TUDelft

Pixel Art Vectorization with Gradients

Kaldis Berzins'
Supervisor(s): Petr Kellnhofer', Mathijs Molenaar', Elmar Eisemann'

'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Kaldis Berzins
Final project course: CSE3000 Research Project
Thesis committee: Petr Kellnhofer, Mathijs Molenaar, Joana de Pinho Gongalves

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Pixel art is an art style that uses low-resolution
raster images with few colors. This style was ubig-
uitous in video games and computer programs in
the late 20th century before high-resolution screens
and powerful computers were widely available. In
order to remaster these old games, or to use pixel
art as an intermediate format to create vector im-
ages, conversion to vector formats such as Scalable
Vector Graphics (SVG) is desirable. Existing tools
have several limitations, notably a lack of support
for gradients. We introduce a new method that ex-
pands upon an existing pixel art vectorization solu-
tion to add support for gradients, while maintain-
ing compatibility with SVG and enabling real time
editing for ease of use. Our method works by blur-
ring parts of the image and then using various tech-
niques to improve the quality of the output. We test
our solution by creating example images with our
tool’s automatic generation capabilities and mod-
ifying them with the available controls. We con-
clude that our method is useful for imitating smooth
lighting and real-world gradients, enabling artists to
create more expressive vector versions of pixel art.

1 Introduction

The limitations of a medium often create art styles. Pixel
artists use few colors in low-resolution images to create art
that emulates the look of older video games and computer
graphics. Despite these limitations they can create expres-
sive curves and details. In contrast, vector artists manipulate
mathematically defined curves and lines to create infinitely
scalable cartoon-like images. They are limited by the geomet-
ric nature of their art; but, they still encapsulate the essence
of real-world objects. Sometimes converting between these
mediums might be desired. This could be because pixel art is
often faster to create than vector art, so artists might want to
make fast pixel art and then convert it. Game studios might
want to remaster their old games by converting their pixel art
to vector art. However, converting between these two repre-
sentations is nontrivial, as an algorithm can not truly deter-
mine an artist’s intent. A human might be able to.

A pixel art to vector art conversion tool has various desir-
able qualities. Firstly, user control. It gives the user the ability
to interpret the artist’s intent and pull information from the
image an algorithm cannot deduce. Secondly, tools should
produce output that represent the input well. Objects in the
pixel art should persist in the vector art, and gradients should
be well represented. Gradients offer artists more tools to ex-
press their ideas with, reduce the use of discrete color bands
when representing shading, and offer a unique art style. Con-
version tools should create Scalable Vector Graphics (SVG)
output, as it is by far the most used vector graphics file format.

Existing solutions offer one or two of the qualities above,
but all lack at least one. There are several vectorization tools
for cartoon images and clip art that produce high-quality out-
put with SVG support and gradients. However, they are not

intended for low-resolution images and do not offer users the
ability to edit their output. Other approaches offer good pixel
art support, but require a custom program to be displayed,
instead of exporting to SVG.

Our research question then is as follows: Can an existing
pixel art vectorization solution be retrofitted to include
support for gradients, while retaining ease of user inter-
action and SVG support?

In this paper we present a new method that has all three
qualities. We extend the work of existing solutions to create
a tool that can turn pixel art into vector art with the added op-
tion of creating gradients in the vector art. Our process auto-
matically generates gradients based on heuristics, but allows
for instant feedback when a user changes input parameters.
The main contributions of our paper are:

* Method for creating artifact-free color gradient blurs for
vector images.

* Automatic detection of where to create gradients.

2 Related Work

Converting pixel art images into vector formats is a rela-
tively niche field. Image vectorization techniques are typi-
cally aimed at converting larger images, and produce varying
results [7] when applied to small images. Kopf et al. [5] in-
troduced a novel way to convert pixel art images into a vector
representation using a graph of connected pixels and fitting
Bézier curves to the graph. This idea was taken further by
Matusovic et al. [7] who uses the same graph representation
but fits curves using a spring system. This second approach
allows users to choose how pixels connect to each other and
how the curves should be fit to the pixels. It has the additional
benefit of supporting the Scalable Vector Graphics(SVG) for-
mat [8], which is widely used to store vector images.

However, the approach from Matusovic et al. does not sup-
port gradients. The method introduced by Kopf et al. sup-
ports gradients, but only by implementing a custom renderer
that samples the underlying pixels and then blends their col-
ors based on distance. Another similar system by Orzan et
al. [10] uses diffusion curves, which were considered [1] for
inclusion in the SVG specification, but were ultimately ex-
cluded from the final format. The diffusion curve approach
thus requires a custom renderer and does not convert to SVG
trivially. Both approaches also do not support user input, and
only allow the user to edit the resulting vector image.

An additional paper by Du et al. [4] describes a vectoriza-
tion method that is compatible with SVG, but which is not
intended for pixel art. The method decomposes the raster im-
age into multiple layers of linear gradients that form an ap-
proximation of the image when overlaid. These gradients are
simple enough to be compatible with the SVG format, and so
a comparable approach is desirable. However, the approach
works best for images that were originally vector images that
were rasterized, and significant improvements are required to
make the approach work for hand-drawn pixel art images.

3 Method for Creating Gradients

This chapter explains our method for adding gradients to vec-
torized pixel art images. An overview of our method is pro-

S
_>

Automatic Blur
Detection

_>

Automatic Gradient

Detection
Gradient Groups

14

User Input

Input Image

Blurred Image

Blur Sizes

V.
.-»

Q Gradient Group O - Blur size: 8

‘ Gradient Group 1 - Blur size: 10

Ty
_>

Fringing Masking

Removal

Layer Conflicts Output Image

Figure 1: Full pipeline of our method. Arrows represent steps used in our method, with intermediate results shown. The magenta and blue

shapes represent gradient groups.

vided in Figure 1. The input to our method is an SVG image
generated by the tool created by Matusovic et al. [7]. Appli-
cations of our method for other SVG inputs are discussed in
section 5.

3.1 Definitions

This subsection describes terms used in our method explana-
tion. SVG-specific definitions are given first.

Objects are the basic building blocks of an SVG image and
represent individual shapes with a single color, linear gradient
or radial gradient. Objects are placed according to their order
in the SVG file, with the last object appearing at the top of the
image.

Filters are a set of post-processing operations that allow
for adding different effects to SVG images, such as blurring,
adjusting colors, and others. When rendering SVG images,
objects are first rasterized, then the pixel data is passed to the
filter which then performs filter operations on each pixel of
the filter region.

Filter regions are areas on which SVG filters apply. By
default [2], the filter region is 10% larger than the object in
each axis. For parts inside the region, but outside the object,
the filter is provided with values of zero for red, green, blue
and alpha (transparency) channels.

Masks are SVG primitives that allow for restricting the
rendering of an object to a certain area. They contain one or
more areas outside of which the object is not rendered. Masks
are applied after filters; they cannot be used to alter the inputs
to a filter.

The following terms are specific to our method.

Gradient groups are a set of objects that are to be blurred
together. An image may have multiple gradient groups.

Adjacency graphs are graphs where each node is an ob-
ject, and edges are placed between adjacent objects.

Fringing is the soft border around blurred objects that is
the result of a smooth alpha value transition over the edge of
the object.

3.2 Automatic Gradient Detection

In order to determine where to place gradients, we created
an automatic gradient detection algorithm. In short, we
create gradients where adjacent objects have similar colors.
Specifics of this method are described in this section.

First, adjacency is determined by finding the union of a
pair of objects. The union of two objects is the area that ei-
ther of the two objects occupies. If the union of two objects is
continuous (one path completely encompasses the area) then
these objects are adjacent. This complicated method of de-
termining adjacency is used because objects that are adjacent
may overlap or not share points on their border, making other
tests for adjacency unreliable. Objects in the image form an
adjacency graph.

After creating the graph, we remove edges that are not sim-
ilar in color. We test for similarity by comparing the hue, sat-
uration and brightness of the two objects. Likely candidates
for a gradient in pixel art are places where the artist intended
to shade the image to show how light interacts with the ob-
jects. These places will have a similar hue, but differ in satu-
ration and brightness. To find these edges between objects we
check if the hue of the two objects is within a narrow range
and then whether the brightness and saturation fall within a
wide range:

true ifAH <40NAS<03AAB<0.3

similar = .
{false otherwise

Where AH is the difference in hue (0 < H < 360) between
the two objects, AS is the difference in saturation (0 < S <

1) and A B is the difference in brightness (0 < B < 1). The
values provided here are values we found worked best with
our example images.

After removing edges that fail the check, we are left with
multiple disconnected components. Each component of the
disconnected graph forms a gradient group. The objects in the
components are placed into SVG groups for the later stages
of the algorithm. The resulting graph can be seen in Figure 1
in the image labeled ”Blur Sizes”.

3.3 Blurring

To create the impression of a gradient we use a Gaussian blur.
It produces results that are superficially similar to linear and
radial gradients (which are available for SVG images), but
with different transition functions. Linear and radial gradients
have linear transitions between colors, but a Gaussian blur has
a transition shaped like a Gauss function. Blurring has the
additional advantage of working with the arbitrarily shaped
Bezier curves that make up an SVG image. A comparison
with linear and radial gradients can be seen in Figure 2.

Blurring is the process of averaging pixels in an area
(called a kernel) around a given pixel. Pixels in the kernel are
given weights that dictate how much they contribute to the fi-
nal average pixel. The size of the kernel is called the blur ra-
dius. A kernel with weights distributed like a 2-dimensional
Gauss function is called a Gaussian blur. When using a blur
to imitate a gradient, as the pixel gets closer to one side, more
and more of the kernel is occupied by one of the colors. This
leads to the color of the pixel smoothly shifting from one
color to the other.

When we initially generate gradient groups, we give each
group a blur radius. This radius is computed as the average

distance between the centroids (é) of neighboring objects.

15

v;: the points that comprise each shape
n: number of points in a shape

Figure 2: Comparison of blur to linear and radial gradients. In each
pair left is blur and right is gradient

3.4 Fringing Removal

Fringing is undesirable because objects in the image occupy
areas outside their original area, making the effect look like
a blur and not a gradient. It is caused by the way filters are

implemented in the SVG specification and the nature of blur-
ring. We remove it by only blurring the red, green and blue
channels of the image, while leaving the alpha channel intact.

Fringing happens because the parts of the filter outside the
object are also blurred, giving them partial color from the ob-
ject. For these pixels, part of the kernel falls outside of the
object, lowering their alpha value and therefore making them
translucent. Pixels inside the object also have some of their
kernel fall outside and thus their alpha is also lowered. This
creates a soft edge, where the background can be seen through
the blur.

We solved this problem by blurring the color values (red,
green and blue channels) and keeping the alpha channel from
the original object. This creates a hard border around the ob-
ject, but keeps the soft edges between colors, imitating gradi-
ents. This process is illustrated in Figure 3.

* I

Image with Fringing Original Alpha Corrected Image

Figure 3: Diagram showing the fringing removal process. For alpha,
white represents an alpha value of 1 and black represents 0

3.5 Masking

In Figure 1 the image labeled "Layer Conflicts” lacks the ap-
ples that exist in the input image. This section explains how
such issues are solved with masking.

In the case of the apples, the layer conflict can be solved by
moving the gradient group below the red circles. However,
this approach does not generalize. In the case of Figure 4,
we are trying to blur the red and blue circles together. If we
were to group these objects together we could only place the
black rectangle above or below the group. To maintain the
appearance of the input image, we generate a mask (middle
image) that has a hole through which the black rectangle is
visible. The result can be seen on the right.

We create the mask as follows. First, we find the bottom
object in the gradient group. Then, we iterate over every ob-
ject above the bottom object going upwards. For each object
that is in the gradient group, we add the areas to the mask.
For each object that is not in the gradient group we subtract
that area from the mask. The resulting mask is a union of all
the blurred objects with holes for every object above. In the
case of Figure 4 the resulting mask can be seen in yellow in
the middle. The whole group is then placed on the top layer
of the SVG image.

4 Results

This section describes how we created the example images
in Figure 5 and what each image serves to demonstrate about
the vector gradient creation process.

Figure 4: Diagram demonstrating masking. Left is the object con-
figuration where the black dotted region is below the blue object.
Middle is the resulting mask. Right is the resulting blurred object.

4.1 Implementation Details

We wrote the tool that adds gradients to the existing vec-
torization algorithm in Javascript using Svelte [3] to create
a webserver and Paper.js [6] to manipulate SVG files. The
system runs in real time and upon loading a vectorized file
presents a set of auto-generated gradient groups. It then lets
the user create and edit gradient groups and change their blur
radius. It also exports to SVG, only using features that are
supported by most SVG renderers.

The user interface for the gradient generator is presented
in Figure 6. The left panel of the interface is the gradient
editor. Using it, the user can select which objects are put
into gradient groups, which are listed in the middle panel.
The slider for each gradient group controls the blur radius to
control the “smoothness” of a gradient. Pressing the button
labeled “Generate Gradients” updates the image on the right
to reflect editor changes in the output.

4.2 Image Creation Process

We created the images by first drawing the pixel art (first
column of Figure 5). For this, we used various techniques,
levels of detail, color amounts and resolutions to test differ-
ent aspects of the gradient creation method. We then vec-
torized each image using the tool made by Matusovic et al.
[7], utilizing the full extent of its manual correction capabil-
ities (second column). Without changing the default output
of the automatic gradient group generator (described in sub-
section 3.2), we created the third column of images and then
adjusted the gradient groups manually to create the images
for the final column.

4.3 Image Descriptions

The rainbow image (a) shown in Figure 5 demonstrates the
method’s ability to blend an arbitrary amount of colors to-
gether in an analogous way to linear gradients with multi-
ple color stops. The automatic gradient detection does not
form a gradient between all the colors of the rainbow (seen
on the third row), as the boundary between blue and green
exceeded the color difference threshold, however, we manu-
ally corrected this for the fourth image.

The image of a conical flask (b) demonstrates a simple gra-
dient between colors of a similar hue as well as the ability of
the gradient generator to correctly mask the gradient such that
it does not obscure the white shine on the flask. The final im-
age is unchanged from the auto-generated result.

The watermelon (c) example shows how hard edges can be
created between gradients and their surrounding objects.

The orange (d) image is an example of how discrete shad-
ing or “banding” can be turned into smooth shading with our
method. We lowered the blur amount slightly for the final
image to add shine to the orange.

The tree (e) demonstrates how our method handles noise to
create the appearance of depth. The blur in the automatically
generated image is too high to show any detail in the leaves,
but we lowered it to reveal the depth created by the shading.

The beer bottle (f) demonstrates how both diffuse and spec-
ular lighting can be imitated with our method. The automatic
generator detected the diffuse case and we added the gradient
to make the glass of the bottle look shiny.

The skull image (g) shows how complex diffuse lighting
patterns are handled by our method. The automatic genera-
tor set the blur too high, but lowering it maintains the same
lighting patterns as in the original pixel art.

The deer (h) example tests the suitability of our method
for use in animal fur patterns. Once again, the blur is set too
high automatically, but when we manually correct it, the light
spots on the deer are visible and smooth.

The glass (i) image shows our method’s ability to indicate
transparency. The shine is not detected because of the high
contrast between blue and white, but with manual correction
we achieve an illusion of depth and transparency.

The sword image (j) is a demonstration of how the effect
can be used in a way that does not necessarily imitate real-
life lighting, but rather creates a glow effect on the green and
white parts of the sword. The automatically generated image
depicts a regular shine on the metal part of the sword, but we
instead chose to modify the internal part of the sword to make
the glow effect.

5 Discussion

In this section we interpret the results presented in the pre-
vious section and present strengths and limitations for our
method, as well as how the method could be improved in the
future.

5.1 Strengths

Our method represents smooth lighting well. Glows, shines
and shadows are no longer discrete bands of color, but rather
smooth transitions between colors. Examples (d), (f), (g), and
(i) from Figure 5 show this best. In these examples the real
world object that the images represent is smooth, so when
soft light hits them the color transition from light to dark is
gradual. Pixel art typically limits the number of colors used
and so it can only approximate the smooth transition. We add
smooth lighting as another option for the artist to choose.

Another strength of our approach is in representing real
life gradients. This is shown in examples (a), (c) and (h). It
handles transitions between different hues well as the rain-
bow example demonstrates. There are no additional hue shift
artifacts over those expected of gradients in the RGB color
space. The rainbow looks like a rainbow, and the rind of the
watermelon looks like a watermelon rind.

An additional strength of our approach is how easy it is to
use. Instead of having to run the program again from the start
when the output does not match the artist’s desires, the pro-
gram immediately shows how the output changes when the

(f)

AXFe=2Q00s-
AT B0\
AT =9Q G-\
AT B>9Q0 0\

Pixel Art Vector Image Generated Edited
Gradients Gradients

Figure 5: Left to right in each row: Original pixel art image, vectorized image, auto-generated vectorized image with gradients, user created
vectorized image with gradients. All images are drawn and edited by the author.

Figure 6: Screenshot of our application. The left section is the gra-
dient editor. The middle section is the control panel for the editor.
The right section is the resulting SVG image.

input parameters are altered. The interface is also simple and
intuitive with a color coded gradient group selection pane,
and a single slider to control the size of the gradient. When
loading a file the automatically generated gradients give the
user a starting point from which they can quickly get to the re-
sult they desire. The program also does not require any tech-
nical knowledge to use, because SVG specification specifics
and filter settings are abstracted away into a simple selection
pane and a few sliders.

5.2 Limitations

A weak point of our current method is the automatic gradient
group generation. In example images (a), (c), (f), and (i) the
generator produced suboptimal results. For example, the rain-
bow was not entirely added to the gradient group. A universal
threshold for what makes two colors similar will not always
create the desired groups. Moreover, a simple color compar-
ison may not even be what should determine whether colors
should be grouped. There are many context clues that make
human vision perceive a gradient. We think that to improve
the grouping algorithm there should at least be an additional
heuristic to detect specular lighting in images, as it otherwise
works well with our method.

Similarly, blur size detection produces results that closely
match our manual version in many cases ((a), (b), (d), (f), (j))
but otherwise creates varying results. Our method works well
when there are few objects that are arranged with similar dis-
tance to each other’s centroids. It fails when the objects in the
image are chaotically arranged or there are a few objects that
are much larger or farther away than others, as these heavily
skew the average distance between centroids of objects that
the blur size is based on.

Both of the above limitations are mitigated by the ease of
use of the program. If the user desires a different output, they
can change the parameters for the gradient generator with a
few inputs.

5.3 Future Work

Major improvements to our method could come in the form of
improved heuristics for gradient group generation. We think
it fails in scenarios where objects are chaotically spaced or
in scenarios where a shine effect is desired. One possible
improvement to the blur radius problem could be to instead
measure the size of an object in the direction of other cen-
troids in a group as a metric for blur size. This would make
blurs that completely erase an object less likely as the size
of the blur could be constrained to the size of the object, not

just the distance to other objects’ centroids. Shines could be
detected by looking for small light objects over darker back-
grounds, however this could present its own set of problems,
for example for stars in the night sky.

A second major improvement to the existing method would
be the ability to individually control the blur over every
boundary between objects. Example (b) in Figure 5 demon-
strates this well. The white specular reflection on the flask
could be blurred for a better visual shine effect, but unfortu-
nately we already grouped the blue object below it with the
dark blue object to create a gradient in the water. If we were
to add the shine to that blur group, the blur would be far too
large and completely erase the shine. With individual blurs on
every boundary we could control the blur on the white object
and the blue objects individually. We can imagine a scenario
where blur groups are components of a disconnected graph of
objects where every edge in the graph has a separate blur ra-
dius. We attempted various techniques involving compositing
of alpha channels but were unable to realize this idea in time.
We believe it is possible to achieve with just SVG primitives.

Our method could also be expanded to process arbitrary
SVG images, for example from cartoons or other similar
sources. Currently, while it does accept SVG, our method
makes several assumptions about the input it is provided. The
most important of these is it assumes that all objects have a
single color without gradients or other SVG attributes. Ex-
panding our tool to encompass these elements would allow
for more use cases.

6 Responsible Research

6.1 Integrity

We used OpenAI’s ChatGPT[9] occasionally during this
project to assist with reading documentation and to better un-
derstand SVG, Paper.js and Svelte. For transparency, we have
included a list of prompts used for this project in Appendix A.
No text for the paper was written using Large Language Mod-
els. We also recognize that copyright can be an issue for im-
ages, so we decided to draw every example image and figure
ourselves.

6.2 Reproducibility

We believe that reproducibility is a vital part of science.
Therefore we have taken several measures to make sure that
our results are reproducible. First, we have published our
project in a freely available Github repository'. Second, we
have made our method deterministic, so that a set of inputs
always generates the same outputs, allowing for easy repro-
duction. Lastly, we have provided a set of example images
that can be tested to verify that they produce the same results
for other researchers using our tool.

6.3 Impact on Artists

Like any tool that automates some part of making art, we ac-
knowledge that our tool could be used to replace artists. How-
ever, we would like to stress that our tool is intended for use
by artists to improve their workflow and reduce the need to

'https://github.com/kaldis-berzins/gradients_reloaded

create every part of a piece of vector art from scratch. There-
fore we believe that artists are not excluded by our tool, but
rather their ability to create is enhanced.

7 Conclusion

This paper described a new method for creating SVG images
from pixel art with gradients. We achieve this by blurring re-
gions of the image and then using various techniques to mod-
ify the blur to prevent unwanted artifacts. Our results indicate
that our method is applicable to various scenarios, especially
when representing soft lighting or when imitating real world
gradients. Our solution is user friendly and does not require
advanced knowledge to use. We believe that the answer to the
question posed in our introduction to be a firm “yes”.

References

[1] Canon. Proposals/advanced gradients. https:
/Iwww.w3.org/Graphics/SVG/WG/wiki/Proposals/
Advanced_Gradients, 2014.

[2] World Wide Web Consortium. Filter effects
region. https://www.w3.org/TR/SVGFilter12/
#FilterEffectsRegion.

[3] Svelte contributors. Svelte: web development for the
rest of us. https://svelte.dev/.

[4] Zheng-Jun Du, Liang-Fu Kang, Jianchao Tan, Yotam
Gingold, and Kun Xu. Image vectorization and editing
via linear gradient layer decomposition. ACM Transac-
tions on Graphics (TOG), 42(4), August 2023.

[5] Johannes Kopf and Dani Lischinski. Depixelizing pixel
art. ACM Transactions on Graphics (Proceedings of
SIGGRAPH 2011),30(4):99:1 — 99:8, 2011.

[6] Jirg Lehni and Jonathan Puckey.
paperjs.org/.

[71 Marko Matusovic, Amal Dev Parakkat, and Elmar Eise-
mann. Interactive depixelization of pixel art through
spring simulation. Computer Graphics Forum, 42:51—
60, 2023.

[8] Mozilla Developer Network. Svg: Scalable vec-
tor graphics. https://developer.mozilla.org/en-US/docs/
Web/SVG.

[9] OpenAl. Chatgpt. https://chatgpt.com/.

Paper.js. http://

[10] Alexandrina Orzan, Adrien Bousseau, Holger Win-
nemoller, Pascal Barla, Joélle Thollot, and David
Salesin. Diffusion Curves: A Vector Representation for
Smooth-Shaded Images. ACM Transactions on Graph-
ics, 27(3):92:1-8, August 2008.

A Use of Artificial Intelligence

We used ChatGPT[9] during this project. A full list of
prompts used for the research project can be found in the fol-
lowing subsections.

A.1 Prompts about SVG

* I have 3 svg shapes, with the side two overlapping the
middle shape. I want to blur each size shape with the
middle one, but with different blur radii for each. Is this
possible?”

* "How would I blend two svg groups together using the
screen blend mode?”

* ”What are the different types of inputs for SVG filters? 1
have seen SourceGraphic and BackgroundImage. What
does each one do?”

¢ ”Is there a way to make an svg blur that only blurs the
internals of the image, not creating a gradient of alpha
around the edges?”

* “how do I wrap an svg path with id #mask-path in mask
tags using javascript?”’

”I want to perform operations on SVG objects using
javascrpt, like unioning paths, finding if objects are en-
compassed by others, applying blurs, etc. What library
is best for this?”

A.2 Prompts about Paper.js
* ”In Paper.js how do I get the tangent line of one of the
points?”’

* "How do I create a copy of an item in Paper.js for modi-
fication before svg export?”’

A.3 Prompts about Svelte

» ”Using svelte 5, what is the idiomatic way of making a
TODO list where pressing x on the list item removes it
from the array?”

* "How do I add a global CSS file in sveltekit?”

