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Summary

This dissertation’s ultimate goal is to provide solutions to two problems that the promis-
ing data assimilation method, called the Particle Filter, has when applied to high di-
mensional non-linear models, such as those often used in hydrological research and
forecasting. Two local particle filters have been proposed to overcome three major
issues. Firstly, the curse of dimensionality caused by high dimensional models. Sec-
ondly, the uncertainty brought by the data assimilation method itself and finally the
problem of nonlinearity in observation operators that link model states to observa-
tions. Both newly introduced data assimilation algorithms have been assessed using
the Lorenz model (1996), a toy model that provides a perfect evaluation environment
for such methods because it is a one-dimensional discrete chaotic model, which can
simulate the behavior of changes of atmosphere. One local particle filter has been used
in a practical application in hydrology to improve discharge accuracy in the Rhine river
basin by assimilating satellite soil moisture into the PCR-GLOWB hydrological model.

The curse of dimensionality is well-known in particle filters. It happens in high
dimensional models because, to remain accurate, the number of particles needs to
increase exponentially with the increase of the model scale (ie. model dimension).
One possible solution to avoid this curse is to apply localization in particle filters. Both
proposed particle filters are based on a localization method. Uncertainty sources in
data assimilation are many, and it is not easy to separate all of them clearly and directly.
The two variants of the particle filter proposed in this thesis focus on different issues.

The localization used in the first particle filters divided the whole analysis of data
assimilation into small batches for each model state. Each local analysis is indepen-
dent, and it only assimilates observations within the localization scale. In the process it
quantifies the uncertainty that is introduced by the data assimilation process itself. The
localization method for the second local particle filter variant used another strategy.
In its procedure, all observations are assimilated one by one, and each observation
only affects near model states within the localization radius. When all observations are
assimilated sequentially, all model states are updated. In addition, the second particle
filter variant tried to solve the problem caused by nonlinear observation operators. To
overcome the latter problems, the nonlinear observation operator was replaced by a
surrogate model, named the Gaussian process regression model. For the calculation
of the weights for each particle, model states needed to be transferred into the ob-
servation space. A Gaussian process regression surrogate model makes the transition
process more straightforward in the nonlinear case because it provides the mean and
standard deviation of estimates. Both local particle filter variants introduced in this
thesis were evaluated thoroughly, and all results demonstrated that they performed
satisfactorily in the specific nonlinear case and can be applied in high dimensional
systems.

In addition to testing both local particle filters in the controlled Lorenz model, LPF-
GT has also been verified as beneficial in a case study with the hydrological model PCR-
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viii Summary

GLOBWB. The specific study area focused on the Rhine river basin. The local particle
filters have been applied to assimilate satellite soil moisture from the SMAP mission
into the PCR-GLOBWB model to improve discharge estimates. Results show that the
local particle filter performed well and significantly improved discharge accuracy by
assimilating SMAP soil moisture. The new LPF-GT only requires a handful of particles
to reach better performance in the Rhine river basin. This is particularly useful and
practical for large-scale models that are often used in hydrology. Only requiring a
small number of particles is the primary advantage of this data assimilation method
because it saves lots of computational costs. In addition, the use of the localization
in this particle filter makes the update for each model state independent from each
other and can be conducted in parallel. Thus, the efficiency of this data assimilation
method can be improved further.

In conclusion, the new additions to the particle filter proposed in this thesis are
stable and can provide satisfying accuracy in nonlinear cases and for high dimensional
models. Both of them have been proven to perform well in a toy model with many
dimensions where they have direct value in solving the curse of dimensionality and
nonlinearity. More importantly, they are valuable data assimilation methods to give
direct insights into how to cope with uncertainty in nonlinear cases and to offer data
assimilation frameworks for developing new particle filters in the future. The successful
hydrological application of data assimilation using local particle filters in this research
shows its considerable potential in hydrology.
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1
Introduction

Those who fail in everyday affairs show a tendency to reach out for the
impossible. For when we fall in attempting the possible, the blame is solely

ours; but when we fail in attempting the impossible, we are justified in
attributing it to the magnitude of the task.

Eric Hoffer
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2 1. Introduction

1.1. Data assimilation

D ata assimilation (DA) is a field of science that aims to develop algorithms that opti-
mally estimate the continuously changing state of a dynamical system by using all

relevant information known about the system combined with, often real-time, obser-
vations of the physical system represented by the model. A widely known application
of DA is updating yesterdays forecast of today’s weather with new observations mea-
sured today to arrive at the best estimation of the current state of the weather. This
is subsequently used as a starting point for today’s estimation of tomorrows weather.
Since both yesterday’s forecast of today’s weather and today’s observations will have
uncertainties disregarding one, but not the other, is sub-optimal. Scientists in the field
of data assimilation develop algorithms that calculate the optimal estimation of today’s
weather, given all uncertainties involved.

Generally, doing data assimilation needs three essential components: a numerical
model representing the system of interest propagated over time, observations col-
lected at different times and places that relate to the state of the system, and a data
assimilation algorithm. In general, a model consists of mathematical equations that
represent the dominant physical processes in the system. Because we do not have
the perfect knowledge of the physical world, it is not easy to define the mathematical
model accurately. Therefore, a numerical model has errors, and the uncertainty of a
model’s estimates usually get larger when the model projects further into the future.
Adding information from observations through a data assimilation algorithm can keep
the model stable with a relatively satisfying result in the long term. The application of
DA is widespread, and it has been used massively in meteorology, ocean science, etc
[1–4].

1.2. Data assimilation in Hydrology
While applications of DA within the geosciences are best known in atmospheric science,
mainly operational weather forecasting, they also see extensive use in operational
hydrological forecasting. DA algorithms have been used to enhance the accuracy of
hydrological models. For different objectives, various components in hydrology can
be improved by assimilating available observations. Several typical DA applications in
hydrology are listed below.

1. DA has been used in rainfall-runoff models to assimilate streamflow data in op-
erational flow forecasting systems to obtain improved flow forecasts and predic-
tions of floods [5–8].

2. Numerous studies have focused on the assimilation of surface soil moisture into
hydrological models. Soil moisture is a crucial part of hydrology, as its value
can switch a model’s behavior from slow (groundwater flow) to fast (overland
flow) and is thus very important in flood forecasting. Improving its estimations
with data assimilation of observations definitely improves the predictive power
of hydrological models [9–15].

3. The impact of evaporation DA on hydrological processes has been investigated
mainly because terrestrial actual evaporation is an import component of the ter-
restrial watercycle. Evaporation DA provided improved regional evaporation es-
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timates. Better model predictions of soil moisture and streamflow are achieved
by assimilating evaporation into the hydrological model [16–21].

4. Assimilating water level data derived from satellite products to estimate discharge
is feasible. The DA of water level data has great potential to reduce discharge
uncertainty [22–26].

5. Snow, as an essential part of the hydrological cycle, plays a vital role in Earth’s
energy balance. Assimilation of snow information into models in Earth sciences
is important to address the impact of snow on the hydrological and weather
forecast to predict snow-related water resources [27–32].

6. Leaf area index (LAI) is a critical environmental variable, providing feedback on
vegetation for hydrological, land surface, and climate models [33]. Assimilation
of LAI could improve the accuracy of soil moisture [34] and water fluxes [35–38].

Thanks to recent satellite developments for hydrology, currently, satellite data
products are the primary sources of observations in hydrological DA applications. As-
similating satellite soil moisture [39] or GRACE data [40–48] into dynamic hydrological
models leads to improved estimation of multiple components, or states, of the water
system.

1.3. Particle filters, non-Gaussian filters
The Ensemble Kalman Filter [49, EnKF] and its variants are popular and commonly
used in hydrology and many other Earth science fields. Ensemble-type filters are
based on Monte Carlo methods, and its analysis step relies on a Gaussian assumption,
which is its main limitation. In nonlinear and non-Gaussian systems, ensemble-type
filters are sub-optimal and provide poor estimates of model states. Unfortunately,
most observations do have a non-Gaussian error distribution in Earth science. Most
geophysical systems are nonlinear, and consequently, model errors are non-Gaussian
after the process of model propagation [50]. Moreover, other sources of non-linearity
and non-Gaussianity in modeling and observations, such as thresholds of microphysics
and higher model resolution that need better physical simulation [50], can lead to the
collapse of EnKF.

Compared with ensemble-type filters, a particle filter [50–55] relaxes all linear and
Gaussian assumptions, and allows a full Bayesian analysis, which are appealing prop-
erties of the particle filter and making it particularly promising.

1.4. Filter collapse
Particle filters have been applied successfully in low-dimensional models [56]. But for
cases with higher-dimensional models, PFs inevitable suffer from weight degeneracy
[55, 57, 58]. When the number of dimensions of a model is low, the weights of
particles are balanced, and the variance of particles has a value not close to zero.
However, as the model dimension increases, weight degeneracy happens quickly, and
all weights have the same value. Consequently, the variance of particles becomes
zero. This phenomenon is well-known in the PF literature and is generally called the
curse of dimensionality, filter collapse, filter degeneracy, or filter impoverishment.



1

4 1. Introduction

Bocquet et al. [50] used the Lorenz-96 model (1996) to show weight degeneracy
in PFs using 128 particles. When the model dimension is smaller than 20, PFs can
work stably, and the variance of particles keeps at a particular value. Weights degen-
erate rapidly when the model has 40 variables. Farchi and Bocquet [58] demonstrated
the curse of dimensionality by using a Gaussian linear model. In this case, weight
degeneracy happens when the model dimension grows to 32. Using more particles
can avoid filter collapse. But the required number of particles to prevent filter collapse
scales exponentially with the dimension of a system [60, 61]. In real applications of
Earth sciences, the model typically has hundreds and thousands of variables, and the
need for particles is substantial. Consequently, a huge amount of memory is needed
to store all those particles, which is prohibitive and impossible in practice.

1.5. Localization, a way to avoid filter collapse
Localization has been commonly used in Ensemble-type filters and has been proven
to be effective [62]. The basic idea of localization is to update model state variables
by assimilating observations within a particular (local, regional) scale. Distant obser-
vations are excluded when the distance is too far away from variables. The reasoning
behind localisation is that there is a maximum distance over which observations can
still influence a state, ie: soil moisture measurements in one part of the world are
unlikely to effect (or: be spatially correlated with) the soil moisture state in another
part of the world.

Generally, there are two ways to apply localization in ensemble-type filters. Either
by operating on background error covariances (called B-localization) or observation
error covariances (called R-localization). Because the update process of PFs does not
rely on the error covariance, the implementation of localization in PFs is slightly dif-
ferent from that in EnKfs. We can divide the solutions into two categories based on
where the local analysis is performed. Suppose all model state variables are updated
independently by only using observations centered on each grid point within a certain
radius. In that case, we can call it state-domain localization [58] and it has been used in
several studies [63–66]. When observations are assimilated sequentially, only nearby
grid points are updated and influenced, and we can call it sequential-observation local-
ization [58], which was proposed by Poterjoy [67], and has been applied in a simplified
atmospheric model [68]. Localization in PFs can beat the curse of dimensionality suc-
cessfully. For state-domain localization, it is easy to parallelize, but this update scheme
may cause the consistency issue because the relationship between state variables is
broken. The implementation of sequential-observation localization is harder to paral-
lelize but still possible, but it may alleviate the consistency issue [58].

1.6. Knowledge gap
As mentioned previously, localization methods provide an effective solution to the
curse of dimensionality in particle filters and make it possible to implement PFs in high
dimensional models. Based on localization, which is an essential foundation of this
research, other particle filters’ challenges become the central focus of this research.

Uncertainty can arise from various sources in a data assimilation cycle [62]. For
example, sample errors due to the limited number of particles or ensemble members
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[62], incorrect observation errors [69–71], and multi parameterization [72]. The list
of additional error sources can be extended further. However, in practice, it is difficult
to distinguish and account for all error sources. Currently, we do not have a proper
way to quantify and describe model errors. It is unclear how model uncertainty can
be quantified to improve the performance of particle filters. A better understanding of
errors in estimation of the state while using a DA algorithm would provide a significant
improvement.

Nonlinear issues in data assimilation have attracted considerable attention recently
[73]. Increasing computational power makes it possible to run operational models
with many dimensions. This approach could bring more nonlinearity because of the
existence of small-scale nonlinear processes in these models. Apart from this, obser-
vation networks worldwide provide more and more new products with higher accuracy
and higher resolution. The nonlinear observation operators, which links model states
and observations, requires non-Gaussian data assimilation methods [58, 66, 74–78].

For nonlinear and high dimensional systems, exploring and developing nonlinear
filters beyond Gaussian assumptions improves estimations of system states using data
assimilation. Since particle filters are not limited by Gaussian assumptions, propos-
ing new particle filters, or hybrid filters between particle filters and ensemble-based
methods, provides the potential to cope with nonlinear issues in data assimilation.

To meet these challenges, appropriate data assimilation strategies need to be de-
veloped to bridge the knowledge gap. This thesis aims to develop particle filters with
localization to capture and quantify possible sources of uncertainty in particle filters
and to overcome problems with nonlinear observation operators.

1.7. Research outline
The rest of this dissertation is organized as follows:

Chapter 2 describes several fundamental theories used in the next two chapters,
including particle filters, Gamma test theory, and Gaussian process regression.

Chapter 3 introduces a novel variant of the local particle filter with localization
B, the Gamma test theory. The description of this filter is given in detail. A set of
experiments was conducted to evaluate the proposed method’s performance by using
a Lorenz model. This new filter considers the uncertainty brought by the process of
data assimilation and is applied in a high-dimensional system.

Chapter 4 presents another variant of a local particle filter using Gaussian process
regression models with the C localization method. The structure of this chapter is
similar to the last chapter. The algorithm was further elaborated, and several experi-
ments with various configurations were performed to test its performance. Typically,
it is common to use the Lorenz model to evaluate a new data assimilation method.
Therefore, all experiments are based on it. This new filter’s primary goal is to solve
the issues caused by nonlinear observation operators in a high-dimensional model.

Chapter 5 builds on the previous chapters and applies the newly introduced particle
filter with localization mentioned in chapter 3 to the hydrological model PCR-GLOBWB.
SMAP soil moisture data are assimilated into the PCR-GLOBWB model to improve the
estimation of discharge in the Rhine basin. Considering the advantages of particle
filters over ensemble-type methods, which is given in section 1.3, it is worth exploring
particle filters’ possibilities in a real hydrological application.
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Chapter 6 summarizes the contributions of this thesis in particle filters with local-
ization. Limitations of this research and potential future research on particle filters and
data assimilation in hydrology are listed and discussed in a broader context.
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2
Common ground

From a mathematical perspective, data assimilation is based on Bayes Theo-
rem. We assume the uncertainty of model states and observations can be rep-
resented by a probability measure. Under this assumption, model states and
observations can be expressed by a probability density function (PDF). Bayes
Theorem updates the PDF of states given observations. Typically, the Monte
Carlo method is used to approximate a PDF. It means a PDF is represented by
several points, which is sampled from the PDF. In all DA methods, ensemble
Kalman filters (EnKF) are the most popular algorithms that are applied widely
in Earth sciences. Plenty of new variants of EnKF have been developed to over-
come its disadvantages. Particle filters, relaxing the Gaussian assumptions
required by ensemble-based filters, have drawn so much attention. The new
particle filters, which can defeat the curse of dimensionality, have significant
development. All new ideas and fresh insight, possibly leading to new filters,
are derived from the basic filters. Detailed descriptions of new local particle
filters are given in the next two chapters. They have the same theoretical foun-
dation - particle filters, and the local ensemble transform Kalman filter (LETKF)
is chosen as the benchmark to evaluate their performance. To avoid duplication
and a lengthy thesis, in this Chapter, we introduced several filters and related
theories needed in the following chapters briefly, including standard particle fil-
ters, EnKF, LETKF, Gamma test theory (GT), and Gaussian process regression
(GPR).
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14 2. Common ground

2.1. Standard particle filters
This subsection briefly introduces standard particle filters [1]. Particles are used to
represent the distribution of model states, which can capture the mean and uncertainty
of the model states. The particles are updated by a resampling algorithm based on
weights that are calculated by the likelihood, given observations. The resampling
method is crucial to particle filters [2] and its basic idea is to modify prior particles to
posterior ones by eliminating particles with smaller weights and by duplicating particles
having larger weights. The residual resampling algorithm [3] was applied in this study,
as being one of the most frequently used resampling algorithm in particle filter data
assimilation [2, 4, 5].

Let us assume that 𝒙 represents a model state of a model which can be propagated
over time and 𝒚 represents a vector of observations. The model captures our incom-
plete knowledge of the physical system under consideration. Uncertainty in model
states is inevitable due to imperfection of the model. Therefore, the model states, 𝒙,
can only approximate the truth and cannot reach the truth. For similar reasons, obser-
vations 𝒚 are only approximations of the truth because of observation uncertainties.
The relation between observations and true model states can be expressed as:

𝒚 = 𝑯(𝒙true) + 𝜖 (2.1)

where H is the observation operator that transforms model states into observation
space and 𝜖 is the observation error. Particle filters are used to estimate 𝒙 given
observations 𝒚 by a Bayes’ theorem expansion using a Monte Carlo estimation:

𝑝(𝒙|𝒚) = 𝑝(𝒚|𝒙)𝑝(𝒙)
∫ 𝑝(𝒚|𝒙)𝑝(𝒙)𝑑𝒙 (2.2)

where 𝑝 (𝒙 ∣ 𝒚) is the probability of model states 𝒙 given all observations 𝒚. 𝑝(𝒙|𝒚)
can be obtained by a Monte Carlo approach. By drawing 𝑁𝑝 particles, denoted 𝒙𝑛(𝑛 =
1, 2, 3, ..., 𝑁𝑝), 𝑝(𝒙) can be constructed as a discrete set of delta functions centered on
every individual particle:

𝑝(𝒙) ≈ 1
𝑁𝑝

𝑁𝑝

∑
𝑛=1

𝛿 (𝒙 − 𝒙𝑛) (2.3)

Similarly, 𝑝(𝒙|𝒚) can be approximated by using:

𝑝(𝒙|𝒚) ≈
𝑁𝑝

∑
𝑛=1

𝒘𝒏
𝑊 𝛿 (𝒙 − 𝒙𝑛) (2.4)

where 𝑤𝑛/𝑊 are the normalized weights, provided by:

𝒘𝒏 = 𝑝 (𝒚|𝒙𝑛) (2.5)

𝑊 =
𝑁𝑝

∑
𝑛=1

𝒘𝒏 (2.6)
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Generally, a resampling algorithm is used to generate the posterior distribution by
discarding particles with low weight and duplicating high weight particles [3]. The
resampling process guarantees that sufficient particles remain.

2.2. Ensemble Kalman Filter(EnKF)
The EnKF [6] is a variant of the Kalman Filter, and is used as a benchmark in this
research. In the EnKF, random samples of model states (together called an ensemble)
are used to represent the distributions of model states and observations, including
their uncertainty. These ensembles can be generated by adding random errors to
model states and observations. Both model and observation error covariances are
estimated from the ensemble members. These two error covariance matrices are
the fundamental basis of the EnKF. Thus, the success of using the EnKF for data
assimilation heavily relies on the accurate estimation of these error characteristics.

The EnKF has two main processing steps, a forward step and an update step,
performed sequentially when observations become available. In the forward step, the
ensemble of state variables is propagated forward in time. The update step is used to
adjust state variables based on the error covariance of model states and observations.
The description of the EnKF processing steps is given below. In the forward step, the
ensemble of state variables is propagated forward in time as:

𝒙𝑡+1 = M (𝒙𝑡 , 𝒖𝑡 , 𝜽) (2.7)

where 𝒙 is a model state, 𝑀 is the model operator that propagates state variables over
time. 𝒖 indicates the model forcing, 𝜽 is the model parameters. The model states are
related to observations as:

𝒚 = 𝑯(𝒙true) + 𝝐 (2.8)

where 𝒚 is an observation vector, 𝑯 is the observation operator that relates model
states to observations, and 𝝐 is the observation error. The observation error 𝝐 is often
assumed to follow a Gaussian distribution with zero mean and observation covariance
matrix 𝑹. EnKF is based on the best linear unbiased estimator (BLUE) and the general
form of the analysis step in EnKF can be expressed as:

𝒙𝑎 = 𝒙𝑓 +𝑲(𝒚 − 𝑯𝒙𝑓) (2.9)

𝑲 = 𝑷𝑓𝑯𝑇 [𝑯𝑷𝑓𝑯𝑇 + 𝑹]−1 (2.10)

where 𝒙𝑎 and 𝒙𝑓 are the prior and posterior estimates of model states, respectively.
𝑲 is the Kalman gain and 𝑷𝑓 represents the background or forecast error covariance
matrices of the model states. Since the true model states 𝒙true are unknown, 𝑷𝑓 is
approximated by:

𝑷𝑓 = (𝒙𝑓 − 𝒙𝑓) (𝒙𝑓 − 𝒙𝑓)
𝑇

(2.11)

where 𝒙𝑓 refers to the mean of the prior estimates 𝒙𝑓.
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2.3. Gamma Test theory
The Gamma test is normally used to estimate the variance of the noise in a given data
set which is used to build the best smooth model, without knowledge of the specific
model form. In this work, we will use the Gamma test to estimate the variance of
the uncertainty between prior and posterior model states to correct posterior model
states. In doing so, we assume that the uncertainty in particles is maintained. Only
a brief introduction to the Gamma test theory is given in this subsection and further
details can be found in corresponding papers [7, 8]. Let us assume we have prior
particles 𝒙𝑝𝑟𝑖𝑜𝑟 and updated posterior particles 𝒙𝑝𝑜𝑠𝑡:

{(𝒙𝑝𝑟𝑖𝑜𝑟𝑖 , 𝒙𝑝𝑜𝑠𝑡𝑖 ) ∣ 1 ≤ 𝑖 ≤ 𝑁𝑝} (2.12)

where 𝑁𝑝 is the number of particles.
In data assimilation, the prior particles are updated by observations and this pro-

cess can be interpreted as a ”data assimilation model” to generate the output-posterior
particles according to the input-prior particles. Because of various uncertainty sources
in data assimilation, such as the uncertainties caused by assumptions about observa-
tion error, forward operator error and observation bias [9], there always is an uncer-
tainty in this ”data assimilation model” that cannot be estimated. In this research, the
variance of the uncertainty is estimated by the Gamma test. To fit the Gamma test,
the relationship between 𝒙𝑝𝑟𝑖𝑜𝑟 and 𝒙𝑝𝑜𝑠𝑡 is expressed as:

𝒙𝑝𝑜𝑠𝑡 = 𝐹𝐷𝐴 (𝒙𝑝𝑟𝑖𝑜𝑟) + 𝒓𝐷𝐴 (2.13)

where 𝐹𝐷𝐴 represents a data assimilation process and 𝒓𝐷𝐴 are the errors with expec-
tation zero. Particle filters are a non-Gaussian type of filter because when calculating
weights of particles, the error distribution does not have to be Gaussian, but we still
need to know the specific probability density function of the error distribution. How-
ever, in a nonlinear case, we would not be able to determine the error distribution.
The Gamma test can estimate the variance of the noise var(𝒓𝐷𝐴) regardless of the
specific data assimilation algorithm used and the underlying error distribution because
of the existence of nonlinearity and non-Gaussianity.

The Gamma test statistic is calculated by the following procedure. First, the Gamma
test uses a kd-tree to find the kth (1 ≤ 𝑘 ≤ 𝑝) nearest neighbors 𝒙𝑝𝑟𝑖𝑜𝑟𝑘 , 𝒙𝑝𝑜𝑠𝑡𝑘 of
𝒙𝑝𝑟𝑖𝑜𝑟,𝒙𝑝𝑜𝑠𝑡 for each particle member. Here 𝑝 is set to 10 typically [8]. Next, the
algorithm computes:

𝛿 (𝑘) = 1
𝑁𝑚

𝑁𝑚
∑
𝑖=1
|𝑥𝑝𝑟𝑖𝑜𝑟𝑘 − 𝑥𝑝𝑟𝑖𝑜𝑟𝑖 |

2
(1 ≤ 𝑘 ≤ 𝑝) (2.14)

𝛾 (𝑘) = 1
2𝑁𝑚

𝑁𝑚
∑
𝑖=1
|𝑥𝑝𝑜𝑠𝑡𝑘 − 𝑥𝑝𝑜𝑠𝑡𝑖 |

2
(1 ≤ 𝑘 ≤ 𝑝) (2.15)

where |...| denotes Euclidean distance, 𝛿 (𝑘) is the mean square of the 𝑘 nearest neigh-
bors of the prior distribution, and 𝛾 (𝑘) is derived from the 𝑘 nearest neighbors of the
posterior distribution, which is defined as the outcome of the Gamma Test. Based
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on the points (𝛿 (𝑘) , 𝛾 (𝑘)), the linear regression 𝛾 (𝑘) = 𝐴𝛿 (𝑘) + Γ is computed and
the intercept Γ is the estimation of var (𝑟𝐷𝐴), as can be shown 𝛾 (𝑘) → var (𝑟𝐷𝐴) in
probability as 𝛿 (𝑘) → 0.

2.4. Gaussian process regression
For a given model 𝒇 (𝒙), Gaussian process regression offers a solution to describe the
relation between input and output. Like a Gaussian distribution, a Gaussian process
can be defined by a mean function 𝑚(𝒙) and a covariance function 𝑘 (𝒙, 𝒙′). Thus, a
Gaussian process is over functions, which is shown as follows:

𝒇 (𝒙) ∼ 𝐺𝑃 (𝑚(𝒙), 𝑘 (𝒙, 𝒙′)) (2.16)

in which 𝒙 is the input of a model. For every input 𝑥, it has a corresponding value of
function 𝒇 (𝒙), which represents an associated random variable.

For training a GP model, a specific mean function and a covariance function must be
chosen, and the values of all hyperparameters in these two functions can be found by
optimizing the log marginal likelihood of a GP model. A trained GP model can be used
to make new predictions based on a test data set, which is not used for the training
process by computing its posterior. Let 𝒇 be the known values of functions(training
data 𝒙), and let us assume that 𝒇∗ contains the unknown values(test data 𝑿) for
calculating the posterior. The joint distribution of 𝒇 and 𝒇∗ can be expressed as:

[ 𝒇 (𝒙)𝒇∗ (𝒙) ] ∼ 𝑁 ([
𝝁
𝝁∗ ] , [

𝜮 𝜮∗
𝜮T∗ 𝜮∗∗

]) (2.17)

𝜮 = 𝑘 (𝒙, 𝒙′)
𝜮∗ = 𝑘 (𝒙, 𝑿)

𝜮∗∗ = 𝑘 (𝑿, 𝑿′)
(2.18)

where 𝝁 and 𝝁∗ are means of training data and test data respectively, and for covari-
ance, 𝜮 is the training data covariance and 𝜮∗∗ is the test data covariance. 𝜮∗ is used
for the training and calculating test data covariance. The conditional distribution of 𝒇∗
given 𝒇 can be expressed as Eq.( 2.19).

𝒇∗|𝒇 ∼ 𝑁 (𝝁∗ + 𝜮T∗𝜮−1(𝒇 − 𝝁), 𝜮∗∗ − 𝜮T∗𝜮−1𝜮∗) (2.19)

In data assimilation, after replacing observation operators with GPR models, trans-
ferring model states into observation space can be interpreted as using trained GPR
models to predict a new data set. Therefore, the mentioned test 𝑿 can be model states
generated by propagating a model over time. In this context, the corresponding mean
and variance of the estimation are expressed as follows:

𝝁𝑿 = 𝑚 (𝑿) + 𝑘 (𝒙, 𝑿)
T 𝑘 (𝒙, 𝒙′)−1 (𝑚 (𝒙) − 𝑚 (𝑿)) (2.20)

𝝈2𝑿 = 𝑘 (𝑿, 𝑿′) − 𝑘 (𝒙, 𝑿)
T 𝑘 (𝒙, 𝒙′)−1 𝑘 (𝒙, 𝑿) (2.21)
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One advantage of the GPR is that it can estimate the model output and meanwhile
give its uncertainty estimation, as shown in Eq.(2.21). In doing so, the observation
error can be represented with a Gaussian distribution. When training GPR models,
one observation must be transferred into a vector by adding an error. It is inevitable
to introduce extra sampling errors. However, the uncertainty estimated by Eq.(2.21)
represents the total error, including the observation error, sampling error and the GPR
error. It should be noted that the replacement of observation operators can bring extra
GPR errors into the Bayesian framework. It leads to the posterior distribution with a
wider range, which can avoid over-confident results in Monte Carlo simulation [10].
The GPR models from the python package- scikit-learn are used in this work.
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3
A Local Particle Filter Using

Gamma Test Theory for
High-Dimensional State

Spaces

Particle Filters are non-Gaussian filters, which means that the assumption that
the error distribution of the ensemble should be Gaussian is unnecessary. Like
EnKF, particle filters are based on the Monte Carlo approximation to represent
the distribution of model states. It requires a substantial number of particles
to approximate the probability density function of states in high-dimensional
models, which is prohibitive for real applications. In order to overcome prob-
lems with high dimensionality, localization was applied in an Ensemble-type
data assimilation system. This study combines the localization in LETKF with
particle filters and proposes a new local particle filter with the model state space
correction using Gamma Test theory for high-dimensional models. A series of
tests with various parameter settings, including different the numbers of parti-
cles, observation intervals, localization scale, inflation factors, and observation
operators, were used to evaluate the performance of this new method using a
Lorenz model with 40 variables. Besides, the proposed filter was applied in the
Lorenz model with 1000 variables to evaluate its performance in the model with
higher dimensions. The results show that the local particle filter is stable and
has considerable potential for complex higher dimensional models.

This chapter is based on: Wang, Zhenwu, Rolf Hut, and Nick Van de Giesen. ”A Local Particle Filter Using
Gamma Test Theory for High-Dimensional State Spaces.” Journal of Advances in Modeling Earth Systems
12.11 (2020): e2020MS002130.
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3.1. Introduction
Numerical models are used to forecast and estimate model states in many fields in-
cluding meteorology, ocean science and hydrology. Accounting for different sources
of uncertainty to improve the accuracy of such models has drawn considerable at-
tentions in recent decades [1]. Data assimilation(DA) provides a solution to combine
information from model estimations and observations to achieve better prediction per-
formance and quantify uncertainty [2–4]. DA has been applied widely in geoscience
[5–12].

EnKF and its variants have been applied frequently [13–15]. EnKF relys on the
assumption that the error distribution is Gaussian [16]. Particle filters(PFs) are another
ensemble-type data assimilation algorithm, which is proposed by Gordon et al. [17]
and has been used in many low-dimensional models [18]. Particle filters, just like
the EnKF, use a Monte Carlo approximation in which a certain number of particles
are used to represent the distribution of model states. The distribution reflects the
mean and spread of model states and is updated by the prior weights which can be
calculated using the likelihood given to each particle. However, unlike EnKF and its
variants, PFs do not rely on the assumption that the error distribution is Gaussian. It
should be noted that the Gaussian assumption can lead to suboptimal results when a
model system is nonlinear and errors are non-Gaussian, which is the main limitation
of ensemble-Gaussian-type data assimilation strategies.

For particle filters, the increasing number of dimensions of a model requires an
exponentially growing number of particles to avoid filter divergence, as shown by
Snyder et al. [19], which is called the curse of dimensionality [20]. Bengtsson et al.
[20] also showed that for accurate representation of high dimensional distributions,
the number of particles need to be increased exponentially with the number of model
states. Therefore, the use of particle filters in high-dimensional models is limited due to
the curse of dimensionality and associated high demand on computational resources.

Currently, there are several strategies to deal with the dimensionality of particle
filters in high dimensional systems [21, 22]. An equivalent weights particle filter has
been proposed, which prevents filter degeneracy using the proposal transition den-
sity [23, 24]. The proposal transition density keeps particles close to observations.
Consequently, it leads to a better statistic representation of the posterior distribution
because none of particles is ignored. Ades and van Leeuwen [25] explored the effect of
the equivalent-weights particle filter on the dynamical balance in a primitive equation
model. Their results showed that this method had potential for large-scale geophysical
applications. Ades and van Leeuwen [26] used this methods in the barotropic vorticity
model with 65500 states and the results illustrated its powerful abilities to make the
filter stable and avoid filter divergence.

Localization is an useful method for preventing the collapse of PFs in high-dimension
models, which is used commonly to solve the high-dimensional issues in EnKF and its
variants, for example the LETKF [27]. Researchers have attempted to apply localiza-
tion in particle filters to reduce the impact of dimensionality constraints. van Leeuwen
[28] and Bengtsson et al. [29] tried to combine localization with particle filters. Farchi
and Bocquet [30] reviewed several local particle filters from both theoretical and prac-
tical aspects. In this review, the localization solutions were divided into two strategies,
which were state-domain localization and sequential-observation localization [30].
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State-domain localization is used to update each model state independently only us-
ing the observations within localization scales, which has been applied in PFs [31–34].
Penny and Miyoshi [31] introduced a localized particle filter(LPF) with state-domain
localization. The particles of this algorithm were updated first by a transformation ma-
trix and the final updated particles were a linear combination of particles around each
point. This LPF could outperform the LETKF under some conditions [31]. However,
this method still needs an inflation method, which is a common method in data assim-
ilation to maintain the spread of the model states to prevent collapse of the algorithm
and to keep the filter stable.

In sequential-observation localization, all observations are assimilated one by one.
Only nearby model states at each observation site are updated and influenced and dis-
tant model states stay unchanged [30]. Poterjoy [35] proposed a LPF with sequential-
observation localization, which can be applied in high-dimensional systems using a
small number of particles. It extended the weights in traditional particle filters to a
vector to remove the impact of distant observations. Kernel density distribution map-
ping(KDDM) was applied to the updated particles to obtain a desired posterior distribu-
tion which was selected by prior particles and their weights. However, this method still
suffered imbalance issues caused by localization. Poterjoy and Anderson [36] used an
idealized atmospheric general circulation model (GCM) to test physical consistency of
posterior particles and scalability. The results of these two different tests showed the
LPF proposed by Poterjoy [35] is highly likely to work in more complex real models.

This study provides a new solution to prevent the divergence of particle filters in
high-dimensional models. We attempt to consider the impact of the uncertainty be-
tween prior and posterior particles. Our new method is based on the Bayesian theorem
and combines the standard particle filters with the so-called state-domain localization.
Besides, the Gamma test is used to correct uncertainty in the posterior distribution.
Localization divides all model states into local patch vectors and each model state has
its own local patch vector [31]. In this way, particle filters only assimilate observa-
tions within the localization scale. The Gamma test is a technique which can be used
to estimate uncertainty between prior and posterior model state space [37], which can
lessen impact of localization issues. Additionally, the proposed algorithm applies the
Gamma test to modify the variance of the posterior uncertainty to stabilize the filter
and avoid filter collapse. The main motivation for designing this local filter is to make
particle filters available and effective in high dimensional systems with a comparatively
small number of particles.

The chapter is organized as follows. Section 3.2 describes the proposed algorithm
in detail. Section 3.3 evaluates the performance of the proposed method using the
Lorenz model with 40 and 1000 variables and compares its results with the LETKF. In
the final section, the limitations of the new filter and its possible applications for high
dimensional geophysical models are discussed.

3.2. Methodology
3.2.1. Degeneracy of filters
As introduced in section 2.1, particle filters do not rely on estimating the error distri-
butions and useful particles are chosen based on weights using a resampling method.
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The degeneracy of particle filters refers to the situation in which the particle with the
largest weight is the only particle chosen by the resampling algorithm [35]. When an
increase in the number of model states is not matched with an increase in the number
of particles [19, 31], it becomes difficult for particle filters to find enough particles
with sufficiently high probabilities. Increasing the number of particles can reduce the
degeneracy of particle filters. Snyder et al. [19] analyzed the relationship between the
number of particles and the number of model states theoretically. They indicated that
the number of particles must increase exponentially with the dimensions of a model
to obtain a posterior mean which has a smaller error than the prior particles or obser-
vations. LETKF has a different fundamental reason why the filter collapses. The main
cause of the collapse of Particle filters is that the weights of each model state are close
to unity. For LETKF, just like other EnKF variants, the classic divergence of a filter is
indicated by the decreasing or increasing spread of ensemble [38]. The reason for this
can be model errors, sample errors, nonlinearity in the system and other uncertainties.

3.2.2. Localization method
The localization method, which was proposed by Hunt et al. [27], is commonly used
to remove spurious error covariance outside the local scale due to sampling errors
caused by too small an ensemble. It only assimilates observations within a given scale
for each particle, which is efficient for high-dimensional systems. The local particle
filters in this study uses a localization scheme inspired by the LETKF. Therefore, the
localization in LETKF is applied.

Using a localization method can stabilize the filter and avoid filter degeneracy in
EnKF and its variants when only a small number of particles is used in the data as-
similation of high-dimensional models [27]. For the issues in particle filters caused by
dimensionality [19], as mentioned and explained in section 3.2.1, localization has been
applied to solve the dimensionality of particle filters [31, 35]. However, the localiza-
tion method can deal with the issue partially and additional methods are still needed
to stabilize the posterior distribution. Poterjoy [35] corrected updated ensemble by
using kernel density distribution mapping, and Penny and Miyoshi [31] still used an
inflation method to prevent the filter collapse. As in LETKF, every model state is as-
similated one by one in particle filters and particles and observations are localized by
a localization function to form local particles 𝒙𝑙𝑜𝑐 and local observations 𝒚𝑙𝑜𝑐. Then
the weights of each state are calculated based on 𝒚𝑙𝑜𝑐 − H𝒙𝑙𝑜𝑐. In this study, the
localization method in LETKF is used for particle filters to remove certain observations
that fall outside the localization scale. The specific localization function used here for
local particle filters was proposed by Gaspari and Cohn [39].

3.2.3. Local particle filters with the Gamma test
Chapter 2 gives the introduction to the standard particle filters in Section 2.1 and
Gamma test theory in Section 2.3. The local particle filter with the Gamma test(LPF-
GT) is explained in this subsection. The foundation of particle filters is still Bayes’
theorem and the Monte Carlo method. With the localization procedure, each model
state can be updated independently in DA. The Gamma test provides an estimation
of potential uncertainty for DA. Under the assumption that the observation errors are
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independent, weights can be calculated by:

𝒘𝑛 = 𝑝 (𝒚 ∣ 𝒙𝑛) =
𝑁𝑜𝑏𝑠
∏
𝑖=1

𝑝 (𝑦𝑖 ∣ 𝒙𝑛) (3.1)

where 𝑁obs is the number of observations. When calculating weights in PFs, and when
only a few particles carry almost all the weight, filter collapse is inevitable. Therefore,
in order to avoid filter collapse, the probability 𝑝 (𝑦𝑖 ∣ 𝒙𝑛) in Eq.(3.1) is calculated in
the following way:

𝑝𝛽 (𝑦𝑖 ∣ 𝒙𝑛) = [𝑝 (𝑦𝑖 ∣ 𝒙𝑛) ∗ 𝑙𝑜𝑐 (𝑦𝑖 , 𝒙𝑛 , 𝑟) + 𝛽𝑎] 𝛽𝑚 (3.2)

where 𝑙𝑜𝑐 (𝑦𝑖 , 𝒙𝑛 , 𝑟) are the localization coefficients and ∗ represents elementwise
product. In current research, we use (4.10) of Gaspari and Cohn [39] for 𝑙𝑜𝑐 (𝑦𝑖 , 𝒙𝑛 , 𝑟),
which has a Gaussian-type structure with a width 𝑟. The parameters 𝛽𝑎 and 𝛽𝑚 are
used to control weights. Hence, after replacing 𝑝 (𝑦𝑖 ∣ 𝒙𝑛) with 𝑝𝛽 (𝑦𝑖 ∣ 𝒙𝑛), the local-
ized weights in LPF-GT are given by:

𝒘𝑛 =
𝑁𝑙𝑜𝑐𝑜𝑏𝑠
∏
𝑖=1

𝑝𝛽 (𝑦𝑖 ∣ 𝒙𝑛)

=
𝑁𝑙𝑜𝑐𝑜𝑏𝑠
∏
𝑖=1

[𝑝 (𝑦𝑖 ∣ 𝒙𝑛) ∗ 𝑙𝑜𝑐 (𝑦𝑖 , 𝒙𝑛 , 𝑟) + 𝛽𝑎] 𝛽𝑚 (3.3)

where 𝑁𝑙𝑜𝑐𝑜𝑏𝑠 indicates the number of observations within the localization scale. 𝛽𝑎 is
an additive factor and 𝛽𝑚 is a multiplicative factor.

The mean effective number of particles 𝑁𝑒𝑓𝑓(shown in Eq.(3.4)) is used to evaluate
the quantity of the particles [31] and the factor 𝛽𝑎 and 𝛽𝑚 in Eq.(3.3) can tune the
value of 𝑁𝑒𝑓𝑓.

𝑁𝑒𝑓𝑓 = [
𝑁𝑝

∑
𝑖=1
( 𝑤𝑖
∑𝑁𝑝𝑖=1𝑤𝑖

)
2

]

−1

(3.4)

The role of 𝛽𝑎 and 𝛽𝑚 is mainly to avoid filter degeneracy. Because they influence
the value of 𝑁𝑒𝑓𝑓. Tuning 𝑁𝑒𝑓𝑓 can change the percentage of removed particles in
the resampling procedure, which was discussed in the next section. We found that
keeping 𝑁𝑒𝑓𝑓 close to a certain value by tuning 𝛽𝑎 and 𝛽𝑚 can avoid filter collapse. To
fix 𝑁𝑒𝑓𝑓, values of 𝛽𝑎 and 𝛽𝑚 are changed dynamically by finding appropriate values
in the parameter space of 𝛽𝑎 and 𝛽𝑚. There are definitely more than more than one
pair of 𝛽𝑎 and 𝛽𝑚 that fix 𝑁𝑒𝑓𝑓. We simply stopped the search when the first pair of
these two parameters had been found.

Eq.(3.3) attempts to avoid the divergence of particle filters by rescaling the weights
of each particle twice. The weights of distant observations are reduced gradually by
introducing localization coefficients to the probabilities of local observation errors. The
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factors 𝛽𝑎 and 𝛽𝑚 are used to maintain the stability of the weights, which can control
the proportion of particles removed by residual resampling algorithm.

Next, the modified particles 𝒙𝑎𝑛 and the factor 𝛼 corrected by the Gamma test are
given in Eq.(3.5) and Eq.(3.9) respectively.

𝒙𝑎𝑛 = 𝒙𝑎𝑛
′
+ 𝜂 (𝒙𝑎𝑛

′
− 𝒙𝑎𝑛

′
) + (1 − 𝜂) 𝛼 (𝒙𝑎𝑛

′
− 𝒙𝑏𝑛) (3.5)

where 𝒙𝑎𝑛
′
indicates the updated particles generated by a resampling method. The

prime indicates a posterior, or updated, particle. And 𝒙𝑎𝑛
′
is its mean. 𝒙𝑏𝑛 denotes the

prior particles. In Eq.(3.5), 𝛼 (𝒙𝑎𝑛
′
− 𝒙𝑏𝑛) represents the uncertainty 𝒓𝐷𝐴 brought by

data assimilation, which is shown in Eq.(2.13). We assume that 𝒓𝐷𝐴 follows a Gaussian
distribution with mean zero and its variance is estimated by the Gamma test. Using
𝒙𝑎𝑛

′
to minus 𝒙𝑏𝑛 directly, we obtain a sample, which is not the error we expect. To

achieve our goal, the sample (𝒙𝑎𝑛
′
− 𝒙𝑏𝑛) needs to be normalized, which is given as 𝑿.

Next, We set the variance of 𝑿 equal to Γ estimated by the Gamma test. According to
the definition of the variance, we define Γ and normalized var (𝒙𝑎𝑛

′
− 𝒙𝑏𝑛) as follows.

Γ =
∑(𝛼𝑿 − 𝜇)2

𝑁 (3.6)

var (𝒙𝑎𝑛
′
− 𝒙𝑏𝑛) =

∑(𝑿 − 𝜇)2
𝑁 (3.7)

where Γ is the desired variance and 𝛼 refers to the corrected factor of the normalized
sample 𝑿. The mean of 𝑿 is zero. 𝑁 is the number of samples. We can obtain 𝛼 in
Eq.(3.5) based on Eq.(3.8) and Eq.(3.9).

Γ
var (𝒙𝑎𝑛

′
− 𝒙𝑏𝑛)

=
∑(𝛼𝑿 − 𝜇)2
∑(𝑿 − 𝜇)2 = 𝛼2 ∑(𝑿)2

∑(𝑿)2 = 𝛼2 (3.8)

𝛼 = √
Γ

var (𝒙𝑎𝑛
′
− 𝒙𝑏𝑛)

(3.9)

In Eq.(3.5), the uncertainty of posterior particles is a linear combination of the

particles updated by particle filters (𝒙𝑎𝑛
′
− 𝒙𝑎𝑛

′
) and particles modified by the Gamma

test 𝛼 (𝒙𝑎𝑛
′
− 𝒙𝑏𝑛). The mean of 𝒙𝑎𝑛 is still obtained using the resampling algorithm. In

this research, we assume that the uncertainty of 𝒙𝑎𝑛 consists of two parts. One part is
comes from the resampling method. The other part comes from the data assimilation
framework, which can be estimated by the Gamma test. These two parts are combined
by 𝜂 and the value of 𝜂 is between 0 and 1. The parameter 𝜂 can be tuned to change
the impact on the uncertainty of 𝒙𝑎𝑛.
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Algorithm 1 Pseudocode description of LPF-GT

for 𝑛 = 1 → 𝑁𝑚 do
call Localization to obtain local index 𝑖𝑑loc and local coefficients 𝑐loc and then get

the local observations (𝑦𝑖,local) and local particles 𝑥(𝑦𝑖−1)local
for 𝑗 = 1 → 𝑁𝑝 do

𝑤𝑛,𝑗 ← 𝑝 (𝑥(𝑦𝑖−1)𝑗,local ∣ 𝑦𝑖,local)
end for
call a bisection function to find factors 𝛽𝑎 and 𝛽𝑚, which brings 𝑁𝑒𝑓𝑓 close to a

certain value
𝑤𝑛 ← ∏(𝑤𝑛,𝑗 + 𝛽𝑎) ∗ 𝛽𝑚
𝑤𝑛,nor =

𝑤𝑛
∑𝑤𝑛

Obtain resampled particles 𝑥(𝑦𝑖)𝑛 based on 𝑤𝑛,nor
end for
call GammaTest(𝑥(𝑦𝑖), 𝑥(𝑦𝑖−1)) to obtain Γ

𝛼 = √
Γ

variance(x(yi) ,x(yi−1))

�̄� =mean (𝑥(𝑦𝑖))
𝑥(𝑦𝑖) = �̄� + 𝜂 (�̄� − 𝑥(𝑦𝑖)) + (1 − 𝜂) 𝛼 (𝑥(𝑦𝑖) − 𝑥(𝑦𝑖−1)), where 𝜂 ∈ [0, 1]

function GammaTest(𝑥(𝑦𝑖), 𝑥(𝑦𝑖−1))
calculate the Gamma test statistic Γ
return Γ

end function

function Localization
calculate local index 𝑖𝑑loc and local coefficients 𝑐loc
return 𝑖𝑑loc, 𝑐loc

end function
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3.3. Numerical experiments and results
In this research, the Lorenz model [40, L96 model] was used to evaluate our proposed
local particle filters(LPF-GT) and to compare its performance to LETKF. More detailed
introduction to the L96 model can be found in Lorenz [40]. As is common in testing
new data assimilation schemes for high dimensions models, in this study, 40 variables
are chosen and 𝐹 remains fixed at 8.0 to maintain the chaotic behavior in L96. Fur-
thermore, the differential equations of the L96 model are integrated by a fourth-order
Runge–Kutta method with a 0.05 time step [40, which is defined as 6h].

3.3.1. Experimental setup
A set of experiments were conducted to test the validity of LPF-GT for various param-
eter configurations that mimic real applications. In these experiments, LPF-GT and
LETKF were examined by a variety of parameter settings to test the effectiveness and
disadvantages of LPF-GT. The parameters in these experiments include various obser-
vation intervals, the number of particles 𝑁𝑝, the number of observations 𝑁𝑜𝑏𝑠, inflation
factors, localization scales, and two different observation operators 𝐻.

The default configuration consists of the linear 𝐻 operator. Only half of the model
states are observed, 20 observations, were assimilated in every experiment which
were chosen evenly and were fixed spatially over time. A inflation methods was used
for LETKF,and the inflation factor had been tuned to a fixed value 1.05 as the default.
The parameters 𝛽𝑎 and 𝛽𝑚 in LPF-GT have a similar role as in the inflation method.
The influence to 𝑁𝑒𝑓𝑓 by tuning 𝛽𝑎 and 𝛽𝑚 was investigated through numerical ex-
periments. The default number of particles was 100. Observations were derived from
the truth with an uncertainty 𝜖 ∼ 𝑁 (0, 0.5). Other configurations, which are different
from the default, will be given at the beginning of each experiment. A spinup time
with 1000 time steps was added to each test and the following 10000 steps were
used to summarize and analyze results. All experiments were executed on the DAS-4
supercomputer [41].

In all experiments, the root mean square error(RMSE) was used to evaluate the
performance of the new filter. The ensemble spread, defined as the square-root of
the variance of the ensemble averaged over all model states, is another metric for the
evaluation. These two metrics are defined as follows.

RMSE = √ 1
𝑁𝑚

𝑁𝑚
∑
𝑘=1

(𝑥𝑡truth,𝑘 − �̄�𝑡𝑘)
2

(3.10)

Spread = √ 1
𝑁𝑚

𝑁𝑚
∑
𝑘=1

𝑁𝑝

∑
𝑖=1
(𝑥𝑡𝑖,𝑘 − �̄�𝑡𝑘)

2
(3.11)

in which �̄�𝑡𝑘 is the ensemble mean for filters and 𝑥𝑡truth,𝑘 is the corresponding truth.
𝑥𝑡𝑖,𝑘 represents each particle. In this research, we use time-averaged values for both
metrics.
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3.3.2. Results
The first experiment was to examine the behavior of one model state, and the per-
formance of the local filter when a linear 𝐻 operator was used in the simulation. The
results of prior error statistics from LETKF and LPF-GT were compared by calculating
domain averages of RMSE and ensemble spreads for all model states over time. Time
series of the first model state and the corresponding truth have been plotted together
in Fig.3.1. The constants 𝜂 and 𝑁𝑒𝑓𝑓 in LPF-GT can be tuned, and using different
combinations can impact the final performance. In this experiment, we used 𝜂 = 0.55
and 𝑁𝑒𝑓𝑓 = 0.65, and the behavior of the system for these two parameters was inves-
tigated later. For LETKF, after tuning the inflation factor, the fixed value for inflation
1.05 was used. In this linear-Gaussian case, at the beginning of data assimilation, LPF-
GT took more time than LETKF to reach a stable status. It is probably because LPF-GT
is more sensitive to sampling errors. When both of them become stable, they produce
low RMSEs and have similar performance. For the entire simulation time, results show
that LETKF outperforms LPF-GT. The time-averaged RMSE and ensemble spread for
LPF-GT are 0.38 and 0.55, respectively, compared to 0.17 and 0.29 for LETKF. This
experiment demonstrates that LPF-GT can work stably for high-dimensional models
using the linear observation operator and confirms that the application of localization
in particle filters prevents the filter collapse using fewer particles.

Next, we explore the impact of 𝜂 and 𝑁𝑒𝑓𝑓, when different localization scales 𝑣𝑙𝑜𝑐𝑎𝑙
are used. Therefore, a set of experiments using the linear 𝐻 operator for different
combinations of these parameters were conducted, and the RMSE and spread of prior
particles averaged over the entire domain are shown in Fig.3.2. LPF-GT is tuned
optimally in this case, and the optimal configuration comes from the experiment which
yields the lowest prior RMSEs. Four localization scales 𝑣𝑙𝑜𝑐𝑎𝑙 used in this test are 1.0,
5.0, 10.0 and 15.0 respectively. The tested values for the parameter 𝜂 were 0.45, 0.5
and 0.55 and parameter 𝑁𝑒𝑓𝑓 varies between 0.4 and 0.65 with 0.05 steps. Each pixel
is the result of running the data assimilation algorithm with different settings of these
three parameters. For the current settings 𝜂 = 0.5, 𝑁𝑒𝑓𝑓 = 0.65 and 𝑣𝑙𝑜𝑐𝑎𝑙 = 5 yielded
the best result.

These results in Fig.3.2 clearly show that changes in these two parameters, 𝑁𝑒𝑓𝑓,
and 𝜂 can impact the performance, and both of their roles are significant. When
𝑣𝑙𝑜𝑐𝑎𝑙 = 5 is used, the RMSE becomes lower with the growth of 𝑁𝑒𝑓𝑓. In cases with
larger localization scales, in general, the performance of the LPF-GT becomes worse
with increasing 𝑁𝑒𝑓𝑓. As for the impact of the localization, increasing localization scales
degrade the accuracy of the LPF-GT generally, which is consistent with the results in
Penny and Miyoshi [31]’s research. The 𝜂 parameter is used to adjust the analysis
errors, which are derived from analysis errors given by the PF and the other one
corrected by the Gamma test, but there is no apparent monotonic relationship between
the two error sources. Therefore, appropriate parameter values of 𝜂 should be tuned
to obtain the desired performance. The parameter 𝑁𝑒𝑓𝑓 influences the performance
of LPF-GT by reassigning values of weights. Using a proper value of 𝑁𝑒𝑓𝑓 can draw
model states to the truth, and it turns out that changing the variance of particles by
adjusting their weights is a potential strategy to avoid the collapse for particle filters.

Next, we check the sensitivity of the proposed LPF-GT to the number of particles
and the impact of the observation assimilation intervals in both linear and nonlinear
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Figure 3.1: Trajectories of (a) the first model state using the LPF-GT, (b) the first model state using the
LETKF and (c) RMSE and spread for both methods. In the first two figures, the blue curve is the truth and
the red curve is the estimation of the model state. In the third one, the solid lines indicate the RMSE and
the dash lines is the spread. The assimilation starts at time step 1,000.

cases. In the nonlinear case, 𝑦 = ln |𝒙| is used as the nonlinear observation operator.
In this research, the number of particles varies as 50, 100, 200, 300 and 500. The
standard deviation of the error in observation is set to 0.5 in the linear case, and both
0.1 and 0.5 are chosen as observational errors in the nonlinear case.

Fig.3.3 shows the RMSE, and the corresponding ensemble spread as a function of
the number of particles and update interval in the linear case. For the linear/Gaussian
experiment, both filters produce low RMSEs and the LETKF has lower RMSEs than
the LPF-GT but from resulting prior statistics the performance of the LPF-GT is still
acceptable. LPF-GT is more sensitive to the number of particles and, as expected, the
RMSEs decrease when the number of particles is increased. For both filters, using 50
particles or ensemble members can provide satisfactory results. The LETKF is optimal
for the linear observation type, and because of the application of localization, it does
not need a large number of ensemble members to maintain the Gaussianity of the
ensemble. Performance is limited by sampling errors in prior ensembles.

In Fig.3.3, the spread given by LPF-GT is larger than results from LETKF. It is
mainly because we use several methods to avoid the collapse of the filter including



3.3. Numerical experiments and results

3

29

Figure 3.2: Prior mean RMSE (a) and spread (b) as a function of parameter 𝑁𝑒𝑓𝑓, 𝜂 and localization scale
𝑣𝑙𝑜𝑐𝑎𝑙 . The value in brackets indicates the localization scale and each cell represents one experiment.

the localization procedure, tuning the effective number of particles and considering
potential uncertainty provided by the Gamma test. All these methods keep the filter
stable, but the variance of particles is inflated inevitably.

To examine the performance of the LPF-GT when nonlinear observations are as-
similated, a more comprehensive assessment of its performance is given. The exper-
imental configurations for the nonlinear operator include two localization scales and
two observation errors. Fig.3.4 shows the prior mean RMSE and the corresponding
spread as a function of the number of particles in the nonlinear case, when using var-
ious localization radius and observational errors. The nonlinear 𝐻 operator was used
for the nonlinear experiments. However, because the LETKF is suboptimal for the non-
linear operator: 𝑦 = ln |𝒙|, its performance is not as stable and predictable as LPF-GT
and the filter degeneracy occurs in LETKF in many experiments. Thus, in Fig.3.4, we
only demonstrate results from the LETKF when the collapse did not happen.

From results in Fig.3.4, it is clear that LPF-GT can provide more accurate solutions
than the LETKF under these four conditions and the non-Gaussianity introduced by the
nonlinear measurement operators makes LETKF less effective. When observational
errors with standard deviation 0.1 are used, LPF-GT only needs 50 particles to work
stably and continuously, and LETKF only outperforms LPF-GT slightly with 200 parti-
cles. In the case with standard deviation 0.5, LPF-GT requires 100 particles to achieve
a relatively acceptable performance. With limited ensemble members, LETKF needs
to concentrate on the first two moments of the posterior distribution and these two
moments will not be unbiased in the nonlinear case. The additional nonlinearity makes
LETKF more sensitive to changes of parameters like ensemble sizes and localization
scales, which accounts for the collapse of LETKF in these cases partially. The LPF-GT
can maintain its ability and stability with relatively high accuracy even with different
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Figure 3.3: Prior mean RMSE and spread as a function of (a) ensemble size and (b) assimilation time interval
for experiments using the linear observation operator.

localization radius, and observational errors, which produces significant improvements
over LETKF. Meanwhile, these experiments also provide useful information about the
impact of localization scales. For LPF-GT, its performance becomes better when the
localization scale is increased to five.

The performance of LPF-GT is also investigated for cases in which observations are
assimilated at different frequencies. The timescale 𝑑𝑡 = 0.05 of the Lorenz model was
applied in this research, and it is comparable to the error doubling happening over six
hours in the operational forecasting systems [40]. Values of 1, 2, 3, and 5 are used for
different time intervals, which represent 6h, 12h, 36h, and 72h update frequencies,
respectively.

Similar to experiment settings for the number of particles, we ran simulations in
both linear and nonlinear cases using different time intervals. The results for the linear
operator are shown in Fig.3.5. From simulation results, the LPF-GT has no practical
benefit over LETKF when observations are assimilated less frequently. Using a longer
update time interval can accumulate model errors, which is the main reason why the
performance of both filters becomes worse when increasing the time interval. When
using the nonlinear operator, LPF-GT offers advantages over the LETKF, which is shown
in Fig.3.5.

When using localization radius five and observational errors with standard deviation
0.5, LETKF achieves a somewhat better performance than LPF-GT. However, in other
cases, LPF-GT offers substantial benefits over LETKF, which shows that LETKF is more
easily influenced by the localization radius. Probably, searching more of the parameter
space for LETKF can produce better results, but it increases the cost. Besides, similar
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Figure 3.4: Prior mean RMSE and spread as a function of ensemble size for (a) obs std (the standard
deviation of observational error) 0.5 and localization scale 1, (b) obs std 0.5 and localization scale 5, (c)
obs std 0.1 and localization scale 1, (d) obs std 0.1 and localization scale 5, using the nonlinear observation
operator 𝑦 = ln |𝒙|.

to results in experiments of the number of particles, LPF-GT yields better results when
the localization scale five used.

Since the performance of LPF-GT in high-dimensional models is of high interest, we
investigate the behavior of LPF-GT in a non-linear case using the Lorenz model with
1000 variables. We used fewer particles to explore the performance limit of LPF-GT.
Half of all model states were observed, and non-linear observations generated from
the truth and the operator 𝑦 = ln |𝒙| with the observation error 𝜖 ∼ 𝑁(0, 0.1) were
assimilated by using 25, 35, and 50 particles in the experiments. The rest of the
experimental settings remained the same.

Fig.3.6 shows average prior mean RMSEs and spread for the different numbers
of particles. For the case without data assimilation in this research, when a number
of particles is propagated in the Lorenz model over time, the average mean RMSE
of particles is about 3.5. It means that when the value of RMSE is smaller than 3.5,
data assimilation improves model estimations. Otherwise, data assimilation is likely to
reduce the accuracy of the model. From the results in Fig.3.6, it becomes clear that
applying LETKF to the non-linear case, causes filter collapse, and its domain-averaged
prior RMSEs in all experiments are close to 5.0. For LPF-GT, increasing the number
of particles improves the performance of data assimilation as expected. In the case
with 25 or 35 particles, we can conclude that LPF-GT helps improve the accuracy of
the model. But to achieve a satisfactory result, LPF-GT needs at least 50 particles.

To investigate the stability of filters, time series of the second model state, which
is unobserved, and the development of the spread and the RMSE of particles in the
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Figure 3.5: Prior mean RMSE and spread as a function of assimilation time interval for (a) obs std (the
standard deviation of observational error) 0.5 and localization scale 1, (b) obs std 0.5 and localization scale
5, (c) obs std 0.1 and localization scale 1, (d) obs std 0.1 and localization scale 5, using the nonlinear
observation operator 𝑦 = ln |𝒙|.

experiment using 50 particles, are shown in Figure 3.7. The time series starts from
the beginning of data assimilation, and it needs some time to stabilize. The first two
rows show the comparison of the truth and the estimation of the second model state
for LPF-GT and LETKF. LPF-GT gives a more accurate result and shows more stability
than LETKF. The estimation of LETKF follows the truth in a short time, but after that,
it deviates from the truth. The performance of LPF-GT is much more stable, and its
estimations always stay close to the truth. From the development of the RMSE and
the spread over time, it is clear that LETKF collapses at the beginning. By contrast,
the spread and the RMSE of LPF-GT gradually decrease until the filter becomes stable.
In this case, LPF-GT completely outperforms LETKF.

3.4. Conclusions
This research proposes a local PF for nonlinear high-dimensional applications. Similar
to the localization method used in LETKF, LPF-GT assimilates observations within the
localization scale, and the influence of distant observations are decreasing gradually
in large-scale geophysical systems. Because of the use of the localization method, in
this method, each model state needs much fewer observations than what is needed by
typical particle filters. The LPF-GT updates particles sequentially when observations
are available. Posterior weights for each particle are obtained based on the localized
likelihood of observations for each state in a model. Particles with lower weights are
removed by the resampling method. The mean of new particles is based on the re-
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Figure 3.6: Prior mean RMSE and spread as a function of ensemble size for the standard deviation of
observational error 0.1 and localization scale 5 using the nonlinear observation operator 𝑦 = ln |x| and
1000 particles.

sampled particles, and its uncertainty is a linear combination of sampled particles and
the uncertainty estimated by the Gamma test. The proposed filter can prevent filter
collapse, even when the number of particles is relatively small. Another advantage of
the use of the localization method is to make computation of the new filter affordable
for large applications. For each state, all calculations made are within the localization
scales and can be parallelized easily. Correction by the Gamma test needs more com-
puting time. However, for even larger systems, the computational cost of the Gamma
test does not increase because the estimate of variance approaches a constant with
an increase in the number of samples. It is unnecessary to use all samples for the
Gamma test, and only a small number of samples is enough for the estimation of the
variance.

The LPF-GT algorithm proposed in this research can be problematic for some appli-
cations in geoscience because of the imbalance caused by localization in model states,
which is a disadvantage of the localization method. Similar to other data assimilation
methods with localization, like LETKF and localized EnKF, LPF-GT can also break the
physical consistency and cause an imbalance in posterior states. Poterjoy [35] found
the imbalance issue when updated using their local PFs. The local PFs proposed by
Penny and Miyoshi [31] showed a certain level of imbalance when they decreased the
localization scale. The imbalance issue is common in most data assimilation methods
with localization, and a proper localization scale is always needed for a specific appli-
cation. One possible solution is to tune localization scales, but the cost of it may be
expensive for some larger models. Thus, developing an adaptive localization method
deserves more attention.

The LPF-GT has been tested by using the Lorenz system with 40 and 1000 variables.
All results from a set of experiments show that the new filter is stable and avoids
filter degeneracy successfully. In the ideal case with the linear observation operator,
LETKF outperforms LPF-GT slightly. For nonlinear cases, LPF-GT provides a significant
benefit over LETKF. The successful application of LPF-GT with a Lorenz model does not
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Figure 3.7: Time series of (a) the second model state using LPF-GT, (b) the second model state using LETKF
and (c) RMSE and spread for both methods. In this experiment, the standard deviation of observational error
and localization scale are set to 0.1 and 5 respectively and the nonlinear observation operator 𝑦 = ln |x|
and 1000 particles are used. In the first two figures, the blue curve is the truth and the red curve is the
estimation of the model state. In the third one, the solid lines indicate the RMSE and the dash lines is the
spread. The assimilation starts at time step 1,000.

guarantee its success in other models. Therefore, its application in real world models
with high dimensions will be the main topic of future studies to explore the limitations
and advantages of this new filter.
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4
A Novel Local Particle Filter
Based on Gaussian Process

Regression for Highly
Nonlinear Observation

Operator in High-Dimensional
Models

In data assimilation (DA), various types of observations can be assimilated.
Highly nonlinear observation operators are very common in Earth sciences,
which goes against the linear and Gaussian assumptions of the Kalman filter.
One source of non-linearity that has not been studied widely is the non-linear
issue in observation operators. In this research Gaussian process regression
(GPR) is used to estimate the uncertainty of non-linear observation operators.
At each update, the surrogate is adaptively trained and refined by current ob-
servations and model states. When the model states are transferred to the ob-
servation space, the surrogate can give the information about estimations and
the corresponding uncertainty. A Lorenz model (1996) with 40 variables is used
to evaluate the performance of this proposed local particle by conducting a set
of experiments with different settings including the number of particles, the im-
pact of localization scales, etc. To test its ability to deal with nonlinear issues,
a highly nonlinear observation operator is designed and used in experiments.
LETKF and local EAKF are used as benchmarks in this research. The results

This chapter is based on: Wang, Zhenwu, Rolf Hut, and Nick Van de Giesen. ”A Novel Local Particle
Filter Based on Gaussian Process Regression for Highly Nonlinear Observation Operator in High-Dimensional
Models” Journal of Advances in Modeling Earth Systems(In review).
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show that the new method has a stable performance with high accuracy and
it outperforms the two benchmarks. More importantly, for the non-linear case
in this study, the new method only uses 25 particles to achieve a good perfor-
mance. Although only the Lorenz model is considered in this study, it is highly
likely that the proposed method will also work with other models.

4.1. Introduction
In data assimilation(DA), the ensemble Kalman filter(EnKF) [1, 2] and its variants are
popular and have a broad range of applications. Ensemble-type methods are flexible
and easy to implement. They have been successfully applied in Earth science for
atmospheric, hydrological and oceanographic dynamical systems [3–8].

EnKF-type methods assume Gaussian distributions, and non-Gaussian error distri-
butions lead to sub-optimal results. However, in Earth science, it is common that lots
of dynamics models are nonlinear, especially in high-resolution systems. Nonlinear
models produce non-Gaussian error distributions, which can be a reason for the fail-
ure of EnKF-type methods [9]. Another source of non-linearity are the observations.
Observations can have non-Gaussian error distributions, which happens frequently in
ocean and land surface modeling [9, 10]. Unfortunately, true error structures of ob-
servations and models are typically not well known. Several studies have reported that
sampling frequency and the accuracy of observations could be a source of nonlinearity
[11–14]. All these nonlinearities challenge Gaussian assumptions and, consequently,
it is highly likely that DA methods fail to track transitions and diverge from the truth
of model states [15].

For issues of nonlinearity in DA, particle filters(PFs) provide a potential solution.
Unlike Ensemble-type methods, PFs relax all Gaussian assumptions [16, 17]. How-
ever, for typical particle filters, the number of particles increases exponentially with
the dimension of a model. Otherwise, PFs experience weight degeneracy and filter
collapse, which is called the curse of dimensionality [18]. When the dimensionality of
a model is high, a large number of particles is needed to avoid filter collapse, which is
prohibitively costly in most cases [18–20]. Moreover, in typical PFs, particle samples
can become impoverished when the model is deterministic [21].

Applying localization methods in PFs can solve the issue of dimensionality [9, 10,
19, 22, 23]. In the context of PFs, the prior particles do not depend on the covariance
of particles. Therefore, the implementation of localization in EnKF does not fit into PFs
[22, 24]. Depending on where the analysis process of data assimilation is performed,
the localization methods in PFs can be divided into two strategies: state–domain local-
ization and sequential–observation localization [10]. The state–domain approach has
been applied successfully in several studies [20, 25–27] and the second localization
method is used in Poterjoy [24]’s research. Localization is an effective way to solve
difficulties of particle filters in high dimensional systems.

Developing nonlinear data assimilation methods has attracted critical attention in
recent decades. van Leeuwen [22] proposed a fully nonlinear particle filter by using
the proposal density to ensure equal weights for particles. This approach has been
tested in the Lorenz model with 40 variables and even higher dimensions using only 20
particles. An iterative ensemble smoother using an adaptive Gaussian process was de-
veloped to solve nonlinear issues in hydrological inverse problems [28, 29]. To tackle
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the nonlinearity in data assimilation, the kernel-based ensemble Gaussian mixture fil-
tering (EnGMF) was introduced by Anderson and Anderson [30]. In this approach,
the Gaussian mixture was used to represent the probability distribution function of
model states. It included two update steps: a Kalman filter update and a particle
filter update. Therefore, this method is a hybrid of the particle filter and the ensemble
Kalman filters. Several schemes based on EnGMF has been designed [31–33]. Lei
and Bickel [21] presented a debiasing method called the nonlinear ensemble adjust-
ment filter(NLEAF). NLEAF had been evaluated in the strongly nonlinear Lorenz-96
model with satisfactory results. Bocquet et al. [9] reviewed non-Gaussian and non-
linear aspects of data assimilation and compared many methods trying to deal with
non-Gaussianity and nonlinearity. Nonlinear models and nonlinear observation oper-
ators are the sources of nonlinearity in data assimilation. Current nonlinear solutions
are still specific to particular situations and are hard to generalize [9].

In this study, we present a local particle filter using Gaussian process regres-
sion(GPR) that has the potential to address issues of nonlinear observation operators
in data assimilation frequently encountered in geoscience. The GPR model is used to
replace a nonlinear observation operator. Because of GPR’s properties, when it trans-
fers model states into observation space, GPR model can provide the estimation with
the information of observation uncertainty. The use of GPR gives a solution to the
issue of non-linear observation operators. For the curse of dimensionality, sequential–
observation localization is a useful tool to overcome this obstacle. The use of these
two strategies together is the focus of this research.

The Chapter is organized as follows: Section 4.2 provides a detailed description
of our proposed algorithm. The sensitivity experiments and corresponding results are
given and discussed in Section 4.3. Conclusions are shown in Section 4.4.

4.2. Methodology
4.2.1. Particle filters with localization
Chapter 2 introduces the standard particle filters in Section 2.1 and Gaussian Process
Regression in Section 2.4. In this section, we will give the implementation of the new
particle filters. A localization method ensures that model states are updated by near
observations within the localization scale and the influence of distant observations
is removed. Localization has been proven to be a useful scheme to prevent filter
degeneracy [19, 24, 25, 27].

The influence of the localization on particle filters is achieved by Eq.(4.1).

𝜔𝑛,𝑗 = 𝑝 (𝑦|𝑥𝑛,𝑗) 𝑙 (𝑦, 𝑥𝑗 , 𝑟) , {
𝑗 = 1,… ,𝑁𝑥
𝑛 = 1,… ,𝑁𝑒𝑛𝑠

(4.1)

where 𝑙 (𝑦, 𝑥𝑗 , 𝑟) is the localization function and 𝑟 is the localization radius. The local-
ization function used in the current study has a Gaussian-type structure with a specific
radius 𝑟 [34]. Coefficients calculated by the localization function are determined by the
Euclidean distance between observations 𝒚 and model states 𝒙. The maximum value
of local coefficients is 1 when the distance is 0, and its value decreases to 0 when the
distance becomes larger. By multiplying localization coefficients with weights, the in-
fluence of local observations is reflected by the localization coefficients. The definition
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of the distance depends on the specific models and needs a certain prior knowledge
of physical length to be determined. We assume that errors are independent in obser-
vations. Thus, 𝑝 (𝒚|𝒙𝑛) can be calculated by ∏𝑁𝑦𝑖=1 𝑝 (𝑦𝑖|𝒙𝑛). When observations are
assimilated one by one, the weights of the 𝑗th model state given the 𝑖th observation
can be written by:

𝜔(𝑦𝑖)𝑛,𝑗 =
𝑞

∏
𝑖=1

𝑝 (𝑦𝑞|𝑥(𝑦0)𝑛,𝑗 ) 𝑙 (𝑦𝑖 , 𝑥𝑗 , 𝑟)

= 𝜔(𝑦𝑖−1)𝑛,𝑗 𝑝 (𝑦𝑞|𝑥(𝑦0)𝑛,𝑗 ) 𝑙 (𝑦𝑞 , 𝑥𝑗 , 𝑟)

(4.2)

𝑊(𝑦𝑖)
𝑗 =

𝜔(𝑦𝑖)𝑛,𝑗

∑𝑁𝑒𝑛𝑠𝑛=1 𝜔
(𝑦𝑖)
𝑛,𝑗

(4.3)

where 𝑥(𝑦0)𝑛,𝑗 denotes the prior particles before assimilating 𝑦𝑖 and 𝑊(𝑦𝑖)
𝑗 are the nor-

malized weights. Because the use of localization, the value of 𝑙 (𝑦𝑖 , 𝑥𝑗 , 𝑟) can be 0. If
all of the 𝜔(𝑦𝑖)𝑛,𝑗 is 0, all weights will be set to 1.

4.2.2. Local particle filters based on Gaussian process regression
The local PF with GPR(LPF-GPR) is inspired by the local particle filters proposed by
Poterjoy [24]. Major steps of the proposed algorithm are shown in this section, and
the pseudocode description of this algorithm is given.

In LPF-GPR, all observations are assimilated one by one, just like the algorithm in
Poterjoy [24]’s research. For 𝑖th observation 𝑦𝑖 for 𝑖 = 1,… ,𝑁𝑦, before assimilating
𝑦𝑖, the prior particles can be denoted 𝒙𝑦𝑖−1𝑛 for 𝑛 = 1,… ,𝑁𝑒𝑛𝑠. Based on Bayesian
theory, the posterior particles 𝒙(𝑦𝑖−1)𝑝 will be created by resampling prior particles with
weights �̃�𝑛 = 𝑝 (𝑦𝑖|𝒙(𝑦𝑖−1)𝑛 ) for each particle, which can be calculated by using Eq.(4.2).
The mean and standard deviation of the probability density function used for getting
weights �̃� are from a GPR model and are estimated according to Eq.(2.19). �̃� denotes
the normalized �̃�. The particles with high weights, which are retained by a resam-
pling algorithm, are duplicated and replace particles with lower weights and make the
number of posterior particles consistent with the prior’s. Thus, the index 𝑝 is equal
to index 𝑛. In general, the mean of posterior particles denoted as 𝒙(𝑦𝑖) is given by
sampled particles generated by a resampling algorithm. To make each particle more
unique and avoid filter collapse, a merging step is taken to combine the prior particles
𝒙𝑦𝑖−1𝑛 and sampled particles 𝒙(𝑦𝑖−1)𝑝 by using two coefficients vectors 𝒓1 and 𝒓2. The
final updated particles 𝒙(𝑦𝑖)𝑛 are shown in Eq.(4.4).

𝒙(𝑦𝑖)𝑛 = 𝒙(𝑦𝑖) + 𝒓1 ∘ 𝛽 (𝒙(𝑦𝑖−1)𝑝 − 𝒙(𝑦𝑖)) + 𝒓2 ∘ (1 − 𝛽) ∗ (𝒙(𝑦𝑖−1)𝑛 − 𝒙(𝑦𝑖)) (4.4)

where ∘ is an element-wise vector product and 𝛽 is a scalar. The detailed derivations
of 𝒓1 and 𝒓2 can be found in the Appendix of Poterjoy [24]’s study, and here we just
show how to calculate them in Equations (4.5) to (4.7).
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𝑟1,𝑗 = √
𝜎(𝑦𝑖)

2

𝑗
1

𝑁𝑒𝑛𝑠−1
∑𝑁𝑒𝑛𝑠𝑛=1 [𝑥

(𝑦𝑖−1)
𝑝,𝑗 − �̄�(𝑦𝑖)𝑗 + 𝑐𝑗 (𝑥(𝑦𝑖−1)𝑛,𝑗 − �̄�(𝑦𝑖)𝑗 )]

2 (4.5)

𝑟2,𝑗 = 𝑐𝑗𝑟1,𝑗 (4.6)

𝑐𝑗 =
𝑁𝑒𝑛𝑠 (1 − 𝑙 (𝑥𝑗 , 𝑦𝑖 , 𝑟))

𝑙 (𝑥𝑗 , 𝑦𝑖 , 𝑟) �̃�
(4.7)

where 𝑗 = 1,… ,𝑁𝑥, and 𝜎(𝑦𝑖)
2

𝑗 is the error covariance conditioned on all observations
up to 𝑦𝑖. As 𝑙 (𝑥𝑗 , 𝑦𝑖 , 𝑟) approaches 1, the posterior variance is close to the variance
of sampled particles. When 𝑙 (𝑥𝑗 , 𝑦𝑖 , 𝑟) = 1, 𝑟2,𝑗 = 0 and all weights are put onto
the sampled particles, which means the sampled particles are the posterior particles.
As 𝑙 (𝑥𝑗 , 𝑦𝑖 , 𝑟) approaches 0, the posterior variance approximates the prior particles’.
When 𝑙 (𝑥𝑗 , 𝑦𝑖 , 𝑟) = 0, 𝑟1,𝑗 = 0 and all weight is given to the prior particles, which
means particles stay unchanged.

Except for localization, an extra method is used to improve the stability of the
proposed method by making weights more uniform. Poterjoy [24]’s local particle filters
calculated weights by using:

𝑤𝑦𝑖𝑛 = [𝑝 (𝑦𝑖|𝒙𝑛) − 1] 𝑙 (𝑦𝑖 , 𝒙𝑛 , 𝑟) 𝛼 + 1 (4.8)

where 𝛼 is a fixed value. The role of Eq.(4.8) is similar to the inflation method, which is
commonly used in ensemble-type filters [35]. Next, we introduce a parameter named
the mean effective number of ensemble 𝑁𝑒𝑓𝑓 defined as in Eq.(4.9). In general, 𝑁𝑒𝑓𝑓
is used to evaluate the quantity of the ensemble [25]. Here, we applied it to change
the inflation factor adaptively.

𝑁𝑒𝑓𝑓 = [
𝑁𝑒𝑛𝑠
∑
𝑛=1

(𝑤𝑛)
2]

−1

(4.9)

Typically, weights are calculated based on the Gaussian probability density function
(PDF) directly. In this case, the collapse of particle filters happens often. Eq.(4.8) pro-
vides a possible solution to avoid collapse because the differences between weights
are narrowed down and more particles are kept after the resampling step. This strat-
egy can prevent filter degeneracy and stabilizes filters effectively. In this study, we
attempted to calculate weights in an adaptive way by using:

𝑤𝑦𝑖𝑛 = [𝑝 (𝑦𝑖|𝒙𝑛) 𝑙 (𝑦𝑖 , 𝒙𝑛 , 𝑟) + 𝛼1] ∗ 𝛼2 (4.10)

The coefficients 𝛼1 and 𝛼2 can be tuned to make 𝑁𝑒𝑓𝑓 approach a certain value
using a bisection algorithm. To achieve this, 𝛼1 and 𝛼2 are changed dynamically, and
the search for these two parameters stops when the first pair of 𝛼1 and 𝛼2 is found.
The reason why we chose the form of Eq.(4.10) is that this form provides a wider range
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of the value of 𝑤𝑦𝑖𝑛 . More effective ways to calculate weights will be investigated in
future studies. Consequently, Eq.(4.2) is rewritten into:

𝜔(𝑦𝑖)𝑛,𝑗 =
𝑁𝑦

∏
𝑖=1

[𝑝 (𝑦𝑖|𝑥(𝑦0)𝑛,𝑗 ) 𝑙 (𝑦𝑖 , 𝑥𝑗 , 𝑟) + 𝛼1] ∗ 𝛼2

= 𝜔(𝑦𝑖−1)𝑛,𝑗 [𝑝 (𝑦𝑖|𝑥(𝑦0)𝑛,𝑗 ) 𝑙 (𝑦𝑖 , 𝑥𝑗 , 𝑟) + 𝛼1] ∗ 𝛼2

(4.11)

The pseudocode description of LPF-GPR is given in Algorithm 2. Although this
algorithm is derived from Poterjoy [24]’s local particle filters, it still has some major
differences with that study, which are listed here. First, the observation operators
are replaced with GPR models to cope with nonlinearity, and the error distribution in
those observation is provided by GPR models. Therefore, the way to calculate weights
is different. Next, after processing all observations, Poterjoy [24] used a probability
mapping method named kernel density distribution mapping (KDDM) to map prior par-
ticles to match desired posterior particles. In our algorithm, the assimilation procedure
is finished when particles are updated without extra adjustment or correction. Last,
as described in Poterjoy [24]’s study, the fixed inflation factor was used to prevent
the filter collapse. In our method, we tried to keep 𝑁𝑒𝑓𝑓 close to a certain value by
reweighting particles with flexible inflation factors.

4.3. Numerical experiments and results
4.3.1. The Lorenz(1996) model
The Lorenz 1996 model(Lorenz 96) [36] is a low-order, discrete, chaotic model, which
evolves in time according to the following set of differential equations:

d𝑥𝑛
d𝑡 = (𝑥𝑛+1 − 𝑥𝑛−2) 𝑥𝑛−1 − 𝑥𝑛 + 𝐹, 𝑛 = 1…𝑁m (4.12)

where 𝑥𝑛 represents a vector with state variables, 𝑥𝑛 for 𝑛 = 1,…𝑁𝑚 with periodic
boundary conditions: 𝑥𝑛+𝑁𝑚 = 𝑥𝑛 and 𝑥𝑛−𝑁𝑚 = 𝑥𝑛, and 𝑁m is the dimension of the
system. The differential equations in Equation (4.12) are integrated by a fourth-order
Runge–Kutta method. The time step in the integration is usually set to 0.05, which
represents 6 hours of real-time. The value of 𝐹 can determine the degree of chaos in
the Lorenz system, and the choice of 𝑁𝑚 can take arbitrary values. In this research,
we used typical configurations of 𝐹 and 𝑁𝑚, which were set to 8 and 40, respectively,
leading to chaotic behavior.

4.3.2. Experiment settings
A series of data assimilation experiments were conducted to evaluate the performance
of LPF-GPR. These tests provide insight into the sensitivity to different settings, includ-
ing the number of particles and localization scales, etc., which are useful for applying
LPF-GPR in a real application. LPF-GPR uses a Gaspari and Cohn [34] correlation
function for the implementation of localization. In this study, we assume that no
model errors exist in the system, so when propagating the model, no model errors are
added to the whole system. The observations are from the truth with an uncertainty
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Algorithm 2 A pseudocode description of the LPF-GPR

for 𝑖 = 1 → 𝑁𝑦 do
for 𝑛 = 1 → 𝑁𝑒𝑛𝑠 do

𝑝 (𝑦𝑖|𝒙(𝑦𝑖−1)𝑛 ) ← 𝐺𝑃𝑅 (𝑦𝑖 , 𝒙(𝑦𝑖−1)𝑛 )
�̃�𝑛 ← [𝑝 (𝑦𝑖|𝒙(𝑦𝑖−1)𝑛 ) + 𝛼1] 𝛼2
(Tuning 𝛼1 and 𝛼2 is to keep 𝑁𝑒𝑓𝑓 fixed. 𝑁𝑒𝑓𝑓 = [∑

𝑁𝑒𝑛𝑠
𝑛=1 (�̃�𝑛)

2]
−1
)

end for
�̃� ← ∑𝑁𝑒𝑛=1 �̃�𝑛
�̃�𝑛 ← �̃�𝑛/�̃�
Generate new particles 𝒙(𝑦𝑖−1)𝑝 based on normalized �̃�𝑛 using the residual resam-

pling algorithm.
for 𝑗 = 1 → 𝑁𝑥 do

for 𝑛 = 1 → 𝑁𝑒𝑛𝑠 do
𝑝 (𝑦𝑖|𝑥(𝑦0)𝑛,𝑗 ) ← 𝐺𝑃𝑅 (𝑦𝑖 , 𝑥

(𝑦0)
𝑛,𝑗 )

𝜔(𝑦𝑖)𝑛,𝑗 ← 𝜔(𝑦𝑖−1)𝑛,𝑗 [𝑝 (𝑦𝑖|𝑥(𝑦0)𝑛,𝑗 ) 𝑙 (𝑦𝑖 , 𝑥𝑗 , 𝑟) + 𝛼1] 𝛼2
(Tuning 𝛼1 and 𝛼2 is to keep 𝑁𝑒𝑓𝑓 fixed. 𝑁𝑒𝑓𝑓 = [∑

𝑁𝑒𝑛𝑠
𝑛=1 (�̃�𝑛)

2]
−1
)

end for

𝜴(𝑦𝑖)𝑗 ← 𝜔(𝑦𝑖)𝑛,𝑗

∑𝑁𝑒𝑛𝑠𝑛=1 𝜔(𝑦𝑖)𝑛,𝑗

�̄�(𝑦𝑖)𝑗 ← ∑𝑁𝑒𝑛𝑠𝑛=1 𝜴
(𝑦𝑖)
𝑗 𝑥(𝑦0)𝑛,𝑗

𝜎(𝑦𝑖)2𝑗 ← 𝜴(𝑦𝑖)𝑗 [𝑥(𝑦0)𝑛,𝑗 − �̄�(𝑦𝑖)𝑗 ]
2

𝑐𝑗 ←
𝑁𝑒𝑛𝑠(1−𝑙[𝑥𝑗 ,𝑦𝑖 ,𝑟])

𝑙[𝑥𝑗 ,𝑦𝑖 ,𝑟]�̃�

𝑟1,𝑗 ← √
𝜎(𝑦𝑖)2𝑗

1
𝑁𝑒𝑛𝑠−1

∑𝑁𝑒𝑛𝑠𝑛=1 [𝑥(𝑦𝑖−1)𝑘𝑛,𝑗 −�̄�(𝑦𝑖)𝑗 +𝑐𝑗(𝑥
(𝑦𝑖−1)
𝑛,𝑗 −�̄�(𝑦𝑖)𝑗 )]

2

𝑟2,𝑗 ← 𝑐𝑗 ∗ 𝑟1,𝑗
𝑥(𝑦𝑖)𝑛,𝑗 ← �̄�(𝑦𝑖)𝑗 + 𝛽 ∗ 𝑟1,𝑗 (𝑥(𝑦𝑖−1)𝑝,𝑗 − �̄�(𝑦𝑖)𝑗 ) + (1 − 𝛽) ∗ 𝑟2,𝑗 (𝑥(𝑦𝑖−1)𝑛,𝑗 − �̄�(𝑦𝑖)𝑗 )

end for
end for
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𝜖 ∼ 𝑁 (0, 0.1), and half of all state variables are observed with fixed locations, which
means 20 observations are assimilated in each experiment. In each test, the first 1000
cycles are a spin-up time. After this corresponding metrics are collected and calcu-
lated from 9000 cycles to verify the performance of LPF-GPR. LETKF [37] was used as
a benchmark to compare with the performance of LPF-GPR. In addition to localization,
a typical inflation method was applied in LETKF to prevent filter collapse during data
assimilation.

To make the experiments more challenging, we used non-linear observations gen-
erated from the truth using a non-linear H operator. The specific form of the non-linear
H is shown below, which is the default setting for all experiments.

𝒚 = 0.2 ∗ log(|𝒙|) − 0.01 ∗ 𝑒𝒙/10 + 1.5 ∗ 𝒙 − 2.5 ∗ √|𝒙| + 0.2 ∗ (𝒙/5)2 (4.13)

The root mean square error(RMSE) and ensemble spread are used to evaluate the
proposed method. The ensemble spread is defined as the square-root of the ensemble
variance averaged over all model states. The definitions of these two metrics are as
follows.

RMSE = √ 1
𝑁𝑦

𝑁𝑦

∑
𝑘=1

(𝑥truth,𝑘 − 𝑥𝑡𝑘)
2

(4.14)

Spread = √ 1
𝑁𝑦

𝑁𝑦

∑
𝑘=1

𝑁 ens

∑
𝑖=1

(𝑥𝑡𝑖,𝑘 − 𝑥𝑡𝑘)
2

(4.15)

4.3.3. Results
To evaluate the stability of LPF-GPR using a small number of particles, the first ex-
periment uses a scenario in which the default configuration was used. The current
posterior particles are the prior particles for the next cycle. We used LETKF as a
benchmark in the tests. Prior error statistics calculated from the domain averages of
RMSE and spread of all time steps, and all model states were collected during data
assimilation for both filters. Figure 4.1 shows the time series of the second model
state, which was unobserved and domain-averaged prior RMSE and spread over time.
The plot started at the beginning of the data assimilation, and the new filter took some
time to reach a stable status. The averaged RMSE of LETKF was much higher than
LPF-GPR, and its spread decreases rapidly. LETKF indeed suffers from filter collapse.
The non-linear operator leads to suboptimal results for LETKF, which is the reason for
the filter divergence. The prior statistics show that The LPF-GPR provides a stable re-
sult with satisfying accuracy using a small number of particles. The RMSE and spread
averaged over the particles for each cycle are 0.37 and 0.71, respectively. However,
forecast errors are higher than the observation errors, possibly caused by sampling
errors and non-linearity in observations. This experiment demonstrates that LPF-GPR
outperforms LETKF and can give stable results using a small number of particles.

Next, we explore the impact of parameters 𝛼1, 𝛼2 and 𝛽 in the new filter on the
performance of LPF-GPR when using different localization scales. As mentioned in the
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Figure 4.1: Trajectories of (top) the second model state which is unobserved using the LPF-GPR, ( middle)
the second model state using the LETKF and (bottom) RMSE and spread for both methods. In the first two
figures, the blue curve is the truth and the red curve is the estimation of the model state. In the third one,
the solid lines indicate the RMSE and the dash lines is the spread. The assimilation starts at time step 1,000.

last section, parameter 𝛽 comes from Eq.(4.4) and 𝛼 comes from in Eq.(4.8). The
localization procedure is of great importance because, with its use, the collapse of
particle filters is avoided successfully. The choice of the localization scale imposes a
significant impact on the performance of LPF-GPR, which can determine the number
of observations assimilated and the efficiency of data assimilation. Consequently, we
explore a part of the parameter space of these three parameters. As mentioned before,
the number of possible combinations of 𝛼1 and 𝛼2 is huge. But the search for 𝛼1 and
𝛼2 stops when the first pair is found. To search more efficiently, we make 𝛼1 and 𝛼2
have the same value.

Figure 4.2 compares prior mean RMSEs and spread from a series of experiments
when the proposed filter is applied for various combinations of these three parame-
ters. When the localization scale is increased to 5, LPF-GPR yields the lowest RMSE.
Nevertheless, the continuous increase in the localization scale does not achieve better
results, possibly because more observations are more likely to obtain a higher number
of degrees of freedom, impacting the calculation of weights. Results from experi-
ments applying different beta do not show significant changes, which means LPF-GPR
responds similarly when 𝛽 is changed. These experiments provide a guide for choosing
the proper localization scale, 𝛽 and 𝛼 with the current configuration. It also suggests
that the LPF-GPR exhibits more sensitivity to the localization scale than 𝛽 and 𝛼, which
is useful and practical for future applications.

Determining the number of particles used in a data assimilation system is problem-
atic for real applications in Earth science. The curse of dimensionality in particle filters
always requires more and more particles, but limited computing resources are the
bottleneck for using a large number of particles. The cost of using many particles in
large-scale models is prohibitive. For this practical reason, we explore the potential of
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Figure 4.2: Prior mean RMSE(a-e) and spread(f-j) as a function of two parameters 𝛼 and 𝛽 when using
localization scales.

the new filter when using as few as possible particles. Results from those experiments
are shown in Figure 4.3.

Figure 4.3: Prior mean RMSE and spread as a function of (left)assimilation interval and (right) number of
particles for experiments with different localization scales.

LPF-GPR achieves a satisfactory performance using a small number of particles,
which is a practical benefit for real applications. For LPF-GPR, ten particles can provide
stable results with relatively high accuracy. In general, more particles can help particle
filters overcome the curse of dimensionality and improve its accuracy. However, based
on results in Figure 4.3, using more particles does not improve the performance signifi-
cantly. There are two possible explanations for these results. First, the results indicate
that the localization procedure has prevented the filter collapse successfully for fewer
particles. In the meantime, the use of localization can break the consistency of Bayes
theorem in particle filters. The imbalance caused by localization stops the increase in
accuracy by using more particles. Another possible reason is that the Gaussian pro-
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cess regression can capture uncertainty in this highly non-linear case effectively. More
particles do not provide a more accurate approximation for the distribution of state
variables. Besides, LPF-GPR is less sensitive to the change of localization scales. In
Figure 4.3, it is clear that the optimal localization scale is five, and the filter performs
worst in the case with localization scale one. One of the main objectives of using
localization is to reduce the impact of sampling errors from particles. Thus, it is highly
likely that the increasing localization scale can bring more sampling errors. The results
in Figure 4.3 show that when using larger localization scales in experiments, the filter
performance decreases slightly. One possible reason for this is that the filter can deal
with errors that may happen in the process of data assimilation.

To assess the proposed filter performance further, several experiments were con-
ducted when observations were assimilated at different frequencies. A time step of
0.05 units in the Lorenz model represents six hours. Therefore, time interval 1, 2 3
and 5 mentioned in Figure 4.3 are 6, 12, 18 and 60 hours respectively. The number
of data assimilation cycles is set to the default value, which means model states are
updated less frequently when time interval of assimilation is increased.

Increasing update interval brings more nonlinearity to data assimilation because
of changes in model errors [21, 25]. In general, model errors are accumulated with
model propagation over time when assimilating observations at lower frequencies.
Consequently, it leads to worse estimations of model states.

Figure 4.3 shows that data assimilation with more intervals, achieves a better per-
formance. The nonlinearity is most likely the reason for this. The nonlinear observa-
tion operator leads to the non-Gaussian distribution of observation errors, and it brings
more non-Gaussianity to forecast errors in assimilation cycles than the purely linear
case. It is highly likely that the non-Gaussianity in data assimilation causes changes
in Figure 4.3.

To examine the potential impact brought by the nonlinearity in observations on prior
particles in data assimilation cycles, we applied the Kolmogorov-Smirnov(KS) test to
prior particles to determine whether a significant deviation from normality exists in
it. Particles of the first two states 𝑥1 and 𝑥2 were examined by the KS test in each
assimilation cycle over time. Figure 4.4 shows the percentage of cases in which the
prior particles fail the KS test at the 5% significance level for each experiment.

As illustrated in this figure, increasing the update interval can reduce the percent-
age of non-Gaussianity for both model states. It is possibly caused by the accumulation
of forecast errors in the model propagation over time. When we assimilate observa-
tions less frequently, forecast errors are close to the climatological errors, which follows
a Gaussian distribution approximately in the L96 model [24]. Lower assimilation fre-
quencies allow model errors to accumulate over time and increase the Gaussianity in
it. We can conclude that, from Figure 4.4, more Gaussianity in model errors can im-
prove the performance of LPF-GPR to some extent. But when the update interval of
the observation network is set to five, the corresponding metrics show that the filter
does not improve the accuracy of results. One possible explanation for this result is
that, although the distribution of model errors approximates the Gaussian with model
propagation, in the meantime, it increases the accumulation of model errors. In this
case, model errors have a more dominant and negative impact on the accuracy of
results than the benefits of the Gaussianity.
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Figure 4.4: Percentage of cycles for the first two states that fails the KS (Kolmogorov-Smirnov) test at the
5% significance level in experiments when using different assimilation intervals and localization scales.

The information provided by the RMSE and the spread of particles for the filter’s
probabilistic skill is limited. Therefore, we attempted to use rank histograms to investi-
gate the phenomenon observed in Figure 4.5. The rank histogram is a verification tool
to examine some qualities of particles. When plotting rank histograms, all particles
of a state are ranked in increasing order. If the truth of a model state falls in inter-
vals formed by ranking particles in ascending order with equal probability, it means
the truth is statistically indistinguishable from particles, and all particles are from the
same distribution [38]. It can be an indicator of the reliability of data assimilation.
Therefore, the flatness of rank histograms is a necessary condition but not insufficient
[39]. In Figure Figure 4.5, data used to plot rank histograms are from experiments
when localization scale five is used, and rank histograms are calculated for every eighth
model state using 20 particles using different update intervals.

As shown in Figure 4.5, when assimilating observations at every timestep, the
nonuniform rank histograms are observed more frequently in chosen state variables.
It suggests deficiencies in probabilistic analysis in this case. In cases with observa-
tion networks that measure states less often, rank histograms are relatively uniform,
which means that results produced in these experiments are reliable. From the re-
sults of rank histograms, we can still notice the influence of model errors in different
ways. The Gaussianity provided by model errors, which is good for the performance,
has a more significant role when observations are assimilated at proper frequencies.
Ranks histograms in the case with less Gaussianity (the first row in Figure 4.5 ), are
relatively nonuniform. It seemed that when model errors have an adverse impact on
the accuracy, rank histograms, in this case, do not show a strong nonuniformity.
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Figure 4.5: Rank histograms for state variable 1, 8, 15, 22, 29 and 33 calculated from experiments with 20
particles when using different assimilation intervals.

4.4. Conclusions
In this paper, we proposed a new local particle filter with Gaussian process regression
for highly nonlinear observation operators in a high-dimensional Lorenz model. The
analysis step of the proposed method was performed on each observation site, and all
particles were updated after observations were assimilated. Similar to the localization
strategy in Ensemble-type methods, local particle filters only used observations within
a localization scale. The influence of distant observations was removed by using a
localization function, and the use of localization in PFs avoids filter collapse successfully.
Another critical point of this research was to use Gaussian process regression surrogate
models to account for nonlinearity in a highly nonlinear observation operator. Because
of the properties of the GPR surrogates, uncertainty in observation operators can be
quantified, which can be used to calculate weights of particles. Besides, we found
an effective way to prevent filters from collapsing. Before applying the resampling
algorithm to obtain posterior particles, adjusting the values of weights by tuning the
effective number of particles can avoid weight degeneracy.

The localized PFs method with the GPR surrogate presented in this study may be
problematic for some specific geoscience applications. It is possible that the use of
localization can break the physical consistency in model space. The imbalance brought
by localization has been observed in both EnKF [40] and PFs [24]. Previous results
in Section 4.3 have shown that the imbalance exists when using different localiza-
tion scales. Therefore, tuning the localization radius is an effective way to improve
the performance of DA. But for some large-scale applications, tuning parameters is
impossible due to limited computational resources. For this reason, LPF-GPR shows
substantial benefits. From the results in the preceding section, although changes of
localization can influence LPF-GPR, it is not sensitive to larger localization scales, which
is a practical advantage when implementing LPF-GPR in real cases.

The uncertainty of observations becomes complex and unquantified because of
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the existing nonlinearity in observations. Constructing a surrogate model to solve
nonlinearity in data assimilation is feasible, and it provides a way to make uncertainty
in the nonlinear case approximate the Gaussian. Introducing GPR models can bring
more uncertainty from a different source, but this method has the ability to deal with
uncertainty in data assimilation. It should be noted that, although replacing nonlinear
observation operators with GPR surrogates can estimate its uncertainty well, training
and using GPR surrogates to calculate corresponding mean and standard deviation
takes more computing time.

LPF-GPR has been evaluated by a Lorenz model with 40 variables, and results
from experiments showed that, when using highly nonlinear observation operators,
the new proposed local PFs only needed 20 particles to avoid weights degeneracy,
but the benchmark LETKF with inflation experienced filter collapsed. In this nonlinear
case, LPF-GPR has considerable advantages over LETKF, and using a small number
of particles is another practical benefit for LPF-GPR. These promising results give a
possibility to explore its potential in high-dimensional geophysical applications with
highly nonlinear measurement operators. A future topic will focus on investigating its
potential benefits and identifying relative weaknesses of LPF-GPR in data assimilation
within a high-dimensional geophysical systems.
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5
Data assimilation of SMAP soil

moisture into the
PCR-GLOBWB hydrological
model to improve discharge
estimates via A Novel Local

Particle Filter

Assimilating surface soil moisture data into hydrological models has been shown
to improve the accuracy of hydrological model estimations and predictions. For
data assimilation applications in hydrology, the ensemble Kalm filter(EnKF) is
the most commonly used data assimilation (DA) method. Particle filters are a
type of non-Gaussian filter that does not need the normality assumption that the
EnKF needs. Adding localization overcomes the curse of dimensionality, which
is a problem in normal particle filters. In the present study, we investigated our
adaption of the local particle filter based on the Gamma test theory(LPF-GT) to
improve discharge estimates by assimilating SMAP satellite soil moisture into
the PCR-GLOBWB hydrological model. The study area is the Rhine river basin,
driven by forcing data from April 2015 to December 2016. The improved dis-
charge estimates are obtained by using DA to adjust the surface soil moisture
in the model. The influence of DA to discharge is not direct but works through
the dynamics of the hydrological model. To explore the potential of LPF-GT, sev-
eral sensitivity experiments were conducted to figure out the impact of localiza-

Wang, Z., Hut, R., Tangdamrongsub, N., &Van de Giesen, N. (2021) Data assimilation of SMAP soil moisture
into the PCR-GLOBWB hydrological model to improve discharge estimates via A Novel Local Particle Filter.
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tion scales and the number of particles on DA performance. The DA estimates
were validated against in situ discharge measurements from gauge stations.
To demonstrate the benefits of LPF-GT, EnKF was used as a benchmark in this
research. Increases in Nash-Sutcliffe coefficients (0.05%– 38%) and decreases
in normalized RMSE (0.02%–3.4%) validated the capability of LPF-GT. Results
showed that the impact of localization scale was substantial. The optimal value
of the localization scale was obtained by tuning. LPF-GT achieved a satisfac-
tory performance when only using a few particles, even as few as five particles.
The sample errors posed an adverse impact on the open-loop results. Further
improvement could be achieved by considering reducing sample errors caused
by a small number of particles.

5.1. Introduction
Data assimilation is a collection of methods that aim to find the optimal state of a
system given both knowledge of the system (a model) as well as observations related
to the state. In hydrology, a typical application for data assimilation is to assimilate
satellite soil moisture observations into model predictions to enhance hydrological state
estimation and thus improve hydrological predictions [1–4]. The currently most com-
monly used method of data assimilation in hydrology is the Ensemble Kalman Filter
(EnKF), a method that heavily relies on the assumption that most errors are Gaus-
sian in nature. Recently, a variant of the Particle Filter [5, 6], the Local Particle Filter
with Gamma Test Theory (LPF-GT) with was introduced as a novel method for doing
Data Assimilation with the potential to be useful for high dimensional models used in
hydrology [7]. In this article we will test LPF-GT for the first time on a distributed
hydrological model and compare its performance against an EnKF.

Soil moisture plays a vital role in hydrological processes, as it controls the exchange
of water fluxes between the land surface and the atmosphere [3, 8–10]. Hydrological
models can be used to simulate various water storage and flux components with rea-
sonable accuracy. However, achieving accurate soil moisture and discharge estimates
are challenging due to the unavoidable simplified modeling of complex hydrological
processes and uncertainty in the model’s parameters and forcing data [2, 11].

Satellite observations can provide information on large scales at given time in-
tervals. There are varied sources of observed soil moisture retrieved from different
satellites that are used for data assimilation applications, such as the Soil Moisture
and Ocean Salinity mission (SMOS) [12], NASA’s Soil Moisture Active Passive (SMAP)
[13], the Advanced Microwave Scanning Radiometer, AMSR-E [14], and the Advanced
Scatterometer (ASCAT) [15]. Their main advantage over in-situ soil moisture measure-
ments is that they cover complete areas while in situ observations are relatively sparse.
Data assimilation can be used to combine various types of satellite observations at dif-
ferent temporal and spatial resolutions with model estimates to improve the water
storage and flux simulations [10, 16–18]. Previous studies applied the assimilation of
soil moisture data to improve discharge estimates [1–4, 19, 20].

The ensemble Kalman filter(EnKF) has been used often to assimilate soil moisture
observations into hydrological models [21–23]. EnKF is a Monte Carlo method, using
a sufficiently large ensemble of model states to approximate the posterior distribution,
which is assumed to be Gaussian [24]. The time evolution of mean and covariance is
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based on the ensemble, and the mean of the ensemble represents the best estimate of
the true state of the system. However, the computational cost of EnKF is exceptionally
high in high dimensional systems, limiting its usage in complex applications [25]. A
small ensemble size is commonly used to reduce the computational effort. However,
the limited ensemble size introduces errors in the estimation of the uncertainty of the
states by having too few samples (ensemble members) and leads to the rank problem
[25], which happens when the number of model states and/or observations is much
larger than the ensemble size.

Similar to EnKF, particle filters also use random samples of the state of the model
(here called particles) to approximate the uncertainty in the state. Since with particle
filters the distribution does not have to be Gaussian, particle filters can handle non-
Gaussianity in systems [26], which is an advantage over the EnKF. However, to prevent
particle collapse, ie. all particles condensing into the same state, a large number of
particles is required, and this increases exponentially with the number of dimensions
of considered state variables and observations. This problem is known as the curse of
dimensionality [27–29]. Previous studies have been devoted to solving this issue via
localization [30–33]. In this study, we focus on the local particle filters with the Gamma
test theory (LPF-GT) [7], proposed by us, and apply this method to assimilate soil
moisture data into the state of a hydrological model to improve discharge estimates.
LPF-GT has several distinguishable benefits compared to ensemble-type algorithms.
First, obtaining the inverse of a large matrix is not necessary because each model
state is updated independently. Moreover, localization used in LPF-GT overcomes the
curse of dimensionality, leading to an additional benefit: it can be implemented in
parallel for higher computing efficiency. LPF-GT does not need a large number of
particles due to the use of localization. This method massively saves on the amount
of computing resources for a DA application in large systems. Finally, the Gamma test
theory accounts for the uncertainty brought by data assimilation itself and serves to
avoid filter collapse.

In the present research, we aim to test if LPF-GT is a useful data assimilation
method in hydrology. We do this by assimilating SMAP soil moisture products with a
9 km resolution into the PCR-GLOWBW 2.0 hydrological model [34] and evaluate the
performance of data assimilation by comparing the models estimate of river discharge
to observations. Considering the advantages of particle filters over EnKF, and that
applications of particle filters in hydrology are rare, it is necessary to attempt to apply
particle filters with localization as the data assimilation method in this study. A series
of sensitivity experiments are conducted to assess the effects of tunable parameters in
LPF-GT, including different localization scales and numbers of particles. Our case study
area is the Rhine river basin, where in situ discharge data are used for evaluation. The
typical EnKF is used as a benchmark.

This paper is structured as follows. Section 5.2 describes the study area and related
forcing and validation data sets used in data assimilation. Descriptions of the PCR-
GLOBWB hydrological model, EnKF, and local particle filters are presented in Section
3.2. Settings for numerical experiments are included in this section. Next, we analyze
results from data assimilation in Section 5.4. Finally, conclusions and corresponding
insights for future studies are given in Section 5.5.
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5.2. Study area and data sets
5.2.1. Study area
The Rhine basin covers 185,000 km2 and runs over 1320 km from the Alps to the North
Sea [35]. The Rhine and its tributaries flow through nine countries, and the largest
fraction of the basin is located in Germany. Along its course, the Rhine merges with
several major tributaries like the Aare, Neckar, Main, and Moselle. The streamflow at
Basel, which belongs to the Rhine’s upper part, is dominated by snowmelt and rainfall-
runoff from the Alps in summer. Nevertheless, during winter, the stream peaks in the
lower parts of the Rhine at Lobith, where it enters the Netherlands, is dominated by
rainfall [36, 37]. Across the entire Rhine basin, the mean annual precipitation runs
from about 500 mm (Rhine valley) to 2000 mm (Alpine region), and at Lobith, the
mean annual discharge is roughly 2200 m3/s. Figure 5.1 depicts the Rhine basin.

Figure 5.1: Map of the Rhine river basin and water network. Red points indicate locations of river gauge
stations used in this paper.

5.2.2. SMAP soil moisture
In this study, we used the enhanced level 3 (version 4) soil moisture data product
(SPL3SMP_E) retrieved from the NASA Soil Moisture Active Passive (SMAP) radiometer
which is distributed on the 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid
2.0) in a global cylindrical projection. The NASA Soil Moisture Active Passive (SMAP)
satellite mission was launched on January 31, 2015. It was designed to provide a global
high-resolution mapping of soil moisture using an L-band microwave apparatus, which
was expected to extend our knowledge of the processes that link the water, energy,
and carbon cycles. All data are from the National Snow and Ice Data Center Dis-
tributed Active Archive Center (NSIDC DAAC, https://nsidc.org/data/smap).
Descending SMAP data with retrieval quality flag values of 0 and 8 were used in this
study.

https://nsidc.org/data/smap
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5.2.3. Forcing data
The forcing data needed by the PCR-GLOWB model are air temperature, precipitation,
and reference evaporation (Eref) [34, 40]. Precipitation and air temperature data from
2000 to 2016 were obtained from the European Climate Assessment & Data set and
E-OBS gridded dataset (ENSEMBLES project) [38]. Daily Eref data were derived from
air temperature data via the Hamon reference evaporation equation [39].

5.2.4. Discharge data
The discharge estimates from the model are validated using in situ observations for
nine gauges in the Rhine river basin. Daily time series of discharge measurements
were acquired from the European Terrestrial Network for River Discharge at the Global
Runoff Data Centre (GRDC) (http://www.bafg.de/GRDC/). Stations were chosen
to represent a large spread in study area. All gauges stations used in this study are
shown in Fig. 5.1, and more detailed information on these stations can be found in
Table 5.1.

Table 5.1: Gauge stations’ information
No. Gauge Longitude Latitude River
G0 DUESSELDORF 6.770183 51.225547 RHINE RIVER
G1 KOELN 6.963293 50.936961 RHINE RIVER
G2 ANDERNACH 7.39205 50.443386 RHINE RIVER
G3 SCHWAIBACH 8.03256 48.391719 KINZIG
G4 WORMS 8.376019 49.64112 RHINE RIVER
G5 KIRCHENTELLINSFURT 9.150636 48.531054 NECKAR
G6 GUTACH / ELZ 7.990062 48.119069 ELZ
G7 GUTACH / GUTACH 8.212933 48.24 GUTACH
G8 LOBITH 6.11 51.84 RHINE RIVER

5.3. Methodology
The data assimilation algorithms used in this chapter were introduced in Section 2.2
and Chapter 3, respectively.

5.3.1. PCR-GLOBWB hydrological model
PCR-GLOBWB, a global grid-based distributed hydrology model [34, 40], simulates wa-
ter exchanges between water stocks and fluxes. The implementation of PCR-GLOBWB
is based in the PCRaster-Python environment. The spatial resolution of the model is
five arcmins (∼10 km × 10 km at the equator) and time steps for all dynamic processes
in PCR-GLOBWB are one day. The PCR-GLOBWB model has 3588 gird points in total
in the Rhine river basin. The schematic structure of the PCR-GLOBWB model includes
five hydrological modules: meteorological forcing, land surface, groundwater, surface
water routing, and irrigation and human water use. For each grid cell, PCR-GLOBWB
simulates moisture changes in soil layers and water exchange among the soil, the at-
mosphere, and the groundwater. The generated run-off includes baseflow, surface
run-off, interflow, and snowmelt.

http://www.bafg.de/GRDC/
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Meteorological forcing of PCR-GLOBWB needs time series of precipitation, temper-
ature, and reference evaporation, which can be calculated based on daily mean tem-
perature using the Hamon [39]’s equation or FAO guidelines if other relevant factors
are available. There are four types of land cover: paddy irrigated crops, non-paddy
irrigated crops, short natural vegetation, and long natural vegetation. Soil and veg-
etation conditions can be specified for each land cover type. Human water use is
included within the hydrological model. Water abstraction and consumptive water use
and return flow for irrigation, livestock, industry, and households are considered.

It should be noted that, for this application, PCR-GLOBWB can be set up to without
calibration for any given place or globally. All parameters in the model were derived
from several geological sources on a global scale. Therefore, each cell grid is associ-
ated with multiple and particular parameterizations. The standard parameterizations
in PCR-GLOBWB carry land cover, soils, topography, and others, influencing opera-
tion schemes for run-off infiltration partitioning, interflow, groundwater recharge, and
capillary rise. More detailed information can be found in Sutanudjaja et al. [34].

5.3.2. Data assimilation setup
Sources of uncertainty in the PCR-GLOBWB model include the meteorological forcing
data and model parameter errors. Parameters associated with the top surface soil
moisture were perturbed with additive white noise with a standard deviation of 10%
of the nominal value. The forcing data error was assumed spatially uncorrelated. The
standard deviations of precipitation, air temperature, and reference evaporation were
10%, 15%, 15% of the nominal values, respectively. Propagation of all forcing data
and soil moisture in the model was generated by multiplicative Gaussian noise. The
observation error is assumed to be 0.04𝑚3/𝑚3 based on previous studies [20, 41, 42].

It should be noted that, in the assimilation, after soil moisture was updated by as-
similating SMAP observations, each model implementation ran continuously to update
underground water and routing submodels in the PCR-GLOBWB model. Consequently,
we obtained an ensemble of discharges. The updated discharge estimates were ob-
tained by averaging the discharge ensemble. This approach has been applied in several
studies [3, 10]. This procedure was also followed for the estimates of discharge given
by the open loop (ie. no data assimilation) runs. For LPF-GT settings, the 𝑁𝑒𝑓𝑓 defined
in Equation 14 was set to 0.6 as an optimal value to stabilize the DA process. Similarly,
the 𝜂 parameter in Equation 3.5 was chosen to 0.45.

In this paper, we used the ensemble open loop runs, and the deterministic run as
benchmarks to evaluate DA performance. In open loop runs, the top layer soil moisture
and forcing data were perturbed, and the mean of the ensemble was used as a solution.
The PCR-GLOBWB model was spun up from 1st January 2000 to 31st March 2015.
The assimilation began from 31st March 2015 to 31st December 2016 with respect
to available SMAP data and validation data. All experiments were conducted on the
DAS-5 supercomputer [43].

5.3.3. Evaluation metrics
Different metrics were used to evaluate and compare the performance of various data
assimilation experiments. The accuracy of daily discharge estimates is evaluated using
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the Nash-Sutcliffe efficiency (NSE) [44], which was calculated following Eq.(5.1):

𝑁𝑆𝐸 = 1 −
∑𝑁𝑘=1 (𝑄obs(𝑘) − 𝑄sim(𝑘))

2

∑𝑁𝑘=1 (𝑄obs(𝑘) − 𝑄obs)
2 (5.1)

Where 𝑄obs, 𝑄sim, 𝑄obs are the observed discharge, simulated discharge, and the mean
of the observed discharge, respectively. 𝑁 is the length of the time series and 𝑘
indicates each time step. 𝑁𝑆𝐸 ranges from minus infinity to 1, and when the value of
𝑁𝑆𝐸 is close to 1, it indicates a good match of the estimated discharge to the observed
discharge.

The normalized root mean squared error (NRMSE) is also used to quantify the
improvement. It was calculated using Eq.(5.2).

𝑁𝑅𝑀𝑆𝐸 =
√ 1
𝑁 ∑

𝑁
𝑘=1 (𝑄DA(𝑘) − 𝑄obs(𝑘))

2

𝑄max
obs − 𝑄min

obs
(5.2)

where 𝑄DA is discharge estimated after by data assimilation. 𝑄max
obs and 𝑄min

obs are the
maximum and minimum values of observed discharge, respectively. Additionally, the
Pearson correlation coefficient (r) is used to measure the linear relationship between
the simulations and observations. All evaluation metrics were assessed for the deter-
ministic simulation, the open loop simulation, and the mean of particles provided by
data assimilation.

5.4. Results and discussion

Figure 5.2: Simulated and observed discharge estimates at Andernach gauge station (G2) for the period
April 2015-December 2016. It shows a comparison of the time series of discharge estimates obtained from
measurements and four simulated experiments, including the deterministic run, the open loop run, and
two DA runs: LPF-GT and EnKF. In the legend, 𝑁𝑆𝐸, 𝑁𝑅𝑀𝑆𝐸, and 𝑟 of these experiments were shown
separately. Both DA runs used five particles (or ensemble members in EnKF). For LPF-GT settings, the
localization scale was 0.12.

Figure 5.2 displayed the discharge time series at the Andernach gauge station(G2)
for the deterministic run, one open loop run, and two DA experiments using LPF-GT
and EnKF, respectively. In both the open loop and the DA runs, only five particles(or
five ensemble members) were applied. Although the hydrological model used in the
present study did not need a calibration, the deterministic run still had a high perfor-
mance, leaving little room for any data assimilation to improve the discharge estimates.
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According to the values of 𝑁𝑅𝑀𝑆𝐸, 𝑁𝑆𝐸, and 𝑟 from the open loop run, it indicated
that the open run reduced estimation accuracy. It is plausibly because of the sample
errors introduced by only using a few particles. According to results obtained from
two DA experiments shown in Figure 5.2, the 𝑁𝑆𝐸 increments and 𝑁𝑅𝑀𝑆𝐸 reductions
from DA runs were higher with respect to the deterministic run. The correlation val-
ues 𝑟 was also increased. Thus, both DA algorithms improved discharge accuracy only
using five particles. The 𝑁𝑆𝐸, 𝑅𝑀𝑆𝐸, and 𝑟 from LPF-GT were 0.6433, 0.1412 and
0.8316, respectively. Both 𝑁𝑆𝐸 and 𝑟 were higher than EnKF’s, and 𝑁𝑅𝑀𝑆𝐸 had a
lower value in comparison, indicating that LPF-GT outperformed EnKF. All values of
𝑁𝑆𝐸, 𝑁𝑅𝑀𝑆𝐸, and 𝑟 from deterministic and open loop runs for all validation stations
were provided in Appendix A.

Next, to further investigate the impact of the number of particles on DA perfor-
mance, we conducted DA experiments with 5, 10, 15, and 20 particles. As the evalu-
ation metrics’ judgment is not straightforward to show the improvement or degener-
ation, we calculated the percentage difference of 𝑁𝑅𝑀𝑆𝐸,𝑁𝑆𝐸 and 𝑟 in the following
experiments. Given space constraints, we only presented results from G2, G5 and G8
stations, and the remaining results were shown in the Appendix A.

Figure 5.3: Improvement percentage in terms of Nash-Sutcliffe index (𝑁𝑆𝐸) in the left column, normalized
root mean square error (𝑁𝑅𝑀𝑆𝐸) in the middle, and Pearson correlation coefficient(𝑟) in the right column
from DA experiments with different numbers of particles or ensemble sizes using LPF-GT(upper panel) and
EnKF(lower panel) with respect to the deterministic run at the G2, G5, and G8 gauge stations.

We set the number of particles to 5, 10, 15, and 20 in both LPF-GT and EnKF DA
cases to examine the impact of sample errors, and results were shown in Figure 5.3.
The meaning of the ensemble size in EnKF is equivalent to the number of particles in
LPF-GT. Thus, we also used the number of particles in EnKF for brevity. Compared with
results in the deterministic run, all 𝑁𝑆𝐸 values of DA runs increased, and the improved
percentage ranged from 0.05% to 38%. In all cases, 𝑁𝑅𝑀𝑆𝐸 values decreased by
0.01% to 3%, except for one case using 10 particles at the G8 site. It was obvious
that data assimilation had a positive role in improving discharge estimates.

There was no strong tendency among results of DA plotted in Figure 5.3 when
using different numbers of particles. Theoretically, using more particles in DA should
obtain better performance. But in Figure 5.3, the evaluation scores did not change with
the increase of the number of particles. For example, at the G5 station, for LPF-GT,
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the NSE and NRMSE improvement went up when increasing the number of particles
from 10 to 20. But the case with five particles achieved a better performance than
using 10 or 15 particles. In terms of 𝑟, using five particles had the most significant
improvement. We believe that there are two possible reasons for this phenomenon.
Using a small number of particles increases sample errors. The reduction of sample
errors by increasing the number of particles to 20 may not be not significant. Besides,
the use of localization in LPF-GT possibly caused imbalance issues. Each model state
variable was updated independently in LPF-GT, which broke the consistency in all the
model states. In EnKF, the ensemble of all model states was updated as a whole.
Thus, imbalance problems in LPF-GT did not exist in EnKF. But we still found that,
at the G5 station, the case with 15 particles gave a larger improvement in 𝑁𝑆𝐸 and
𝑁𝑅𝑀𝑆𝐸 than using 20 particles. Similarly, the 𝑁𝑆𝐸 improvement of five particles was
larger than ten particles at the G2 station.

Figure 5.4: Improvement percentage in terms of Nash-Sutcliffe index (𝑁𝑆𝐸) and normalized root mean
square error (𝑁𝑅𝑀𝑆𝐸) from the open loop run without data assimilation with respect to results of the
deterministic run at the G2, G5, and G8 gauge stations.

Figure 5.4 shows the increase or decline percentages of 𝑁𝑆𝐸 and 𝑁𝑅𝑀𝑆𝐸 for
the open loop cases with various settings of the number of particles. The negative
values in Figure 5.4 referred to degeneration instead of improvement. It was clear that
almost all values of 𝑁𝑆𝐸 and 𝑁𝑅𝑀𝑆𝐸 from open loop runs were smaller than values
in the deterministic experiment, as they decreased from 0.017% to around 5%. It
suggested that the open loop runs with different numbers of particles performed more
poorly than the results obtained from the deterministic run. With the growth of the
number of particles, the results of the open loop run should have an improvement.
Unfortunately, we did not observe the expected results. Considering we only increased
particles from 5 to 20, the impact of sample errors brought by a few particles is highly
likely to be large. In this case, we believe sample errors are the dominant source of
uncertainty, leading to the deterioration of open loop runs consequently.

DA gave a considerably larger improvement than performance in the open loop,
which was not shown directly. In the following experiments, we only collected results
from DA and deterministic runs for comparisons. In our view, it was unnecessary to
compare DA results with open loop runs because of the poor quality of the open loop
runs.

A sensitivity analysis was carried out to determine the impact of localization scales
on data assimilation performance. As we discussed before, sample errors had an
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Figure 5.5: Boxplots of improvement percentage in terms of Nash-Sutcliffe index (𝑁𝑆𝐸) in the upper row,
normalized root mean square error (𝑁𝑅𝑀𝑆𝐸) in the middle row, and Pearson correlation coefficient (𝑟) in
the lower row from LPF-GT and EnKF experiments at the G2 (first column), G5 (middle column), and G8
(right column) gauge stations. In the cases with LPF-GT, five localization scales ranged from 0.08 to 0.16
were used. Results given by EnKF were demonstrated separately at the right side of each LPF-GT run. Each
boxplot’s results were from one experiment with ten repeating times, and the red point in each boxplot
indicates the mean of ten repeating experiments.
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impact on LPF-GT, which was not negligible. To avoid the influence of random errors,
we repeated each case for LPF-GT with a specific localization scale ten times. Results
produced by data assimilation experiments from the three gauge stations are shown
in Figure 5.5.

At the G2 station, according to the boxplots of 𝑁𝑆𝐸, 𝑟, and 𝑁𝑅𝑀𝑆𝐸, the impact of
sample errors on DA estimates was the smallest, in comparison to results at the other
two stations. There was a significant improvement when the localization scale was
increased to 0.12. Increasing the value of the localization scale means assimilating
more observations in DA. It seemed that when localization scales were set to larger
than 0.1, the change of 𝑁𝑆𝐸 was small, which indicated that the effect of localization
is minimal. The same pattern could be observed in 𝑟 and 𝑁𝑅𝑀𝑆𝐸. In this case,
assimilation with a bigger localization radius leads to a more significant improvement.

Unlike the case in the G2 station, the improvement percentage at the G5 station
had a different change pattern with the growth of localization scales. The improvement
for 𝑁𝑆𝐸, 𝑟, and 𝑁𝑅𝑀𝑆𝐸 reached a plateau when the localization scale was larger than
0.12. Thus, the use of a relatively large localization scale produced better estimates
at the G2 station. But in the case with the localization scale of 0.08, it was apparent
that discharge estimates did not benefit from LPF-GT, which probably was caused by
insufficient observations within the localization scale. Increasing the localization scale
at the G8 station had a negative impact on DA performance. Using the localization
scale equal to or bigger than 0.14, there was no noticeable improvement in either 𝑁𝑆𝐸
or 𝑁𝑅𝑀𝑆𝐸. But the 𝑟 value improved slightly. Unlike the situations at in the last two
gauge stations, smaller localization scales brought more benefits.

It should be noted that including more observations via increasing localization ra-
dius in a DA method does not always bring an improvement. Tuning localization scales
to find an optimal value is crucial and inevitable in this method.

In the next assessment, to compare the performance of LPF-GT with EnKF, esti-
mates from both methods of discharge were compared to in situ measurements from
gauge stations. In addition, we investigated the impact of observation uncertainty on
both DA algorithms’ performance. The default standard deviation of observations was
0.04, and all DA experiments were also carried out when setting the standard devia-
tion of observations to 0.05 and 0.06. All related results are shown in Figure 5.6. To
avoid the impact of sample errors, all tests were repeated ten times. The results with
the best evaluation scores were chosen. Only the 𝑁𝑅𝑀𝑆𝐸 improvement was given,
and the results related to 𝑁𝑆𝐸 and 𝑟 were provided in the Appendix A.

Figure 5.6 showed that LPF-GT had a bigger improvement and was more stable
than EnKF when observations with more uncertainty were assimilated, except for the
cases at the G3 station. It was clear that the fluctuation of LPF-GT’s 𝑁𝑅𝑀𝑆𝐸 improve-
ment was small. For EnKF, its performance was unstable, and it did not bring any
improvement at the G4 and G5 stations based on three evaluation metrics. In gen-
eral, using observations with a larger standard deviation deteriorated EnKF’s estimates.
But at the G5 station, in the case with the standard deviation of 0.06, LPF-GT gave the
most significant improvement. It was likely that the assumption of observation uncer-
tainty at these places was not correct. The true value of the observations’ standard
deviation was closer to 0.06. Only at the G3 station, EnKF had a better performance
than LPF-GT. For the others, LPF-GT outperformed EnKF.



5

68
5. Data assimilation of SMAP soil moisture into the PCR-GLOBWB hydrological

model to improve discharge estimates via A Novel Local Particle Filter

Figure 5.6: Improvement percentage in terms of normalized root mean square error (𝑁𝑅𝑀𝑆𝐸) from DA
experiments with different observations’ standard deviations using LPF-GT and EnKF with respect to the
deterministic run at all validation gauge stations.
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Theoretically, increasing the uncertainty of observations is equivalent to reducing
observations’ accuracy, which can decrease DA estimates’ accuracy. The impact of
observations’ uncertainty on EnKF was negative. But, LPF-GT performed more stably
with reasonable accuracy, and it was more capable of obtaining useful information from
observations. The true uncertainty in observations is unknown, and the assumption
about it is often flawed. According to the results in Figure 5.6, further investigation
into observation uncertainty is needed.

5.5. Conclusions
This study aimed to test if the LPF-GT data assimilation method is usefull for hydrol-
ogy by assimilating SMAP soil moisture observations into the large-scale PCR-GLOWB
hydrological model and compare discharge time series estimates in the Rhine river
basin. Particle filters are under-explored as a data assimilation method in hydrological
modelling. To show the benefits of LPF-GT, we used EnKF as a benchmark to compare
its performance with LPF-GT’s. In situ discharge observations from stream gauge sta-
tions were used to evaluate improvements brought by data assimilation. This study
confirmed that simulated discharge estimates could be improved with the soil moisture
assimilation, which had been proven by previous studies. The successful application
of soil moisture assimilation scheme via LPF-GT in a high dimensional model proved
that this DA algorithm was stable. This research demonstrates that LPF-GT avoided
the curse of dimensionality in a real application.

Using five particles in LPF-GT to obtain a satisfactory performance is one benefit
we demonstrated in this paper. The low number of particles used in DA can save a lot
of computing time. Due to localization applied in LPF-GT, the update for each model
state is independent. Thus, LPF-GT can be implemented in parallel, which is one of the
advantages of using localization. For models with a larger scale, ie. with more model
states, LPF-GT has the ability to improve computing efficiency further. In general, a DA
algorithm using more particles or more ensemble members can yield estimates with
higher accuracy. On the contrary, few particles bring more sample errors to the DA
system. Results from the open loop run show poor PCR-GLOBWB discharge estimates,
probably caused by sample errors. Besides, sample errors could make DA unstable
based on the results shown in Figure 5.5. Reducing sample errors definitely leads to
further improvement of DA.

Tuning localization scales to find an optimal value is inevitable. Results indicated
that the optimal localization radius is not a global constant. It varies in different cases.
The tuning process takes time, which is the disadvantage brought by localization.
In addition, localization has imbalance issues, probably resulting in limiting DA im-
provement. Developing adaptive localization methods is a possible way to solve the
imbalance issues. We also found that LPF-GT performed stably when changing the
observations’ standard deviation. LPF-GT has the ability to use more useful informa-
tion from observations. The real uncertainty of observations is generally unknown. In
this case, LPF-GT is a better choice with stable performance.

In conclusion, the successful assimilation of SMAP soil moisture retrievals to im-
prove model estimates of discharge over a sizeable spatial domain via LPF-GT verified
the possibility of applying particle filters in hydrological data assimilation at large scales.
LPF-GT can be used in other types of basins to examine how discharge estimates can



5

70 References

benefit from particle filters with localization. LPF-GT should also be adapeted to assim-
ilate other observations into hydrological models to improve other model components.
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6
Conclusions

“We are all in the gutter, but some of us are looking at the stars.”

Oscar Wilde, Lady Windermere’s Fan

This dissertation has introduced new additions to particle filters in data assimi-
lation. These additions intend to improve our accurate estimation of uncertainty
and to come up with new solutions to problems introduced by nonlinearity in the
DA system. To overcome the curse of dimensionality of particle filters, two local-
ization methods were examined separately. To account for uncertainty brought
by data assimilation, the Gamma test theory was applied (LPF-GT). To cope
with nonlinearity introduced by nonlinear observation operators, Gaussian pro-
cess regression (LPF-GPR) was used. To explore the possibility of LPF-GT, it
has been evaluated in a real hydrological application to improve the accuracy
of discharge estimates. With all results presented and discussed in the previ-
ous chapters, this dissertation’s primary objective mentioned in Chapter 1 has
been accomplished. The main conclusions and insights as well as opportunities
for further research are summarized in this chapter.
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6.1. Main original contributions
6.1.1. On introduced data assimilation algorithms
Two local particle filters have been proposed and evaluated using the classical toy
model - Lorenz96 in this dissertation, which are the main scientific contributions of
this thesis. Both local particle filters achieve a better performance than the bench-
mark LETKF when using nonlinear observation operators in a series of experiments.
It is not surprising to find that particle filters outperform Ensemble-type filters un-
der nonlinear conditions. The main reason for it is that the nonlinearity introduced
by observation operators breaks the linear and Gaussian assumptions, which are the
theoretical foundation of LETKF. Consequently, LETKF yields sub-optimal and poor es-
timations. Particle filters are more capable of extracting information from nonlinear
cases mainly because they do not rely on linear and Gaussian assumptions.

On LPF-GT algorithm
The Local Particle Filter with Gamma Test Theory (LPF-GT) is introduced in chapter 3,
which is based on Wang et al. [1]. In LPF-GT, two related strategies are applied to
avoid filter collapse and to achieve acceptable results.

1. State-domain localization is used. The update for each model state relies on an
independent analysis, and only nearby observations within the localization scale
are assimilated.

2. The addition of the Gamma Test Theory (LPF-GT) addresses the problem of
underestimation of the uncertainty of the state by explicitly considering the added
uncertainty of the data assimilation step, thus preventing filter collapse when
using a low number of particles.

As discussed in Chapter 3, the Gamma test theory is a viable tool to identify the
potential source of uncertainty brought by data assimilation, thereby improving
data assimilation performance. It should be noted that data assimilation up-
dates state variables based on uncertainty information of observations, but it
can bring extra uncertainty into the system. Besides, quantifying uncertainty in
nonlinear observations enables us to understand observations better and allows
us to extract more useful information from them.

On LPF-GPR algorithm
Similar to LPF-GT, LPF-GPR introduces two more approaches to overcome the curse of
dimensionality and to obtain satisfactory performance.

1. Localization is also applied in LPF-GPR. Nevertheless, unlike LPF-GT, the specific
localization method used is called sequential-observation localization. All obser-
vations are assimilated one by one, and one observation only has an influence
on the model states within localization radius. The location of each observation
is the center point when choosing model states based on localization radius.

2. Replacing the observation operator with surrogate models based on Gaussian
Process Regression (LPF-GPR) allows accounting for nonlinearity in the trans-
formation from model state to observations, a frequently encountered issue in
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geoscientific observations. As shown in Chapter 4, the alternates of observation
operators provide us a way to deal with nonlinearity in data assimilation from a
different angle.

6.1.2. On satellite soil moisture data assimilation
Soil moisture is a crucial hydrological component to many fields such as agricultural
water management, flood prediction, and land-atmosphere modeling. But simulating
soil moisture, discharge, and other water fluxes accurately remains a challenge. In
previous studies, assimilation of satellite soil moisture to improve discharge estimates
has been confirmed via the popular DA algorithm: Ensemble Kalman Filter (EnKF).
New proposed local particle filters(LPF-GT) in Chapter 3 have been applied to facilitate
the assimilation of SMAP satellite soil moisture products in chapter 5 of this disserta-
tion. DA applications in hydrology using particle filters are rare in comparison to other
assimilation studies. The potential of recently developed LPF-GT was explored for the
first time in a hydrological application for discharge estimation.

In this thesis, using only five particles in DA runs, the newly introduced methods
could achieve satisfactory performance. The success of applying LPF-GT proved the
capacity and the stability of this algorithm. A series of sensitivity experiments sug-
gested that some factors could have an adverse impact on LPF-GT’s performance.
The first was the sampling error introduced by a few particles. The benefits of using a
small number of particles are immediately apparent because less compute resources
are needed. But the bias caused by five particles was inevitable. The collective im-
pact of sampling error and imbalance resulting from localization is the main reason
for the phenomenon, in which the results did not become better with the increase
in the number of particles. Besides, there existed an optimal localization scale for a
specific case. Tuning this parameter for better results is necessary. All these findings
are instructive and informative for further DA applications with satellite data. Lastly,
LPF-GT performs stably when increasing the uncertainty of observations.

6.2. Future research
6.2.1. Adaptive localization methods
Localization has been proven an effective solution to the curse of dimensionality of
particle filters in high dimensional systems. However, finding an appropriate local-
ization scale, which provides the best data assimilation estimates, is challenging. In
this thesis, proper localization scales were found by trial and error, and we have to
admit that it was time-consuming. After setting several localization scales within a
specific range in experiments, the best result indicates the suitable localization scale.
It should be noted that the most proper localization does not exist because we found
that experiments with different settings for localization scales could have a similar
performance.

Thus, it is absolutely essential to develop adaptive localization methods. In recent
years, for the Ensemble-type filters, several researchers have attempted to find factors
influencing the optimal localization radius [2, 3], and some adaptive localization meth-
ods have been proposed [4–7]. All these methods have a certain ability to specify the
localization radius adaptively, but they still need tuning. Although these academic find-
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ings provide some insights for particle filters, studies of adaptive localization methods
for particle filters are rare.

6.2.2. Potential surrogate models for nonlinear observation op-
erators

The nature of using the Gaussian progress regression models is to change the non-
Gaussian uncertainty into Gaussian. We could find massive alternates as surrogate
models to replace the nonlinear observation operator in the Machine learning field,
like various artificial neural networks. The reason why the Gaussian process regres-
sion method is chosen as the surrogate model for the observation operator is that it
has a suitable property, and it can give estimates and related uncertainty information
at the same time. As long as a model has the same or similar property or the surro-
gate model’s uncertainty is easy to know, this method can become the replacement
for nonlinear observation operators. Considering this, Bayesian neural networks are
a promising and encouraging candidate. It can take more connected influencing fac-
tors into consideration, probably giving comprehensive information about more than
one source of uncertainty. Using a surrogate model introduces additional uncertainty
inevitably. But the uncertainty information provided by the surrogate model contains
both the uncertainty brought by itself and observation errors.

6.2.3. Imbalance caused by data assimilation and localization
Data assimilation methods, such as Ensemble Kalman filters and particle filters, are
pure mathematical methods. Therefore, it is possible to meet a situation where data
assimilation estimates can be beyond the normal range of a model variable. In this
case, data assimilation probably violates the dynamical balance of hydrological pro-
cesses and disturbs water storage and water fluxes in fundamental water balance
equations. To address this issue, data assimilation should be constrained by more
conditions to keep the consistency between water fluxes and maintain the water bal-
ance. Recently, some researchers have started to pay attention to the water balance
problem caused by data assimilation. Khaki et al. have proposed new approaches
named Weak Constrained Ensemble Kalman Filter (WCEnKF) [8] and unsupervised
WCEnKF (UWCEnKF) [9] to cope with the imbalance issue. These methods rely on
estimating the covariance associated with the water balance model and other model
states. A general framework for this type of imbalance for particle filters and data
assimilation needs further attention in the future.

Similarly, localization is another possible source of imbalance in data assimilation
because it can break the relationship between state variables. When performing lo-
calization at each grid point by removing observations outside the localization radius,
all local analyses are independent, which is easy to implement and to parallelize. But
this possibly harms the consistency between each model state, and the distribution
of all model states is broken. Post-processing model states may mitigate the imbal-
ance issue. Penny and Miyoshi [10] used the deterministic resampling approach of
Kitagawa to smooth the transition between nearby grid points. Reducing imbalance
brought by localization may further improve estimates given by data assimilation and
may eventually lead to more consistent model states.
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6.2.4. Data assimilation for use in hydrological forecasting with
satellite data

Satellite remote sensing data give hydrology new opportunities. They provide diverse
types of observations on large scales with high spatial resolutions, revolutionizing how
we describe and monitor typical hydrological processes. The ability to assimilate satel-
lite data into a hydrological model to improve some hydrological components has been
proved by numerous studies. Data assimilation needs three essential elements: a
model propagated by time, related observations, and a data assimilation algorithm.
Enhancing the performance of a data assimilation application can be achieved from
any or all of these three aspects. For example, data assimilation largely depends on the
accurate approximation of uncertainty of the model and observations, and we always
make some assumptions about uncertainty. Data assimilation could give better esti-
mates if we have a better understanding of error structure in models and observations.
From the aspect of data assimilation algorithms, local particle filters are non-Gaussian
filters and require fewer particles. The application prospect of local particle filters and
their variants is up-and-coming for other hydrology applications.
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Supplementary material for Chapter 5 is provided in this appendix.
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Figure A.1: In terms of Nash-Sutcliffe index (𝑁𝑆𝐸), normalized root mean square error (𝑁𝑅𝑀𝑆𝐸), and
Pearson correlation coefficient (𝑟) from deterministric and open loop runs without data assimilation using
LPF-GT.

Figure A.2: Improvement percentage in terms of Nash-Sutcliffe index (𝑁𝑆𝐸) in the left column, normalized
root mean square error (𝑁𝑅𝑀𝑆𝐸) in the middle, and Pearson correlation coefficient(𝑟) in the right column
from DA experiments with different numbers of particles or ensemble sizes using LPF-GT (upper panel) and
EnKF (lower panel) with respect to the deterministic run at the G0, G1, and G3 gauge stations.
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Figure A.3: Improvement percentage in terms of Nash-Sutcliffe index (𝑁𝑆𝐸) in the left column, normalized
root mean square error (𝑁𝑅𝑀𝑆𝐸) in the middle, and Pearson correlation coefficient (𝑟) in the right column
from DA experiments with different numbers of particles or ensemble sizes using LPF-GT (upper panel) and
EnKF (lower panel) with respect to the deterministic run at the G4, G6, and G7 gauge stations.

Figure A.4: Improvement percentage in terms of Nash-Sutcliffe index (𝑁𝑆𝐸), normalized root mean square
error (𝑁𝑅𝑀𝑆𝐸) and Pearson correlation coefficient (𝑟) from the open loop run without data assimilation
with respect to results of the deterministic run at the G0, G1, and G3 gauge stations.

Figure A.5: Improvement percentage in terms of Nash-Sutcliffe index (𝑁𝑆𝐸), normalized root mean square
error (𝑁𝑅𝑀𝑆𝐸) and Pearson correlation coefficient (𝑟) from the open loop run without data assimilation
with respect to results of the deterministic run at the G4, G6, and G7 gauge stations.
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Figure A.6: Boxplots of improvement percentage in terms of Nash-Sutcliffe index (𝑁𝑆𝐸) in the upper row,
normalized root mean square error (𝑁𝑅𝑀𝑆𝐸) in the middle row, and Pearson correlation coefficient (𝑟) in
the lower row from LPF-GT and EnKF experiments at the G0 (first column), G1 (middle column), and G3
(right column) gauge stations. In the cases with LPF-GT, five localization scales ranged from 0.08 to 0.16
were used. Results given by EnKF were demonstrated separately at the right side of each LPF-GT run. Each
boxplot’s results were from one experiment with ten repeating times, and the red point in each boxplot
indicates the mean of ten repeating experiments.



A

87

Figure A.7: Boxplots of improvement percentage in terms of Nash-Sutcliffe index (𝑁𝑆𝐸) in the upper row,
normalized root mean square error (𝑁𝑅𝑀𝑆𝐸) in the middle row, and Pearson correlation coefficient (𝑟) in
the lower row from LPF-GT and EnKF experiments at the G4 (first column), G6(middle column), and G7
(right column) gauge stations. In the cases with LPF-GT, five localization scales ranged from 0.08 to 0.16
were used. Results given by EnKF were demonstrated separately at the right side of each LPF-GT run. Each
boxplot’s results were from one experiment with ten repeating times, and the red point in each boxplot
indicates the mean of ten repeating experiments.
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Figure A.8: Improvement percentage in terms of Pearson correlation coefficient (𝑟) from DA experiments
with different observations’ standard deviations using LPF-GT and EnKF with respect to the deterministic
run at all validation gauge stations.
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Figure A.9: Improvement percentage in terms of Nash-Sutcliffe index (𝑁𝑆𝐸) from DA experiments with
different observations’ standard deviations using LPF-GT and EnKF with respect to the deterministic run at
all validation gauge stations.
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