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ABSTRACT The Digital Twins (DT) have emerged as the technology that provides capabilities to
simulate and analyze cyber-physical systems’ behaviors using digital replicas. This is achieved through
high-fidelity digital models, bi-directional communication and (near) real-time data exchange between
physical real-world systems and DTs. Despite its capabilities of facilitating real-time monitoring, opti-
mization, and predicting system performance, effectively leveraging DT for power system applications
requires integrating data from heterogeneous sources and addressing various data related aspects. These
include data modeling, exchange and interoperability. One promising concept to address these aspects is
that of data federation which promotes interoperability, allowing DTs to operate autonomously, yet interact
seamlessly. While various studies in literature have addressed DT applications, technologies, and challenges,
a comprehensive review on the data federation aspects within power systems still needs to be investigated.
This research seeks to bridge this gap by providing an in-depth review of DT practices in academia and
industry, functional and non-functional requirements, and enabling technologies, with emphasis on data
federation. Its role in enhancing system-wide interoperability in the power system, along with associated
challenges are summarized and discussed.

INDEX TERMS Digital twin, power systems, data federation, digital technologies, data interoperability.

I. INTRODUCTION
Digitalization is revolutionizing the energy sector, enhancing
efficiency, and offering low-carbon energy solutions. How-
ever, the energy transition in modern power systems comes
with its challenges. The growth of intermittent and decen-
tralized renewable sources of energy and the interconnection
amongst autonomous and distributed constituent systems in
the power system have increased the complexity and uncer-
tainty of power system operations [1]. This necessitates a
solution that can facilitate and coordinate the interplay and
collaboration between constituent systems and analyse and

The associate editor coordinating the review of this manuscript and
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observe uncertain and dynamic power system behaviors. The
Digital Twin (DT) concept is an approach that capture the
intricate behaviours of physical systems through high-fidelity
analytical models [1]. A DT is a unique combination of the
physical and digital worlds. The physical world constitutes
the operational technologies such as sensors, and actuators,
while the virtual digital space hosts digital replicas of these
physical assets. This can simulate different conditions, and
configurations and take decisions regarding the physical
space via (live) data and information flows between them
[2], [3].

DTs allows for integrating data across power system com-
ponents, for example, to predict system behaviours, and
simulate interactions among these constituent systems to
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anticipate potential events. These capabilities are crucial
in dynamic and uncertain environments, enabling real-
time monitoring, data-driven optimization, and analysis, and
ensuring pre-emptive measures for power system reliabil-
ity and resilience. The DT has drawn significant attention
from researchers in industry and academia. Its widespread
adoption across various industries, including aviation, man-
ufacturing and the energy domain shows its credibility and
potential. DT plays a vital role in a variety of applications
and use cases of future power systems, including power
generation and distribution, energy storage, project plan-
ning, microgrids, electric vehicles, and renewable energy
generation systems [4], [5]. The power systems digital trans-
formation through DTs represents a significant leap forward
in optimizing, managing, and securing the power systems
[2], [6].

A. MOTIVATION
While DT brings various capabilities, it is necessary to effec-
tively utilize its full potential in power systems to address
the challenges such as modelling and management of data,
computational requirements, and interoperability of complex
interconnected and heterogeneous power systems [7], [8].
DT introduces requirements, such as the need for interoper-
able data and data model exchanges to enhance system-wide
interoperability. Thus, a robust foundation in data federa-
tion becomes a prerequisite and the core for developing an
effective DT. Data federation is an approach that virtually
integrates and manages data from heterogenous sources into
a common federated query engine. It integrates data from
diverse sources like relational databases, structured files,
through a unified schema and allows for streamlining access
to distributed data as a single source.

The federated concept has been applied for a few rea-
sons, including enhanced system interoperability, collabora-
tion, and synchronization, but also for comprehensive and
real-time decision-making while addressing the integration
challenges of collaborative DTs [9]. The federated concept
allows for a scalable and flexible architecture where individ-
ual DTs, each modelling specific assets or processes within
the power grid, operate autonomously, yet can interact seam-
lessly with one another. This interconnectedness is essential
for simulating complex, system-wide scenarios, ranging from
monitoring to emergency response strategies, with high
fidelity and real-time data exchange [2]. Through these inter-
actions, DTs can collaborate, share data and insights that
enhance decision-making processes, and optimize power sys-
tem performance.

B. RELATED SURVEYS AND CONTRIBUTIONS
The literature in recent years has investigated and reviewed
different dimensions of the DT, including challenges, require-
ments, supporting technologies and applications in general.
However, only a few covered the data federation aspects of
DTs in power systems. Sifat et al. [8] underscored that the

design of DT should consider Cyber-Physical Systems (CPS)
requirements such as security, scalability, and confidentiality
while also reviewing the challenges in data communica-
tion, protocols, power grid integration, and cybersecurity.
Similarly, Chen et al. [4] studied data privacy, cybersecu-
rity, and data and model fusion challenges and how DT
can enhance the control, design, and maintenance of Power
Electronics Enhanced Cyber-Physical Systems (PEECSs).
In [10], the surveywas provided by exploringDT applications
and functions and discussing DT challenges in power sys-
tems. Another survey in [11] emphasized the non-functional
requirements for DT operations and presented different use
case applications of DT for electrical energy.

In addition, Jeong et al. [12] defined a DT as an intelligent
technology platform that synchronizes physical entities e.g.,
spaces, objects, processes and systems. Palensky et al. [1]
examined DT applications and use cases in future power
systems and their supportive functions. Brosinsky et al. [2]
thoroughly investigated the importance of data federation and
its required components to prevent data silos in power system
DTs, along with discussing the non-functional requirements
DTs should meet. The authors of [13] reviewed DT chal-
lenges, such as data ownership, governance, security, and
fidelity, alongside social and ethical concerns and provided
insights on the role of DT in smart factories, cities, and
buildings. In addition, Fuller et al. [14] reviewed DT and data
analytic challenges, detailing the technologies and functional
blocks necessary for digital twinning and its application in
healthcare, manufacturing, and smart cities. Zhang et al. [15]
focused on the data requirements, principles, and technolo-
gies that can satisfy these requirements.

Existing studies have discussed different aspects, from
DTs’ applications and operational requirements to the signif-
icance of data integration. However, a comprehensive review
is needed that provides the functional, non-functional, and
technology requirements, case studies on DT implementation
using digital technologies, current practices of DT in both
academia and industry, in addition to data federation require-
ments, and challenges of power systems DT in detail. This
gap identified in the existing literature forms the basis for
our review paper’s contributions. This paper comprehensively
investigates several critical aspects related to DT in the energy
domain.

• Firstly, we introduce an extensive overview of dif-
ferent DT definitions and concepts found in previous
studies. Then we examine its applications across dif-
ferent areas within the power system context. This
overview identifies trends in the existing research, pro-
viding a foundation to assimilate the state-of-the-art DT
technology.

• Secondly, we investigate the specific requirements nec-
essary for implementing DTs within power systems.
This involves a careful examination of the technical
and functional needs that must be met to success-
fully deploy DT in this context. We also explore
the enabling digital technologies that support digital
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twinning, such as Internet of Things (IoT), Artificial
Intelligence (AI), and Machine Learning (ML), and how
these digital technologies integrate with power systems
DT to enhance performance, reliability, and efficiency.
These findings can provide implications on current
trends and advancements in those technologies that
are advancing DT capabilities and further research and
development.

• Finally, we discuss the critical aspects of data federation
within power system DTs. This includes a comprehen-
sive investigation of the various data types, attributes,
and requirements necessary for effective digital twin-
ning.We outline the principles and components essential
for data modelling, which ensure that the interoperabil-
ity standards are met. Moreover, we identify and discuss
the challenges associated with data federation, including
data integration, governance, management, standardiza-
tion, and security issues, and propose potential solutions
to overcome these encumbrances.

II. LITERATURE REVIEW
A. RESEARCH OBJECTIVES AND PAPER STRUCTURE
A thorough review of the literature was conducted to identify
the state-of-the-art research. The review’s objectives were
defined to guide the review process and identify relevant
studies and findings.

1) RESEARCH OBJECTIVES
As DTs gain increasing relevance in various fields, reviewing
how DT is defined in the literature is imperative. Understand-
ing its conceptual underpinnings and potential applications is
also crucial, especially as DT technology has been broadly
used in the energy sector. Therefore, examining current aca-
demic and industry practices documented in the literature is
necessary to specify trends, use cases, and potential. Further-
more, identifying functional and non-functional requirements
is vital to develop effective DTs for power systems, as they
are essential for creating robust and efficient models. In addi-
tion, since digital technologies can unlock new capabilities
for DTs, exploring how these technologies enable enhanced
performance and innovation is essential. While data inte-
gration is an important element for the success of DTs
in power systems, identifying the types of data and their
attributes required for effective data federation is of utmost
importance. To ensure the seamless operation of DTs, it is
also necessary to define specific data requirements, princi-
ples, and components. Given the complexity of integrating
diverse systems, understanding how to ensure interoper-
ability for data federation in heterogeneous power system
DTs is indispensable for achieving cohesive and functional
integration. Finally, because DT data federation in power
systems faces various challenges, it is crucial to identify and
address these barriers to facilitate smooth implementation and
operation.

FIGURE 1. Summary of review paper structure and coverage.

Consequently, in this study, we limit our focus to the topics
below:

1. Definition, concepts and characteristics of DTs based
on the literature,

2. Current state-of-the-art practices and applications of
DTs in the energy industry and academia,

3. Functional and non-functional requirements necessary
to develop DTs of power systems,

4. Role of digital technologies for power system DTs and
case studies,

5. Data requirements, principles, and components for data
federation of DTs,

6. Data types and attributes for data federation of power
systems DTs,

7. Interoperability standards, its adoption in real-world
applications and associated challenges for power sys-
tem DT data federation.

B. CLASSIFICATION OF THE STATE-OF-THE-ART
This advanced review paper includes articles published in
three digital libraries, i.e., IEEE Xplore, Science Direct, and
Digital Twin. We limited the article category to journals,
magazines, and book chapters, and the period from 2002,
when the concept of DT concept was first proposed, until the
first quarter of 2024 (Q1 2024). To find relevant information
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regarding theDT adoption in the energy industry, we searched
on Google News using the search queries. This survey uses
relevant Text Search (TS) queries based on the search objec-
tives to find relevant articles from the digital libraries and
Google News. Table 1 summarizes the text query used for
this survey.

This comprehensive review is categorized into three sec-
tions as illustrated in Figure 1. Furthermore, to comprehen-
sively understand the current research landscape, we analysed
a research gap as presented in Table 2. It compares existing
survey and review articles relevant to DTs in the power
system domain across five categories. These categories were
selected based on their foundational role in developing robust,
interoperable, and scalable DTs for power systems.

• Applications & Use Cases: This dimension evaluates
how comprehensively each study addresses DT appli-
cations in power systems. Articles such as [1], [10],
and [13] provide a high-level discussion of potential
applications in power systems.

• Functional & Non-functional Requirements: DT sys-
tems must satisfy various requirements to be viable in
power systems, such as interoperability and cybersecu-
rity. This category assesses the degree to which prior
works define or formalize such requirements.

• Enabling Technologies are discussed in most papers
to a moderate extent (e.g., [4], [13], [14]), mentioning
IoT, AI, or cloud computing. However, the intercon-
nection between these technologies and integration with
DT implementations in power systems remains under-
represented in prior work. We evaluate how these
technologies are addressed and contextualized within
the power system landscape.

• Data Federation Requirements: As modern power
systems become increasingly decentralized and data-
intensive, federated architectures are essential for uni-
fying diverse data sources. The most significant gap
appears in this aspect. While [2] and [14] studied these
topics, their focus remains high-level and not specific
to power system context. Data principles were explored
in [15], but there was limited discussion on federation
frameworks and standardization protocols.

• Data Federation Challenges: Effective implementation
of data federation in DTs can be constrained by interop-
erability limitations, lack of standardization, and gover-
nance issues. We examine which issues are addressed in
existing studies and to what extent.

Table 2 shows that related prior studies offer partial or min-
imal coverage of these last two categories, particularly data
federation requirements, and challenges, which are crucial for
scalable and interoperable DT systems. Our study, in con-
trast, provides high and in-depth coverage across all five
dimensions, with a particular focus on the underrepresented
area of data federation. It discusses data types and modelling
attributes relevant to power system DTs and highlights prac-
tical implementation challenges of industrial interoperability

standards, data governance issues, and security considera-
tions.

III. REVIEW OF DIGITAL TWIN CONCEPTS AND CURRENT
PRACTICES IN ENERGY INDUSTRY
This section presents the different DT definitions in the liter-
ature and other similar concepts surrounding DT, along with
DT adoptions in the energy industry and academic research.

A. DIGITAL TWIN DEFINITION
In 2002, Grieves first proposed the term ‘‘digital twin’’ in
to describe a new concept in product life cycle management.
Nowadays, much of the literature has used distinct definitions
of DTs [16]. A DT is a virtual replica of a physical entity.
It includes the environment supporting it, which requires a
standardized architecture, data format, communication pro-
tocol and end-to-end connectivity, facilitating interaction
between the virtual replica and physical counterpart [17].
Grieves and Vickers define a DT using the terms twin, proto-
type, instance [16], [18]. The twin is the virtual representation
of the real subject that accurately depicts it. The prototype is
the description that contains sufficient details to reproduce
the twin. The subject itself is an instance. Jafari et al. [10]
denote the DT concept as a digital replica of a physical system
that can reflect its physical behaviour through interaction in
real-time and bidirectional data.

B. ALTERNATIVE CONCEPTS OF DIGITAL TWIN
There are various misconceptions about DTs, and clarify-
ing these misconceptions is essential for understanding and
leveraging DT technology. In that regard, Fuller et al. [14]
addressed various concepts surrounding DTs, differentiating
three concepts: DT, digital shadow, and digital model.

‘‘Digital Model’’ is a static, digital depiction of an existing
or conceptual physical entity. It lacks real-time data exchange
with its physical model—for example, product design and
buildings design. When automated data synchronization is
absent, modifications made to the physical entity are not
reflected in the digital model and vice versa. This concept is
synonymous with the ‘‘modelling and simulation’’ concept,
described by Wagner et al. [7], which provides a frame-
work for exploring object behavior without direct interaction.
‘‘Modelling and Simulation’’ includes digitally replicating a
physical asset to study its behavior without directly exper-
imenting with the actual object. Developing a model is to
capture essential features of the physical entity for targeted
analysis and study the specific scenario’s behavior and/or
performance of the actual object through relevant attributes
and relationships. In contrast to DT, models are created to
emulate or simulate the object but focus on relevant aspects
for the investigations at hand.

‘‘Snapshot Twin’’ is another term utilized for simulations,
and it can capture and isolate data at a particular moment
for subsequent analysis. It is helpful in ‘‘what-if’’ scenar-
ios, real-time simulations, and virtual reality applications.
It also maintains all data regard to the physical entity within

105520 VOLUME 13, 2025



M. M. Thwe et al.: Digital Twins for Power Systems

TABLE 1. Text search queries to investigate related literature on power system digital twin and data federation in digital twin and its challenges research.

the DT database, ensuring that the snapshot and its results
remain integrated within the DT ecosystem. The ‘‘Digital
Shadow’’ concept represents a digital illustration of a real
physical object characterized by a uni-directional data flow
from the physical to the digital model. Adjustments made
in the physical object updates only the digital object. Unlike
Snapshot Twin and Digital Shadow, ‘‘Digital Twin’’ provides
a dynamic, bidirectional data exchange and synchronization
between a physical and digital object. Modifications and
adjustments in the actual physical space immediately update
the digital version, and vice versa.

Similarly, ‘‘Linked DT’’ is a comprehensive digital repre-
sentation that is technically feasible and applicable to various
experimental scenarios. Simulations in this context are con-
ducted separately from the physical entity, focusing on how
the object might respond to specific conditions or inputs.
Facilitating direct and two-way communication as well as
real-time updates will allow for close alignment between
the DT and its physical counterpart. In essence, a DT in
the energy domain is a virtual representation of the actual
physical entity (such as power grid assets, power system
operation processes) that can mirror its state, behaviour and
performance in the virtual space. Physical entity and DT con-
vergence occurs as often as needed, with an appropriate rate
of synchronization and bi-directional data communication.

As discussed above, one of the fundamental characteris-
tics of a DT is its ability to collect and process data from
its physical counterpart and send feedback, insights, and
outcomes back to them. The integration of DT results into
physical systems relies on robust and reliable communication
infrastructures. DTs and physical systems use protocols such
as Transmission Control Protocol/Internet Protocol (TCP/IP)
as the foundation for real-time communication and industry-
specific standards—such as International Electrotechnical
Commission (IEC) 61850 in power systems or OPC UA in
industrial automation, depending on specialized data han-
dling needs. This enables the transmission of measurements
and real-time operating data from the physical system flow
to the DT for processing and analysis. DT-generated insights,
such as control and command parameters and operational
strategies, are sent into the physical system at appropriate

synchronization rates to ensure consistent system states. Dif-
ferent systems can use different protocols for integration
based on the specific applications and use cases. Shen et al.
[19] provide an example of DT integration with a physi-
cal system using real-time data. The authors suggested a
testbed for establishing a power system DT (PSDT) that
uses TCP/IP communication protocols and synchronization
between physical and DTs. They demonstrated the DT’s
practical applicability using data and scenario generation
scenarios, online fault identification, measurement upscaling,
and expansion. While DT and physical systems often share a
common communication infrastructure, achieving seamless
integration relies on particular system requirements such as
data heterogeneity, real-time processing demands, resilience
to communication disruptions, and cybersecurity risks.

C. DIGITAL TWIN ADOPTION IN ACADEMIA AND
INDUSTRY
1) ACADEMIC PRACTICES
Much research in recent years has discussed how DTs have
been applied in the energy domain. Figure 2 presents different
areas where DT has been utilized in the energy domain. One
of the most widely adopted applications is to improve the reli-
ability and performance of power converters and other critical
equipment and enable real-time monitoring and predictive
analytics for addressing potential failures [20]. Microgrids
have applied DT technology for optimized integration and
management, ensuring a stable and efficient operation in
complex energy distribution scenarios [7]. In addition, DTs
facilitate the development of more efficient and reliable trans-
portation solutions, including Electric Vehicles (EV) and
drive systems, which align with energy storage systems for
seamless energy flow and storage capabilities [21]. Renew-
able energy sources, including solar panels andwind turbines,
can also benefit from DT to maximize output and effectively
integrate renewable resources into the power grid [22].

Furthermore, DTs extend their applications to broader
aspects of energy management, including forecasting to opti-
mize energy usage in smart cities, cyber-physical attack
detection to secure the power grid infrastructure, and energy

VOLUME 13, 2025 105521



M. M. Thwe et al.: Digital Twins for Power Systems

TABLE 2. Comparison of related work on power system digital twin survey and review.

forecasting [23], [24], [25]. They have also contributed to
fault prediction, detection, and diagnosis in Photovoltaic (PV)
energy conversion units, power converters, and distributed
PV systems. DT can enable precise identification of oper-
ational issues in PV units, supporting early detection of
faults in power converters, facilitating detailed fault diag-
nosis in distributed PV setups [26], [27], [28], and fault
prediction in the transmission lines [29]. Moreover, DTs
are used in the design phase of energy systems including
structure design, simulation platform design, and reliability
design. DT allows for the simulation of various scenarios,
enabling engineers to optimize designs for robustness and
reliability before the actual physical implementation [21],

[30]. Similarly, DTs enable more sophisticated optimization,
precise prediction of state variables, and the execution of
complex control tasks, thus significantly enhancing the man-
agement of control systems. Through continuous monitoring
and predictive analytics, DTs provide a proactive framework
for maintaining the system health, ensuring operational effi-
ciency, and extending the lifespan of energy conversion and
distribution systems [31]. As power systems increasingly
integrate DERs, analysing and optimizing for sustainability
becomes paramount, and approaches for DT-driven sustain-
ability assessment and optimization of performances have
been proposed [32]. As DT has the potential for the auto-
mated gathering of data directly from power generation,
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they can be utilized for analytics using ML to produce
meaningful insights, enabling informed decision-making for
reducing energy consumption, minimizing waste, and opti-
mizing resource use.

The aforementioned power system DT solutions must be
developed and tested using processes that do not interfere
with regular business operations, jeopardize electrical ser-
vices, or access confidential data. Nevertheless, access to
physical counterparts and the use of data from actual phys-
ical power system infrastructure are frequently limited for
research purposes in academic settings. In this regard, a real-
world testing platform should be established by using the
virtual physical twin (VPT) as a replacement for the physical
counterpart in constructing the power system DT testbed.
Shen et al. [19] argued that VPT is not expected to be a
replica of its physical counterparts and precise emulation.
They proposed the implementation of a virtual testbed in two
phases. The first stage connects the VPT to the DT, while
the second stage focuses on the interaction between the DT
being developed and the actual system. Using the VPT in
the initial phase eliminates the need to precisely replicate a
physical system in a DT before specifying or creating any
applications. The PSDT is deployed on a real-world power
system in the second step of the workflow. That occurs after
the DT and related services show robustness and satisfactory
performance with the VPT interface.

2) INDUSTRY PRACTICES
The energy sector is experiencing a shift towards digital-
ization, driven by the adoption of DT technology, to rev-
olutionize how energy companies and governments oper-
ate. Through various innovative collaborations and projects
worldwide, application of DT in power systems can be seen
as summarized in Table 3. For instance, in Brazil, Companhia
Energética de Minas Gerais (CEMIG) and Enline Energy
Solutions have undertaken digitizing power grids using a
sensor less Software as a Service (SaaS) solution. By lever-
aging real-time data from CEMIG’s Supervisory Control
and Data Acquisition (SCADA) system, system operators
can optimize assets without physical sensors while reducing
operational costs and carbon emissions. In addition, it also
aims to enhance cybersecurity through a secure connection
between operational and corporate networks, characterizing
the multifaceted benefits of DTs in improving grid opera-
tions and environmental sustainability [33]. Meanwhile, the
European Organization for Nuclear Research (CERN)’s col-
laboration with ABB in Switzerland focuses on increasing
energy efficiency within its cooling and ventilation sys-
tems [34]. Deploying smart sensors and creating DTs for
specific infrastructure facilitates real-time monitoring, diag-
nostics, maintenance, and optimization. ABB’s technology
can enable data-driven decision-making, significantly saving
energy and reducing costs. ABB has also partnered with
CORYS, a French simulation company, to advance DT mod-
elling and simulation technologies across the energy sector

and beyond, to reduce operational expenses and risks, high-
lighting howDT technology can enhance plant operations and
maintenance strategies on a broad scale [35], [36].
Furthermore, Finland’s transmission system operator, Fin-

grid [37], has partnered with Siemens to introduce the ELVIS
digital grid model. By connecting the single source of truth
(SSoT) model to asset management data and historical and
real-time measurements, the DT has been used to forecast
future energy consumption and develop several investment
scenarios, considering different policy frameworks. Adopting
the electrical DTs in Fingrid has shown that it can save time
and money while improving the accuracy and consistency of
network models and offering efficient digitalization of cur-
rent and future business processes. American Electric Power
(AEP) is another largest transmission network in the United
States. It aims to coordinate network model information
across multiple functional business domains and centralize
its management. AEP partnered with Siemens to deploy the
electrical DT solution for the network model management
improvement program [37]. The solution is designed based
on the open standard of the Common Information Model
(CIM). It allows for efficiently maintaining, analyzing, and
exchanging network data across different domains. It ulti-
mately can reduce the time and costs associated with manual
model internal and external organization coordination.

The State Grid Corporation of China (SGCC) is the leading
company in China in adopting DT for power grid manage-
ment [38]. Focusing on Ultra-High Voltage (UHV) and smart
grid technologies, SGCC’s efforts symbolize the efficiency
gains and operational improvements achievable through DTs,
emphasizing the technology’s potential in large-scale infras-
tructure projects. Siemens also leverages gPROMS Digital
Process twin technology, presenting how DTs are used for
process optimization [39], [40]. By enabling virtual design
and testing, Siemens demonstrates how DTs can signifi-
cantly reduce the development time and address issues such
as raw material expenses and high energy costs, marking
a significant advancement in manufacturing and production
processes. IBM’s integration of generative AI with DT tech-
nologies further highlights the potential for innovation in the
energy sector [41]. This approach allows for advanced asset
management and operational efficiency through applications
like visual insights for anomaly detection, large-scale asset
performance management, and AI-powered real-time field
service assistance. Through the Big Data Ecosystem and
DT Platform initiatives, the government and private sector
stakeholders in the United Arab Emirates (UAE) are also
applying DT for creating accurate digital models of physical
assets and infrastructures, to improve decision-making and
risk management. By providing a dynamic 3D visualization
of urban sustainability metrics, the UAE is leading the way in
proactive climate change mitigation and infrastructure pro-
tection. South Korean company Techtree Innovation [42] is
also contributing to the UAE’s DT ecosystem, by sharing its
3D geospatial map technologies. Above worldwide industrial
practices present the significant impact of DT technology
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FIGURE 2. Overview of digital twin applications in energy domain.

in the energy sector by enhancing operational efficiency,
reducing environmental impact, and fostering innovative
approaches to future energy management.

IV. REQUIREMENTS AND ENABLING TECHNOLOGIES FOR
POWER SYSTEM DIGITAL TWINS
When developing a DT for power systems, identifying the
functional components and requirements is important to
achieve a precise, and interactive representation of physical
elements and processes within power systems. Functional
requirements of power system define the specific behaviours
or functions of the power system, detailing what the system
should do or perform in terms of operations, services, and
constraints. Non-functional requirements specify how the
system will do it [43]. These requirements are critical for the
power system design, development, and operations, ensuring
it meets the needs of its users and operates efficiently and
reliably. Key functional and non-functional requirements to
be considered when developing DTs for the power system are
depicted in Figure 3.

A. FUNCTIONAL REQUIREMENTS
1) MODELING AND SIMULATION
A DT includes models of the physical system, which are
created using specific tools and are updated during the entire
lifecycle. Arraño-Vargas and Konstantinou [44] discussed
different types of models such as submodels, complete mod-
els and synthetic models. Submodels are the decomposed
parts or specific modules of a system/process. Each mod-
ule is viewed as a unit with unique properties in terms of
structure, behaviour, inputs, and outputs. Complete models
are a collection of submodels that combine to build a larger,
composite model that is accurate, sufficient, and suitable for
providing services in a DT when data is received/sent to its
physical counterpart. Due to the limitations of accessing real
systems/processes, parameters, and data in the research com-
munity, synthetic models have been used as an alternative.
It enables to investigate and assess a wide range of processes

and occurrences. Although synthetic models share many of
the similar features and characteristics as real systems, they
can be freely shared and do not contain sensitive information.
Using those models of power system assets, e.g., trans-
formers, generators, transmission lines, Phasor Measurement
Units (PMU), relays, etc., behaviours under different condi-
tions can be simulated. DTs should have the capability to run
simulations using different scenarios derived from the data
from the physical system including predicting the likeliness
of certain events and analyzing the impacts regarding the
physical system. For example, DTs have been used to assess
the stability and resilience of power systems under extreme
weather events, cyber-attacks [45], [46] and renewable energy
sources integration [47], [48], [49]. In addition, different
simulations are performed to examine the potential causes
when an anomaly is detected, or the effect on the system
stability as a consequence of cyber-attacks. This requires
the simulation to be (near) time to identify and mitigate
the anomalies or faults. Furthermore, To optimize battery
configurations as the battery runs in different environments
or conditions, what-if simulations are also carried out [50].
By simulating the complex dynamics of power systems using
DT, operators and/or researchers can foresee and mitigate
potential issues, optimize grid performance, and prepare for
future expansions or upgrades. Simulation results are crucial
for understanding the effects of operational decisions and for
testing the hypotheses in a virtual environment.

2) PREDICTIVE MAINTENANCE, MONITORING AND
CONTROL
Power system DTs should provide predictive maintenance,
monitoring, and control capabilities, which can be leveraged
by AI and ML techniques [51], [52]. By analysing patterns in
the dataset, equipment failures can be predicted before they
happen, enabling operators to schedule maintenance proac-
tively. Moreover, forecasting renewable energy production,
monitoring, and managing asset health and performance, and
optimization algorithms can also help minimize downtime
and reduce operational costs while guiding adjustments to
improve overall system stability and performance [53], [54].
Monitoring techniques can be distinguished into online and
offline monitoring [55]. Online monitoring processes new
data in real-time, for which delays are intolerable. In contrast,
there can be delays in offline monitoring, for example, stored
time series data can be utilized later for different experi-
mentation, such as simulating events like faults or attacks
and finding potential causes of events. To ensure the safety
of battery physical twin, DT is used to track the discrep-
ancy between the monitored and predicted behaviors, thereby
enabling anomaly detection [50] and performing control mea-
sures as required.

3) DATA INTEGRATION
Accurate and efficient handling of data streamed from het-
erogeneous sources in physical power systems such as
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FIGURE 3. Functional and non-functional requirements for digital twin in power system.

IoT devices, smart meters, and sensors requires seamless
data integration and management approaches [56], [57].
It involves ensuring the aggregation and harmonization of
measurement data from DERs and other components in the
physical environment and updating them in real-time for
analysis in the digital space. For the grid’s stability and
efficiency, it is paramount for DTs to have a unified view
of its operational status and proactive responses to emerging
system behaviors and conditions. When incorporating and
exchanging data between diverse systems, such as the data
integration from transmission and distribution systems, they
often have disparate data models based on their operational
goals and use cases. The challenge lies in enabling continuous
communication and exchange of data between such systems
to enhance grid management, reliability, and interoperabil-
ity. For example, the CIM has been adopted to address this
challenge by providing a standardized, object-oriented model
for describing the electrical network and its operational data,
facilitating interoperability among diverse systems [58].

4) SYNCHRONIZATION
DT should constantly be synchronized with the present state
of the system, reflecting any changes that take place in the
physical system [59]. However, synchronizing the changes
in the physical system and in the DT is challenging [60].
While frequent synchronizations would result in higher costs
and more congestion in data flow, infrequent synchroniza-
tions would cause calculation bias and imprecise decisions.
It raises the question of how to enable reliable and effi-
cient synchronization [61]. Tan et al. [62] discussed different
synchronization problems including prediction update, and
model update. For example, deciding when to perform a
new simulation experiment to attain an updated estimate of
DT performance is the goal of the prediction update. Model
update entails model parameter’s update, expanding detail
level of model, or optimizing its parameters based on themost
recent physical system observations. They studied the opti-
mal synchronization problem as a dynamic stochastic control
problem in their research. The goal is to reduce the overall
misalignment costs of the prediction error resulting from the

DT not being synchronized within allotted period as well as
the projected synchronization cost of the DT. Jiang et al. [63]
proposed optimization of Planning, Scheduling, and Exe-
cution (PSE) in precast on-site assembly using DT-enabled
real-time synchronization. DT offers cyber-physical visibility
and traceability, which allows for the dynamic adjustment
of PSE tasks based on real-time resource status and con-
struction progress information. Furthermore, event-based and
time-based approaches can be used to synchronize the phys-
ical system and digital counterparts. For example, in [19],
the DT is updated, and the system’s state is evaluated every
0.5 seconds under steady-state conditions. When system
variables change in the physical system, an event-based
update of the DTs is initiated to reflect the observed change.
Event-driven synchronization can also be performed, such as
faults or breaker operations. Variables and parameters can
be tailored to each application to reduce computational and
communication overhead.

B. NON-FUNCTIONAL REQUIREMENTS
1) INTEROPERABILITY
The ability of two or more systems or pieces of equip-
ment made by different vendors to communicate and use
information is known as interoperability, according to the
Institute for Electrical and Electronics Engineers (IEEE), and
it is attained by adhering to a set of standards. For DTs
to remain applicable and interoperable among the federated
DT ecosystem, the design of each individual DT should
satisfy interoperability requirements by standardizing data
formats, communication protocols, and so on [64] and [65].
There are four types of interoperability for large-scale
systems: technological, syntactic, semantic, and organiza-
tional [66]. Technical interoperability emphasizes the direct
data exchange between systems, requiring compatibility in
technical specifications. Syntactic interoperability considers
the structure and format of data exchange, ensuring that data
messages are encoded in a universally understandable syntax.
Semantic interoperability ensures that the data exchanged
holds the same meaning across different systems. Organi-
zational interoperability addresses the governance aspects,
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TABLE 3. Digital twin applications in energy sector of different countries.

defining the roles and responsibilities to foster interoper-
ability. The coalition interoperability model’s layers define
nine interoperability layers. It includes physical, protocols,
data/object model, and information interoperability, knowl-
edge/awareness, aligned procedures, aligned operations, har-
monized strategy, and political objectives levels [67]. In the
energy domain, there are existing standardizations such as
IEC 61850, IEC 61970, IEC 62325, and IEC 62541 for infor-
mation exchange, coordination and harmonization among
different stakeholders and components. For instance, The IEC
62541-standardized Open Communication Protocol United

Architecture (OPC UA) protocol has been widely used
for platform-independent, service-based communication in
industrial automation. It facilitates the exchange of real-time
data between control devices made by various vendors.

2) RELIABILITY AND SCALABILITY
Reliability requirements need systems to consistently per-
form their intended functions with high quality and deliver
their intended services accurately [11]. DTs monitor and sim-
ulate real-world systems’ processes and environments while
handling extensive amounts of real-time data generated from
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numerous data sources. Data is the key driver of DT. The DT
of power system needs to collect high-quality data that can
capture required aspects of physical power systems, validate
and calibrate them. For DT to be reliable, it needs to maintain
(near) real-time synchronization between theDT and physical
power system to reflect the current states of the physical
power system accurately. In addition, scalability ensures that
a DT can expand its capabilities and continue to perform
efficiently even when the scope of the DT grows [68], [69].
For instance, when extending the geographical coverage of
the power grid and integratingmore grid network components
and data points or integrating new technologies, the design
of DT should remain applicable and scale up as the system
grows.

3) CYBERSECURITY AND PRIVACY
Because of the sensitive power system operations nature
and the catastrophic potential of data breaches or system
intrusions, cybersecurity and privacy requirements are crit-
ical [70], [71]. DT should incorporate vigorous security
mechanisms to defend against cyber threats and guarantee
the integrity and confidentiality of operational data [72], [73].
One of the approaches include developing the anomaly-based
or signature-based intrusion detection algorithms within DT.
They canmonitor and differentiate the normal and anomalous
network activities and identify threats by comparing them to
established attack scenarios and notify an alert to protect from
the cyber attacks. Furthermore, robust encryption techniques
like hashing and the Advanced Encryption Standard, can
been implemented to protect data used in DT from potential
cyber attacks. That can help encrypt the sensitive data and
protect it against unauthorized persons even if the communi-
cation between physical system and DT is being intercepted.
Furthermore, blockchain has become an vital enabler for
DTs, particularly for managing complexities of product life-
cycle data across a diverse ecosystem of participants [74].
By leveraging a decentralized, secure, and immutable ledger,
blockchain provides secure data storage, access, and sharing
while maintaining the authenticity of DT data. Decentralized
applications built on blockchain can support secure, owner-
centric data-sharing models that uphold data integrity and
confidentiality [75], [76], [77].

In addition to the cybersecurity, DT should also provide
privacy when handling with sensitive information. The Gen-
eral Data Protection Regulation (GDPR)’s Data Protection
Impact Assessment for smart grid and smart metering envi-
ronment supports data controllers in establishing the rules
for collecting and processing personal data. DT has been
used to train ML models based on energy consumption data
of household appliances to analyse electricity consumption
data and predict the future energy demands. However, those
consumer-specific energy data can be linked with identifying
and monitoring behaviour patterns of individuals and orga-
nizations. One potential approach that have been applied is

the federated learning, which is a decentralized and privacy-
friendly ML [78].

C. ENABLING DIGITAL TECHNOLOGIES FOR DIGITAL
TWIN
DT requires the comprehensive (near) real-time status from
the physical environment. DT also needs the ability to sim-
ulate different scenarios to make smarter predictions and
decisions, by collecting, analyzing, and correlating data from
various physical power system components. Digital tech-
nologies are important to the implementation of DTs. They
can facilitate the management, analysis, and integration of
data seamlessly. They can ensure that DTs can analyze large
amounts of data in real-time for more intelligent decision-
making, from data generation to analysis. This section
categorizes key enabling digital technologies—such as IoT,
AI, blockchain, cloud computing, and edge computing—
based on their specific contributions to data lifecycle stages.
In addition, case studies on how those technologies can be
integrated in the implementation of DTs are also discussed.
Figure 4 presents the overview of digital technologies for DT
implementation.

1) DATA GENERATION
Components that are part of power system infrastructure,
including transformers, circuit breakers, and substations, can
provide data about the power systems operational status. They
are integral for different applications such as load capacity
analysis, demand forecasting, identifying operational anoma-
lies, or other dynamic stability studies. Distributed Energy
Resources (DERs) including battery storage systems, wind
turbines, and solar panels, can also produce data essential
to manage the renewable energy to optimize grid perfor-
mance. However, lack of quality and fine-grained data can
hinder the development of solutions for the applications men-
tioned above. For example, ML based electricity demand
forecasting requires substantial volume of data to train ML
models and perform analysis. Despite public datasets avail-
ability to train ML models, their limited scope and size
can impact obtaining highly accurate outcomes. In addition,
ensuring compliance with regulations and privacy remains
a challenge. Synthetic data generation approaches using
Generative Adversarial Networks (GAN) is proposed to gen-
erate large-scale synthetic time-series data in smart grids
to address data availability and maintain privacy, especially
personally identifiable information from Advanced Metering
Infrastructure (AMI) meters data [79]. Similarly, Lui et al.
[80] proposed a scalable approach for creating synthetic
Cyber-Physical Power Systems (CPS) topologies with real-
istic network characteristics. It captures real CPS networks
features using graph variational autoencoders and graph neu-
ral networks (GNNs) while hiding vulnerable topological
information and preserving similar features to the real net-
works.
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2) DATA COLLECTION
Collecting new data or using existing data is a crucial step to
develop an accurate DT. Integrating the IoTs within power
systems is a significant shift towards more interconnected
power distribution networks characterized by interconnected
microgrids, and DERs. IoT devices can transform traditional
power systems into intelligent CPS by continuously feed-
ing large data streams from physical and cyber assets into
DTs [81]. Power substationswithin the grid are equippedwith
advanced industrial IoT-based sensing and real-time monitor-
ing systems. They can enable operators to remotely monitor
substation conditions with high precision during steady and
transient states [82]. These systems gather extensive data
suitable for both real-time and deeper offline analysis. Bun-
dele et al. [83] also developed a microcontroller-based phasor
measurement unit (PMU) with IoT capabilities to measure
voltage amplitude and frequency of power system. The pro-
totype was designed to improve the real-time data acquisition
accuracy in power systems.

3) DATA STORAGE
Large volume of data correlated both physical and digital
entities, and processed data should be converted into a unified
mode and stored to reuse, share and analyze. Edge comput-
ing is a distributed computing framework, which offers the
computation and storage near data sources. By facilitating
collection of data real-time and processing at the network’s
edge, near data sources, edge computing enables fast data
access and processing [79]. Cloud computing is another
mechanism for integrating ML and AI techniques for big
data analytics. For instance, substations that are equipped
with smart sensors and IoT devices can gather power flow
data, voltage levels, load demands and so on in (near) real-
time. Those data can be initially stored and processed at
the edge locally, at the substations, allowing for immediate
responses to dynamic grid conditions. Consequently, rapid
adjustments such as balancing power loads or responding
to system faults or disturbances can be made without the
latency of data travel to the central cloud server [80], [81].
Meanwhile, cloud services provide storage and high com-
putational resources to aggregate, store and analyse large
volume of data from multiple substations for long-term anal-
ysis or forecasting. By integrating IoT data with processing
techniques in the edge and cloud, a virtual representation
of the power grid that dynamically updates and optimizes
itself based on real-time inputs from the edge, can be created
while significantly improving the overall system efficiency
and performance [87].

4) DATA ANALYSIS
While data analysis is a important step in DT, AI, ML, and
Deep Learning (DL) can provide meaningful analysis and
insights for DTs in energy sector [88]. The consumption of
renewable energy resources has been increasing, potentially
surpassing traditional energy sources. Traditional methods

for electrical operations such as monitoring restoration man-
ually can lead to issues such as frequent downtimes with
intermittent RES integration. Thus, they can be inadequate
in addressing the complex challenges, particularly to adapt to
unforeseen circumstances. The transition to smart grids for
highly reliable and efficient energy management is rapidly
evolving. It requires the adoption of advanced approaches to
handle the big data produced by numerous components in the
energy infrastructure. Amore intelligent energy paradigm can
be created by utilizing AI, ML and DL technologies, which
integrates high intelligence into operational and supervisory
decision-making. [89].
AI encompasses the broader concept of machines that

can execute tasks that require human intelligence. ML, one
branch of AI, represents a methodology that learns from data,
improves from experience, and makes decisions. It can be
classified into supervised learning (that use labeled datasets
for prediction or classification), unsupervised learning (work-
ing with unlabeled data for clustering or grouping), and
reinforcement learning (learning to make decisions based on
feedback from performed actions) [90]. DL, sub-branch of
ML, is based on multilayered neural networks, deep neu-
ral networks to train and learn from data. ML starts with
data preprocessing. It includes data preparation or cleaning
such as identifying and correcting errors, missing values, and
duplicates. It is the foundation for data analysis, and it can
have an impact on the performance and effectiveness of ML
models. In addition, cleaned data needs to be transformed
into suitable format, and standard while keeping the same
meaning of dataset’s content. Feature engineering involves
scaling, normalizing, and extracting features from raw data
using feature extraction techniques such as Principal Com-
ponent Analysis (PCA) [91], Linear Discriminant Analysis
(LDA) [92], Convolutional Neural Networks (CNN) [93],
domain knowledge and so on. After preprocessing data and
feature engineering, the next step is model training by divid-
ing the dataset into training and testing sets. By selecting
training algorithms or models such as decision tree [94],
support vector machine [95], Long Short-TermMemory Net-
works [96], training data are fed to compute loss function,
extract patterns and calculate the results. The performance of
ML models can be assessed through testing datasets using
different metrics including area under the ROC curve (AUC-
ROC), accuracy, precision, recall or sensitivity, and F1 score.
Integrating ML into DTs can offer significant advancements
in monitoring and optimizing various systems. For instance,
the health monitoring of wind turbines, anomaly detection
in smart grid using PMU data, employ neural networks and
genetic algorithms for the real-time power systems control
and predictive health management of electric vehicle motors
and photovoltaic systems [97], [98], [99], [100].

5) CASE STUDIES ON THE INTEGRATION OF DIGITAL TWIN
WITH ENABLING DIGITAL TECHNOLOGIES
The integration of DT with IoT and edge-cloud comput-
ing has been explored in [101]. The authors suggested
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a cloud-based DT design that facilitates, aggregates, and
offers insights to help the distribution system infrastruc-
ture. A virtual representation of the networked microgrids’
cyber and physical layers is an example of the proposed
DT. IoT connects sensors, controllers, and actuators in
energy cyber-physical systems (ECPS), enabling real-time
data collection and processing. Distributed sensors provide
inputs such as voltage, current, temperature, and other opera-
tional parameters from physical assets like distributed energy
resources (DERs), energy storage systems, and microgrids.
IoT devices utilize MQTT protocols for lightweight, efficient
communication with cloud services. Amazon Web Services
(AWS) hosts the virtual space for DT operations, facilitating
storage, data analysis, and predictive modeling. Services like
AWS Sage Maker are employed to train ML models for out-
age management, predictive maintenance, and optimization
of grid operations. Cloud-based DTs combine data frommul-
tiple sources to create a cohesive representation of physical
and cyber systems, enabling scalability for large systems.
In that framework, AWS IoT Greengrass (GG) serves as
the edge layer for localized data processing and immediate
decision-making, reducing latency and preserving privacy.
Edge systems perform preliminary data filtering and anal-
ysis to minimize communication bandwidth to the cloud.
Distributed control is achieved using edge-hosted secondary
controllers that regulate voltage, frequency synchronization,
and power sharing among microgrids.

The proposed Hybrid DT Architecture effectively handles
applications with less frequent updates, such as predictive
maintenance and energy management, as well as real-time
applications like contingency analysis, system restoration,
and voltage regulation. The research demonstrates the fea-
sibility and transformative potential of IoT, cloud, and edge
technologies in energy system DTs. It shows the importance
of future research directions, such as incorporating advanced
encryption and authentication mechanisms for IoT-to-cloud
communication to prevent unauthorized access and integrat-
ing real-time intrusion detection systems to protect the edge
and cloud layers from cyber threats.

Secondly, in the framework proposed by [73], DT is a
virtual representation of smart grid components, simulating
physical counterparts for monitoring and predictive analy-
sis. Integrated into the Software Defined Networking (SDN)
control plane, DT enables enhanced management of smart
meters and grid states by storing operational behavior models
and real-time analytics. IoT devices facilitate data collec-
tion and communication between grid components, such
as smart meters and service providers, via protocols like
MQTT. IoT devices serve as data sources and are fed into
the DT. In addition, blockchain systems are used for process-
ing and secure transmission. Blockchain provides a secure
and decentralized framework for data authentication and
privacy. Their approach ensured safe data sharing amongst
grid components by implementing a voting-based consensus
process to authenticate smart meters and establish immutable
records.

FIGURE 4. Overview of enabling digital technologies for digital twin
implementation.

In addition, Bi-GRU (Bidirectional-Gated Recurrent Unit)
and a self-attention technique were also implemented to
improve intrusion detection. The framework addresses vul-
nerabilities in open channels used by IoT devices, enhancing
data integrity and mitigating risks like Man-in-the-Middle
(MiTM) and Distributed Denial of Service (DDoS) attacks.
The results are demonstrated using performance metrics in
terms of accuracy (99.73%) and precision (97.3%), surpass-
ing traditional methods like LSTM and GRU. It’s crucial to
be aware of these risks and the need for robust solutions.
DL enables temporal and spatial analysis of network behav-
iors for real-time threat detection and response. Expanding
the proposed framework to handle a larger number of IoT
devices and real-time datasets and optimizing the SDN con-
trol plane for faster decision-making and lower latency in
highly dynamic smart grid environments can be the exten-
sion of their work. Moreover, future research can focus on
advanced security features by integrating blockchain with
advanced cryptographic techniques to further secure sen-
sitive energy data. Additionally, studies on reducing the
computational overhead of DL and blockchain by explor-
ing lightweight algorithms and edge-based processing for
resource-constrained devices can also be beneficial.

V. DATA FEDERATION IN DIGITAL TWIN
FOR POWER SYSTEMS
Creating a DT of power systems involves modelling and
simulating physical assets, processes, or systems required
for power generation, transmission, and distribution net-
works to provide a virtual replica capable of forecasting
performance, enhancing operational efficiency, and assist-
ing decision-making via real-time data and analytics [102].
Data federation is an approach that allows integration, uni-
fication, and governance of data stored in various sources
by using a federated query engine that translates a single
query into subqueries that are distributed to data sources for
processing and analysis [103]. It can facilitate the unified
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access and analysis without requiring data to be duplicated
or relocated [104], [105]. The primary benefits of data fed-
eration include instantaneous data access, minimized data
storage and the ability to access data from various places,
and eliminating movement of data. In the power systems DT
context, data federation, a foundation to create efficient DT,
is paramount for efficiently accessing and combining myriad
data types from distributed sources, such as grid network
information, operational and security logs, and external data
like weather information. These sources are often heteroge-
neous in format and semantics. As illustrated in Figure 5, data
federation offers a solution by providing a unified view of
this disparate data, thus enabling DTs to access and analyse
the information as if it were stored within a single, coherent
database, eliminating the need for physical integration or data
duplication.

While data federation enables seamless and unified access
to data, it does not inherently address how tomanage the func-
tional complexity of a DT. This complexity arises from the
diverse operational functionalities—fault detection, stabil-
ity analysis, and predictive maintenance. Arraño-Vargas and
Konstantinou [44] proposed a modular framework emphasiz-
ing functional independence to address this. The operational
capabilities of DTs are organized in this framework into
distinct, task-specific modules that are independently devel-
opable, maintainable, and scalable. This modular approach
depends on reliable and consistent data inputs, which the
federated architecture can supply, even while it offers flexi-
bility and efficiency for localized operations. For the modular
design to be effective in applications like renewable inte-
gration, integrated, high-quality data must be available.
By providing the essential inputs for each module to function
well and acting as the basis for unified data access, federated
architecture can be used in conjunction with the modular
framework. For distribution throughout the larger network
of power systems, the modular framework’s outputs, like
localized analysis or predictive insights, can be fed back
into the federated system. However, the modular framework’s
scalability across entities is limited by its more focused
emphasis on organizational adaptation. This emphasizes how
the federated architecture serves as the fundamental layer
that makes it possible for strong, cross-organizational DT
systems to be assured in their expansion potential. Together,
these approaches can produce a comprehensive, scalable, and
effective DT architecture that takes into account both data
interoperability and functional flexibility.

A. DATA TYPES
A successful operation of power systems DT relies on a
comprehensive understanding and utilization of various data
sources [15], [106]. On the other hand, data requirements
for the digital twinning of power systems are extensive and
varied based on the complexity and the specific objectives
of the DT [84], [88]. Zhang et al. [15] categorize DT data
into five primary data types, i.e., data related to physical

FIGURE 5. Overview of data federation.

entity and virtual entity, domain knowledge, data related
to service, and fusion data. Furthermore, additional opera-
tional and analytical data of power systems DTs are also
required [108]. The types of those data sources can also be
varied. Firstly, structured data includes tabular formats like
operational parameters, sensor readings, and configuration
settings SCADA systems; and unstructured data comprises
textual information from maintenance logs, incident reports,
and documentation from vendors; time-series data produced
by sensors, smart meters, and IoT devices. In addition,
geospatial data might detail the physical location and lay-
out of infrastructure components such as power generation
sources and transmission lines. Data can also be in graphs
illustrating the relationships and dependencies between dif-
ferent constituent systems, such as the connectivity between
nodes in the power grid. Ensuring the accuracy, timeliness,
and security of this diverse data is pivotal for the successful
implementation of DT and power system operations.

B. DATA ATTRIBUTES
Data attributes necessary for developing DTs of power sys-
tems can be categorized as in Figure 6.

1) CORE SYSTEM DATA
Operational Data i.e., time-synchronized grid measurements,
sensor readings reflecting power output, voltage levels, fre-
quency, rotor angle, current flows, and temperatures data
required for real-time monitoring and decision-making.

Asset Performance, i.e., data on different equipment, assets
and how they perform under various conditions, their effi-
ciency, output, downtime, and more, which is vital for
optimizing asset utilization and planning maintenance.

System Configuration and Network Data, i.e., grid models
and topology data, geographic coordinates of the plant, plant
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FIGURE 6. Different types of data attributes.

type, detailed information on the power network’s configura-
tion, including grid connectivity and interdependencies.

2) ANALYTICAL AND PREDICTIVE DATA
Historical Performance and Trend Data, i.e., historical data,
trend analysis, and equipment health records, which can be
useful for benchmarking, predictive modelling, and mainte-
nance optimization.

Simulation and Model Parameters, i.e., data used in sim-
ulations to test various scenarios and outcomes, enabling
fine-tuning of the DT and predictive analysis of system
behaviours under different conditions.

Cybersecurity Information, i.e., security logs and threat
intelligence, including data on access, incident reports, vul-
nerability assessments, and information on potential cyberse-
curity threats. This data is vital for detecting, and analysing
cyber threats and vulnerabilities, and ensuring the security
and integrity of the power system and its DT.

3) EXTERNAL DATA
Environmental Data, i.e., weather and climate data (histor-
ical and forecasted) and geographical data and topological
features, which are crucial for adapting system operations to
environmental conditions.

Market Dynamics and Service Data, i.e., consumption
patterns, demand forecasts, compliance with regulations and
standards, and market data like energy prices.

Domain Knowledge and Regulatory Compliance, i.e., best
practices, maintenance strategies, expert experience, prede-
fined rules, industry standards, industry guidelines.

C. DATA REQUIREMENTS AND PRINCIPLES
In DT, addressing various data requirements, guided by data
principles, is pivotal for enhancing DTs’ accuracy, efficiency,
and adaptability. Zhang et al. [15] discussed different data
requirements and the principles for DT data.

Comprehensive data collection is essential, aiming to cap-
ture a full spectrum of conditions and events, supported by the
‘‘complementary principle,’’ which advocates for integrating

physical and virtual data sources. This is complemented by
the necessity for real-time interaction, where immediate data
exchanges between physical and virtual models are facilitated
for dynamic adjustments, guided by the ‘‘timeliness princi-
ple’’ to ensure rapid data synchronization. The universality
of data across different DT scenarios is achieved through
the ‘‘standardized principle,’’ which promotes the adoption
of uniform data formats to facilitate universal application.
Furthermore, knowledge mining, which extracts valuable
insights from data to refine virtual models, is underpinned
by the ‘‘association principle’’, which focuses on identifying
data relationships. Data fusion is another aspect, combing
data from various sources to enhance overall data quality,
with the ‘‘fusion principle’’ emphasizing the merging of
diverse data sets for a more comprehensive analysis. Iterative
optimization plays a significant role in continuously improv-
ing data quality through repeated fusion and analysis, driven
by the ‘‘information growth principle,’’, which evaluates and
enhances the information content of data. Lastly, accessi-
ble usage aims to simplify data access for users of varying
expertise levels. This is achieved through the ‘‘servitization
principle,’’ which involves packaging data and data-related
resources into on-demand services.

These principles and approaches collectively underline the
importance of a approach to data management in DTs, ensur-
ing that the technology can be applied across a wide range of
scenarios with enhanced precision and adaptability. Notably,
the fusion and standardized principles underscore the need
for integrating diverse data sources, maintaining data consis-
tency, and promoting seamless data sharing across different
platforms and applications, highlighting the importance of
data integration approaches like data federation [84].

D. COMPONENTS FOR DATA FEDERATION
1) CANONICAL DATA MODELS (CDMS)
CDMs streamline the process of integrating various systems
and databases by standardizing data entities and relation-
ships into a simplified, universal format. This approach aims
to establish a common language for managing data across
different systems, which typically operate with their own
unique languages, syntaxes, and protocols. The essence of
a CDM lies in its ability to provide a unified definition of
data, facilitating easier integration between systems, leading
to improved operational processes, practices, and simplified
data analytics. CDM introduces a new, distinct model that can
encapsulate and translate diverse types of data [109].

2) KNOWLEDGE GRAPH
Contextualization is the process of creating meaningful link-
ages between data sources and types so users may navigate
and find data. Through contextualization, knowledge graphs
can be built [110]. Knowledge graph represents various enti-
ties, such as components of the electrical grid, and delineates
the relationships between them, effectively mapping out the
intricate web of connections that constitute the grid. Utilizing
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domain-specific ontology based on electrical infrastructure,
the knowledge graph incorporates diverse properties of each
entity, offering a detailed understanding of the grid’s compo-
nents and their interrelations and allows for the representation
of complex concepts and relationships within the electrical
infrastructure [2]. By capturing and organizing data in this
manner, the knowledge graph serves as an invaluable resource
for various stakeholders and engineers to help them to deeply
understand the target system, facilitating the establishment of
a common knowledge base [111].

3) VERIFICATION MODULE
Maintaining high-quality, accurate, and secure data is
paramount when aggregating and providing unified data
access. The data verification engine ensures the data model’s
quality is assessed and maintained throughout the integration
process and should be designed to implement rigorous quality
checks and validation processes. That includes identifying
and correcting any inaccuracies, or anomalies in the aggre-
gated data, ensuring adherence to predefined standards and
schemas, and error correction routines to maintain feder-
ated data’s the reliability and integrity [2]. To sustain data
quality over time, it also should implement robust data gov-
ernance practices, establish protocols for data management
and continuous quality control, and enforce stringent security
measures, including encryption, and access controls, com-
plemented by regular security audits to protect unauthorized
access and ensure integrity and trustworthiness within a
secure federation environment.

The approaches to ensure the effective operation of DTs,
and the validity and reliability of data at both the individual
and federated levels are proposed in [111]. Data validation
process for the DT includes analyzing the characteristics and
patterns of input data, such as time-series data, sporadic event
data, or anomaly-sensing data. This analysis can identify
efficacy criteria, such as thresholds for ‘‘normal,’’ ‘‘caution,’’
and ‘‘warning’’ zones, and identifies data features. These
criteria can be established using statistical techniques, but
their accuracy and application are improved by combining
advanced causality analysis techniques, like Recurrent Neu-
ral Networks (RNNs), with expert domain knowledge. The
authors emphasized the important of real-time validation to
ensure the time-series data stays within acceptable ranges.
Moreover, by integrating various data types, such as weather
and temperature data, among others, the authors also sug-
gested the use of attribute-based validation tools for assessing
the system’s effectiveness.

4) CUSTOMIZED ADAPTERS OR STANDARDIZED
INTERFACES
In order to bring the disparate data silos together, they are
combined into a SSoT or data federation system using either
a specially designed adapter or standardized interface [2]. The
implementation of standardized interfaces or the develop-
ment of customized adapters enables access to a broad range

of heterogeneous data models. It also facilitates seamless
communication and data exchange across a diverse array of
systems by harmonizing data formats, protocols, and com-
munication [113]. For instance, FIWARE provides a set of
Application Programming Interfaces (APIs) that can be used
for integration of IoT components that adopt communica-
tion protocol the FIWARE platform supports [114]. Through
FIWARE Next Generation Service Interfaces (NGSI) API,
system components can interface with Orion Context Broker,
which maintains updated context information from compo-
nents and applications, after receiving data from devices
and gateways. Similarly, SQL-based APIs, for instance, Java
Database Connectivity (JDBC) [115], and Open Database
Connectivity (ODBC) [116] are designed to access and adapt
heterogeneous data sources to a relational model, often by
transforming complex data structures into a flattened for-
mat. These adapters ensure that data from varied sources is
accurately represented, up-to-date, and accessible within the
SSoT, thereby enhancing data consistency, reducing integra-
tion complexity.

VI. DATA INTEROPERABILITY FOR FEDERATION
AND CHALLENGES
A. DATA MODELS
For the federation of data within power systems, seamless
interoperability measures are essential for communicating
and exchanging data among a range of devices, systems, and
stakeholders. Data interoperability provides the capabilities
required for data exchange, including data models, data for-
mats, and interfaces. In this regard, many organizations have
developed standards and frameworks to ensure data interop-
erability, enabling various constituent systems in the energy
domain to communicate and interoperate effectively [117].
For example, SAREF (Smart Applications REFerence Ontol-
ogy), Gaia-X, SGAM, and CIM have been adopted to provide
guidelines to avoid data silos and integrate and interpret
data for seamless collaboration and communication in energy
data space. Data modeling is a basis for data federation
and enables more efficient data architecture planning. In the
context of DTs, which encompasses metadata, condition or
state, event data, and analytics, data modeling becomes a key
component in converting siloed data into scalable solutions.
Datamodeling in software engineering refers to the process of
simplifying the representation of a software system’s diagram
or data model through the application of specific formal
methods, which involves describing data using a combination
of textual descriptions and symbolic representations. Data
modelling, according to IBM, is the process of visualizing
an information system to convey relationships between data
elements and structures [118]. Datamodeling can be achieved
through visual representations that detail attributes, relation-
ships, and data storage locations. There are distinct types of
data models - conceptual, logical, and physical data mod-
els, and data modeling techniques like Entity-Relationship
(ER) diagrams [119], UML class diagrams [120], and data
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dictionaries [121] have been utilized for abstracting the rela-
tionships between different data entities and visualizing how
components of a physical entity and its operational data are
interconnected.

B. OPEN STANDARDS FOR DATA INTEROPERABILITY
BETWEEN HETERONEOUS POWER SYSTEMS
1) SAREF
Published as a set of open standards by the European
Telecommunications Standards Institute (ETSI) Technical
Committee Smart Machine to Machine Communications,
Applications REFerence Ontology (SAREF) provides a suite
of ontologies that forms a shared model for semantic interop-
erability between different sectors in the IoTs and contributes
to data space development. SAREF comprises a core ontol-
ogy and its extended ontologies for different domains, and
two of them that can contribute to the energy domain
are SAREF4ENER and SAREF4GRID [122]. A standard-
ized ontology, SAREF4ENER, is used to represent data in
the energy domain and facilitate communication between
energy-related information systems. This includes connect-
ing disparate data models. SAREF4GRID is used to for the
domain of the electrical grid to enable data sharing and inter-
operability among various grid-related systems and devices.

To demonstrate the practical implementation of the SAREF
ontology and validate the ontology, Weerdt et al. [122]
validated the ontology by expressing all the information avail-
able from different smart devices in a home and enabling
interoperability by allowing communication between smart
devices. In their study, the authors mapped IoT data from
smart devices into a knowledge graph format and tested the
capability to effectively represent data from real devices.
In addition, they developed an IoT setup using Raspberry
Pi devices to simulate interactions between a thermometer,
thermostat, and heater. All communications used SAREF to
demonstrate interoperability. The study showed that SAREF
supports modular extensions for domain-specific needs and
demonstrated the capacity to integrate different devices under
a unified framework. Its ability to connect diverse devices
can also be applied to similar projects requiring standardized
communication in IoT environment.

2) SGAM
The working group of EU Mandate M/490’s Reference
Architecture produced the Smart Grid Architecture Model
(SGAM) to offer an approach for developing Smart Grid
architectures. SGAM is a framework developed to tackle
modern energy systems’ growing complexity and interop-
erability challenges. It covers the interoperability between
systems or components of the energy chain, from genera-
tion, transmission, distribution, and customer premises [123].
SGAM comprises five interoperability levels representing
business processes, functions, communication protocols,
objectives, information exchange and models, and compo-
nents. It also includes diverse aspects, such as the information

flows between technical functions, the components that carry
out the technical functions in the system, and the standard
protocols and data models that facilitate these information
flows. An SGAM-based approach to analyze smart grid
solutions in the DISCERN European research project has
been proposed [124]. The DISCERN project evaluated smart
grid solutions across different DSO implementations, using
SGAM and IEC 62559 to support knowledge sharing and
solution adaptation. It demonstrated enhanced monitoring
of Medium Voltage/Low Voltage Networks by mapping use
cases into SGAM layers, providing consistent representation
and comparison of solutions. It also proposed a web-based
tool that supports the collaborative development of use cases
and SGAM models while enabling automatic analysis, such
as requirements extraction, 3D visualization of architec-
tures, and component identification. The DISCERN project
demonstrated the potential of SGAM and IEC 62559 in fos-
tering interoperable and standardized smart grid solutions.
Developing the SGAM use cases to deal with other smart
grid challenges, such as Electric Vehicles (EV) integration
and microgrid management, can be potential applications
of SGAM. In addition, future implementations can also
consider broadening the SGAM’s applicability beyond pilot
projects to national or regional grid systems and facilitating
dynamic updates of SGAM libraries based on real-world
implementations.

3) GAIA-X
Gaia-X is another European initiative that creates an interop-
erable, decentralized, data federated, and secure infrastruc-
ture [126]. Gaia-X is used to specify the requirements, design
the architecture, and implement the software components
to connect multiple stakeholders in a federation. It ensures
interoperability, transparency, data security, and controlla-
bility of services through a standard description format,
identity management, and compliance verification mecha-
nisms.While enabling flexibility to adapt to industry-specific
requirements, Gaia-X supports interoperable open interfaces.
It also enables secure data exchange and decentralized storage
where all data remains in the storage of organizations, thereby
data owners have complete control of their data [127].

Gaia-X-based data spaces consider regulations and pol-
icy guidelines regarding the gathering, storing, and using of
data, such as the EU Data Act. Through its federated data
spaces and ecosystems, it plays an important role in sup-
porting compliance with these regulations, providing a solid
foundation for data management. für and Klimaschutz [127]
demonstrated how Gaia-X has been used in the industry.
The manufacturing process of GMN (German Mechani-
cal Engineering Company) used Gaia-X concepts. During
quality testing, it uses cutting-edge sensor technology to
generate digital fingerprints for motor spindles. To facili-
tate secure data sharing with customers, it also made these
fingerprints available as datasets in ecosystems that com-
ply with Gaia-X. It also makes new data-driven services
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like extended maintenance options, end-of-life forecasts,
and remote diagnostics possible. To improve communication
between IIoT platforms, Manufacturing Execution Systems
(MES), and Product Lifecycle Management (PLM), Gaia-X
principles were also incorporated into a data management
platform. It facilitates seamless aggregation and publishing
of data and improves operational capabilities and collabo-
ration. The Gaia-X facilitates scalable data ecosystems by
standardizing governance and information exchange formats.
The aforementioned use case demonstrates how manufac-
turers like GMN have added direct value to consumers by
using Gaia-X ecosystems to provide customized, data-driven
services like spindle health monitoring. While complying
with the regulatory requirements, it is still difficult to ensure
compliance with various regional regulations, particularly in
global deployments, and to modify current IT infrastructures
to meet Gaia-X requirements, such as securing data handling.

4) CIM
Using industrial standards such as the canonical -based Grid
Model Exchange Standard profile facilitates the sharing of
updates to current and future grid models among external
stakeholders, promoting vendor interoperability within the
energy sector [129]. This International Electrotechnical Com-
mission (IEC)’s CIM standard comprising a Specification,
Schema, and Metamodel, developed by the Distributed Man-
agement Task Force (DMTF), is integral to the Web-Based
Enterprise Management (WBEM) initiative. This initiative
founds a unified framework for managing information across
systems, networks, applications, and services [130]. For
instance, the European Network of Transmission System
Operators for Electricity (ENTSO-E) highlights that CIM
for grid model exchange can enable the exchange of data
vital for local or European-wide grid development research.
The process of exchanging grid models encapsulates a wide
array of applications, such as sharing information about
power system equipment, grid topology, state variables of the
power system, steady-state assumptions, and facilitating the
management and analysis of market data, contingency anal-
ysis, and dynamic security assessments [131]. CIM employs
foundational technologies such as the UnifiedModeling Lan-
guage (UML), the eXtensible Markup Language (XML),
and the Resource Description Framework (RDF) to model,
exchange, and ensure interoperability of data [58].
The most essential standards to this framework are the

IEC 61970 and IEC 61968 standards, which are integral
for the exchange of information in both transmission and
distribution grids [132]. CIM includes classes that have spe-
cific attributes to represent different data object types needed
for data exchange between Transmission System Operators
(TSOs) and Distribution System Operators (DSOs) [133].
It is a common language that abstracts the specifics of each
system’s data model into a unified framework. This standard-
ization allows for directly mapping different data elements
and structures into a format understood by all parties despite

the original differences in data representation. CIM’s adapt-
ability is a key feature, allowing for extensions to cover
specific demands and the flexibility to design data exchange
profiles constructed from CIM and custom extensions as a
subset of semantic canonical model. Manufacturers, TSOs,
and DSOs can construct their own CIM profiles, including
all or part of the standardized CIMmodel, to meet their needs
for data modelling [134]. For instance, to establish a common
language to interoperate and common messaging between
systems, CIM has been adopted as the reference data model in
different research projects such as EU SysFlex [135], TDX-
ASSIST [136], and OneNet [137] for various application
cases. Those use cases are related to data exchanges and inter-
faces including transferring, anonymizing and aggregating
energy data, prediction of production and consumption for
operation planning, management of active power flexibility
for congestion and voltage control.

To enhance smart grid automation, Naumann et al. [137]
proposed the integration of two important standards, IEC
61850 and IEC 61970/61968 (CIM), with an emphasis on
protective systems. Both standards focus on distinct aspects
of the smart grid to facilitate automatic and flexible protection
methods. The author suggested a methodology for mapping
IEC 61850 data formats to CIM objects to facilitate inte-
gration across various grid management levels. For instance,
CIM classes for analog measurements and protection charac-
teristics were mapped to logical nodes (LNs) in IEC 61850,
such asMMXU (measurement) and PTOC (protection relay).
Custom extensions are necessary as CIM does not have
predefined models for some protective functions. In this
regard, the authors expanded the CIM and created unique
CIM classes to model protective functionality that is not yet
standardized. For example, new CIM objects were mapped to
characteristics of overcurrent protection. The study demon-
strates CIM’s adaptability to user-specific adaptations and
capacity to satisfy changing grid needs. However, scaling
the integrated framework to larger grids with various device
types can still be challenging. The development of automatic
ontology mapping tools between IEC 61850 and CIM may
help to reduce errors and manual efforts. Future research can
focus on incorporating features like real-time data synchro-
nization between standards and semantic evaluation. Another
research direction could be to test the integrated framework
in situations with high renewable penetration, EV charging
networks, or microgrids to assess performance under various
circumstances.

C. DATA FEDERATION CHALLENGES
1) CONNECTIVITY AND INTEGRATION
The physical network of the electric grid, with its diverse
components, is an important part to enable the smooth
data from the grid’s physical layer to its DT, using vari-
ous communication protocols. However, this data exchange
comes with its challenges. Synchronization issues can occur
when devices fail to receive the necessary data or signal

105534 VOLUME 13, 2025



M. M. Thwe et al.: Digital Twins for Power Systems

network disruptions. Despite the advancements in IoT tech-
nologies and the deployment of 5G networks, which enhance
connectivity within the DT framework, complexities such
as software errors, updates, and latency issues persist,
potentially hampering real-time monitoring and accuracy of
data [6].

Furthermore, as the significance of sophisticated data ana-
lytics and management systems grows, power system DTs
must not only handle the voluminous data generated from
diverse sources but also ensure its integrity, accuracy, and
timeliness [7]. The integration and federation of disparate
data types, often in incompatible formats, pose a significant
barrier to achieving a seamless and secure flow of informa-
tion [8]. However, overcoming these challenges could lead
to significant benefits, such as optimizing grid performance
and enabling advanced analytics to predict demand, manage
supply, and mitigate potential disruptions in real time. The
urgency of addressing these connectivity and data integra-
tion challenges cannot be overstated. Edge federated ML
approaches have been popular for training the ML model
by using data gathered locally on edge devices, and updat-
ing the global model in a central server, thereby reducing
latency, resource utilization and improving bandwidth avail-
ability [139].

2) STANDARDIZATION
Deployment of DT necessitates a uniform framework to
define, store, and execute DT models that can ensure inter-
operability and seamless integration across different systems.
As energy systems contain diverse and heterogeneous system
components from generation and transmission to distribution
and consumption, they require a unified cross-system collab-
oration and interaction platform.

While standardization efforts and protocols have been in
place to ensure interoperability for data federation in DT, they
have limitations. CIM standard, for instance, offers a compre-
hensive and detailed schema covering different energy utility
appliances. However, extensive customization is required to
fit the CIM into specific operational scenarios. That can lead
to longer deployment times and result in deviations in how
different organizations implement CIM, potentially affecting
interoperability. Similarly, the Generic Object-Oriented Sub-
station Event (GOOSE) protocol, standardized as IEC 61850,
has also been widely utilized for real-time data exchange
in digital substations. Despite its numerous benefits, the
GOOSE has limitations like security vulnerabilities since it
did not extensively focus on cybersecurity measures [140].
That could lead to GOOSE communication and messages
susceptible to different types of cyber-attacks when proper
security control and protection mechanisms are not deployed.
Moreover, since the energy sector is heavily regulated, com-
pliance with local, national, and international regulations
and standardizing DT deployment across different regulatory
environments could also be an issue because local regulations

may dictate specific requirements for data handling, system
safety, and operational procedures.

3) DATA MANAGEMENT AND GOVERNANCE
The success of a DT relies on its underlying data quality.
Consistent and high-quality data streams are not just impor-
tant; they are crucial for DTs to function optimally. Poor and
inconsistent data can significantly impair a DT’s functionality
and its ability to optimize power system operations [14],
[15], [56]. This underscores the need for meticulous planning,
data generation, collection, and management efforts to ensure
the capture of relevant and high-quality data across power
generation, transmission, and distribution process.

The complexities of data ownership and governance pose
significant challenges in deploying DTs [57], prompting
questions about the rights to share specific data. Even though
a DT ecosystem development necessitates collaboration and
data exchange between system stakeholders, they handle
critical infrastructure, and the data they manage includes
sensitive and confidential information that could potentially
expose the grid to severe security risks if disclosed. For
potential collaborative research and development aiming for
the development of new methodologies, limited access to
real-world operational data is a significant barrier. Thus,
it could be formidable to test hypotheses accurately, validate
models, or simulate realistic scenarios that would provide
meaningful results. Despite the use of synthetical data gener-
ation techniques to overcome the limitations, how to carefully
generate adequate and high-quality data to accurately reflect
the complex dynamics of actual system operations and be
appropriate for training ML models remains a prerequi-
site [141].

4) DATA SECURITY
Data security can be another challenge to the operational
integrity of DT systems. As DTs provide a digital-physical
association, the security of the data link connecting them
becomes imperative since it exchanges critical data between
the virtual and physical world, which inherently possesses
vulnerabilities and risks to data breaches, corruption, unau-
thorized access, and cyber threats [142]. Consequently, ensur-
ing the security of communication medium is paramount,
requiring rigorous compliance with data security require-
ments such as privacy, authentication, integrity, and trace-
ability throughout the development of DTs. Implementing
vigorous data security measures, including encryption of
data, controlled access privileges, penetration testing, and
source code scanning becomes essential in mitigating poten-
tial vulnerabilities [6], [70], [72]. Furthermore, emerging
technologies such as blockchain can be helpful for DT com-
munication security, ensuring data privacy and fostering trust
within DT ecosystems [80]. These advancements signify a
transformation towards more secure and resilient DT frame-
works capable of resisting the evolving landscape of cyber
threats.
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VII. CONCLUSION
A significant proliferation in DERs and IoT devices drives
the need for more streamlined data integration and exchange
between utilities and energy systems. A DT of the power
system serves as a virtual representation of physical infras-
tructure, enabling real-time reflection of system behavior
through bidirectional data flow. DTs can enable interoperable
and secure data exchange necessary for managing mod-
ern power systems by leveraging data federation principles.
This review provided a power system-centric synthesis of
DT developments, distinguishing it from broader reviews
that often cover general energy systems or manufacturing
applications. It identified the concept of DTs, current prac-
tices of DTs in power system context, the functional and
non-functional requirements and how DT can satisfy its
intended purpose and provide the expected outcomes. Unlike
existing studies, this analysis investigated the concept and
various aspects of data federation. It highlights requirements
for data federation, data types, attributes, and principles for
effective twinning. It then explores the supporting digital
technologies for the digital twinning of power systems and
how they are integrated into DT implementation by providing
case studies. Another key contribution is the discussion of
industrial interoperability standards and challenges, which
are often underrepresented in existing literature. It presents an
analysis of interoperability standards and highlights insights
into their applicability and gaps. Through real-world exam-
ples and case studies, this review offers a practical lens that
brings the operationalization of DTs into the power system
context.

The insights provided in this study can provide a foun-
dation for researchers, especially DT application developers
in power system engineering, to delve deeper into this field.
Future work will focus on defining domain-specific DT use
cases, identifying required functionalities, and detailing key
information modeling elements, particularly based on CIM.
Through continued exploration and technological advance-
ment, the full potential of DTs to transform power system
operation and resilience can be realized, further driving the
capabilities of smart grid technologies and sustainable energy
solutions. Moreover, insights from this domain may serve
as a foundation for extending DT applications into related
areas such as Positive Energy Districts (PEDs), Positive
Energy Buildings (PEBs), and community energy systems,
where integrated energy management and interoperability are
equally important.
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