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Abstract

Linear Parameter-Varying (LPV) systems can be used as a bridge to extend the well studied model
based control methods of Linear Time-Invariant systems to certain nonlinear systems. Despite signifi-
cant attention in literature over the last two decades, finding an efficient global state space identification
algorithm remains an open problem. Furthermore, a common assumption has been that the schedul-
ing signals governing the time-varying dynamics are known or measured exactly. These drawbacks
are found to inhibit the number of use cases for model based LPV control. This thesis explores new
ways of identifying LPV systems for more general nonlinear systems with limited information on the
optimal scheduling variable and scheduling dimension.

To this end, two novel rank constrained least squares problems are presented to identify system
matrices and scheduling signals from input and full state measurements, and a dictionary of possible
scheduling signals. The use of the methods is demonstrated in a simulation experiment, and the results
are compared to existing full state measurement methods.

At last, the full state measurement methods are coupled with a state sequence estimation method
from literature in order to obtain a method for identification of quasi-LPV systems from Input-Output
measurements. Here "quasi" indicates that the scheduling signal is dependent on the system state and
input. The scheme is flexible, and a proof of concept is given on a small nonlinear system.
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“Look at the norm, but don’t follow it”
— Pranav Prasad





Chapter 1

Introduction

The toddler learning how to grab stuff with his hands, the six year old learning how to ride a bike and
the young adult learning how to cook or drive a car all have something in common. They use their
bodies act on their surrounding environments, and their senses to observe the consequent change of
affairs. It involves exploration and gathering of information, and once sufficient knowledge has been
gathered, one can predict the consequences of current manipulations on the future state of affairs. In
engineering, one prefers to describe future trajectories using mathematical models, and the building of
these models from Input-Output (IO) data is referred to as system identification [4]. With the ability
to predict future trajectories comes the possibility of evaluating the consequences of current actions,
and thus enabling what is known as model-based control [5].

The closer the mathematical model is to reality, the better one can understand the consequences of
current actions on future states. From a social perspective, utilizing the limited resources available
on the earth in an optimal way is a core element of 9 out of 17 goals for sustainable development1.
Engineering processes are especially involved in goal 12, Ensuring Sustainable Consumption and Pro-
duction Patterns, a call to maximize the ratio between social benefits over physical resource use.
Coupled with an increased desire for automation of industrial processes [6], the need for models with
higher accuracy to facilitate more efficient control strategies is evident.

Linear Time-Invariant (LTI) systems are well studied and commonly used in industry. Unfortunately,
most real world processes display some sort of nonlinear or time-varying behaviour, such as saturation,
temperature dependence, etc. For several applications in mechanical and chemical engineering a linear
approximation of these nonlinear processes is sufficient, see examples in [7]. However, the region of
validity of the linear model might be exceeded with changes in the operating conditions, resulting in
poor performance [8].

On the other hand, nonlinear system identification often relies on physical knowledge and other first-
principles information. A notable exception is neural state-space models, [9], which are nonlinear
black-box models capable of identifying nonlinear systems from IO measurements. Unfortunately,
they can be difficult to train as the optimization problem is nonlinear and non-convex. Often large

1United Nations, The 17 Goals, Accessed online 04.08.2023 URL:https://sdgs.un.org/goals
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2 1. Introduction

amounts of data are required, or multiple runs with random initialization. Training times can be in
the order of hours for even small networks as demonstrated by [9] and [10].

In all this, one should not forget that there exist sound, proven control methods for LTI systems.
These include pole placement, Linear Quadratic Regulator (LQR), Model Predictive Control (MPC)
and Robust controllers [7]. They are well studied, with corresponding proofs of stability, and often
offer some intuition on how to choose the control parameters. The question then becomes whether
it becomes possible to utilize these methods in systems that capture nonlinear dynamic behaviour.
Linear Parameter-Varying (LPV) systems were developed to provide such an opportunity [11], but as
of yet, finding a global, curse of dimensionality free state space identification algorithm remains an
open problem.

This thesis presents novel ideas on how to estimate a quasi-LPV (qLPV) model from IO data. The
report is started with an introduction to the existing methods for LPV state space identification
in Chapter 2 along with a formulation of the research question. The theory and derivation of two
full state measurement methods for identifying general LPV state space models developed as part
of this thesis is then presented in Chapter 3. These full state measurement methods are put to the
test by identifying a Continuously Stirred Tank Reactor (CSTR) and compared to other full state
measurement methods in Chapter 4. At last, Chapter 5 gives a proof of concept on how one can
estimate a state sequence from IO measurements, and use the estimate along with a full state method
to identify an qLPV model of a nonlinear system. This approach would be a novel framework for
qLPV state space identification. The conclusions follow in Chapter 6.

A last note in this introduction is regarding the mathematical notation utilised in this thesis. Due to
a lot of different variable definitions, the superscript, i, is most often used to indicate the i-th element
of a vector or block matrix. This should therefore not be interpreted as an exponent. Exceptions are
the example in Chapter 4, and the variance, σ2. To limit confusion, multiplications in other chapters
are written out in their factors.

Knut Roar Lende Master of Science Thesis



Chapter 2

Linear Parameter-Varying State-Space
Identification

This chapter presents existing methods of Linear Parameter-Varying (LPV) system identification.
The objective of LPV system identification is outlined in Section 2-1 before working through the
different methods. First among them are the gain scheduling methods in Section 2-2, followed by full
state measurement methods in Section 2-3. Approaches for estimating the state sequences are briefly
presented in Section 2-4 before some novel neural network approaches are given in Section 2-5. At last,
an overview of the open research areas and the research question of this thesis are given in Section 2-6

2-1 Modeling of Linear Parameter-Varying Systems

Identification of LPV state-space models is concerned with the building mathematical models de-
scribing the system dynamics by leveraging the relationship between the system matrices, the input,
the output, the state and the scheduling variable. The different LPV identification methods assume
different signals to be known, and identify the remaining signals as part of the identification.

A discrete time LPV system in state-space form evolves according to Equation 2-1, with the output
governed by Equation 2-2. Here xk, uk, yk and pk are the state, input, output and scheduling
variable at time instance k, respectively. The system matrices, A,B,C and D are functions of the
scheduling variable pk. For all system identification methods considered here, the functions relating
the system matrices to the scheduling variable are unknown, and obtaining them is a key objective of
the identification.

xk+1 = A(pk)xk +B(pk)uk (2-1)
yk = C(pk)xk +D(pk)uk (2-2)

Master of Science Thesis Knut Roar Lende



4 2. Linear Parameter-Varying State-Space Identification

Often, the LPV model is assumed to have an affine structure. That means it can be written according
to Equations 2-3 and 2-4, where A(pk) is a sum of constant matrices Ai multiplied by time-varying
weights pk.

xk+1 =
(
A0 +

r∑
i=1

pi
kAi

)
xk +

(
B0 +

r∑
i=1

pi
kBi

)
uk (2-3)

yk =
(
C0 +

r∑
i=1

pi
kCi

)
xk +

(
D0 +

r∑
i=1

pi
kDi

)
uk (2-4)

The scheduling variable pk governs the time-varying and nonlinear dynamics of the system. It can be a
function of the input, output, time, or an external signal. In some cases, it is also taken as a function
of the system state. The corresponding LPV model is then referred to as a quasi-LPV (qLPV)
system [1]. At any time step k it is a vector with r entries, and r is frequently referred to as the
scheduling dimension. Historically, the scheduling signal has been assumed known exactly.

A system state can be used to formulate continuous time dynamics as a set of first order differential
equations, and determines the future evolution along with the future inputs [7]. In discrete time, the
state evolution can be described by a set of difference equations [5].

The inputs and the outputs are measured signals relating the system to the surrounding environment.
The inputs can be manipulated by the user, while the output is the response of the system based on
it’s state and received input. In engineering systems, inputs are supplied through actuators, while
outputs are measured using sensors.

2-2 Gain Scheduling Methods

The concept of LPV systems was conceived based on gain scheduling controllers, where a controller was
designed to operate in every operating point [11]. The gain scheduling identification methods assume
the scheduling variable, the input and the output to be fully known, and identify the states and
dynamics. It became common to identify linear systems in each operating point, that is, linearizing
and identifying a model for a given condition, and design a suitable controller for this condition.
When the system would be in between operating points, one would use interpolation to determine
the active controller. This principle is still used when designing model based controllers for industrial
applications, see among others [12], [13], [14] and [15].

Despite their initial popularity, a number of drawbacks have been identified for these methods. First
of all, one would need to gather enough data in a given operating condition to successfully identify a
model. This is not guaranteed, consider for example the out of plane flapping motion of a wind turbine
that can be modeled as an LPV system with a periodic scheduling signal dependent on time [16].
Second, one runs the risk of obtaining different state definitions if one uses data-driven Linear Time-
Invariant (LTI) methods for the different operating points. As a consequence, most of the systems are
identified using first-principles in combination with a Prediction Error Method (PEM). These methods
aims to minimize the difference between the simulated and measured trajectories of the system„ see for
example [12]. A last drawback is that the number of models needed might be large for highly nonlinear
and high dimensional systems [11], or in case the scheduling variable is inappropriately chosen.

Knut Roar Lende Master of Science Thesis



2. Linear Parameter-Varying State-Space Identification 5

2-3 Full State Measurement Methods

The full state measurement methods assumes the full state to be measured. The output equation
thus becomes trivial, as yk = xk + ϵk, with ϵk the measurement error. The input is known, and a
common assumption is that the scheduling signal is known and noise free [2]. This section outlines
the identification procedure of the two full state measurement functions encountered in literature.

The method of Verdult et al. formulates the identification as a least squares problem, minimizing the
difference between a one step ahead predicted state, and the state measurement, and identifies an
affine LPV state-space representation. The the authors knowledge, results have not been reported on
applications. The method is worked out in Chapter 3, and used as a base for the two novel full state
measurement methods.

Rizvi et al. [2] presents a nonparametric kernel method. The method uses Radial Basis Functions
(RBFs) as the kernel. The weights of the respective RBFs are found by solving n linear systems of
equations with N unknowns, where n again is the state dimension and N is the number of data points
used for model training. The identified model has an affine representation with scheduling dimension
r equal to the number of unique values in the scheduling function encountered during training. The
method is further discussed in Chapter A and the performance is compared with the novel full state
measurement methods in Chapter 4.

2-4 State Sequence Estimation Methods

As the state can seldom be assumed to be measured exactly, there has been developed methods for
determining a state sequence along with the system dynamics. Common for most of these approaches
is that they assume the input, output and scheduling variable to be known. Some also assume an
affine LPV state-space representation.

Common for most attempts to reformulate the problem of finding an optimal state sequence as a linear
problem is that they run into the curse of dimensionality. That is, the problem size grows exponentially
with the past and future windows of inputs and measurements considered. The reason for this is closely
associated with the computational complexity of LPV state propagation. Propagating an autonomous
LTI system two time steps, e.g. from x0 to x2 can be done by multiplying by A · A. If one is to
propagate an autonomous LPV system with a scheduling dimension of one in a similar way, one would
have to follow Equation 2-5, which include four unique matrix terms.

x2 = (A0 +A1p1)x1 = (A0A0 +A1p1A0 +A0A1p0 +A1p1A1p0)x0 (2-5)

One way of obtaining the state sequence is through extending known LTI subspace methods to LPV.
Examples of this are found in [16], where the PBSID algorithm from [17] is extended to the LPV
case. The size of the least squares problem for this LPV identification algorithm scales according to
Equation 2-6, where m and l are the number of inputs and outputs, r is the scheduling dimension, and
sp and sf the size of the past and future windows of inputs and outputs, respectively. Other methods,
assuming the input to be uncorrelated with the system and measurement noise are presented in [18].
When using these methods, care has to be taken that the state definition is the same across the
different models. Van Wingerden [16] developed a kernel method to ensure this. Furthermore, the
curse of dimensionality is shown to disappear if one can assume a periodic scheduling or piecewise

Master of Science Thesis Knut Roar Lende



6 2. Linear Parameter-Varying State-Space Identification

constant scheduling signal [16].

ρP BSID = (m+ l)
sp+sf∑

j=1
rj (2-6)

Another approach is to identify an LPV Input-Output (IO) model, and find a realization of this model
to get it in state-space form. Examples are presented in [19]. However, the realization of an affine
IO model does in general not have a corresponding affine state-space model, introducing nontrivial
dependencies on the scheduling variable. Furthermore, it is recommended to include a third step with
the aim of reducing the state dimension resulting from the realization.

Research has also been done into kernel methods [11] and tensor trains [20]. Although some of these
are able to avoid the exponential growth of the problem size with the number of past data points,
their computational overhead is large compared to other methods for relatively simple systems.

2-5 Neural Network Approaches

The recent popularity of neural networks has inspired researchers to develop neural network based LPV
state-space identification approaches. This is accomplished through structuring the network and cost
function in a certain way. The individual sub-networks utilized in the structures are quite small, with
up to 15 nodes divided over three layers. About six sub-networks are used per method. As the networks
are optimized using gradient-descent based optimizers, they are considered curse of dimensionality
free, yet the iterative manner of the optimizer could cause significantly longer computational times
for simple systems.

Some of the approaches, notably [21],[22] and [23], assumes the scheduling variable to be known, along
with the inputs and outputs, while others, such as LPV-SUBNET [1], allow the optimal scheduling
variable to be co-optimized with the system matrices. The structure of the latter method is outlined
in Figure 2-1, where there is a state encoder ξp mapping the past inputs and outputs to an estimated
current state. This estimate is passed on along with the input to the network ζ, computing the
optimal scheduling variable. A new state estimate is computed using the estimated system matrices,
the estimated state and the estimated scheduling variable. This estimated state is again used to
compute the next state estimate. The method has a recurrent structure, resulting in less efficient
gradient computations.

A drawback of the neural-network methods is that the state dimension is a hyperparameter, and is not
identified as part of the identification procedure. Consequently, it must either be determined through
expert knowledge of the system or by multiple identification runs. The reported training time of
LPV-SUBNET applied to a control moment gyroscope was about ten hours [1], yielding a significant
identification time if multiple runs has to be conducted. A lower state dimension yields a simpler
model, that may be expected to generalize better to unseen trajectories [24].

2-6 Research Question

As shown in this chapter, identification of LPV systems is an active research topic, and the pursuit of
an identification procedure to be used in larger, complex systems is still ongoing. The characteristics
and uses of the different methods are summarized in Table 2-I. This section analyses the open research
problems, formulates the research question and outlines the main contributions of this thesis.
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2. Linear Parameter-Varying State-Space Identification 7

Figure 2-1: LPV-SUBNET, adapted from Figure 2 in [1] to the notation of this thesis

Table 2-I: The characteristics of the known LPV identification methods. ✓: method requires or is
affected by the characteristic, *: an initial guess is required, but it is optimized within the given preset
structure, †: iterative method, hence difficult to state computational cost.

Gain Scheduling Full State State Sequence Neural Network
Global Model ✓ ✓ ✓

State Sequence ✓ *
State Dimension ✓ ✓

Scheduling Variable ✓ ✓ ✓ *
Scheduling Dimension ✓ ✓ ✓ ✓

Curse of Dimensionality ✓ †

From Table 2-I, one can identify the following open research areas:

1. Most of the current LPV identification algorithms rely heavily on information about the schedul-
ing variable, dictating the allowed nonlinear dependencies and the computational cost.

2. Of the encountered full state measurement methods, both depend on a predefined noise-free
estimate of the scheduling signal.

3. All the methods depend on a predefined scheduling dimension.

4. The neural network approaches all depend on a predefined state dimension.

5. There are currently no methods allowing estimation of the state dimension and an optimal
scheduling variable.

6. Obtaining a state sequence estimate remains computationally costly.

The observations above require the user of the algorithm to determine key aspects of the model before
identifying it. In the extreme case of system identification, the starting point is a sequence of IO
measurements from an unknown system. According to the author’s view, the ideal algorithm should
require as little information as possible and allow the user to make informed decisions based on the
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8 2. Linear Parameter-Varying State-Space Identification

available data. A short computational time would also be considered beneficial. If one were to include
an ideal method in Table 2-I, it would have a check mark in the first row, thus identifying a global
model, and be otherwise empty.

The research question investigated in this thesis was decided to be: How can one develop a curse of
dimensionality free LPV state-space identification method allowing to estimate the scheduling param-
eter, state sequence and state dimension from IO measurements? The research question is considered
from the perspective of a two-step scheme presented in Figure 2-2. First, a neural network based
function is intended to estimate the state sequence from the IO data, before a full state measure-
ment method with unknown scheduling would be used to estimate the scheduling variable and system
dynamics.

The full state measurement method is discussed and developed in Chapter 3, where points 1, 2, and 3
are dealt with. To accomplish this, two novel rank constrained least squares problems are formulated,
and two methods of relaxation are proposed. The performance of the formulations and relaxations
are then evaluated on a simulation example and compared to existing full state LPV identification
methods from literature.

At last, it is proposed to combine the novel full state measurement methods with a known approach for
state sequence estimation. The approach is presented in Chapter 5. This combination would address
points 4, 5 and 6 of the open research problems for qLPV systems, and could be a step towards an
efficient identification scheme for identifying general LPV state space models from IO measurements.

Figure 2-2: Two step approach for LPV state space identification

Knut Roar Lende Master of Science Thesis



Chapter 3

Full State Measurement

Full state measurement approaches in Linear Parameter-Varying (LPV) system identification assumes
that all the states relevant for the system dynamics are measured. The methods presented and
developed in this section are applicable to general LPV systems as well as quasi-LPV (qLPV) systems,
where the scheduling variable is allowed to depend on the system states and inputs. Although they
are considered full state measurement methods, they remain applicable as long as an estimate of the
state sequence is available. The methods will therefore also be presented with the output equation,
even though that is trivial if the true system states are measured.

This chapter starts with introducing an example LPV system that will be used when deriving the
formulations in the subsequent sections. The full state measurement method proposed by Verdult
et al. [3] is then presented in Section 3-2. In Sections 3-3 and 3-4, two rank-constrained least squares
problems are derived, in which the full state measurement method from Section 3-2 is extended to the
case for unknown scheduling. The rank constrained problems are followed by two proposed ways of
relaxing the rank constraints in order to obtain convex optimisation problems in Sections 3-5 and 3-6.
At last, some notes are made on the appropriate model choice in Section 3-7.

3-1 Example

This chapter will be centered around the exaple LPV system whose state equation is given byEquation 3-
1. It represents an autonomous, affine LPV system with a scheduling dimension r equal to 1. The
output equation is given by Equation 3-2, and is trivial since the output is equal to the input. In
other words, the full state is measured. Despite being simple, it contains the important complications
of full state measurement affine LPV systems.

xk+1 =
([

0 0.1
−6.5 −0.5

]
+
[
−0.1 0
−0.1 0.5

]
cos k

)
xk (3-1)

yk = xk (3-2)
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10 3. Full State Measurement

An equivalent way to write the state equation using the Kronecker product ⊗ is given in Equation 3-3.
This formulation is slightly more compact, and will be preferred in the remainder of the chapter.

xk+1 =
[

0 0.1 −0.1 0
−6.5 −0.5 −0.1 0.5

]([
1

cos k

]
⊗ xk

)
(3-3)

The succeeding methods will be derived through this example, assuming that a full state measurement
is available. After using the example, the general formulations are derived. This is done because the
limited size of the example system makes it feasible to write out completely, making the derivations
easier to follow.

3-2 Least Squares Formulation for Known Scheduling Parameter

Verdult et al. [3] introduces a least-squares based full state measurement method, where it is assumed
that the states, the inputs and the scheduling variables are known. This section re-derives the method,
as the least squares formulation forms a basis of the two novel formulations derived in the succeeding
sections. At last it presents some requirements on the scheduling variable p, to ensure that the problem
has a unique solution.

3-2-1 Example

Going back to the example, knowing the system states xk, inputs uk and scheduling variable pk for
k = 0, · · · , N + 1, the objective becomes to find the matrices A0 and A1 such that the state estimated
by the model is as similar as possible to the measured state. To this end, one wants to minimize the
squared difference between the left and right hand sides of Equation 3-1, defining the least squares
problem given by Equation 3-4.

min
A0,A1

N∑
k=0

∥∥∥∥xk+1 −
[
A0 A1

]([ 1
cos k

]
⊗ xk

)∥∥∥∥2

2
(3-4)

3-2-2 Generalization

For a more general affine LPV system with scheduling dimension r, one can rewrite Equations 2-3 and
Equation 2-4 using the matrix Kronecker product to obtain Equations 3-5 and 3-6.

xk+1 =
[
A0 A1 · · · Ar

]([ 1
pk

]
⊗ xk

)
+
[
B0 B1 · · · Br

]([ 1
pk

]
⊗ uk

)
(3-5)

yk =
[
C0 C1 · · · Cr

]([ 1
pk

]
⊗ xk

)
+
[
D0 D1 · · · Dr

]([ 1
pk

]
⊗ uk

)
(3-6)

As both the state and scheduling signals are assumed to be known, one can formulate the following least
squares minimization problem by subtracting the right hand sides from the left hand sides. Further
stacking the equations for xk+1 and yk allows one to write the least squares problem as Equation 3-7.
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3. Full State Measurement 11

min
A0,··· ,Dr

N∑
k=0

∥∥∥∥[xk+1
yk

]
−
[
A0 · · · Ar

C0 · · · Cr

]([
1
pk

]
⊗ xk

)
−
[
B0 · · · Br

D0 · · · Dr

]([
1
pk

]
⊗ uk

)∥∥∥∥2

2
(3-7)

The total number of scalar unknowns is equal to the number of matrix entries. This number, ρKS , is
given by Equation 3-8, where r is the scheduling dimension, n the state dimension, m the number of
inputs and l the number of outputs.

ρKS = (r + 1)(n+m)(n+ l) (3-8)

The optimisation problem defined by Equation 3-7 is equivalent to the full state measurement method
proposed in [3]. Although it does not appear with an explicit vector of unknowns in its’ current form,
Equation 3-7 can be directly given to cvxpy1 which will take care of the necessary book-keeping.

3-2-3 Condition Number

The condition number of an operator says something about the sensitivity of the output for a minor
change in the input. For a matrix Φ ∈ Rρa×ρb , the condition number associated with the matrix
2-norm is defined according to Equation 3-9 [25].

κ2(Φ) = σmax(Φ)
σmin(Φ) (3-9)

It is computed by dividing the maximum and minimum singular values, computed via the Singular
Value Decomposition (SVD). An SVD is a matrix decomposition factorizing a matrix into the unitary
matrices of left and right singular vectors U and V T , respectively, and the matrix Σ with the singular
values on the main diagonal [26]. Computing the SVD of Φ, one obtains Equation 3-10. As the
minimum singular value is associated with the rank of the matrix, it says something about how
difficult it is to compute the (pseudo-)inverse for a least squares problem.

Φ = UΣV T (3-10)

In the form of Equation 3-7, the objective function of the optimization problem is not explicitly
available in the regular least-squares form of Equation 3-11. The latter states that a matrix of known
entries, Φ, relates a vector of unknowns, γ, with a known vector ψ. Thus all the entries of the unknown
matrices must be combined inside a vector γ. In this subsection, the matrix Φ will not be derived
explicitly, but a matrix Ξ will be derived such that κ2(Φ) = κ2(Ξ).

ψ = Φγ (3-11)

Again, looking at the example, the state equation is given by Equation 3-12 with the unknown coeffi-
cients a written out.

[
x1

k+1
x2

k+1

]
=
[
a1,1

0 a1,2
0 a1,1

1 a1,2
1

a2,1
0 a2,2

0 a2,1
1 a2,2

1

]([
1
p1

k

]
⊗
[
x1

k

x2
k

])
(3-12)

1cvxpy documentation, accessed online 07.02.2023, URL:https://www.cvxpy.org/index.html
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12 3. Full State Measurement

One can then arrange the unknowns in a vector and the known entries in a matrix, according to
Equation 3-13. This can be rewritten as Equation 3-14 through the use of the matrix Kronecker
product. Here I2 denotes the identity matrix with size 2× 2. The least squares problem ψ = Φγ can
consequently be built by stacking the Equation 3-14 vertically for different values of k.

[
x1

k+1
x2

k+1

]
=


([

1
p1

k

]
⊗
[
x1

k

x2
k

])T

0 0 0 0

0 0 0 0
([

1
p1

k

]
⊗
[
x1

k

x2
k

])T

 [a1,1
0 a1,2

0 a1,1
1 a1,2

1 a2,1
0 a2,2

0 a2,1
1 a2,2

1
]T

(3-13)[
x1

k+1
x2

k+1

]
=
[
I2 ⊗

([
1
p1

k

]
⊗
[
x1

k

x2
k

])T
] [
a1,1

0 a1,2
0 a1,1

1 a1,2
1 a2,1

0 a2,2
0 a2,1

1 a2,2
1
]T (3-14)

The condition number κ2 is invariant under permutations P of Φ, since PUΣV T is a valid SVD of
PΦ. This allows permuting Φ into a block matrix, as the unknowns associated with the first state
never appear in the equation for the second, and vice versa. Furthermore, the kronecker product with
I2 does not change the condition number, as Equation 3-15 also is a valid SVD of PΦ.

PΦ =
[
U1 0
0 U1

] [
Σ 0
0 Σ

] [
V T

1 0
0 V T

1

]
=
[
Ξ 0
0 Ξ

]
(3-15)

The condition number of Φ therefore equals the condition number of Ξ, where Ξ for a general least
squares full state measurement LPV identification problem is given by Equation 3-16. Outputs and a
higher state dimension will increase the number of blocks in Φ, while the Kronecker product between
the scheduling variable and the inputs are added as additional columns of Ξ.

Ξ =


pT

0 ⊗
[
xT

0 uT
0
]

pT
1 ⊗

[
xT

1 uT
1
]

...
pT

N−1 ⊗
[
xT

N−1 uT
N−1

]
 (3-16)

From Equation 3-16, it is evident that the entries of the scheduling signals should be sufficiently
different for the condition number to stay small, and the optimization problem defined by Equation 3-
7 to remain well-posed.

3-3 Proposed Method: LPV-CONFUS

This section derives the LPV state space identification method using rank CONstrained least squares,
assuming Full state measurement and Unknown Scheduling variable (LPV-CONFUS). It expands the
least-squares method arrived at in the previous model by adding a rank constraint. This formulation
is a novel contribution of this thesis, and the structure was inspired by the rank constraint presented
in [27]. First, the least squares method is expanded for the example, before the general formulation
is given. At last, a note is made concerning the solvability of the problem for higher scheduling
dimensions.

Knut Roar Lende Master of Science Thesis



3. Full State Measurement 13

3-3-1 Example

By replacing the known scheduling function cos k in Equation 3-4 with an unknown variable pk, one
obtains Equation 3-17. In this form, the full state measurement method with unknown scheduling is
a nonlinear, nonconvex problem due to the multiplication of A1 and pk. The number of unknowns
increases linearly with the number of datapoints, and without restrictions on p it becomes difficult to
find an estimate for new trajectories.

min
A0,A1,p0···pN

N∑
k=0

∥∥∥∥xk+1 −
[
A0 A1

]([ 1
pk

]
⊗ xk

)∥∥∥∥2

2
(3-17)

An alternative could be to assume the scheduling variable p to be a linear combination of signals
that can be found in a dictionary of signals, θ. The number of entries in θ is denoted by q. This
is inspired by a similar approach some times used in blind system identification, for example [28].
For the sake of the example, one might choose a scheduling dictionary θT

k =
[
cos k cos 2k cos 3k

]
.

Introducing the scheduling dictionary into Equation 3-17 and rewriting to gather the unknowns, one
obtains Equation 3-18.

min
A0,A1
B0,B1

α1
1,α2

1,α3
1

N∑
k=0

∥∥∥∥∥∥∥∥xk+1 −
[
A0 A1α

1
1 A1α

2
1 A1α

3
1
]


1
cos k
cos 2k
cos 3k

⊗ xk


∥∥∥∥∥∥∥∥

2

2

(3-18)

This optimization problem is still nonlinear and nonconvex, but has a lot fewer unknowns than Equa-
tion 3-17. However, by introducing the variables A1

1 = A1α
1
1, A2

1 = A1α
2
1 and A3

1 = A1α
3
1, one can

obtain an equivalent optimization problem with a linear least squares objective function and a rank
constraint as given in Equation 3-19.

min
A0,A1,A1

1,A2
1,A3

1
α1

1,α2
1,α3

1

N∑
k=0

∥∥∥∥∥∥∥∥xk+1 −
[
A0 A1

1 A2
1 A3

1
]


1
cos k
cos 2k
cos 3k

⊗ xk


∥∥∥∥∥∥∥∥

2

2

(3-19)

s.t. rank
[
vec(A1) vec(A1

1) vec(A2
1) vec(A3

1)
1 α1

1 α2
1 α3

1

]
= 1

An advantage of this formulation is that the relative influence of the dictionary entries on the scheduling
variable are directly available as optimization parameters. Placing a threshold on the αi

1 values when
constructing the scheduling variable after the optimization, or adding a 1-norm constraint to drive the
weight of less relevant dictionary entries to zero is straight forward.

3-3-2 Generalization

Removing knowledge of the scheduling signal from the general least squares formulation would result
in the number of unknowns growing according to Equation 3-20, with N the number of data points. If
the scheduling dimension r is larger than or equal to the sum of the number of states and the number
of outputs per time step, i.e. l + n ≤ r, the number of unknowns will always remain larger than
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14 3. Full State Measurement

the number of equations leaving an ill-posed problem. Otherwise, the problem of estimating future
trajectories would remain.

ρIP = ρKS + rN (3-20)

Similar to the previous subsection, one introduces a dictionary of possible scheduling signals, θ. A
general dictioary with entries θ1 to θq would at timestep k be a vector defined according to Equation 3-
21.

θT
k =

[
θ1

k θ2
k · · · θq

k

]
(3-21)

Forcing each entry of the scheduling signal, pi
k, to be a linear combination of the signals in the

dictionary, one can express the i-th scheduling signal according to Equation 3-22. Here αi is a row-
vector.

pi
k = αiθk =

q∑
j=1

αj
i θ

j
k (3-22)

Inserting Equation 3-22 into Equation 3-7 would yield a nonlinear problem. As for the example, one
can circumvent this by introducing new matrix variables, Aj

i such that Aiα
j
i = Aj

i for j = 1, ..., q and
i = 1, ..., r. This is displayed in Equation 3-23, and would be repeated for B,C and D. Again, q is
the number of entries in the dictionary, while r is the scheduling dimension.

Aip
i
k = Aiαiθk =

q∑
j=1

Aiα
j
i θ

j
k =

q∑
j=1

Aj
iθ

j
k (3-23)

Although Aj
i are scalar multiples of each other if they have the same subscript i, the matrix variables

with the same superscript, j, will be multiplying the same entry in the scheduling dictionary. It thus
becomes convenient to define the matrices Ā, B̄, C̄ and D̄ according to Equations 3-24 to 3-27.

Ā =
[
A0

∑r
i=1 A

1
i · · ·

∑r
i=1 A

q
i

]
(3-24)

B̄ =
[
B0

∑r
i=1 B

1
i · · ·

∑r
i=1 B

q
i

]
(3-25)

C̄ =
[
C0

∑r
i=1 C

1
i · · ·

∑r
i=1 C

q
i

]
(3-26)

D̄ =
[
D0

∑r
i=1 D

1
i · · ·

∑r
i=1 D

q
i

]
(3-27)

Equation 3-7 can then be extended to the rank-constrained least squares problem defined by Equa-
tion 3-28. Note that one obtains a rank constraint for every entry in the scheduling variable. In total
one gets r rank constraints on matrices of the form given in Equation 3-29.

min
Ā,B̄,C̄,D̄

N∑
k=0

∥∥∥∥[xk+1
yk

]
−
[
Ā
C̄

]([
1
θk

]
⊗ xk

)
−
[
B̄
D̄

]([
1
θk

]
⊗ uk

)∥∥∥∥2

2
(3-28)

s.t. rank(Ri) = 1, i = 1, · · · , r
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3. Full State Measurement 15

Ri =


vec(A1

i ) vec(A2
i ) · · · vec(Aq

i ) vec(Ai)
vec(B1

i ) vec(B2
i ) · · · vec(Bq

i ) vec(Bi)
vec(C1

i ) vec(C2
i ) · · · vec(Cq

i ) vec(Ci)
vec(D1

i ) vec(D2
i ) · · · vec(Dq

i ) vec(Di)
α1

i α2
i · · · αq

i 1

 (3-29)

The number of unknowns is now given by Equation 3-30, as one has to identify qr systems associated
with the scheduling dictionary, r systems associated with the rank constraints, and the zeroth, time-
invariant system. All of these have (n + m)(n + m) unknowns. At last, one must identify qr of the
αj

i -weights. Although the number of unknowns does not grow with the number of datapoints N , it
grows significantly for every increase in r or q.

ρLP V −CONF US = (r(q + 1) + 1)(n+m)(n+ l) + qr (3-30)

3-3-3 Solvability For Higher Scheduling Dimensions

LPV-REFUS when used for a higher scheduling dimension could be regarded as having multiple equal
dictionary entries. Instead of summing the matrices in Ā, one could put them side by side and stack
the dictionary θ r times, once for all of the scheduling dimensions. As a consequence, Ξ defined in
Equation 3-16 will be rank-deficient and the minimum singular value of Ξ will be zero. This would
mean an undefined condition number, which could be used as an argument in favour of an alternative
formulation for higher scheduling dimensions. In this subsection, it will be showed how a numerical
solver still can converge to an optimal solution, despite the ill-posed objective function. This subsection
assumes the rank constraints to be relaxed using the nuclear norm ∥·∥∗.

The nuclear norm is minimized when the rank constrained variables are scalar multiples of each other,
helping the problem to converge although the condition number is large. This can be seen by solving
the convex optimization problem given in Equation 3-31. Here R1 would solve the least squares
part of the optimization problem without extending the dictionary to incorporate a higher scheduling
dimension.

min
R1,R2

∥R1∥∗ + ∥R2∥∗ (3-31)

s.t. R1 +R2 = R1

Through the triangle inequality for norms, one knows that Equation 3-32 holds [25].

∥R1∥+ ∥R2∥ ≥ ∥R1 +R2∥ =
∥∥R1∥∥ (3-32)

Furthermore, ∥R1∥∗ can be computed through Equation 3-33. Here (R1)∗ denotes the conjugate
transpose, which is equal to the transpose, (R1)T , as R1 is assumed to be a real valued matrix.

∥R1∥∗ = tr(
√

(R1)∗R1) (3-33)

Now, suppose one chooses a scalar β ̸= 0 such that R̂1 = 1
βR

1 and R̂2 = β−1
β R1. Since the trace is

a linear mapping and the square root of a product is equal to the product of the square roots, the
following equalities hold:

∥∥∥R̂1

∥∥∥
∗

+
∥∥∥R̂2

∥∥∥
∗

= tr
(√

1
β2 (R1)∗R1

)
+ tr

(√
(β − 1)2

β2 (R1)∗R1

)
= 1 + (β − 1)

β
tr
(√

(R1)∗R1
)
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16 3. Full State Measurement

The proposed solution is thus a valid solution for the problem defined in Equation 3-31.

If one were to consider other possible solutions of the form R̂1 = 1
βR

1 + ∆ and R̂2 = 1−β
β R1 − ∆,

where ∆ is anything but a scalar multiple of R1, one would obtain the following inequality:

∥∥R1∥∥
∗ ≤

∥∥∥R̂1

∥∥∥
∗

+
∥∥∥R̂2

∥∥∥
∗

=
∥∥∥∥ 1
β
R1 + ∆

∥∥∥∥
∗

+
∥∥∥∥β − 1

β
R1 −∆

∥∥∥∥
∗
≤
∥∥R1∥∥

∗ + 2 ∥∆∥∗

The expressions would hold with equality only if ∆ is a zero-matrix or a scalar multiple of R1. Even
though there are infinitely many solutions, the numerical methods later implemented seem to prefer
the solution β = r, such that R1 = · · · = Rr. Finding a relaxation that allows one to move away from
this solution is the topic of Section 3-6. On the other hand, this subsection shows that one can solve
the least squares problem for the sum of all the systems multiplying the same entry in the scheduling
dictionary.

3-4 Proposed Method: LPV-REFUS

As can be seen by Equation 3-30, the problem formulation for LPV-CONFUS scales with the product
of r and q. This means the cost grows significantly when increasing the scheduling dimension and
the size of the scheduling dictionary. Furthermore, if the scheduling dictionary is the same for all
scheduling signals, only a sum of matrices multiplying the same dictionary entry appears in the
least squares formulation. The discovery begs the question of whether it is possible to formulate a
similar regularization with fewer parameters, growing according to Equation 3-34. To this end, the
current section derives the LPV state space identification method using REduced rank constrained
least squares, assuming Full state measurement with Unknown Scheduling variable (LPV-REFUS).

ρLP V −REF US = (q + 1)(n+m)(n+ l) (3-34)

3-4-1 Example

Equation 3-35 results from assuming a scheduling dimension of 2 instead of 1 and writing out the
optimization problem of Equation 3-19 with the same three dictionary entries. It is evident one gets
several variables multiplying the same signals.

min
A0,A1,A2
A1

1,A2
1,A3

1
A1

2,A2
2,A3

2
α1

1,α2
1,α3

1
α1

2,α2
2,α3

2

N∑
k=0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
xk+1 −

[
A0 A1

1 A2
1 A3

1 A1
2 A2

2 A3
2
]




1
cos k
cos 2k
cos 3k
cos k
cos 2k
cos 3k


⊗ xk



∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

(3-35)

s.t. rank(R1) = 1
rank(R2) = 1
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3. Full State Measurement 17

R1 =
[
vec(A1) vec(A1

1) vec(A2
1) vec(A3

1)
1 α1

1 α2
1 α3

1

]
(3-36)

R2 =
[
vec(A2) vec(A1

2) vec(A2
2) vec(A3

2)
1 α1

2 α2
2 α3

2

]
(3-37)

As the rank of a matrix is subadditive [26], the rank of the sum of two matrices is less than or equal to
the sum of their individual ranks. Thus Equation 3-38 becomes Equation 3-39 for the example. Here
all the entries are occurring as sums, and only Aj

i appear directly in the objective function. Recall Aj
i

is defined as Aiα
j
i . There exist no unique solution for αj

i and Ai since for any scalar β different from
zero, α̂j

iβ and Âi
1
β would also satisfy the constraint. Now that αj

i and Ai no longer appear explicitly
in the rank constraint, one might want to remove them from the optimization problem all together.

rank(R1 +R2) ≤ rank(R1) + rank(R2) = 2 (3-38)

rank
[
vec(A1) + vec(A2) vec(A1

1) + vec(A1
2) vec(A2

1) + vec(A2
2) vec(A3

1) + vec(A3
2)

2 α1
1 + α1

2 α2
1 + α2

2 α3
1 + α3

2

]
≤ 2 (3-39)

It is noted that if the original rank constraints on R1 and R2 are satisfied, any column of the matrix
is a scalar multiple of either of the other columns, and any row is a scalar multiple of any of the other
rows. This gives rise to the equivalence relation given in Equation 3-40. The less than or equal to one
on the right hand side applies as it here is possible to obtain a zero matrix. This is unlikely to happen
due to numerical solvers and noisy measurements, but is possible in case one has a noise free linear
system or a dictionary that is independent from the nonlinear dynamics.

rank
[
vec(A1) vec(A1

1) vec(A2
1) vec(A3

1)
1 α1

1 α2
1 α3

1

]
= 1⇔ rank

[
vec(A1

1) vec(A2
1) vec(A3

1)
]
≤ 1 (3-40)

In a similar manner, one could remove the first column and last row form Equation 3-39 in order to
obtain Equation 3-41.

rank
[
vec(A1

1) + vec(A1
2) vec(A2

1) + vec(A2
2) vec(A3

1) + vec(A3
2)
]
≤ 2 (3-41)

By using the rank constraint of Equation 3-41, neither the objective function nor the rank constraint
distinguish between A1

1 and A1
2, A2

1 and A2
2 etc. They always appear in a sum, encouraging one to

write the optimization problem in terms of the variables A1 = A1
1 + A1

2, etc. This would result in
Equation 3-42.

min
A0,A1,A2,A3

N∑
k=0

∥∥∥∥∥∥∥∥xk+1 −
[
A0 A1 A2 A3]




1
cos k
cos 2k
cos 3k

⊗ xk


∥∥∥∥∥∥∥∥

2

2

(3-42)

s.t. rank(R) ≤ 2

R =
[
vec(A1) vec(A2) vec(A3)

]
(3-43)
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18 3. Full State Measurement

Reducing the size of the optimization problem is deemed beneficial when solving the optimization
problem, however, the structure enabling the construction of an LPV system with a scheduling di-
mension of 2 has been lost and should to be recovered. This will be accomplished through computing
the SVD of R. Recall Equation 3-10 and replace Φ by R. The number of non-zero singular values
is equal to the rank of the matrix. Writing out R,U and Σ in Equation 3-44, it is evident that only
the first two columns of U matters for the matrix multiplication UΣ while only the first two rows of
V T matter for the matrix multiplication ΣV T . All other entries are multiplied by zero. Here U [:, 1]
denotes the first column of U , and V T [1. :] the first row of V T .

[
vec(A1) vec(A2) vec(A3)

]
=
[
U [:, 1] U [:, 2] U [:, 3] · · ·

]

σ1 0 0
0 σ2 0
0 0 0
...

...
...


V T [1. :]
V T [2, :]
V T [3, :]

 (3-44)

Carrying out the multiplication between Σ and V T , and removing the columns and rows of U and
ΣV T that would be multiplied by or equal to zero, one obtains Equation 3-45.

[
vec(A1) vec(A2) vec(A3)

]
=
[
U [:, 1] U [:, 2]

] [σ1V
T [1, :]

σ2V
T [2, :]

]
(3-45)

The number of elements in a column of U equals the number of elements in a column of R, and
the number of elements in a row of V T equals the number of elements in a row of R. Furthermore,
recall the relationship between A1, A1 and A2 rewritten in Equation 3-46. It is evident that choos-
ing vec(A1) = U [: 1], vec(A2) = U [:, 2],

[
α1

1 α2
1 α3

1
]

= σ1V [1, :]T and
[
α1

2 α2
2 α3

2
]

= σ2V [2, :]T
satisfies Equation 3-46. Thus, the system with scheduling dimension 2 is recovered.

[
vec(A1) vec(A2) vec(A3)

]
=
[
vec(A1) vec(A2)

] [α1
1 α2

1 α3
1

α1
2 α2

2 α3
2

]
(3-46)

3-4-2 Generalization

The generalization of Equation 3-42 to a general LPV system with states, outputs, inputs and a general
scheduling variable is straight forward, and given by Equation 3-47. In order to obtain Equation 3-
47 from Equation 3-28, one considers the subadditive property of the matrix rank and removing
the weights αj

i and matrices A1 · · ·Dr from the rank constraint, as demonstrated in the previous
subsection. The structure of the matrix defining the rank constraint is given in Equation 3-48.

min
A0,A1,··· ,Dq

N∑
k=0

∥∥∥∥[xk+1
yk

]
−
[
A0 · · · Aq

C0 · · · Cq

]([
1
θk

]
⊗ xk

)
−
[
B0 · · · Bq

D0 · · · Dq

]([
1
θk

]
⊗ uk

)∥∥∥∥2

2
(3-47)

s.t. rank(R) ≤ r

R =


vec(A1) vec(A2) · · · vec(Aq)
vec(B1) vec(B2) · · · vec(Bq)
vec(C1) vec(C2) · · · vec(Cq)
vec(D1) vec(D2) · · · vec(Dq)

 (3-48)
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3. Full State Measurement 19

Once a solution is found, the scheduling dimension could be reduced and optimal scheduling variables
found using an SVD yielding a system of lower complexity. The approach similar to the one in the
previous subsection. The new system with scheduling dimension r can again be read from the first r
columns of U , given by Equation 3-49.

U [:, 1 : r] =


vec(A1) vec(A2) · · · vec(Ar)
vec(B1) vec(B2) · · · vec(Br)
vec(C1) vec(C2) · · · vec(Cr)
vec(D1) vec(D2) · · · vec(Dr)

 (3-49)

The corresponding scheduling variables can be reconstructed from the dictionary according to Equa-
tion 3-50 using the row-vectors αi containing the weights. The weights are again taken from the
product of ΣV T , given in Equation 3-51.

pi
k = αiθk (3-50)

ΣV T =



α1
1 · · · αq

1
...

...
α1

r · · · αq
r

0 · · · 0
...

...
0 · · · 0


=



α1
...
αr

0
...
0


(3-51)

3-5 Direct Relaxation

As rank constrained optimizations in general are NP-hard [27], the rank constraints present in LPV-
CONFUS and LPV-REFUS should be relaxed to allow lower computational times. This could be
accomplished by adding a term to the least squares objective function that will have a large magnitude
when the rank constraint is violated, and close to zero when it is fulfilled. Furthermore, convex terms
would be preferred.

One common approach is to add a scalar multiple of the nuclear norm of the rank constrained matrix
to the objective function [27]. The nuclear norm is defined as the sum of the singular values. As the
number of nonzero singular values equals the rank of the matrix, and the nuclear norm encourages
driving small singular values towards zero, the relaxation could be justified. Furthermore, when
coupled with the method for extracting a system with lower scheduling dimension through an SVD,
one could use the magnitude of the singular values of the resulting R-matrix to determine the desired
scheduling dimension.

Unfortunately, the relaxation will not work with the rank constraint of LPV-CONFUS, as the nuclear
norm is minimized when setting the terms that don’t appear explicitly in the leas squares part equal
to zero. The affected terms are αi and vec(Ai), vec(Bi), vec(Ci) and vec(Di), making it difficult to
reconstruct the LPV system with low scheduling dimension. In order to counter this, an iterative
relaxation algorithm is defined in Section 3-6.

A second alternative for LPV-REFUS could be to use a composite matrix norm, applying a vector
norm on each of the columns of the matrix R, and another on the resulting row-vector. A candidate for
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20 3. Full State Measurement

this would be to apply the infinity norm as the inner norm, and the one norm as the outer. The infinity
norm would only punish the largest value occurring in a system, while the one norm would drive the
maximum values of systems towards zero. The unnecessary scheduling signals could be removed based
on a threshold. By doing it this way, the results would be biased towards zero, encouraging a second
run with only the relevant scheduling signals and no constraints. It would not provide a guarantee
that the rank constraint is satisfied.

3-6 Iterative Relaxation

As discussed in Section 3-5, applying a direct relaxation of the rank constraints in LPV-CONFUS
using a nuclear norm will result in difficulties when trying to extract the low scheduling dimension
LPV system. The reason for this is that the nuclear norm of Ri with αi, Ai, Bi, Ci and Di equal to
zero is less than for the rank one solution. The magnitude of the largest singular value increases if the
parameters are different from zero. Thus one would have to find a way penalizing all but the largest
singular value for the rank constraints in LPV-CONFUS, and all but the largest r singular values of
LPV-REFUS.

In their paper, Yu et al. [27] utilize a similar rank constrained formulation to LPV-CONFUS. This
they propose to relax by subtracting the Ky-Fan norm from the nuclear norm. The Ky-Fan r-norm is
defined as the sum of the r largest singular values. Subtracting the Ky-Fan 1-norm from the nuclear
norm of Ri in LPV-CONFUS would allow the maximum singular value to be as large as necessary to
capture the dynamics, and would strongly favour the rank one solution.

An issue arising from subtracting the Ky-Fan norm is that the relaxed objective function is nonconvex.
This latter part is solved by using an algorithm solving a sequence of convex problems proposed in [27].
Algorithm 1 presents a way to solve a convex objective function f for the parameters Θ subject to a
rank constraint on the matrix function H(Θ) such that the latter has a rank less than or equal to r. U1
represents the first r columns of U , and V T

1 the first r rows of V T , where U and V T are the matrices
resulting from the singular value decomposition H(Θ) = UΣV T . The Ky-Fan norm is linearized using
Equation 3-52, and the current estimate Θj+1 is optimized with the matrices resulting from an SVD
of the previous optimum. As the weight ϕ goes towards infinity, the matrix is forced to have rank
r [27].

r∑
i=1

σi (H(Θ)) = tr
[
UT

1 H(Θ)V1
]

(3-52)

The iterative relaxation procedure can be used with both LPV-CONFUS and LPV-REFUS. For the
former, it is required, while the latter also can use a direct relaxation. Furthermore, the iterative
relaxation scheme is observed to drive the solutions away from R1 = · · · = Rr for LPV-CONFUS.
This is assumed to be an attribute of the linearization of the Ky-Fan norm along with inaccuracies
introduced by the numerical solver. Exactly how the division is determined is not known at the present
time.
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3. Full State Measurement 21

Algorithm 1 Convex-Concave Procedure [27]
j ← 0
U j

1 ← 0
V j

1 ← 0
Θ̂j ← 0
ϕ← ϕ0

while
(
f(Θ̂j−1)− f(Θ̂j) > ϵ or j = 0

)
and ϕ < ϕmax do

Θ̂j+1 ← arg minΘ f(Θ) + ϕ
(
∥H(Θ)∥∗ − tr

[
U j,T

1 H(Θ)V j
1

])
[
U j+1

1 U j+1
2
] [Σj+1

1 0
0 Σj+1

2

] [
V j+1,T

1
V j+1,T

2

]
← SVD(H(Θ̂j+1))

ϕ← µϕ where µ > 1
j ← j + 1

end while

3-7 Overview of Methods and Relaxations

The three different full state measurement methods and the two relaxations might not all be compatible
with a specific problem setting. To aid in selecting a suitable path, Figure 3-1 is provided as a guideline.
It could be seen as an expansion of the green block of Figure 2-2. If the scheduling variable is known,
the unconstrained least squares formulation of Section 3-2 is the simplest to implement and fastest
to execute. If one have a scheduling dimension equal to one, one might choose LPV-CONFUS, and
otherwise LPV-REFUS is recommended. The last has direct relaxation as an alternative, while both
LPV-CONFUS and LPV-REFUS are compatible with the iterative relaxation of Algorithm 1. LPV-
REFUS further requires an additional SVD to reduce the scheduling dimension. Figure 3-1 should
be considered as a roadmap, and the methods will be tested using the same data and scheduling
dictionary in Chapter 4.

Figure 3-1: Overview of use cases for the different full state measurement methods and relaxations
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Chapter 4

Full State Measurement Simulation
Experiment

This chapter demonstrates the use of the novel full state measurement algorithms of Chapter 3, and
presents their application to a simulated Continuously Stirred Tank Reactor (CSTR). A CSTR is an
industrial application where it is reasonable to have access to the full state through measurements [2].
Further, it’s dynamics are governed by nonlinear functions and an external signal that neither is
regarded an input, nor a state. At last, it has been used in [2] for demonstrating the performance of
their kernel based full state measurement method, and thus invites for comparison. First the analytical
model with corresponding parameters is presented in Section 4-1, before the simulation settings are
given in Section 4-2. Section 4-3 presents the dictionary of possible scheduling signals, while Sections
4-4 to 4-6 describes how the model performance is evaluated, presents the results, and compares them
to known other full state measurement methods.

4-1 Problem Description

The CSTR system is a common reactor unit in chemical process engineering, and it facilitates a
chemical reaction converting an inflowing liquid to a product [2]. The number of chemical reactions
happening inside the tank depends on the concentration of reactants and the reactor temperature.
In turn, the amount of reactions influence the reactant concentration and reactor temperature. A
schematic is given in Figure 4-1, and the reactor has an inflow, Qin, and an outflow, Qout. Furthermore,
the inflowing liquid has a concentration of reactants given by Cin and temperature Tin. Tc is the
temperature of the cooling liquid, and h the liquid level inside the tank.

The analytical model used for simulation is provided in Equations 4-1 and 4-2 [8], while the coef-
ficients and parameters for a steady-state solution are given in Table 4-I [2]. The temperature and
concentration inside the tank, Trc and Crc, are the system states, while the cooling temperature, Tc,
and inflow, Qin are the inputs. Due to improper mixing, different manufacturers etc., the reactant
concentration of the inflowing liquid, Cin, is assumed to vary over time and, allowed to deviate 50%
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24 4. Full State Measurement Simulation Experiment

from the nominal value [8]. This significant change in operating condition motivated the autors of [29]
and [8] to model the CSTR as an Linear Parameter-Varying (LPV) system.

Figure 4-1: CSTR, adapted from Figure 1 in [2]

Ċrc = Qin

Vrc
(Cin − Crc)− k0e

−EA
RrcTrc Crc (4-1)

Ṫrc = Qin

Vrc
(Tin − Trc)− UHEAHE

ρrcVrccρ
(Trc − Tc) + ∆Hk0

ρrccρ
e

−EA
RrcTrc Crc (4-2)

Inspecting the analytical equations, one observes three causes of nonlinearities, and one time-varying
signal. The term e

−EA
RTrc Crc appears in both equations, while Qin multiplies Crc and Trc in Equation 4-1

and Equation 4-2, respectively. At last, Qin multiplies the time-varying Cin. It is thus expected that
functions of both states and Cin should be included in the scheduling dictionary.

The assumptions are taken from [8], and are:

• The inflow rate, Qin, and outflow rate, Qout, are kept equal, resulting in a constant liquid level
h and liquid volume in the reactor Vrc.

• The reactor is mixed ideally, thus the concentration Crc and temperature Trc are uniform at any
moment in time.

• The physical properties of the tank and reaction remain constant over time.

• The coolant temperature Tc is equal over the heat exchanger.

• The temperature of the inflowing liquid Tin remains constant.

• The heat generated by the stirring can be neglected.

4-2 Simulation Description

In order to generate training and validation data, two different simulation runs were set up. The inputs,
outputs, initial states and inflow concentration variations were designed to replicate the simulations
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Table 4-I: Steady state operation point of the Continuously Stirred Tank Reactor model [2]

Vrc Reactor Volume 5 m3

Cin Concentration of the inflow liquid 800 kg/m3

Crc Concentration of the reactor 213.69 kg/m3

Qin Inflow rate 0.01 m3/s
Qout Outflow rate 0.01 m3/s
k0 Pre-exponential term 25 s−1

EA Activation energy of the reaction 30 kJ/kg
Tin Temperature of inflowing liquid 353 K
Trc Temperature in the reactor 428.5 K
Tc Coolant temperature 300 K
ρrc Density 800 kg/m3

cρ Specific heat 1 kJ/(kg·s)
∆H Heat of reaction 125 kJ/kg
UHE Heat transfer coefficient 1 kJ/(kg·s)
AHE Surface area of the heat exchanger 1 m2

h Liquid level (height) 5 m
Rrc Gas constant 8.31 J/(mol·K)

performed in [2] as closely as possible. Unfortunately, not all of the necessary information is available,
and where possible, [8] was consulted. The time-varying trajectory Cin was attempted reconstructed
from a Piece-Wise Affine (PWA) graph provided in [2]. The axes of the plot have low resolution,
and the reconstructed graph does not match the provided graph exactly. The first six hours of the
replicated time-varying trajectories for the training and validation runs are displayed in Figure 4-2.

Figure 4-2: Inflow concentration trajec-
tory Cin for training and validation, first
six hours Figure 4-3: Training inputs, first six hours

The system was simulated in continuous time using the Runge-Kutta 5(4) method [30] as implemented
by scipy 1. The simulation interval was from zero to 24 hours. The input signals were Pseudo Random
Binary Sequences (PRBSs) with 10% deviation from the steady state values of Qin and TC , consistent

1Scipy documentation, accessed 13.05.2023 online, URL: https://docs.scipy.org/doc/scipy/reference/
generated/scipy.integrate.solve_ivp.html#r179348322575-1
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26 4. Full State Measurement Simulation Experiment

with [8].The first six hours of training inputs are plotted in Figure 4-3. The input value is allowed to
change every 60 seconds, and the states are measured at the same time instance as the input updates.
Gaussian white noise signals with zero mean and variances σ2

Crc
= 1.5 and σ2

Trc
= 0.5 were added

to the tank concentration and temperature measurements. Tóth et al. reports that the variances
yield a Signal to Noise Ratio (SNR) of 30dB and 20dB for Crc and Trc, respectively [8]. In [8], the
training data is obtained through multiple runs with constant values of Cin. The inflow concentration
signal, Figure 4-2 reconstructed from Figure 5 of [2], results in larger variations in the temperature
and concentration measurements, resulting in far higher SNRs. The first six hours of training data
with added noise is plotted in Figure 4-4.

Figure 4-4: First six hours of the data used
for training

Figure 4-5: The seven signals of the
scheduling dictionary, first six hours

4-3 Model Identification

LPV state-space models were identified using the least squares approach for known scheduling from
Section 3-2, LPV-CONFUS from Section 3-3 and LPV-REFUS from Section 3-4. It was decided to use
a Fourier basis for the scheduling dictionary. The frequency factors were chosen such that the entire
dynamic range of the signal would be about (0, π) in order to make them roughly one to one with the
original functions. It was decided not to include signals depending on the inputs in the dictionary, as
both input channels only take two values each. Furthermore, the analytical equations do not include
nonlinearities introduced by only the inputs. It was decided to include functions of the states, which
makes the identified models quasi-LPV (qLPV) models.
The functions composing the dictionary are given in Table 4-II, and plotted in Figure 4-5. In the
remainder of this chapter, the scheduling signals keep their position in the dictionary, i.e. the first
entry is dependent on Trc, etc. The condition number of the resulting Ξ-matrix was found to be 40506,
indicating a difference of 5 in the order of magnitude between the largest and smallest singular values.
On a last note, the input Qin was multiplied by a factor 1000 before being passed to the identification
algorithm. This was done in order to reduce computational time and avoid excessively large entries in
the input matrices. This was found beneficial for the condition number of Ξ, as it used to be 40484474.
The effective decrease was a factor of about one thousand.
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Table 4-II: Scheduling dictionary entries, Fourier Basis

Dependency Variable Function
Temperature Reactor Trc cos

(
Trc

100
)

Concentration Reactor Crc cos
(

Crc

120
)

Concentration Reactor Crc cos
(

Crc

60
)

Concentration inflow Cin cos
(

Cin

450
)

Concentration inflow Cin cos
(

Cin

100
)

Concentration inflow Cin cos
(

Cin

600
)

Concentration inflow Cin cos
(

Cin

300
)

4-4 Performance Evaluation

Once a model was obtained using the algorithms of Chapter 3, the model performance was evaluated.
This was done by simulating the model from the nominal, true, initial condition, providing the same
input and Cin signal as when generating the validation data. The scheduling functions depending on
the system state was evaluated at every time step using the obtained simulated state.

The obtained LPV models were evaluated using the metric Best Fit Rate (BFR) given by Equation 4-
3. Here xk denotes the true state, x̂k the estimated state, and x̄ the entry-wise mean of the true
states. This metric was chosen, because it allows comparison with the results presented in [8] and [2].
The true states are noise free.

BFR = 100% ·max
(

1−
∑N+1

k=1 ∥xk − x̂k∥2∑N+1
k=1 ∥xk − x̄∥2

, 0
)

(4-3)

4-5 Results

This section presents the results and performance of the identified systems using the data found using
the settings described in Section 4-2. In total, four configurations were tested from the possible
combinations of problem formulations and relaxation methods described in Chapter 3. First, the
unregularized least squares formulation of [3]. Then LPV-CONFUS presented in Section 3-3 used
with Algorithm 1. LPV-REFUS was first used along with Algorithm 1, and then used in combination
with a direct relaxation. The identification was performed on a laptop with a intel(r) core(tm) i7-
10750h processor.

4-5-1 Least Squares Formulation

This subsection presents the results of using the unregularized least squares formulation presented
in [3] and replicated in Section 3-2 using all dictionary entries as scheduling variables. A plot of
the validation run is provided in Figure 4-6, and shows a quite accurate validation run. The largest
inaccuracies seems to occur between 1 and 2 hours, and between 6 and 7 hours. In both of these
regions, the peaks in concentration are underestimated.

The total computational time was 0.3 seconds, which is expected to be a lower limit for the methods
considered in this section. In the end, the BFR ends at 94% and the scheduling dimension remains
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28 4. Full State Measurement Simulation Experiment

unchanged at 7. Although exceeding the validation performance would be difficult, the objective of
LPV-CONFUS and LPV-REFUS would be to decrease the scheduling dimension, yielding models with
lower complexity.

Figure 4-6: Validation run after solving the
Least Squares problem from [3]

Figure 4-7: Validation run using LPV-
CONFUS with scheduling dimension r = 3

4-5-2 LPV-CONFUS

This subsection presents the results using LPV-CONFUS presented in Section 3-3, and utilizing Al-
gorithm 1 for optimization.

First, identification was attempted using a scheduling dimension r = 3. The algorithm was run using
ϕ = 1, 1, 5, 10, 100, 500, 700, 900, 1100, 1300, and the validation run can be seen in Figure 4-7. Here, the
discrepancies appear to be largest during the phases of increasing concentration, visible in the intervals
0-1 and 5-6. In these phases, the smaller oscillations remain rather accurate. In the temperature plot,
the changes appear to be predicted before they are measured. The BFR is 76%, and the computational
time 355.3 seconds.

An additional attempt was made, using a scheduling dimension r = 4. Again ϕ was set to take the
values 1, 1, 5,10, 100,500, 700,900, 1100 and 1300. The resulting validation run is plotted in Figure 4-8.
The estimate is close in the rising phases, and only the peaks in concentration between 1 and 2, 4
and 5, and 6 and 7 are underestimated. The BFR is calculated to be 88%, and the computational
time 128.5 seconds. As the results are more accurate and faster, these results are the ones that will
be considered in the final comparison.

At last, a closer look is taken on the identified optimal scheduling signals. They are plotted in
Figure 4-9, and the weights of the components in the original dictionary are given in Equation 4-4.
The dictionary entry with the lowest significance appears to be the fifth. This is understandable, as
it oscillates multiple times between the largest and smallest value of the inflow concentration, and
thus poorly represents the physical signal it is based on. The largest individual weights are given to
the sixth entry in the second scheduling signal. This is also visible in the plotted second entry of the
scheduling variable, seen in Figure 4-9.
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Figure 4-8: Validation run using the orig-
inal formulation with scheduling dimension
r = 4

Figure 4-9: The relevant scheduling signals
using LPV-CONFUS with scheduling dimen-
sion r = 4


α1
α2
α3
α4

 =


0.576 −0.106 −0.097 −0.214 −0.010 0.258 0.037
0.330 −0.599 0.219 0.374 −0.033 1.390 0.628
−0.704 −0.248 −0.111 −0.110 0.015 −0.898 −0.447
0.452 −0.211 0.293 0.0365 −0.015 0.942 0.249

 (4-4)

4-5-3 LPV-REFUS

This subsection displays the performance of the model obtained when using LPV-REFUS, presented in
Section 3-4. The algorithm was run with ϕ = 1, 1, 5, 10, 100, 500, 1000, 5000, 8000, 10000, 10500, 11000,
11500, 12000 and scheduling dimension r = 3. The validation run is displayed in Figure 4-10. From
the plot, it is evident that the model closely resembles the original system, and even the peaks are
well captured. The obtained BFR was 95%, achieved after a computational time of 71.1 seconds.

In order to gain insight in the determined scheduling variables, their time-evolution and weights are
presented in Figure 4-11 and Equation 4-5. As for LPV-CONFUS, the fifth entry appears to be quite
insignificant. The first entry, related to the reactor temperature, has a quite large influence in all
three scheduling variable entries, while the fourth, sixth and seventh entries vary quite significantly.
The moderate significance of the second and third entries could be explained by the fact that the only
nonlinear term in Equations 4-1 and 4-2 where neither the temperature, nor the inflow concentration
are involved, the reactor concentration multiplies the inflow. As the inflow was multiplied by a
thousand prior to identification in order to improve the numerical stability of the algorithms, the term
requires a lower weight.

Σ̄V T [0 : 3, :] =

α1
α2
α3

 =

 0.856 −0.622 0.660 1.348 −0.082 2.999 1.601
−0.597 −0.172 −0.032 −0.598 0.011 0.443 −0.060
−0.433 −0.223 0.058 0.382 −0.005 −0.141 0.063

 (4-5)

Master of Science Thesis Knut Roar Lende



30 4. Full State Measurement Simulation Experiment

Figure 4-10: Validation run after identifi-
cation using the LPV-REFUS formulation Figure 4-11: The relevant scheduling sig-

nals using LPV-REFUS

4-5-4 Direct Relaxation of LPV-REFUS

This section presents the result of using a non-iterative relaxation with LPV-REFUS. Specifically, a
composite matrix norm is used on R, taking the one norm across the infinity norms of the individual
columns. Consequently, one only penalizes the largest entry of a column of R, where a column of R
corresponds to all the matrix entries of the dynamical system multiplying a signal in the scheduling
dictionary. The relevant signals can then be filtered out based on the magnitude of the largest entry
in it’s corresponding system.

Figure 4-12: Validation run after identification using the composite 1−∞ norm presented in Section 3-5
and LPV-REFUS

The plot of the validation run is given in Figure 4-12. The peaks in concentration happening between
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one and two appear accurately estimated, as are the spikes around seven. There is little to distinguish
this result from the other methods. The BFR is computed to be 94%, with a computational time of
7.7 seconds and a scheduling dimension equal to 6. The weight on the relaxation was set equal to 30,
and the threshold to 0.1. The dictionary not included corresponded to entry number 5, concentration
inflow 2. This is consistent with the other results using LPV-CONFUS and LPV-REFUS.

4-6 Comparison

This section compares the results obtained in Section 4-5 with each other, and results from other
papers using different methods to identify the same system.
The CSTR example has been studied for other LPV identification approaches, notably [2] and [8].
To enable a fair comparison, care has been taken to reconstruct the simulations from these papers as
accurately as possible. As no analytical expressions for the scheduling and input signal were provided,
they have been attempted reconstructed from the provided graphs. Some discrepancies still occur, for
example in the PWA signal for the inflow concentration.
The method used for identification in [2] is briefly discussed in Appendix A. A different approach by
Tóth et al. [8] identifies an LPV Input-Output (IO) model based on Orthonormal Basis Functions
(OBFs). The IO model mapped the past eight inputs and scheduling variables to the next output. As
such, the model is severely different from a state-space model, and the resulting scheduling dimension
remains unknown. The computational time needed for training is also not reported.

Table 4-III: Performance of different full state measurement methods on the Continuously Stirred Tank
Reactor. *The method was implemented and evaluated as part of this thesis. †The number is estimated
as part of this thesis.

Method [8] [2] Least Squares[3]* LPV-CONFUS LPV-REFUS Direct
BFR 97% 85% 94% 88% 95% 94%

Runtime [s] N/A N/A 0.3 128.5 71.1 7.7
Resulting r N/A 101† 7 4 3 6
Reduces r × × × ✓ ✓ ✓

The identification results are given in Table 4-III, along with some key parameters. In terms of BFR,
the IO model from [8] is found to perform the best of the considered methods. It is followed by LPV-
REFUS, first using Algorithm 1 for relaxation, and then using a direct relaxation. The regular least
squares formulation from [3] performs similar to the latter with a BFR of 94%. The last two spots are
occupied by LPV-CONFUS, and the kernel method from [2]. The comparatively poor performance of
the latter has been ascribed to the limited information available in the Radial Basis Functions (RBFs)
with the reported kernel parameters. Furthermore, significant nonlinear contributions come from
interactions between the states. More details are provided in Appendix A.
In terms of computational time, it is evident that the simpler formulations are quicker. The least
squares formulation only takes 0.4 seconds to converge, and the direct relaxation of LPV-REFUS
converges in 7.7 seconds. From there, the computational time increases drastically as the iterative
relaxation is utilized. Using iterative relaxation, one is forced to solve multiple optimization problems.
First, LPV-REFUS taking 71.1 seconds, before LPV-CONFUS needing 128.5 seconds. This last
increase is ascribed to the increased number of variables, and more complex problem composition.
From the perspective of scheduling dimension, LPV-REFUS with iterative relaxation is able to reduce
it from seven to three, including a small increase in validation performance. The iterative relaxations
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here perform better than the direct and non-regularized methods, resulting in simpler models with
lower scheduling dimensions. The main benefit of a lower scheduling dimension is that it reduces the
effort of designing an LPV controller to regulate the system [15].
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Chapter 5

State Sequence Estimation

The number of use cases where one knows a full state measurement is available is limited. Estimating
the state sequence has been one of the main research areas in the past decades, and is at the core
of [16], [19], [20] and others presented in Sections 2-4 and 2-5. However, circumventing the curse of
dimensionality without obtaining an excessive overhead remains an open problem. Furthermore, the
neural network approaches referred to in Section 2-5 all assume a known state dimension. This chapter
presents a method from literature that might be coupled with the full state measurement approaches
of Chapter 3 in order to obtain an quasi-Linear Parameter-Varying (LPV) (qLPV) state space model
in a curse of dimensionality free way. The state sequence estimation approach was first presented
in [31]. First a definition of the system state is given in Section 5-1. Then, the method for state
estimation and state dimension determination from [31] is presented in Section 5-2 and Section 5-3,
respectively. The proposed framework is then tested on the simulation example from [31] and a qLPV
model is identified in Section 5-4. At last, the obtained results are briefly discussed.

5-1 State Definition

At the core of identifying a state sequence from Input-Output (IO) measurements is the assumption
that one can reconstruct the relation between them. In continuous time, the definition of a state is the
variables whose dynamics can be described exactly by first order differential equations [7]. Friedland [7]
further stresses the importance of the future trajectory to be determined by the current system state
and future inputs. Knowledge of the state would thus remove any need to remember past states,
inputs and outputs in order to predict the future.

LPV-SUBNET [1] uses a neural network to estimate the current state from the past s inputs and
outputs. This state encoder is represented by the gray trapezoid ψξ in Figure 2-1. Verhoek et al. [1]
argue the existence of such a map through the state reconstruction theory, and refers to [10], who in
turn refers to [32].

Verdult et al. [31] restates the theory of embedding of nonautonomous dynamics. The key aspect is
that the nonlinear map from the current state and next 2n inputs to the current and consecutive 2n
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measurements is an embedding under mild assumptions [33], allowing reconstruction of the dynamics
from a finite number of input and output measurements. Here n represent the original state dimension,
which in practice is unknown. The requirement of 2n+1 delayed measurements is an upper bound [33].
In other words, one could use a subset of 2n + 1 consecutive measurements as the system state, and
identify a corresponding LPV state space model. However, as general dynamical systems allow inputs,
this would entail the current state being dependent on future inputs. The following section presents
how this influence could be removed.

5-2 State Estimation

In the paper by Verdult et al. [31], an approach for identifying nonlinear state space models from IO
data is proposed. The core idea of this chapter is to use the same approach up until the last step.
Instead of identifying a general nonlinear state space, one would identify a qLPV system. An overview
for the approach for state estimation is given by the gray boxes of Figure 5-1.
A central idea in [31] is the proposal to remove the influence of future inputs on the current state by
using a nonlinear IO model, GIO, in order to simulate 2n + 1 time steps into the future with zero
input. This simulation is described by Equations 5-1 and 5-2. The current state x̂k is then taken equal
to the current measurement and the simulated next 2n + 1 outputs as described in Equation 5-3. If
the dynamics are slow relative to the sampling frequency, one could consider projecting further into
the future, and scaling the index of the past inputs and outputs accordingly.

ŷk+1 = GIO(yk, yk−1, · · · , yk−sp
, uk, uk−1 · · · , uk−sp

) (5-1)
ŷk+2 = GIO(ŷk+1, yk, · · · , yk−sp+1, 0, uk, · · · , uk−sp+1) (5-2)

x̂k =
[
yk ŷk+1 · · · ŷk+2n

]
(5-3)

An advantage of training a nonlinear IO compared to the recurrent neural network structures, is that
the IO model has a simpler overall structure. This leads to simpler backpropagation, and quicker
training times.

5-3 Determining the State Dimension

Once again, as 2n + 1 is an upper limit on the number of delayed measurements, and thus it might
be possible to accomplish a lower state dimension. Verdult et al. [31] suggests doing this based on the
method of false nearest neighbours [24]. Two neighbours are considered false if the square root of the
relative euclidean distance between two vectors x̂1 and x̂1 increases more than a preset threshold, δ,
when including an additional time-delayed measurement. This criterion is restated in Equation 5-4,
where x̂1[τ ] denotes the τ -th element of x̂1, and x̂1[1 : τ − 1] means the sub-vector consisting of the
first τ − 1 entries of x̂1.

|x̂1[τ ]− x̂2[τ ]|
∥x̂1[1 : τ − 1]− x̂2[1 : τ − 1]∥2

> δ (5-4)

The estimated state dimension n̂ is determined by increasing τ in increments of 1 starting from 1, and
when the total number of false nearest neighbours is close to zero, n̂ = τ . Every combination of x̂i,
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Figure 5-1: Proposed scheme for LPV system identification from IO measurements

x̂j , such that i, j = 1, · · ·N and i ̸= j is evaluated for every τ . The method is also used to determine
the number of past inputs and outputs to use in the nonlinear IO model. From Figure 5-1, one can see
that the only unaided user decision associated with determining the state dimension is the threshold
δ. Once δ is decided, n̂ can be read from a graph.

The embedding delay, η, determines the entries from x̂k to be included in the final estimated state x̂k.
It is proposed determined via the autocorrelation function of x̂k and the first minimum of the mutual
information criterion [34]. The final state estimate is thus given by Equation 5-5.

x̂k =
[
yk ŷk+η ŷk+2η · · · ŷk+(n̂−1)η

]
(5-5)
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5-4 Simulation Example

This section discusses an attempt to recreate the results presented in [31]. Instead of a nonlinear state
space model, a qLPV model is identified using the estimated state sequence. The parameters s = 2,
n̂ = 2, η = 5 and the structure of the nonlinear IO model was taken equal to the ones presented in [31].

5-4-1 Simulation Setup

The identification example presented in [31] is centered around the system in Equation 5-6. A neural
network with one hidden layer of five neurons was trained to map two past IO measurements to the
consecutive output measurement. The embedding dimension of two was again determined through
the Lipschitz numbers and false nearest neighbours. The activation functions of the network was not
specified, and 600 datapoints were considered available for training. They were collected at a sampling
frequency of 20Hz. The input is zero-order hold white noise with a uniform distribution between -0.5
and 0.5. To stay consistent with the rest of the thesis, (xi) indicates the i-th state. The superscripts
appearing outside brackets are actual exponents.

ẋ1 = x2 − 0.1 cos(x1)(5x1 − 4(x1)3 + (x1)5)− 0.5 cos(x1)u (5-6)

ẋ2 = −65x1 + 50(x1)3 − 15(x1)5 − x2 − 100u

y = x1 (5-7)

5-4-2 Nonlinear Input-Output Model

The nonlinear IO model was attempted replicated using a neural network with one hidden layer of
five neurons, mapping the two past IO measurements to the next output. The tanh function was
used for activation, and the network was implemented using the sequential model from Tensorflow1.
It was difficult to find a nonlinear IO model with acceptable performance. Despite assuming a noise
free output, consistent with [31], no success was had training on only 600 datapoints. The number of
datapoints were thus increased to 1200. A random initialization and 5000 epochs were utilized. The
training time of the network was about two and a half minutes.

V AF (y, ŷ) = max
(

0,
(

1−
∑N

k=1 ∥yk − ŷk∥2
2∑N

k=1 ∥yk∥2
2

)
· 100%

)
(5-8)

The IO model’s performance on the training data is displayed in Figures 5-2 and 5-3. It is clearly
well-fit to the training data. However, running the IO model in open loop, using only the first two
measurement and inputs of a new dataset, one obtains a Variance Accounted For (VAF) of 60%. The
VAF is defined in Equation 5-8 [5]. The simulation run is displayed in Figures 5-4 and 5-5. The poor
validation performance indicates that the IO model is overfit. This could be avoided by decreasing the
model complexity, for example reducing to four neurons, by increasing the amount of data available,
as already done, or by employing some regularization, for example 1-norm constraints on the neuron
weights. Based on plots in [31], the nonlinear IO model obtained by Verdult et al. achieved better

1Tensorflow documentation. Accessed online 10.05.2023 URL: https://www.tensorflow.org/guide/keras/
sequential_model
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Figure 5-2: Using the IO-model to predict
the next output of the training data

Figure 5-3: Closeup of Figure 5-2 showing
the first 20 seconds

performance. No quantitative measure of performance was provided for validating the IO model.
Despite the comparatively poor performance, the obtained IO model was nonetheless used to estimate
a state sequence with two states. The true measurement, and the fifth forward prediction under zero
input were utilized, consistent with [31].

Figure 5-4: Validating the IO model on a
new dataset

Figure 5-5: Closeup of Figure 5-4 showing
the first 20 seconds

5-4-3 LPV Identification From Estimated States

The estimated state sequence was then used to estimate an LPV model. A dictionary with various
polynomials of x1 and x2, and products between cos(x1) and the polynomials of x1 were used. The
polynomials were normalized through dividing by the maximal value encountered to the order of the
polynomial, i.e. (x̂1)3/(maxk x̂

1
k)3. In total, the dictionary had 20 entries. A non-iterative, nuclear

norm was used for relaxation of the higher scheduling dimension formulation.
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Figure 5-6: Validation run of the identified
LPV model

Figure 5-7: Closeup of Figure 5-6 showing
the first 20 seconds

The identified LPV model was run on the validation data set, and the results are displayed in Figures
5-6 and 5-7. Here, the VAF ended on 73%, and the Best Fit Rate (BFR) was 52%. The higher fit
compared to the nonlinear IO model is ascribed to the fact that the LPV algorithm has access to
one true state, and only one state estimate is generated using the IO model. All the nonlinearities of
the true model are associated with this one known state, which reduces the importance of the second
state. Furthermore, comparatively few consecutive updates had to be performed by the nonlinear IO
model in order to obtain the estimate of the second state.

5-5 Discussion

Although the simulation results presented in the previous section are relatively poor, the possible
flexibility of the LPV identification algorithm is significant. It allows estimating the state dimension,
state sequence, scheduling variable, and an affine LPV system in a curse of dimensionality free way,
albeit with a significant computational overhead. Furthermore, the algorithm can be executed in
smaller parts with feedback available in-between, allowing adjustments to be made underway.

When coupling the full state measurement methods to a state sequence estimate based entirely on IO
data, new complexities arise with regards to creating the scheduling dictionary. If one have access to
measurements, a suggestion would be to base it on those, but the parameter variation might not be
captured in an explicit measurement for some Linear Time-Varying (LTV) systems. The ability of the
nonlinear IO model to capture such kinds of time-varying dynamics should be thoroughly investigated.
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Chapter 6

Conclusion and Outlook

This chapter presents the conclusions that can be drawn from the thesis, and give an overview of
recommended future research areas.

6-1 Conclusion

This thesis has, presented the derivation of two novel full state measurement Linear Parameter-Varying
(LPV) identification algorithms that estimate scheduling variables and system matrices from Input-
Output (IO) data and a dictionary of possible scheduling signals. The reduced scheduling dimension
makes it feasible to model nonlinear system as LPV models.

The full state measurement methods were demonstrated on a Continuously Stirred Tank Reactor
(CSTR), and were in some formulations found to outperform current LPV state-space identification
algorithms in terms of Best Fit Rate (BFR). This comes at the cost of an increased runtime. Further-
more, the proposed methods were capable of reducing the scheduling dimension, reducing the effort
of designing controllers.

At last, a curse of dimensionality free way of estimating a state sequence for single output nonlinear
systems was revisited and used to identify a quasi-LPV (qLPV) model using a full state measurement
method. Although the identified qLPV model displayed low validation performance, the results work
as a proof of concept for a curse of dimensionality free qLPV identification algorithm capable of deter-
mining both state dimension, scheduling variable and dynamics from IO measurements. Furhtermore,
the simple structure of the nonlinear IO model allows lower training times.

6-2 Outlook

In the future, it would be interesting to see how the proposed full state measurement methods LPV-
CONFUS and LPV-REFUS perform on noisy, real-world data. It is expected that introducing more
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noisy measurements in the scheduling dictionary might cause longer computational times. Further-
more, one might find it more difficult to decrease the scheduling dimension. As an extension, one
should also test the state sequence estimation algorithm in a similar setting.

It is also recommended to test the state sequence estimation scheme on a different set of systems.
These would have larger state dimension and nonlinearities associated with more than one state.

Furthermore, one might consider extending the state sequence estimation algorithm to include more
general LPV systems. This would include investigating the time variations that could be captured
without passing them to the nonlinear IO model. One might also consider passing a dictionary to the
nonlinear IO model.

At last, one might consider extending the method to blind LPV identification through adding an
additional rank constraint in the state space identification step. This would also require determining
convergence criteria on the combined rank constraints.
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Appendix A

Continuously Stirred Tank Reactor
Identification Using Radial Basis

Functions

This appendix discusses the method developed in [2], and presents the results from using a full state
measurement method with the basis functions used in the same paper. The experiment is the same
as the one used in Chapter 4, and the details will not be restated here.

Instead of using the Fourier basis, attempts were made at using the Radial Basis Functions (RBFs)
introduced in [2] together with the LPV-REFUS formulation. In [2] the authors argues the use of
Cin based RBFs based on the change of the step response for different constant values of Cin. The
equivalent affine representation presented in Equation A-1, where xi is the state at the i-th time step,
ωi are unknown weights, in a row-vector, such that ωixi defines a matrix. The weights are obtained
during training of the model.

A(pk) =
N∑

i=1
ωix

T
i e

(pk−pi)2

2σ2 (A-1)

The term e
(pk−pi)2

2σ2 equals one when pk = pi, and approach zero as the difference between them
grows. After a fine grid search, the authors of [2] decide to use σ2 = 620, yielding rather wide RBFs.
Furthermore, the affine representation has a scheduling dimension equal to the number of unique
values of pi encountered in the training data. For the reconstructed training signal in Figure 4-2, a
scheduling dimension of 101 would be necessary.

The time variation of 17 of the 101 scheduling signals are plotted in Figure A-1, and one can observe
that they are fairly similar. Computing the condition number of the least-squares part of the opti-
mization problem, as described in Section 3-2, one finds it in the order of 1018. Thus the RBFs based
on Cin with the kernel parameter of 6202 is not found informative enough to identify a meaningful
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Linear Parameter-Varying (LPV) model. It was found that the algorithm devised for higher scheduling
dimension struggles to converge with a dictionary of more than 17 entries. The corresponding results
can be seen in Figure A-3.

Figure A-1: RBF dictionary with a kernel
parameter of σ2 = 6202

Figure A-2: RBF dictionary with a kernel
parameter σ2 = 552

Parallels were drawn between the gain-scheduling techniques mentioned in Section 2-2 and the nature
of the RBFs. It was thus decided to run a second attempt with RBFs and a much lower kernel
parameter, ensuring only a couple of the functions are active at the same time. The time evolution
of the dictionary can be seen in Figure A-2 for the same 17 RBF centers as in Figure A-1. and the
result is displayed in Figure A-4. Clearly the concentration increase between 4 and 6 hours is not well
captured, neither is the temperature. It is visible from Table A-I that the Best Fit Rate (BFR) goes
down from 77% to 71%. This could be ascribed to the combination of limited data points available in
the middle range of Cin and a comparatively large influence of the neighbouring functions.

Table A-I: Attempts using a radial basis function basis, similar to [2]

Number of functions kernel parameter BFR Computation Time [s] Condition Number
3 620 79% 0.3 3.3 · 104

9 620 78% 16.2 2.7 · 1015

17 620 79% 20.3 9.9 · 1017

9 55 77% 0.4 2.1 · 103

17 55 71% 1.1 1.3 · 105

Table A-I shows the numerical measure of the validation performance along with the computational
time and the condition number for various dictionaries. One here sees a clear correlation between
the condition number of the least squares problem and the computational time. Furthermore, the
performance is significantly lower compared to the results reported in Chapter 4.
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Figure A-3: Validation run using 17RBFs
with kernel parameter σ2 = 6202

Figure A-4: Validation run using 17RBFs
with kernel parameter σ2 = 552
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Glossary

List of Acronyms

LPV Linear Parameter-Varying
IO Input-Output
VAF Variance Accounted For
LTI Linear Time-Invariant
CSTR Continuously Stirred Tank Reactor
RBF Radial Basis Function
PEM Prediction Error Method
SVD Singular Value Decomposition
qLPV quasi-Linear Parameter-Varying (LPV)
PWA Piece-Wise Affine
PRBS Pseudo Random Binary Sequence
SNR Signal to Noise Ratio
BFR Best Fit Rate
LTV Linear Time-Varying
LQR Linear Quadratic Regulator
MPC Model Predictive Control
OBF Orthonormal Basis Function
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List of Symbols

A(·) Matrix function governing the influence of the current state on the next state

Ai Sum of all Ai
j with i in the superscript, multiplying the same entry in θ

Aj
i The product of Ai and αj

i

Ai Matrix governing the influence of the current state on the next state, multiplies the i-th
entry of the scheduling signal/vector

AHE Surface area of the heat exchanger

B(·) Matrix function governing the influence of the current input on the next state

Bi Sum of all Bi
j with i in the superscript, multiplying the same entry in θ

Bj
i The product of Bi and αj

i

Bi Matrix governing the influence of the current input on the next state, multiplies the
i-th entry of the scheduling signal/vector

C(·) Matrix function governing the influence of the current state on the current output

Ci Sum of all Ci
j with i in the superscript, multiplying the same entry in θ

Cj
i The product of Ci and αj

i

Ci Matrix governing the influence of the current state on the next output, multiplies the
i-th entry of the scheduling signal/vector

Cin Inflow concentration

Crc Concentration in the reactor

D(·) Matrix function governing the influence of the current input on the current output

Di Sum of all Di
j with i in the superscript, multiplying the same entry in θ

Dj
i The product of Di and αj

i
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52 List of Symbols

Di Matrix governing the influence of the current input on the next output, multiplies the
i-th entry of the scheduling signal/vector

EA Activation energy of the reaction

H(·) Matrix function

N Number of data points

Qin Inflow rate

Qout Outflow rate

R Matrix used to define the rank constraint for LPV-REFUS

Ri Matrix used to define the rank constraint for the i-th entry of the scheduling variable
using LPV-CONFUS

Rrc Gas constant

Tc Coolant temperature

Tin Temperature of the inflowing liquid

Trc Temperature in the reactor

U Unitary matrix containing the left-hand singular vectors of R

UHE Heat transfer coefficient of the heat exchanger

V T Unitary matrix containing the right-hand singular vectors of R

Vrc Reactor Volume

Ā Composite matrix consisting of the sums over i of Aj
i stacked next to each other with

increasing j

B̄ Composite matrix consisting of the sums over i of Bj
i stacked next to each other with

increasing j

C̄ Composite matrix consisting of the sums over i of Cj
i stacked next to each other with

increasing j

D̄ Composite matrix consisting of the sums over i of Dj
i stacked next to each other with

increasing j

Σ̄ Matrix containing the r largest singular values of R

∆H Heat of the reaction

∆ General matrix used in proofs

Φ The matrix multiplying the vector of unknowns in the regular least squares formulation

Σ Matrix containing the singular values of R

Θ Generalized optimization variables
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List of Symbols 53

Ξ Matrix with the same κ2 as Φ

αi Row vector with the weights relating θk to pi
k

αj
i Scalar weight relating θj

k to pi
k

β Scalar variable used in proofs

δ Threshold for the false nearest neighbour approach

δs Threshold, false nearest neighbour, number of past inputs and outputs considered by
the nonlinear input-output model

ϵk Error vector at time step k

η Embedding delay used to determine the final entries in the state estimate

γ Vector of unknowns in the regular least squares formulation

x̂ State estimate using a nonlinear Input-Output (IO) model with zero future inputs

κ2 Condition number using the 2-norm

ω Weight in the affine representation obtained by [2]

ϕ Iterative weight in the convex-concave procedure

π Ratio of the circumference to the diameter of a circle, 3.14....

ψ Vector of knowns in the regular least squares formulation

ρKS Number of unknowns for the full state measurement with Known Scheduling

ρLP V −CONF US Number of unknowns for the rank constrained full state measurement with unknown
scheduling

ρLP V −REF US Number of unknowns for the reduced rank constrained full state measurement with
unknown scheduling

ρrc Density of the reactant for the continuously stirred tank reactor example

σ2 Variance

σi i-th largest singular value of R

τ Iterator used to determine the state dimension

θ Dictionary of scheduling signals

ξp Nonlinear map from past inputs and outputs to a current state estimate

ζ Nonlinear map computing the optimal scheduling variable based on the current system
state estimate and input

cρ Specific heat

h Liquid level, height

i Iterator or counter
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54 List of Symbols

j Iterator or counter

k time step indicator

k0 Pre-exponential term in the analytical equations for the continuously stirred tank reac-
tor

l Output dimension

m Input dimension

n State dimension

pk Scheduling variable or vector at time step k

pi
k i-th entry of the scheduling variable or vector at time step k

q Number of entries in the scheduling dictionary θ

r Scheduling Dimension

uk Input at time step k

xk State at time step k

yk Output at time step k
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