this, and in subsequent chapters.
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Figure 4.5: Dependence of the standard deviation on the Russian Roulette threshold
for the various cases investigated. The single-cycle scheme illustrates the true zero-
variance scheme, while the practically applicable multiple-cycle scheme shows
significant improvement compared to the implicit capture scheme.

In order to see what the effect on the variance of each of the factors discussed
above is, we ran a series of calculations with varying Russian roulette thresholds.
The two-direction model was used, while for the calculation 100 active cycles of
2000 particles were simulated, with 10 initial cycles discarded to allow for the fission
source to converge, while the statistical weight of a particle after survival was set to
twice the threshold weight. The standard deviation was then calculated, with the
results being shown in Fig. 4.5.

The case shown in Fig. 4.5 as the single-cycle scheme, corresponds to Fig. 3.3,
which is a run with the maximum amount of information available (i.e. the true
zero-variance scheme): Particles are selected from the true source distribution,
while the theoretical response of the system and the exact adjoint function are used
for biasing. The only parameter varied is the Russian roulette threshold. We can
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4. Reducing the variance

see that the decrease in variance is almost linearly (on a log-log scale) related to
the decrease in the weight threshold used, as we have seen earlier. As the source
particles are selected from the true distribution and are not the fission particles
from the previous cycle, this line represents the absolute minimum standard devia-
tion we can get, limited by numerical precision of the computer used, and does not
decrease with more cycles used, unlike the following cases. It should therefore not
be directly compared with the following cases, since they represent the standard
deviation based on a sample of cycle contributions, and not particle contributions.

In the case indicated as the multiple-cycle scheme, particles are selected from a
flat initial distribution, while the theoretical detector response is set to an initial
guessed value and updated throughout simulation of successive cycles. The exact
adjoint function is still used for biasing. We can see that there is a minimum plateau,
generated by the initial weight distribution and averaging, below which reducing
the Russian roulette weight threshold offers no further advantage. Note that the
scheme produces higher variance for high Russian roulette threshold values. This
is because the initial weight change, that compensates for the source biasing, could
cause the weight of a particle to immediately drop below the Russian roulette limit.
This has a chance to kill the particle before it has had any contribution, leading to a
higher variance.

The case indicated as the expected value estimator one is the same as the above,
but using the expected value for the average initial neutron weight, as shown in
Eq. (4.14). As expected, there is an improvement over the original multiple-cycle
scheme, around a factor of 1.5, while the same plateau behaviour is observed.

In the unbiased case only implicit capture is used for the calculation. We can
see that implicit capture offers no improvement in the variance below a Russian
roulette threshold of 0.1. The reason is that although implicit capture offers more
possibilities of scoring through longer particle trajectories, it does not bias the
particle transport towards higher importance regions in phase space. From this
line we can also justify the conservative, rather high values used by commercial
Monte Carlo codes in setting Russian roulette thresholds.

Finally, the case indicated as analogue shows the results for a true analogue
Monte Carlo simulation, with the exception of the use of a mean value ν for the
number of particles generated through fission. Since no variance reduction meth-
ods are used, the variance is constant for a set number of particles N , and represents
the upper variance limit. In practice, it should only be used if no other methods
are available, since even a simple variance reduction method, such as the use of
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implicit capture, can significantly improve the figure of merit, even taking into
account the corresponding time penalty.

4.5.1 Biasing individual kernels separately

Initially, we only considered the comparison between a fully biased calculation
and a fully unbiased one. However, in practice, collision biasing is not as taxing
on CPU time as transition biasing, therefore we also investigated the cases where
no biasing is applied to the transition kernel, but adjoint biasing is applied to the
collision kernel, and vice versa.
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Figure 4.6: Dependence of the variance on the Russian Roulette threshold for the
different biasing forms. Transition biasing is more effective since it has the added
effect of prohibiting leakage, which increases the information available.

The results are shown in Fig. 4.6. We can see that transition biasing is more
effective than collision biasing, which can be explained by the fact that it prohibits
leakage of neutrons, unlike collision biasing. However, one thing not shown here is
the figure of merit, which is much higher for the collision biasing scheme, due to
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4. Reducing the variance

the much simpler calculations involved. We will be dealing with the efficiency of
the schemes in the next chapter of this thesis.

4.5.2 Effect of the adjoint function’s discretisation

Of practical importance is the discussion of the adjoint function used for biasing.
In all but the simplest cases, the analytical forms of the adjoint equations are very
hard to solve. Therefore, another method must be used in order to acquire the
adjoint functions. In practice, this is done using the output of a deterministic
calculation. However, the fact that approximate adjoint functions are used means
that the scheme has to be altered, since the kernels must be normalised and the
weight corrections changed in order to account for the normalisation.

Suppose we derived an approximate adjoint function χ̃∗(r , g ,Ωm ) from a deter-
ministic multigroup discrete-ordinates calculation with g indicating the energy
group and Ωm the discrete direction. Note that the directional adjoint function
as normally obtained from a discrete-ordinates calculation must be multiplied by
the weight wm of the quadrature set corresponding to direction Ωm as used in the
discrete-ordinates quadrature set.

Theoretically, it is possible to use adjoint functions with discrete directions in
order to bias a continuous direction Monte Carlo calculation. However, as the prac-
tical implementation, described later in this thesis, is not as simple, we are going to
use discrete directions also during Monte Carlo transport. The only difference is
that rather than selecting a direction from a continuous distribution at the particle
source and after each scattering event, a discrete direction m is now selected from
the possible scattering directions with probability wm .

In the zero-variance based scheme, when using a multigroup treatment in the
Monte Carlo simulation, the energy group of a neutron generated by fission at a
point r is selected according to

p (g |r ) =
χ f (g )χ̃∗(r , g )

∑

g ′
χ f (g ′)χ̃∗(r , g ′)

. (4.15)

and the discrete direction from

p (Ωm |r , g ) =
χ̃∗(r , g ,Ωm )
χ̃∗(r , g )

, (4.16)
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The correction weight now becomes

WS =

∑

g ′′
χ f (g ′′)χ̃∗(r , g ′′)

χ̃∗(r , g ,Ωm )
(4.17)

When biasing the transition kernel, we now need to take into account the fact
that it is no longer normalised by χ∗. The adjoint function ψ̃∗ is obtained from χ̃∗

according to Eq. (3.7):

ψ̃∗(r , g ,Ωm ) =ηψ(r , g )+
∑

g ′

∑

m ′

Σs (r , g → g ′,Ωm →Ωm ′ )
Σt (r , g )

χ̃∗(r , g ′,Ωm ′ ) (4.18)

Now the biased transition kernel becomes

T (r ′→ r , g ,Ωm ) =
T (r ′→ r , g ,Ωm )ψ̃∗(r , g ,Ωm )

∫

T (r ′→ r ′′, g ,Ωm )ψ̃∗(r ′′, gΩm )d V ′′
(4.19)

In practice, the new path length needs to be selected from the normalised probabil-
ity as follows:

ρ =

s
∫

0

T (r ′→ r ′+ s ′Ωm , g ,Ωm )ψ̃∗(r ′+ s ′Ωm , g ,Ωm )d s ′

smax
∫

0

T (r ′→ r ′+ s ′Ωm , g ,Ωm )ψ̃∗(r ′+ s ′Ωm , g ,Ωm )d s ′

, (4.20)

where ρ is a random number, uniformly distributed between 0 and 1 and smax is
the maximum distance from r ′ to the outer boundary in the direction Ωm . If smax is
large the integration may be truncated in practice to a sufficient number of mean
free paths.

After selecting ρ, we can now calculate the value of s and hence r = r ′+ sΩm

using a root-finding iterative method until r converges. The weight factor will now
be

WT =

smax
∫

0

T (r ′→ r ′+ s ′Ωm , g ,Ωm )ψ̃∗(r ′+ s ′Ωm , g ,Ωm )d s ′

ψ̃∗(r , g ,Ωm )
. (4.21)
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For the collision kernel, we perform the biasing in two steps. Initially, we select the
new energy group g after the collision with probability

p (g |r , g ′) =
Σs (r , g ′→ g )χ̃∗(r , g )

∑

g ′′
Σs (r , g ′→ g ′′)χ̃∗(r , g ′′)

. (4.22)
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Figure 4.7: Effect of discretisation on the form of the adjoint function χ∗(x ). A
fine discretisation approaches the analytical form very well, while a coarse one
introduces significant error towards the boundaries of the system, where χ∗(x )
changes rapidly.

After that, we need to select an outgoing direction, with probability

p (Ωm |r , g ′, g ) =
Σs (r ,Ωm ′→Ωm |g ′, g )χ̃∗(r , g ,Ωm )

∑

m ′′

Σs (r ,Ωm ′→Ωm ′′ |g ′, g )χ̃∗(r , g ,Ωm ′′ )
. (4.23)

70



4.5. Consequences of using approximations

The (combined) weight factor to be applied for the collision biasing will then be

WC =

∑

g ′′

∑

m ′′

Σs (r , g ′→ g ′′,Ωm ′→Ωm ′′ )χ̃∗(r , g ′′,Ωm ′′ )

χ̃∗(r , g ,Ωm )
. (4.24)

We can now use approximated adjoint functions, in order to see whether the
approximation affects the variance of our calculations. As a demonstration, we used
bin-averaged adjoint function, generated by binning the exact values calculated
using Eq. (3.52). The result of the averaging can be seen in Fig. 4.7.

Despite the fact that the piecewise constant adjoint using a large number of
bins (up to 2000) approximates the true adjoint extremely well, the fact that an
approximation is used means that the scheme has to be altered slightly, since the
kernel sampling is now done via a discrete, rather than a continuous distribution
function. The exact workings of the scheme, and application to a more complex
system, will be the subject of the next chapter of this thesis.

Once again, the same cross-section data and system parameters were used for the
calculation. The results can be seen in Table 4.1. It is interesting that in the only case

Number of bins σcycle

0 (Imp. Capture) 3.71×10−3

4 5.52×10−3

20 1.24×10−3

200 3.02×10−4

2000 2.73×10−4

Table 4.1: Averageσ per cycle for different levels of adjoint function discretisation,
for a Russian roulette threshold of 10−2.

that does not accurately represent the shape of the adjoint function, the standard
deviation per cycle is in fact higher than the case where only implicit capture
was used. This is a direct result of the non-optimum weighting of the particles,
which then causes a very broad distribution in contributions to the final score,
and therefore a higher variance. This effect is especially pronounced towards the
boundaries of our system, where the difference between the analytically calculated
and the approximated adjoint function can lead to large variations in the weight
corrections for particles that traverse the region, resulting in an increase, rather
than decrease of the variance.
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If a finer discretisation is used, so that the digression from the analytical form near
the boundaries of the system is smaller, the results show significant improvement.
Taking into account that we are discussing criticality problems here, which are by
default global problems, approximating the shape, rather than the exact value of
the adjoint function, could be sufficient. Indeed, in the last two cases (200 and 2000
bins), the reduction in variance is not worth the extra computational time spent in
order to create the finer grid and calculate the integrals in Eq. (4.20).

4.6 Concluding remarks

We have seen that zero variance cannot be obtained in practice, due to the need for
renormalisation and averaging of particle weights at the beginning of each succes-
sive generation. However, a reduction in variance does indeed occur even when
using approximate adjoint functions that have been obtained computationally.

The analysis of the various sources of variance in a Monte Carlo simulation also
produces some interesting results regarding the points one should focus on when
trying to improve the variance in a calculation.

Analogue schemes should in general be avoided, since a simple variance re-
duction method, such as implicit capture, produces better results with minimal
implementation effort and CPU time overhead. When using an implicit capture
scheme, lowering the Russian roulette threshold below 0.1w0, where w0 is the
starting simulation weight of particles, results to no noticeable improvement in
variance, while the simulation slows down from the additional paths simulated.
Therefore, when no other methods are used along with implicit capture, a conserva-
tive (on the high side) approach in the threshold is the best, regarding the efficiency
of the simulation.

Depending on the quality of the adjoint function, biasing should improve on the
implicit capture case. However, one important thing to note is that the nature of
the biasing scheme using the approximate adjoint function makes it more taxing
on CPU. This means that the efficiency of the biasing is heavily dependent on
the computational scheme used, as well as the method used to approximate the
adjoint functions (piecewise constant, linear or spline interpolation, etc.). During
our numerical tests, we managed to raise the figure of merit by a whole order of
magnitude, by simply optimizing the root-finding algorithm for calculating the
adjoint at a point x . Another option considered was the biasing of the transport
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kernel based on the slope of the adjoint function. That way, biasing would be
applied only where needed (near interfaces, voids, etc.), while in large homogenized
regions it would be omitted for gains in CPU time.

In the next chapter we will deal with the implementation of biasing using approx-
imated adjoint functions obtained from a deterministic, the efficiency of such an
implementation, and how to improve it.
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CHAPTER 5

A PRACTICAL APPLICATION

As we have seen in Chapter 4 of this thesis, using the two-direction model, we could
analytically obtain all the information required for a zero-variance scheme. We also
saw how, in a criticality calculation, a number of factors affect the final variance
and lead to a non-zero variance for the final keff estimate. In this chapter, we will
start building up a more complex model by removing some of the simplifications
applied earlier and see how the scheme performs when used for a practical Monte
Carlo application.

5.1 Obtaining the adjoint functions

Since we are no longer considering the two-direction model, analytically obtaining
the adjoint functions is extremely hard, if not impossible. Therefore, we are going
to make use of a deterministic code, which can output discrete values of the ad-
joint function. We will then have to modify the scheme to take into account the
discretisation and see its effect on our calculation.

To that end, the XSDRN code (Greene and Craven Jr, 1969) was initially selected
as the deterministic code to use. XSDRN is a 1-D discrete-ordinates transport code
which can, upon option, solve the adjoint forms of the 1-D transport equation.
resulting in the angular and total χ∗(x ). We can then directly use the output of

75



5. A practical application

XSDRN in order to bias the source and transport kernel. We initially tested XSDRN
against the analytical results of the two-direction model, using the configuration
shown in Chapter 4. XSDRN could easily accommodate the two-direction model,
since we only needed to set the direction cosines to ±1, each being selected with
probability 1/2. In our simple geometry, XSDRN gave excellent results for the values
of the adjoint function, that compared well with the analytical solutions, both in
isotropic and anisotropic scattering calculations.

5.2 Implementation for more realistic problems

In order to apply a more realistic model to our simulations, several limitations of the
two-direction model were removed and the test code created for demonstration of
the zero-variance scheme was extended, in order to accommodate those changes,
starting with the input and use of discrete adjoint function values.

A multigroup model was used in energy for the Monte Carlo calculations, in order
to better observe the effect of the scattering kernel biasing. In addition, transport
calculations could now be done in any direction, rather than the two directions
used earlier. However, we chose to use discrete rather than continuous directions
for transport in the Monte Carlo code. By using the same set of discrete directions
as the ones defined by the deterministic code, we could directly compare the results
for debugging purposes and significantly simplify input/output operations between
the two codes. Preliminary tests showed differences of less than 1 % between using
for instance 16 or more directions and a continuous direction model for our simple
geometries, so the results shown here also hold for a continuous direction model.

As initially we did not have a deterministic code available that could generate the
angular dependent adjoint function in 3-D, we limited our geometrical capabilities
to 1-D geometries.

5.3 Source and kernel sampling in the biased scheme

As we have previously discussed in Sect. 5.1, the adjoint functions are input as
discrete values at predetermined points in a grid. However, biasing the kernels
requires that the adjoint function is available at any point x (in a 1-D geometry).
In order to achieve that, we have to interpolate between the grid points where the
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adjoint functions are available. In this thesis we will make use of two methods of
interpolation: constant value throughout a bin, where a bin is taken as the space
between grid points, and linear interpolation of values between two successive grid
points.

When using the bin-wise constant adjoint function, the value is taken as the
average value of the adjacent grid points. For x0 < x < x1,

χ∗(x ) =
χ∗(x0)+χ∗(x1)

2
. (5.1)

As we have seen in the previous chapter, if a coarse adjoint grid is used, the shape
of the adjoint function is not approximated very well. To prevent that, the adjoint
function at any point x can also be approximated by linearly interpolating the
values at the grid points adjacent to x as follows:

χ∗(x ) =χ∗(x0)+ (x −x0)
χ∗(x1)−χ∗(x0)

x1−x0
. (5.2)

5.3.1 Sampling the biased source

In order to select from the biased source distribution in the first cycle of the cal-
culation, we can isolate the source components in space, energy and direction as
follows:

S(x , g ,µ) =S(x )χ f (g )wm , (5.3)

where x is the position of the new particle and χ f (g ) is the fission energy spectrum
(in group-wise form). The term wm represents the weighting factor of the m
direction in the deterministic calculation and, in Monte Carlo terms, the probability
that the direction m with cosine µm with the x -axis is selected as the direction at
the source or after a scattering event. This means that

∑

m

wm = 1 . (5.4)

For the first cycle only, since for later ones the initial location of a particle is already
set, we select x from the biased fission source distribution:

S(x ) =

S(x )
∑

g

χ f (g )χ∗(x , g )

∫

∑

g

S(x ′)χ f (g )χ∗(x ′, g )d x ′
. (5.5)
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The correction weight will then be:

Wx =

∑

g

χ f (g )

∫

S(x ′)χ∗(x ′, g )d x ′

∑

g

χ f (g )χ∗(x , g )
. (5.6)

Afterwards, we need to bias the initial energy group selection. This is done via
biasing the fission spectrum:

S(g |x ) =
S(x , g )

S(x )
=

χ f (g )χ∗(x , g )
∑

g ′
χ f (g ′)χ∗(x , g ′)

. (5.7)

Again, we need to weigh the particles with weight factor

Wg =

∑

g ′
χ f (g ′)χ∗(x , g ′)

χ∗(x , g )
. (5.8)

Finally, we need to bias the selection of initial direction of the particle:

S(µ|g ,x ) =
S(x , g ,µ)

S(g ,x )
=

wmχ∗(x , g ,µm )
∑

m
wmχ∗(x , g ,µm )

. (5.9)

The weighed sum of the direction-dependent adjoint functions χ∗(x , g ,µm ) is
simply the scalar χ∗(x , g ):

∑

m

wmχ
∗(x , g ,µm ) =χ∗(x , g ) . (5.10)

Therefore, the new correction weight is

Wµ =
χ∗(x , g )

χ∗(x , g ,µm )
. (5.11)

The total weight correction now is

W =Wx Wg Wµ =

∑

g

χ f (g )

∫

S(x ′)χ∗(x ′, g )d x ′

χ∗(x , g ,µm )
(5.12)

Since we alter the starting weight of the particles, we need to renormalise the
source at each cycle, which is done during fission, according to Eq. (4.4).
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5.3.2 Sampling the biased collision kernel

Sampling the collision kernel is done in the same way as with the analytically-
obtained adjoint functions, and therefore according to Eq. (3.31) and (3.32). The
weight correction is shown in Eq. (3.33).

5.3.3 Sampling the biased transition kernel

In order to sample the biased transition kernel, the adjoint collision densityψ∗(x )
must be used. We can convert χ∗(x ) from our deterministic output to the required
ψ∗(x ), assuming isotropic scattering, using the discretised form of Eq. (3.7):

ψ∗(x , g ,µm ) =
νΣ f (x , g )
Σt (x , g )

+
1

Σt (x , g )

∑

g ′
Σg→g ′

∑

m

wm ′χ∗(x , g ′,µm ′ )

=
νΣ f (x , g )
Σt (x , g )

+
1

Σt (x , g )

∑

g ′
Σg→g ′χ

∗(x , g ′) .
(5.13)

This means that the collision densityψ∗(x , g ,µm ) is the same for all values of µm ,
for given (x , g ). We will now show how to sample from the biased transition kernel,
using the two methods of interpolation discussed earlier. Since the normaliza-
tion integrals for the transition kernel biasing depend on the interpolation used,
different methodologies have to be used for each. Note that, since we are only
concerned with neutrons, the energy of a particle does not change in between
collisions, therefore for simplicity we will denoteψ∗(g ,x ) asψ∗(x ).

Biasing using bin-wise constant adjoint function

In the case of bin-wise constant adjoint function, assuming that bin i ranges
between x i−1 and x i , ψ∗(x ) is given as a set of values ψ∗i (i = 1, N ), where N is
the number of bins. For a particle starting its flight path at x ′ and having its next
collision at x , the transition kernel is given by

T (x ′→ x ) = e−z i−1Σt (i )e
−Σt (i )

(x−xi−1)
µ , x i−1 < x < x i (5.14)

with

z i =
i
∑

j=1

Σt (j )
(x j −x j−1)

µ
, (5.15)
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which is the number of mean free paths up to x = x i ; e−z i is the probability for
a neutron to reach x i without any collision, while Σt (j ) is the total cross-section
inside bin j . Now the biased transition kernel becomes

T (x ′→ x ) =
ψ∗(x )T (x ′→ x )

Anorm
=
ψ∗i e−z i−1Σt (i )e

−Σt (i )
(x−xi−1)

µ

Anorm
, x i−1 < x < x i

(5.16)
Although the transition kernel is not limited to xN , we takeψ∗(x ) = 0 for x > xN ,
since the value of the adjoint function is 0 outside the system. Now, the normaliza-
tion constant becomes

Anorm =

xN
∫

0

T (x )dx =
N
∑

i=1

ψ∗i

x i
∫

x i−1

T (x )dx =
N
∑

i=1

ψ∗i e−z i−1 (1−e−Σt (i )
∆xi
µ ) . (5.17)

To sample T we have to solve the equation

ρ =

x
∫

0

T (x ′)dx ′

=
1

Anorm

(

i−1
∑

k=1

ψ∗k e−z k−1

�

1−e−Σtk
∆xk
µ

�

+ψ∗i e−z i−1

�

1−e−Σt (i )
(x−xi )
µ

�

)

,

(5.18)

where the first term inside the summation is the probability to reach point x i−1 and
the second term is the probability, starting from x i−1, to reach x . To determine the
mesh interval i we define the probability for selecting interval k by

P∗k =
1

Anorm

xk
∫

xk−1

T (x ′)dx ′ =
1

Anorm
ψ∗k e−z k−1 (1−e−Σt (

∆xk
µ
)) . (5.19)

We then select i from the cumulative probabilities P∗cum,i−1 <ρ < P∗cum,i with

P∗cum,i =
i−1
∑

k=1

P∗k (5.20)

Then, using the same value of ρ, we can solve Eq. (5.18). This results in

x = x i−1−
µ

Σt (i )
ln

�

1− (ρ−P∗cum,i−1)
Anorm

ψ∗i
ez i−1

�

. (5.21)
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Using Eq. (5.14), we correct the weight of the particles by the following factor:

W =
T (x ′→ x )

T (x ′→ x )
=

Anorm

ψ∗i
(5.22)

Biasing using linearly interpolated adjoint function

In the case of linearly interpolated adjoint function, we use the same methodology
as with the bin-wise constant approximation, with one important difference: There
is now an extra term, due to the linear dependence on x , that makes the functions
slightly more complicated. The biased kernel now is:

T (x ′→ x ) =
e−z i−1ψ∗(x )Σt (i )e

−Σt (i )
(x−xi−1)

µ

Anorm
, x i−1 < x < x i (5.23)

For ease of use we can transform the equations to equations of the form y = a x +b
as follows:

ψ∗(x ) = c i−1+a i x , x i−1 ≤ x < x i (5.24)

where

a i =
ψ∗(x i )−ψ∗(x i−1)

x i −x i−1
(5.25)

and
c i−1 =ψ∗(x i−1)−a i x i−1 . (5.26)

Sampling T (x ′→ x ) requires selecting from the following expression:

ρ =

x
∫

0

T (x ′)dx ′

=
1

Anorm







i−1
∑

k=1

xk
∫

xk−1

ψ∗(x ′′)T (x ′→ x ′′)d x ′′+

x
∫

x i−1

ψ∗(x ′′)T (x ′→ x ′′)d x ′′







.

(5.27)

Solving in a similar way as was used in the previous section, we get:

P∗k =
1

Anorm

xk
∫

xk−1

T (x ′)dx ′ =
1

Anorm

�

(ck−1+
a kµ

Σt (k )
+a k xk−1)e

−Σt (k )
(xk−1−x ′)

µ

−(ck−1+
a kµ

Σt (k )
+a k xk )e

−Σt (k )
(xk −x ′)
µ

�

.

(5.28)
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We then find the bin of the final location of the particle, selecting from the cumu-
lative probabilities as per Eq. (5.20). In order to sample the path of the particle
inside the final bin k , because of the complexity of Eq. (5.27), we have to use a
root-finding method. The final correction weight is

W =
T (x ′→ x )

T (x ′→ x )
=

Anorm

ψ∗(x )
(5.29)

5.4 Application of the scheme

5.4.1 A Loosely Coupled System

In order to demonstrate the zero-variance scheme in a more realistic test configu-
ration, we examined the case of a loosely-coupled system. The system examined
is described in the OECD/NEA benchmarks on source convergence (Blomquist,
2003), and more specifically case 4 in benchmark 3. It was chosen as, in addition
to the variance reduction, it allows us to investigate the effect of biasing on source
convergence. It is composed of a one-dimensional slab (infinite in the y- and z-
directions), as shown in Fig. 5.1.

Water
Uranyl
Solution

30 cm 9.5 cm10 cm

Vac. Vac.
Uranyl
Solution

x

Figure 5.1: Geometry of the loosely coupled system. The system is infinite in the y
and z dimensions
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A vacuum boundary condition is imposed on both sides of the slab. The slab is
divided into 3 sections: two slabs of variable width containing a Uranyl solution,
separated by a water slab, the width of which was set to 30 cm. In this setup, keff

converges faster than the fission source distribution, leading to incorrect results
when an insufficient number of initial cycles has been discarded. In addition,
when the system is symmetric, or nearly symmetric, there is a periodic shift in the
distribution of the source between the two Uranyl slabs, making convergence even
harder to predict.

Material Group Σt (cm−1) Σa (cm−1) Σ f (cm−1) ν χ f

Uranyl
1 0.26715 0.00132 0.00036 2.77609 0.76153
2 1.10219 0.00592 0.00104 2.43630 0.23847
3 2.88911 0.06055 0.03434 2.43783 0.00000

Water
1 0.26297 0.00064
2 1.22258 0.00056
3 3.27209 0.01891

Table 5.1: 3-group parameters of the test problem.

Uranyl Water
g ′ \ g 1 2 3 g ′ \ g 1 2 3

1 0.16595 0.09987 0.00000 1 0.15973 0.10260 0.00000
2 0.00000 1.03720 0.05907 2 0.00000 1.13860 0.08342
3 0.00000 0.00026 2.82830 3 0.00000 0.00008 3.25310

Table 5.2: Σg′→g in cm−1 for the materials used in the test problem, where g′ is the
incoming and g the outgoing energy group.

Using the compositions given in the benchmark specification, a reduced set of
zone-mixed cross-sections for the 2 materials was prepared through the use of the
SCALE code system (2006). For simplicity, only the P0 scattering matrix was used,
which means that all scattering was isotropic. XSDRN was then used in order to
generate the adjoint functions, which were passed to the Monte Carlo code for use
in biasing. The cross-section data used for our problem can be seen in Tables 5.1
and 5.2.
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5. A practical application

5.4.2 Results

For our test calculation, we opted for a system where the 3 slabs had widths of
10, 30 and 9.5 cm. By making the water slab much larger, we should be able
to see how biasing affects the transport of particles (and therefore information)
between the two fissile slabs. In addition, making the system nearly, but not exactly
symmetric means that the source should reach convergence, albeit slowly. The
adjoint functions were initially obtained by running an adjoint SN calculation
using a bin width of 0.5 cm, resulting in 100 grid points that were used in order for
the interpolation of the adjoint function. The CPU time cost of the deterministic
calculation has been added to that of the biased Monte Carlo cases, although it was
negligible compared to the total cost of the calculation.

A series of calculations was then run. Each consisted of 550 successive cycles,
with 1000 initial particles. 50 cycles were discarded as an initial estimate at the start
of each calculation in order to allow for source distribution to converge. Therefore,
500 active cycles were used in the final results. In order to be able to get consistent
results for the FOM, two runs with the same data and random number sequence
were done per calculation. The CPU time was then averaged.

Case keff σ Relative FOM
Implicit Capture 0.7702 7.9369×10−4 1.00

Bin-wise constant χ∗ 0.7718 3.7268×10−4 1.15
Linearly interpolated χ∗ 0.7709 2.7971×10−4 1.73

Table 5.3: Comparison of standard deviationσ and figure of merit in biased and
unbiased simulations. The deterministically calculated value of keff is 0.7712, while
the figure of merit is shown relative to that of the implicit capture case.

The results can be seen in Table 5.3. Using implicit capture, we were able to obtain
a result that matched very well the deterministic one, within statistics. Biasing with
the bin-wise constant adjoint function resulted in a standard deviation 2 times
lower, or a quadruple decrease in variance, but with an increased CPU that was also
almost 4 times the implicit capture one, therefore increasing the figure of merit
by around 15 %. Linearly interpolating the values gave an even larger reduction
in variance with a slightly increased CPU time cost, compared to the bin-wise
constant approximation.
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Figure 5.2: Distribution of particle contributions to keff for cycle number 550 of
each calculation, divided by the initial weight.

5.4.3 Weight analysis

The spatial distribution of the particles is important, since it affects the convergence
of the fission source and the eigenvalue keff . In addition, the variance of the
eigenvalue in a cycle is strongly dependent on the spread of the individual particle
contributions. It is therefore of great importance in the scheme to ensure that the
distribution of the contributions is such that the variance in the result remains
low. In the proof of the zero-variance scheme, we have already shown that, in
ideal conditions, the contribution of each particle is exactly equal to the expected
eigenvalue, within computational and Russian roulette threshold constrains.

We can see the distribution of the weighted contribution of the particles for the
last cycle of each calculation in Fig. 5.2. Indeed, in the implicit capture case particle
contributions are well spread out, with several contributions being very low or
zero due to particles leaking from the system. On the contrary, the two biased
cases show very similar behaviour, with the contributions concentrated closer to
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5. A practical application

the final result, leading to a smaller standard deviation in a cycle. However, one
would expect that since the contributions per particle are very similar, the bin-wise
constant approximation should have similar variance to the linear interpolation
one. In addition, being faster, the figure of merit should be even higher in the
former case. But as we have seen in Table 5.3, this is not the case. What could then
be the culprit?

In order to find the answer, we should pay attention to the standard deviation per
cycle, shown in Fig. 5.3. We can see that, although both biasing methods have lower
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Figure 5.3: Standard deviation per cycle for the 3 cases investigated. The spikes
that appear in the biased cases are caused by poor approximation of the adjoint
functions leading to abnormal particle weights.

standard deviation per cycle than the implicit capture case, several “spikes” appear
in the bin-wise constant approximation. These spikes are the result of differences
between the exactψ∗(x ) and the constant one that we have calculated per bin. If
the difference between the two is large, as is the case at the edges of the system,
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5.4. Application of the scheme

the weighting factors change significantly, allowing particles to gain abnormally
high weight, and therefore give higher than the expected contributions to the keff .
This leads to significant differences in keff between cycles, and therefore a higher
variance. In the linear interpolation approximation, the weight of the particles is
much better controlled, leading to an almost complete disappearance of spikes
and a smoother, almost constant standard deviation per cycle.

5.4.4 Source convergence and entropy

In a Monte Carlo calculation, the fission source distribution must be converged
before one can reliably begin statistical sampling for keff . Usually, keff convergence
is taken as an estimate of the source convergence in order to determine the number
of inactive cycles in a simulation. However, keff being an integral quantity, it can
converge faster than the source. This is especially true in systems where the ratio
of the first two eigenvalues, also called the dominance ratio, is close to 1. In those
systems, the proximity of the two eigenvalues creates a strong correlation between
cycles, making source convergence difficult to achieve(Brown, 2009).

In order to reliably diagnose whether source convergence has been achieved in a
simulation, Ueki (2005) suggests the use of the the Shannon entropy of the source
distribution. The Shannon entropy H is defined as

HS ≡−
N
∑

i=1

p i × log2(p i ) , (5.30)

where N is the number of spatial bins we divide our geometry into and

p i =
number of source particles in bin i

total number of source particles
. (5.31)

Convergence of the Shannon entropy of the source distribution is a much more
reliable criterion for fission source convergence compared to keff and an easy one
to test for.

In Fig. 5.4, we can see the entropy of the source for the 3 schemes investigated.
We can see that the source does not appear to be converged until after 100 cycles,
although keff has converged earlier. However, more important is the behaviour
of the biased calculations. In the bin-wise constant approximation, the evolution
of the source is exactly the same as in the unbiased case. However, in the linear
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Figure 5.4: Evolution of the source entropy for the loosely coupled system with and
without biasing.

interpolation approximation, we can see that there are spikes that indicate that the
source might not have converged yet. In order to understand this phenomenon,
we need to look at the source of the fluctuations in entropy.

In a nearly symmetric system, such as the one we are using, the value of keff is
dictated by the larger fissile volume. In fact, the number of fissions taking place
in the right slab is only 2 % of the total one, leading to the fission source being
generated almost exclusively in the left slab. If we plot the fission fraction in the
right slab throughout the calculation, as seen in Fig. 5.5, we see that in fact only in
the linear approximation do we have a non-zero fraction almost throughout the
calculation. It seems that the biasing scheme with the linearly interpolated adjoint
function allows for particles to reach the right hand slab more often and therefore
fission there. This does not seem to be the case with the other two methods,
although the bin-wise constant approximation allows for a non-zero fraction in

88



5.4. Application of the scheme

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  100  200  300  400  500

S
2/

(S
1+

S
2)

Cycle #

Implicit Capture
Binwise-constant adjoint function biasing

Linearly interpolated adjoint function biasing

Figure 5.5: Fission fraction of the right slab of the loosely coupled system.

some stages of the calculation. However, the unpredictability of such a system
does not allow for final conclusions, since only a change in random numbers is
enough to trigger a different behaviour in the transport of particles from one slab
to another, distorting our interpretation of the results.

5.4.5 Efficiency of the scheme

In Table 5.3, we included the relative figure of merit for the different calculations.
Although in some cases (such as safety calculations) the absolute variance is of
more importance, it is always desired to obtain the result in a reasonable amount
of time. However, when calculating the speed of a calculation, several factors must
be taken into account, some of which have no relation to the physical problems
or the schemes used to simulate those problems, but are directly related to the
computational implementation of the schemes.
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As an example, since the code created to demonstrate the zero-variance scheme
was not intended for any production use, our focus was on ease of implementation
and debugging capabilities, rather than efficiency. In that aspect, a direct compari-
son of the efficiency between the biased and unbiased schemes is rather subjective,
as a different implementation of the scheme can provide different efficiency results
because of the change in CPU time. However, we can reach some general conclu-
sions by comparing the different biasing schemes, and observing the parameters
we have discussed in the previous section of this chapter.

In terms of speeding up the calculation, regardless of the implementation used,
several parameters can be adjusted. Already in Fig. 4.5, we saw that the minimum
plateau appears at a Russian roulette threshold of around 5×10−2. It is therefore
advised not to use lower thresholds, since there is minimal, if any, gain for the extra
time spent.

In addition, the level and methodology of discretisation of the adjoint function
play an important role in the final efficiency. Biasing with bin-wise constant adjoint
function can be very efficient in terms of time, since the values are stored and
retrieved from computer memory, rather than being recalculated at every step. In
fact, in systems where few spatial, energy or direction variables are used, one can
store the biased cumulative distributions for the sampling of kernels in advance,
leading to a practically zero CPU time overhead, compared to an unbiased calcu-
lation. In a calculation where the reduction in standard deviation is an order of
magnitude, this means a gain of two orders of magnitude in efficiency, compared
to the unbiased case. However, one must try to correctly define the resolution of
the grid: a coarser grid decreases CPU time but, as we have discussed before, could
increase the variance in areas where the adjoint value differs significantly between
grid points.

Linear approximation can be used with much coarser grids than the bin-wise con-
stant approximation, since it provides more accurate values for the adjoint function,
even near the grid boundaries. This can offset the CPU time disadvantage of extra
calculations required, since during transition biasing, the most time-consuming
part of the simulation, particles have to traverse fewer regions where a recalcu-
lation or retrieval of information is required. In addition, the algorithm used for
calculation of the final location can yield a change in efficiency. As an example,
using the Newton-Raphson method rather than the regula falsi method for finding
the exact interaction point inside a bin yields a speed-up of around 10 %, since
the number of iterations required is much smaller, even taking into account the
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calculation of the function’s derivative, necessary for the former method.

5.5 Concluding remarks

In this chapter we have used our zero-variance based scheme in practice, although
with a simplified configuration. We have seen that the order of variance reduction
in a more realistic configuration is similar to that in the two-direction model,
which is a positive result for the validity of the model. In addition, the different
approximations used in biasing were shown to have an effect in almost all aspects
of a simulation - time, variance and convergence of the source distribution.

An important aspect to note is that one should be careful when setting the Rus-
sian roulette threshold in a biased calculation. As we have stated in the previous
section, setting the threshold below 10−2 affects efficiency, since CPU time in-
creases without an appropriate decrease in variance. However, we should note
that the initial weight of the particles depends on the adjoint functions. Therefore,
one should also be careful not to set the threshold to values higher than 10−1, in
which case particles may undergo Russian roulette at birth or soon afterwards,
significantly affecting the amount of information obtained, and therefore the final
variance.

In the next chapter we will see how we can integrate the scheme in a full-scale
production code and use it in a criticality calculation.
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CHAPTER 6

IMPLEMENTATION OF THE SCHEME IN A

PRODUCTION MONTE CARLO CODE

The variance reduction scheme has been shown to work as expected in our own
code, however, it is important to be able to use it in an everyday Monte Carlo
calculation, rather than just as a theoretical possibility. In this chapter, we will
discuss the implementation of the scheme in two widely-used Monte Carlo codes:
TRIPOLI-4 (Both et al., 2003) and MCNP5 (X-5 Monte Carlo Team, 2003).

Generation of adjoint functions in 3-D geometry

Since the implementation of the scheme was now intended for a more realistic
calculation, a deterministic code that could output adjoint functions for a 3-D
geometry was required. Our code of choice was PARTISN4 (Alcouffe et al., 2005).

The PARTISN4 code solves the multigroup form of the linear Boltzmann transport
equation using the SN method. It works in 3-D (x -y -z or r -z -θ ) geometries, while
vacuum, reflective, periodic, white, or inhomogeneous boundary conditions can be
solved. General anisotropic scattering and inhomogeneous sources are permitted.
PARTISN4 was mainly selected because of its ease of use, and its proven capabilities
in producing adjoint functions from source-detector calculations.
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During testing of PARTISN4, we saw that the code could also successfully repli-
cate the results from XSDRN, and since the cross-section format was simpler in
PARTISN4, as cross-sections could be entered directly into the input file in ASCII
format, we decided to use it exclusively for 1, 2 and 3-D geometries.

6.1 The TRIPOLI-4 code

6.1.1 Description of TRIPOLI-4

TRIPOLI-4 is a versatile general purpose Monte Carlo code suitable for shielding
problems, criticality calculations, core physics analysis and instrument studies. Be-
sides neutron transport it can also handle photon, electron and positron transport
in combined mode. The code is developed by Commissariat l’Energie Atomique
(CEA), Saclay, France, with a recent version being publicly available from the OECD
Nuclear Energy Agency (NEA) Data Bank.

TRIPOLI-4 can be run on many different computer platforms, has parallel capa-
bilities and can handle both continuous-energy cross sections, as well as homoge-
nized and self-shielded multigroup cross-sections from the APOLLO-2 lattice code.
A graphical user interface is also available for generation and verification of input
files.

The description of sources is very flexible, as various combinations of space,
energy, direction and time dependent sources can be described. There is also the
possibility to use analytical functions to represent the source dependence in any
variable. Various standard estimators are available to calculate particle fluxes in
specified volumes, surfaces or at a point, currents at a surface, but also dose rates,
reaction rates using a specified response cross section, deposited energy or recoil
energy. TRIPOLI-4 has a criticality mode for calculating the effective multiplication
factor keff , as well as a perturbation option.

Finally, a for us important feature of TRIPOLI-4 is its ability to apply particle
weighting schemes to reduce the variance of estimators in a shielding calculation.
An importance function can be defined for the whole space, energy, direction and
time domain, and is then used to control the weight of the particle by splitting or
Russian roulette. An importance function can also be used to bias the transport ker-
nel to direct particles towards a predefined position, thus providing the maximum
detector response for the calculation.
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6.1.2 Implementation of the scheme in TRIPOLI-4

TRIPOLI-4 is written in the C++ computer language. Our implementation of the
zero-variance scheme was therefore based on a new C++ class that dealt with
biasing kernels by the adjoint functions. Methods were written for the code to be
able to retrieve the adjoint functions from either the exact, analytical distribution
(for zero-variance testing purposes) or from discrete, tabulated data. An input
method was written that read into the code adjoint data in ASCII format, matching
the print output format of PARTISN4.

The source, transition and collision routines of the code were modified in order to
accommodate the biasing, which could be enabled upon an option in the TRIPOLI-
4 input file. As the zero-variance scheme works for a collision estimator, the code
was modified in order to avoid trying to combine the output of different estimators
for the final keff estimate.

In order to have consistency in the results, a set of multigroup cross-section
data to match PARTISN4 data was generated and kindly provided by CEA in the
GENDF format, which TRIPOLI-4 can read directly. The cross-section data for the
deterministic codes was once again generated using the SCALE code system.

Initially, we implemented and tested the exact zero-variance scheme, using ana-
lytically calculated adjoint functions for biasing. The results successfully matched
those of our own code. We also had success in applying collision biasing to the
loosely coupled core calculation (see Sect. 5.4.1), using adjoint functions generated
by PARTISN4. This was not a problem in the 1-D geometry, since we could simply
set the surfaces to match grid meshes, so the code could still apply its own routines.

However, despite the assistance received from CEA, which we are grateful for, we
were not able to successfully implement transition biasing with discrete adjoint
functions, not even in 1-D geometry. There were numerous problems with the
co-existence of an adjoint biasing grid with the geometrical structures of the code.
More specifically, we had problems with tracking, both during particle simulation
and adjoint function generation phases of the calculation. There were several
problems in updating the cross-section data after each virtual surface crossing, as
well as calculating distances to virtual surfaces, when the adjoint function mesh
was involved.

Since we were not able to solve these issues in a reasonable time frame, we
decided to abandon the implementation in TRIPOLI-4 and focus on the implemen-
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tation in MCNP5, described in the following section.

6.2 The MCNP5 code

6.2.1 Description of MCNP5

MCNP5 is a general-purpose Monte Carlo N-Particle code, developed at the Los
Alamos National Laboratory (LANL), that can be used for neutron, photon, elec-
tron, or coupled neutron/photon/electron transport. The latest version of MCNP5
can be obtained directly from the Radiation Safety Information Computational
Center (RSICC). MCNP5 is arguably the most often used Monte Carlo code when it
comes to particle transport. Its applications include, but are not limited to, radia-
tion protection and dosimetry, radiation shielding, radiography, medical physics,
nuclear criticality safety, detector design and analysis, nuclear oil well logging,
accelerator target design, fission and fusion reactor design, decontamination and
decommissioning.

The code can handle arbitrary three-dimensional configuration of materials in
geometric cells, while cross-section data can be used in point-wise (continuous) or
group-wise formats. It has a powerful system to describe sources, whether point,
surface, volume or criticality, and tallies, whether current, flux, charge, energy or
energy deposition. Geometry and tally plotting is available, while the code boasts
a large array of variance reduction techniques, including an extensive system for
weight window generation and application.

MCNP5 has already been used as the basis for hybrid deterministic-Monte Carlo
schemes. In fact, most of the schemes discussed in Sect. 2.5.2 are applied to MCNP.
We therefore considered it the prime target for application of our scheme.

6.2.2 Implementation of the scheme in MCNP5

The structure of the scheme implementation in MCNP5 was similar to that of
TRIPOLI-4, with some differences due to the fact that MCNP5 is written in FOR-
TRAN.

Since PARTISN4 was used for the generation of the adjoint functions, the binary
output file containing the adjoint functions had to be processed and converted via
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an in-house code to an ASCII file, to be read by MCNP5 via a special option in the
input file. Since the output from PARTISN4 is that of an adjoint calculation, the
directions had to be reversed in order to convert them to the equivalent MCNP5
ones, while the groups were printed out in a reverse order, which had to be taken
into account. Later, an additional option was added to MCNP5, in order to be
able to input the adjoint functions directly from the PARTISN4 binary format. This
was necessary as using linear interpolation to calculate the adjoint functions for
biasing requires the adjoint functions at several points in the grid, rather than
the piecewise-constant ones, making the amount of data for a 3-D calculation
significantly larger.

A number of FORTRAN subroutines were written that dealt with biasing the
source and collision and transition kernels. The particle tracking routine required
some changes, since we wanted the code to allow particles to be tracked all the way
to the boundaries of the system, so that the biased probability table is generated.
Because of that, special attention was given to treatment of boundary conditions
in the code. Also, as the code allows for repeated geometrical structures, we had
to take them into account since particle transport is done in the local geometrical
structures, while retrieval and use of the adjoint functions is done in the global
geometry. In addition, the code could easily accommodate discrete directions,
using the PARTISN4 output file as an input for the number and data for those
directions.

Regarding creation and use of the adjoint function mesh, the current framework
in the code that deals with weight window meshes was used in the code. Com-
pared to TRIPOLI-4, this had the advantage that the code already had routines
available to retrieve or recalculate any data necessary upon entering a virtual mesh,
a geometrical surface or a combination of the two.

After implementing our changes to the code, we were able to successfully run
cases using the two-direction model, as well as cases using multiple directions
in 1-D (loosely coupled core) and in 2-D (a 5×5 MOX cell cluster). We therefore
decided to move to a more realistic calculation of a cluster of fuel assemblies, what
is sometimes called a mini-core calculation with MCNP5.
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6. Implementation of the scheme in a production Monte Carlo code

6.3 A mini-core calculation with MCNP5

6.3.1 Description of the problem

In our mini-core calculation, a 3×3 cluster of 9 PWR fuel assemblies is used, with
boundary conditions set to vacuum. Each assembly consists of a 17×17 array of
heterogeneous fuel pins, control rod guide tubes with the rods fully extracted and
a central instrumentation tube. For simplicity the central instrumentation tube,
which normally contains measuring devices, is assumed to have the same geometry
and composition as the control rod guide tube. The dimensions for both the fuel
and the water hole cells are shown in Fig. 6.1.

Fuel

Coolant Cladding Coolant Guide tube

1.26

1.26

1.24

1.12

1.26

0.95

0.82

Coolant

Figure 6.1: Geometry of the fuel cell (left) and the water hole (right). All values are
given in units of cm.

Each MOX assembly contains fuel pins with three different plutonium enrich-
ments, 3.2%, 5.2% and 7.80%, defined as MOX-1, MOX-2 and MOX-3, respectively,
with a density of 10.25 g/cm3. In the lattice, the 8 outer assemblies contain a
mixture of MOX-1, MOX-2 and MOX-3 fuel as shown in Fig. 6.2, while the central
assembly replaces all fuel types with MOX-1 type fuel.
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6.3. A mini-core calculation with MCNP5

MOX-2

fuel

MOX-3

fuel

MOX-1

fuel

Water

hole

Figure 6.2: A MOX type 17×17 assembly. The light-coloured cells on the outside
of the assembly contain MOX-2 type fuel, the darker-coloured ones in the centre
contain MOX-3 type fuel, while the cells at the corners contain MOX-1 type fuel.
Coolant between the fuel cells and inside the guide tubes is represented by white
colour. In the central assembly, all three types of fuel have been replaced with
MOX-1 fuel, while the location of the water holes remains the same.
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6. Implementation of the scheme in a production Monte Carlo code

The composition of Uranium and Plutonium in the MOX fuel is given in Table 6.1.
For simplicity, the isotopic composition of the cladding is assumed to be natural Zr,
with a density of 5.77 g/cm3. This is also the case with the guide tubes, but with
a density of 6.55 g/cm3. The coolant in both types of cells is water with a density
of 0.7164 g/cm3, containing 500 ppm of boron with an assumed boron isotopic
composition of 18 wt % 10B and 82 wt % 11B.

Uranium Plutonium
U-234 0.01% Pu-238 2.10% Pu-241 9.30%
U-235 0.25% Pu-239 54.50% Pu-242 6.40%
U-238 99.74% Pu-240 25.00% Am-241 2.70%

Table 6.1: Composition of MOX fuel for the mini-core problem.

Using the data given here, the geometry and composition inputs were manually
generated for both MCNP5 and PARTISN4.

6.3.2 Cross-section preparation

In order to provide better comparison to PARTISN4, the cross-sections were ho-
mogenised for each different material. This was done via multiple continuous-
energy MCNP5 calculations and a special program called MgXsect (Hoogenboom
et al., 2007), using specific material zones for cross-section tallying, for 3 energy
groups. The temperature of the fuel was 813 K, while the cladding, guide tubes and
coolant were at 578 K. The upper energy boundaries of the groups were at 20 MeV,
100 keV and 0.625 eV for groups 1, 2 and 3, respectively.

Since PARTISN4 would only be used for the generation of adjoint functions, we
chose to use simplified, homogenised cells for the deterministic calculation. Six
different types of cells were therefore created: 3 types for the MOX fuel in the outer
assemblies, a water hole / guide tube cell, plus the water hole and MOX-1 fuel cell
in the central assembly. The cross-section data was again generated using the same
MCNP5/MgXsect calculation, then converted and used as direct ASCII input in
PARTISN4, since it provides the option.

Because of the way MCNP5 uses the cross-sections, when generating them there
was an issue with (n ,2n) reactions, because of which the sum of all interaction
cross-sections was higher than Σt . In order to solve that problem and because the
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6.3. A mini-core calculation with MCNP5

probability for (n , 2n )was minute, we took it into account implicitly, by setting that
cross-section to zero and then increasing the weight of a particle at each collision
by the (n , 2n ) probability.

The tables containing the cross-section data for the problem can be found in
Appendix A.

6.3.3 Generation of adjoint functions

In order to generate adjoint functions using PARTISN4, we had to run the code in
adjoint source-detector mode, using a special option in the code in order to remove
fission (and therefore get the correct importances per source particle). The adjoint
source was then normalised to νΣ f of the forward keff calculation:

S∗tot =
∑

g

∫

νΣ f (g )d V (6.1)

Note that the source term in the adjoint integro-differential equation solved by
PARTISN4 is not ηψ but ηφ , with the relation between the two given in Eq. (1.24).

A coarse mesh of one bin per cell was generated, since we wanted to test the
performance of the scheme when rather imprecise adjoint functions are used for
biasing. Running PARTISN4 generated directional and scalar adjoint functions for
all 3 groups. We can see the output for the scalar, group dependent χ∗ in Fig. 6.3.
The CPU time cost for this calculation was extremely low, as it was completed in
less than 2 seconds, on a modern dual-core Intel CPU.

Despite the fact that νΣ f is higher for the MOX-3 type fuel, we can see that the
value of the adjoint function is higher in the central assembly and at the assembly
interfaces, where only MOX-1 and MOX-2 are present. While the higher value in the
central assembly is somewhat expected, the one at the interfaces seems counter-
intuitive. A possible explanation is that at the assembly interfaces, the neighbouring
assembly has an importance as high as the current assembly, therefore the adjoint
function values corresponding to the directions away from the assembly are also
high. This compares well with the value of the scalar adjoint function at the outer
boundaries, where it is no longer higher than in the inner parts of the assembly.
In fact, because of the zero values of the adjoint function in the directions leading
outside of the system, the value of the scalar adjoint function drops significantly.
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Figure 6.3: Scalar χ∗(g ) for energy group g=1 (top left), 2 (top right), and 3 (bottom
left). The higher values in group 3 reflect the importance of fissions taking place in
that energy group.

6.4 Results

6.4.1 k - eigenvalue

The calculation was run for a total of 1000 active cycles, with 50 initial (inactive)
cycles to allow for the fission source to converge. 2000 particles per cycle were used,
while the Russian roulette survival weight was set to 0.02, resulting in a threshold
weight of 0.01. The results can be seen in Table 6.2, while in Fig. 6.4, we can see the
evolution of keff for the 1000 active cycles of the calculation.
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6.4. Results

Type of calculation keff st. dev.
Implicit capture (no biasing) 0.98978 0.00035

Biasing with piecewise-constant adjoint function 0.98914 0.00023
Biasing with linearly-interpolated adjoint function 0.98908 0.00022

Table 6.2: Calculation results for the mini-core system for 1000 active cycles of 2000
particles with a Russian roulette threshold weight of 0.01.

Both unbiased and biased calculations converge rather quickly, even for the
variation shown in the first hundred active cycles, if we take into account the scale
of the plot. Also, the results are all within 3σ of each other, which indicates that
there were no errors (which would be apparent in the particle contributions) in the
implementation of either biasing method.
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Figure 6.4: keff during the active cycles for the different methods used in the mini-
core calculation. According to the MCNP code output, convergence has already
been achieved at the first active cycle.
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6.4.2 Variance

It is more useful to look at the evolution of the standard deviation of the calculation
during the active cycles, shown in Fig. 6.5, where we see that the biasing scheme
performs consistently better than the implicit capture scheme. If a 10−3 relative
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Figure 6.5: Standard deviation during the active cycles for the different methods
used in the mini-core calculation. Note the logarithmic scale used in the represen-
tation of standard deviation.

standard deviation was required, the biased calculation would achieve it in exactly
50 cycles, while the implicit capture one requires almost 3 times as many.

It is interesting to see that in this case, the two different types of interpolation
produce almost identical results, unlike the results shown in Fig. 5.3 for the loosely
coupled core system. This can be explained by the fact that, during the calculation
of the adjoint functions, the cells are homogenised. That way, the adjoint function
is not significantly different at the boundaries of each cell, which means that linear
interpolation is not much more accurate, compared to the piecewise-constant one.
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6.4. Results

However, since the extra CPU time necessary for calculation of the linearly inter-
polated adjoint functions was not significant, our suggestion would be to always use
this type of implementation. One should only fall back to the piecewise-constant
adjoint functions when the number of mesh cells is so large that the recalculation
of the adjoint functions becomes a problem.

6.4.3 Efficiency

We earlier discussed the reduction in variance the scheme resulted in, but not
of any increase in the efficiency of the calculation. This is because we found
that our implementation made the code run extremely slow when running biased
calculations. In fact, testing the time of the MCNP5 calculation to that of our own
code, using the loosely coupled core as a testing system, we saw that MCNP5 was
over an order of magnitude slower.

Of course, this was not performed as a direct comparison of the code systems,
since our code was built just for showcasing the biasing scheme, while MCNP5
has a significantly broader range of applications. However, it was able to show us
that our implementation in MCNP5 was certainly lacking optimisations that could
bring the performance of the biasing scheme on par with the current capability of
the code.

By profiling the code, it is quite obvious that most of the time is spent during the
tracking of the particle throughout the geometry. This is even more pronounced
in the biased calculations, where the particle must be tracked all the way to the
boundaries of the system (or, theoretically, to infinity if the system uses reflective
boundaries). In our scheme, we chose to stop particle tracking after 10 mean free
paths, since the probability of the particle to reach any further without interactions
approaches zero.

In addition, we noticed that whenever a particle would cross a virtual surface,
the code immediately had to search for both the cell and adjoint function mesh the
particle was now in, in order to be able to obtain the material data and the adjoint
functions, both necessary for the biasing process.

As our main interest lied in showcasing the reduction in variance obtained by
the scheme, we did not try to perform further optimisations towards the efficiency
of the coding. Some pointers and suggestions for that are given in the next chapter.
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6.4.4 Source convergence
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Figure 6.6: Shannon entropy of the fission source. The smaller inset figure shows
the initial 50 (inactive) cycles of the calculation magnified. Note that the two cases
where biasing is used strongly overlap.

MCNP5 automatically calculated the Shannon entropy of the source, with the
results for all 1050 cycles shown in Fig. 6.6.

It is clearly seen that the evolution of the source distribution does not differ
between the biased and unbiased calculations. This indicates on one hand that the
scheme does not offer a speed-up in the source convergence for this system, but
on the other hand biasing with the adjoint functions does not adversely affect the
fundamental behaviour of the calculation.

This is in contrast to the loosely coupled system, where the behaviour of the cal-
culation did not follow the same patterns when biasing was used, but as explained
earlier, that system is a special case, while in general the biasing results reflect the
ones we see in this mini-core system.
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6.5 Conclusion

In this chapter we showed how to implement the scheme in a production code,
in order to be able to run practical nuclear reactor criticality problems. By im-
plementing the biasing scheme in the MCNP5 Monte Carlo code and running a
mini-core calculation with it, we demonstrated that the reduction in variance still
exists for practical nuclear reactor calculations. In addition, the source distribution
convergence is not affected by the scheme. However, since the code lacked opti-
misations for speed, we were not able to demonstrate an appropriate increase in
the efficiency of the calculation, since despite the halving in variance, there was
significantly higher CPU time cost.
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CHAPTER 7

CONCLUSIONS & RECOMMENDATIONS

7.1 Final conclusions and remarks

Zero variance theoretically achievable for criticality

In this thesis we devised a zero-variance scheme for a criticality calculation and
proved its existence. Using a two-direction model and biasing using analytically
calculated source and adjoint functions, the variance of the calculation would
approach zero, the only limit being the Russian roulette threshold, dictated by
computational limits. It was shown that zero variance cannot be obtained in
practice, due to the need for renormalisation and averaging of particle weights at
the beginning of each successive generation of neutrons. However, a significant
reduction in variance would occur even using approximate adjoint functions that
have been obtained computationally.

Performance of the scheme in a simple system

The scheme was tested in an own code using a loosely coupled system configura-
tion with discrete directions and a group-wise configuration in energy. The result
showed that the order of variance reduction in a more realistic configuration is
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similar to that in the two-direction model, a positive result for the validity of the
model.

Different approximations for the adjoint function were shown, with the adjoint
function generated by linear interpolation of discrete values produced by a deter-
ministic calculation resulting in almost double the figure of merit, compared to
an implicit capture calculation. In addition, the different approximations used in
biasing were shown not to have negative effects in any aspects of a calculation -
time, variance and convergence of the source distribution.

Scalability to a larger test problem

Finally, we tested the scheme in a practical Monte Carlo calculation, that of a mini-
core configuration. In order to emulate its use in a production environment, an
attempt to implement the scheme in a production Monte Carlo code was made. We
were only able to succeed for limited, 1-D geometry in the TRIPOLI-4 code, but we
succeeded in using the scheme for a calculation of a mini-core using the MCNP5
code, with the adjoint functions generated using the deterministic PARTISN4 code.
The results confirmed that the scheme leads to a halving in variance even for a
more complex system, but at the cost of significantly higher CPU usage. This leads
to the scheme not providing the expected increase in figure of merit, something
that can be corrected by optimizing the implementation in the code.

7.2 Recommendations for further work

Improving the variance of the average initial weight

As we have seen in chapter 3 of this thesis, the main reason why the zero-variance
scheme will not work to its full extent in a multiple cycle simulation is because of
the residual variance in the initial weight of the fission source. We have already
made several attempts to decrease that variance, such as averaging the initial
neutron weight before selecting energy and angle, and then using an expected
value estimator for the average initial weight of the source particles. However, there
should be more methods or tricks that will allow us to further reduce the variance,
while still keeping the final estimate unbiased.
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In fact, during testing of the scheme in the MCNP5 code, a rather strange effect
was observed: artificially raising the values of the adjoint function by around 20%
would bring improvements in the variance of keff , despite actually increasing the
variance per cycle (as it should, since the scheme is not working optimally). This
was despite verifying that the adjoint function was normalised properly, and thus
that all input data was correct. We were not able to explain this phenomenon, but it
is a clear indication that we have not reached the floor of variance in a calculation,
but there are still gains to be explored.

Proving the scheme for different estimators

In this thesis, we have proven that there is a zero-variance scheme in a criticality
calculation, for a collision estimator. However, as Hoogenboom (2008) has proven
for source-detector problems, there is a unique zero-variance scheme for each
possible estimator in a Monte Carlo simulation. Therefore, it will be of interest
to prove that a zero-variance scheme using a different estimator, such as a track-
length estimator, exists also for for criticality. The methodology should in theory
remain the same: starting with an unbiased estimate of the score throughout the
length of its track, it should be possible to bias the sampling in a way that the initial
estimate with zero variance is obtained.

Using continuous distributions for energy and direction selection in a biased
calculation

Although we derived the scheme in a most general way, the implementation was
done using discrete directions and energy groups. When it comes to everyday
calculations, especially safety ones, it is important to be able to use the most
accurate data at one’s disposal. The next step should therefore be implementing
the scheme using continuous distributions in energy and direction during selection
from source or scattering events.

Energy selection should be rather straightforward: the initial energy of a particle
or its energy after collision is sampled using the same methods as in the unbiased
case, but all probabilities are biased by the appropriate adjoint for the group that
the energy corresponds to.

Direction selection is more involved, since both the cosine of scattering angle
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µ and azimuthal angleφ have to be selected after each event. Initially, the cosine
of scattering angle µ is calculated in the centre of mass frame of reference, but
biased by an adjoint with direction cosines in the laboratory frame of reference,
hence the correct transformations should take place. Even then, it is important to
note that since the scattering angle will never coincide with a discrete direction
from the deterministic set, an algorithm for finding the closest discrete direction to
the continuous one and applying biasing based on that should be created. Finally,
after µ has been selected, the newφ must be selected. This means that the sets of
discrete µ,φ must be put in a way that the whole 4π sphere is covered, something
far from trivial.

Anisotropy in scattering, something that has been left out of our implementation
for simplicity reasons, should also be taken care of. Although it was not included in
the examples for practical reasons, mainly for ease in cross-section generation, the
theory accommodates it without issues.

Improving performance via better implementation in code

As we discussed earlier in this thesis, although the biasing scheme results in a lower
variance for a calculation, the computational time spent on the biasing routines can
render the scheme useless, if the total figure of merit of the calculation is lowered.
It is therefore of high importance to ensure that the implementation in the Monte
Carlo code is strongly optimized.

As we have already discussed, tracking particles through the geometry is espe-
cially time-consuming. An adaptive particle tracking scheme, where the biased
transition kernel and the random number are taken into account before determin-
ing the cut-off point for the generation of the biased probability table, might be a
better option in order to ensure that all particles are tracked properly and without
unnecessary CPU cost.

Another optimisation would be to arrange the code in a way that during the
initialisation phase, the geometry and the adjoint mesh are combined, so that each
cell is now a geometrical union of the Monte Carlo geometrical cell and the adjoint
mesh. That way, the code does not have to recalculate the values of the adjoint
function after all mesh or geometrical surface crossings, but they can now be
attached to the virtual cell and recalled from memory when needed. The number of
crossings might be larger, but since no recalculations are needed, there should be a
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considerable boost in speed, at the expense of a modest (and certainly worthwhile)
increase in computer memory usage.

As a general suggestion regarding performance, an integrated solution (where
the same code system is used for generating the adjoint function and using them
in a Monte Carlo calculation) is a much better alternative to the implementation in
a current code. Most current Monte Carlo codes would require significant changes
in order to accommodate the adjoint biasing grid, while significant work has to go
into preparation of separate inputs for the Monte Carlo and deterministic codes,
generating the adjoint functions and then converting them to the proper format for
the Monte Carlo code. Such a solution is currently used in the MAVRIC code, part of
the SCALE6 code system, but only for shielding calculations. It would therefore be
of interest to extend such a code system to criticality calculations using the scheme
we have discussed in this thesis.

7.3 Epilogue

Monte Carlo schemes have come a long way since their first practical implementa-
tion, over 60 years ago. The combined efforts of scientists from all over the world in
theoretical schemes have given Monte Carlo codes a tremendous boost in applica-
bility, backed by a large increase in raw CPU power, which the method inherently
depends on. The current trend towards multiple-CPU, parallel environments, is
especially suited to the Monte Carlo method and further extends the improvement.

Reading the above, one could think that the simplest thing to do would be to
sit back and wait for the inevitable progress in computing power, which will allow
for faster and more accurate Monte Carlo calculations, in shorter time than ever
before. However, as we have also seen in this thesis, there is still room for improve-
ment in the theoretical front, which is applied to, and can take advantage of, any
improvements in computational power in the future. Improved as it might be, an
analogue Monte Carlo calculation will always depend on the number of samples in
order to yield results, while as we have seen in this thesis, biased schemes could
achieve the same results with much fewer, theoretically even one, samples. Being
able to get results with near-zero variance from a calculation as exact (in terms of
physics) as a Monte Carlo one would give a large boost in research on safety design
of new types of nuclear reactors, and not only in a scientific sense. Being able to
show to the public that we can predict the behaviour of a system as feared as a
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nuclear reactor with almost zero error margins would further renew the interest
that mainly economical reasons have sparked the last few years.

That is not to say, of course, that such an advancement in Monte Carlo would
make deterministic methods obsolete. Monte Carlo codes are still in an early
state when concerning calculations that deterministic codes have been able to
perform for quite some time, such as time-dependent calculations or calculations
with external, usually thermohydraulic feedback. In addition, the advantage of
deterministic calculations in computational speed is still very large, and their ability
to provide reliable results in systems where large amount of information is required
at many places, like in full core calculations where pin-by-pin data may be required.
This is where hybrid methods come into play: by being able to use data from fast
but sometimes simplistic deterministic calculations in order to speed up the Monte
Carlo calculation, they can improve it to the point where Monte Carlo is already
considered an indispensable tool for research, and not only a benchmarking tool
against the latest trend in deterministic methods.

The future for Monte Carlo simulations in nuclear physics looks bright, but it
should not be left standing on the shoulders of the computational advancements
of our era. Continuing work in the theoretical field, being able to edge ever closer
to an estimate with zero variance, will immensely help the development of Monte
Carlo tools for simulations and will hopefully further contribute to the nuclear
renaissance of our times.
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APPENDIX A

CROSS-SECTION DATA FOR THE

MINI-CORE CALCULATION

The cross-section data used for the MCNP5 calculation of the mini-core can be
found in the following tables. All cross-sections are given in units of cm−1, while ν
and χ f are unitless.

Tables A.1 and A.2 contain the data used in the PARTISN4 calculation for gen-
eration of the adjoint functions. Note that, as described in the thesis, fission is
not allowed in the PARTISN4 calculation, so νΣ f is not actually used, but only
mentioned here for the sake of completeness.

Tables A.3 and A.4 contain the MCNP5 cross-section data for the central fuel
assembly of the mini-core geometry, while tables A.5 and A.6 contain the data for
the outer fuel assemblies of the geometry.
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MOX-1 fuel cell MOX-2 fuel cell
Group Σt Σa νΣ f Group Σt Σa νΣ f

1 0.31159 0.00285 0.00570 1 0.31050 0.00308 0.00642
2 0.78109 0.02334 0.00872 2 0.78510 0.02771 0.01358
3 1.11250 0.18332 0.28129 3 1.19230 0.24748 0.39320

MOX-3 fuel cell Water hole & Guide tube
1 0.31070 0.00338 0.00736 1 0.30948 0.00022 0.00000
2 0.79115 0.03242 0.01880 2 0.92060 0.00102 0.00000
3 1.27470 0.31907 0.51714 3 1.19630 0.01743 0.00000

MOX-1 fuel cell (central FA) Water hole & Guide tube (central FA)
1 0.31287 0.00286 0.00572 1 0.31144 0.00022 0.00000
2 0.78229 0.02479 0.00907 2 0.92281 0.00105 0.00000
3 1.12090 0.18248 0.27997 3 1.22300 0.01876 0.00000

Table A.1: Cross-section data in cm−1 for the PARTISN4 calculation of the ho-
mogenised cells, used for generation of the adjoint functions. Unless otherwise
noted, the data is given for the outer fuel assemblies of the geometry.
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MOX-1 fuel cell MOX-2 fuel cell
g ′ \ g 1 2 3 g ′ \ g 1 2 3

1 0.26722 0.04152 0.00000 1 0.26650 0.04092 0.00000
2 0.00000 0.72994 0.02781 2 0.00000 0.73021 0.02718
3 0.00000 0.00081 0.92841 3 0.00000 0.00092 0.94390

MOX-3 fuel cell Water hole & Guide tube
g ′ \ g 1 2 3 g ′ \ g 1 2 3

1 0.26616 0.04117 0.00000 1 0.24601 0.06325 0.00000
2 0.00000 0.73236 0.02637 2 0.00000 0.87631 0.04328
3 0.00000 0.00100 0.95462 3 0.00000 0.00071 1.17810

MOX-1 fuel cell (central FA) Water hole & Guide tube (central FA)
g ′ \ g 1 2 3 g ′ \ g 1 2 3

1 0.26782 0.04219 0.00000 1 0.24697 0.06425 0.00000
2 0.00000 0.72793 0.02957 2 0.00000 0.87389 0.04788
3 0.00000 0.00064 0.93778 3 0.00000 0.00055 1.20360

Table A.2: Σg′→g in cm−1 for the PARTISN4 calculation of the homogenised cells,
used for generation of the adjoint functions. Here, g ′ is the incoming and g the
outgoing energy group. Unless otherwise noted, the data is given for the outer fuel
assemblies of the geometry.
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Material Group Σt Σc Σ f ν χ f

MOX-1 fuel
1 0.32741 0.00207 0.00582 2.85363 2.85734
2 0.55037 0.06420 0.00982 2.84609 0.01265
3 0.98879 0.25276 0.34451 2.85734 0.00000

MOX-1 cladding
1 0.24849 0.00037
2 0.30163 0.00241
3 0.24825 0.00454

MOX-1 coolant
1 0.31585 0.00019
2 1.01460 0.00074
3 1.35082 0.02010

Guide tube
1 0.28279 0.00046
2 0.34233 0.00281
3 0.28214 0.00539
1 0.31638 0.00019

Coolant inside 2 1.01618 0.00076
guide tube 3 1.36517 0.02069

1 0.31667 0.00019
Coolant outside 2 1.01647 0.00077

guide tube 3 1.36804 0.02081

Table A.3: MCNP5 cross-section data of the materials in the central fuel assembly.
Cross-sections are given in units of cm−1.
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MOX-1 fuel MOX-1 cladding
g ′ \ g 1 2 3 g ′ \ g 1 2 3

1 0.31531 0.00421 0.00000 1 0.24689 0.00123 0.00000
2 0.00000 0.47521 0.00114 2 0.00000 0.29889 0.00034
3 0.00000 0.00077 0.39076 3 0.00000 0.00053 0.24317

MOX-1 coolant Guide tube
g ′ \ g 1 2 3 g ′ \ g 1 2 3

1 0.24128 0.07438 0.00000 1 0.28088 0.00148 0.00000
2 0.00000 0.96173 0.05213 2 0.00000 0.33912 0.00040
3 0.00000 0.00061 1.33010 3 0.00000 0.00053 0.27622

Coolant inside guide tube Coolant outside guide tube
g ′ \ g 1 2 3 g ′ \ g 1 2 3

1 0.24129 0.07490 0.00000 1 0.24152 0.07496 0.00000
2 0.00000 0.96052 0.05490 2 0.00000 0.96039 0.05531
3 0.00000 0.00056 1.34391 3 0.00000 0.00054 1.34669

Table A.4: Σg′→g in cm−1 of the central fuel assembly materials used in the MCNP5
calculation, where g ′ is the incoming and g the outgoing energy group.

119



A. Cross-section data for the mini-core calculation

Material Group Σt Σc Σ f ν χ f

MOX-1 fuel
1 0.32732 0.00207 0.00582 2.85533 0.98735
2 0.54733 0.06051 0.00950 2.84630 0.01265
3 0.98835 0.25419 0.34292 2.85760 0.00000

MOX-1 cladding
1 0.24809 0.00037
2 0.30389 0.00245
3 0.24798 0.00433

MOX-1 coolant
1 0.31438 0.00019
2 1.01227 0.00069
3 1.33020 0.01909

MOX-2 fuel
1 0.32678 0.00206 0.00645 2.88513 0.98735
2 0.56136 0.06830 0.01428 2.86203 0.01265
3 1.28921 0.37475 0.52439 2.86672 0.00000

MOX-2 cladding
1 0.24771 0.00037
2 0.30375 0.00241
3 0.24785 0.00424

MOX-2 coolant
1 0.31391 0.00019
2 1.01183 0.00068
3 1.32279 0.01874

MOX-3 fuel
1 0.32652 0.00206 0.00724 2.91757 0.98634
2 0.57868 0.07754 0.02021 2.87176 0.01266
3 1.66398 0.52606 0.74928 2.87185 0.00000

MOX-3 cladding
1 0.24736 0.00037
2 0.30368 0.00241
3 0.24779 0.00418

MOX-3 coolant
1 0.31380 0.00019
2 1.01191 0.00068
3 1.31885 0.01855

Guide tube
1 0.28165 0.00042
2 0.34346 0.00278
3 0.28166 0.00500
1 0.31449 0.00019

Coolant inside 2 1.01329 0.00070
guide tube 3 1.33351 0.01917

1 0.31497 0.00019
Coolant outside 2 1.01385 0.00071

guide tube 3 1.33930 0.01943

Table A.5: MCNP5 cross-section data of the materials in the outer fuel assemblies.
Cross-sections are given in units of cm−1.
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MOX-1 fuel MOX-1 cladding
g ′ \ g 1 2 3 g ′ \ g 1 2 3

1 0.31514 0.00428 0.00000 1 0.24652 0.00120 0.00000
2 0.00000 0.47626 0.00105 2 0.00000 0.30113 0.00031
3 0.00000 0.00102 0.39022 3 0.00000 0.00070 0.24295

MOX-1 coolant MOX-2 fuel
g ′ \ g 1 2 3 g ′ \ g 1 2 3

1 0.24080 0.07339 0.00000 1 0.31410 0.00417 0.00000
2 0.00000 0.96377 0.04781 2 0.00000 0.47785 0.00094
3 0.00000 0.00074 1.31036 3 0.00000 0.00109 0.38898

MOX-2 cladding MOX-2 coolant
g ′ \ g 1 2 3 g ′ \ g 1 2 3

1 0.24613 0.00122 0.00000 1 0.24037 0.07335 0.00000
2 0.00000 0.30105 0.00029 2 0.00000 0.96448 0.04667
3 0.00000 0.00072 0.24290 3 0.00000 0.00081 1.30323

MOX-3 fuel MOX-3 cladding
g ′ \ g 1 2 3 g ′ \ g 1 2 3

1 0.31308 0.00414 0.00000 1 0.24578 0.00121 0.00000
2 0.00000 0.48004 0.00089 2 0.00000 0.30099 0.00028
3 0.00000 0.00124 0.38740 3 0.00000 0.00077 0.24284

MOX-3 coolant Guide tube
g ′ \ g 1 2 3 g ′ \ g 1 2 3

1 0.24043 0.07318 0.00000 1 0.27982 0.00142 0.00000
2 0.00000 0.96496 0.04627 2 0.00000 0.34033 0.00034
3 0.00000 0.00085 1.29946 3 0.00000 0.00069 0.27596

Coolant inside guide tube Coolant outside guide tube
g ′ \ g 1 2 3 g ′ \ g 1 2 3

1 0.24066 0.07364 0.00000 1 0.24070 0.07407 0.00000
2 0.00000 0.96366 0.04892 2 0.00000 0.96351 0.04963
3 0.00000 0.00075 1.31359 3 0.00000 0.00071 1.31916

Table A.6: Σg′→g in cm−1 of the outer fuel assembly materials used in the MCNP5
calculation, where g ′ is the incoming and g the outgoing energy group.
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A. Cross-section data for the mini-core calculation
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Summary

The ability of the Monte Carlo method to solve particle transport problems by
simulating the particle behaviour makes it a very useful technique in nuclear
reactor physics. However, the statistical nature of Monte Carlo implies that there
will always be a variance associated with the estimate obtained. One of the main
targets of research in Monte Carlo is to decrease this variance as much as possible,
without heavily taxing the computational time of the calculation. Towards this
target of variance reduction, most Monte Carlo simulations today include some
form of biasing.

Since the adjoint function can be used as a measure of the importance of a region
in the spatial, angular and energy domains of the calculation, it is frequently used
as a biasing function for the calculation, in order to direct the simulated particles
towards the most important regions of the simulation and reduce the variance of
the estimate in those regions. In fact, it has been proven that using the appropriate
biasing, one can get the variance of the Monte Carlo estimate down to zero, at
least in theory. However, it is not straightforward how to reduce the variance in a
criticality calculation, where the reactor serves both as the source and "detector"
of particles simulated, therefore having a global problem that cannot easily be
localised.

In this thesis we devised a zero-variance scheme for a criticality calculation.
Treating the criticality problem as a source-detector one, we showed that, when
using a collision estimator and biasing the transport kernels by the adjoint function,
with an appropriate manipulation of particle weights, it is possible to reach an
estimate with zero variance. A simplified two-direction model was used for demon-
stration, proving that when biasing using analytically calculated source and adjoint
functions, the only limit to the reduction of variance of the estimate obtained from
a single neutron generation is the Russian roulette threshold. This threshold can in
theory get down to zero, therefore reducing the variance to zero, but in practice it is
dictated by computational limits.

However, zero variance cannot be obtained in a criticality calculation in prac-
tice, due to the need for renormalisation and averaging of particle weights at the
beginning of each successive neutron generation. Still, a halving in variance was
observed using the two-direction model, even when using approximate adjoint
functions that have been obtained computationally.
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Summary

The scheme was also tested in an own code using a 1-D loosely coupled system
configuration with discrete directions and a group-wise configuration in energy.
The results showed that the order of variance reduction in a more realistic con-
figuration is similar to that in the two-direction model. Different approximations
for the adjoint function were shown, with the adjoint function generated by linear
interpolation of discrete values produced by a deterministic calculation resulting
in almost double the figure of merit, compared to an implicit capture calculation.

In order to emulate its use in a production environment, an attempt to implement
the scheme in a production Monte Carlo code was made. We were only able to
succeed for limited, 1-D geometry in the TRIPOLI-4 code, which we attempted
first, as the structure of the code did not allow us to implement the full scheme.
Therefore, we attempted to implement it in the MCNP5 code. We were successful,
and using the adjoint function values generated by the deterministic PARTISN4
code, we tested the scheme in a practical Monte Carlo calculation for a 17x17 fuel
cell “mini-core” configuration.

The variance in the estimate was half that of an implicit capture case, indicat-
ing that the scheme can be useful for practical nuclear reactor calculations. In
addition, the convergence of the source distribution was not adversely affected by
the biasing. However, since the code lacked optimisations for speed, we were not
able to demonstrate an appropriate increase in the efficiency of the calculation,
since there was significantly higher CPU time cost. This leads to the scheme not
providing the expected increase in figure of merit, something that can be corrected
by optimizing the implementation in the code.
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Samenvatting

De Monte-Carlomethode is een erg nuttige techniek in de kernreactorfysica, omdat
deeltjestransportproblemen hiermee kunnen worden opgelost door middel van
het simuleren van het gedrag van de deeltjes. Echter de statistische aard van Monte
Carlo zorgt er voor dat een schatter ook altijd een variantie heeft. Eén van de hoofd-
doelen van Monte-Carlo-onderzoek is het reduceren van deze variantie, zonder
dat dit te veel ten koste gaat van de rekentijd. De meeste Monte-Carlosimulaties
gebruiken tegenwoordig een vorm van biasing om dit doel, de variantie reductie,
te bereiken.

Aangezien de geadjungeerde functie gebruikt kan worden als maat voor de im-
portantie van een gebied in het spatiële, richtings en energetische domein in de
berekening, wordt zij vaak gebruikt als biasfunctie voor de berekening, zodat de
gesimuleerde deeltjes naar de belangrijkste gebieden van de simulatie worden
gestuurd en de variantie wordt verminderd in deze gebieden. Sterker nog, het is
bewezen dat, wanneer de juiste bias wordt gebruikt, de variantie van een bereken-
ing naar nul kan worden teruggebracht, tenminste in theorie. Het is echter niet
vanzelfsprekend hoe de variantie in een criticaliteitsberekening, waar de reactor
zowel bron als “detector” van de gesimuleerde deeltjes is, zou moeten worden
verminderd, omdat dit een globaal probleem is, dat moeilijk te lokaliseren is.

In dit proefschrift hebben we een nul-variantieschema ontwikkeld voor een
criticaliteitsberekening. Door het criticaliteitsprobleem te behandelen als een
bron-detector probleem, hebben we laten zien dat het mogelijk is om een schatter
te krijgen met een variantie nul, als er een botsingsschatter wordt gebruikt, als de
transport kernen zijn gebiast door de geadjungeerde functie en met de juiste manip-
ulatie van de gewichten van de deeltjes. Een gesimplificeerd twee-richtingenmodel
is gebruikt als demonstratie, waarmee is bewezen dat de enige beperking voor het
reduceren van de variantie de drempel van de Russische roulette is, als er voor
de bias de analytisch berekende bron en geadjungeerde functies gebruikt worden.
Deze drempel kan in theorie to nul worden teruggebracht, zodat de variantie ook
naar nul gaat, maar in de praktijk wordt deze grens bepaald door de grenzen van
de computerberekening.

In de praktijk echter kan de nul-variantie niet worden gehaald in een criticaliteits-
berekening, omdat er gerenormaliseerd moet worden en het gewicht van alle deelt-
jes aan het begin van alle opeenvolgende cycli moet worden gemiddeld. Toch is er
een halvering van de variantie waargenomen in het twee-richtingenmodel, zelfs als
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Samenvatting

er een met de computer benaderde geadjungeerde functie is gebruikt.

Dit systeem is ook getest in een eigen code, met een 1-D zwak gekoppeld sys-
teem met daarin discrete richtingen en een configuratie met energiegroepen. De
resultaten lieten zien dat de orde van grootte van de variantievermindering in een
realistischer configuratie vergelijkbaar is met die in het twee-richtingenmodel. Ver-
schillende benaderingen voor de geadjungeerde functie worden getoond, waarbij
de geadjungeerde functie een figure of merit geeft die bijna twee maal zo hoog is
dan wanneer er alleen implicit capture wordt gebruikt. De geadjungeerde functie
is gegenereerd door middel van lineaire interpolatie van discrete waarden die zijn
geproduceerd door een deterministische berekening.

Om het gebruik van deze methode in een productieomgeving te emuleren, is een
poging ondernomen om de methode in een productiecode te implementeren. We
zijn er alleen in geslaagd om een beperkte 1-D geometrie in de TRIPOLI-4 code te
implementeren, hetgeen we eerst geprobeert hebben omdat de structuur van de
code het niet toestond om het volledige systeem te gebruiken. Daarom hebben
we geprobeerd om het systeem in de MCNP5 code te implementeren. Dit was
succesvol en we hebben, gebruikmakend van de geadjungeerde functiewaardes,
die door de deterministische code PARTISN4 zijn gegenereerd, het systeem getest
in een praktijk Monte-Carlo berekening voor een 17x17 brandstof cel “mini-kern”
configuratie.

De variantie in de schatter was de helft van de variantie in het geval van im-
plicit capture, wat er op wijst dat dit systeem bruikbaar kan zijn voor praktische
nucleaire reactorberekeningen. Daar komt bij dat de convergentie van de bron-
verdeling niet nadelig werd beïnvloed door de biasing. Echter, omdat de code
niet was geoptimaliseerd voor snelheid, zijn we niet in staat geweest om een bij-
passende verbetering van de efficiëntie van de berekening te demonstreren, omdat
de rekentijd significant hoger was. Dit leidt ertoe dat het systeem niet de verwachte
verhoging van het figure of merit bracht, iets dat kan worden opgelost door de
implementatie verder te optimaliseren.
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