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Preface

This report describes the research I’ve completed as part of my MSc. study at the TU Delft. It was com-
missioned by Fizyr, a vision software company located in Delft working on automated picking of unknown
objects, with the goal of improving upon the existing methods for grasping unknown objects.

The findings of the completed research have been compiled in a paper which can be found as Part 1 of this
report. Appendices have been added as Part 2 to elaborate on the design choices made during the research.
Beginning with the implementation and evaluation of the state of the art Dexnet grasp pipeline described in
Appendix A. Followed by the creation of an annotation tool to obtain the data to train a newly proposed local
grasp evaluator neural network and the training of this network described in Appendices B and C. Finishing
with the experimental evaluation of the newly proposed grasp pipeline described in Appendices D-F.

I couldn’t have completed this research on my own. The first person I want to mention and thank is
Wenjie Duan for his collaboration on the implementation and experimental evaluation of the Dexnet grasp
pipeline. Together this went faster and better than I could have done by myself. Secondly I want to thank my
supervisors from the university Carlos Corbato and Martijn Wisse for their guidance and feedback. Finally I
want to thank all the employees from Fizyr for their assistance and advice during the research. A few of them
I wish to name specifically: Enrico Liscio for his guidance as supervisor within the company; Bas van Mil
for his assistance related to the physical experimental setup; and finally Hans Gaiser, Maarten de Vries and
Valerio Carpani for their assistance and suggestions related to the software.

F.A.R. van Tilburg
Delft, August 2021
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Abstract—Suction based robotic actuators have potential for
the bin-picking industry, but are currently not usable due the
needed speed, accuracy and ability to handle novel and adver-
sarial objects. An evaluation of the state of the art grasp pipeline
developed by Mahler et al. [1] for detecting grasps on novel
objects lead us to split the problem of robotic grasp generation
into a global and a local component. The state of the art solution
had the ability to fill the role of global evaluator leaving a
local evaluator to be developed. This local grasp evaluator was
obtained by training a neural network on a suction based grasp
dataset, which was created using a newly developed annotation
tool. The proposed grasp pipeline obtained by combining these
two showed a 95.27% pick success rate for a random setup and
a 90.28% success rate for solely novel objects.

Index Terms—novel objects, robotic bin picking, suction grasp-
ing

I. INTRODUCTION

Automation in warehousing has come a long way with
mobile storage solutions, but there is still a final problem
to solve: the task of bin-picking still has to be completed
by a human. The action that has to be executed fast and
accurately is still too difficult for robotic systems due to
the chaotic environment caused by the immense amount of
unknown objects and all their possible orientations. However,
solving this problem would allow robotic systems to function
in a large variety of situations making it an important topic
of research. Therefore, work is being done on this problem
by researchers as well as companies such as the one behind
this research Fizyr; a vision software company specializing in
automated picking.

Grasp pipelines nowadays make use of neural networks
to determine possible grasp areas followed by heuristics to
determine the best grasp point, allowing for sub-second cal-
culation times. A new method proposed by Mahler et al. [1]
suggests to flip this around by using a heuristic generation
of possible grasp areas followed by a neural network, trained
on the wrench resistance based Dexnet dataset, to evaluate
which of the generated grasp points will most likely result
in a successful grasp attempt. Especially exciting about this
new Dexnet based grasp pipeline is that, while comparative
slower, it achieves a higher accuracy on novel adversarial
objects compared to the general approach.

In this paper we decided to build further on the high
picking accuracy on novel adversarial objects achieved by this
Dexnet based grasp pipeline by evaluating its shortcomings
and suggesting a potential improvement: the addition of a
second neural network to work sequentially with the existing
Dexnet based one. This new neural network would function
as local grasp evaluator, i.e. can a suction seal be achieved,
while the Dexnet based neural network, which is trained on
wrench resistance, would function as global evaluator, i.e. can
a graspable point result in a successful pick with the forces
and torques acting on it. The data required for the training of
the proposed local evaluator network is obtained using a newly
developed annotation tool as presently no such tool exists for
the creation of a suction based grasp database.

This paper makes four contributions:
1) An evaluation of the state of the art Dexnet based grasp

pipeline [1].
2) The creation of an annotation tool for suction based

grasps.
3) A dataset of suction based grasps that includes additional

information for alternative applications.
4) A new hybrid grasp pipeline with experimentally ob-

tained data on picking accuracy and speed.

II. RELATED WORK

A decent amount of research exists for robotic grasping, but
unfortunately most of it is focused on using pinch grippers
leaving the work on robotic suction grasping lacking [5].
The research that has been done for suction grasping can
generally be divided in two types: analytical and empirical.
Analytical approaches generate grasps using models and/or
constraints such as the gripper models by Domae et al. [6]
and the surface models by Vona and Kanoulas [7]. Such
methods can potentially work for adversarial objects, but are
restricted by strict heuristic thresholds and can take multiple
seconds to determine a grasp pose. Empirical approaches on
the other hand make use of a knowledge base that has been
acquired previously such as feature detection by Saxena et
al. [8] and the use of deep learning such as done by Zeng
et al. [9]. The method of using neural networks has been the
most popular in recent years due to it’s sub-second calculation



times. The recent work by Mahler et al. [1] shows especially
good results. Achieving close to a 98% success rate for basic
objects, defined as prismatic solid shapes in [1], and a 58%
success rate for adversarial ones, defined as complex geometric
shapes in [1], which could be pushed to 81% at the cost of
the success rate on simpler objects. This high accuracy for the
most difficult type of object to pick in addition to their wrench
force based approach made us decide to evaluate the created
grasp pipeline to figure out what would be the best direction
to expand on it.

III. PROBLEM STATEMENT

We want to use a single-view point cloud or depth image as
input to get a point on a novel object where it can be grasped
in such a way that suction can be achieved and the object can
be lifted and moved without being dropped. Only a single,
top-down, viewpoint is desired compared to multiple as the
latter would likely increase the time between potential picks
due to having to record and parse multiple images per grasp
attempt.

For this task we use the following assumptions:
• The evaluated objects consists of a material that can be

grasped using a suction/vacuum based actuator, so no
porous materials.

• The objects can be unknown to the grasp planner.
• The point cloud or depth image is taken by a single 3D

camera mounted above the workspace.
• The point cloud is segmented so the grasp planner only

sees a singular object when multiple objects are present
in the workspace.

• The objects pose is stable and can be grasped in its
current orientation without shifting.

• A suction cup with a diameter of 20 mm is used.
The objective of this research is to develop a grasp pipeline

that is able to find a grasp that maximizes the likelihood of
a successful robotic pick for novel objects irrelevant of their
structural difficulty.

IV. DEXNET 3 EVALUATION

Because of the great results shown by Mahler et al. [1]
compared to the rest of the scientific work on robotic suction
grasping we’ve made the decision to use their Dexnet based
grasp pipeline as a starting point for this research. In order
to have a better idea of the direction to take this research
we started with an experimental evaluation to find the grasp
pipelines’ limitations and possible areas for improvement.

The Dexnet based grasp pipeline consists of two parts that
are combined iteratively as shown by Figure 1: A uniform
sampler suggesting possible grasp locations on the object and
a neural network that has been trained on wrench resistance
using the analytical model shown by Figure 2.

The sampled points are evaluated by the neural network
after which the point with the highest score is returned to
the uniform sampler to sample points around this point. This
iterative process is repeated three times after which the grasp

Fig. 1. Schematic of the iterative Dexnet based grasp pipeline.

point with the highest score given by the neural network is
selected as executable grasp.

Fig. 2. The analytical model developed by Mahler et al. [1] to create the
Dexnet 3 dataset from simulated objects. It determines both the forces and
torques around the grasp point as well as a basic contact seal evaluation.

A. Setup

A 1280x1024 2D image and pixel aligned point cloud
are recorded with an IDS NXT camera and a N35 Ensenso
stereo camera respectively, both placed 1.5 meter above the
workspace. The neural network used a NVIDIA GTX 1080 Ti
video card to determine the graspability of the grasp locations.
After which the best grasps were executed using an UR5
robotic arm equipped with a 20 mm �double bellow silicon
suction cup. A visualization of the experimental setup can be
seen in Figure 3. Grasp attempts were marked as a success if
the object was picked up and moved without being dropped.

During the evaluation of the Dexnet grasp pipeline sin-
gle objects were placed in the workspace and detected by
removing the background from the point cloud leaving a
segmented point cloud containing only the object, which was
then evaluated using the grasp pipeline.

B. Results

Forty-one different objects, ranging from basic to adversar-
ial in shape as defined by Mahler et all. [1] were evaluated in
three to five different orientations, depending on the shape of
the object, leading to 177 grasp attempts of which 110 were
successful. This success rate of 62% is lower than reported
by Mahler et al. as only three of the evaluated objects could
be deemed adversarial instead of basic or typical. Some of the
errors were the result of grasp attempt on top of object surface
structures, such as ridges, that weren’t visible in the point
cloud, but not all of them. On the contrary, a large amount of
errors were caused by the generated grasp being located on top
of edges or holes within the objects surface that were visible
in the point cloud and should therefore have been evaded. A
second observation was the existence of grasp attempts near



Fig. 3. The experimental setup used for all experiments. A UR 5 robotic
arm equiped with Fizyrs swivel gripper, an end effector with two additional
degrees of freedom to increase the arms range of motion and the ability to
disconnect from the robotic arm to prevent potential damage in case a grasp
point is wrong.

the edge of objects while those objects could easily be grasped
closer to the center. This was a surprise due to the fact that the
network was primarily trained on the forces and torques acting
on the grasp location, suggesting it would be more likely to
generate grasps near the center or mass.

C. Conclusion

The results from the evaluation suggest that the Dexnet
based grasp pipeline has difficulty determining whether a
suction seal between gripper and object surface could be
achieved. Not too surprising, since the neural network has been
predominantly trained on wrench resistance. This, combined
with a potential bad initial sampling, is possibly also the cause
of the grasp attempts near the edges of the objects. The training
on wrench resistance does not matter if the few initial samples
near the center of mass of an object are deemed unlikely to
result in a successful pick due to noise in the point cloud,
pushing the iterative process towards the edge of the object.

The observed issues lead to the decision to add another
neural network in sequence with the existing one, resulting in
the new grasp pipeline shown by Figure 4. This new neural
network will determine which points on the objects surface
are locally graspable, i.e. where on the objects surface can a
seal be formed with the suction cup, before using its output as
the input for the Dexnet based neural network. Then assuming
that all these inputs are graspable it would follow that the only
difference in the output of the Dexnet based network would
be the result of potential forces and torques acting on the
grasp points. So the network should be able to infer whether
a grasp point is globally graspable, i.e. the suction seal won’t

be broken as a result of the forces caused by the location of
the grasp point in relation to the objects center of mass.

Fig. 4. Schematic of the newly proposed grasp pipeline combining a new
local evaluator network with the existing Dexnet based neural network.

V. LOCAL GRASPABILITY NETWORK

Now that we decided how to enhance the Dexnet based
grasp pipeline we will have to decide how to implement this
new local graspability evaluation network. We want to detect
areas in a depth image that correspond to the surface area
of the used suction cup and determine whether the detected
areas will lead to a locally successful grasp attempt, i.e. can
suction be achieved. This means that we would only need
to detect bounding boxes of potential grasp areas centered
on the specific point the robot would be instructed to move
towards during the grasp action. To determine what network
architecture would likely give the best results we decided to
use the APS metric as defined by the Common Objects in
Context (COCO) dataset [10]. This metric is defined as the
average precision for the detection of small objects, which are
defined as detections with an area of < 322 pixels, which is
what the area corresponding to a suction cup of 20mm �would
fall under for our camera setup. The network architecture
Retinanet as presented by Lin et al. [3] was finally selected
for the local graspability network as it had the best score for
this metric with an average precision of APS = 24.1.

VI. DATA ACQUISITION

When training a new neural network for a new purpose the
most important thing is how to obtain the trainings data. That
is because the data used to train a neural network defines its
use. For our purpose we require data in the form of depth
images, which can be obtained from point clouds, annotated
with object location where a seal with a suction actuator can or
can’t be achieved. This data could be obtained in one of three
ways: manual annotations, computer simulations and physical
(robotic) simulations. The decision was made to use manual
annotations for the following reasons:

• It is relatively easy to create a tool to obtain the annota-
tions.

• It is faster, but less accurate than physical simulations
and slower, but more accurate than computer simulations
making it a balanced solution.

• It gives us the option to add extra information to the
dataset making it possible to tune the dataset afterwards
and possibly making it usable for both the global and
local grasp evaluations.



A. Annotation tool

The annotation tool shown by Figure 5 was created as no
tool capable of creating suction grasp annotations existed.
It uniformly generates possible grasp locations on a given
recording and shows these to the user sequentially. The grasp
location is displayed in both a 2D color image as well as in
a point cloud because some things that lead to a failed grasp
can only be observed in only one of these. The user can then,
for each proposed location, say whether it is a possible local
and global valid grasp location, as well as specify additional
information. See Appendix B for more information on the
design of the annotation tool.

Fig. 5. The annotation tool designed to create the suction based grasp dataset
showing a potential grasp point and the corresponding area where a suction
cup would be placed in both 2D and 3D.

B. The neural network

The described annotation tool was used with a speed of
approximately 400 annotation/hour to create a dataset of 20293
suction grasp annotations over the duration of two weeks.
Fizyrs Keras implementation of RetinaNet [4] was used to
obtain the trained neural network. Initially after training a
low average precision of approximately 0.1 was observed
suggesting the network potentially wouldn’t perform very well
as local grasp evaluator. However, a visual evaluation, as
shown by Figure 6, showed this likely wasn’t the case. Which
meant the low precision could possibly be a result of the
similarity between close object surface locations.

Fig. 6. Depth image superposed with detected possible grasp locations given
by the trained neural network, with the lighter colored boxes corresponding
to confidence scores above 0.5.

VII. EXPERIMENTS

After obtaining the dataset and the trained neural network
the newly proposed hybrid grasp pipeline could be assembled
and evaluated to see how it compares to the original Dexnet
based grasp pipeline. This evaluation was split into two parts:
An initial experiment done to evaluate the correlation between
the confidence scores q given by the local evaluator network
and the likelihood of it resulting in a seal between suction cup
and object surface. This experiment was used to make sure
that the generated grasp areas would have a high likelihood of
success in spite of the low average precision observed during
the training of the network. The results were then used to
determine which grasps to pass on to the global evaluation
during the second experiment which was a comparison of the
pick success rate between the original iterative Dexnet based
grasp pipeline and the proposed hybrid grasp pipeline.

The setup used for the experiments is the same as the one
used during the Dexnet grasp pipeline evaluation as described
in IV-A.

A. Experiment 1.

During the first experiment between five and twenty objects
were randomly placed in the workspace resulting in piles with
objects on top of each other. The local evaluator network
was used on the resulting clutter to generate possible grasp
locations. From those generated possible grasp locations a
single one was randomly chosen to be executed by the robotic
actuator. Whether a suction seal could be formed at that
object location was then marked down together with the
corresponding confidence score q. A total of 605 such grasp
attempts were executed of which the results are shown in
Figure 7.

Fig. 7. Result from the experiment evaluating the correlation between the
confidence score output by the neural network and the likelihood of a
successful grasp.

The grasps with a confidence score of q = 0.7 and higher
show an almost 100% success rate at suction seal formation
and can therefore be send to a global grasp evaluator with a
high probability of resulting in a successful pick action. But
even confidence scores as low as q = 0.45 show a success
rate of 75 % which suggest a successful grasp can still be
generated even if the network finds no grasp locations with a



confidence score greater than 0.7. An 85 % success rate can
also be observed for the q-values of q = 0.35−0.40, however,
this is likely an outlier resulting from a limited amount of
such grasps being attempted. Most of the observed grasps had
q-values near the upper and lower limits, with the intervals
between 0.25 and 0.65 having 20 or less observed attempts
each.

B. Experiment 2.

With the results of the first experiment the proposed neural
network was ready to act as a local grasp evaluator, allowing
the assembly of the proposed hybrid grasp pipeline that can be
compared with the original Dexnet based grasp pipeline. The
comparison evaluation was done in cycles of 10 items which
were placed in a random manner in the workspace as shown
by Figure 8.

Fig. 8. Setup for the second experiment with a pile placed in a random
manner.

Each cycle was repeated by recreating the placement of the
objects for evaluation by both grasp pipelines. The objects
were segmented manually because no automatic segmentation
tool for the novel objects was available and it allowed us to
enforce a picking order between evaluations, which improves
the comparison between grasp pipelines. Additionally a limit
of three pick attempts was specified for each object in case
of failed grasps. This was done to reduce the likelihood of
failures being caused by outside influences. The result of this
experiment is shown in Table I including the amount of needed
grasp attempts to achieve a successful pick.

Dexnet pipeline Hybrid pipeline
Successful pick 90.54 % 95.27 %
1st pick attempt 83.78 % 89.86 %
2nd pick attempt 4.73 % 3.38 %
3rd pick attempt 2.03 % 2.03 %
Failed to pick 9.46 % 4.73 %

TABLE I
EXPERIMENT 2 RESULTS.

The experiment contained both known and unknown objects
for which grasps had to be generated as this more closely
matches an industrial application. However, we’re most in-
terested in the performance on novel objects as that better
describes the potential capability of the grasp pipelines. The

performance of the grasp attempts on novel objects is shown
in Table II.

Dexnet pipeline Hybrid pipeline
Successful pick 81.94 % 90.28 %
1st pick attempt 72.22 % 80.56 %
2nd pick attempt 6.94 % 5.56 %
3rd pick attempt 2.78 % 4.17 %
Failed to pick 18.06 % 9.72 %

TABLE II
EXPERIMENT 2 RESULTS FOR UNKNOWN OBJECTS.

From the results in Tables I and II we can conclude that
the newly proposed grasp pipeline performs better than the
original Dexnet based grasp pipeline. This is in addition to
an observed decrease in calculation time. The original Dexnet
grasp pipeline took an average of 1.56s to generate grasps
during the experiment, of which 1.07s were taken up by
the neural network. The proposed hybrid grasp pipeline only
took 1.12s, of which 0.066s were used by the local evaluator
network, 0.49s by the original Dexnet network and the leftover
0.564s for data handling and grasp pose calculation.

VIII. DISCUSSION AND FUTURE WORK

We evaluated the current state of the art for novel object
bin picking for possible avenues of improvement. This lead
us to propose to split grasp generation in a global and local
component. The latter for which we presented a method by
using a neural network with the RetinaNet architecture trained
on a local graspability dataset created using a newly developed
tool. We finally experimentally evaluated the resulting grasp
pipeline showing a faster grasp generation with a higher pick
success rate compared to the original Dexnet based grasp
pipeline.

Our proposal for the split of grasp generation in a global
and a local component leaves us with a lot of possible avenues
for future research. The most obvious being the development
of one such global evaluator to work in tandem with the
proposed local evaluator as replacement for the Dexnet based
neural network. But, even the proposed local evaluator gives us
options to explore. The first option would be to simply increase
the amount of data used during the training in order to improve
the results. But, the input of the neural network itself could
also be enhanced. Using the RGB image in addition to the
depth image could possibly allow it to see issues that can’t
be observed using only the latter. Or alternatively the input
of the neural network could be enhanced to accept the sparse
xy-coordinates of a point cloud instead of an image aligned
depth map so as to be less dependent on the used camera and
setup.
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A
Dexnet 3.0 evaluation

A.1. Reason for the Dexnet evaluation
Only a limited amount of research into suction cup grasp planning exists, with a significant percentage being
developed for applications such as the amazon picking challenge. Most are focused on speed achieving de-
cent performance with calculation times of 200 miliseconds, but the difficulty of the to be grasped objects is
relatively low. Allowing for the use of surface maps mostly based on flat surface areas. The development of
the Dexnet based grasp pipeline of Mahler et all [3] is actually quite different. Instead of focusing on speed
they focus on the functionality for difficult objects. They proposed an object designation of basic, typical and
adversarial objects which had the following definitions:

• Basic objects are the most basic primitive shapes like cubes and cylinders.

• Typical objects are general objects with varied geometry, but containing multiple graspable areas.

• Adversarial objects are the most difficult to grasp, having limited graspable surface locations and very
irregular geometry.

Their Dexnet based grasping policy was able to achieve a 98% success rate for basic objects and a 58% success
rate for adversarial objects which could be pushed to an astonishing 81% at the cost of simpler objects.

For industrial applications the success rate of the grasp algorithm can be said to be more important than
speed as the necessary speed can be achieved in alternative ways. For example by using multiple bin-pick
stations simultaneously. Additionally the possible system speed is limited by the slowest member in the total
pipeline anyway. Bin-pick speeds of 200 ms are pointless in cases where the acquisition of a new bin takes
500ms as that would leave the robotic arm waiting for 300 ms. And in the case of a failed grasp time is lost
by needing multiple grasp attempts or the help of a human operator. Therefore the decision was made to
focus on grasp success rate by continuing the work on Dexnet by evaluating its issues and limitations and
proposing a solution to improve on these.

A.2. Dexnet based grasp pipeline
In order to accurately determine the issues and propose useful improvements the Dexnet based grasp pipeline
has to be understood. The grasp pipeline consists of two separate interacting parts: a uniform sampler that
suggests possible grasp locations by taking random samples over an objects surface and a deep convolutional
neural network, trained on the Dexnet 3 dataset, that evaluates the proposed grasp locations. The best scoring
of the proposed grasp locations is then returned to the sampler to iteratively find the optimal grasp location
by sampling possible grasp locations around this point.

The most important part in this pipeline responsible for the high reported success rate is the neural net-
work shown by Figure A.1. For each grasp location a new input is created from the original depth image by
taking a window, corresponding to approximately 10 cm, centered on the proposed location. This image is
then fed to the network together with a calculated surface normal to get a grasp score that can be compared
with other possible grasps.

11
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Figure A.1: The neural network used by the Dexnet based grasp pipeline.

This neural network has been trained on the Dexnet 3 dataset, which contains 2.8 million example grasp
locations and grasp robustness labels. These labels have been obtained by applying the compliant suction
contact model, shown by Figure A.2, to 1500 3D object models. Because the mass and properties of the 3D
object models was known this contact model could be used to determine whether the suction cup could resist
external wrenches caused by forces like gravity and acceleration. Unfortunately the usability of this dataset
is limited to the type of network Mahler et all used, because it consists solely of those windowed images
containing a single grasp point instead of the total images annotated with all the possible grasps.

Figure A.2: Compliant suction contact model used to create the Dexnet 3 dataset.

A.3. Implemention of Dexnet
The hardware and software pipeline we have available is different from the one used by Mahler et all and
therefore has to be adapted so our and their code can work in tandem. Luckily Mahler et all published the
code of their grasp quality convolutional neural network (GQCNN) as a robotic operating system (ROS) pack-
age. Which is great, as this meant only the grasp planner code needed to be changed to interact with the
GQCNN package. This interaction was achieved by having the grasp planner act as a ROS service client with
the GQCNN acting as ROS service server. The ros service request used a color image, a depth image, the
camera info and the bounding box and gave a grasp success score and a geometry_msg/pose as response.

Almost all of request objects are directly available only the depth image has to be created from the point
cloud. This is easily done since the point cloud is aligned to the color image, meaning each point in the
point cloud corresponds to a pixel in the color image. An Opencv Mat structure is initialized with the same
dimensions as the color image after which each value is set to the height (z) of the corresponding point in
the point cloud. In case of NaN values in the point cloud the corresponding pixel in the depth image is set to
zero.

During test evaluations after the creation of the depth map one issue became apparent: our camera setup
gave us the point cloud in the workspace frame while the GQCNN expected the origin to be in the camera
frame. Meaning the point cloud (Pwor kspace ) had to be transformed from the workspace frame to the camera
frame. With the known transformation matrix ([Twor kspace ]), obtained during the calibration of the camera,
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this was easily done by using the following equation for each point in the point cloud:

Pcamer a,i = [Twor kspace ]−1Pwor kspace,i (A.1)

Additionally a different distance value between the camera and the workspace had to be passed on to the
GQCNN grasp policy. However, an input parameter for this value already existed making for an easy adapta-
tion.

This was not the only needed adaption as a result from the difference in camera setup. The Ensenso N35
gave a higher quality image than the camera used by Mahler et all. This meant that a different window size
had to be determined for creating the centered images created for each grasp point. By measuring the corre-
sponding size of a 10cm long object in the image a value of 192 pixels was chosen to be used. No significant
impact on the grasp success rate is expected from this change as even the images using original window size
were scaled down when passed on to the neural network.

A.4. Experimental evaluation
As we’re doing a general evaluation the experiment is rather simple. A single object is placed in the workspace
as this allows for segmentation by background removal. A point cloud is recorded using an Ensenso N35
stereo camera which is converted into a depth image after the segmentation. The depth image is then passed
on to the dexnet based grasp policy, whose neural network is running on a NVIDIA GTX 1080 Ti graphics card,
to determine a grasp location. This grasp is finally executed using a UR-5 robotic arm with Fizyrs swivel actu-
ator as end-effector. Grasps are determined to be successful if a local seal can be achieved and the object can
be lifted and moved without being dropped. Additionally details pertaining to the chosen grasp location and
possible observed issues are notated for evaluation. Multiple objects of different sizes and grasping difficul-
ties are evaluated in different orientations. This is done to adequately determine the situations the original
dexnet based grasp policy can and can’t deal with.

A.4.1. Results
In total 177 grasps were attempted with an average confidence score of q = 0.607. Of these grasps 110 were
successful, with an average confidence score of qsuccess = 0.645, and 67 were failed grasps, with a confidence
score of q f ai lur e = 0.546. This means we observed a success rate of 62.15%, which would be higher than
expected if all evaluated objects were adversarial. However, this wasn’t the case as the items used during the
evaluation were of varying difficulties.

A.4.2. Issues
During the implementation and evaluation of the Dexnet based grasp policy we came across a number of
issues. These could generally be separated into two types: general issues resulting from the way the grasp
policy was designed and experimental observations of unexpected or suboptimal grasp locations.

The general issues with the grasping policy are as follows:

• As mentioned earlier, the current state of the Dexnet based grasp policy makes use of the point cloud
in camera frame instead of in workspace frame. This inherently hinders the usability as modifications
have to be made to either use an identical setup or make adaptations to fit a new camera setup, as have
been done for the evaluation. Which increases the chances of unforeseen errors.

• The grasp policy will only ever generate a single grasp location due to it’s iterative nature, even when
multiple possible grasp locations exist. This means that the object can’t be picked up when this grasp
can’t be executed due to inability of the robotic actuator to reach the grasp as a result of possible colli-
sions or physical limitations in reaching the grasp location.

• The iterative nature of the grasp policy has the possibility of finding a locally optimal grasp pose. Unless
an incredibly high amount of points is evaluated during the initial sampling a few noisy point can steer
the algorithm away from the best grasp locations.

• The combination of the grasp policy’s iterative process results in high calculation times. Especially
because of the sequential classification of singular grasp points using a neural network instead of using
it to determine all possible grasp locations in the search space.
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Changing or optimizing these issues will likely improve the usability of the grasp policy but for improve-
ment of the grasp success rate we need to look at the issues observed during the experimental observation.
These were as follows:

• The first observed issue could be considered to be more of a general issue but it is added here as it
came forward during the observation. Some of the observed surface normal used by the Dexnet based
neural network were highly incorrect. Pointing almost perfectly vertical instead of being perpendicular
to the angled object surface. This is likely the result of a surface normal calculation based on a limited
amount of points, making it susceptible to noise combined with a preference for grasps with a small
angle between the surface normal and the vertical axis.

• The suspected preference for grasps with vertical surface normals was also observed to be a cause for
worse local grasp locations. Grasps were generated in very difficult and limited surface locations with
a vertical surface normal, while significantly better flat grasp areas, albeit with a more angled surface
normal, existed.

• A lot of grasps were generated away from the objects center of mass even when grasping there would
have been doable. This made it almost impossible to pick up the bigger evaluated objects, while it
could result in grasps hanging over the edge for smaller objects. This could partially, at least for the
larger objects, be the result of the 10cm window not covering the total object.

• The grasp policy seemed to prefer completely flat surfaces over curved surfaces with which a seal with
the suction cup could easily be achieved. This lead to to grasp locations close to the edge of the object
while better grasp locations existed near the center of the object where the surface was curved.

• Grasps were generated on ungraspable locations such as on edges, hanging over the side and over holes.
Sometimes these still succeeded due to the suction cups ability to slightly adapt, but that is still subop-
timal and could easily lead to failures for heavier objects.

• Grasp attempts were made on thin vertical surface ridges sticking out of the surface. This was likely
due to these surface structures only being visible in the color image and not in the point cloud making
it impossible for the grasp policy to take them into account.

• Weird grasps with suboptimal position and orientation were generated in case of holes in the object or
larger areas of noise in the point cloud.

• There seemed to be a high inconsistency between the grasp score q given by the network and the like-
lihood of success the grasp. A correlation of high q scores for easily graspable surface locations was
expected and vice versa for difficult or impossible to grasp ones. However, a decent amount of easily
graspable flat surfaces would have scores of q = 0.2− 0.5, while some terrible grasp locations would
have scores of q = 0.8 and above

A.5. Conclusion
The Dexnet based grasp policy performed significantly worse than expected during the evaluation with a
success rate of 62.15 %. And while this success rate might increase a bit with some minor tweaks, it suffers
from a couple of major issues. The most important being that grasp attempts are made on object surface
locations were a seal formation with the suction cup is obviously impossible. This could be the result of the
GQCNN being trained mainly on wrench resistance of the suction cup and not on seal formation. Which
leads us to the proposal of a new grasp policy to be researched.

We suggest to split up the grasp policy into two parts: a global and a local evaluator. The local evaluator
determines possible grasp locations where a seal can be formed between the suction cup and the objects
surface. These proposed possible grasp locations would then be passed on to the global evaluator which
determines which of the proposed object locations will most likely lead to a stable grasp depending on the
shape and size of the object. The latter could be achieved with the original GQCNN as it is trained on wrench
resistance, which is theoretically the only differing property the network will pick up on if all its inputs can
(easily) achieve a seal with the suction cup. This leaves the development of such a local evaluator which is
the main part of this research as a method has to be determined and implemented.

In line with the current trend of research into grasp generation the decision was made to use of a neural
network for the local grasp generation. Specifically the Retinanet architecture, which hasn’t been used for
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grasp generation yet, as a literature review showed it had the highest reported result mean average precision
for small detections for the COCO benchmark. These small detections had the definition of detections of
up to 322 pixels which grasps locations for a suction cup with a diameter of 20 mm would fall under. The
use of such a neural network for the local evaluation will already have 2 improvements compared to the
original grasp policy. It will remove the problem of falling into a local optimum as the complete input image
is evaluated and not a random set of points and it will likely be significantly faster due to the removal of the
iterative part of the original grasp policy. The neural network itself will be trained to determine bounding
boxes around graspable object locations, which can then be evaluated using the GQCNN to determine the
best one. The choice for the use of bounding boxes instead of more precise masks is rather simple as that
improvement wouldn’t add anything to the detection. This is because the detection of precise masks is done
by first detecting the corresponding bounding box and then detecting which parts would form the exact grasp
area. Therefore, a network trained to find a bounding box containing a circular grasp point should already
learn the features needed to make the distinction between graspable and ungrapspable object locations.





B
Data acquisition

The most important thing for the use of deep learning is the training data used to train the neural network.
It defines the functionality of the network by giving examples that the network attempts to emulate. Training
data containing annotations of cats and dogs will result in a network that recognizes these in images, so for
the functionality of detecting suction grasps a dataset of images containing such grasps is needed. For the
training data we have two requirements for what it must contain:

1. We require annotations of bounding boxes corresponding to object locations with the designation
whether they’re graspable or ungraspable. This will allow the network to learn to detect graspable ob-
ject locations.

2. Each image that is annotated must contain multiple annotations of possible grasp locations. This will
train the network to determine multiple possible grasp locations for each scenario, which would allow
for the selection of alternatives if one of the grasp locations wouldn’t be accessible due to constraints.

B.1. Types of data annotation
Data needed to train a neural network for robotic grasping can generally be obtained in three ways: by robotic
simulation, by computer simulation or by manual annotation.

Robotic simulation is done by using a physical robotical setup to attempt random grasp locations of which
the result is stored as a successful or failed grasp. This has the advantage that the obtained grasp annotations
are as accurate as they can be. A successful grasp at that location will always be a successful grasp assuming all
related circumstances are the same. However, this advantage is the only one compared to the other methods
of obtaining training data. Due to the use of a physical robot that has to move in a safe manner it is by far the
slowest method of obtaining data. Additionally due to the result of the end-effector coming into contact with
the workspace it is changed meaning only a single data point can be created for each image or state.

Obtaining grasp data with computer simulation is done by creating a analytical model of the interaction
between object surface and suction cup end-effector. Using this model the result of a pick attempt at any
object surface location can then be determined. This has the advantage that a large amount of data in a
relatively short amount of time. However, the accuracy of the data is entirely dependent on the accuracy of
the model and the time put into developing and tuning it. Any systematic errors present into the model would
just be propagated into the dataset.

The final method for generating data works by having a person use a tool to manually annotate whether
an object surface location is graspable or not. It is faster at generating data than the physical simulation, but
slower than a computer simulation allowing for a decently sized dataset in a reasonable time frame. Addition-
ally, while it is slightly less accurate than the physical simulation, it is currently still better than the models
used for computer simulation. Finally due to the human oversight it is possible to add additional information
to each data point, which would be very difficult to obtain otherwise.

Looking at the three different methods of obtaining grasp data we’ve made the decision to use manual
annotation for the following reasons: First off the neural network architecture that we’re using, Retinanet,
requires multiple annotated data points per image. This means the use of robot simulation, which only gives
a single data point per instance, is not usable for our use case. Additionally the speed of obtaining the data
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points would have been to slow. While we don’t need an insane amount of data for this initial evaluation
we still need more than what could be obtained this way in a reasonable time frame. The use of computer
simulated data would be best if the results are accurate enough, due to its high speed. However, it is difficult
and time intensive to get this desired accuracy and a suboptimal implementation would leave a lot of room
for errors that can be propagated into the trained neural network. So it is still suboptimal in comparison to the
manual annotation method which allows for a high accuracy without the implementation issues. And while
the manual method is slower it is fast enough for generating the amount of data we expect to need for this
research. Additionally the human oversight allows us to easily fix issues related to errors in the segmentation
and add additional information that might not have been observable otherwise, such as thin surface ridges
that are invisible in the point cloud. For this reason the decision was made to use manual data annotation.

B.2. Tool design
In order to create the grasp data manually a tool is needed so a person can input information corresponding
to possible grasp locations. Unfortunately at the time of this research no such tool exists for suction based
grasping and therefore one has to be developed. In order to acquire the required data the following function-
ality is required from this suction grasp annotation tool:

1. A way to select and load a data instance and set the relevant parameters.

2. A way to segment the point cloud belonging to the data instance.

3. A way to visualize possible grasp locations so the user can determine whether it is graspable or not.

4. An option to select whether the suggested grasp location is graspable or not.

5. Additional options to give extra information about the suggested grasp location.

The tool with the required functionality was created using the Qt Library resulting in the interface shown
in Figure B.1. Further details on the implementation of each of the tools requirements are given in the follow-
ing subsections.

B.2.1. Initialization
The first thing that the tool needs to do is load the data that’s supposed to be annotated and set all the related
parameters. All the needed data instances of (piles of) objects are stored in a folder containing both a color
image and a point cloud with a standardized file names. Therefore the tool was decided to take the path of
such a folder from which both the color image and point cloud can then be loaded. After the image and point
cloud are loaded two more parameters need to be set. The first determining the amount of data points or
possible grasp locations will be generated for the data instance. Less grasp points are required if only a single
or a small amount of objects is present in the data instance and vice versa for a larger amount of objects.
Additionally the size of the suction cup that will be used as end effector has to be specified as the graspability
of an object surface location differs depending on the this size. After all a smaller suction cup can achieve
suction at a spot that a larger one might not. The corresponding part of the tools interface related to this
initialization is highlighted as nr. 1 in Figure B.1.

B.2.2. Segmentation
Three options were implemented for segmenting the point cloud, which can be seen highlighted as nr. 2 in
Figure B.1. The first option is to simply not apply a segmentation to the point cloud. This option is unlikely
to be used a lot, but was left as an option due to it’s ease of implementation.

The second segmentation option was for when only data on a single object was desired. It works by
opening a new window containing the color image, which is aligned to the point cloud, on which the outline
of the desired object can be drawn. This outline is then used to create a mask which allows for the removal of
all points in the point cloud outside of the selected area resulting in a segmented point cloud containing only
the desired object.

Finally the third and likely most used segmentation option was to remove the background, so data points
will only be generated on the objects. This option compares the point cloud of the data instance with a second
point cloud of just the used workspace without objects placed on it. By removing the points that lie within a
small distance from the point cloud only the 3D data pertaining to the objects remains in the point cloud.
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B.2.3. Visualization
After the segmentation is applied possible grasp locations have to be generated before they can be shown to
the user. This is done by first uniformly sub-sampling the segmented point clouds to get possible grasp points.
These generated points represent where the center of the suction cup would be placed during a robotic grasp
action. However, just the single point isn’t representative of the entire contact area, as the suction seal is
dependent on its entire contact area. Therefore a kd-tree is used to get all the points withing the radius of the
specified suction cup size to get an approximate grasp area. This object surface area can then be visualized,
combined with the addition of the surface normal at the location of the sampled grasp point, for the user to
determine whether a grasp there would achieve suction.

The generated grasp areas are visualized sequentially using the point cloud library (pcl) [4], as shown in
Figure B.1 highlighted by the nr. 3. This open source library has a tool for visualizing point clouds and has the
option to highlight points by changing their color. The viewer is automatically centered each time a new point
is to be evaluated by the user when the last one is confirmed. Additionally it allows for the implementation
of the ability to zoom in and move the point cloud around for a closer look when it isn’t immediately obvious
whether suction could be achieved.

Unfortunately not everything is perfectly visible in the point cloud and some things can even be difficult
to see in it. Additionally the surface of a graspable object location can be noisy in the point cloud and some
small thin obstruction that would lead to a failed grasp have the chance of not being visible in it. Therefore
the choice was made to have an additional way of visualizing the grasp area. Because the point cloud is
aligned to the color image each point in the one corresponds to a point in the other with the same index.
This allows us to determine the bounding box parameters for the grasp area and visualize them on top of the
color image as shown in Figure B.1 highlighted by the nr. 4. Giving this additional visualization to the user
of the tool increases the accuracy in determining whether a specific surface location will lead to a successful
grasp or not. It also allows for the observation of additional data such as whether a hole in the point cloud
corresponds to an actual hole in the object or if it’s noise resulting from the recording.

B.2.4. Graspability
With the possible grasp areas visualized it becomes possible for the user of the tool to see and determine
whether each specific one will succeed in a successful grasp. As a successful grasp can be divided into two
subproblems of local and global graspability this has also been done in the suction grasp data annotation
tool, as highlight by nr. 5 in Figure B.1.

• The surface tag corresponds to the local graspability of a proposed grasp point. So the tool user has to
answer the question whether a successful seal can be formed between the imaginary suction cup and
the proposed grasp region. If the answer is yes the user marks it as graspable and if not as ungraspable.

• The location tag corresponds to the global graspability of a proposed grasp point. So the tool user
has to answer the question whether the torques acting on the contact point resulting from the grasp
location in relation to the objects center of mass will cause the grasp to fail or succeed. If the grasp
would succeed the user marks it as graspable and if not as ungraspable.

Now, since the arm movements required by the tool user to select options and click on buttons to get the
next grasp point take up a large part of the annotation time, an improvement in speed could be achieved by
reducing these. The first of such improvements was to implement the option to use hotkeys to cycle through
the generated potential grasp points, removing the need to click buttons in the tools’ interface. The second
of the improvements was to set the initial graspability value of the local and global parameters so the least
amount of changes were necessary, giving the tool user the task of changing wrong pre-set values. This was
easily done for the location parameter since the size of the objects used in the dataset were relatively small,
which meant most of the generated grasp locations would be globally graspable. So the location option would
be already correct most often if it was set to graspable by default. The surface option was comparatively more
difficult to set a default value for as the surfaces of the objects were ever changing. Therefore the decision
was made to use a tool used by Fizyr with a decent accuracy at determining the local graspability to set the
initial graspability value. While this is less accurate than having a human determine graspability it is accurate
enough to reduce the amount of needed interactions allowing for an increase in annotation speed.
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B.2.5. Additional options
The main advantage of using manual annotations to generate the grasp data, beside it’s high accuracy, is that
it allows for the addition of extra information pertaining each annotated grasp location. The additional op-
tions for this that were added to the annotation tool can be divided into two types: options giving additional
information, allowing for possible extra use cases of the data, and options notifying the annotations possibly
contain a problem, allowing for filtering of the data. These options are selected in the block highlighted by
the nr. 6 in Figure B.1.

Informative options There are three options for extra information pertaining to the annotation: optimal
area, near edge and invisible ridge.

Optimal area is selected when the current possible grasp point lies on or near the center of mass of the
object. This could potentially be used for training a network to select an optimal grasp from multiple possible
grasps.

Near edge is selected when the current possible grasp point lies close to the edge of an object or addition-
ally if it is near a hole in the surface. These grasp locations tend to be more risky in case of small errors in the
recording or execution, because they can lead to failures. This parameter can be used to either penalize risky
locations or set them to ungraspable entirely.

Invisible ridge is selected when the current possibly grasp point will lead to a failed grasp because it lies
on a small ridge that’s not visible when looking solely at the point cloud.

Notifying options There are four options notifying the user of possible errors or issues that they might want
to filter out of the dataset: rubbish surface normal, part of background, reflective surface and uncertain about
grasp.

Rubbish surface normal is selected when the calculated surface normal for the current possible grasp
point is not correct in relation to the object surface. This is important for when the surface normals are used
when training the neural network to determine graspability, because then these data points would have to be
fixed or removed.

Part of the background is selected when the current possible grasp point is generated on the background
workspace instead of an object. This is a potential result of an incorrect segmentation and should be removed
from the dataset.

Reflective surface is selected when the point cloud at the point of the current grasp point is very noisy. This
can be caused by things like as a reflective surface. Often times this makes it very difficult or impossible to
infer graspability solely using the point cloud, due to the erratic spread of the points. However, using the 2D
image the correct graspability can be inferred. This option allows such difficult points to be filtered in order
to not potentially hurt the performance of the neural network.

Uncertain about grasp is selected when the annotator isn’t 100 percent certain whether they know the
correct answer to the question whether the possible grasp location is graspable or not. So this parameter
potentially allows someone else to potentially check the decision or to simply set all these to ungraspable to
play it safe.

B.3. Annotation
While annotating an image the annotations are saved to a newly created csv(comma separated value) file
and when the image finished the csv file is appended to a file containing all annotations for all images with
each line in this file corresponding to an annotation. The created suction grasp annotation tool was used for
approximately two weeks resulting in 20293 annotations over 51 images.
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Figure B.1: The Designed annotation tool 1) Initialization settings 2) Segmentations options 3) 3D viewer 4) 2D viewer 5) Graspability
selection 6) Additional options





C
Local grasp evaluator

With the obtained data we can now train a neural network to function as local grasp evaluator i.e. can a
suction seal be achieved. For the network architecture the choice was made to use the Retinanet architecture
proposed by Lin et all in their "Focal Loss for Dense Object Detection" paper [2]. This choice was made
because the reported average precision for small detections APs , which are defined as detections smaller
than 322 pixels [1], were the highest reported with a value of 21.8. This metric was used to select a neural
network architecture because it is the detection size that suction seal detections would fall under.

C.1. Data preparation

The neural network can’t take a point cloud as input even if it is aligned to a 2D image. Therefore the first
step to prepare the data is to transform the point cloud to a depth image. This is easily done by initializing
an empty image of the same size as the recorded 2D image using opencv and replacing each value with the
z-value of each corresponding point in the point cloud with the same index.

The quality of the data obtained from the 3D camera is good, but it does contain some missing data points.
These empty ,or not a number (NaN), points could simply be set to the value of the workspace, but that would
leave erroneous points in object surfaces. Such inconsistency could decrease the quality of the results when
using the neural network. So to improve the accuracy of the local grasp detection we would like to remove
these small data errors, without changing the originally recorded data. To do this two morpological filters
where used. The first filter was used to find the likely value of the missing data points by creating a new image
where each point was calculated as the average of the points around them. These values can’t immediately
be used to replace the missing data points though as a decent amount of such points are the result of actual
holes existing in the objects and replacing them would ruin the data. So a second filter is used to detect which
points can be replaced. First an isnan() function is used to create a copy of the image where each valid point
gains the value of 1 and each empty point gains the value of zero. Applying the morphological filter then
tells us the amount of valid points each point is surrounded with. Points fully surrounded, and thus likely
recording errors, having a value of 8 and points having no surrounding valid points, and thus likely belonging
to a correctly recorded hole, having a value of 0.

Combining the results of the application of these filters then allows us to replace the missing data points
with their interpolated values without ruining the data by only replacing those with at least 7 valid data points
surrounding them. A example of the results from the application of these filters is given by Figure C.1.
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(a) Dexnets iterative grasp pipeline. (b) The hybrid grasp pipeline combining Retinanet with Dexnet.

Figure C.1: Schematic overview of the evaluated grasp pipelines.

C.2. Initial results
After the data is prepared it is split up in a training and validation set containing 80% and 20% of the data re-
spectively. The training set was then used to train the neural network for approximately 24 hours on a NVIDIA
GTX 1080 Ti graphics card. The trained network was then evaluated on its performance on the validation set
giving the results shown in Table C.1.

ungraspable AP 0.0272
graspable AP 0.0348

mean AP 0.0310

Table C.1: Evaluation result of the initial training.

Now we expected a lower average precision value compared to the one reported in the original Retinanet
paper [2] due to the nature of the data. Unlike object detection in color images no hard boundaries exist
between possible grasp areas as they occur on a constant surface. So if you have a large graspable surface
area multiple overlapping grasp areas exist. Making for a higher chance of the network detecting a graspable
or ungraspable point near but not perfectly centered on an originally annotated one, resulting in a lower
intersection of union (IOU) value and thus a lower precision. Additionally the dataset was fairly small for the
amount of possible variance so a small over-fitting and thus lower detection success rate on the validation
dataset makes sense. However, even with these reasons the results are still way lower than expected and it
would likely be beneficial to look into a way to improve the detection success rate.

C.3. Data augmentation
Another possible cause of the very low average precision, which was suggested by a colleague at Fizyr, was
that it could be a result of the annotations in the training dataset not covering the entire image. After all,
the network learns to discern regions of interest, which are then separated into graspable and ungraspable
detections, and background based on the annotations. An object surface location that should be detected as
graspable or ungraspable could instead end up being classified as background resulting in no detection due
to it not being present in the dataset. The similarity between such a non annotated area and an annotated
one could increase the networks uncertainty and thus reduce the detection accuracy. This issue was likely
a problem resulting from decisions made during the creation of the dataset. In order to add more different
images for an increase in object variance the total number of annotations for each image might have been set
too low resulting in the presence non annotated areas in each image. Unfortunately this couldn’t be remedied
by simply adding more annotations to each image in the dataset due to time constraints, so another solution
had to be found.

The solution that was decided on was to slightly increase the size of all annotated bounding boxes outward
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from the center by a fixed amount. Since all bounding boxes in the dataset are centered on single grasp points
the assumption was made that this wouldn’t significantly change the detection. Because, even if the outer size
of the bounding box increases, resulting in less non annotation space, the area were the suction cup would
be placed would be the same. The only possible issue, which is mostly due to the small dataset, would be
that this size increase could potentially decrease the variance in objects the network will be able to handle
by learning some of the surface structures surrounding the grasp area. However, a limited increase in size
shouldn’t significantly decrease the performance on novel objects, while likely resulting in a much better
performance.

C.4. Final selection
A couple different annotation size augmentations were applied to the dataset and evaluated by training the
neural network before a final one was selected. Each increase seemed to improve the precision values when
evaluated with the validation set, but had the downside of decreasing the applicability of the network as local
grasp evaluator. Because, while the center of an annotation would still determine it’s graspability, larger an-
notation sizes possibly increase the chance of the network learning to take into account surrounding surface
structures, which is undesired. Therefore the network using the dataset of an augmentation size of 10 pix-
els was selected to function as local grasp evaluator as that version showed a significant increase in average
precision without increasing the annotation size too much. Training with this dataset for approximately 24
hours or 35 epochs had the results shown by table C.2.

ungraspable AP 0.0988
graspable AP 0.0990

mean AP 0.0989

Table C.2: The final selected network after augmentation.

Now the observed average precision is still quite low, but like mentioned before a lower value isn’t entirely
surprising, because of the type of data we try to detect. Though in order to conclude whether a experimental
evaluation would be meaningful with the obtained network a visual evaluation was done. A new recording
was fed to the trained network to see if the output could result in a correct local grasp evaluation. As shown
by Figure C.2 this was indeed the case allowing us to move forward with an experimental evaluation of the
obtained grasp evaluator.

Figure C.2: Bounding boxes of graspable locations as determined by the trained Retinanet network. The light blue bounding boxes are
those with a high confidence score.





D
Experiment 1: Retinanet Grasp evaluation

D.1. Experiment goal
With the neural network trained on the annotations it is now almost ready to be used to determine graspable
locations on unknown objects. It outputs possibly graspable regions together with corresponding q-values.
However, the outputs of the network, in the shape of confidence scores (q), first need to be evaluated. Specif-
ically what the correlation between the confidence score of an outputted location and the likelihood of this
object location resulting in a successful grasp action. The best way to find this correlation is to evaluate it
experimentally.

D.2. Experimental design
The goal of this experiment is to find the correlation between the confidence score output by the neural
network and the likelihood of this location resulting in a successful grasp action. For this an entire grasp
pipeline is needed from creation of the depth image to execution of the robotic grasp. An Ensenso camera
is used to create a RGB image and a 2D picture aligned 3D pointcloud. This means that the point cloud
contains a 3D data point for each pixel in the 2D image. The created pointcloud is calibrated to place the
origin at the base of the UR-5 robotic arm, which places the workspace at z−axi s = 0. A background removal
segmentation is applied to the pointcloud by comparing it with a pointcloud taken of only the background
and removing all the points within a few millimeters. Finally the pointcloud is transformed into a depth map
by taking the z-values and corresponding indices, so it can be used by the neural network. Using the depth
map as input for the trained Retinanet neural network gets a number of possibly grasp locations together
with a confidence score (q) as output.To get the best grasp locations the highest scores would be used, but
in order to evaluate the correlations between confidence score (q) and likelihood of a successful grasp one of
the output grasp locations is randomly selected. This grasp location is then passed on to be executed by the
robotic arm. The experiment is done with an UR-5 arm combined with a suction actuator designed by Fizyr.
This actuator has two properties that make it excellent for experimental evaluation: it contains a swivel joint
at the end of the actuator to reduce the needed approach space and it has the ability to disconnect from the
robot arm if the grasp fails and the robot end effector keeps moving forward into the to be grasped object in
order to not damage it. The grasp motion is done by moving the end-effector in line with the surface normal
of the object at the grasp location after which it slowly approaches until one of the following scenarios occurs:

• A successful suction grasp is detected with the use of a pressure sensor.

• The end-effector has disconnected from the robot.

• The end-effector has moved passed the grasp location by either a wrong detection or pushing the object
aside.

The result of the grasp action, together with the generation speed an confidence score (q), is then logged after
which a new random grasp is attempted. Additionally the pile of items in the workspace is replaced multiple
times.
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D.3. Results

This pipeline was evaluated for a few days resulting in a total of 665 grasp attempts using an 20mm suction
cup. Some of these had to be thrown out due to them being either unreachable by the gripper or because a
piece of the workspace was selected due to a failure with the segmentation. This left 605 grasp attempts to
be evaluated. Notably, the grasps that were attempted on the workspace had a q-value close to zero, from
which can be inferred that the network didn’t like these grasp locations despite being flat perfectly graspable
locations. The neural network took an average of 71.13 ms to run and the total pipeline from detection to
selection of the random grasp location took on average 234.83 ms.

q-value Total grasps Successful grasps Failed grasps
0.00 - 0.05 0 0 0
0.05 - 0.10 94 47 47
0.10 - 0.15 39 23 16
0.15 - 0.20 33 24 9
0.20 - 0.25 27 17 10
0.25 - 0.30 20 15 5
0.30 - 0.35 19 12 7
0.35 - 0.40 13 12 1
0.40 - 0.45 13 9 4
0.45 - 0.50 12 9 3
0.50 - 0.55 15 11 4
0.55 - 0.60 19 17 2
0.60 - 0.65 17 13 4
0.65 - 0.70 23 21 2
0.70 - 0.75 22 22 0
0.75 - 0.80 32 31 1
0.80 -0.85 48 47 1
0.85 - 0.90 42 40 2
0.90 - 0.95 52 52 0
0.95 - 1.00 65 65 0

Table D.1: The total number of successful and failed grasp attempt corresponding to the q-value output by the network.

However, while all successful grasps in Table D.1 achieved a high enough suction force to lift up the object,
not all were perfect. During the experiment two different successful outcomes were observed: optimal grasps
that easily achieved suction and suboptimal grasps that, while achieving enough suction force, often had
some air leakage. Most of the time this was a result of grasping near the edge of an object or near an extrusion
within the object, causing the suction cup to curve sharply. This division in successfulness has been recorded
in Table D.2.
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q-value Total successful grasps Optimal grasps Suboptimal grasps
0.00 - 0.05 0 0 0
0.05 - 0.10 47 34 13
0.10 - 0.15 23 18 5
0.15 - 0.20 24 19 5
0.20 - 0.25 17 17 0
0.25 - 0.30 15 14 1
0.30 - 0.35 12 11 1
0.35 - 0.40 12 11 1
0.40 - 0.45 9 9 0
0.45 - 0.50 9 9 0
0.50 - 0.55 11 10 1
0.55 - 0.60 17 16 1
0.60 - 0.65 13 13 0
0.65 - 0.70 21 21 0
0.70 - 0.75 22 21 1
0.75 - 0.80 31 31 0
0.80 -0.85 47 47 0
0.85 - 0.90 40 40 0
0.90 - 0.95 52 51 1
0.95 - 1.00 65 65 0

Table D.2: The total number of successful and failed grasp attempt corresponding to the q-value output by the network.

In order to use the number of grasps to evaluate the correlation between q-value and likelihood of a suc-
cessful grasp a more useful way of displaying the data is to use percentages of the total grasps. Doing this for
both table D.1 and D.2 gives us table D.3.

q-value Total successful grasps (%) Optimal grasps (%) Suboptimal grasps (%) Failed grasps (%)
0.00 - 0.05 0.00 0.00 0.00 0.00
0.05 - 0.10 50.00 36.17 13.83 50.00
0.10 - 0.15 58.97 46.15 12.82 41.03
0.15 - 0.20 72.73 57.58 15.15 27.27
0.20 - 0.25 62.96 62.96 0.00 37.04
0.25 - 0.30 75.00 70.00 5.00 25.00
0.30 - 0.35 63.16 57.89 5.26 36.84
0.35 - 0.40 92.31 84.62 7.69 7.69
0.40 - 0.45 69.23 69.23 0.00 30.77
0.45 - 0.50 75.00 75.00 0.00 25.00
0.50 - 0.55 73.33 66.67 6.67 26.67
0.55 - 0.60 89.47 84.21 5.26 10.53
0.60 - 0.65 76.47 76.47 0.00 23.53
0.65 - 0.70 91.30 91.30 0.00 8.70
0.70 - 0.75 100.00 95.45 4.55 0.00
0.75 - 0.80 96.88 96.88 0.00 3.13
0.80 - 0.85 97.92 97.92 0.00 2.08
0.85 - 0.90 95.24 95.24 0.00 4.76
0.90 - 0.95 100.00 98.08 1.92 0.00
0.95 - 1.00 100.00 100.00 0.00 0.00

Table D.3: The total number of successful and failed grasp attempt corresponding to the q-value output by the network.

A visual representation of Table D.3 can be in Figure D.1.
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Figure D.1: Result from the experiment evaluating the correlation between the confidence score output by the neural network and the
likelihood of a successful grasp.

Due to the relatively low amount of evaluated grasps the transition between success rates isn’t very smooth,
however, a curve approaching 100% success rate for higher q-values can be vaguely observed. So it might not
be too far out there to assume that the shape of the general correlation between the network outputs q and
the grasp success rate takes the shape of a logarithmic curve starting around 50% and approaching 100%.
This result is very promising as outputs with a q-value as low as 0.7 still had a grasp success rate of 95% and
up, while q-values around 0.5 still had a 70% grasp success rate. Additionally even the lower q-values had a
grasp success rate approaching 50%. So with Retinanet outputting multiple grasp locations at the same time
there is a very high chance that the output of the network contains multiple graspable locations, even for
difficult objects.

Some additional observations were made during the experiment that show a good depth image quality
is very important for the network. On the lower end of confidence scores it was noticed that some of the
successful grasps likely had low confidence scores due to noisy pointclouds. Possibly due to reflections or oc-
clusions good grasping locations were obfuscated causing the network to be less confident about a successful
grasp. On the higher side of the confidence scores failures were sometimes the result of things that couldn’t
be observed in the depth image. Thin extrusions on the object surface made it so the suction gripped couldn’t
achieve a seal on a surface that seemed flat in the depth image. So while it might decrease the grasp success
rate for the lower confidence scores better images will likely improve the robustness of the network overall.
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Experiment 2: Pipeline comparison

E.1. Experiment goal
With the neural network trained on the annotations and a completed evaluation of the correlation between
the outputted confidence score and the likelihood of a successful grasp the complete pipeline can now be
evaluated. The main goal is to see whether the replacement of Dexnets iterative pipeline with an initial eval-
uation for determining locally graspable object locations using Retinanet will decrease computation time
without increasing the amount of erroneous grasp attempts.

E.2. Experiment design
The goal of this experiment is to compare how well the newly suggested grasp pipeline compares to the orig-
inal Dexnet pipeline. To do this both pipelines need to be used to determine the grasp locations of the same
objects in the same position and orientation in the same order. Similar to experiment 1 random objects are
put in a box, which is shaken and turned upside down over the workspace in order to get a random orien-
tation. However, there are two differences: A grid made out of tape is added to the workspace, as shown in
Figure E.1, in order to place the objects in the same location and orientation when evaluating each of the
grasp pipelines. And, the number of objects is limited to 10 for each cycle, so it remains possible to assemble
the item piles in the same way. This is then repeated for multiple cycles.

Figure E.1: The setup used during experiment 2, with a pile of objects. Photographed from multiple angles to ensure the objects can be
replaced accurately between experiments.

An Ensenso camera is used to create a RGB image and a 2D picture aligned 3D pointcloud. This means
that the point cloud contains a 3D data point for each pixel in the 2D image. The created pointcloud is
calibrated to place the origin at the base of the UR-5 robotic arm, which places the workspace at z−axi s = 0.

After the image is taken the objects need to be segmented. Preferably this would be done automatically,
but in this case that isn’t possible. A trained network that can segment the used objects with the required
accurately wasn’t available at the time of the experiment. Additionally due to time constraints and the fact
that the segmentation falls outside the scope of this project a manual segmentation was implemented. This
has the additional advantage that the person doing the segmentation can decide which object is attempted
to be grasped, allowing for the same object grasp order between both grasp pipelines’ picking cycle. The
segmentation was done by drawing an objects outline on top of the 2D image, which could then be used as
mask for the point cloud to get the segmented point cloud. Finally a depth image, of the same size as the
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2D image, was created by taking the z-values of the segmented point cloud for each of the images’ indices,
resulting in an image like Figure E.2.

Figure E.2: Example of a segmented depth image.

After the segmentation was done the grasp pipeline was called to determine the best grasp location for
the suction gripper. Depending on the cycle either the original Dexnet pipeline, shown by Figure E.3a, or the
hybrid pipeline combining Retinanet with Dexnet, shown by Figure E.3b, was selected.

(a) The original Dexnet based iterative grasp pipeline.
(b) The hybrid grasp pipeline combining the new Retinanet local evaluator
with the Dexnet based neural network to act as global evaluator.

Figure E.3: Schematic overview of the evaluated grasp pipelines.

The Dexnet based grasp pipeline works as described in Appendix A and shown by Figure E.3a. A seg-
mented depth image is uniformly sampled for a number of potential grasp locations. These locations are
then evaluated by Dexnet based neural network to determine which potential grasp location is the best. The
best location is then passed back to the uniform sampler to sample new points around it. This iterative pro-
cess is then repeated a number times to close in on the global optimal grasp location.

The hybrid pipeline works by replacing the iterative sampling part with a neural network, using the Reti-
naNet architecture, that has been trained to find locally optimal grasp locations: points in the object that will
lead to a successful seal with the suction cup. These points are then passed on to the Dexnet based neural
network to select which of these grasp locations has the highest chance at a successful grasp action. The hy-
brid pipeline was implemented by first taking the potential grasp location with the highest confidence scores
outputted by the Retinanet network. These potential grasp locations were then added as an extra input when
calling the Dexnet based grasp pipeline function. If this additional input contained possible grasp locations
they were immediately evaluated using the Dexnet based neural network leading to a final grasp, while cir-
cumventing the iterative sampling parts. However, if this extra input was empty the original iterative pipeline
was used, making it possible to easily switch between them.

After a grasp location was determined it was passed on to the UR5 robot arm to attempt to pick up the
object. Fizyrs swivel gripper was used with a suction cup of 20mm. The objects needed to achieve local
suction and be lifted from the workspace to be defined as a successful grasp. Grasp attempts were done for
each object until either they were picked up successfully or three attempts had failed, whichever came first.
These extra attempts were done to ensure erroneous grasps actually showed a failure of the grasp pipeline
and weren’t a result of outside issues, such as a bad point cloud. The limit of three was picked as it gave a
couple attempts without wasting a large amount of time, before the object was removed by hand. After each
attempt a new image was taken and grasp attempted until all objects had been removed from the workspace.
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E.3. Results
Over a couple of weeks 15 cycles of the experiment were completed, for 150 evaluated object grasps. Unfor-
tunately two objects had to removed from the evaluation as they couldn’t be picked up. One object, because
its weight was too high and another that was placed in such an unstable pose that the slightest disturbance
made it move leaving it ungraspable with the current image. This leaves 148 object grasps to be evaluated in
this section.

The first 12 cycles were placed randomly as described at the start of section E.2. The final three piles,
however, were comprised of the most difficult to grasp objects available placed in their most difficult to grasp
orientation in order to test the limits of the grasp pipeline. The former will be described as the random setup,
while the latter will be called the adversarial setup.

E.3.1. Total evaluation
The first thing that can be compared between the grasp pipelines is their calculation time. The original
Dexnet pipeline takes on average 1.559 seconds to go from segmented point cloud to executable grasp, of
which 1.070 seconds are used to iteratively determine a graspable location. While the hybrid pipeline only
takes 1.117 seconds on average to do the same thing. The Retinanet evaluation takes 0.066 seconds on average
to determine locally graspable locations and reduces the Dexnet evaluation to only 0.485 seconds.

The average confidence score of the chosen grasp location given by the Dexnet network turned out to be
significantly lower for the hybrid pipeline compared to the original pipeline: 0.3327 for the hybrid pipeline
and 0.6155 for the original one. However, this is to be expected as the original pipeline searches for a lo-
cal optimum while the hybrid pipeline doesn’t. And this higher confidence score didn’t seem to necessarily
correlate with a higher pick success rate as is shown by Tables E.1 and E.2.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 134 124 7 3 14
Hybrid pipeline 141 133 5 3 7

Table E.1: The number of picked objects for each pipeline and the amount of attempts it took to succeed.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 90.54 % 83.78 % 4.73 % 2.03 % 9.46 %
Hybrid pipeline 95.27 % 89.86 % 3.38 % 2.03 % 4.73 %

Table E.2: The success rate of picked objects for each pipeline and the amount of attempts it took to succeed.

Random setup evaluation As mentioned at the start of this section not all objects were placed in the same
way. Only the 118 objects placed during the first 12 cycles were placed completely randomly. This placement
can have an effect on the grasp success rate and is therefore also evaluated separately from the last cycles.
The pick success rate is shown by Tables E.3 and E.4.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 111 102 7 2 7
Hybrid pipeline 114 110 2 2 4

Table E.3: The number of picked objects, placed randomly, for each pipeline and the amount of attempts it took to succeed.

Adversarial setup evaluation As mentioned at the start of this section not all objects were placed in the
same way. The 30 objects placed during the last three cycles were selected and placed in specific poses to
evaluate how well the grasp pipelines handled objects that had limited places they could be grasped success-
fully. The pick success rate is shown by Tables E.5 and E.6.
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Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 94.06 86.44 % 5.93 % 1.69 % 5.93 %
Hybrid pipeline 96.60 93.22 % 1.69 % 1.69 % 3.39 %

Table E.4: The success rate of picked objects, placed randomly, for each pipeline and the amount of attempts it took to succeed.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 23 22 0 1 7
Hybrid pipeline 27 23 3 1 3

Table E.5: The number of picked objects, placed in a adversarial way, for each pipeline and the amount of attempts it took to succeed.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 76.66 % 73.33 % 0.00 % 3.33 % 23.33 %
Hybrid pipeline 90.00 % 76.67 % 10.00 % 3.33 % 10.00 %

Table E.6: The success rate of picked objects, placed in a adversarial way, for each pipeline and the amount of attempts it took to succeed.

E.3.2. Known object evaluation
Now we’re especially interested in how the grasp pipelines perform on novel objects. However, not all objects
used during the experiment were unknown to the Retinanet network. And, while the training dataset is small,
likely containing only a single instance of the evaluated object in a different pose, it is best to control for
this. So, to display the results in more detail the results have been split for known and unknown objects.
The results of the 76 pick attempts on known objects can be found in Tables E.7 and E.8. As expected the
average confidence score given by the Retinanet network was higher for the pick attempts on known objects
compared to all objects, but not much: q̄known = 0.7562 and q̄al l = 0.7042.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 75 72 2 1 1
Hybrid pipeline 76 75 1 0 0

Table E.7: The number of picked known objects for each pipeline and the amount of attempts it took to succeed.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 98.69 % 94.74 % 2.63 % 1.32 % 1.32 %
Hybrid pipeline 100.00 % 98.68 % 1.32 % 0.00 % 0.00 %

Table E.8: The success rate of picked known objects for each pipeline and the amount of attempts it took to succeed.

Random setup evaluation The initial 12 cycles contained 64 pick attempts on known objects. The pick
success rate for these is shown by Tables E.9 and E.10.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 64 61 2 1 1
Hybrid pipeline 64 63 1 0 0

Table E.9: The number of picked known objects, placed randomly, for each pipeline and the amount of attempts it took to succeed.
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Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 100.00 % 95.31 % 3.13 % 1.56 % 0.00 %
Hybrid pipeline 100.00 % 98.44 % 1.56 % 0.00 % 0.00 %

Table E.10: The success rate of picked known objects, placed randomly, for each pipeline and the amount of attempts it took to succeed.

Adversarial setup evaluation The final three cycles contained 12 pick attempts on known objects. The pick
success rate for these is shown by Tables E.9 and E.10.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 11 11 0 0 1
Hybrid pipeline 12 12 0 0 0

Table E.11: The number of picked known objects, placed in a adversarial way, for each pipeline and the amount of attempts it took to
succeed.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 91.67 % 91.67 % 0.00 % 0.00 % 8.33 %
Hybrid pipeline 100.00 % 100.00 % 0.00 % 0.00 % 0.00 %

Table E.12: The success rate of picked known objects, placed in a adversarial way, for each pipeline and the amount of attempts it took
to succeed.

E.3.3. Unknown object evaluation
The performance on novel objects is the most important for this report. During the experiment 72 pick at-
tempts were made on unknown objects. The results of these attempts are shown by Tables E.13 and E.14.
As expected the average confidence score given by the Retinanet network was lower for the pick attempts on
unknown objects compared to all objects, but not much: q̄unknown = 0.6625 and q̄al l = 0.7042.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 59 52 5 2 13
Hybrid pipeline 65 58 4 3 7

Table E.13: The number of picked unknown objects for each pipeline and the amount of attempts it took to succeed.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 81.94 % 72.22 % 6.94 % 2.78 % 18.06 %
Hybrid pipeline 90.28 % 80.56 % 5.56 % 4.17 % 9.72 %

Table E.14: The success rate of picked unknown objects for each pipeline and the amount of attempts it took to succeed.
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Random setup evaluation The initial 12 cycles contained 54 pick attempts on unknown objects. The pick
success rate for these is shown by E.15 and E.16.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 47 41 5 1 7
Hybrid pipeline 50 47 1 2 4

Table E.15: The number of picked unknown objects, placed randomly, for each pipeline and the amount of attempts it took to succeed.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 87.04 % 75.93 % 9.26 % 1.85 % 12.96 %
Hybrid pipeline 92.59 % 87.04 % 1.85 % 3.70 % 7.41 %

Table E.16: The success rate of picked unknown objects, placed randomly, for each pipeline and the amount of attempts it took to
succeed.

Adversarial setup evaluation The final three cycles contained 18 pick attempts on unknown objects. The
pick success rate for these is shown by Tables E.17 and E.18.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 12 11 0 1 6
Hybrid pipeline 15 11 3 1 3

Table E.17: The number of picked unknown objects, placed in a adversarial way, for each pipeline and the amount of attempts it took to
succeed.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 66.67 % 61.11 % 0.00 % 5.56 % 33.33 %
Hybrid pipeline 83.34 % 61.11 % 16.67 % 5.56 % 16.67 %

Table E.18: The success rate of picked unknown objects, placed in a adversarial way, for each pipeline and the amount of attempts it took
to succeed.

E.4. Conclusion
Looking at the results presented above we can confidently say the goal of this thesis has been successful.
The newly proposed hybrid grasp pipeline, combing a predetermination of locally graspable locations using
Retinanet as input for the Dexnet evaluation, decreased the calculation time without a decrement in pick
success rate. On the contrary, the new grasp pipeline actually outperforms the old one for every evaluation.
Not only for those where the used objects were partly known to the pipeline, but also for the most difficult
novel objects. As few as 50 training images resulted in a pick success rate of over 90% for novel objects and
over 80% for the most difficult scenarios, which could possibly be increased with more training data.

Interestingly a closer inspection of the objects that the hybrid pipeline failed or had difficulty with showed
a large overlap with those the original pipeline failed. After the reduction in failed picks only two objects
caused issues for the hybrid grasp pipeline and not for the original pipeline. This similarity could be a result
of the overlapping objects being the most difficult to determine a grasping location for. However, another
possible reason might be due to the use of Dexnet as final grasp selector in the hybrid pipeline. So to figure out
whether the selection of these erroneous pick locations is a result of Dexnet, another experiment is needed.
An experiment where Dexnet is replaced by something else as decisive tool for selecting the best of the locally
graspable object locations proposed by the Retinanet network. This experiment has been done and can be
found in Appendix F.



F
Experiment 3: Alternative pipeline

F.1. Experiment goal
As described in the conclusion of appendix E some picking errors might be the result of using Dexnet to
determine the best global grasp location. Therefore additional experiments are needed to fully evaluate the
functionality of the trained Retinanet network as local grasp evaluator by using a different global evaluation
method.

F.2. Experiment design
The setup for this experiment is identical to the experiment described in Appendix E so as to accurately com-
pare the pick results. This means that everything is done in the same way; the random and adversarial object
piles are assembled to be identical to those in Appendix E; an Ensenso camera is used to create a point cloud
and depth image; the segmentation is done by manually creating a mask; and the selected grasp location is
send to an UR5 robot arm with Fizyrs swivel gripper as end effector to be executed. The only difference is that
a new grasp pipeline, as shown by Figure F.1, is used.

Figure F.1: Schematic overview of the alternative grasp pipeline that uses heuristics to evaluate the locally graspable object locations
proposed by the Retinanet network.

The newly proposed grasp pipeline uses the same predetermination of locally graspable object locations
as the hybrid pipeline, i.e., the trained Retinanet network. Only the global evaluation needed to be replaced.
This was preferably done with a different neural network trained on optimal global object grasp locations, but
this was unfortunately not possible due to time required to do so. Therefore the decision was made to use a
heuristic rule to determine which of the locally viable grasps was most likely to succeed in a successful pick.
This heuristic rule was to use the proposed grasp closest to the objects center of mass as that would lead to
the smallest torque around the gripper. However, this is tricky to do as the density and weight distribution
of novel object is unknown. Therefore the assumption is made that the whole object consists of the same
material so its center of mass lies in its center of geometry. This assumption leads to the following grasp
pipeline: first the local graspability is evaluated using Retinanet; then the grasps with the highest confidence
scores are passed on to the heuristic evaluation; and finally the grasp location closest to the objects center of
geometry, calculated as the mean of all the points in the segmented point cloud, is selected to be executed.
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F.3. Results
The setup of the experiment was identical to the one described in Appendix E: 15 cycles containing 148
objects were completed with the same objects placed in the same position and orientation to make the results
of the comparison more conclusive. The cycles were again divided as described in Appendix E with the first
12 cycles making up the random setup and the latter three the adversarial setup.

F.3.1. Total evaluation
The newly proposed and evaluated grasp pipeline is significantly faster than both the original dexnet and the
new hybrid grasp pipeline with an average duration of 0.226 seconds. However, this is expected as multiple
network evaluations are replaced by a simple heuristic selection. What we’re most interested in is how the
performance changes by removing the Dexnet evaluation as that will give a better picture of the capabilities
of the trained Retinanet network to determine the local graspability. The results of all the cycles are shown by
Tables F.1 and F.2 together with the results from experiment included for an easier comparison. Interestingly
the heuristic based grasp pipeline only fails at picking up three objects and therefore outperforms the hybrid
grasp pipeline. However, this is in line with the higher average confidence score for the executed grasps of
q̄heur i st i c = 0.8694 compared to q̄hybr i d = 0.7042

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 134 124 7 3 14
Hybrid pipeline 141 133 5 3 7
Retinanet pipeline 145 139 5 1 3

Table F.1: The number of picked objects for each pipeline and the amount of attempts it took to succeed.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 90.54 % 83.78 % 4.73 % 2.03 % 9.46 %
Hybrid pipeline 95.27 % 89.86 % 3.38 % 2.03 % 4.73 %
Retinanet pipeline 97.98 % 93.92 % 3.38 % 0.68 % 2.03 %

Table F.2: The success rate of picked objects for each pipeline and the amount of attempts it took to succeed.

Random setup evaluation As mentioned at the start of this section not all objects were placed in the same
way. Only the 118 objects placed during the first 12 cycles were placed completely randomly. This placement
can have an effect on the grasp success rate and is therefore also evaluated separately from the last cycles.
The pick success rate is shown by Tables F.3 and F.4.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 111 102 7 2 7
Hybrid pipeline 114 110 2 2 4
Retinanet pipeline 117 113 4 0 1

Table F.3: The number of picked objects, placed randomly, for each pipeline and the amount of attempts it took to succeed.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 94.06 % 86.44 % 5.93 % 1.69 % 5.93 %
Hybrid pipeline 96.60 % 93.22 % 1.69 % 1.69 % 3.39 %
Retinanet pipeline 99.15 % 95.76 % 3.39 % 0.00 % 0.85 %

Table F.4: The success rate of picked objects, placed randomly, for each pipeline and the amount of attempts it took to succeed.
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Adversarial setup evaluation As mentioned at the start of this section not all objects were placed in the
same way. The 30 objects placed during the last three cycles were selected and placed in specific poses to
evaluate how well the grasp pipelines handled objects that had limited places they could be grasped success-
fully. The pick success rate is shown by Tables F.5 and F.6.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 23 22 0 1 7
Hybrid pipeline 27 23 3 1 3
Retinanet pipeline 28 26 1 1 2

Table F.5: The number of picked objects, placed in a adversarial way, for each pipeline and the amount of attempts it took to succeed.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 76.66 % 73.33 % 0.00 % 3.33 % 23.33 %
Hybrid pipeline 90.00 % 76.67 % 10.00 % 3.33 % 10.00 %
Retinanet pipeline 93.33 % 86.67 % 3.33 % 3.33 % 6.67 %

Table F.6: The success rate of picked objects, placed in a adversarial way, for each pipeline and the amount of attempts it took to succeed.

F.3.2. Known object evaluation

Now we’re especially interested in how the grasp pipelines perform on novel objects. Unfortunately not all
objects used in the experiment were unknown to the Retinanet network. And, while the training dataset is
small, likely containing only a single instance of the evaluated object in a different pose, it is best to control
for this. So, to display the results in more detail the results have been split for known and unknown objects.
The results of the 76 pick attempts on known objects can be found in Tables F.7 and F.8. As expected the
average confidence score given by the Retinanet network was higher for the pick attempts on known objects
compared to all objects, but not much: q̄known = 0.9131 and q̄al l = 0.8695.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 75 72 2 1 1
Hybrid pipeline 76 75 1 0 0
Retinanet pipeline 76 75 1 0 0

Table F.7: The number of picked known objects for each pipeline and the amount of attempts it took to succeed.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 98.69 % 94.74 % 2.63 % 1.32 % 1.32 %
Hybrid pipeline 100.00 % 98.68 % 1.32 % 0.00 % 0.00 %
Retinanet pipeline 100.00 % 98.68 % 1.32 % 0.00 % 0.00 %

Table F.8: The success rate of picked known objects for each pipeline and the amount of attempts it took to succeed.
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Random setup evaluation The initial 12 cycles contained 64 pick attempts on known objects. The pick
success rate for these is shown by Tables F.9 and F.10.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 64 61 2 1 1
Hybrid pipeline 64 63 1 0 0
Retinanet pipeline 64 63 1 0 0

Table F.9: The number of picked known objects, placed randomly, for each pipeline and the amount of attempts it took to succeed.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 100.00 % 95.31 % 3.13 % 1.56 % 0.00 %
Hybrid pipeline 100.00 % 98.44 % 1.56 % 0.00 % 0.00 %
Retinanet pipeline 100.00 % 98.44 % 1.56 % 0.00 % 0.00 %

Table F.10: The success rate of picked known objects, placed randomly, for each pipeline and the amount of attempts it took to succeed.

Adversarial setup evaluation The final three cycles contained 12 pick attempts on known objects. The pick
success rate for these is shown by Tables F.11 and F.12.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 11 11 0 0 1
Hybrid pipeline 12 12 0 0 0
Retinanet pipeline 12 12 0 0 0

Table F.11: The number of picked known objects, placed in a adversarial way, for each pipeline and the amount of attempts it took to
succeed.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 91.67 % 91.67 % 0.00 % 0.00 % 8.33 %
Hybrid pipeline 100.00 % 100.00 % 0.00 % 0.00 % 0.00 %
Retinanet pipeline 100.00 % 100.00 % 0.00 % 0.00 % 0.00 %

Table F.12: The success rate of picked known objects, placed in a adversarial way, for each pipeline and the amount of attempts it took to
succeed.

F.3.3. Unknown object evaluation
The performance on novel objects is the most important for this report. During the experiment 72 pick at-
tempts were made on unknown objects. The results of these attempts are shown by Tables F.13 and F.14. As
expected the average confidence score given by the Retinanet network was lower for the pick attempts on
unknown objects compared to all objects, but not much: q̄unknown = 0.8314 and q̄al l = 0.8695.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 59 52 5 2 13
Hybrid pipeline 65 58 4 3 7
Retinanet pipeline 69 64 4 1 3

Table F.13: The number of picked unknown objects for each pipeline and the amount of attempts it took to succeed.
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Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 81.94 % 72.22 % 6.94 % 2.78 % 18.06 %
Hybrid pipeline 90.28 % 80.56 % 5.56 % 4.17 % 9.72 %
Retinanet pipeline 95.84 % 88.89 % 5.56 % 1.39 % 4.17 %

Table F.14: The success rate of picked unknown objects for each pipeline and the amount of attempts it took to succeed.

Random setup evaluation The initial 12 cycles contained 54 pick attempts on unknown objects. The pick
success rate for these is shown by F.15 and F.16.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 47 41 5 1 7
Hybrid pipeline 50 47 1 2 4
Retinanet pipeline 53 50 3 0 1

Table F.15: The number of picked unknown objects, placed randomly, for each pipeline and the amount of attempts it took to succeed.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 87.04 % 75.93 % 9.26 % 1.85 % 12.96 %
Hybrid pipeline 92.59 % 87.04 % 1.85 % 3.70 % 7.41 %
Retinanet pipeline 98.15 % 92.59 % 5.56 % 0.00 % 1.85 %

Table F.16: The success rate of picked unknown objects, placed randomly, for each pipeline and the amount of attempts it took to
succeed.

Adversarial setup evaluation The final three cycles contained 18 pick attempts on unknown objects. The
pick success rate for these is shown by Tables F.17 and F.18.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 12 11 0 1 6
Hybrid pipeline 15 11 3 1 3
Retinanet pipeline 16 14 1 1 2

Table F.17: The number of picked unknown objects, placed in a adversarial way, for each pipeline and the amount of attempts it took to
succeed.

Successful picks 1st attempt 2nd attempt 3rd attempt Failed picks
Dexnet pipeline 66.67 % 61.11 % 0.00 % 5.56 % 33.33 %
Hybrid pipeline 83.34 % 61.11 % 16.67 % 5.56 % 16.67 %
Retinanet pipeline 88.90 % 77.78 % 5.56 % 5.56 % 11.11 %

Table F.18: The success rate of picked unknown objects, placed in a adversarial way, for each pipeline and the amount of attempts it took
to succeed.
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F.4. Conclusion
Looking at the experimental results presented above the new pipeline with a heuristic to select a grasp loca-
tion from the proposed locally graspable locations performed even better than the hybrid pipeline, achieving
an almost 96% pick success rate for novel objects. Confirming the suspicion mentioned in the conclusion of
Appendix E that the results of the Retinanet network as local evaluator could be even better than that experi-
ment suggested.

Still improvements can be made for better and more consistent results or improved usability. For exam-
ple color data from the input image can be used in addition to the depth image. This would make it likely
that small surface structures such as ridges or different materials that aren’t visible in the point cloud can be
noticed by the network, reducing errors. Or large pieces of the surface that have the same color and material
could be observed which have a large chance of being favorable grasp areas.

An alternative possible improvement would be to make it so a point cloud was directly used as input
instead of using a dept map. This would make the resulting network likely instantly usable on a new setup,
without issues resulting from the use of a different camera, due to the use of xyz-coordinates.
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