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Abstract

The development of an Active Reflection Compensation (ARC) algorithm for a wave generator
is challenging. Water behaves in a strong nonlinear way and the time available for the
computation of the compensating segment displacements is short. Especially for the case
where the wave height sensors are mounted on the surface of the segments.

The current ARC algorithm of Bosch Rexroth is based on an approximation of the Biésel
transfer function. Although this method gives fair results, it lacks performance regarding
the absorption of oblique waves. This report introduces a wave model identification method
based on the Discrete Fourier Transform (DFT) and Extended Kalman Filter (EKF). With
the EKF having the ability to include measurement noise and determine model uncertainty,
this leads to reasonable estimates of complex second order waves. This report does not only
cover the identification part of the algorithm but the full ARC algorithm from wave height
measurements to a time series for the segment displacements. Although the results are based
on simulations, the algorithm shows a much improved absorption performance for a wide
range of propagation directions. It shows decent results for tests with several different sets
of wave characteristics. The identification process needs time to mature, which leads to a
decrease in absorption performance in the early stage of the free-surface elevation time series.
A hybrid method is designed, in which the short-term absorption is based on the current
algorithm and, after a certain time interval, the model based algorithm will take over.
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Chapter 1

Introduction

During the development of offshore structures, like drilling platforms or coastal profiles, a
lot of testing will be done in a water tank with the use of scale models. Artificial waves are
produced by a wave generator in order to simulate a real sea state. This is a crucial part in
the design process, because in this way it is possible to see how these structures deal with the
forces which they will be exposed to in real waters.

However, where real ocean waves will propagate towards the ’infinite’ surface area of the
sea, the artificial waves produced in a water tank will meet the boundaries of the testing
environment. This results in reflected waves that disturb the desired wave profile. Although
passive absorbers, in the form of e.g. beaches, are often installed on the opposing side of the
wave generator when testing floating structures, these fail to absorb the waves completely.
Reflection of the incident wave by the boundaries of the facility might be unavoidable, yet it
is essential that this wave, together with the wave reflected from the structure itself, does not
get re-reflected again by the wave generator. If these reflected waves do not get compensated,
it won’t take long before the desired wave profile gets disturbed to such a degree that the test
run needs to be stopped in order for the water to calm down. This phenomenon limits the
effective testing time of the facility drastically.

The current ARC method of Bosch Rexroth will be elaborated, discussing the (dis)advantages
regarding its absorption performance. Subsequently a new ARC algorithm is introduced
based on the identification of a first order wave model. The performances will be compared
by running simulation on several different waves. For the basic theory about water dynamics,
generation and absorption of waves, refer to the preceding literature survey [1].
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Chapter 2

Motivation

2-1 Current ARC Method Bosch Rexroth

As thoroughly discussed in [1], the current ARC method used by Rexroth is based on the
Shallow Water Approximation (SWA). The SWA is extended with several other filters to
approximate the Biésel transfer function. The Biésel function transfers the displacements of
the wave generator segments to wave heights, provided that the frequency content of the wave
is known. It is used for wave generation as the desired wave profile is calculated beforehand.
The inverse of the Biésel function, transferring the measured wave heights to corresponding
segment displacements, could be useful for the absorption of the reflected wave. The problem
is that the frequency content of the reflected waves is unknown, making it impossible to
use the Biésel function for this application. Its approximation, based on the SWA, results
in a Real-time Linear Filter (RLF) that transfers the measured wave heights directly to
segment displacements without needing in-depth information (like frequency content) about
the reflected wave. The filter is stable, but has limited performance regarding oblique waves.
As the lag between the measurement and control action should be minimal, the computation
time is limited. Figure 2-1 shows the theory of the SWA applied to wave generation in the
case of an elevated flap type wave generator. The volume of the water displaced by the wave
generator is equal to the crest volume of the propagating wave. In case of the segment moving
backwards the volume of the displacement is equal to the volume of the resulting trough of
the wave.
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4 Motivation

Figure 2-1: Illustration for the SWA applied to wave generation, blue coloured area’s are assumed
to be equal [10].

H in the figure refers to the wave height, S to the segment stroke, h to the water depth and
h0 to the hinge elevation measured from the floor. The still water level is indicated by SWL.
In control theory the SWA equations translate to transfer functions having the form of an
integrator, as given in Eq. (2-1). With g as the gravitational acceleration.

Piston type : H

S
=
√
g

h
· 1
s

(2-1)

Flap type : H

S
= 2
h− h0

·
√
g · h · 1

s

Figure 2-2 is provided by Rexroth to give insight into the frequency response of their al-
gorithm. The blue line shows the Biésel function for a flap type wave generator, given in
Eq. (2-2) [2] transferring the segment set points to wave heights. This biésel transfer function
corresponds to the progressive part of the wave [1].

H

S
= 2
k(h− h0)

[sinh(kh)((h− h0)k sinh(kh)− cosh(kh) + cosh(kh0))
sinh(kh) cosh(kh) + kh

]
(2-2)

With k as the wave number, depending on the frequency according the dispersion relation
[1]. For this figure, the water depth is taken to be h = 7 m and the hinge elevation h0 = 3.5
m. The red line shows the transfer function of the RLF for the segment set points to wave
heights. The basis of this transfer function is the SWA equation for a flap type wave generator
in Eq. (2-1). This equation is extended with several other filters to create a better fit to the
Biésel function in Eq. (2-2). Although some of these additional filters are more thoroughly
elaborated in [1], the transfer function for the RLF and its corresponding parameter values
are classified and can therefore not be shared in this report. Different values can be assigned
to the water depth h and, in the case of a flap type wave generator, the hinge elevation h0
to adjust the algorithm for different wave generator characteristics. In this case, the values
for the water depth and hinge elevation are taken to be the same as for the Biésel function
for comparison. As visible in the figure, for the frequency range of 0.1 − 3 Hz the transfer
function of the RLF shows a similar frequency response as the Biésel function. The yellow line
shows the transfer function of the reflected wave to the re-reflected wave for the RLF to show
the theoretical absorption performance of the algorithm. This result is not based on actual
measurements, but the frequency response is purely based on the RLF transfer function.
This response is given to show that the performance of the RLF differs for the each of the
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2-1 Current ARC Method Bosch Rexroth 5

frequencies present in the reflected wave. Looking at the larger negative gain for a frequency
of 0.4 Hz, this frequency will theoretically be absorbed better than a frequency component of
e.g. 1 Hz. The line shows very low to zero absorption performance for frequencies beyond 3
Hz.

Figure 2-2: Bode diagram of the Biésel transfer function for an elevated flap type wave generator
(blue), transfer function of the RLF (red) and theoretical transfer function for reflected to re-
reflected waves for RLF (yellow).

3D Implementation To compensate for waves coming in with a propagation direction that
differs from the perpendicular line, Rexroth uses a rudimentary method including the mea-
surements from the neighbouring segments. The ARC algorithm takes the form of a two-
dimensional filter, given in Eq. (2-3). Subscript i accounts for the time, or discrete time
steps, and j relates to the measurements of the neighbouring segments. k and l are itera-
tion variables for the time and spatial measurements respectively. With ui,j representing the
measured wave height as input of the system, and vi,j the segment position needed to absorb
the wave as output. M2 is set on 1, this means that only the information of the neighbour-
ing segments will be used. These extra measurements are not implemented for the recursive
part, so N2 = 0. M1 indicates the amount of past measurements taken into account and N1
the amount of past segment set points. a and b correspond to the filter parameters of RLF
transfer function. The values of these parameters can be adjusted for different values of k
and l to determine the influence of the neighbouring measurements.

vi,j =
M2∑

l=−M2

M1∑
k=0

akl · ui−k,j−l +
N2∑

l=−N2

N1∑
k=1

bkl · vi−k,j−l (2-3)
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Performance and Conclusion Actual test measurements using this ARC algorithm have
been performed in the Seakeeping and Maneuvering Basin Marin [10], a prominent research
institute for offshore structures. The advantage of this water basin is the ability to lower
the passive absorbers on the long side of the tank, which results in fully reflected waves
back to the wave generator. The ARC algorithm can then be used to compensate for these
reflected waves. In order to create insight in the performance the spectral density of the
surface elevations of the re-reflected waves was measured in the middle of the basin. These
tests have been performed using a flap type wave generator with a hinge elevation of h0 = 3.4
m. The water depth is h = 5 m. For absorption of the wave, the inverse of the RLF transfer
function for flap type wave generators is used to obtain the transfer from the wave heights to
segment set points. The transfer function is extended with the 3D implementation covered in
the previous paragraph to compensate for oblique waves. The upcoming figures will show the
spectral density of two test runs; first with the ARC algorithm switched off (blue), resulting
in a full re-reflection of the wave, and then with the ARC switched on (black). Figure 2-3
shows the performance of a reflected wave that propagates with an angle perpendicular to the
wave generator. The incident wave is generated by the segments on the long side of the tank,
directed perpendicular to the opposing side. The wave angle θ of the reflected wave hitting
the segments is the angle with respect to the perpendicular line, so in this case θ = 0. The
figure shows that the ARC algorithm reduces the energy of the reflected wave significantly.

Figure 2-3: Frequency spectrum for re-reflected wave with and without ARC. θ = 0◦ [10].

Similar measurements have been performed for a reflected wave with a direction of θ = 45◦
(Figure 2-4). This oblique wave has been created using the segments on the short side
of the basin, directed at the long side. The figure shows that the ARC still reduces the
reflected wave energy, but the performance is lower than in the case of the perpendicular
wave. Especially frequencies above 1 Hz seem to be absorbed poorly. This is most likely
caused by the phase difference and the ratio between the segment width and the wave length
at these frequencies [10]. For most of the wave lengths the rudimentary 3D implementation
of assigning fixed weights to measurements of neighbouring segments results in an inaccurate
segment displacement for the absorption of oblique waves.
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2-2 Research Setup 7

Figure 2-4: Frequency spectrum for re-reflected 3D waves with and without ARC. θ = 45◦ [10].

To conclude, this method is mainly developed by hands-on tuning, is fairly easy to implement
and delivers good results for reflected waves with an angle perpendicular to the wave generator.
Unfortunately, in a real scenario waves reflect with a wide range of propagation angles.

2-2 Research Setup

2-2-1 Research Problem

When looking at Figures 2-3 and 2-4, it is clear that the propagation angle of the reflected
wave has a major impact on the absorption performance. The current 3D implementation
used by Rexroth appears to be lacking ability to compensate for oblique waves, resulting in
incorrect segment displacements for absorption.

Importance of Wave Angle To emphasize the importance of the wave angle to the segment
displacement, Eq. (2-4) shows the equation that relates the 2D Biésel function for perpen-
dicular waves (Bi2) to the 3D Biésel function (Bi3). The equation shows that the difference
between generating the same wave perpendicularly or oblique, is the scaling of the segment
displacements according to the wave angle θ. The Biésel function transfers the segment dis-
placements to the corresponding wave heights for the generation of waves, but the relation
remains when taking the inverse of the functions for the absorption of waves.

Bi3 = Bi2
cos(θ) (2-4)

In order to get a better intuitive understanding of the concept, this can be graphically ex-
plained using Figure 2-5.
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(a) Perpendicular wave, θ = 0◦. (b) Oblique wave, θ = 45◦.

Figure 2-5: Graphical illustration of the difference between generating a perpendicular wave and
an oblique wave.

The left figure illustrates the generation of an incident wave with an angle of 0◦ and the right
figure for a wave with an angle of 45◦. The solid lines indicate the wave crests and the dashed
lines outline the width of the incident wave (Wwave) as generated by the three segments. As
illustrated in the figure, this width decreases as the propagation angle θ increases. The width
of the oblique wave can be obtained by scaling the perpendicular width by cos(θ). This results
in a corresponding reduction of the amplitude of the segment displacement (scaled by cos(θ))
for the generation of the same wave height over a smaller width. For the same reason, smaller
segment displacement amplitudes are required for the absorption of oblique waves.

For the Rexroth ARC the amplitude of the resulting segment displacement is a direct result
of the combination of the settings of the 2D filter (Eq. (2-3)), the propagation angle, the ratio
between the wave length (depending on the frequency) and the segment width [10]. This
method is not adaptive when it comes to diverging wave angles, which explains the lack of
performance when dealing with oblique waves.

Even more, Figure 2-2 shows that the absorption performance of the Rexroth ARC theoret-
ically depends on the frequencies of the reflected wave, although this cannot be verified in
the actual test results given in Figures 2-3 and 2-4. Obviously, it is desirable for an ARC
algorithm to have a decent absorption performance regarding the different frequencies and
wave heights present in the reflected wave.

2-2-2 Research Goal

As a result of the research problem, an important point of improvement is the absorption of
oblique reflected waves. Additionally, the proposed solution should have a decent performance
regarding diverging values for the wave frequencies and wave heights.

This results in the main objective for the thesis; Creating an ARC algorithm for a 3D wave
generator that is able to absorb reflected waves with diverging propagation angles, wave
frequencies and wave heights.
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2-2-3 Research Approach

This research introduces an ARC algorithm that is based on the identification of a first order
wave model. The first step is to find a suitable algorithm for the estimation of the parameters.
The performance of the estimation will first be tested on simple waves, and subsequently for
waves with increasing complexity. In this way it is possible to gain insight into the process and
deal with the limits of the method. As there will not be a possibility to test the algorithms in
actual facilities, the tests results will be obtained using simulations. In order to benchmark
the proposed method to the current Rexroth ARC, both the segment displacement time series
responsible for the absorption of the wave will be compared for reflected waves with diverging
characteristics. These simulations consider a simplified scenario compared to actual test runs.
Some additional difficulties concerning wave absorption in real test facilities will be covered
in a separate chapter.
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Chapter 3

Proposed Solution

Instead of transferring the reflected wave height measurements directly to segment displace-
ments, the data can also be used to perform a real-time identification of a wave model. The
proposed algorithm performs a separate wave identification for each of the segments accord-
ing to the measurements of the corresponding wave height sensors mounted on their surfaces.
The idea is to take the identified parametric reflected wave and apply a phase shift of π to
obtain the counter wave that cancels this reflected wave out. The counter wave can then
be transposed into displacements for that segment using the Biésel transfer function instead
of using the RLF. Including wave angle estimation using the measurements of neighbouring
sensors would make it possible to scale these displacements with respect to the propagation
angle of the reflected wave. More complex, and therefore more computationally expensive,
algorithms will result in an increased phase lag between the time of measurement and the
control action response time. Although this problem is not yet substantial with the current
algorithm, it is something that has to be taken into account when using more extensive algo-
rithms. An additional advantage of identifying a wave model is that it could be used to make
predictions over a short time span in order to compensate for this lag.

3-1 First Order Wave Model

Higher order wave models introduce a large amount of extra parameters, due to the additional
super- and sub-harmonic components [1], which can be unpractical for model identification.
For this reason, the identification will be based on a first order wave model. The free-surface
elevation can be described using the sum of a number of sinusoidal functions, as given in
Eq. (3-1) for each segment i. This equation corresponds to Equation (3.4) in [2].

yi,k =
M∑
n=1

an cos{ωntk︸ ︷︷ ︸
ϕtime

− kn[xsegi,k cos(θn + π) + ysegi sin(θn + π)]︸ ︷︷ ︸
ϕspace

+ φn︸︷︷︸
ϕfixed

} (3-1)

an = Amplitude ωn = Angular frequency yi,k = Free-surface elevation
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θn = Wave angle φn = Fixed phase xsegi,k /y
seg
i = Relative segment position

kn = Wave number tk = Discrete time
The subscript k refers to the discrete time step, n to the different frequency components
and i to the segment of the wave generator. The segment positions xsegi,k and ysegi are relative
positions with respect to a certain segment reference position in the basin. yi is fixed for every
segment, as it refers to where the segment is positioned in line. xsegi,k is variable according
to the displacement of the segment. The directional information is represented as θn + π for
the incoming reflected wave, as the range for the wave angle θn for the generation of waves
is on the first and fourth quadrant of the unit circle. To get a better understanding of the
parameters, Figure 3-1 shows a graphical representation of an incoming reflected wave in the
case of a piston type wave generator. yk,i indicates the surface elevation measured by the
wave height sensor on the surface of the segment, with respect to the SWL. The wave length
λn and the wave number kn are related according the following equality: kn = 2π/λn. C
refers to the phase speed on the incoming wave: C = λn/Tn. With Tn as the wave period,
related to the angular frequency as follows: ωn = 2π/Tn. For a graphical representation of
the wave angle θn, refer to Figure 2-5.

Figure 3-1: Graphical representation of parametric wave in Eq. (3-1). The figure shows an
incoming reflected wave with one frequency component n.

Eq. (3-1) makes a distinction between three different phase terms. The time dependent phase
term relates to the angular frequency of the component. The spatial phase term depends
on the wave angle, the wave number and the segment position. This spatial term is used
for the estimation of the wave angle, elaborated later in the report. The wave number kn
results from the angular frequency ωn according the dispersion relation [1]. This is why the
frequency content of the wave is important for the estimation of the wave angle. At last,
every frequency component has a fixed phase term φn.
The following variables are left to be estimated for every component n: an, ωn, θn, φn.
Although Eq. (3-1) gives the free-surface elevation according to each individual segment i,
the measurement of multiple segments have to be taken into account for the estimation of the
wave angle θn.

3-2 Discrete Fourier Transform

When dealing with harmonic signals, the Discrete Fourier Transform (DFT) is often consid-
ered due to its capability of providing insight into the frequency content. Fourier analyses not
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only give insight into the frequencies present in the signal, but also into the corresponding
amplitudes and phases. The equation for the DFT is given in Eq. (3-2) according to the wave
height measurements of each segment i.

Yi[n] =
N−1∑
k=0

yi,ke
−j 2π

N
nk for n = 0, 1, . . . , N − 1 (3-2)

The correlations between the discrete signal yi,k and sinusoidal functions with different fre-
quencies are stored in the Fourier coefficients Yi[n]. [6] describes how the values of Yi[n]
have to be interpreted to extract information about the frequencies, and their corresponding
amplitudes and phases.

Aliasing When sampling harmonic signals it is important to choose the right sampling fre-
quency. In case of undersampling, two signals with different frequencies can be seen as the
same signal. This is called aliasing and is illustrated in Figure 3-2. The arrows in the figure
indicate the moments in time when a sample is taken. The sampling frequency is too low to
make a distinction between the actual signal and the aliased signal.

Figure 3-2: Graphical illustration of aliasing. Samples are indicated by the arrows. With this
sampling frequency, no distinction can be made between the actual signal and the aliased signal1.

In order to be sure the sampling frequency is sufficiently high to capture the desired frequency
components, Shannon’s theorem is used. This theorem states that any continuous-time sig-
nal containing no larger frequency components than F0 is uniquely determined by its values
in equidistant points if the sampling frequency Fs is higher than 2 · F0 [3]. Fs/2 is called
the Nyquist frequency. This has to be taken into account when choosing the sampling fre-
quency for wave model identification, as it should be large enough to capture the frequency
range present in the wave. As higher sampling frequencies result in an increased computation
time, and subsequently a slower control action response time, it is important that this fre-
quency is not unnecessary large. For the generation of waves, Rexroth considers a spectrum
with frequencies up until 5 Hz. Assuming wave reflections with the same frequency range,
the sampling frequency of the ARC algorithm should be higher than 10 Hz to capture the
frequencies in the wave.

Frequency Resolution The frequency resolution, and corresponding frequency bin size, of
the DFT depends on the window size of the DFT2, as given in the equation below.

1Source: https://www.researchgate.net/figure/An-example-of-aliasing-in-the-time-domain-The-two-
signals-have-the-same-values-at-the-fig6-28359715

2Source: http://support.ircam.fr/docs/AudioSculpt/3.0/co/FFT%20Size.html
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Frequency bin size (Hz) = 1
Window size (s)

If the true frequency of a wave signal is 0.7 Hz and the bin size of the DFT is 0.25 Hz, the
actual frequency will fall in between the 0.5 Hz and the 0.75 Hz points in the DFT. This
corresponds with the fact that the signal is not periodic in the DFT window (in this case 4
seconds). The non-periodicity introduces discontinuities which results in additional frequency
components in the DFT [6]. Energy from the true frequency will leak to neighbouring bins
in the DFT, called spectral leakage. Figure 3-3 gives a graphical explanation. The left figure
shows the time series of two monochromatic waves with different frequencies for the DFT
window [0, 4] s and the right figure shows the corresponding DFTs. Both waves have an
amplitude of 1m. The 1 Hz wave is periodic in the DFT window, resulting in the right
frequency and amplitude in the DFT. The 0.7 Hz wave is not periodic in the DFT window,
which results in energy leakage to neighbouring frequency bins in the DFT. This does not
only lead into the leakage of energy to additional frequencies, but also a discrepancy in the
frequency and amplitude for the dominant frequency in the DFT.

(a) Free-surface elevation time series. (b) DFT.

Figure 3-3: Free-surface elevation time series and DFT of two monochromatic waves with
different frequencies. The figures show the effect of spectral leakage as a result of the influence
of non-periodicity in the DFT window. DFT window: [0, 4] s.

Furthermore, the DFT resolution influences the amount of dominant frequencies detectable
by the DFT. This can be graphically explained using Figure 3-4. The same DFT window
size of [0, 4] s is considered. The left figure shows the time series of a wave consisting of
a superposition of two sinusoidal components with the frequencies 0.95 Hz and 1.05 Hz and
amplitudes of 1m. The corresponding DFT is visible in the figure on the right. The DFT
resolution is not sufficient to make a distinction between the two frequencies, resulting them
to fall in the same bin (1 Hz). This leads to one dominant frequency in the DFT, instead of
two.
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(a) Free-surface elevation time series. (b) DFT.

Figure 3-4: Free-surface elevation time series and DFT of a wave, consisting of a superposition
of two sinusoidal functions. The DFT resolution is not sufficient to make a distinction between
the two frequencies in the wave signal. DFT window: [0, 4] s.

As actual wave spectra contain an infinite amount of frequency components, this effect leads
to a wave model that contains less components than present in the actual wave. Later in the
report it will become clear that this lack of components does not necessarily have to lead to
a worse fit with respect to the free-surface elevation time series of the model and the actual
wave.

These results show that the DFT window size determines the quality of the data provided by
the DFT. This can have a strong influence on the wave identification in the early stage of the
free-surface elevation time series, as the available measurement time is limited.

3-3 Linear Model

In order to compensate for the discrepancies in the data provided by the DFT, an estimation
algorithm can bring a solution. The idea is to use the parameters that result from the DFT
as initial values for the algorithm, which converges them towards their actual values, leading
to a better fit of the wave model.

Threshold Value The amount of components included in the model depends on the amount
of significant frequencies identified by DFT. Low-amplitude components will have minimal
influence on the free-surface elevation and result in an unnecessary large model. Figure 3-
5 shows this graphically. A threshold value determines which of these identified frequency
components are included to set the basis for the model. This value will be given as a percentage
of the maximal amplitude in the DFT. The left figure shows the DFT of a harmonic signal and
the threshold line on 20%. The right figure shows the free-surface elevation time series of the
original and the filtered wave signal, with the latter containing only the frequency components
with amplitudes above the threshold line. The influence of shifting this threshold line will be
covered in a next section.
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(a) DFT and threshold line. (b) Free-surface elevation time series.

Figure 3-5: Left figure: DFT of an harmonic signal and threshold line at 20%. Right figure: the
corresponding free-surface elevation time series of the original and the filtered wave signal.

Recursive Least-Squares The estimation of the angular frequency, amplitude and phase
asks for a nonlinear model, due to the cosine term in Eq. (3-1). When considering only the
amplitude and phase for estimation, the first order model can be written in a linear form.
This linear form is based on the equality given in Eq. (3-3). The angular frequency in this
equation is taken as an input. The value for this frequency results from the DFT and is not
further converged by the estimation algorithm.

A cos(ωt) +B sin(ωt) =
√
A2 +B2 · cos(ωt− tan−1(B/A)) (3-3)

This linear model can be solved by a Recursive Least-Squares (RLS) algorithm. The RLS
error function is described in Eq. (3-4) [8]. yk corresponds to the free-surface elevation mea-
surements of one segment.

ε(N) = (w− w̄)T [λ−(N+1)Π0]−1(w− w̄) +
N∑
k=0

λN−j |yk − uTkw|2 (3-4)

With w as the optimizable vector, which can be extended according to the amount of included
frequency components: w = [A1 B1 · · ·AM BM ]T . w̄ is the initial guess vector and Π0 is
the weight related to it. A low value for Π0, indicates a high certainty for the initial guesses
to be close to the actual values. uTk = [cos(ω1t) sin(ω1t) · · · cos(ωM t) sin(ωM t)] is
the vector with the input signals. λ is the forgetting factor, indicating the inclusion of past
measurement points.

Estimation Performance In theory, if the provided frequencies by the DFT are accurate,
the RLS algorithm is able to estimate the exact corresponding amplitudes and phases. But
as discussed before, the quality of the data provided by the DFT depends on its window size.
Figure 3-6 shows the amplitude estimation of a two-component wave, with the frequencies 0.51
Hz and 0.95 Hz. The sampling frequency Fs is 10 Hz, with a Nyquist frequency of 5 Hz more
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than enough to capture the two components. As the initial guesses for the parameters An
and Bn (Eq. (3-3)) are not straightforward, the initial guess vector w for the RLS algorithm
contains only zeros. The DFT window is [0, 10] s and the threshold value is 20%. The
resulting frequencies provided by the DFT are 0.5 Hz and 1 Hz. The discrepancy of these
frequencies with respect to the original frequencies can lead to a poor estimation of the rest
of the wave parameters. As shown in the figure, the amplitude estimates are subject to noise
and one of them deviates from its true value.

Figure 3-6: RLS amplitude estimation for a two-component wave. The frequencies are taken as
input values and are not further estimated by the algorithm. True frequencies = [0.51 0.95] Hz,
model frequencies = [0.5 1] Hz. RLS parameters: λ = 0.95, Π0 = 10.

3-4 Nonlinear Model

As stated before, due to the nonlinearity in the wave model (Eq. (3-1)) the angular frequency
can not be estimated using a linear approach. The coming section focuses on the research of
the significance of a linearized approach in the form of an Extended Kalman Filter (EKF)
to the convergence of the wave parameters. The EKF is chosen because of its estimation
performance in the presence of (known) measurement noise. The model uncertainty matrix
can be tuned to specify the reliability of the model, which can be useful to compensate for
unmodeled dynamics. This is convenient when identifying the wave model, as the dynamics of
actual waves will be too complex to be captured in a first order model. Although optimality
can be guaranteed for the regular version of the Kalman filter, this is not the case for the
EKF. The reason for this is that the EKF approximates the nonlinear model by linearization.
The performance of the algorithm is based on how well the linearized model approximates
the nonlinear one.
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3-4-1 State-space Representation

The equation for the wave model will first be transformed into a state-space representation.
A linearization in the output matrix C matrix will be used to approximate the nonlinear wave
dynamics.

Continuous Time The basis of the model starts with the continuous time state-space model
for each frequency component, given in Eq. (3-5).

˙̂ϕω
a

 =

0 1 0
0 0 0
0 0 0


︸ ︷︷ ︸

A

̂ϕω
a

+

−k̂0
0


︸ ︷︷ ︸
B

ẋseg[t] cos(θ̂ + π)︸ ︷︷ ︸
u

+

wϕwω
wa

 (3-5)

ϕ is taken as the full phase term inside the brackets of the cosine (Eq. (3-1)); ϕ = ϕtime +
ϕspace + ϕfixed. This state-space model contains all the necessary parameters in the state
vector, except the wave angle. The wave angle can be derived separately using a least squares
optimization including the wave number, resulting from the angular frequency, and the phase,
without having to include θ in the state vector. This separate optimization does not have
to be performed every time step, as the variability of wave angles in a real scenario is low.
The estimation of the wave angle θ will be covered in a later section. w corresponds to the
model uncertainty according to each state, with zero mean and covariance q: w ∼ N(0, q).
The estimated wave angle θ̂ is used for the input u of the state-space model, to compensate
for the phase difference corresponding to the movement of the segments.

Discrete Time The discrete state-space model is given in Eq. (3-6). The discretization of
the continuous time model is based on the method in section 1.11.1 of [5]. With Ts as the
sampling time.̂ϕω
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 (3-6)

When dealing with multiple components the model can easily be extended, as shown in
Eq. (3-7). As the basis of the model is set by the data provided by the DFT, the amount of
frequency components included in the wave model depends on the frequency resolution of the
DFT and the threshold value. For the simulations performed in this research, the wave angle
is considered to be equal for all the frequency components in the reflected wave.̂

ϕ1
ω1
a1
...
ϕM
ωM
aM


k+1

=

Ak . . .
Ak



̂

ϕ1
ω1
a1
...
ϕM
ωM
aM


k

+



−k̂1
k

0
0
...

−|k̂Mk |
0
0


(xsegk+1 − x

seg
k ) cos(θ̂k + π) +

wϕ,1...
wa,M

 (3-7)
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As the measured wave height is a nonlinear function of the states, this results in a nonlinear
output equation, given in Eq. (3-8) according to the measurements of a single segment. With
x̂k referring to the states of the state space model (Eq. (3-6)). Note that this equation does
not directly depend on the angular frequency ωn, but only indirectly through the phase term
ϕn. The Jacobian of the nonlinear function h(x̂k) is used to obtain the linearized discrete
output matrix Ck, given in Eq. (3-9). A measurement noise vk is considered, with zero mean
and covariance Rk: vk ∼ N(0, Rk).

ŷk =
∑
n

âkn cos(ϕ̂kn)︸ ︷︷ ︸
h(x̂k)

(3-8)

Ck =
[
∂ŷ
∂ϕ̂1

0 ∂ŷ
∂â1

· · · ∂ŷ
∂ϕ̂M

0 ∂ŷ
∂âM

]
k

(3-9)

3-4-2 Kalman Filter Equations

Eq. (3-10) shows the equations for the EKF, based on [4]. The Qk and Rk matrices are the
model uncertainty covariance and the measurement noise covariance matrices respectively.
Kk is the Kalman gain and Pk the state covariance matrix. The superscript − refers to the
a priori estimate of the state vector x̂k and the state covariance matrix Pk. The a posteriori
estimates are denoted without a superscript. The algorithm consists of a two-step process;
The prediction update step produces predictions of the state. These predictions are later
updated in the measurement step, with the use of a weighted average between the measured
output and the model predicted output. Depending on the values for the matrices Qk and
Rk, more weight is given to the output with higher certainty.

Prediction Update Measurement Update

x̂−k = Akx̂k−1 +Bk−1uk Kk = (P−k C
T
k )(CkP−k C

T
k +Rk)−1 (3-10)

P−k = AkPk−1A
T
k +Qk x̂k = x̂−k +Kk(yk − h(x̂−k ))

Pk = (I −KkCk)P−k

Nonzero values will only be assigned to the diagonal values of the matrices Q and P as their
influence is more straightforward. Eq. (3-11) shows the continuous-time version of the two
matrices.

Q =

qϕ 0 0
0 qω 0
0 0 qa

 P =

pϕ 0 0
0 pω 0
0 0 pa

 (3-11)

The discrete time matrix Qk (Eq. (3-12)) can be derived using the method described in [5].
The state covariance matrix P remains the same in discrete time (Pk = P ).

Qk =

qϕ · Ts + qω ·T 3
s

3
qω ·T 2

s
2 0

qω ·T 2
s

2 qω · Ts 0
0 0 qa · Ts

 (3-12)
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3-4-3 Estimation Results

In this paragraph the contribution of the EKF on the wave parameter convergence will be
evaluated. The identification will first be performed on a simple two-component wave and
subsequently on a more complex 50-component wave.

Setup This section only the considers the identification part of the algorithm, as the iden-
tified wave model will not be transferred to segment displacements yet. Figure 3-7 shows a
schematic representation of the wave model identification part for a single segment.

Figure 3-7: Schematic representation of wave identification part of the ARC.

yk corresponds to the reflected wave height measurements, and ŷk to the estimated wave
heights by the model. x̂k refers to the wave parameters and x̂0,k to their initial values provided
by the DFT. The dashed line indicates that the parameter initialization by the DFT will not
be performed every time step, as the EKF needs time to estimate the true values of the
parameters. As more measurement data becomes available, more accurate DFT parameters
can be provided to re-initialize the wave model at a later moment in time. The window sizes
of these DFTs can be adjusted for each simulation. The identification process starts as soon
as the first DFT has been performed.

The parameter values for these simulated waves are randomly created in MATLAB. Table
3-1 shows the intervals from which the random parameter values are chosen. The resulting
frequency components are superposed to form a first order approximation of the wave. The
estimation of the wave angle is not included and will be elaborated in a next section. For now,
only perpendicular waves are considered, so θn = 0. As covered before, the wave number k
results from the dispersion relation.

Parameter Interval

ωn [0.1, 2π] rad/s

an [0.1, 1.2] m

ϕnfixed [-π, π] rad

Table 3-1: Intervals for the randomly created parameters of the reflected wave.
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The maximum angular frequencies in the interval corresponds to a frequency of 1 Hz. For
this reason, a sampling frequency of 10 Hz will suffice to capture the frequency components
in the wave. DFTs are performed on certain fixed moments in time, referred to as tDFT .

Two-component Wave For this wave, only one DFT is performed: tDFT = 10 s, with the
window [0, tDFT ] s. Figure 3-8 shows the performance of the angular frequency estimation
for one wave height sensor. The initial parameter values provided by the DFT are not
accurate, but the EKF manages to converge them towards their actual values. The values
for the algorithm are taken as mentioned in the caption of the figure. The values for Q
and P correspond to the diagonal values for the continuous time matrices: [qϕ qω qa] and
[pϕ pω pa]

Figure 3-8: Angular frequency estimation results for a two-component wave. Diagonal values
Q: [1 0.1 0.1], diagonal values P: [1 0.01 0.01], R = 0. Fs = 10 Hz. tDF T = 10 s, DFT
window: [0, tDF T ] s, threshold = 20%.

Also the errors of the amplitudes and phases are compensated by the EKF, as shown in the
estimation results in Figure 3-9. The phase terms in the figure correspond to the stationary
terms, obtained by subtracting the time-dependent phase from the total phase term; ϕ−ϕtime.
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(a) (b)

Figure 3-9: Amplitude (a) and stationary phase (b) estimation results for a two-component
wave. Diagonal values Q: [1 0.1 0.1], diagonal values P: [1 0.01 0.01], R = 0. Fs = 10
Hz. tDF T = 10 s, DFT window: [0, tDF T ] s, threshold = 20%.

The linearized approach has the possibility to compensate for slight discrepancies in the
angular frequencies provided by the DFT. This led to the choice of an EKF for the wave
parameter estimation in the proposed algorithm.

50-component Wave To analyse the performance for more complex waves, the algorithm
is used for a 50-component wave. The wave parameters for each of the components are again
randomly selected from the intervals described in Table 3-1. The length of the free-surface
elevation time series of the simulated wave is set on 500 s. The estimation results for the
parameters are shown in Figures 3-10 and 3-11. The figure only shows the stationary phase
terms of the first two components, which are wrapped around 2π. DFTs are performed
for certain fixed moments in time and are indicated by the green lines in the figure: tDFT =
[1 5 20 50 100 200 400]. The DFT windows contain all the wave height measurement
up until that moment: [0, tDFT ]. The use of multiple DFTs with different window sizes
creates insight into the importance of the DFT resolution to the wave identification. DFTs
performed at a later moment in time are able to detect more frequency components, as a
larger DFT window results in a higher DFT frequency resolution. This means that on those
time steps the model will be resized, corresponding to the amount of significant frequency
components from the DFT, and initialized with the corresponding parameter values.
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Figure 3-10: Angular frequency estimation results for a 50-component wave. Diagonal values Q:
[1 0.1 0.1], diagonal values P: [1 0.01 0.01], R = 0, Fs = 10 Hz, threshold = 10%, DFT
times (green lines): [1 5 20 50 100 200 400] s, DFT window sizes: [0, tDF T ] s.

(a) (b)

Figure 3-11: Amplitude and stationary phase estimation results for a 50-component wave. Diag-
onal values Q: [1 0.1 0.1], diagonal values P: [1 0.01 0.01], R = 0, Fs = 10 Hz, threshold
= 10%, DFT times (green lines in figure (a)): [1 5 20 50 100 200 400] s, DFT windows:
[0, tDF T ] s.

Note that some of the estimated amplitudes take negative values. This is possible as no
bounds are defined for the EKF. A negatively signed frequency component corresponds to
the same positively signed component by a phase difference of π. Components with negative
amplitudes will not form a problem for the wave model identification. The estimated variables
seem to contain quite some noise. Especially the phase term contains a lot of noise, possibly
due to the higher co-variance for the phase term compared to the other two states. The figures
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show that, for the amplitude and frequency estimation, the noise decreases as the window
size of the DFT increases. This can be explained by more accurate parameter values and a
larger amount of detected components by the DFT. A deficiency of components in the model
leads to noisy wave parameters, as they try to compensate for the unmodeled components.
Altering the values for the model uncertainty matrix Q and co-variance matrix P did not
result in decreased estimation noise. This indicates that the main factor behind this noise is
the mismatch between the amount of components in the model and the actual wave.

3-5 Wave Prediction

This section discusses the performance of the reflected wave prediction of the model. Wave
prediction can be useful to compensate for the lag of the segment displacement response.
By transferring the predicted wave heights to predicted segment displacements, the segment
motion can be performed on exactly the right moment in the future. Even more, when
comparing the predicted wave to the actual reflected wave it is easier to draw conclusions
about the accuracy of the estimated parameters. An accurate real-time fit of the model does
not guarantee a good convergence of the wave parameters, as different sets of values can lead
to the same free-surface elevation at that moment. If the predicted wave height is still equal to
the corresponding actual reflected wave height in the future, it indicates a reliable estimation.

3-5-1 Prediction Equation

To create predicted free-surface elevations Eq. (3-13) is used. This simple equation uses
an extra term compared to the estimated wave height, introducing Tpred as the prediction
horizon.

ŷkpred =
∑
n

âkn cos(ϕ̂kn + Tpred · ω̂n) (3-13)

3-5-2 Prediction Results

In order to check whether the prediction algorithm works properly, it will first be used for
a simple two-component reflected wave. After that a 50 component wave will be analyzed
to create more insight into the performance. The only difference with the setup described in
Figure 3-7 is that the output of the model gives the predicted wave heights instead of the
real-time wave heights. The wave parameters for the reflected wave are randomly selected
from the intervals given in Table 3-1.

Two-component Wave Figure 3-12 shows the prediction results of the same two-component
wave as shown in the previous section (Figure 3-9). For comparison, the predicted free-surface
elevation time series is shifted manually in time, so it corresponds exactly with the actual
free-surface elevation at that time in the future. The parameters for the algorithm are as
given in the caption of the figure. The result shows that when the wave parameters converge
towards their true values, the prediction for the reflected wave is equal to the actual reflected
wave. From this result it can be concluded that the prediction algorithm works properly.
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Figure 3-12: Snapshot of the wave prediction results for a two-component wave (Figure 3-8.
Diagonal values Q: [1 0.1 0.1], diagonal values P: [1 0.01 0.01], R = 0. Fs = 10 Hz.
tDF T = 10 s, DFT window: [0, tDF T ] s, threshold = 20%, Tpred = 0.2 s.

50-component Wave Figure 3-13 shows a snapshot of the prediction performance of the
more complex reflected wave as used in Figure 3-11.

Figure 3-13: Snapshot of the wave prediction results for a 50-component wave. Diagonal values
Q: [1 0.1 0.1], diagonal values P: [1 0.01 0.01], R = 0, Fs = 10 Hz, threshold = 10%,
DFT times (green lines): [1 5 20 50 100 200 400] s, DFT window sizes: [0, tDF T ] s,
Tpred = 0.2 s.
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It is difficult to draw conclusions about the prediction performance by just looking at the
free-surface elevation time series. Table 3-2 shows the Root Mean Square (RMS) values of
the error between the predicted wave heights and the actual reflected wave heights, for the
time intervals between the DFTs. The increasing window size of the DFTs leads to more
accurate wave parameters and subsequently a better prediction performance.

Interval (s) 5-20 20-50 50-100 100-200 200-400 400-500

RMS error 2.008 1.534 0.857 0.795 0.604 0.568

Table 3-2: RMS errors for according to the time intervals between the DFTs, corresponding to
the free-surface elevation time series in Figure 3-13.

To investigate the contribution of the EKF to the wave identification, the same 50-component
wave is now estimated using just the wave data provided by the DFTs. The wave parameters
provided by the DFTs are directly incorporated in the first order wave model (Eq. (3-1)), and
not further converged by the EKF. Figure 3-14 gives a schematic representation of the setup.

Figure 3-14: Schematic representation of the wave identification based on just the wave param-
eters provided by the DFT.

The DFTs are performed every 5 s of the measured free-surface elevation time series (tDFT =
[5 10 · · · 495] s). The corresponding DFT windows are: [0, tDFT ] s. The time intervals
between the DFTs has been reduced to show that, even if the wave model is re-initialized more
frequently, the predicted wave height shows a poor fit without the parameter convergence by
the EKF. A snapshot of the predicted free-surface elevation time series is shown in Figure
3-15.
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Figure 3-15: Snapshot of the prediction results for the 50-component wave, just based on the
wave parameters provided by the DFTs. Fs = 10 Hz, Threshold = 10%, Tpred = 0.2 s.

Table 3-3 shows the RMS errors between the predicted and actual time series, corresponding
to the same time intervals as in Table 3-2. From the free-surface elevation time series in Figure
3-15 and the RMS errors in Table 3-3 it can be concluded that the EKF has a substantial
contribution to the identification of the wave model. The RMS errors for the specified time
intervals are not only larger, but they also do not decrease as more accurate wave parameters
are provided by DFTs performed later in time.

Interval (s) 5-20 20-50 50-100 100-200 200-400 400-500

RMS error 4.853 4.824 5.210 5.241 5.048 5.094

Table 3-3: RMS errors for according to the same time intervals as in Table 3-2, corresponding
to the free-surface elevation time series in Figure 3-15.

3-6 Wave Angle Estimation

As discussed in an earlier section, accurate knowledge of the reflected wave angle can be very
useful for a good absorption strategy. To extract wave angle information from the estimated
parameters, wave height measurement are needed from multiple segments. The wave angle
can be estimated by determining the difference in phase from one spatial measurement point
to another. This leads to a slight adjustment in the state-space model described in Eq. (3-5).

3-6-1 Adjusted State-space Representation

Eq. (3-14) gives the adjusted state-space model. For each frequency component the state
vector includes the phase term ϕ2 according to the measurements of a neighbouring segment.
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Considering the measurements of two segments is enough to estimate the wave angle. This
is convenient as every segment, including the ones at the end of the line, has at least one
neighbouring segment. The neighbouring segment on the right is considered for most of the
segments, and the left neighbouring segment for the one at the right end of the line. The
amplitude and angular frequency in the state vector should theoretically be equal for the two
spatial measurement points but, in the case of oblique waves, the wave angle results in a
phase difference as one of the segments senses the reflected wave first. This estimated phase
difference can be used to extract information about the wave angle.̂

ϕ1
ϕ2
ω
a


k+1

=


1 0 Ts 0
0 1 Ts 0
0 0 1 0
0 0 0 1


̂
ϕ1
ϕ2
ω
a


k

+


−k̂k 0

0 −k̂k
0 0
0 0


[
(xsegk+1,1 − x

seg
k,1 ) cos(θ̂k + π)

(xsegk+1,2 − x
seg
k,2 ) cos(θ̂k + π)

]
+


wϕ1

wϕ2

wω
wa


(3-14)

For more components, the model can again be extended as described in Eq. (3-7). As the
output of the neighbouring segment has to be taken into account, the new output equations
and Ck matrix are shown in Eq. (3-15) and Eq. (3-16) respectively.[

ŷ1
ŷ2

]
k

=
[∑

n ân cos(ϕ̂1n)∑
n ân cos(ϕ̂2n)

]
k

(3-15)

Ck =

 ∂ŷ1
∂ϕ̂1

1
0 0 ∂ŷ1

∂â1
· · · ∂ŷM

∂ϕ̂M1
0 0 ∂ŷ1

∂âM

0 ∂ŷ2
∂ϕ̂1

2
0 ∂ŷ2

∂â1
· · · 0 ∂ŷ2

∂ϕ̂M2
0 ∂ŷ2

∂âM

 (3-16)

3-6-2 Nonlinear Least Squares Optimization

As discussed before, ϕ consists of three separate phase terms, given in Eq. (3-17) according
the measurements of one segment i. The subscripts k and n are omitted for convenience.

ϕi = ω · t︸︷︷︸
ϕtime

+ k(xsegi cos(θ + π) + ysegi sin(θ + π))︸ ︷︷ ︸
ϕspacei

+ φ︸︷︷︸
ϕfixed

(3-17)

Note that the only difference with ϕi+1 is the spatial part of the phase term ϕspacei . When
calculating the difference ϕi+1−ϕi, the time dependent phase term ϕtime and the fixed phase
term ϕfixed drop. The remaining term is responsible for the phase difference due to the
propagation angle of the wave. The estimated wave angle results from a Nonlinear Least
Squares (NLS) method, fitting the difference in the spatial terms to the difference of the full
phase terms, given in Eq. (3-18) according to one frequency component. As stated before, this
optimization does not have to be performed for every time step. The time interval between
the NLS optimizations can be adjusted according to the variability of the wave angle.

θ̂ = argmin
θ

∥∥∥[ϕ̂i − ϕ̂i+1
]
−
[
ϕ̂spacei(θ)− ϕ̂spacei+1(θ)

]∥∥∥2
(3-18)

ϕ̂spacei(θ) = k̂(xsegi cos(θ + π) + ysegi sin(θ + π)) (3-19)
Equation (3-19) shows the estimate for ϕspace including the optimizable wave angle θ. The
estimate for the wave number k results from the estimated angular frequency ω̂ (EKF) accord-
ing the dispersion relation. When assuming a single propagation angle for all the frequency
components in the reflected wave, the wave parameters of multiple components can be used
in the NLS equation to estimate a single wave angle.
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Unique Solution For a reliable phase difference between neighbouring segments, the wave
length of the component should be larger than the difference between the spatial measurement
points. If this is not the case there will not be a unique solution, as there is no indication
whether the wave has already completed a period before arrival at the next segment. Example:
the width for each segment is 0.5 m. A frequency component with a wavelength λ = 0.25 m
has zero phase lag, measured from segment i to segment i+ 1. This can either indicate that
the wave angle is θ = 0◦, or the wave has already completed exactly one cycle before arrival
at the next segment. In this case the wave angle would be θ = 45◦.

Not only the minimal wave length is important, but the combination with a maximal assumed
propagation angle forms the constraint to guarantee a unique solution of the wave angle and
its main direction (positive or negative with respect to the perpendicular line). This becomes
clear when looking at the following example. Let’s say the estimated phases according to two
neighbouring segments are as follows.

Segment 1: ϕ̂k = π

2

Segment 2: ϕ̂k = 5π
4

As the phases of sinusoidal functions are wrapped around 2π, the given phases are the re-
mainders from the total estimated phase, after a division by 2π. This can either mean that
the wave arrives at segment 1 first and arrives at segment 2 with a delay of 3π

4 . Or the
wave could have arrived at segment 2 first and then at segment 1 with a delay of 5π

4 . This
increased lag would indicate a larger propagation angle and an opposite wave direction than
for the first option. Constraints can be implemented considering a minimum wave length
for the component to be considered for wave angle estimation. Together with an assumption
for a maximum wave angle the largest possible phase difference can be reduced to π. This
leaves just a single possible propagation direction as one of the two options in the example
drops. According to Rexroth, the maximum angle of reflected waves can be assumed to be
45◦, as reflective waves are unlikely to come in with angles larger than that. Considering a
distance between the measurement points of 0.5 m, the minimum wave length required for
angle estimation is 0.5 m in order to guarantee a maximum delay of π.

3-6-3 Wave Angle Estimation Results

Two-component Wave The wave angle estimation will first be performed on a two-component
reflected wave. The wave parameters are randomly from the intervals in Table 3-1. In addi-
tion, a random wave angle θ is picked from the interval [−45◦, 45◦], or in rad: [−π

4 ,
π
4 ].

The same wave angle is considered for all frequency components present in the reflected wave.
All components in the model with estimated wave lengths larger than 0.5 m are considered
for the wave angle optimization. The time interval between the optimizations is set on 5 s.
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Figure 3-16: Wave angle estimation results for a two-component wave. Diagonal values Q:
[1 0.1 0.1], diagonal values P: [1 0.01 0.01], R = 0. Fs = 10 Hz. tDF T = 10 s, DFT
window: [0, tDF T ] s, threshold = 20%, wave angle optimization interval: 5 s.

For the case of the two-component wave the propagation angle is exactly identified after
around 60 seconds. Although the wave angle estimation works properly, the estimation is
slow considering the simplicity of this wave.

50-component wave Considering the same intervals for the randomly chosen wave param-
eters (Table 3-1), a 50-component wave is created. The wave angle estimation results for this
wave are shown in Figure 3-17. Unlike the case for the simpler wave, the estimated wave angle
does not come near its actual value. The nonlinearity of Eq. (3-18) might cause the estimate
to get stuck in a local minimum. A grid search provides more insight into the NLS process.
Figure 3-18 shows the possible values for θ on the x-axis and the NLS residual, based on the
objective function in Eq. (3-18), on the y-axis. The wave parameters used for the objective
function are the EKF estimates after 500 s.
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Figure 3-17: Wave angle estimation results for a 50-component wave. Diagonal values Q:
[1 0.1 0.1], diagonal values P: [0.001 0.01 0.01], R = 0. Fs = 10 Hz. tDF T =
[1 5 20 50 100 200 400] s, DFT windows: [0, tDF T ] s, threshold = 10%, wave angle
optimization interval: 5 s.

Figure 3-18: NLS Grid search for wave angle estimation (Figure 3-17). All possible values for
optimizable wave angle θ and corresponding residuals. Based on the estimated wave parameters
for the 50-component wave at 500 seconds.

The actual wave angle does not correspond with the minimum in the residual line. Even
more, the minimum residual value is 43 instead of an expected value around zero. These two
observations indicate that the input information of the NLS forms the problem, instead of
the NLS process itself. Figure 3-11 showed that the estimation phases contain a lot of noise.
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Disturbed phase estimates form a problem for the wave angle estimation as the NLS algorithm
can only extract accurate wave angle information as the phase difference for a component from
segment i to segment i+ 1 is accurate as well. Tuning the values for matrices Q and P might
reduce the noise. Figure 3-19 shows the results of the phase estimation for one component,
according to two neighbouring segments.

(a) (b)

Figure 3-19: Phase estimation results for a 50-component wave. Threshold = 10%, Fs = 10
Hz, R = 0. (a) qϕ = 1, pϕ = 0.001 (b) qϕ = 100, pϕ = 1.

After tuning the parameters for the matrices Q and P (Figure 3-19 b) the noise is reduced.
The phase difference in particular seems to be more steady, as the phase of one component
estimated from different measurement points show a similar pattern. This is a positive sign,
as for the wave angle estimation the difference between the phases is particularly important.
Figure 3-20 shows that the wave angle estimation still performs poorly despite the decreased
noise for the estimated phases.
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Figure 3-20: Wave angle estimation results for the same wave as in Figure 3-17. Altered values:
qϕ = 100, pϕ = 1

3-6-4 Wave Angle Estimation Based on DFT

As discussed before, the difference in estimated phase terms measured from one segment to
the other is important for the wave angle estimation. The EKF converges the wave parameters
resulting from the DFT, leading to a much improved fit for the estimated free-surface elevation
time series. Nonetheless, the unmodeled dynamics introduce a noisy behaviour, causing the
phase terms to get unreliable. This section discusses wave estimation based on the phase
terms provided by the DFT, before they are processed by the EKF. Figure 3-21 (a) shows
the free-surface elevation time series of a monochromatic wave measured by two neighbouring
segments. The time series show a slight phase difference due to the propagation angle of the
wave. Figure 3-21 (b) shows the true stationary phase terms for both the free-surface elevation
time series (ϕ− ϕtime). These stationary phase terms according to the DFTs, performed by
the two neighbouring segments, are shown in red. The time window of the DFT is [0, 10] s.
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(a) (b)

Figure 3-21: (a) Free-surface elevation time series of a monochromatic oblique wave measured
by two neighbouring segments. (b) Actual stationary phase terms of time series in green and
DFT phase terms in red.

The phase terms according to the DFT show mismatches regarding their true values. There
are discrepancies in both the frequency and the phase. But interestingly, the two pairs seem
to have an almost equal distance between each other. This looks promising for wave angle
estimation as their phase difference is used, rather than their actual values. This method
would not need the extended model described in Section 3-6-1 but directly uses the wave
parameters provided by the DFT, before they are processed by the EKF. The algorithm
looks for matching frequencies detected by the DFTs of two neighbouring segments and uses
the provided wave parameters for the NLS optimization (Section 3-6-2), as long as the wave
length is large enough and the components have equally signed amplitudes. All the qualifying
frequency components are used to estimate a single wave angle. The wave numbers k̂ in
the NLS equation depends on the corresponding detected frequencies. Although the provided
DFT parameters are not completely accurate, it improves the wave angle estimation compared
to the method including the EKF.

Figure 3-22 shows the results for the same 50-component wave as in Figure 3-17. The wave
angle estimations are performed simultaneously with the DFTs (tDFT ). The figure shows
that the accuracy of the estimation has much improved. Even with a minimal amount of
measurement data the estimated angle is close to its true value. A slight error occurs for
the interval between [100, 200] s. This can be explained by spectral leakage, as some wave
components are periodic in the DFT window and some are not. Non-periodic components
result in irregularities, which on their turn lead to discrepancies in the parameters provided
by the DFT. As the resolution of the DFT increases, the possible influence of spectral leakage
decreases.
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Figure 3-22: Wave angle estimation for the 50-component wave (Figure 3-17), using the DFT
wave parameters.

Variable Wave Angle In a real scenario it is likely that the wave parameters change over
time. A shifting DFT window can be used to adapt the model to these changes. The
corresponding DFT windows are [tDFT − Twin, tDFT ] s, with Twin as the constant window
size. If Twin ≥ tDFT the window will be [0, tDFT ]. In the case of a changing wave angle,
the earlier measurements that might contain waves with a different direction are not taken
into account. A shorter DFT window will hypothetically be more sensitive to varying wave
angles, as it considers less of the past measurement information. On the other hand, a short
window decreases the quality of the DFT parameters leading to a less accurate wave angle
estimation. This effect is visible in Figure 3-23. On the left side the DFT window size is
taken to be Twin = 20 s, resulting in a fast but noisy wave angle estimation. The window size
on the right is Twin = 50 s. This results in a more accurate estimation, but responds slower
to shifting propagation angles. The DFTs in this case are performed on every time step to
gain insight into the process.
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(a) Twin = 20 s. (b) Twin = 50 s.

Figure 3-23: Variable wave angle estimation for two different DFT window sizes.

Multiple Wave Directions During a test run it could occur that there are multiple reflective
waves coming in with different propagation angles. Using Eq. (3-18), propagation angles can
be determined for every frequency component separately as long as the wave length λ is
large enough. Figure 3-24 shows that quality of the angle estimation is different for every
component because it depends on the accuracy of the corresponding phases provided by the
DFT. The reflected wave considered in the figure contains three main directions, randomly
divided over the frequency components. A DFT is performed with a window of [0, 100] s to
provide the parameters for the NLS angle estimation. For optimal performance the estimated
angles should all be equal to one of the three actual angles. The figure shows that most of
the estimated angles are located somewhere in between the angles present in the wave. For
these reasons this method does not seem suitable for the estimation of multiple propagation
angles. Where the estimation of a single wave angle based on multiple frequency components
leads to an accurate performance (Figure 3-22), the estimation based on a single component
seems to be too sensitive to irregularities in the wave parameters. A solution could be to
estimate a single wave angle based on the few largest frequency components in the case of a
multi directional wave. This method is tested for short-crested waves in a next section.
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Figure 3-24: Wave angle estimation for a multi-directional wave at 100 sec. A separate wave
angle is estimated for all the frequencies qualified for angle estimation. DFT window: [0, 100]
s.

3-7 Wave spectrum

In this section, a wave spectrum is used to test the algorithm for a more realistic reflected
wave. Although a first order approximation is used for the free-surface elevation time series,
the strong irregularity makes it far more realistic than the relatively simple waves used before.
Real wave spectra are continuous, resulting in an infinite amount of components. This can
obviously not be realised in a simulation. The frequency bin size for the considered wave
spectrum is set on 0.01 Hz.

3-7-1 Free-surface Elevation Time Series

The free-surface elevation time series of the wave will be based on a JONSWAP spectrum.
To transfer the spectrum to the free-surface elevation time series, the random phase method
is used. A clear step by step procedure is provided by [2] in chapter 2.4. Chapter 3.2.1.
describes the procedure necessary to extend the wave to the three dimensional space. Figure
3-25 (a) shows the frequency content of the actual wave created using this method, compared
to the theoretical JONSWAP spectrum. Figure 3-25 (b) shows the corresponding free-surface
elevation time series. The length of the time series has been set on 500 s for the simulation.
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(a) Actual and theoretical JONSWAP spectrum. (b) Free-surface elevation time series.

Figure 3-25: Theoretical and actual JONSWAP spectrum (a) and corresponding free-surface
elevation time series (b). Hs = 0.4 m, Tp = 2 s.

3-7-2 Identification Results

The sampling frequency for the wave model identification is 10 Hz. As the significant wave
energy does not reach beyond 2 Hz, this is more than enough to capture the significant
components. The DFTs are performed at tDFT = [5 20 50 100 200 400], with DFT
windows: [0, tDFT ], to create insight into the process. The RMS errors corresponding
to the time intervals can be seen in Table 3-4. Note that the DFTs performed after 50
seconds do not necessarily lead to an increased fit for the free-surface elevation time series.
Although this might differ for more complex waves, being able to describe the wave well
after such a relatively short time brings large advantages. It substantially increases the
adaptability of the algorithm regarding wave characteristics that change over time. Even
more, DFTs performed over a larger time window usually introduce more components, leading
to a larger model. Larger models need more computation time and subsequently slow down
the algorithm. Keeping the model at a (small) optimal size optimizes the computation time
and the necessary corresponding prediction horizon to compensate for the control action
response lag.

Interval (s) 5-20 20-50 50-100 100-200 200-400 400-500

RMS error 0.0602 0.0344 0.0337 0.0359 0.0354 0.0365

Table 3-4: RMS errors for according to the time intervals between the DFTs, corresponding to
the wave in Figure 3-25. Model parameters: Threshold = 10%, Fs = 10 Hz, Q: [1 0.1 0.1],
P: [1 0.01 0.01], Tpred = 0.2 sec.

Figure 3-26 shows the wave angle estimation based on the wave parameters provided by the
DFT.
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Figure 3-26: Wave angle estimation for the JONSWAP wave in Figure 3-25.

3-7-3 Tuning

This paragraph shows the RMS errors for the time intervals between the DFTs, according
to different estimation parameters. These results will all be based on the JONSWAP wave
(section 3-7-1), and might differ when considering more complex higher order waves.

Threshold Value Figure 3-27 shows the RMS errors for different DFT threshold values.
Taking a higher threshold value results in a larger minimum amplitude (Figure 3-5) and thus
less components to be included in the model. Interesting is that up until a threshold value
of 80% the RMS errors stay rather constant. Only increasing the threshold to 95% leads to
a deficit in wave components and a larger RMS error. Just as concluded from Table 3-4, the
wave can be described using a relatively low amount of components, making the algorithm
fast and adaptive.
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Figure 3-27: Influence of DFT threshold value on the RMS errors between predicted and actual
wave (JONSWAP), for different time intervals.

Model Uncertainty Figure 3-28 shows the influence of altering the model uncertainty matrix
Q. Increasing the uncertainty for each of the parameters does not have a large influence on
the estimation performance of the algorithm. This can be expected as the measurement noise
is taken to be R = 0. The EKF bases the estimate of a state on the weighted average of
the model predicted output and the actual output. If the measurement noise R is small, the
measured output is trusted more. In the case of a low model uncertainty, the a priori estimated
output is trusted more. For these test runs the measurement noise is taken to be zero. This
means that the measurements are taken to be exact, resulting in a large corresponding weight.
The diagonal values for the continuous time matrix Q are given: [qϕ qω qa].
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Figure 3-28: Influence of the model uncertainty matrix Q on the RMS errors between predicted
and actual wave (JONSWAP), for different time intervals.

State Covariance Figure 3-29 shows the influence of different diagonal values for state co-
variance matrix P . The given values again correspond to the diagonal values of the continuous
time matrix. Increasing the covariance results in a larger estimation error. Taking a low co-
variance for just the amplitudes still leads to good results. The amplitude is important for
the accuracy of the estimation as it has a direct influence on the free-surface elevation.

Figure 3-29: Influence of the state covariance matrix P on the RMS errors between predicted
and actual wave (JONSWAP), for different time intervals.
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Prediction Horizon The influence of the prediction horizon on the estimation performance
is shown in Figure 3-30. Increasing the prediction horizon leads to a larger error between the
predicted and the actual free-surface elevation. The small mismatches in the model play a
larger role for a predicted free-surface elevation further ahead.

Figure 3-30: Influence of the prediction horizon on the RMS errors between predicted and actual
wave (JONSWAP), for different time intervals.
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3-8 Wave Heights to Segment Displacements

The identified frequency components will need to be translated into segment displacements
for the absorption of the reflected wave. The representation in Figure 3-7 has been extended
with the inverse Biésel transfer function, for the translation of the wave heights to segment
displacements, and the wave angle estimation. As the frequency content is captured in the
wave model, the Biésel transfer function can be used to transfer the identified wave to segment
displacements instead of using its approximation (RLF). To give an overview of the proposed
algorithm (ARC EKF) from the wave heights measurements to segment displacements for
absorption, Figure 3-31 gives a schematic representation. The DFTs provide the phases
and wave numbers, obtained from the dispersion relation, for the estimation of the wave
angle. The dashed line indicates that DFTs, and subsequently the wave angle estimation, are
only performed on certain predefined moments during the measurements of the free-surface
elevation (tDFT ). The estimated wave angles are used to scale the segment displacements for
the absorption of oblique waves (Eq. (2-4)).

Figure 3-31: Schematic representation of ARC EKF.
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Chapter 4

Testing Results

Testing an ARC algorithm is not straightforward as wave generators are very large and
expensive machines, which are often not available. Bosch Rexroth does not own such a
machine and neither a facility to perform reliable tests in. Any clients of Rexroth owning a
wave generator either did not have the machine available or did not allow the performance
of test runs for the new algorithm. This means that the test runs will need to be simulated.
To gain insight into the performances of the two algorithms a wave spectrum will be used
to compute a second order approximation of a reflected wave. A second order wave is used
as it provides a much more realistic approximation of an actual wave than a first order
approximation. Even more, it is interesting to see whether the identification of a first order
wave model, based on second order free-surface elevation measurements, leads to a decent
absorption strategy for a second order wave. This is important, as there will always be a
discrepancy between the dynamics of actual water waves and the dynamics represented in a
(reasonably sized) wave model. The ARC algorithms will process the free-surface elevation
time series and compute the segment displacements for absorption, with the goal to obtain
a flat water surface. Comparing the segment displacement time series of both the ARC
methods with the original segments displacements responsible for the generation of the wave
gives insight into the performance of the algorithms. In theory the segment displacement
time series responsible for the absorption of the wave should be exactly equal to the time
series for the generation of the wave, but with an opposite sign. The two time series should
cancel each other out for optimal performance. The absorption performance of the current
and new algorithm will be tested for several combinations of wave frequencies, wave heights
and propagation angles.

4-1 Simulation Setup

The second order time series for the free-surface elevation of the reflected wave, and the
corresponding segment displacements for generation, are obtained using the second order
wavemaker theory described in [9]. The computation of the time series is incorporated in a
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file Rexroth uses for the generation of desired waves during actual test runs. The simulations
are performed using an elevated flap type wave generator (Figure 2-1) with a segment width
of 0.5 m. The corresponding Biésel function used in the ARC EKF is shown in Eq. (4-1) [2].

H

S
= 2
k(h− h0)

[sinh(kh)((h− h0)k sinh(kh)− cosh(kh) + cosh(kh0))
sinh(kh) cosh(kh) + kh

]
(4-1)

With H as the wave height and S the segment displacement. In the simulations, the segment
motion during the test runs is assumed to be zero. The resulting segment displacement time
series for the absorption of the reflected waves are purely theoretical, and not taken into
account regarding the free-surface elevation measurements of the simulated wave. Figure 4-1
shows a schematic overview of the setup for the simulations. The dashed line encloses the
pre-calculated second order time series for the free-surface elevation of the reflected wave, and
the second order segment displacement time series for generation. The free-surface elevations
are processed by Rexroth’s current ARC algorithm and the ARC EKF. The resulting time
series for the absorbing segment displacements are compared with the pre-calculated segment
displacement time series for the generation of the wave.

Figure 4-1: Schematic overview of the simulation setup.

For the simulations the water depth h = 7 and the hinge elevation h0 = 3.5 m. This settings
will be kept the same during all the simulations, as it does not fall within the scope of the
research. The first test simulations will be performed on second order regular waves. These
relatively simple waves will clarify the (dis)advantages of the two algorithms. After, more
realistic irregular waves are simulated. These second order irregular waves are obtained using
the Pierson-Moskowitz wave spectrum, as this spectrum is implemented in the Rexroth file
for wave generation. In a real test environment the waves will not reach their full energy level
immediately, that is why the first 10 s of the time series is used to ramp up the wave signals.
For all test scenarios the sampling frequency of the ARC EKF has been put on 25 Hz. The
reflected waves considered for the simulations do not contain components with frequencies
higher than 5 Hz, so the sampling frequency will be sufficient to capture the frequencies
present in wave signal. As Rexroth uses a real-time linear filter to transfer the measured
wave heights directly to segment displacements, the sampling frequency is important for the
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fluency of segment motion. Rexroth uses a sampling frequency of 200 Hz for their actual
systems, so this frequency will also be used in the simulations. For the test results, no
prediction horizon is implemented for the estimated wave heights and corresponding segment
displacements (Tpred = 0), unless stated otherwise. The simulation results in this section
correspond to a single wave generator segment.

Cutoff Frequency When feeding segment displacement time series into a wave generator, the
mechanical limits of the system have to be taken into account. The segment of the generator
can handle displacements with frequencies limited by a certain bandwidth. This leads to
the use of a cutoff frequency that limits the frequencies that are fed into the generator, in
order for it to keep functioning properly. This results a decrease in absorption performance
for wave frequencies beyond the cutoff frequency. The current systems provided by Bosch
Rexroth have a bandwidth of around 7 Hz. As the test waves contain frequencies up to 5 Hz,
the corresponding identified frequencies will not reach beyond that limit. For this reason no
cutoff frequency is implemented for the upcoming test runs.

4-2 Regular Waves

Figure 4-2 shows a snapshot of the estimation results for a regular second order wave with
a frequency f = 1 Hz, wave height H = 0.16 m and wave angle θ = 0◦. R has a nonzero
value, despite the absence of measurement noise. Treating the second order dynamics as
measurement noise improved the approximation of the wave by the first order model. The
estimated first order wave shows a slight phase shifts at the crests and troughs of the wave.

Figure 4-2: Snapshot of estimation results for a regular second order wave. Q: = [0.1 0.1 0.1],
R = 10, P: [0.01 0.01 0.01], tDF T = 1 s, DFT window: [0, tDF T ], threshold: 30%.

Figure 4-3 shows snapshots of the pre-calculated segment displacement (SD) time series for
the generation of the wave versus the time series for absorption, according to the current
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Rexroth ARC and the ARC EKF. The absorption time series have been plotted with an
opposite sign to match the troughs and crest with the generation time series for comparison.
This means that the two time series should be equal for optimal performance.

(a) ARC Rexroth (b) ARC EKF

Figure 4-3: Snapshots of absorption segment displacement time series for both the ARC methods,
compared to the time series for the generation of the wave. Corresponding to the wave in Figure
4-2.

The figure shows that the amplitude of the segment displacements for the Rexroth ARC
does not match those of the actual ones. The segment displacement time series of the ARC
EKF seem to fit the time series for the generation of the wave better. Amplitude spectra
will be used to gain insight into the absorption performance of the ARC methods. This
time the spectra will be based on the time series of segment displacements. For optimal
performance, the spectrum for the generation time series should be equal to the spectrum
of the absorption time series. This would indicate that the energy needed to generate these
frequency components is equal to the energy used to absorb them. The first ten seconds of
the time series can be seen as the start up phase, as it is used for ramping up the wave signal.
Both the algorithms are prone to irregularities in this phase and for this reason the first ten
seconds of the time series is not taken into account in the spectra. The RMS values for the
errors between the absorption and generation spectra are given below the figures.
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(a) ARC Rexroth, RMS = 2.2e−4. (b) ARC EKF, RMS = 1.8e−4.

Figure 4-4: Amplitude spectrum comparison based on the segment displacement time series for
the generation of the wave and the absorption time series of both the ARC algorithms. Corre-
sponding to the wave in Figure 4-2. f = 1 Hz, θ = 0 ◦, H= 0.16 m, Time window spectrum =
[10, 200] s.

Corresponding with the result in Figure 4-3, the spectrum for the Rexroth ARC shows a
lower amplitude for the peak frequency. The spectrum for the ARC EKF shows that the
second order component has not been included in the first order model. Instead the spectrum
shows a slightly higher amplitude for the peak frequency to compensate for these unmodeled
second order dynamics. Despite the first order dynamics, the RMS error with respect to the
generation spectrum is lower for the absorption spectrum provided by ARC EKF.

Figure 4-5 shows the absorption results for a wave with a frequency of 0.4 Hz, as this frequency
should theoretically be better absorbed by the Rexroth ARC (Figure 2-2). The amplitude
spectrum shows a better absorption performance for the Rexroth ARC. The current Rexroth
ARC and the ARC EKF show a similar RMS error for their amplitude spectrum for this
frequency.
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(a) ARC Rexroth, RMS = 1.2e−3. (b) ARC EKF, RMS = 1.1e−3.

Figure 4-5: Amplitude spectrum comparison based on the segment displacement time series for
the generation of the wave and the absorption time series of both the ARC algorithms. f = 0.4
Hz, θ = 0 ◦, H= 0.6 m, Time window spectrum = [10, 200] s.

Figure 4-6 shows the amplitude spectra for an oblique wave.

(a) ARC Rexroth, RMS = 9.9e−4. (b) ARC EKF, RMS = 3.4e−4.

Figure 4-6: Amplitude spectrum comparison based on the segment displacement time series for
the generation of the wave and the absorption time series of both the ARC algorithms. f = 0.6
Hz, θ = 45 ◦, H= 0.5 m, Time window spectrum = [10, 200] s.

As the 2D filter settings are fixed (Eq. (2-3)), the amplitude of the segment displacement
for the Rexroth ARC depends heavily on the ratio between the wave length, propagation
angle and segment width. The ARC EKF adapts to the incoming wave angle by scaling the
segment displacements according to the identified wave angle, leading to a much improved
RMS error with respect to the generation spectrum. The spectrum for the ARC EKF still
shows an amplitude error for the peak frequency, as a result of the unmodeled second order
dynamics.
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Based on the absorption results of the regular second order waves, the ARC EKF shows
a more steady performance regarding different values for the frequency, wave height and
propagation angle. The performance of the Rexroth ARC depends heavily on the properties
of the reflected wave. Although the second order dynamics are not included in the first order
wave model of the ARC EKF, the model captures the wave dynamics sufficiently to increase
the absorption performance.

4-3 Irregular Waves

To gain more insight into the absorption performances of the algorithms, simulations are
performed with more realistic waves, obtained with the Pierson-Moskowitz spectrum. The
length of the free-surface elevation time series of the irregular waves is set on 500 seconds.
The wave spectrum has a frequency resolution of 0.01 Hz and a maximum frequency of 5 Hz.
The values for the propagation direction θ, peak period Tp and the significant wave height Hs

will be altered for each simulation in order to test the algorithms for different wave reflections.
Table 4-1 shows the parameter values for the EKF algorithm, these settings are tuned for
optimized performance regarding these complex waves and remain unaltered during all the
test runs. DFTs will be performed every 100 seconds, considering the past 100 seconds for the
DFT window, to re-initialize the wave model. This makes the EKF ARC algorithm adaptive
when it comes to wave properties that change over time. DFTs with shorter time windows
will be performed up until the first 100 seconds to deliver absorption performance in the early
stage of the free-surface elevation time series.

Diag Q [10 10 10]
Diag P [1e-5 1e-5 1e-5]

R 0.1
Threshold 0.05 %
tDFT [1 5 10 20 50 100 200 300 400]

DFT window tDFT ≤ 100 [0, tDFT ]
DFT window tDFT > 100 [tDFT − 100, tDFT ]

Table 4-1: Parameter values of ARC EKF for the absorption of irregular waves.

The first simulation considers a perpendicular reflected wave with a significant wave height
Hs = 0.4 m and a peak period Tp = 2 s. Figure 4-7 shows the amplitude spectra of the segment
displacement time series for the time interval [10, 100] s. This first part of the time series
is taken to show the short-term absorption performance. As the model identification takes
time to mature, the ARC EKF will most likely perform better after a certain time interval.
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(a) ARC Rexroth, RMS = 8.2e−4. (b) ARC EKF, RMS = 1.5e−3.

Figure 4-7: Amplitude spectrum comparison based on the segment displacement time series for
the generation of the wave and the absorption time series of both the ARC algorithms. Tp = 2
s, Hs= 0.4 m, θ = 0 ◦, Time window spectrum = [10, 100] s.

The spectra in Figure 4-7 show a noisy line, which makes it less insightful. In Figure 4-8 the
noise has been eliminated by the use of a smooth fit line. These smooth fit lines will be used
for the upcoming spectra to clarify their differences. The RMS errors between the generation
and absorption spectra will still be based on the original spectrum data.

(a) ARC Rexroth, RMS = 8.2e−4. (b) ARC EKF, RMS = 1.5e−3.

Figure 4-8: Amplitude spectrum comparison based on the segment displacement time series for
the generation of the wave and the absorption time series of both the ARC algorithms. Tp = 2
s, Hs= 0.4 m, θ = 0 ◦, Time window spectrum = [10, 100] s.

Both the algorithms show similar absorption performances for the peak frequencies (≈ 0.5
Hz). The EKF algorithm shows an increase in energy for lower frequencies. This extra
energy can be explained by the incorrect segment displacements due to an inaccurate wave
model during the early stage of the time series. The Rexroth algorithm shows fast absorption
performance already in this early stage, but still shows a discrepancy when looking at the
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amplitude of the peak frequency. Figure 4-9 shows the spectra for the interval of [100, 500]
s. The accuracy of the DFT data increases as more measurement data becomes available.
This information sets the basis for the estimation of a more accurate wave model by the EKF.
Although the Rexroth ARC and the ARC EKF show similar RMS errors for this time interval,
the spectrum of the ARC EKF fits the amplitude of the peak frequency in the generation
spectrum better.

(a) ARC Rexroth, RMS = 8.9e−4. (b) ARC EKF, RMS = 8.8e−4.

Figure 4-9: Amplitude spectrum comparison based on the segment displacement time series for
the generation of the wave and the absorption time series of both the ARC algorithms. Tp = 2
s, Hs= 0.4 m, θ = 0 ◦, Time window spectrum = [100, 500] s.

Only a similar segment displacement spectrum for the generation and absorption of the wave
is not enough to draw conclusions about the performance of the algorithm. Figure 4-10 shows
snapshots of the time series for the generation and absorbing segment displacements. The
RMS values for the errors of both the absorbing time series with the respect to the generation
time series is given in the caption of the figures for the time interval [100, 500] s. For this
wave, the RMS errors for the time series also indicate a similar absorption performance for
the algorithms.
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(a) ARC Rexroth, RMS = 2e−2. (b) ARC EKF, RMS = 2e−2.

Figure 4-10: Snapshots of absorbing segment displacement time series of both the ARC algo-
rithms compared to the time series for the generation of the wave. Tp = 2 s, Hs= 0.4 m, θ =
0 ◦.

When considering reflected waves with an oblique propagation angle the performance differ-
ence becomes very clear. The 3D implementation of the Rexroth ARC can not compensate
for the oblique wave by sufficiently decreasing the amplitude for the segment displacements.
The ARC EKF is able to accurately estimate the wave angle, resulting in the proper scaling
of the segment displacements.

(a) ARC Rexroth, RMS = 1e−3. (b) ARC EKF, RMS = 6.5e−4.

Figure 4-11: Amplitude spectrum comparison based on the segment displacement time series
for the generation of the wave and the absorption time series of both the ARC algorithms. Tp =
2 s, Hs= 0.4 m, θ = 44 ◦, Time window spectrum = [100, 500] s.

Figure 4-12 shows snapshots of the segment displacement time series. In this snapshot the
Rexroth ARC shows a poor absorption performance for the high frequency components in the
time series compared to the ARC EKF. This corresponds to the theoretical transfer function
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in Figure 2-2 (yellow line), in which the Rexroth ARC shows a decrease in performance for
frequencies higher than 1 Hz.

(a) ARC Rexroth, RMS = 1.9e−2. (b) ARC EKF, RMS = 1.5e−2.

Figure 4-12: Snapshots of absorbing segment displacement time series of both the ARC algo-
rithms compared to the time series for the generation of the wave. Tp = 2 s, Hs= 0.4 m, θ =
44 ◦.

Different values for Tp, Hs and θ are chosen for the wave shown in Figure 4-13. Although the
Rexroth method shows a good spectrum for this combination of wave characteristics, the EKF
shows a slight improvement. Based on this figure this improvement is especially noticeable
for the higher frequencies (1− 3 Hz).

(a) ARC Rexroth, RMS = 5.5e−4. (b) ARC EKF, RMS = 5.2e−4.

Figure 4-13: Amplitude spectrum comparison based on the segment displacement time series
for the generation of the wave and the absorption time series of both the ARC algorithms. Tp =
1.8 s, Hs= 0.3 m, θ = 15 ◦, Time window spectrum = [100, 500] s.

Figure 4-14 shows snapshots of the segment displacement time series. Although the time series
show equal RMS errors, the results show that the higher frequencies are absorbed better by
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the ARC EKF. This corresponds with the spectrum results in Figure 4-13.

(a) ARC Rexroth, RMS = 1.2e−2. (b) ARC EKF, RMS = 1.2e−2.

Figure 4-14: Snapshots of absorbing segment displacement time series of both the ARC algo-
rithms compared to the time series for the generation of the wave. Tp = 1.8 s, Hs= 0.3 m, θ
= 15 ◦.

As the propagation angle of the reflected wave increases, the error between the absorption and
generation energy increases for the Rexroth method (Figure 4-15). The larger the propagation
angle of the wave, the smaller the necessary segment displacements (Figure 2-5). For large
wave angles, this discrepancy can not be compensated by the 2D filter (Eq. (2-3)). The
adaptive behaviour of the ARC EKF shows a good fit for the absorption energy for the full
frequency range, resulting in a significantly lower RMS error.

(a) ARC Rexroth, RMS = 5.5e−4. (b) ARC EKF, RMS = 3.9e−4.

Figure 4-15: Amplitude spectrum comparison based on the segment displacement time series
for the generation of the wave and the absorption time series of both the ARC algorithms. Tp =
2.3 s, Hs= 0.3 m, θ = 35 ◦, Time window spectrum = [100, 500] s.

Figure 4-16 shows snapshots of the segment displacement time series.
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(a) ARC Rexroth, RMS = 1.1e−2. (b) ARC EKF, RMS = 6.7e−3.

Figure 4-16: Snapshots of absorbing segment displacement time series of both the ARC algo-
rithms compared to the time series for the generation of the wave. Tp = 2.3 s, Hs= 0.3 m, θ
= 35 ◦.

Figure 4-17 verifies the major improvement by the ARC EKF for oblique waves. Although
both algorithms show a discrepancy in the spectrum for the interval 1 − 2 Hz, the EKF
algorithm shows a much improved peak amplitude.

(a) ARC Rexroth, RMS = 1.3e−3. (b) ARC EKF, RMS = 1.0e−3.

Figure 4-17: Amplitude spectrum comparison based on the segment displacement time series
for the generation of the wave and the absorption time series of both the ARC algorithms. Tp =
2.2 s, Hs= 0.6 m, θ = 40 ◦, Time window spectrum = [100, 500] s.

Figure 4-18 shows the corresponding segment displacement time series.
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(a) ARC Rexroth, RMS = 2.7e−2. (b) ARC EKF, RMS = 2.3e−2.

Figure 4-18: Snapshots of absorbing segment displacement time series of both the ARC algo-
rithms compared to the time series for the generation of the wave. Tp = 2.2 s, Hs= 0.6 m, θ
= 40 ◦.

The results in this section show that the ARC EKF delivers a steady performance for different
peak periods, significant wave heights and wave angles. The Rexroth ARC only delivers decent
performance for a certain combination of wave characteristics and especially lacks performance
regarding the absorption of oblique waves. Introducing wave angle estimation led to a major
improvement for the absorption of these waves. Based on the segment displacement spectra
and the corresponding time series the ARC EKF shows an improved for the absorption of
higher frequencies.

4-3-1 Segment Displacement Prediction

To determine the quality of segment displacement predictions, the displacements will now be
based on the predicted wave heights (Eq. (3-13)), instead of the real-time wave heights. A
comparison will be made with respect to the real-time segment displacements of the ARC
EKF. This is done for the wave corresponding to Figure 4-17. These real-time and predicted
segment displacement time series are compared to the time series for the generation of the
wave, shown in Figure 4-19. The prediction horizon is set on Tpred = 200 ms.
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Figure 4-19: Amplitude spectrum comparison based on the real-time and predicted (PRED) seg-
ment displacement time series of the ARC EKF for the absorption of the wave versus the time series
for the generation of the wave. Tp = 2.2 s, Hs= 0.6 m, θ = 40 ◦, Time window spectrum =
[100, 500] s, RMS prediction spectrum: 1.1e−3, RMS real-time spectrum: 1.0e−3.

Although the predicted amplitude spectrum has a slightly increased RMS error with the re-
spect the generation spectrum, the difference compared to the real-time spectrum is minimal.
Figure 4-20 shows a snapshot of both the predicted and the real-time segment displacement
time series compared the time series for the generation of the wave.
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Figure 4-20: Snapshot of the real-time and predicted absorbing segment displacement time
series of the ARC EKF compared to the time series for the generation of the wave. Tp = 2.2 s,
Hs= 0.6 m, θ = 40 ◦, RMS predicted segment displacements: 2.4e−2, RMS real-time segment
displacements: 2.3e−2.

Also for the time series the RMS error has slightly increased for the predicted segment dis-
placements. Despite these slightly increased RMS errors, the absorption performance for a
prediction horizon of 200 ms still shows an improvement with respect to the Rexroth ARC
(Figures 4-17 and 4-18).

4-3-2 Short-crested Waves

In the case of short-crested waves the propagation angles of each of the frequency components
are based on a spreading function [1]. Although it is considered as a possible wave pattern,
it does not often occur in testing facilities. As discussed before, the wave angle estimation
shows a poor performance for multiple directions (Figure 3-24). For this reason a single wave
angle is estimated based on the ten frequency components with the largest amplitudes. Only
the few largest have been chosen, as they have the most influence on the segment motion.
The settings for the water height, hinge height and the ARC EKF parameters are equal to
the previous simulations for irregular reflected waves. The amplitude spectrum results for the
two ARC algorithms are shown in Figure 4-21.
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(a) ARC Rexroth, RMS = 1.2e−3. (b) ARC EKF, RMS = 8.7e−4

Figure 4-21: Amplitude spectrum comparison based on the segment displacement time series
for the generation of the wave and the absorption of the wave for both the ARC algorithms. Tp

= 2 s, Hs= 0.45 m, Time window spectrum = [100, 500] s, Spreading parameter s = 1.

Figure 4-22 shows snapshots of the corresponding segment displacement time series.

(a) ARC Rexroth, RMS = 2.4e−2. (b) ARC EKF, RMS = 2.3e−2.

Figure 4-22: Snapshots of absorbing segment displacement time series of both the ARC algo-
rithms compared to the time series for the generation of the wave. Tp = 2 s, Hs= 0.45 m,
Spreading parameter s = 1.

Based on these results, it can be concluded that the ARC EKF, despite the estimation of a
single wave angle, shows a substantial improvement regarding the absorption of short-crested
waves with the respect to the Rexroth ARC.

4-3-3 Hybrid ARC Algorithm

The ARC EKF algorithm brings a substantial improvement for the absorbing segment dis-
placements as soon as the wave model identification has matured. As the start-up phase for
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the Rexroth ARC is shorter, the algorithm shows better short-term absorption performance.
In order to achieve a good performance for the full time interval of the wave, the two algo-
rithms can be combined to form a hybrid ARC algorithm. The current Rexroth ARC will
be responsible for the absorption of the first part of the reflected wave and after a certain
time interval, the ARC EKF will take over. Optimally, the ARC EKF should take over as
soon as the wave model identification has sufficiently matured. The moment of transition
can be made dependent on the fit of the model predicted free-surface elevation time series.
In a real scenario, this moment will depend heavily on the complexity of the wave. For the
simulated waves in this report, results show (Figures 4-8 and 4-9) that after the first 100 s of
the time series the accuracy of the wave model is sufficient to deliver an improved absorption
performance. For this reason the fixed moment of transition in the upcoming simulation has
been set on 100 s.

Transition Time Series It is important that the transition between the two time series
happens as fluent as possible, because extra irregularities result in the generation of additional
disturbance waves. Irregular jumps in the segment displacement time series can also clash
with the mechanical limits of the wave generator. A smooth transition can be obtained by
fading to the new time series over a certain time interval. Figure 4-23 shows the fading over
an interval of just one second is enough to avoid strong irregularities in the hybrid time series.
With a sampling frequency of 25 Hz, a transition of one second corresponds to 25 time steps.

Figure 4-23: Hybrid system: transition from the time series of the Rexroth ARC to the time
series for the ARC EKF.

Improvement Rexroth ARC For the first part of the wave, the 3D implementation of
Rexroth will still deliver poor absorption results for oblique waves (Figure 4-11). As the
estimate for the propagation angle is reasonably accurate after a short time period (Figure
3-26), it could also be used to scale the segment displacements of the Rexroth ARC for the
early stage of the reflected wave. The current 3D implementation of Rexroth is omitted and
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segment displacements delivered by the Rexroth ARC transfer function are multiplied with
cos(θ̂k), with θ̂k as the estimated wave angle for every time step k. The spectrum improvement
is shown in Figure 4-24, for the wave corresponding to Figure 4-11. The spectra are based on
the time interval of [10, 100] s. The left figure shows the spectrum for the Rexroth ARC
including its original 3D implementation and the right one for the new 3D implementation
based on the estimated wave angle (REXROTH+).

(a) Rexroth ARC: Current 3D implementation, RMS =
8.8e−4.

(b) Rexroth ARC: New 3D implementation, RMS =
5.6e−4.

Figure 4-24: Amplitude spectrum comparison based on the segment displacement time series for
the generation of the wave and the absorption of the wave, for the Rexroth ARC with the current
and the new 3D implementation. Tp = 2 s, Hs= 0.4 m, θ = 44 ◦, Time window spectrum =
[10, 100] s.

Based on these results, including the estimated wave angle for the Rexroth ARC brings a
major improvement.

Hybrid Performance Implementing the enhanced Rexroth ARC for short-term absorption
and the ARC EKF for long-term absorption, the hybrid ARC delivers good performance over
the full time interval of the incoming wave. To clarify the improvement by the hybrid system,
Figure 4-25 shows the spectra of both the ARC EKF and the hybrid ARC compared to the
generation spectrum for the complete time interval after the start-up phase ([10, 500] s).
The ARC EKF shows an amplitude discrepancy for the frequency intervals 0−0.3 Hz and 1−3
Hz, due to the immature model identification in the early stage of the free-surface elevation
time series. The hybrid method shows an improved spectrum for the full time interval of the
reflected wave.
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Figure 4-25: Amplitude spectrum comparison based on the ARC EKF and hybrid ARC segment
displacement time series for the absorption of the wave versus the time series for the generation
of the wave. Tp = 2 s, Hs= 0.4 m, θ = 44 ◦, Time window spectrum = [10, 500] s, RMS
ARC EKF spectrum: 7.6e−4, RMS hybrid ARC spectrum: 5.4e−4.

The RMS error for the segment displacement spectrum of the Rexroth ARC, including its
original 3D implementation, is 9.0e−4 for the full time interval ([10, 500]). Considering the
RMS errors in Figure 4-25, the hybrid ARC shows a 40% better fit for the spectrum compared
to the current Rexroth ARC. Based on these results, it can be concluded that the hybrid ARC
shows a substantially improved performance regarding the full time interval of this reflected
wave.
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Chapter 5

Real Scenario

This chapter discusses the difficulties that arise when generating waves in laboratory. The
simulations consider a more ideal situation compared to a real scenario. Sensors are subject
to measurement noise, and the movement of the wave generator segments in water introduces
additional effects.

5-1 Measurement Noise

When dealing with sensors for feedback information, measurement noise will often be present.
The EKF is powerful when it comes to state estimation in the presence of noise, as it can be
specified in the matrix R. The measurement noise of the wave height sensor can be determined
by checking the variance of the measurements while keeping the signal, in this case the water
level, stable. To check the influence of the measurement noise on the identification of the wave,
noise is added to the free-surface elevation measurements in Figure 4-2. Again, a simple wave
is used to clarify the performance difference of the two ARC methods. This time the hybrid
ARC is used instead of the ARC EKF, because it has proven to deliver the best absorption
performance regarding the full time interval of the reflected wave (besides the start up phase).
The additional noise has a variance of σ2 = 1 · e−3. Figure 5-1 shows snapshots of the time
series for the segment displacements of the Rexroth ARC and the Hybrid ARC, based on the
noisy measurements. The parameter values for the EKF are equal to the values used for the
result in Figure 4-2. As regular waves are identified faster than irregular waves, the moment
of transition for the hybrid ARC has been set on 20 s. The RMS errors of the time series
correspond to the time interval [10, 200] s.

Master of Science Thesis V. Amijs



66 Real Scenario

(a) ARC Rexroth, RMS = 4.1e−3. (b) Hybrid ARC, RMS = 2.2e−3.

Figure 5-1: Snapshots of absorbing segment displacement time series for the Rexroth ARC and
the hybrid ARC compared to the time series for the generation of the wave. Measurement noise
has been added to the free-surface elevation time series of the regular wave. T = 1 s, H= 0.16
m, θ = 0 ◦, Measurement noise: σ2 = 1e−3.

The segment displacement time series for the hybrid ARC show a decreased RMS error with
respect to the generation time series. This improved result has partially been achieved due to
the steady performance of the EKF, despite the presence of measurement noise. This becomes
clear when looking at the corresponding amplitude spectra for the segment displacement time
series, in Figure 5-2.

(a) ARC Rexroth, RMS = 2.4e−4. (b) Hybrid ARC, RMS = 1.6e−4.

Figure 5-2: Amplitude spectrum comparison based on the segment displacement time series for
the generation of the wave and the absorption time series of the Rexroth ARC and the hybrid
ARC. f = 1 Hz, θ = 0 ◦, H= 0.16 m, Time window spectrum = [10, 200] s, Measurement
noise: σ2 = 1e−3.

The Rexroth ARC shows some additional energy for low frequencies due to the measurement
noise, resulting in a increased RMS error compared to the situation without noise (Figure 4-
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4). The steady performance of the EKF results in minimal additional energy in the spectrum
due to the noise. The RMS error of the hybrid ARC spectrum even shows an improvement
compared to the ARC EKF spectrum for the wave without noise. This emphasizes the power
of the hybrid ARC, to deliver an improved performance for the full time interval of the wave.

5-2 Additional Effects

A major difficulty with wave generation in laboratory is the additional effects inherent to
the movement of a rigid body in water. This introduces the difference between far-field and
near-field waves. The far-field waves correspond to the fully developed desired wave and the
near-field waves, so called evanescent waves, arise as a result of the moving segment and
decrease with the distance from the wave generator. Eq. (5-1) shows the wave equation as
described in [2]. The first part corresponds to the far-field solution and the second part to
the evanescent modes. The damping term e−knx causes these modes to fade as the distance
to the wave generator increases.

η(x, t) = c · sinh(kh) cos(ωt− kx) +
∞∑
n=1

cn · sin(knh) e−knx sin(ωt) (5-1)

A profound derivation of these evanescent modes can be found in [2]. In general only the
far-field solution is considered when using the Biésel transfer function for wave generation.
Although these evanescent modes can be omitted for the desired fully developed wave, these
will still be measured by the sensors. In the case that the wave generator is expected to
simultaneously generate a desired wave and absorb the reflected waves, the undesired wave
will be determined by subtracting the desired free-surface elevation from the measured one.
The remaining free-surface elevation is seen as the reflected wave and is used as an input
for the ARC algorithm. To get an accurate description of the reflected wave, the evanescent
modes of the desired wave need to be subtracted as well. The second order time series for
the progressive wave and additional evanescent modes can be calculated beforehand, so these
can be taken into account for the desired wave height.

More of these effects play a role when considering the generation of 3D waves [2]. The snake-
like movement of the segments necessary to absorb an oblique wave will never show a perfectly
smooth sine, as the width of the segments is not infinitely small. The resulting spurious waves
depend on the wavelength λ, the propagation direction θ and the segment width. Incorrect
energy is fed into the desired wave due to the variance from the actual displacement with
respect to that of a perfect sinusoidal motion. This discrepancy also results in incorrect
directed energy causing spurious wave travelling in directions different than the one of the
desired wave. These effects cause the actual transfer function from the segment displacement
to the wave height to be slightly different than the theoretical Biésel function. A detailed
description of these phenomena can be found in [7]. H.A. Schäffer and C.M. Steenberg [9]
provide a complete wave generation solution correct to second order, including these additional
effects to suppress the generation of spurious waves.
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Chapter 6

Conclusion and Recommendation

6-1 Conclusion

Based on the results in this report it can be concluded that the ARC EKF leads to an improved
absorption performance for reflected waves with diverging propagation angles, frequencies and
wave heights. Especially the wave angle identification is proved to be very useful and can
even be implemented in combination with the Rexroth ARC (Figure 4-24). The EKF showed
its capability of identifying a first order wave model, based on the measurements of a second
order reflected wave. The resulting first order segment displacement time series are proved
to be sufficient to substantially increase the absorption performance of this complex wave.
Additional tests will need to be performed in order to see whether the first order approximation
is sufficient to describe even higher order wave properties, present in e.g. long waves.

As the quality of the wave parameters provided by the DFT depends heavily on its window
size, the identification process will need time to mature. This can lead to a lacking absorption
performance in the early stages free-surface elevation time series. The Rexroth ARC shows
reasonable performance already in an early stage of the reflected wave, but does not improve
over time. A solution has been developed in the form of a hybrid ARC. The short-term
absorption can be provided by the (enhanced) Rexroth ARC and, when the accuracy of the
model is sufficient, the ARC EKF takes over. This leads to an increased performance for the
full time interval of the wave (Figure 4-25).

Of course, these test results are based on simulations. The real performance of the hybrid ARC
should be tested in an actual testing facility before improvement can be guaranteed. Currently,
ARC algorithms are often not used during actual test runs because their performance falls
short to add substantial value regarding the suppression of undesired waves. In the case of
absorbing reflected waves while simultaneously generating desired waves, the ARC segment
displacement adjustments often result in additional perturbations which do not outweigh the
absorption performance.

From a broad perspective, if a clear increase in ARC performance can also be verified in an
actual test scenario, this can add substantial value to the importance of ARC algorithms for
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the testing of offshore structures. This improvement can put Rexroth in a leading role when
it comes to ARC algorithms, which subsequently results in a stronger market position.

6-2 Recommendation

Based on the results in this report, wave identification is a promising method in the world of
ARC algorithms. The influence of the computation time of the identification process has to
be investigated during actual test runs. Although short-term predictions can be made, the
quality of the absorbing segment displacements decrease as the prediction horizon increases
(Figures 4-19 and 4-20). During the last years, the computation power of computers have
increased, creating the possibility to use more complex algorithms. Future researches could
focus on the identification of higher order models to gain an even higher accuracy of the wave
model.

The simulations in this report assume no segment motion with the respect to the free-surface
elevation measurements. In a real scenario, the wave height measurements are influenced
by the movement of the segment, as the sensors are mounted on the surface. Although the
segment motion has been incorporated in the EKF (Eq. (3-6)), additional researched will
need to be done in order to clarify the effect of the segment displacements to the performance
of the DFT.

Another research could focus on the optimal identification algorithm for the absorption of
waves. Grounded reasons led to the choice of EKF for the proposed ARC algorithm in
this report but, considering the large variety of identification algorithms, a benchmarking
comparison might lead to a more suitable method for this application.
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