
Astrodynamics and Space Missions

Descent, Touchdown and
Repositioning
of a hopping planetary lander on Enceladus

Guido C. Holtkamp

M
as

te
ro

fS
cie

nc
e

Th
es

is





Descent, Touchdown and
Repositioning

of a hopping planetary lander on Enceladus

Master of Science Thesis

For the degree of Master of Science in Spaceflight at Delft University of
Technology

Guido C. Holtkamp

Graduation Date: August 20, 2014

last document update (no changes in content): October 6, 2014

Faculty of Aerospace Engineering (AE) ¨ Delft University of Technology



Copyright c© Astrodynamics and Space Missions (A&SM)
All rights reserved.



“Wenn wir den Mast mit dem Magneten nach vorne klappen, dann hängt er doch
vor der Lokomotive und zieht sie an, und sie muß immer hinter ihm herfahren.
Und in den Kurven legen wir den Mast einfach seitwärts.” “Oh!” sagte Jim
und bekam kugelrunde Augen vor Staunen, und dann sagte er nach einer Weile:
“Donnerwetter!” und schließlich sagte er: “Ja wirklich!”
— Jim Knopf und die Wilde 13 (Michael Ende)

Cover image: Enceladus in front of Saturn’s rings. From photojournal.jpl.nasa.gov, PIA10485.





Preface

Since the spectacular finding of possible liquid water reservoirs on Enceladus by the Cassini
spacecraft, scientists are very interested in exploring the Saturnian system in more detail.
In particular, in-situ measurements over a long period of time would significantly contribute
to our understanding of the moon’s ecosystem. Both NASA and ESA currently investigate
possibilities how such a mission could be realized.

As the final project of the B.Sc. curriculum, a group of students including the author of this
report analyzed the feasibility of a planetary lander for surface investigation of Enceladus. It
was concluded, that a hopping lander in combination with an orbiter for communication can
answer the scientifically important questions, see Mission to Enceladus for Terrain, Ocean
and Plume Exploration (Ampe et al., 2009). This thesis continues the work and focuses on
the design of a comprehensible guidance, navigation and control system for both the descent
and the repositioning process.

This thesis work would not have been possible without the help and support of many people.

I would like to express my very great appreciation to my supervisor Dr. E. Mooij, who en-
abled me to work on this very interesting topic. His expertise, his patience and his drive for
perfection added greatly to this report, and it was always possible to knock on his door for
questions. I am also grateful for the work and time he invested in co-authoring the paper
Guidance, Navigation and Control for Landing and Repositioning on Saturn’s Moon Ence-
ladus, which is based on this report and will be presented at the AIAA/AAS Astrodynamics
Specialist Conference in San Diego, California, in August 2014.

My thanks also go to Dr. P. Visser, Dr. D. Choukroun, ir. Svenja Woicke and Dr. E. Mooij,
for taking the time to read my thesis and for being part of the graduation committee.

I greatly appreciate the company and assistance of my fellow students from the department
of Astrodynamics and Space Missions. I enjoyed my graduation time, not least because of
you.

Special thanks to my friends, who encouraged me and endured my bad moods, if I got stuck
in a problem.

I would especially like to thank my family, in particular my parents, who always supported
me, and without whom this work, and in fact everything else in my life, would have been
impossible.

Master of Science Thesis Guido C. Holtkamp
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Abstract

This report deals with the design of a complete guidance, navigation and control system
for a planetary lander on Enceladus, for both descent and repositioning. A basic lander
model with a main engine, attitude thrusters and a landing gear is presented, for which the
equations of motion in different reference frames are derived, including the effects of third
body perturbations and non-homogeneous gravity fields. The guidance system incorporates
a gravity-turn guidance logic for a flat and a spherical moon model for the initial descent
phase, a quadratic guidance logic for both pinpoint landing and repositioning, a velocity
nullifying logic for the terminal guidance phase and a ballistic guidance logic for a more fuel-
efficient repositioning. The control system consists of a linear quaternion controller combined
with a pulse-width-pulse-frequency modulator. The navigation system is build around an
Inertial Measurement Unit with an extended Kalman filter to fuse the attitude and position
measurements. The on-board software incorporates a basic hazard avoidance system, which
uses a simulated LIDAR scan of the target area to generate a hazard map. The retargeting
is based on a reachability and fuel consumption analysis. The spacecraft is capable of fully
autonomous landings.

This guidance, navigation and control system is combined in a simulation software written
in C++ to test the system performance in presence of various error sources. All program
elements have been tested with results from literature.

The Monte Carlo simulations of the full GNC system include variances of the lander’s state
vector and of the GNC configuration parameters. The success rate is 90% for the descent
phase, and 98% for the repositioning phase. The mean landing precision is in the order of
1 m, with velocity and pointing errors of 0.2 m/s and 1.4˝, respectively. Stricter requirements
on the lander’s mass distribution, and the implementation of a feedback velocity nullifying
guidance scheme can increase the mission success rate even further.

The thesis work shows, that a landing mission to Enceladus is possible with current tech-
nology. The Enceladus Lander Simulator is comprehensive software package for descent and
repositioning simulations, and its modularity allows extensions in the future.

Master of Science Thesis Guido C. Holtkamp
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Chapter 1

Introduction

Voyager 1 was the first space probe that performed a flyby at Enceladus. The images taken
in 1980 revealed a smooth and very reflective surface. The absence of impact craters or other
topographic features proved that the moon’s surface is very young and undergoes a - probably
still active - resurfacing process. This discovery came as a big surprise for the scientific
community, as no one expected volcanic activity on a small and icy moon (Squyres et al.,
1983). Additional measurements of Voyager 1 confirmed previous Earth-based observations,
which indicated that the maximum density of Saturn’s E-Ring almost coincidences with the
orbit of Enceladus, which in turn suggests that Enceladus constantly replenishes the unstable
ring (Terrile and Cook, 1981). Several theories existed to explain the mass ejection of the
moon (Terrile and Cook, 1981): due to tidal heating induced by a resonance with Dione,
Enceladus might have a liquid subsurface ocean, which reaches the surface through cracks
caused by tidal stresses or by meteoroid impacts. In case the moon has a solid interior, the
mass ejection can be caused by volatiles pockets inside the crust that occasionally burst due
to excess pressure.

About one year after Voyager 1, Voyager 2 passed Enceladus at a lower altitude, enabling the
Imaging Science System (ISS) to take pictures with a higher resolution. With the help of these
images, it was possible to determine five different topographic regions. The youngest surface
areas are only a few hundred million years old, again indicating a still ongoing resurfacing
process, which additionally is supported by the discovery of characteristic tectonic faults
(Kargel and Pozio, 1996). According to Stone and Miner (1982), radioactive decay cannot
provide a sufficient amount of energy for the tectonic activity - tidal heating is a more likely
source of energy, but the orbital eccentricity of Enceladus might be too low. Finding the
answer to this question was a major scientific goal of the Cassini-Huygens mission.

The double space probe Cassini-Huygens, designed specifically for the investigation of the
Saturnian system, was launched in 1997 and performed several close flybys of Enceladus in
2005. Analysis of the magnetometer data indicated the presence of a thin, spatially nonhomo-
geneous atmosphere concentrated at the lower latitudes. To investigate this anomaly further,
the subsequent flybys focused the moon’s south polar region. Images taken with the ISS of
Cassini showed plumes emanating from this area, ejecting material to altitudes of 400 km and
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higher. Further measurements indicated that these geysers have time-dependent character-
istics and originate from the so-called Tiger Stripes, four parallel, linear ravines, about 500
m deep and 2 km wide (Porco et al., 2006). A large amount of the ejected plume material
does not leave Enceladus’ sphere of influence and falls back to the surface, which probably is
the reason for the very smooth surface of the south polar region. Results from the Compos-
ite Infrared Spectrometer (CIRS) also indicated that the surface at the bottom of the Tiger
Stripes reaches much higher temperatures than the surface further away from the ravines -
up to 145 K, versus a normal temperature of 52 K (Spencer et al., 2006). The mechanisms
behind Enceladus’ cryovolcanism are currently the subject of scientific investigations, but the
verification of one theory requires additional data from instruments and probes, which are
not part of the payload of Cassini.

The discoveries of Cassini are even more spectacular due to the possible existence of a habitual
zone underneath the surface. Ecosystems as we know them require liquid water, nutrients
and source of energy (McKay et al., 2008). It is proven that the latter two conditions are
fulfilled, as Enceladus’ hot spots receive energy from an undetermined source and eject water,
nitrogen compounds and carbon compounds. In case a future mission confirms the existence
of a subsurface ocean, Enceladus would be the only known celestial body next to Europa which
might posses the key ingredients of life - with the important advantage, that the moderate
environmental conditions on Enceladus (especially the lower radiation levels) simplifies in-
situ measurements. According to McKay et al. (2008), the habitability of Enceladus can be
better estimated, if geological and chemical mechanisms behind the cryovolcanism and their
temporal variabilities are known. A geochemical cycle on Enceladus, in which crust material
is detached by a subsurface ocean and then expelled via the geysers resurfacing the crust, has
a positive effect on the habitability of the subsurface ocean (Parkinson et al., 2008), but the
existence of such a cycle is only predicted and must be verified by additional measurements.
These measurements should also determine the amount and composition of the E-ring material
that Enceladus recollects in its orbit, as the plume material will partially undergo chemical
reactions and thus be an additional source of new material (Parkinson et al., 2008).

A lander mission to Enceladus will be able to fulfill the main scientific goals being the investi-
gation of the south-polar plumes and the subsurface ocean, the characterization of the surface
and interior, and the analysis of the moon’s biologic potential. The thesis work focuses on
answering the following question:

Is it possible with current guidance, navigation and control technology to safely
land and reposition a hopping lander on Enceladus?

To answer this question, a flight simulator is developed, that incorporates the complete guid-
ance, navigation and control system of a basic lander model. Each chapter of this report
focuses on a single aspect of the Enceladus Lander Simulator.

Chapter 2 introduces the Saturnian system and the surface and landscape of Enceladus. This
is necessary to derive the requirements for the landing accuracy and to generate a realistic
surface hazard map, which will be used as input for the hazard avoidance system.

Chapter 4 discusses all tools necessary to describe the motion of the lander during the mis-
sion. This includes the definition of reference frames and coordinate systems, the integration
processes, the perturbing forces and the full equations of motion.
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Chapter 5 presents all elements of the guidance, navigation and control subsystems, and
the principle of autonomous hazard avoidance. Each subsystem is tested and configured
separately, and the simulation results are shown at the end of each section.

Chapter 7 gives a concise overview of the Enceladus Lander Simulator setup. It discusses
the principles of Monte Carlo simulations, the program structure, the user interface and the
method of testing of each program element.

Chapter 8 discusses the simulation results for both the descent and the repositioning phase.
The Monte Carlo simulations include variances of the lander’s state vector and of the GNC
configuration parameters to simulate a imperfect system, and to allow a sensitivity analysis,
which is necessary to identify the parameters with the most influence on the mission success.

Chapter 9 summarizes the most important conclusions that can be drawn from this thesis
work. Furthermore, it discusses the modifications that can be carried out to improve the
Enceladus Lander Simulator, and mentions the areas for possible future work.
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Chapter 2

Environment of Enceladus

Section 2-1 deals with the influence of the Saturnian system, such as magnetic and grav-
itational disturbances and dust particles, the in-orbit spacecraft and the lander during its
mission phases.

Data about topography and chemical composition of Enceladus’ surface is essential for a
adapting the touchdown and repositioning system to the target environment: the landing gear
must be able to cope with the elevation, roughness, flexibility and adhesive characteristics of
the moon’s surface, while the guidance, navigation and control GNC system ensures that the
spacecraft is within its flight envelope. This information is collected in Section 2-2.

2-1 The Saturnian System

Enceladus is one of Saturn’s 53 (named) moons, and one of the few moons with a sufficient
mass to form an ellipsoid shape. Figure 2-1 gives an overview of the Saturnian System. All
moons exert gravitational forces on each other to some degree; these so-called third body
perturbations are discussed in Section 4-7-1.

Enceladus moves through the densest part of Saturn’s E-ring, mainly due to the fact that the
south-polar geysers are a source for the E-ring particles (see Fig. 2-2). The particle density,
however, is very low: Cassini’s Cosmic Dust Analyzer (CDA) with a sensor area of 50 cm2

and a sensitivity for particles larger than 2 µm registered a peak count rate of 4 particles per
second (Spahn et al., 2006). Consequently, the drag induced by the E-ring particles will only
have an extremely small effect on the motion of the spacecraft and the lander.

Saturn’s orbital semi-major axis is 9.537 AU, which results in an average solar flux in the
Saturnian system of about 15 Wm´2, which is 10% of the solar flux at Earth. Perturbations
due to solar-radiation pressure are for satellites orbiting Earth only a minor disturbance - the
effects on a spacecraft orbiting Enceladus are negligible, as demonstrated in Section 4-7-2.
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6 Environment of Enceladus

Figure 2-1: Saturn’s rings and its larger moons (NASA, 2012b)

Figure 2-2: Light scattered by the E-ring particles and the plume material ejected by Enceladus
(ESA, 2012)
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2-2 Surface and Landscape 7

2-2 Surface and Landscape

Enceladus was discovered by William Herschel in 1789 as the sixth largest moon of Saturn. As
a consequence of its surface H2O ice, the moon has a spherical albedo - the ratio of the total
reflected light and the incident light - of 0.99, making it the most reflective celestial object
in the Solar System. Enceladus follows an almost elliptical orbit through the densest part of
Saturn’s E-ring, with a semi-major axis of 238,037 km, an orbital eccentricity of 0.0047 and
an inclination of 0.009˝, which results in an orbital period of 1.37 days (Spencer et al., 2006).
As many other moons that move close to their central objects, Enceladus’ rotational period
is equal to its orbital period due to tidal locking (ω “ 5.30773 ¨ 10´5 rad/s). The general
characteristics of Enceladus are collected in Table 2-1.

Enceladus shape is an almost perfect ellipsoid; the maximum deviation is below 2 km (Porco
et al., 2006). In a standard XYZ Cartesian coordinate system, the ellipsoid equation is given
as

x2

a2 `
y2

b2
`
z2

c2 “ 1 (2-1)

where x, y and z mark the locations of a surface point and a, b and c are the values of the
semi-axes of the ellipsoid. By means of limb measurements with Cassini’s ISS, the values of
the semi-axes were found to be a “ 256.6˘0.6 km, b “ 251.4˘0.2 km and c “ 248.3˘0.2 km
(Thomas et al., 2007). The ellipsoid data often reveal information about the internal structure
of a planet or moon, but at the moment it is not possible to determine with absolute certainty
whether Enceladus has a differentiated or a homogeneous interior (see Porco et al. (2006) and
Thomas et al. (2007)).

Characteristic Value Source

distance from Saturn 3.95 Rsat Coustenis et al. (2009)
orbital period 1.370218 days NASA Fact Sheet1
rotational period synchronous rot. NASA Fact Sheet
orbital inclination (to equator Sat.) 0.009˝ NASA Fact Sheet
orbital eccentricity 0.0045˝ Coustenis et al. (2009)
radius 252.1 km Spencer et al. (2006)
density 1,610 kgm´3 Roatsch et al. (2009)
mass 10.8 x 1019 kg Jacobson et al. (2006)
gravitational parameter µ (=GM) 7.2096 km3s´2 Jacobson et al. (2006)
gravitational acceleration 0.12 ms´2 Coustenis et al. (2009)
spherical albedo 0.99 NASA Fact Sheet
escape velocity 0.235 ms´1 Coustenis et al. (2009)
surface temperature 114-157 K Coustenis et al. (2009)
1 http://nssdc.gsfc.nasa.gov/planetary/factsheet/saturniansatfact.html (Oct. 2011)

Table 2-1: General characteristics of Enceladus

Enceladus has several topographic regions (see Fig. 2-3), indicating a complicated geological
history. The northern hemisphere of the moon is the oldest terrain, and is heavily cratered.
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8 Environment of Enceladus

Figure 2-3: Left: High-resolution ISS picture of Enceladus. The different tectonic regions are
clearly visible, see text for discussion (NASA, 2012b). Right: Absorption maps of Enceladus

generated with Cassini VIMS data. There are strong 3-µm ice and 3.44-µm organic absorptions
marking the Tiger Stripes (Brown, Clark, et al., 2006)

Some craters at the lower latitudes were flattened over time due to mass flows in that region.
This viscous relaxation is an important proof for the geological activity of Enceladus and
was the focus of many studies before Cassini discovered the geysers in the south polar region
(Porco et al., 2006). The remaining surface shows no signs of impact craters and is geological
young. These relatively smooth terrains, however, are finely fractured (Porco et al., 2006) as a
result of internal activity. Figure 2-5 shows the surface map of Enceladus, including the names
of the most prominent features. The topography variations are clearly visible. The landing
site is chosen to be near the Tiger Stripe Baghdad (see target definition in Section 8-2).

Near-infrared spectrometric investigation of Enceladus by means of Earth-based telescopes
showed that Enceladus’ surface consists of partially crystalline H2O ice, which explains the
high albedo (Brown, Clark, et al., 2006). Based on long-term observations, there are indica-
tions that the reflectance and thus structure of the ice changes over time. With the Visible
and Infrared Mapping Spectrometer (VIMS) of Cassini it was possible to investigate the com-
position and properties of the surface, especially in the geological active area of the south
polar region. The H2O ice grain size near the Tiger Stripes is 0.1 to 0.3 mm and 0.05 to 0.15
mm for the rest of the planet (Brown, Clark, et al., 2006; Jaumann et al., 2008). Conse-
quently, the surface consists of an ice dust layer rather than a massive ice shell. This so-called
regolith is caused by the accumulation of fine material over time, probably due to dispersed
material from impacts and the recollection of E-ring material (Porco et al., 2006). Strong
absorption lines indicate that there is a high abundance of CO2 near and in the Tiger Stripes,
which in turn suggests that there is a constant replenishment. The CO2, however, exists in
a pure form only in the colder, northern regions of the moon; the CO2 in the south-polar
region is complexed, probably with the H2O ice (Brown, Clark, et al., 2006). A south polar
atmospheric column with a base area of 2 cm2 contains about 1010 CO molecules (Brown,
Clark, et al., 2006). Simple organic material can be found near the Tiger Stripes, see Fig. 2-3.
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The existence of ammonia (NH3) on Enceladus is the basis of several studies about the mech-
anisms behind the south polar cryovolcanism. The strongest absorption lines of NH3 almost
coincide with the strongest absorption lines of H2O, which complicates a direct detection.
Due to the absence of distinct geological features, there is no direct proof of the existence of
NH3 on the moon, but it is possible to define the upper concentration limits based on the
grain size of the H2O ice. The most likely upper global concentration of NH3 on the surface is
about 2% (Brown, Clark, et al., 2006). Spots of pure NH3 are also possible as a consequence
of the resolution limit of the VIMS.

Note, that this paragraph is largely based on Porco et al. (2006). The south-polar region of
Enceladus has unique tectonic characteristics, covering about 70,000 km2 or 9% of the total
surface. Its surface is geologically young and shows a higher reflectance then the surrounding
terrain. Images of Cassini’s ISS taken during close approaches with a resolution of up to 4
m/pixel showed, that the south-polar region is cluttered with house-sized ice chunks and fine
fault lines, but almost completely free of impact craters (see Fig. 2-6). As a consequence, the
region is relatively hilly, and the distance between the elevations is between 20 and 100 m.
The Tiger Stripes are four large, roughly parallel, linear depressions with an average depth
of 500 m, a width of 2 km, a length of 130 km and a spacing of about 35 km. On both sides,
they are flanked by ridges with heights of about 100 m and widths of a few kilometers. There
are indications that there are ice blocks at the bottom of the Tiger Stripes, which originate
from the sides of the fracture. Unlike the rest of Enceladus’ surface, the Tiger Stripes are
not covered with fine H2O ice grain. It is assumed that these geological features formed too
recently for the development of regolith, or the H2O ice grains were changed (fully or partially)
by the temperature anomalies of the region and thus cannot be directly distinguished with
the a spectrographic analysis of the VIMS data. There are no impact craters within several
kilometers from the Tiger Stripes, and the few existing impact craters in the south polar
region have a diameter of less than 1 km. This suggests a surface age of 500,000 years or
younger, compared with an age of 4 billion years of the highly-cratered terrains in the northern
hemisphere.

As mentioned before, the surface level of Enceladus does not deviate more than 2 km from
the mean ellipsoid. The areas of the south polar region featuring tectonic faults are hundreds
of meters higher than the adjacent terrains. Figure 2-4 shows the variations in surface height
with respect to the mean ellipsoid for a given latitude.

The south-polar geysers seem to emanate from the Tiger Stripes. These particle jets are
ejected at several locations in many directions, all supplying a large plume, which reaches
an altitude of 435 km and more. Based on models, the mean vertical velocity of the plume
particles is 60 ms´1 (Porco et al., 2006), which is considerably lower than the local escape
velocity of 235 ms´1 (see Table 2-1). Consequently, only a small fraction of the total mass
flow can actually escape from the gravitational attraction of Enceladus and feed Saturn’s
E-ring, estimates are around 1%. The absolute values for the total mass flow and the escape
rate are uncertain, estimates vary between 4 - 150 kgs´1 and 0.04 - 1 kgs´1 (Porco et al.,
2006; Hansen et al., 2006). In turn, this mass flow is only a fraction of the calculated mass
flow required to replenish the E-ring. Cassini’s measurement results also showed temporal
variations of the E-ring’s physical properties, which indicates that the geyser characteristics
change over time.

The surface temperature depends on the location. The north pole is not illuminated by the
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10 Environment of Enceladus

Figure 2-4: Averaged limb deviations from the mean ellipsoid of Enceladus. The dots indicate
a measurement result from any longitude value, the error bars show the standard deviation. All

values lie within a ˘1.5 km deviation (Thomas et al., 2007)

Figure 2-5: ISS map from Enceladus with longitudes and latitudes (Roatsch et al., 2009)
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2-2 Surface and Landscape 11

Figure 2-6: Left: False color image (70 m/pixel) of the Tiger Stripes (blue). Mid: 37 m/pixel
detail of the marked area in the left picture. Right: 4 m/pixel detail of the marked area in the
left and mid picture. This is the image with the highest spatial resolution so far from the surface
of Enceladus. The blur is due to the spacecraft motion. Images taken from Porco et al. (2006)

Figure 2-7: Far-IR temperature pictures of Enceladus during three encounters with Cassini
(Spencer et al., 2006)

Sun since 1995 and consequently is particularly cold. Calculations suggest an upper limit
of about 40 K (Spencer et al., 2006). The field of view size of Cassini’s Composite Infrared
Spectrometer (CIRS) varies between 6 km and 18 km, which requires the implementation
of models to determine the surface temperature for smaller areas. The average temperature
increases in southern direction to about 60 K, see Fig. 2-7. According to Spencer et al. (2006),
the temperature near the Tiger Stripes are around 145˘14 K, with a very low possibility of
temperatures below 120 K - even temperatures of 180 K and more can exist in narrow areas.
This would be near the 173 K limit of a H2O/NH3 melt, which is the basis of some studies
about the cryovolcanism of Enceladus.
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Chapter 3

Lander Characteristics

This chapter gives an overview of the lander’s mass model (Section 3-1), the propulsion
system (Section 3-2), and the landing gear (Section 3-3). The data originates from the
preliminary subsystem design described in the final METOPE1 report (Ampe et al., 2009), and
as such should only be considered as a guideline and a starting point for further investigations.
This chapter closes with a list of simulator configuration parameters related to the lander
characteristics discussed in Sections 3-3 to 3-3.

The following sections consist of summaries of the most important data. For a more detailed
description of the lander and the design process, the reader is referred to Ampe et al. (2009).

The planetary lander, named Silenus, includes only those elements that are attached to the
vehicle during a repositioning cycle on Enceladus. Therefore, any orbit injection modules
or additional protective elements for the first landing are not considered part of the lander.
The mission design includes an orbiter for communication relaying and orbit insertion. The
estimated total mission cost the lander segment is 800 million Euros.

3-1 General Characteristics

The body of the planetary lander (see Fig. 3-1a) has a basic hexagonal prism shape, which is
beneficial for the attachment of external elements such as the three-legged landing gear, the
attitude thrusters and some of the instruments. The concept of an edged spacecraft body has
been used in existing missions in low-gravity environments, for example, in the MINERVA
robot as part of the Hayabusa mission, and in Philae as part of the Rosetta mission.
A special assembly reference frame, or A-frame, is used to define any location on or within
Silenus’ structure. The position and the orientation of the A-frame does not change during
the design phases, unlike the body reference frame, which originates in the vehicle’s center

1The preliminary lander design is the result of a group project of 10 students in the final phase of their
B.Sc. curriculum at Delft University of Technology. METOPE stands for Mission to Enceladus for Terrain,
Ocean and Plume Exploration
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14 Lander Characteristics

(a) Isometric view (b) Body dimensions

Figure 3-1: Isometric view of Silenus in the deployed configuration and definition of the body
dimensions with respect to the assembly frame (Ampe et al., 2009)

of mass. As a first approximation, the body reference frame will originate in the geometrical
center of the spacecraft. The origin of the A-frame is fixed in middle of the lander’s bottom
plane, see Fig. 3-1b. According to the orientation shown in that figure, the body reference
frame is shifted along the assembly reference frame’s `Z-axis by half the lander height h.

The preliminary transfer matrix between these two reference frames may be inferred from the
preliminary location of the c.o.m. (see Table 3-1) and the definition of the A-frame as shown
in Fig. 3-1b.

Characteristic Value Comment

mass at entry 335 kg incl. 20 kg contingency
mass after touchdown 300 kg mass for first hop
fuel mass repositioning 20 kg –
location c.o.m. 0.0, 0.0, 325 mm x-,y-,z-coord. A-frame
mass M.o.I. (homogen.) 150.0, 150.0, 150.0 kgm2 Ixx, Iyy, Izz, B-frame, at entry
diameter 1600 mm Maximal (2L, Fig. 3-1b)
height 650 mm h in Fig. 3-1b
face dimensions 800 mm ˆ 650 mm L ˆ h in Fig. 3-1b

Table 3-1: Idealized general characteristics of Silenus (Ampe et al., 2009)

A position given by the Cartesian coordinates rxA, yA, zAs with respect to the A-frame can be
translated into coordinates with respect to the body reference frame by first subtracting the
position of the vehicle c.o.m. from the zA-value, and then reorienting theXA´{YA´{ZA´axis
to match the XB´{YB´{ZB´axis (see also Section 4-1-5 for the exact definition of the body
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3-2 Propulsion System 15

reference frame):
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Table 3-1 lists the most important characteristics of Silenus for the design of the GNC system.
The listed values are idealized and correspond to the nominal lander model.

3-2 Propulsion System

The design of the Silenus lander assumes the use of an orbit insertion propulsion module,
which will bring the lander in a circular, equatorial orbit around Enceladus at an altitude of
100 km and then separate from the lander. The main thruster of the lander is responsible
for the inclination changes and the initiation of the entry and descent, and delivers the main
propulsive force necessary for the repositioning on the moon’s surface. The design process
showed that a thruster comparable to the Marquardt R-4D meets all requirements. This
thruster with a weight of 3.76 kg is placed in the middle of the bottom plate of vehicle body
(origin of the assembly reference frame) for a good alignment with the center of mass - ideally,
the main thruster induces no disturbing moments. The engine uses a mixture of N2O4 and
MMH as propellant, stored in four spherical tanks, which are positioned symmetrically around
the ZA-axis for stability purposes. The orbital maneuvers and descent process require roughly
54 kg of fuel, another 30 kg are reserved for the repositioning. The main thruster data can
be found in Table 3-2 below. In the simulations, it will be assumed that the thruster is freely
throttleable between 10% and 100% of the maximum thrust.

Characteristic Value Comment

Isp 312 s vacuum
Tvac 490 N rated thrust
mass flow 158 gs´1 at rated thrust
min. impulse bit 15.6 Ns -
max. pulses 20,781 -
throttle range 10-100% assumed
location 0,0,0 mm xA´, yA´, zA´position (ideally)

Table 3-2: Main thruster characteristics and location (Ampe et al., 2009)

The attitude control of the lander during all mission phases after the separation from the
orbit insertion propulsion module is realized with 12 CHT-5 attitude thrusters, see Fig. 3-2a.
Manufactured by EADS Astrium, these hydrazine thrusters with a thrust range of 1.85 to
6.0 N have successfully been used on many spacecrafts and seem to be a good choice for
lander. Attitude verniers, however, generally have no thrust range and always provide their
maximum thrust when activated due to mechanical reasons (see Section 5-2-4). For a better
validity, it will be assumed that the verniers always fire with their maximum thrust level.
Two thrusters at a time can induce a rotation about one of the principal axes of the B-frame,
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16 Lander Characteristics

(a) CHT-5 thruster (b) Locations

Figure 3-2: Location of the opposing CHT-5 attitude thruster pairs in the A-frame. See
Table 3-3 for the exact numbers.

so the control of the vehicle can be realized despite the possible failure of one thruster per
rotation direction. The thrusters are positioned in opposing pairs in the plane at half the
body height. Figure 3-2b indicates with the numbers 1 to 12 the position of each vernier
with respect to the A-frame. The lander provides four thruster anchors; the anchors for
the rotations about the YB- and ZB-axis are used by four verniers each, the anchors for the
rotation about the XB-axis by two verniers each. The distance between the lander’s center
mass and the latter anchor set is slightly larger (15%) than the other anchor set, so the pitch
will be better controllable then roll and yaw. The characteristics and the exact location of
each thruster are listed in Table 3-3. The torque levels produced by this vernier configuration
are discussed in the scope of the thruster selection logic, see Section 5-2-3.

The positioning of the verniers in the same plane and their alignment with the YB ´ZB-axis
significantly simplifies the attitude control system design. However, the thruster configuration
shown in Fig. 3-2b does not allow for a translational force along theXA-axis. This is a problem
for the accelerometer calibration process, and possibly for the near-target navigation in case
the lander cannot be rotated anymore to use the main engine for position correction. In the
simulator, it will be assumed that the lander has four additional verniers connected to the
two thruster anchors for the pitch control; two pointing in the `XB-direction, and two in
the ´XB-direction. Figure 3-2b thus only represents the thruster configuration for attitude
control. In reality, the thrusters are not always aligned with the body axes, and control
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3-3 Landing Gear 17

rotations about more than one axis to reduce the system weight and increase the reliability.
The determination of the exact location and orientation of each thruster may be a topic for
future work.

Characteristic Value Comment

Isp 220 s vacuum
Tvac 1.85 - 6.0 N thrust range, Tmax used
mass flow 2.8 gs´1 at max. thrust
min. impulse bit 0.1 - 0.3 Ns -
max. pulses 44,000 12.5 hr accumulated burn time
anchor roll & yaw ˘

?
3

2 L, 0,
h
2 xA´, yA´, zA´position (ideally)

anchor pitch 0,˘L, h2 see Fig. 3-1b for variables

Table 3-3: Attitude control thruster characteristics and location (Ampe et al.,
2009)

3-3 Landing Gear

The landing gear must prevent tumbling during the touchdown after the descent or at the
end of each repositioning cycle. The topography, the surface character and the very low
gravitational attraction of Enceladus complicate a safe touchdown. The design of the Silenus
landing gear is based on the three-legged Philae lander. The placement of the main thruster in
the middle of the body, however, prevents the use of a coherent system, thus the landing gear
consists of three independent legs (see Fig. 3-3a). Calculations have shown that, in theory,
the gravitational attraction of Enceladus is sufficiently large to prevent a turnover, only by
the horizontal and vertical distance from the c.o.m. of the lander (Ampe et al., 2009). In
this way, a safe touchdown is possible without making use of screws and an anchoring system
such as used on Philae. Each leg has its own damping system, consisting of two dampers and
placed inside the lander for thermal reasons: One damper is directly connected to the main
bar of the leg as is mainly responsible for the damping of the velocity normal to the ground.
The other damper is connected to a slider, a freely movable element encasing the main bar,
which in turn is connected to the foot bar. This shock absorber damps the velocities parallel
to the ground. The slider relays the forces parallel to the ground, keep the foot bar in vertical
position (which is important for the ground clearance during the touchdown) and allows a
space-saving folding of the landing gear. Springs inside the hinges, a restraining system and
thermal knives allow a the GNC system to command the deployment of the landing gear
before the touchdown.

Characteristic Value Comment

Energy dissipation vertical 150 J max., per stroke
Energy dissipation horizontal 54 J max., per stroke
Max. stroke length vertical 60 mm piston movement
Max. stroke length horizontal 70 mm piston movement
Angle vertical line - leg 65˝ - 81˝ deployed config.

Table 3-4: Landing gear characteristics (Ampe et al., 2009)
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18 Lander Characteristics

(a) Isometric view (b) Touchdown velocity limitations

Figure 3-3: The landing gear is designed to allow a safe touchdown for a certain velocity range
(Ampe et al., 2009). See text for discussion.

Basic calculations show that the touchdown stability depends on the vertical and horizontal
touchdown velocity Vv and Vh as well as on the local surface inclination angle λ and the
angle β between the lander’s Z-axis and local vertical line (pointing accuracy). A very basic
velocity window for two different combinations of λ and β is shown in Fig. 3-3b. Both the
horizontal and the vertical dampers have energy dissipation limits (see Table 3-4), which
set absolute velocity boundaries, but a too large (or too small) combination of λ/β will still
cause a turnover. The vertical and horizontal velocities must be below 0.6 ms´1 for all cases.
Table 3-4 and Fig. 3-3b summarize the important characteristics of the landing gear.

Currently, the design does not include any means to change the lander’s attitude after touch-
down. This might have some negative effects on repositioning process in case the surface
is inclined away from the target area. Additionally, communication and navigation systems
must be able to cope with this condition. Some changes in the design might allow the lander
to change its stationary attitude.

3-4 Simulator Configuration: Lander Characteristics

The program parameters related to the lander characteristics discussed in this chapter are
listed in Table 3-5. The actual parameter values can be found in Appendix A-1 and A-2. Note,
that variable names are only listed once in the table if only their axis designation changes –
in those cases, an indication of the number of excluded variable names is added in brackets.
The ’+2’ after xCOMshift, for example, refers to yCOMshift and zCOMshift.

The nominal lander’s center of mass is located in the geometrical center of the spacecraft
body. It is assumed, that the mass is homogeneously distributed in the shape of a cube,
which leads to a diagonal inertia tensor.
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3-4 Simulator Configuration: Lander Characteristics 19

Variable Name Comment

Mass Related Parameters
landerMass [kg]
inertiaTensorXX (+2) [kgm2], Ixx, see Table 3-1
inertiaTensorXY (+2) [kgm2], Ixy = Iyx
xCOMshift (+2) [m], ∆xcom, see Eq. (7-2)

Thruster Data
minimumThrustMainEngine [N]
maximumThrustMainEngine [N]
specificImpulseMainEngine [s], Isp
thrustForce on/off, test mode
xPositionMainEngine (+2) [m], in B-frame
eulerOrientationXmain (+2) [rad], ZYX-rotation w.r.t. B-frame
minimumThrustVerniers [N]
maximumThrustVerniers [N]
specificImpulseVerniers [s], Isp
xPositionVernier1 (+11) [m], in B-frame
eulerOrientationX1 (+11) [rad], ZYX-rotation w.r.t. B-frame

Table 3-5: Program parameters related the lander characteristics. Number of
similar variables indicated in brackets.
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Chapter 4

Spacecraft Motion Simulation

This chapter discusses the concepts and mathematical relations that are necessary to simulate
a spacecraft model with six degrees of freedom.

The first step consists of the exact definition of all involved reference frames (Section 4-1).
The equations of translational and rotational motion for a lander model with respect to a
rotating central body are derived in Section 4-4.

4-1 Reference Frames

The choice of a certain reference frame depends on the use: Newton’s laws of motion, for
example, are only valid with respect to an inertial frame of reference, but a vertical frame
is a more straightforward choice for local navigation purposes. The following subsections
describe the concepts of the inertial planetocentric frame, the rotating planetocentric frame,
the vertical frame, the body frame and the instrument frame. The transformation matrices
between these reference frames can be found in Section 4-3.

4-1-1 Inertial Planetocentric Reference Frame

An inertial reference frame is a reference frame, which itself does not experience an acceler-
ation or rotation with respect to the universe. The origin of a inertial planetocentric frame
coincides with the central body’s center of mass (Mooij, 1997). Strictly speaking, an inertial
planetocentric frame is a pseudo-inertial reference frame due to the accelerations the central
body experiences during its rotation around its respective main body (e.g., the Sun) and due
to the rotation of the Galaxy. For navigational purposes, however, the effects are negligible
and the inertial planetocentric reference frame may be considered inertial (Groves, 2008).

The inertial planetocentric reference frame is marked with the index I. The ZI -axis is pointing
north along the body’s axis of rotation, and its direction is assumed constant over time. The
surface spanned by the XI - and YI -axis coincides with the equatorial plane. The longitude
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Figure 4-1: Definition of the inertial planetocentric reference frame

of the reference meridian defining the direction of XI -axis is set to 0˝ at a given instance of
time t “ t0. The I-frame does not rotate with the central body, in contrast to the rotating
planetocentric reference frame discussed in the next section. A sketch of the I-frame is given
in Fig. 4-1. Note, that the YI -axis is located 90˝ advanced of XI -axis (in positive rotation
direction), completing the right handed frame.

4-1-2 Rotating Planetocentric Reference Frame

The rotating planetocentric reference frame, or R-frame, is denoted with the index R and
coincides with the inertial planetocentric frame (described in the previous section) at the
instance of time t “ t0. The ZR-axis is pointing north along the body’s axis of rotation.
The longitude of the reference meridian defining the direction of XR-axis is fixed at 0˝; the
direction of the YR-axis can be found using the right-hand rule. A sketch of the R-frame
is given in Fig. 4-2. The angular velocity of the R-frame with respect to the I-frame is the
angular velocity ωcb of the central body.

4-1-3 Vertical Reference Frame

The vertical reference frame, denoted with the index V , is a common near- or on-surface
navigation frame. The origin of the V -frame is the central point of the vehicle used for
navigational purposes (Groves, 2008), often the center of mass or a convenient geometric
location on the spacecraft. The ZV -axis points in the direction of the center of mass of the
central body, thus coinciding with the radial component of the gravitational attraction. The
XV -axis lies in a meridian plane, is normal to the ZV -axis and points north. The YV -axis
points east and in this way completes the right-hand system. A sketch of the vertical frame
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Figure 4-2: Definition of the rotating planetocentric reference frame

is given in Fig. 4-3. In case the central body is a perfect sphere, the XV YV -plane is the local
horizontal plane. The vertical reference frame should not be used with care at the poles of
the central body, as the XV - and YV -axis are not defined at these points (Groves, 2008).

equator
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N

c.o.m.

S
Figure 4-3: Definition of the vertical reference frame
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24 Spacecraft Motion Simulation

4-1-4 Surface-fixed Reference Frame

The gravity turn guidance and the quadratic guidance laws require a reference frame that
– once initialized – does not move with respect to the surface and offers the possibility do
divide the current velocity into vertical and horizontal components for an easier analysis of
the descent trajectory. The origin of the surface-fixed reference frame, or S-frame, is located
on the surface, at the intersection of the spacecraft’s position vector with the moon’s surface.
The XS-axis points towards the lander, in opposite nadir direction. The YS-axis coincides
with the projection of the XB-axis on the local horizontal plane. The ZS also lies within
the horizontal plane and completes the right-handed system. In this way, the XS-, YS- and
ZS-axis represent an upward, forward and sideward motion in case the ZB-axis (see Section
4-1-5) points in the direction of nadir. A sketch of the S-frame is shown in Fig. 4-4.

equator

ZS

YS

XS

YB

XB

ZB

N

c.o.m.

S
Figure 4-4: Definition of the surface-fixed reference frame. The XS-,YS- and XB-axis are in
are in the same plane (green) at the initialization of the S-frame. The XS-axis points vertically
towards the spacecraft, so that the central body’s c.o.m., the origin of the I-frame and the

origin of the B-frame are on the same line.

The S-frame is fixed at a given instance of time, which can lead to problems after some time,
because the local horizontal plane ignores the moon’s spherical shape. The S-frame may be
updated during the switch from one guidance law to another, or the it is simply accepted
that the surface level has an increasing negative XB-value when the spacecraft is moving
away horizontally from the origin. The easiest way to define the orientation of the S-frame
at a given instance of time is to use the current vertical frame and align first YV -axis by
rotating about the ZV -axis, and then rotating the new frame about the Y 1V -axis by π

2 to let
the X2V -axis point in opposite nadir direction. The azimuth angle χV follows from expressing
the XB-axis with respect to the V -frame and then using an adapted version of Eq. (4-6c) to
determine the azimuth angle of the projected XB-axis. The exact expression for χV is given
Section 4-3-2.

Note, that it is not possible to define S-frame in a situation where the lander’s velocity vector
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4-2 State Variables and Coordinate Systems 25

is collinear with the nadir vector, but a pure vertical motion can be described nevertheless,
as long as the S-frame has been defined at a previous instance of time where at least one
horizontal velocity component was not zero.

4-1-5 Body-Fixed Reference Frame

The body-fixed reference frame is denoted with the index B and is used to describe the
position and orientation of the planetary lander with respect to another reference frame. The
origin of the body-frame frame coincides with the one of the vertical reference frame described
in the precious subsection, but the orientation of the axes does not change with respect to the
vehicle: the XB-axis points in the forward direction, the ZB-axis in the downward direction,
and the direction of the YZ-axis can be found with the right-hand rule.

This reference frame is also used for aircraft, and accordingly, rotations around the XB, YB
and ZB-axis are called roll, pitch and yaw, respectively (Groves, 2008). A sketch of the body-
fixed reference frame is given in Fig. 4-5. The orientation of the body-fixed frame of Silenus
was defined in Section 3-1.

YB

XB

ZB

Figure 4-5: Definition of the body-fixed reference frame

4-2 State Variables and Coordinate Systems

State variables are required for the definition of the state of a dynamic system at a given
instant of time. The lander’s position, velocity and attitude – including their time derivatives
– can be described in different coordinate systems.

The Keplerian orbital elements are useful state variables for describing a spacecraft’s unper-
turbed motion in orbit. Expressing the trajectory of a lander during its descent, touchdown
and repositioning phases in terms of orbital elements, however, is complicated and provides
little physical insight. Cartesian or spherical coordinate systems in combination with Euler
attitude angles or attitude quaternions are better suited for this situation, as the follow-
ing subsections will show. At the end of this section, a state variable set is chosen after
weighing the advantages and disadvantages of all systems. The last subsection presents the
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Figure 4-6: Position and velocity of an object in a Cartesian inertial reference frame

relations necessary for transformations between Cartesian and spherical coordinate systems;
these equations are important irrespective of the chosen state variable set, as they are required
for the derivation of the equations of motion in Section 4-4 and for converting a position given
in an orthogonal reference frame (for example, the I-frame defined in the previous section)
to position given in terms of longitude, latitude and altitude.

4-2-1 Cartesian Coordinate System

The Cartesian coordinate system is a very common, orthogonal system for the description of
position and motion of an object in three-dimensional space. In any of the reference systems
mentioned in the previous section, the position r and the velocity v of a body is defined by the
variables x, y, z and 9x, 9y, 9z, respectively. The index of the used reference frame should always
be added. Figure 4-6 shows the Cartesian position and velocity components of an object in the
inertial reference frame. In general, a Cartesian state vector describing a non-linear motion
is difficult to analyze and involves rapidly changing state variables, which can lead to higher
inaccuracies during the numerical integration of the trajectory (see truncation error, Section
4-5). The descent process and in particular the repositioning process, however, are of short
duration, so the accumulated error will be within limits. An advantage of the Cartesian
state vector is its simple concept of grouping position and velocity into three independent
components. This allows, for example, for the direct analysis of the lander’s vertical and
horizontal position and velocity directly before the touchdown.

4-2-2 Spherical Coordinate System

The location of a point in a spherical coordinate system is described by its distance to the
origin and two angles. Consequently, the spherical coordinate system is a good choice for
measurements with respect to planetocentric reference frame, especially the rotating planeto-
centric frame. Using the definitions from Mooij (1997), a position is defined by the distance

Guido C. Holtkamp Master of Science Thesis



4-2 State Variables and Coordinate Systems 27

r, the longitude τ and the latitude δ. The longitude and the latitude are positive in eastern
and northern direction, respectively; see Fig. 4-7 for the definition of the angles on a unit
sphere.

The velocity of an object with respect to the spherical coordinate system is called ground
speed and expressed as a vector VG with a flight-path angle γG and a heading χG. Here,
γG is the angle between the local horizon and VG (´90˝ ď γG ď 90˝, positive above local
horizon), and χG the angle between the local north and VG (´180˝ ď χG ă 180˝, `90˝ is
East). Figure 4-8 shows the definition of the spherical position and velocity parameters with
respect to a rotating reference frame. A spherical state vector is easy to interpret, because
its components have direct physical meaning. A major disadvantage of this system, however,
are the singularities, that occur if δ “ ˘90˝ or γG “ ˘90˝ (r “0 is impossible for surface
landings). In this way, the state of a lander at the south pole or during a vertical flight cannot
be described with a spherical coordinate system.
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Figure 4-7: Definition of longitude and latitude in a spherical coordinate system on a unit
sphere

4-2-3 Euler Attitude Angles

The attitude of an object can be described by a sequence of rotations around theX-, Y - and Z-
axis, thus a transformation between two Cartesian coordinate systems. A common application
of this procedure is the definition of the orientation of the body reference frame with respect
to the inertial or the vertical reference frame. The Euler attitude angles consist of the roll
angle φ about the X-axis, the pitch angle θ about the Y -axis and the yaw angle ψ about
the Z-axis. In aerospace applications, the most common rotation sequence is ψ Ñ θ Ñ φ
(Kuipers, 1999). The Euler attitude sequence concept is shown in Fig. 4-9, where orientation

Master of Science Thesis Guido C. Holtkamp



28 Spacecraft Motion Simulation

XR

YR

ZR

North

lo
ca
l h
or
izo

n

r

τ
δ

χG
γG

Figure 4-8: Definition of the parameters for position and velocity in the rotating planetocentric
frame

of the body reference frame is found using a sequence of rotations with respect to the inertial
reference frame.
The angular velocity of the body reference frame with respect to the inertial reference frame
is given by the rotation vector ω “ rp, q, rsT , where p, q and r are the roll, pitch and yaw rate
about the XB-,YB- and ZB-axis, respectively. A sketch of the geometrical relation is given in
Fig. 4-10.

4-2-4 Attitude Quaternions

Quaternions are hyper-complex number consisting of four components and are often used to
describe a rotation in three-dimensional space. Compared with the rotation sequences based
on Euler attitude angles, quaternions are computationally more efficient and do not suffer
from singularities. On the other hand, they provide no direct insight. A general quaternion
q̄ has the form (Kuipers, 1999)

q̄ “ q0 ` q “ q0 ` iq1 ` jq2 ` kq3, (4-1)

where q0 and q “ pq1, q2, q3q
T is the quaternion’s scalar part and vector part, respectively.

An attitude quaternion is always a unit quaternion, so

}q̄} “
b

q2
0 ` q

2
1 ` q

2
2 ` q

2
3 “ 1. (4-2)

Equation (4-1) and (4-2) indicate that scalar part is fully determined by the elements of q̄.
This redundancy may lead to problems during the numerical integration of the quaternion
derivative 9̄q, but the solution is relatively simple and discussed in Section 4-4-3. Furthermore,
attitude quaternions are usually represented in vector form without the basis elements i, j
and k, resulting in the form q̄ “ pq0, q1, q2, q3q

T. Some authors add the scalar part after the
vector part, which leads to different expressions for the equations of rotational motion, if the
parts are not continuously treated separately (see, for example, Wie (2008)). In this report,
the scalar part of q̄ is always the first element.
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Figure 4-9: Use of the Euler angles to find the orientation of the body frame with respect to
the inertial frame
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Figure 4-10: The angular velocity of the body frame w.r.t. the inertial planetocentric frame
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A frame rotation about a vector u through an angle θ can be expressed by the quaternion q
(Kuipers, 1999; Groves, 2008):

q̄ “
ˆ

cos θ2 ,u sin θ2

˙T
“

¨

˚

˚

˚

˝

cos θ2
u1
}u} sin θ

2
u2
}u} sin θ

2
u3
}u} sin θ

2

˛

‹

‹

‹

‚

(4-3)

The rotation system shown in Eq. (4-3) can be used to bring a body from any initial orientation
to the desired orientation, given the correct values of u and θ (Wie, 2008). Vector u is thus
called the eigenaxis, and the concept of an eigenaxis rotation can be used, for example, in the
design of an attitude controller.

The conversions between Euler angles, quaternions and direction cosine matrices are straight-
forward, and can be found on pages 167-169 of Kuipers (1999). Quaternions do not follow
the commutative law for multiplication. The quaternion algebra is, for example, discussed in
Kuipers (1999) and requires some additional routines for a correct software implementation.
The flight-software of a spacecraft normally uses quaternions - also the on-board instruments
that measure (changes of) position (star trackers, IMU etc.) usually return their results in
the form of quaternions; a conversion is more important for post-processing.

4-2-5 Choice of State Variable Set

The Silenus lander will operate near Enceladus’ south pole and perform purely vertical mo-
tion during the touchdown and take-off processes. Consequently, the spherical state vector
should not be chosen due to the singularities that occur in these situations. The Cartesian
state vector is the better choice for describing the motion of the spacecraft, because the six
position and velocity components are important for the analysis of the touchdown process. In
particular, the guidance laws presented in Section 5-1 are defined within an orthogonal coor-
dinate system for one specific axis - a non-Cartesian state vector would require an additional
state-variable transformation. The lander’s attitude and change of attitude will be expressed
in terms of quaternions and angular velocities, respectively. Quaternions are a more complex
concept than Euler attitude angles, but they have no singularities, which is required for sta-
ble simulation software. Nevertheless, for the data analysis it is necessary to transform the
quaternions to Euler attitude angles, because quaternions provide no physical insight. The
relations required for these transformation are given in Section 4-2-7.

4-2-6 Coordinate System Transformation

With respect to the rotational planetocentric reference frame, the transformation from the
Cartesian position rxR, yR, zRs to the spherical position rr, τ, δs is (Mooij, 1997; Wertz et al.,
2009)

r “
b

x2
R ` y

2
R ` z

2
R (4-4a)

τ “ atan2 pyR, xRq (4-4b)

Guido C. Holtkamp Master of Science Thesis



4-2 State Variables and Coordinate Systems 31

δ “ arcsin
˜

zR
a

x2
R ` y

2
R ` z

2
R

¸

(4-4c)

where the atan2-function assures that the correct quadrant is determined. The inverse trans-
formation is given by (Mooij, 1997)

xR “ r cos δ cos τ (4-5a)
yR “ r cos δ sin τ (4-5b)
zR “ r sin δ (4-5c)

The translation of a Cartesian velocity VR “ r 9xR, 9yR, 9zRs to a spherical velocity VR “

rVG, γG, χGs first requires a reference frame transformation to the vertical reference frame
using VV “ TVÐRVR (see Section 4-3 for the definition of TVÐR). The relations then
become (modified from Mooij (1997)):

VG “
b

9x2
V ` 9y2

V ` 9z2
V (4-6a)

γG “ ´ arcsin
ˆ

9zV
VG

˙

(4-6b)

χG “ atan2 p 9yV , 9xV q (4-6c)

The inverse operation VR “ TRÐV VV then yields the spherical velocity with respect to
the rotating reference frame. Similarly, the transformation from the spherical velocity to the
Cartesian velocity is given by (Mooij, 1997):

9xV “ VG cos γG cosχG (4-7a)
9yV “ VG cos γG sinχG (4-7b)
9zV “ VG sin γG (4-7c)

Again, the inverse operation VR “ TRÐV VV yields the velocity with respect to the rotating
reference frame.

4-2-7 Attitude System Transformation

For the Euler attitude angles φ, θ and ψ as defined in Section 4-2-3 and the rotation sequence
ψ Ñ θ Ñ φ, the attitude quaternion can be calculated with (Kuipers, 1999)

q̄ “ q0 ` iq1 ` jq2 ` kq3 (4-8)

where

q0 “ cos ψ2 cos θ2 cos φ2 ` sin ψ2 sin θ2 sin φ2

q1 “ cos ψ2 cos θ2 sin φ2 ´ sin ψ2 sin θ2 cos φ2

q2 “ cos ψ2 sin θ2 cos φ2 ` sin ψ2 cos θ2 sin φ2

q3 “ sin ψ2 cos θ2 cos φ2 ´ cos ψ2 sin θ2 sin φ2 .

(4-9)
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Given a quaternion q with the elements q0, q1, q2 and q3, the Euler angles φ, θ and ψ follow
from the relations (Groves, 2008)

φ “ atan2
`

2 pq2q3 ` q0q1q , 2q2
0 ` 2q2

3 ´ 1
˘

(4-10)
θ “ ´ arcsin p2 pq1q3 ` q0q2qq

ψ “ atan2
`

2 pq1q2 ` q0q3q , 2q2
0 ` 2q2

1 ´ 1
˘

.

For the integration of the equations of motion, the attitude quaternion must translated into a
transformation matrix. The transformation matrix, or direction cosine matrix, for a quater-
nion q of the form shown in Eq. (4-8) is (Kuipers, 1999)

Tq “

»

–

2q2
0 ` 2q2

1 ´ 1 2 pq1q2 ` q0q3q 2 pq1q3 ´ q0q2q
2 pq1q2 ´ q0q3q 2q2

0 ` 2q2
2 ´ 1 2 pq2q3 ` q0q1q

2 pq1q3 ` q0q2q 2 pq2q3 ´ q0q1q 2q2
0 ` 2q2

3 ´ 1

fi

fl (4-11)

4-3 Reference Frame Transformations

In Section 4-1, five different reference frames have been defined. Any vector expressed in a
given reference frame can be translated into another reference frame by rotating the original
frame until it matches the target frame. This is commonly done using a series of rotations
about the principle axes of a Cartesian coordinate system. The required rotation matrices
are defined in Subsection 4-3-1. The actual transformation matrices between the reference
frames of Section 4-1 are given in the subsequent subsections.

4-3-1 Elementary Axis-Rotations

During an Euler-axis rotation, a reference frame is rotated by an angle φ, θ or ψ about the
X-, Y - or Z-axis of an Cartesian coordinate system (see Fig. 4-9). For the derivation of the
transformation matrices it is simpler to write φ, θ and ψ as an arbitrary rotation about an
angle α. The rotation matrices are then defined as (Mooij, 1997; Wie, 1998)

T1pαq “

»

–

1 0 0
0 cosα sinα
0 ´ sinα cosα

fi

fl (4-12a)

T2pαq “

»

–

cosα 0 ´ sinα
0 1 0

sinα 0 cosα

fi

fl (4-12b)

T3pαq “

»

–

cosα sinα 0
´ sinα cosα 0

0 0 1

fi

fl (4-12c)

where the subscripts 1, 2 and 3 stand for the X-, Y - or Z-axis of the initial reference frame.

A transformation matrix for the translation of a vector from the i-frame to the j-frame is
denoted with TjÐi in this report. Any transformation matrix between the reference frames
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listed in Section 4-1 can be expressed as the result of a rotation sequence using the expressions
for T1, T2 and T3. All transformation matrices are by definition orthonormal and thus
represent a linear transformation. Any rotation can be negated by rotating over the same
angle in reverse direction:

TjÐi “ T´1
iÐj “ TT

iÐj (4-13)

A rotation sequence is a successive rotation of a reference frame about its current axes, and
can be represented by a single transformation matrix as the product of rotation matrices. In
this way, the transformation matrix from frame a to b using the successive rotations i, j and
k is

TbÐa “ TkTjTi. (4-14)

The transformation matrix for the Euler rotation sequence ψ Ñ θ Ñ φ discussed in Section
4-2-3 then becomes

Tf2Ðf1 “ T1pφqT2pθqT3pψq (4-15)

where f1 and f2 are the initial and the final reference frames. The lander’s attitude is always
expressed as the orientation of the body-fixed reference frame with respect to another reference
frame, which may be chosen freely as long as it is defined unambiguously. The Enceladus
lander simulator requires the specification of the rotation sequence from the I-frame to the
B-frame as user input. The attitude with respect to the other reference frames is determined
using the appropriate rotation matrix sequence. This also means, that it is not necessary to
derive the exact expressions for the rotations between all reference frames used in this report,
because they follow from a sequence of a few basic transformations.

4-3-2 Transformation Matrices

The following sections present the basic transformation matrices between the reference frames
given in Section 4-1 using the relations discussed in Section 4-3-1.

Rotating Planetocentric to Inertial Planetocentric Frame

The rotating planetocentric reference frame rotates with the rotational velocity of the central
body ωcb around the ZI -axis and coincides with the inertial planetocentric frame at the
instance of time t “ 0. The transformation matrix from the rotating planetocentric to the
inertial planetocentric reference frame after t seconds then becomes (Mooij, 1997):

TIÐR “ C3p´ωcbtq “

»

–

cosωcbt ´ sinωcbt 0
sinωcbt cosωcbt 0

0 0 1

fi

fl (4-16)

In case of Enceladus, ωcb “ 2π
1.370218 days “ 5.30733 ¨ 10´5rad/s (see Table 2-1).
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Vertical to Rotating Planetocentric Frame

For a vehicle located at a longitude τ and a latitude δ on the surface of the central body
(see definitions shown in Fig. 4-7 and 4-8), the transformation matrix from the vehicle to the
rotating planetocentric frame is (Mooij, 1997):

TRÐV “ C3p´τqC2p
π

2 ` δq “

»

–

´ cos τ sin δ ´ sin τ ´ cos τ cos δ
´ sin τ sin δ cos τ ´ sin τ cos δ

cos δ 0 ´ sin δ

fi

fl (4-17)

Inertial Planetocentric to Body-fixed Frame

The alignment of the body-fixed reference frame with respect to the inertial planetocentric
reference frame can be expressed with the Euler attitude angles φI , θI and ψI (see Fig. 4-9).
Then, the transformation matrix follows from Eq. (4-15) and can be written as (Kuipers,
1999):

TBÐI “ C1pφIqC2pθIqC3pψIq

“

»

—

—

–

cosψI cos θI sinψI cos θI ´ sin θI
´

cosψI sin θI sinφI
´ sinψI cosφI

¯ ´

sinψI sin θI sinφI
` cosψI cosφI

¯

cos θI sinφI
´

cosψI sin θI cosφI
` sinψI sinφI

¯ ´

sinψI sin θI cosφI
´ cosψI sinφI

¯

cos θI cosφI

fi

ffi

ffi

fl

(4-18)

Vertical to Surface-Fixed Frame

As discussed in Section 4-1-4, the easiest way to define the surface-fixed reference frame is
by using a rotation sequence staring at the current vertical reference frame. For the azimuth
angle χV , the transformation matrix from the vertical to the surface-fixed frame is

TSÐV “ C2

´π

2

¯

C3

´

´
π

2 ` χV
¯

“

»

–

0 0 ´1
cosχV sinχV 0
sinχV ´ cosχV 0

fi

fl (4-19)

The azimuth angle χV follows from expressing the XB-axis with respect to the V -frame,

xB,V “ TVÐB r1, 0, 0sT (4-20)

and then using an adapted version of Eq. (4-6c) to determine the azimuth angle of XB,V :

χV “ arctan
ˆxB,V y

xB,V x

˙

(4-21)

Remaining Transformation Matrices

The transformation matrices between two arbitrary reference frames is either one of the
matrices given in the previous subsections or is the product of two or more of these matrices.
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For example, the transformation matrices between the inertial and the surface-fixed frame
are

TSÐI “ TSÐV TVÐRTRÐI (4-22)

and, accordingly,

TIÐS “ TIÐRTRÐV TVÐS “ TT
SÐI (4-23)

where the inverse rotations follow from the general rule shown in Eq. (4-13).

4-4 Flight Mechanics

The study of flight mechanics analyzes the effects of forces and moments on the motion
of a body. The knowledge about how a spacecraft responds to gravitational accelerations,
propulsive forces, attitude control actions etc. allows the design of an effective guidance and
control system.

The structure of the lander is assumed to be stiff, and the landing gear is the only moving part.
Consequently, during descent, the lander can be represented by a non-elastic, mass-varying
vehicle with three translational and three rotational degrees of freedom. The atmospheric
density of the moon, even at the south polar region, is completely negligible and allows for
the elimination of all aerodynamic influences.

This chapter starts in Section 4-4-1 with the derivation of the external forces and moments
acting on the lander, primarily caused by the gravitational acceleration and the propulsive
system. The translational and rotational equations of motion are determined in Sections 4-4-2
and 4-4-3, respectively.

The notations and some of the structure of the following derivations are based on Mooij (1997)
and Cornelisse et al. (1979). A concise summary of the basic aspects of analytical mechanics
can be found in Török (2000).

4-4-1 Forces and Moments acting on the Lander

As discussed in Chapter 2, Enceladus has a negligible atmospheric density. The only external
forces and moments acting on the lander during descent, touchdown and repositioning are
induced by the gravitational accelerations of all relevant celestial bodies (see Section 4-7-1)
and by the on-board thrusters. The effects of these forces are discussed in the following two
subsections.

Gravitational acceleration

The gravity field of a planetary body in general is non-homogeneous due to its irregular mass
distribution. These gravitational anomalies have a direct influence on an orbiting satellite and
should be included in the orbital-mechanics calculations in case the perturbing accelerations
are large or accumulate over time.
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In case the mass distribution of the main body is symmetric about the polar axis, a spacecraft
does not experience a longitudinal gravitational force. The gravitational acceleration vector
g then only has a radial component gr and a latitudinal component gδ, so the gravitational
force with respect to the spherical reference frame becomes

g “

¨

˝

gr
0
gδ

˛

‚. (4-24)

The radial component gr of g can be written as (Mooij, 1997; Regan, 1984)

gr “
µ

r2

«

1´ 3
2J2

ˆ

R

r

˙2
`

3 sin2 δ ´ 1
˘

´2J3

ˆ

R

r

˙3
sin δ

`

5 sin2 δ ´ 3
˘

´
5
8J4

ˆ

R

r

˙4
`

35 sin4 δ ´ 30 sin2 δ ` 3
˘

ff

(4-25)

and the latitudinal component gδ as (Mooij, 1997; Regan, 1984)

gδ “ ´3 µ
r2

ˆ

R

r

˙2
sin δ cos δ rJ2

`
1
2J3

ˆ

R

r

˙

sin´1 δ
`

5 sin2 δ ´ 1
˘

`
5
6J4

ˆ

R

r

˙2
`

7 sin2 δ ´ 3
˘

ff

(4-26)

where µ and R are the gravitational parameter and the equatorial radius of the central body,
r is the distance to the c.o.m. of central body, Jn are the gravitational moments of the order
n, and δ is the latitude of the point under investigation in the rotating spherical coordinate
system (see definitions in Section 4-2-2).

Gas giants such as Saturn can be interpreted with high accuracy as rotating fluid bodies in
hydrostatic equilibrium (Pater and Lissauer, 2001), which refers to the condition in which the
planetary interior in a fluid form would experience no pressures other than its own weight.
Several moons in the Saturnian system have a shape that is consistent with the one of relaxed
body in hydrostatic equilibrium (Thomas et al., 2007). Enceladus is close to hydrostatic
equilibrium (Porco et al., 2006), but there are some irregularities especially in the south polar
region, probably leading to a small negative J3 value. The gravity field of Enceladus, however,
is currently not fully known; gravitational moments with degrees higher than 2 are not known
with certainty (Russell and Lara, 2009). Enceladus’ J3 value is several orders of magnitude
smaller than its J2 value (2500ˆ10´6, see Table 4-1) and can be assumed to be equal to
zero with great accuracy. The estimate for the gravitational parameter of Enceladus, µEnc,
was updated using observations from Cassini and found to be 7.2096 km3s´2 (see Table 2-1).
For perfectly axisymmetric bodies – which is a reasonable assumption for Enceladus – the
gravitational moments J are zero for odd n.

The values of Saturn’s first four even numbered gravitational moments and value of J2 for
Enceladus are listed in Table 4-1. As a first estimate, only the perturbations due to the
J2-term are considered, because they are at least one order of magnitude larger than the
perturbation induced by the other gravitational moments.
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Gravitational Moment Saturn value [10´6] Enceladus value [10´6]

J2 16290.71 ˘ 0.27 2500
J4 -935.83 ˘ 2.77 -
J6 86.14 ˘ 9.64 -
J8 -10.0 -

Table 4-1: Gravitational moments of Saturn and Enceladus (Jacobson et al., 2006; Russell and
Lara, 2009)

YBi

XBi

ZBi

Ti

YB

XB

ZB

φTi

εTi

Thruster i

Figure 4-11: Thrust vector of a thruster i with respect to the c.o.m. of the vehicle

It is necessary to express Eqs. (4-24) to (4-26) in Cartesian coordinates to receive the gravi-
tational force with respect to the R-frame, FG,R, but this form will not be used during the
further discussions and thus not shown here.

The gravitation of the central body can induce a moment to spacecraft in case gravitational
attraction changes over the vehicle body. This effect especially influences large satellites
during long missions. However, gravitational moments are negligible for the short descent
and repositioning missions phases and generally much smaller than thrust moments.

Propulsive Force

The lander on Enceladus has a main propulsion system and several attitude thrusters (see
Section 3-2). The effects of their propulsive forces on the vehicle’s translational and rotational
motion are discussed in this section.

Let the thruster i be located at a position rTi in the vehicle’s body reference frame. The
direction of its thrust Ti can then be expressed by the elevation angle εTi and the azimuth
angle ψTi with respect to a projected, collinear body reference frame with the origin located
at rTi (see Figure 4-11).

Master of Science Thesis Guido C. Holtkamp



38 Spacecraft Motion Simulation

XI
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ZR
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ω
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Figure 4-12: Motion of a point expressed in an inertial and a rotating reference frame

The thrust force FT,B is sum of all Ti:

FT,B “
ÿ

i

Ti “

¨

˝

Tx
Ty
Tz

˛

‚ (4-27)

The components Tx, Ty and Tz follow directly from Fig. 4-11 (Mooij, 1997):

Tx “ T cosφT cos εT
Ty “ T sinφT cos εT (4-28)
Tz “ ´T sin εT

Any thrust vector that does not pass through the c.o.m. of the spacecraft induces a propulsion
moment. Following the basic definition of the force moment, the propulsion moment MT,Bi

of a thruster i is the equal to the cross product of the position vector rTi and the thrust
force vector FT,Bi , all measured with respect to body reference frame. The total propulsion
moment for all thrusters n then becomes

MT,B “

n
ÿ

i“1
MT,Bi “

n
ÿ

i“1
rT,i ˆ FT,Bi . (4-29)

4-4-2 Equations of Translational Motion

A point p is located at the position r̃ within a rotating reference frame (see Fig. 4-12). If
the position vector of p and the position vector of the origin of the rotating reference frame
with respect to the inertial reference frame are designated with r and R, respectively, then
the following relation holds:

r “ R ` r̃ (4-30)

The velocity of p with respect to the inertial reference frame can be determined by differen-
tiating Eq. (4-30). This chapter follows the derivative notations of Cornelisse et al. (1979),
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where d
dt refers to a derivative with respect to the inertial reference frame and δ

δt to a deriva-
tive with respect to the rotating reference frame. Keeping in mind that dr

dt represents the
absolute velocity VI ,

VI “
dr
dt “

dR
dt `

dr̃
dt

“
dR
dt `

δr̃
δt
` ω ˆ r̃

(4-31)

where ω is the angular velocity of r̃ with respect to the inertial reference frame. The last
two terms on the right-hand side of Eq. (4-31) follow from working out δ

δt , which involves the
time derivatives of the unit ayes xR, yR and zR in the inertial reference frame. Similarly, the
absolute acceleration aI of p is

aI “
dVI
dt “

d2R
dt2 `

d
dt pω ˆ r̃q ` d

dt

ˆ

r̃
δt

˙

“
d2R
dt2 `

dω
dt ˆ r̃` ω ˆ

ˆ

δr̃
δt
` ω ˆ r̃

˙

` ω ˆ
δr̃
δt
`
δ2r̃
δt2

“
d2R
dt2 `

dω
dt ˆ r̃` ω ˆ pω ˆ r̃q ` 2ω ˆ δr̃

δt
`
δ2r̃
δt2

(4-32)

In this equation, only the acceleration of the rotating reference frame with respect the inertial
reference frame given by the term d2R

dt2 represents an absolute acceleration. The term 2ωˆ δr̃
δt

represents the so-called Coriolis acceleration, and the term δ2r̃
δt2 the relative acceleration. The

sum of the remaining two term is called the dragging acceleration(Mooij, 1997). Equation
(4-32) describes the acceleration of a point in a rotating reference frame with respect to an
inertial reference frame and as such forms the basis for the derivations of the equations of
motion in the following sections.

The sum of all external forces acting on a mass-varying body with respect to the inertial
reference frame is (Mooij, 1997)

FI “

ż

m

d2r
dt2 dm (4-33)

where r represents the position vector of a mass element. The position rcm of the body’s
center of mass follows from (Mooij, 1997)

rcm
ż

m

dm “

ż

m
rdm (4-34)

In this way, the location of a mass element may be written as a combination of rcm and the
location r̃ of the same mass element with respect to the c.o.m.:

r “ rcm ` r̃ (4-35)

The expression for FI as given in Eq. (4-33) can now be rewritten using the general Eq. (4-32)
for the acceleration of the rotating reference frame with respect the inertial reference frame
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given. With d2R
d2t “

d2rcm
d2t ,

ş

m
r̃dm “ 0 and assuming a constant rotation velocity of the body

`dω
dt “ 0

˘

, it follows from Eq. (4-32) and (4-33) (Mooij, 1997):

FI “ m
d2rcm

dt2 ` 2ω ˆ
ż

m

δr̃
δt

dm`
ż

m

δ2r̃
δt2

dm (4-36)

Following the naming of the elements of Eq. (4-32), the last two terms of the above equations
are brought to the left-hand side and replaced with FC and Frel to indicate the Coriolis force
and relative force, respectively:

F̃I “ FI ` FC ` Frel “ m
d2rcm

dt2 (4-37)

Equation (4-37) describes the translational motion of a body with varying mass distribution
in a non-rotating reference frame. The terms FC and Frel are a consequence of these changes
in mass distribution. This equation also visualizes the so-called Principle of Solidification
(Cornelisse et al., 1979) which describes the translational and rotational motion of a body
with varying mass at a given instance of time as the translational and rotational motion of
a rigid body, with two apparent forces and moments added to the true external forces and
moments.

The forces FC and Frel both arise from variations in mass distribution. In absence of an
atmosphere, the only mass change follows from the exhaust mass flow. A starting point for
the derivation of different expression for FC and Frel is the Reynolds’ Transport Theorem.
Using the expressions of this chapter and assuming a conventional rocket without a mass
inflow, this theorem can be written as (modified from Mooij (1997)):

ż

m

δr̃
δt

dm “
δ

δt

ż

m

r̃dm`
ż

Ae

r̃ pρeVe ¨ neq dAe (4-38)

In this equation, ρe is the exhaust mass density, Ve the exhaust mass flow velocity with
respect to the vehicle, Ae the exhaust area, and ne a unit vector orthogonal to Ae. From
Eq. (4-34), (4-35) and (4-38) it follows that the Coriolis force due to variable mass properties
can be written as

FC “ ´2ω ˆ
ż

m

δr̃
δt

dm “ ´2ω ˆ p 9mereq (4-39)

where 9me is the exhaust mass flow and re the location of the mass flow center, defined as
(Mooij, 1997):

9me “

ż

Ae

pρeVe ¨ neq dAe (4-40)

re “
1
9me

ż

Ae

r̃ pρeVe ¨ neqdAe (4-41)

The Coriolis force due to changing mass properties is small, because direction of the exhaust
flow coincides with the lander’s ZB-axis, and the spin velocity of a spacecraft generally is
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Figure 4-13: Motion of a point in the rotating planetocentric reference frame and the inertial
reference frame

relatively low. The exhaust mass flow 9me of the lander is 0.158 kgs´1 (see Table 3-2), and the
location of mass flow center is on the ZB-axis, about 320 mm below the c.o.m. of the vehicle
(see Table 3-1). Assuming a very high spin velocity of 20 degs´1 or 0.3491 rads´1 about all
axes, the Coriolis force according to Eq. (4-39) is FC “ r´0.0353, 0.0353, 0s N, which is four
orders of magnitude smaller than the actual thrust force of 490 N. This difference is even
smaller for the expected lower spin rates. As a consequence, the result of ωˆ re and thus FC

can be neglected, especially with respect to the much larger Frel.
The alternate expression for the relative force Frel follows from the time derivative of Eq. (4-38).
With the safe assumption that the mean exhaust velocity Ve is much larger the relative ve-
locity of the c.o.m. with respect to the spacecraft frame, the relative fore due to changing
mass properties can be written as (Mooij, 1997)

Frel “ ´ 9meVe (4-42)

The expression for the translational motion in Eq. (4-37) will now be translated into a formu-
lation for a mass varying body in the rotating planetocentric reference frame. This situation
is shown in Fig. 4-13.
As mentioned in the definition of the rotating planetocentric reference frame (section 4-1-
2), the origins of the Z-axes of the rotating planetocentric reference frame and the inertial
planetocentric reference frame always coincide. Equation (4-34) then becomes (Mooij, 1997):

rcm,R “ R ` rcm,R “ rcm,R (4-43)

With Eq. (4-37) and (4-43), the acceleration of the body’s c.o.m. with respect to the inertial
reference frame, expressed in the rotating reference frame, can be determined with the general
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expression from Eq. (4-32), where ωR is the (constant) rotating reference frame’s angular
velocity (Mooij, 1997):

aR “
d2rcm

dt2 “
d2R
dt2 `

dω
dt ˆrcm,R`ωRˆpωR ˆ rcm,Rq`2ωRˆ

δrcm,R
δt

`
δ2rcm,R
δt2

(4-44)

The first two terms of this equation are equal to zero as a consequence of the previously
mentioned definitions, which also allow the replacement of δ

δt and
δ2

δt2 by d
dt and

d2

dt2 , respec-
tively. The translational equation motion for a mass-varying body with respect to the rotating
reference frame then finally becomes

FR “ m
d2rcm

dt2 ` 2mωR ˆ
drcm,R

dt `mωR ˆ pωR ˆ rcmq . (4-45)

Note that according to the comments on Eq. (4-37), FR is the sum of the true external forces
and the two apparent forces (the relative force and the negligible small Coriolis force) resulting
from the mass variations. The velocity VR of the vehicle with the c.o.m. at rcm with respect
to the rotating planetocentric reference frame is

VR “
drcm

dt (4-46)

Thus, the interpretation of Newton’s Second Law within the rotating, non-inertial reference
frame can be found by rearranging Eq. (4-45) (Török, 2000; Mooij, 1997).

m
dVR

dt “ FR ´ 2mωR ˆVR ´mωR ˆ pωR ˆ rcmq (4-47)

Equations (4-46) and (4-47) form the basis for the determination of position and velocity of
a vehicle within the rotating reference frame. At this point it cannot be assumed that the
spacecraft is moving within a non-rotating reference frame, because at the beginning of the
descent, the orbital velocity is high (about 115 ms´1) and the distance between the origin of
the rotating reference frame and the c.o.m. is large (about 352 km). In this way, the last two
terms of Eq. (4-47) are not negligible, despite Enceladus’ small angular velocity of 5.30733
ˆ10´5rads´1.

The results of Eq. (4-47) will be expressed with respect to a Cartesian coordinate system,
because it was decided in Section 4-2-5 to use a Cartesian state vector. The position of
the lander thus given by the vector rcm “ rxR, yR, zRs

T , and the velocity by the vector
VR “ r 9xR, 9yR, 9zRs.

The dynamic equations of translational motion then follow from Eq. (4-47) (Mooij, 1997)

dVR

dt “

¨

˝

9xR
9yR
9zR

˛

‚“

¨

˝

ω2
cbxR ` 2ωcb 9yR
ω2
cbyR ´ 2ωcb 9xR

0

˛

‚`
1
m
rFG,R ` FT,Rs , (4-48)

where

FG,R ` FT,R “ FG,R `TRÐBFT,B (4-49)

making use of the transformation matrices of Section 4-3-2 and the force definitions of Section
4-4-1.
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It is in the end decided to use the equations of motion with respect to the I-frame (Eq. 4-32)
instead the expressions with respect to the R-frame (Eq. 4-48), because the code implemen-
tation proved to be more straightforward for the former case. The position, velocity and
attitude data with respect to R-frame can be obtained using transformation matrices. In the
end, all simulation results will be expressed with respect to the S-frame, so there is in fact
no reason to perform the state integration in the R-frame.

4-4-3 Equations of Rotational Motion

The total moment MI acting on a solid body with respect to the origin of the inertial reference
frame is the sum of all cross products of the forces Fi and the location ri of their according
point of attack. This can be written as

MI “

N
ÿ

i“1
ri ˆ Fi “

ż

m

rˆ d2r
dt2 dm (4-50)

Similarly, the angular momentum BI of the same solid body is equal to the sum of all cross
products of ri and the according linear momentum Ji (Mooij, 1997):

BI “

N
ÿ

i“1
ri ˆ Ji “

ż

m

rˆ dr
dtdm (4-51)

It can be inferred from the two equations before, that MI is the time derivative of BI . The
relation for the angular momentum as given in Eq. (4-51) can also be expressed with respect
to the vehicle’s c.o.m.. Figure 4-14 shows a situation where origin of the body reference frame
coincides with the c.o.m. of the vehicle and rotates with the body with an rotational velocity
of ω with respect to the inertial reference frame. Again, the position of a mass element dm
is r in the inertial reference frame and r̃ in the body reference frame.
Position r is then replaced by sum rcm` r̃ from Eq. (4-35). After executing the time derivate,
Eq. (4-51) can be written as (Mooij, 1997)

BI “

ż

m

prcm ` r̃q ˆ
ˆ

drcm
dt ` ω ˆ r̃

˙

dm

“ mrcm ˆ
drcm

dt `

ż

m

r̃ˆ pω ˆ r̃q dm
(4-52)

where mrcmˆ drcm
dt is the angular momentum of the c.o.m. in the inertial reference frame and

ş

m
r̃ˆ pω ˆ r̃q dm is the angular momentum of all mass elements with respect to the vehicle’s

c.o.m.. Consequently (Mooij, 1997),

Bcm “

ż

m

r̃ˆ pω ˆ r̃qdm (4-53)

According to the conventions introduced in Section 4-2-1, r̃ and ω consist of the components
rx, y, zs and rp, q, rs, respectively. Working out the cross products of Eq. (4-53) (Mooij, 1997),

Bx “

ż

m

“

p
`

y2 ` z2˘´ qxy ´ rxz
‰

dm
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Figure 4-14: The body reference frame of a solid body rotates within the inertial reference
frame

By “

ż

m

“

´pyx` q
`

x2 ` z2˘´ ryz
‰

dm (4-54)

Bz “

ż

m

“

´pzx´ qzy ` r
`

x2 ` y2˘‰ dm

The integral groups represent the so-called mass moments of inertia about the principal
coordinate axes, and the diagonal products of inertia, defined as (Török, 2000, p. 202)

Ixx “

ż

m

`

y2 ` z2˘ dm

Ixy “ Iyx “

ż

m

xy dm

Iyy “

ż

m

`

x2 ` z2˘ dm

Ixz “ Izx “

ż

m

xz dm

Iyz “ Izy “

ż

m

yz dm

Izz “

ż

m

`

x2 ` y2˘ dm
(4-55)

The final expression for the angular momentum with respect to the center of mass with varying
mass properties then follows from inserting the above relations in Eq. (4-54) and rewriting
Eq. (4-53) to Mooij, 1997

Bcm “ I ¨ ω “

»

–

Ixx ´Ixy ´Ixz
´Iyx Iyy ´Iyz
´Izx ´Izy Izz

fi

fl ¨ ω (4-56)

where I is the so-called inertial tensor.

The derivation of the rotational equations of motion, however, requires an expression for the
spacecraft’s momentum around its own c.o.m.. A similar situation as shown in Fig. 4-12 will
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be used. If the force FI is acting on a point located at r with respect to the inertial reference
frame or at r̃ with respect to the body’s c.o.m., the vehicle’s moment Mcm about the c.o.m.
is (Mooij, 1997)

Mcm “

ż

m

r̃ˆ d2r
dt2 dm (4-57)

or, using the general expression for r given in Eq. (4-32),

Mcm “

ż

m

r̃ˆ
ˆ

dω
dt ˆ r̃

˙

dm`
ż

m

r̃ˆ rω ˆ pω ˆ r̃qsdm

` 2
ż

m

r̃ˆ
ˆ

r̃ ˆ
δr̃
δt

˙

dm`
ż

m

r̃ˆ δ2r̃
δt2

dm
(4-58)

Equation (4-58) thus describes the moment of a body with varying mass properties around
its center of mass. Similar to the naming of the elements of Eq. (4-32), the terms ´2

ş

r̃ ˆ
`

r̃ ˆ δr̃
δt

˘

dm and ´
ş

r̃ˆ δ2r̃
δt2 dm are called the Coriolis moment MC and relative moment Mrel,

respectively, as a consequence of the variable mass properties. The sum of the remaining two
terms is the apparent moment. Equation (4-58) can be rearranged to (compare with the form
of F̃I in Eq. (4-37))

M̃cm “ Mcm `MC `Mrel “

ż

m

r̃ˆ
ˆ

dω
dt ˆ r̃

˙

dm `

ż

m

r̃ˆ rω ˆ pω ˆ r̃qsdm (4-59)

where the left-hand side summarizes the external moments due to the gravitation pMcmq and
due to the vehicle’s thrusters pMC ,Mrelq. Similar to the alternate expressions for FC and
Frel derived in the previous section, MC and Mrel can be rewritten in terms of propulsion
parameters. For the Coriolis moment, the term r̃

`

ω ˆ δr̃
δt

˘

can be substituted by an expres-
sion that follows from writing out the derivate δ

δt rr̃ˆ pω ˆ r̃qs and applying again Reynold’s
Transport Theorem (Eq. (4-38)). Assuming that the exhaust area Ae is much smaller than
the lengthwise dimension of the spacecraft (Mooij, 1997),

MC “ ´
δI
δt
¨ ω ´ 9mere ˆ pω ˆ req . (4-60)

Similar to this derivation and the derivation of Frel in Eq. (4-42), the relative moment can
be rewritten as (Mooij, 1997)

Mrel “ ´ 9mere ˆVe. (4-61)

The necessary relations for the derivation of the rotational equations of motion have now been
established.
As a consequence of the relation Mcm “

dMcm
dt , it is possible to find a simple, alternative form

of the expression for Mcm in case the body may be considered rigid
`

δI
δt “ 0

˘

or approximated
using the Principle of Solidification (see discussion of Eq. (4-37)). These so-called Euler’s
equations of a rotating body are written as:

Mcm “
dBcm

dt “
δBcm

δt
` ω ˆBcm “

δI
δt
¨ ω ` I ¨ δω

δt
` ω ˆBcm

“ I ¨ 9ω ` ω ˆ I ¨ ω
(4-62)
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The dynamic equations of rotational motion follow from Eq. (4-62) and (4-59) (Mooij, 1997):

9ω “ I´1 `M̃cm ´ ω ˆ Iω
˘

(4-63)

M̃cm is given by Eq. (4-59), or by the sum of MC and Mrel (Eqs. (4-60) and (4-61)), as the
gravitational moment is negligible.

It was decided in Section 4-2-5 to use quaternions to describe the attitudes. The attitude of
the lander, or the orientation of the body reference frame, with respect to the I-frame is in
this way given by the quaternion qI,B “ pq0, q1, q2, q3q

T . The attitude time derivative 9̄qI,B
then can be determined with (Davailus and Newman, 2005)

9̄qI,B “
1
2

»

—

—

–

´q1 ´q2 ´q3
q0 ´q3 q2
q3 q0 ´q1

´q2 q1 q0

fi

ffi

ffi

fl

¨

˝

p
q
r

˛

‚“
1
2Ωq̄ω (4-64)

or similarly,

9̄qI,B “
1
2

»

—

—

–

0 ´p ´q ´r
p 0 r ´q
q ´r 0 p
r q ´p 0

fi

ffi

ffi

fl

¨

˚

˚

˝

q0
q1
q2
q3

˛

‹

‹

‚

“
1
2Ωωq (4-65)

The attitude of the lander thus can be described in terms of a quaternion, which changes
over time due to the spacecraft’s angular rotation vector ω, whose values in turn change
with the angular acceleration as given in Eq. (4-63). The Euler attitude representation for
any quaternion may be calculated with the relations given in Section 4-2-7; this conversion
is necessary for postprocessing. For a the practical software implementation, Eq. (4-64) is
selected and modified to

9̄qI,B “
1
2Ωq̄ω `Kq

“

1´
`

q2
0 ` q

2
1 ` q

2
2 ` q

2
3
˘‰

q̄, (4-66)

which adds an additional term to correct for the (small) numerical errors that occur during
the integration process and cause the norm of the attitude quaternion to divert from the
nominal value of 1 (see Eq. (4-2)). This problem arises only for the quaternion model, as
a quaternion - unlike Euler angles - uses four elements to describe an orientation with only
three degrees of freedom. Consequently, the fourth constraint, the norm, must be checked in
order to avoid invalid attitude quaternions. It is also possible to normalize the quaternion
every integration step, but this might introduce even more errors due to over-corrections. By
choosing an appropriate value of Kq, the quaternion norm is slowly driven to 1. This method
is also used in the MATLAB Aerospace Toolbox, see Mathworks (2014). Tests with Enceladus
lander simulator indicated, that Kq “ 1.5 delivers satisfying results.

A modified version of Eq. (4-64) will be used in the lander’s navigation system: in the extended
Kalman filter, the derivative of the quaternion’s scalar part q0 is disregarded, because the filter
will try to distribute the estimation corrections over all quaternion elements, which can lead
to invalid attitude quaternions. The navigation filter attitude time derivatives are discussed
in more detail in Section 6-1-5.
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4-5 Numerical Integration

Numerical integration techniques are used to solve differential equations that have no or
only a very complex analytical solution. The equations of motion derived in Chapter 4-4,
for example, require amongst others the input of a thrust force vector and of the vehicle’s
angular velocity. However, the propulsive force of any activated thruster will always show
fluctuations, and the angular velocity is given in discrete values based on the acquisition rate
of the attitude sensors. It is not possible to find a closed analytical solution for this problem.

Numerical procedures have two fundamental error sources (Boyce and DiPrima, 2005): The
truncation error is the actual difference between the true solution and the numerical approx-
imation. Sometimes the truncation error is subdivided into the local truncation error and
the global truncation error, which refer to the error of a single integration step and to the
cumulative error of all steps, respectively. The round-off error is a consequence of the finite
number of digits used during the computation. The truncation error can be reduced by re-
ducing the step-size, but this in turn will increase the round-off error. The determination of
the best step-size(s) is part of the solution process.

There several numerical integration methods, but this section will focus in particular on the
Runge-Kutta (RK) class of methods. This technique is applicable to many problem and offers
a high efficiency and accuracy. Simple methods, such as the Euler method or the Trapezoidal
rule, are disregarded, because their truncation error is orders of magnitude higher than the
higher-order RK methods (Boyce and DiPrima, 2005).

The ultimate goal is to find a numerical solution for the initial value problem

y1 “ f pt, yq , y pt0q “ y0, t ě t0 (4-67)

where f is a known function depending on the current function value y and time t, and y0
is a given initial value at the starting time t0. The general Runge-Kutta formula of order υ
with a integration step-size h is (Iserles, 1996)

yn`1 “ yn ` h
υ
ÿ

j“1
bjf ptn ` cjh, y ptn ` cjhqq (4-68)

where bj and cj are the so-called RK weights and nodes, respectively. In principle, yn`1 can
be expressed as a linear combination of the lower-order numerical systems, indicated with
ξ1,2,...,υ (Iserles, 1996):

ξ1 “ yn
ξ2 “ yn ` ha2,1f ptn, ξ1q

ξ3 “ yn ` ha3,1f ptn, ξ1q ` ha3,2f ptn ` c2h, ξ2q

...

ξυ “ yn ` h
υ´1
ÿ

i“1
aυ,if ptn ` cih, ξiq (4-69)

yn`1 “ yn ` h
υ´1
ÿ

j“1
bjf

`

tn ` cjh, ξj
˘

(4-70)
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Here, the factors a are the elements of the RK matrix, defined as A “ paj,iqj,i“1,2,...,υ, with
missing elements defined to be zero. The choice of the parameters b, c and A determines the
weighting of each calculation stage within one RK step and depend on the application. A
common way to display these elements is the RK Tableau, defined as

c A

bT (4-71)

with b “ rb1, b2, . . . , bυsT and c “ rc1, c2, . . . , cυs
T . The classic fourth-order four-stage Runge-

Kutta (RK4) formula can be written as

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

(4-72)

Applying the above Tableau to Eq. (4-70) gives relatively simple representation (Boyce and
DiPrima, 2005)

yn`1 “ yn ` h
ˆ

kn1 ` 2kn2 ` 2kn3 ` kn4
6

˙

(4-73)

with the parameters

kn1 “ f ptn, ynq

kn2 “ f
ˆ

tn `
1
2h, yn `

1
2hkn1

˙

(4-74)

kn3 “ f
ˆ

tn `
1
2h, yn `

1
2hkn2

˙

kn4 “ f ptn ` h, yn ` hkn3q .

It can be shown that for this process the local truncation error is proportional to h5 and
the global truncation error does not exceed the product of a constant times h4 (Boyce and
DiPrima, 2005). In case calculations show that the errors or the computation time become
unacceptable, a more complex integration method is required, such as multi-step processes
or an adaptive stepsize methods. However, the RK4 technique is either the starting point for
the derivation of these methods or can be used to determine the starting values. So-called
embedded Runge-Kutta methods estimate the local error κ and compare its value with the
predefined tolerance δ. In case κ is below or above a certain threshold, for example κ ď hδ,
then the step-size is modified accordingly.

A change of h requires a new interpolation of the initial function, which results in a series of
new calculations and a longer computation time. A good choice of RK elements, however,
can significantly reduce this disadvantage, as shown by Fehlberg (1968). The Runge-Kutta-
Fehlberg method (RKF45) is an adaptive step-size integration method, that uses a fifth-order
RK method to determine the local error of a fourth-order RK method for an optimal step-size
adaption. This adaption increases the accuracy and the efficiency in terms of computation
time. Additionally, the step-size history indicates at which instances of time the original
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function has higher and lower derivative values. The RKF45 requires the evaluation of the
fourth-order RK method (modified from Mathews and Fink (1999))

yn`1 “ yn ` h
ˆ

25
216kn1 `

1408
2565kn3 `

2197
4101kn4 ´

1
5kn5

˙

(4-75)

and the fifth-order RK method (modified from Mathews and Fink (1999))

zn`1 “ yn ` h
ˆ

16
135kn1 `

6656
12825kn3 `

28561
56430kn4 ´

9
50kn5 `

2
55kn6

˙

(4-76)

with the six k-elements defined as (modified from Mathews and Fink (1999))

kn1 “ f ptn, ynq

kn2 “ f
ˆ

tn `
1
4h, yn `

1
4kn1

˙

kn3 “ f
ˆ

tn `
3
8h, yn `

3
32 `

9
32kn2

˙

kn4 “ f
ˆ

tn `
12
13h, yn `

1932
2197kn1 ´

7200
2197kn2 `

7296
2197kn3

˙

(4-77)

kn5 “ f
ˆ

tn ` h, yn `
439
216kn1 ´ 8kn2 `

3680
513 kn3 ´

845
4104kn4

˙

kn6 “ f
ˆ

tn `
1
2h, yn ´

8
27kn1 ` 2kn2 ´

3544
2565kn3 `

1859
4104kn4 ´

11
40kn5

˙

.

The optimal step-size h then follows from (Mathews and Fink, 1999)

s “

ˆ

δh

2}zn`1 ´ yn`1}

˙
1
4

(4-78)

where δ is the predefined error tolerance. It is possible to increase the overall accuracy by
choosing a pair of higher-order RK methods. A complete derivation and discussion of fifth-,
sixth-, seventh-, and eighth-order Runge-Kutta formulas with step-size control, including the
according RK Tableau’s and a performance analysis can be found in Fehlberg (1968). Any
integration step yn`1 of a Runge-Kutta and Runge-Kutta-Fehlberg method only uses the data
from the preceding integration step, yn - they belong to the so-called one-step methods. There
exist numerical integration methods, that use the data points y1,y2, . . . ,yn to determine the
next step yn`1. The Adams-Bashforth method, the Adams-Moulton method and the predicor-
corrector method are examples of such multi-step methods. Multi-step methods are in general
considerably faster than single-step methods for a given step-size h, but – depending on
the application – less accurate (Boyce and DiPrima, 2005). Tests with an orbit integration
of a LEO satellite show that multi-step methods are more stable and better preserve the
orbit geometry, but require a much lower step-size for a given local error value (Es-hagh,
2005). Es-hagh (2005) recommends to use a RKF method for high-resolution integration,
thus integrations with small step-sizes. The velocity and attitude of the Enceladus lander
will change rapidly over a relatively short time span, in particular during the touchdown and
repositioning process, which involve many correction maneuvers. Consequently, it is better to
use an adaptive single-step method to integrate the state of the Silenus lander. The RKF45
method is the first choice due to its simplicity and lower computation time.
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Figure 4-15: Geometry of cross range and downrange problem

4-6 Cross-range and Downrange

The landing accuracy of the vehicle is measured in terms of absolute distance from a predefined
target spot. In order to estimate the performance of the guidance system, is useful to extract
the current deviation from a reference trajectory, in particular, from a trajectory between an
initial point and the target. The cross range and the downrange are defined as the great circle
segments perpendicular and parallel, respectively, to the initial great circle. For atmospheric
re-entry control – see for example Cavallo and Ferrara (1996) and Belló-Mora and Baeza-
Martin (1995) – this initial great circle is commonly determined by the spacecraft’s heading
angle χ0 at the longitude τ0 and initial latitude δ0.

The geometry of the cross range and downrange problem is shown in Fig. 4-15. All depicted
arcs are segments of so-called great circles, which are the largest possible circles on the surface
of a sphere. The reference sphere itself is a unit sphere, so the length of the arcs can be
expressed in terms radians. The distance in meters between two points on a sphere is simply
the product of the arc length in radians and the radius of the sphere. For an extensive
discussion on spherical geometry, the reader is referred to Wertz and Larson (1999). The
derivation of the equations for the downrange δd and the cross range τd of a point Ppδ, τq,
given the initial point P0pδ0, τ0q and the initial heading angle χ0, involves the derivation of
some auxiliary arcs and spherical angles; these are all depicted in Fig. 4-15 and follow to some
extent the conventions of Cavallo and Ferrara (1996). Note that the following equations are
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only valid for longitude and latitude values in the intervals r0, 2πs and r´π
2 ,

π
2 s, respectively

(see definition of spherical coordinate system, Fig. 4-8). Other range definitions might require
additional expressions to ensure that the correct spherical quadrants are used.
The great circle arc ρ connecting P0 and P – or, the distance between the points on the
surface of the sphere – is the angle between the vectors p0 and p pointing to P0pδ0, τ0q and
Ppδ, τq, respectively. The Cartesian representations of the spherical positions according to
the coordinate system transformations given in Eq. (4-5b)) are

p0 “

»

–

cos δ0 cos τ0
cos δ0 sin τ0

sin δ0

fi

fl , p “

»

–

cos δ cos τ
cos δ sin τ

sin δ

fi

fl . (4-79)

The angle ρ between the unit vectors p0 and p follows from the dot product:

cos ρ “ p0 ¨ p “ cos δ0 cos τ0 cos δ cos τ ` cos δ0 sin τ0 cos δ sin τ ` sin δ0 sin δ
“ cos δ0 cos δ rcos τ0 cos τ ` sin τ0 sin τ s ` sin δ0 sin δ (4-80)
“ cos δ0 cos δ cos pτ ´ τ0q ` sin δ0 sin δ

The angle ζ between the meridian passing through P0 and ρ can be found with the Law of
Cosines for Sides, with ρ and π

2 ´ δ being the known side lengths:

cos
´π

2 ´ δ
¯

“ cos ρ cos
´π

2 ´ δ0

¯

` sin ρ sin
´π

2 ´ δ0

¯

cos ζ (4-81)

This gives, after some rearrangements,

cos ζ “ sin δ ´ cos ρ sin δ0
sin ρ cos δ0

. (4-82)

The angle ξ between the initial great circle and the great circle passing through P0 and P
then is

ξ “ ζ ´ χ0. (4-83)

The cross range τd, the downrange δd and the auxiliary arc ρ form a spherical triangle with
a right angle between δd and τd. Using the relations for right spherical triangles (see, for
example, Wertz and Larson (1999, p. 777)), the final expressions for the cross-range and
downrange of point P given P0 and χ0 are:

τd “ arcsin rsin ρ sin ξs (4-84)

δd “ arccos
„

cos ρ
cos τd



(4-85)

Equations (4-84) and (4-85) correspond to the expressions given in (Cavallo and Ferrara,
1996). Depending on the choice of the initial conditions and P, the cross range and downrange
can be used for navigational purposes: If P0 and χ0 are fixed at a point of time during the
flight, δd and τd represent the lateral and traverse deviations from the initial trajectory; if P
is chosen to be the target point, δd and τd represent the lateral and traverse distance between
the target and the lander at position P0, flying in the direction χ0. The latter case will
be used as a measure for benchmarking the guidance system. In this situation, the actual
distance along the moon’s surface between the target point and the lander follows directly
from Eq. (4-80).
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4-7 Perturbing Forces

Perturbing forces refer to any forces, that disturb the ideal model of a spacecraft orbiting a
central body with a point mass. The following sections discuss the effects of additional large
point masses (section 4-7-1), and solar radiation pressure (section 4-7-2). The perturbations
due to gravity field irregularities were already discussed in Section 4-4-1.

4-7-1 Third Body Perturbation

A spacecraft orbiting Enceladus and even a lander during the descent and repositioning
process will to some extend experience the gravitational fields the other celestial bodies as
perturbing forces. It is necessary to implement third body perturbations in case the disturbing
accelerations result in a notable deviation from the spacecraft’s ideal course.

As the planetocentric reference frame is accelerating and thus not an inertial reference frame,
the perturbing acceleration must be expressed relative to the main acceleration am of the
central body Enceladus. The geometry of this problem is depicted in Fig. 4-16, where body
k is the central body, body i the orbiting body, and d the disturbing body.

The mass of the lander is negligible with respect to the mass of Enceladus, thus the equations
of motion can be written as (Vallado and McClain, 2001)

:rki “ ´G
µk
rki3

rki ` µd

˜

rkj ´ rki
rij3

´
rkj
rkj3

¸

, (4-86)

Titan as the second largest moon of the solar system has by far the highest mass - two orders
of magnitude higher then moon next in size, Rhea. The largest perturbing force, however, will
emanate from Saturn due to its immense mass and the relatively low orbit of Enceladus (a
= 3.95RSat). Table 4-2 lists the gravitational parameters, the masses and values of the semi-
major axes of the Sun, Jupiter, Uranus, Saturn and Saturn’s nine major moons, including
Enceladus.

The accelerations that act on a satellite orbiting Enceladus, which in turn orbits Saturn
together with other moons, can be described with a so-called many-body problem.

In a system as shown in Fig. 4-16a with a total number of bodies n, the motion of a body i
with respect to body k can be derived with (Wakker, 2010)

:rki “ ´G
mi `mk

rki3
rki `G

n
ÿ

j‰i,k

mj

˜

rkj ´ rki
rij3

´
rkj
rkj3

¸

, (4-87)

where ri is the position vector of body i, rj the position vector of the disturbing body j,
G is the gravitational constant and m is the mass of a body. The direction of a vector is
indicated by the order of the indexes; for example rki is the vector from body k to body i.
Equation (4-86) thus can be used to calculate the motion of body i in relation to a non-inertial
reference frame with the origin k due to the gravitational forces between i, j and k. Its first
term relates to an unperturbed orbit, the second describes the perturbations introduced by
the other bodies.
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(a) The many-body problem (b) Relative positions

Figure 4-16: The many-body problem and relative positions. (a) Geometry of the many-body
problem with bodies k, i and j expressed in an inertial Cartesian reference frame with the origin
O. (b) Positions of bodies i, j and k with respect to each other. Figures from Wakker (2010).

Body GM [km3s´2] M [1020 kg] a [103km] (ad/am)max [-]

Sun 132.712ˆ109 1989.1ˆ107 - 5.46ˆ10´10

Jupiter 126.686ˆ106 1868.6ˆ104 778.57ˆ103 5.46ˆ10´12

Uranus 5.794ˆ106 86.8ˆ104 2872.46ˆ103 7.65ˆ10´15

Saturn 37.931ˆ106 568.5ˆ104 1433.53ˆ103 3.41ˆ10 ´3

Titan 8978.14 1345.50 1221.83 (20.27RSat) 5.97ˆ10 ´8

Rhea 153.94 23.10 527.04 ( 8.75RSat) 1.28ˆ10 ´8

Iapetus 120.51 18.10 3561.30 (59.09RSat) 3.24ˆ10´11

Dione 73.11 11.00 377.40 ( 6.26RSat) 1.66ˆ10 ´8

Tethys 41.21 6.18 294.66 ( 4.89RSat) 1.96ˆ10 ´8

Enceladus 7.21 1.08 238.02 ( 3.95RSat) -
Mimas 2.50 0.38 185.52 ( 3.08RSat) 4.81ˆ10 ´9

Table 4-2: The gravitational parameters GM , the masses M , the semi-major axes a with
respect to the respective central body and the maximum ratio of disturbing acceleration to main
acceleration for the Sun, Jupiter, Uranus, Saturn and Saturn’s seven largest moons. The values
of (ad/am)max were calculated with Eq. (4-88), the values for GM , M and a were taken from

NASA (2013)
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54 Spacecraft Motion Simulation

The maximal relative perturbation can be expressed as a fraction of the main acceleration,
using the fact that the maximal perturbation occurs when body i is exactly between the main
body and the perturbing body (derived from equations by Wakker (2010)):

˜

ad
am

¸

max

“
md

mk

˜

rki
rkd

¸2ˇ
ˇ

ˇ

ˇ

ˇ

«˜

1
1´ rki

rkd

¸2

´ 1
ffˇ

ˇ

ˇ

ˇ

ˇ

(4-88)

Here, the indexes d andm stand for the disturbing body and the main body, respectively. The
geometry of the above equation is depicted in Fig. 4-16b. The values of the ratio (ad/am)max
for different disturbing bodies, for a spacecraft orbiting Enceladus, are listed in Table 4-2.
The following values for the variables in Eq. (4-88) have been used:

• Enceladus is the central body, thus mk “ 1.08ˆ 1020 kg
• md are the masses of the perturbing bodies
• rki is the distance between the center of gravity of Enceladus and the orbiting spacecraft,
thus assuming an orbit of 100 km above the surface, rki “ Renc ` 100 “ 352.1 km
• rkd is the minimal distance between Enceladus and the disturbing body, thus assuming
circular orbits,

- rkd “ ad for the saturnian moons,
- rkd “ aenc for Saturn,
- rkd “ asaturn for the Sun and
- rkd “ |asaturn ´ ad| for Jupiter and Uranus.

As can be seen, the relative perturbation of Saturn is several magnitudes larger than any
other perturbation by induced by the other bodies. The disturbance is in fact so large, that it
is not possible to bring a spacecraft in a stable polar orbit around Enceladus. Studies such as
(Russell and Lara, 2009) indicate that the maximum inclination for a long-term stable orbit
(180 days or more) is around 60˝. Consequently, a polar orbit is only an option for short
term observations and the initiation of the descent process. In case the landing area must be
investigated during a longer period of time, the spacecraft must repeatedly correct its orbit,
which also has a negative influence on the reliability. This aspect might become important
for the design the GNC system.

4-7-2 Solar Radiation Pressure

Solar radiation pressure arises when photons hit a spacecraft. The effective impulse depends
on the ratio between the reflected and the absorbed portion of the incoming light, denoted
with the reflectivity coefficient ε: A perfect black body (ε “ 0) absorbs all incoming light
and experiences only half of the pressure of an ideal reflector (ε “ 1). Each photon carries
a particular amount of energy, so the magnitude of the solar radiation pressure depends on
the amount incoming radiation energy per unit of area, measured in terms of the local solar
flux Φ. The acceleration that a satellite with a cross-section A perpendicular to the incoming
radiation and a mass m will experience is (modified from Montenbruck and Gill (2000))

asolar “
ΦA
cm

. (4-89)
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To estimate the order of magnitude of the solar radiation pressure on a object in the vicinity
of Enceladus, it is assumed that the effective cross-sectional area of the spacecraft is perpen-
dicular to the incoming solar radiation. Introducing the radiation pressure coefficient CR,

CR “ 1` ε, (4-90)

and applying the formula for surface of a sphere, Eq. (4-89) can be written as

asolar “ L@CR
Aeff

4πr3cm
(4-91)

where L@ is the solar luminosity (3.827ˆ1026 Jm´2s´1, Pater and Lissauer (2001)) and r
the distance between the Sun and the spacecraft. In case a relatively high radiation pressure
coefficient of 1.9 is chosen, the perturbing acceleration asolar for the lander with an effective
cross section of about 1.04 m2 (see Table 3-1) is 3.256ˆ10´10 ms´2 at Saturn. The ratio asolar

am

for an orbital height of 100 km then becomes 5.595ˆ10´9. This lower most of the discarded
third body perturbations listed in Table 4-2. The solar radiation pressure is thus not included
in the Enceladus Lander Simulator.

4-8 Simulator Configuration: Spacecraft Motion

As discussed in the Section 4-2, the basic lander state vector consists of the position r,
velocity v, quaternion attitude q and rotational rate ω. The mass m is also added, because in
particular the guidance system needs a current mass estimation to determine the appropriate
acceleration level. The Enceladus Lander Simulator processes the estimated state xest and
the true state xtrue separately, see Fig. 7-1 for the basic program overview. The simulator
configuration parameters corresponding to the state variables, reference frames and perturbing
forces are listed in Table 4-3. The mass related parameters can be found in Table 3-5. Just
like the previous parameter lists, variable names are only listed once in the table if only their
axis designation changes – in those cases, an indication of the number of excluded variable
names is added in brackets.

The initial values for xtrue for the nominal lander model with respect to the I-frame are
configuration parameters in the lander configuration file (Appendix A-1) – xest is equal to
xtrue for the this lander model. The attitude is defined in terms of Euler angles for a better
insight, but translated internally their quaternion counterparts.

The initial values for xtrue and xest, on the other hand, are generated during the Monte Carlo
simulations using the nominal values combined with the position, velocity and quaternion
standard deviations.

The user can chose between the basic RK4 integrator, or one of the three higher-order RKF
techniques. The simulations in Chapter 8 use in general the RKF45 integrator. The RKF56
and RKF78 are part of the C++ integrators toolbox, but they are not used in the simulations.
For more information about the architectural design of the Enceladus Lander Simulator, see
Chapter 7.
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Variable Name Comment

Initial State: descent
xPosition (+2) [m], true position in I-frame
xVelocity (+2) [m/s], true velocity in I-frame
eulerAnglePhi (+2) [˝], ZYX-rotation I- to B-frame
rotationalRateX (+2) [rad/s], ωx

Initial State: repositioning
xPositionRepositioning (+2) [m], true position in I-frame
xVelocityRepositioning (+2) [m/s], true velocity in I-frame
eulerAnglePhiRepositioning (+2) [˝], ZYX-rotation I- to B-frame
rotationalRateXRepositioning (+2) [rad/s], ωx

Target State: descent
xPositionTarget (+2) [m], true position in R-frame
xVelocityTarget (+2) [m/s], true velocity in R-frame
xAccelerationTarget (+2) [m/s2], in R-frame

Reference Frames
rotatingReferenceFrame on/off, test mode

Integrator
integratorID RK4, RKF45, -56 or -78
minimumStepSize [s], ∆tmin
maximumStepSize [s], ∆tmax
relativeErrorTolerance [-], δrel for Eq. (4-78)
absoluteErrorTolerance [-], δabs for Eq. (4-78)
initialStepSize [s], const. for RK4

Gravity Fields
centralGravityFieldEnceladus on/off
centralGravityFieldSaturn on/off, third body perturbation
J2GravityFieldSaturn on/off
J2GravityFieldEnceladus on/off

Table 4-3: State vector and motion related program parameters
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Chapter 5

Guidance and Control

This chapter presents the first part of the lander’s flight software, namely the guidance and
control subsystems. The discussion of the navigation and hazard avoidance subsystem is
extensive and thus shifted to the next chapter.

Section 5-1 introduces concepts of gravity turn guidance, quadratic guidance, velocity nulli-
fying guidance, hybrid-ballistic repositioning guidance and quadratic repositioning guidance.
These guidance logics are all implemented in the Enceladus Lander Simulator; their perfor-
mance is tested separately in the according sections of this chapter, and on a system level, in
the actual descent and repositioning simulations in Chapter 8. The guidance phases, including
the switch between the guidance logics, are discussed and visualized in Subsection 5-1-6.

The control system, consisting of a linear quaternion controller in combination with a tab-
ulated thruster selection logic and a pulse-width-pulse-frequency modulator, is discussed in
Section 5-2.

Each section closes with a summary of the simulator configuration parameters relating to the
foregoing discussions.

5-1 Guidance

In recent years, the Moon received increasing scientific and even commercial interest. Sev-
eral soft-landing missions are currently in the design phase, and the descent guidance is a
critical part of each mission. Fortunately, the absence of an atmosphere greatly reduces the
complexity of the guidance laws.

The main requirements for soft landing guidance are fuel efficiency, robustness, autonomy and
real-time performance (Huang and Wang, 2007). The trajectory with the lowest propellant
consumption follows from a global optimization process with fixed initial and terminal vehicle
states and a given set of constraints. The robustness of this method, however, suffers in case
of unexpected disturbances (Huang and Wang, 2007). In particular the gravity-turn steering
– which has minimal losses, because the thrust vector is constantly opposite to the velocity
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vector – cannot be used as guidance algorithm without modifications, as the final conditions
are fully defined by the initial conditions (Sostaric and Rea, 2005). A sub-optimal method is
explicit guidance that uses the current state of the vehicle to calculate the optimal steering
commands to reach the (fixed) target. Explicit guidance has a higher robustness, especially
in environments where not all disturbing accelerations are exactly known (Huang and Wang,
2007). If nominal guidance is complex even for the well-known Moon, then the descent to
Enceladus should be largely based on explicit guidance schemes.

The guidance system must ensure that the vehicle reaches its specified target. It uses the
current vehicle state to generate steering instruction for the control system, based on trajec-
tory comparison, hazard control, ground commands and other inputs. A planetary lander
commonly uses different sets of guidance laws for the various mission phases; this is discussed
in Section 5-1-6. The actual guidance laws for the descent and repositioning process on
Enceladus will be derived mainly from the lunar landing mission in section. Five main guid-
ance schemes are considered in this chapter: the gravity turn in Section 5-1-1, the quadratic
guidance law in Section 5-1-2, the velocity nullifying guidance law for the terminal-landing
phase in Section 5-1-3, and the ballistic and quadratic guidance logics for repositioning in
Section 5-1-4 and 5-1-5, respectively.

The surface topography of Enceladus imposes high requirements on the guidance system.
Section 2-2 explained that the surface near the south polar region is relatively hilly, covered
with ice chunks and fine fault lines. The distance between the elevations is between 20 m
and 100 m, so the landing accuracy should be better than 10 m to safely land between
two ice boulders. It is likely that the hazard avoidance is of particular importance during
the approach phase of the descent process, because absolute navigation is very complicated.
Once the lander is on the surface, however, it is possible to determine its exact position and
orientation. The targets of the repositioning cycles will be selected by the ground control
on Earth. In this case, the vehicle must be guided to a safe landing spot as close to the
target area as possible (less than 100 m distance), while minimizing the touchdown velocity
- the vertical and horizontal velocity at touchdown must be below 0.5 m/s for a landing (see
Section 3-3).

The human spaceflight missions Apollo and Constellation had similar requirements, and they
are an important source for information about the guidance logic and hazard avoidance sys-
tem. The Altair lunar lander was the conceptual design of the Constellation landing module.
The Altair guidance and in particular the hazard avoidance system was investigated to some
extent, and the results are important for the Enceladus mission.

5-1-1 Gravity turn

A spacecraft following a gravity-turn descent trajectory applies thrust solely in the opposite
direction of its velocity vector. The implementation in the on-board software is comparatively
simple and aims at elimination of the rotational rates about the spacecraft’s velocity vector
(McInnes, 1996). The gravity turn method minimizes fuel losses and is near optimal in terms
of fuel efficiency, but has the disadvantage, that the final conditions are fully defined by the
initial, in-orbit conditions (Sostaric and Rea, 2005). A pinpoint landing using a pure gravity
turn guidance requires the knowledge of all perturbing forces on the trajectory, and it requires
the spacecraft to be at a specific initial state, using perfect control during the descent process.

Guido C. Holtkamp Master of Science Thesis



5-1 Guidance 59

X

Y

sf

rm

r

h

δd

σ

σf

s

fixed reference for σ “ 0 rad

local horizon

σ

V

T

mgm

-γ

Figure 5-1: Geometry of the gravity turn guidance problem

As these requirements cannot be met to the full extent, the gravity turn guidance may be
used for a fuel-efficient deceleration before the start of the terminal descent. This system
has successfully been used on the Viking landers (Ingoldby, 1978). For the recent Phoenix
lander, a gravity turn was even part of the terminal descent phase due to the low precision
requirements (Guo et al., 2012). A different approach uses two feedback guidance loops: one
loop based on a gravity turn, that aims at zero velocity at the end of the trajectory, and
one loop aiming at minimizing the horizontal components of the landing error (Citron et al.,
1964).

Although the concept of a gravity turn is simple, it is not possible to find a closed analytical
expression for a suitable guidance logic without making several assumptions to simplify the
problem. This limits the accuracy of the method, but it can be shown that the relative errors
are in fact small as long as the lander’s initial conditions are within certain boundaries. The
gravity turn problem is divided into a spherical moon case for small flight path angles and
high initial velocities, and a flat moon case for steep flight path angles or low initial velocities.
The former case has a higher relevance for the Enceladus Lander, so it is discussed in more
detail. The following two sections are based on Citron et al. (1964); other sources are used
during the derivation process and for the attempt to increase the method’s accuracy. The
geometry of the gravity turn guidance problem is shown in Fig. 5-1.
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Spherical Moon

The motion of a point mass m with respect to a (pseudo)inertial reference frame at a distance
r from the central body’s center of mass with a gravitational parameter µ can be described
with

:r “ ´ µ

r3 r. (5-1)

The scalar product of Eq. (5-1) and dr
dt together with the vector product of the same equation

with r lead to the cylindrical equations of motion for a spacecraft with thrust force T (Wakker,
2010):

:r ´ r 9σ2 “ ´
µ

r2 `
T

m
sin δ (5-2)

d
dt

`

r2 9σ
˘

“
T

m
r cos δ (5-3)

Here, σ is the polar angle of the spacecraft, and δ is the angle between the thrust vector
T and the normal to r in the plane of motion, thus a combination of εT and φT as shown
in Fig. 4-11. The thrust force of a spacecraft following a gravity turn trajectory is always
directed in the opposite direction of the velocity vector V. In this case, the absolute value
of δ is equal to the absolute value of the flight path angle γ, which is defined as the negative
value of the angle between the local horizon and V, see Fig. 5-1. Both sin δ and cos δ may be
expressed in terms of radial, tangential and total velocity:

sin δ “ ´ sin γ “ ´ 9r

V
(5-4)

cos δ “ cos´γ “ r 9σ

V
(5-5)

As the angular momentum per unit of mass is rˆV “ r2 9σ and the acceleration in the opposite
direction of the current velocity vector is a “ T

m , Eq. (5-1) becomes (Citron et al., 1964)

:r ´
H2

r3 “ ´
µ

r2 ` a
9r

V
(5-6)

9H “ ´a
H

V
(5-7)

The body’s total energy E is an important auxiliary value for the derivation of the gravity
turn guidance equations, because its initial and final value are known beforehand. The change
of E as a function of path length s is simple, as a always points in the opposite direction of
V:

dE
ds “

dt
ds

dE
dt “

1
V
p´aV q “ ´a (5-8)

Integrating Eq. (5-8) leads to (Citron et al., 1964)

E “ ´as`
V 2

0
2 ´

µ

r0
(5-9)
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(b) n “ 4

Figure 5-2: Estimated1(dashed lines) and actual (solid lines) altitude and velocity for the
gravity turn guidance for a body with the initial conditions h0 “ 15240m, V0 “ Vc and γ0 “ 0˝

in combination with a constant acceleration and a fixed mass

where the last two terms represent the initial kinetic and potential energy, respectively (see
Wakker (2010)). Solving Eq. (5-9) for V 2 after replacing E by the expression for the current
kinetic and potential energy, and using the fact that h

r ! 1 (Citron et al., 1964):

V 2 “ ´2as` V 2
0 ` 2gm ph0 ´ hq (5-10)

The accuracy of the gravity turn guidance depends on the chosen expression for h in the
previous equation, because V 2 is required for the integration of the cylindrical equations of
motion. Any expression that differs from the basic Eq. (Citron et al., 1964)

h “ h0

ˆ

1´ s

sf

˙

(5-11)

ultimately leads to very complex terms in the integrated equations of motion, that cannot be
solved for the acceleration command a as a function of time or path length in a closed form.
Note that the expression for the final – or total – path length sf here is simply

sf “
V 2

0 ` 2gmh0
2a (5-12)

because the acceleration a for a gravity turn guidance only acts along s.
1The modification of Eqs. (5-11) and (5-14) for an order n is:

h “ h0

„

1´
ˆ

s

sf

˙n

V 2
“ V 2

0

„

1´ s

sf



´ 2gmh0
s

sf

«

1´
ˆ

s

sf

˙n´1
ff

These equations are only used in Fig. 5-2 with n “ 4 for demonstration purposes.
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The accuracy of Eq. (5-11) depends on the lander’s initial conditions h0, γ0 and V0. In
particular, steep descent trajectories with γ0 close to -90˝ show much better agreements with
the approximation for h. The simulation results shown in Fig. 5-2 indicate that in this case
replacing s

sf
by a higher-order expression such as

´

s
sf

¯4
improves the accuracy of the altitude

estimation, but even this small modification causes an explosion of terms in the analytical
solution. On the other hand, Citron et al. (1964) demonstrates that the relative downrange
error is in fact low in case V0 is larger than the free fall velocity

Vff “ g

d

2h0
g
. (5-13)

The gravity-turn equations do not include disturbing accelerations, so the actual accuracy of
the this guidance law is probably much lower than for the ideal case due to the comparatively
large third-body perturbations from Saturn. This will be investigated during the actual
simulation runs and is discussed in Chapter 8. At this point, it seems to be unlikely that
the sole implementation of a better expression for h will increase the guidance accuracy. A
simple alternative is to deviate from the constant acceleration requirement; this is discussed
later in this section.

Substituting the functions for the estimated altitude in Eq. (5-11) and for the final path
length in Eq. (5-12) into Eq. (5-10) gives

V 2 “ V 2
0

ˆ

1´ s

sf

˙

(5-14)

This estimated velocity follows the actual value very closely, despite the limitations of Eq. (5-11).
The remaining steps for the derivation of the gravity turn guidance are straightforward: The
independent variable from the equations of motion (Eq. (5-7)) is changed from time to path
length. With the simplifications dr

ds «
`dr

ds
˘

0 and r « rm, the rewritten cylindrical equations
of motion can be integrated under the conditions that r “ r0 and dr

ds “ sin γ0 when s “ 0
(Citron et al., 1964):

ˆ

a

gm

˙2
` sin γ0

„

V 2
0

2h0gm
` 1



a

gm
´

cos2 γ0
4V 2

0 h0gm

“

V 2
0 ` 2gmh0

‰2
„

1´ V 2
0

2rmgm



“ 0
(5-15)

The above equation is unambiguously solvable for the required acceleration a “ T
m for any

velocity V0 smaller than the escape velocity Vesc. In this idealized case, a is constant along
the descent trajectory, which leads to a decreasing thrust T , because m decreases due to the
spacecraft’s fuel consumption. The precision of the result limited by the initial assumption
of h

rm
! 1, the simplifications for the integration of the equations of motion and the constant

value of the local gravitational attraction gm. The approximate distance traveled across the
surface – the downrange δd – can be determined with (Citron et al., 1964):

δd “ rmσf “
V 2

0
2a cos γ0

„

V 2
0 ` 2gmh0
V 2

0 ` gmh0

 „

rm
r0



(5-16)
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The geometry of the downrange (and cross range) is discussed in more detail in Section 4-6.
The gravity turn guidance assumes a two-dimensional situation, so the cross range is not
controlled with Eq. (5-15). A simple guidance logic will track the cross range value and
eliminate the errors using the four lateral attitude thrusters pointing in the ˘XB-direction.

The approximate time required for the descent process follows from integrating Eq. (5-14)
with respect to t (note that V “ ds

dt ) with the boundary condition s “ 0 at t “ 0:

tf “
2sf
V0

(5-17)

The gravity turn guidance equations in the Enceladus Lander Simulator will now be applied
to a real descent problem. The initial conditions and the configuration data are taken from
Citron et al. (1964), because comparing the results also ensures a correct implementation of
the guidance logic in the software code. This is also the reason why some of the following
graphs display non-SI units – the translation is purely a unit conversion at the end of the
respective simulation. Note that the configuration and test simulations in this section are
executed in MATLAB; the full lander simulator in C++ will then use the results found in this
section. This method is also used for the navigation and control system configuration, see
Section 5-2-5 and 6-1-5, respectively. The simulation parameters are listed in Table 5-1.

Name Symbol Value Comment

initial velocity V0 1672 m
s = 5488 ft

s ; Vc at h0
initial altitude h0 15240 m = 50,000 ft
initial flight path angle γ0 0˝ —
initial mass m0 10,000 kg from lunar module
gravitational acceleration gm 1.5966 m

s2 —
radius moon rm 1737 km lunar radius
specific impulse Isp 260 s standard value
time step ∆t 0.1 s —

Table 5-1: Gravity turn guidance simulator parameters (unit test)

The equations of motion for the lander’s true state follow from Fig. 5-1 and are in fact a
different form of cylindrical equations of motion (5-2) and (5-3):

m 9V “ ´mgm sin γ ´ T (5-18)

mV 9γ “ ´mgm cos γ
ˆ

1´ V 2

gmr

˙

(5-19)

The rate of change of the polar angle and the altitude are then

9σ “
V

r
cos γ (5-20)

9h “ V sin γ. (5-21)

Figure 5-3 shows the velocity, altitude and flight path angle as a function of the of dimen-
sionless time for a constant acceleration value. a

gm
follows from the spacecraft’s initial state
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Figure 5-3: Gravity guidance for a lunar landing with constant acceleration

as given in Table 5-1. The thrust force decreases over time to compensate for the mass loss
9m “ ´ T

gEIsp
through the main engine. The velocity at touchdown is 88 fts´1 (27 ms´1), while

γf is about -40˝. These deviations from the expected values of 0 fts´1 and -90˝, respectively,
are the consequence of the simplifications made during the derivation of the gravity turn guid-
ance logic for the spherical moon case. Far better results are achieved by recalculating a each
integration step, which in facts leads to an explicit guidance scheme. In this case, a remains
approximately constant until t

tf
“ 0.8, where a slightly decreases – with this technique, the

lander achieves a vertical touchdown touchdown at zero velocity, see Fig. 5-4. Figure 5-5
shows the results of the gravity turn simulations of Citron et al. (1964). Their resemblance
indicates that the software implementation of Eq. (5-15) was successful.

The same principle was used for figures 5-6 and 5-7 to test the implementation of the down-
range estimation from Eq. (5-16). These figures show the estimated downrange and acceler-
ation level as a function of the initial altitude. The remaining initial conditions are the same
as used for the previous simulations. Both simulations use constant acceleration levels - the
recalculation of the required acceleration as discussed before leads in this case to absolute
downrange errors three orders of magnitude larger as shown in Fig. 5-6. The relative error
for variable acceleration at h0 “ 200.000 ft is 27% in contrast to only 0.1% for constant
acceleration.

The large downrange estimation errors for the explicit guidance logic requires a new derivation
of the expression for δd, because the final path length sf is not a constant anymore, see
Eq. (5-12) and (5-16). This in turn requires a completely new approach to derive a, as the
inaccuracies arise from the initial problem simplifications. The constant acceleration case on
the other hand may still be used as an initial guidance logic – the downrange estimation is
quite good, after all. The quadratic guidance law presented in the next section can correct
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Figure 5-4: Gravity guidance for a lunar landing with variable acceleration. Horizontal scaling
modified for comparison with Fig. 5-5.

Figure 5-5: Gravity guidance for a lunar landing (Citron et al., 1964)
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Figure 5-6: Downrange and acceleration as a function. Scaling modified for comparison with
Fig. 5-7.

Figure 5-7: Downrange and acceleration as a function of initial altitude (Citron et al., 1964)
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the accumulated errors. The question remains whether the use of multiple guidance laws can
have a positive effect on the fuel consumption. The simulation results from Enceladus Lander
Simulator will provide more information about this, see Chapter 8. Note, that the descent
time estimation error increases for higher altitudes: Between h0 “50,000 ft and h0 “200,000
ft, the error increases from 3% to 7%.

Flat Moon

In case of a low initial horizontal velocity, the curvature of the surface becomes negligible,
which significantly simplifies the mathematical description of the lander’s motion. The equa-
tions of motion in a surface-fixed reference frame similar to one defined in Section 4-1-4, where
the Y-, X- and Z-axis point upward, forward and sideward, respectively, are (Citron et al.,
1964):

:y “ ´a
9y

V
´ gm (5-22)

:x “ ´a
9x

V
(5-23)

The derivation process is much simpler compared to the spherical moon model and will not
be shown here. The only restriction that will reduce the accuracy of the results within
the boundaries of the flat moon model is the assumption of a constant gravity field. The
acceleration command follows from the expression (Citron et al., 1964)

ˆ

a

gm

˙2
` sin γ0

„

V 2
0

2h0gm



a

gm
´

„

V 2
0
`

1` sin2 γ0
˘

4h0gm
` 1



“ 0 (5-24)

which is unambiguously solvable for the required acceleration a “ T
m . The deceleration

command is, in fact, slightly too large throughout the descent due to the assumption of a
constant gravity field. Similar to the guidance logic for the spherical moon model, a may be
recalculated each integration step for more accurate results. The equations for the downrange
prediction and descent time are (Citron et al., 1964)

δd “
V 2

0 cos γ0
2

„

1` sin γ0
2a` gm

`
1´ sin γ0
2a´ gm



(5-25)

and

tf “
V 2

0
2

„

1` sin γ0
a` gm

`
1´ sin γ0
a´ gm



, (5-26)

respectively.
The acceleration commands for initial velocities below V0

Vc
“ 0.6 are shown in Fig. 5-8a, for

both the flat moon and the spherical moon model. The remaining simulation parameters are
the same as in the previous section and listed in Table 5-2. With respect to the spherical
model, the flat moon model returns lower acceleration commands for V0

Vc
below 0.27 and larger

commands for all other cases. The large deviation of a
am

from the expected value of 1 for
initial velocities close to 0 indicates the shortcomings of the spherical model in that velocity
region.
The successful software implementation of Eq. (5-24) is tested by comparing Fig. 5-8a with
the results from Citron et al. (1964) shown in Fig. 5-8b.
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(a) Simulation Results (b) Citron et al. (1964)

Figure 5-8: Acceleration command results for the spherical moon and the flat moon model for
different initial velocities V0.

Gravity Turn at Enceladus

The comparatively small radius of Enceladus and the low gravitational acceleration of Ence-
ladus imposes more stringent limitations on the lander’s conditions. The simulation parame-
ters are based on the lander characteristics and Enceladus’ physical characteristics, and have
been discussed in the previous chapters. For convenience, the setup data is collected in Ta-
ble 5-2. The velocity at touchdown – which should be zero in the idealized case for constant a
– and the descent time estimation error increase with larger initial altitudes for the spherical
moon model, see Fig. 5-9. This is largely due to the fact that the condition h

rm
! 1 for

Eq. (5-15) is no longer fulfilled. The previous lunar case uses h0 “ 15 km for rm “ 1737 km.
The same ratio h0

rm
for Enceladus gives a reference value in the order of 3 km. The downrange

error increases exponentially, but is still surprising low with about 700 m for h0 “ 50 km.
The velocity error, on the other hand, for the same initial altitude is 50 ms´1.

One way to limit the impact of the end velocity error for the spherical moon case is to use a
lower V0. Figure 5-11 shows the values of vf and hf as a function of the ratio V0

Vc
for a fixed

initial altitude h0 “ 15 km. At V0
Vc
“ 0.6, the simulation stopped for the first time by a zero

altitude value instead of a negative velocity value. A lower V0 would thus cause the lander
to hover above the surface with a downrange to the target area in order of a few hundred
meters. The V0

Vc
region between 0 and 0.6 should be simulated with a flat moon model, which

leads to a better approximation of the descent trajectory for low initial velocities.
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Figure 5-9: Spherical moon model: velocity and descent time error for different h0

Name Symbol Value Comment

initial velocity V0 0 – Vc depends on h0
initial altitude h0 2 – 15 km —
initial flight path angle γ0 0˝ —
initial mass m0 335 kg at entry
gravitational acceleration gm 0.1011 m

s2 at surface
radius moon rm 252.1 km —
specific impulse Isp 312 s —
integration time step ∆t 1 s —

Table 5-2: Gravity-turn guidance simulator for the Enceladus lander

The downrange errors ∆δd and the end altitude hf for both the flat moon model and the
spherical moon model are shown in Fig. 5-12 as a function of the initial velocity. The lander’s
initial are the same as in the previous simulations, and the acceleration commands are constant
for each value of V0

Vc
. The flat moon model achieves lower values for both ∆δd and hf for initial

velocities up to V0
Vc
“ 0.4, while the spherical model is clearly the better choice for velocity

ratios larger than 0.65. The transition region between 0.4 and 0.65 is relatively large, and it
might be feasible to base the downrange prediction and the thrust acceleration on different
models. For simplicity, the Enceladus lander gravity turn guidance logic will change from the
flat moon model to the spherical moon model at V0

Vc
“ 0.5. Note, that the results shown in

Fig. 5-12 can be improved further by decreasing h0, as discussed in the previous section.
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Figure 5-10: Spherical moon model: maximal thrust and estimated downrange for different h0
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Figure 5-11: Spherical moon model: velocity, altitude and descent time errors for different V0
at h0 “ 15, 000 m
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Figure 5-12: Spherical and flat moon model: downrange and altitude errors for different V0 at
h0 “ 15 km

5-1-2 Quadratic Guidance

The Apollo and Altair basic guidance law for the braking and approach phase consists of
a time-dependent, fourth-order polynomial function that yields the desired trajectory for a
given position. The guidance logic follows from solving the acceleration profile two-point
boundary-value-problem (TPBVP) between the current position of the lander and its target
location (Lee et al., 2010). The target acceleration at a given point also indirectly determines
the target attitude. The braking phase and approach phase use the same algorithm, but with
different target states. The boundaries of the TPBVP are the initial and target values of the
vehicle’s position (r0, rt), velocity (v0, vt) and acceleration (a0, at). A polynomial must be
at least quadratic to meet the three target constraints, so the acceleration profile is chosen to
have the form (Wong et al., 2002)

aptq “ C0 ` C1t` C2t
2 (5-27)

where the coefficients C0, C1 and C2 follow from the six boundary conditions. Two bound-
ary conditions correspond to the velocity and the position, respectively. Thus, integrating
Eq. (5-27),

vptq “ C0t`
1
2C1t

2 `
1
3C2t

3 ` v0 (5-28)

rptq “
1
2C0t

2 `
1
6C1t

3 `
1
12C2t

4 ` v0t` r0. (5-29)

The travel time or time-to-go from the current to the target state is now defined by tgo.
Substituting t “ tgo in the above equations gives (modified from Wong et al. (2002))

aptgoq “ at “ C0 ` C1tgo ` Ct
2
go
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vptgoq “ vt “ C0tgo `
1
2C1t

2
go `

1
3C2t

3
go ` v0 (5-30)

rptgoq “ rt “
1
2C0t

2
go `

1
6C1t

3
go `

1
12C2t

4
go ` v0tgo ` r0

from which the coefficients C0, C1 and C2 can be derived (Wong et al., 2002):

C0 “ at ´ 6
ˆ

vt ` v0
tgo

˙

` 12
ˆ

rt ´ r0
t2go

˙

(5-31)

C1 “ ´6
ˆ

at
tgo

˙

` 6
ˆ

5vt ` 3v0
t2go

˙

´ 48
ˆ

rt ´ r0
t3go

˙

(5-32)

C2 “ 6
ˆ

at
t2go

˙

´ 12
ˆ

2vt ` v0
t3go

˙

` 36
ˆ

rt ´ r0
t4go

˙

(5-33)

The only unknown at this point is the value for tgo. In principle, tgo can be chosen freely,
but often there are mission requirements that impose additional constraints. The hazard
avoidance system, for example, requires a minimum amount of time until it has identified a
safe landing spot. Another possibility is to determine the optimal value for tgo for a minimum
fuel consumption, using a simple global optimization technique such as the Monte Carlo
method or a nested do-loop. Wong et al. (2002) chooses tgo such that the acceleration profile
for the vertical motion is a linear function of time, thus C2 “ 0. In that case,

tgo “
2vt ` v0
at

`

d

ˆ

2vt ` v0
at

˙2
`

6 pr0 ´ rtq

at
(5-34)

for at ‰ 0, or if at “ 0,

tgo “
3 prt ´ r0q

v0 ` 2vt
. (5-35)

The assumption of a linear vertical acceleration profile allows an easier analysis of the lander’s
motion under the effect of the gravitational acceleration. The quadratic guidance uses the
surface-fixed reference frame as defined in Section 4-1-4 for a simple division of the velocity
components: the XS-, YS- and the ZS-axis describe the upward, forward and sideward motion
of the lander, respectively, with respect to origin of the reference frame. Each direction is
guided by a separate guidance law. The coefficients C0, C1 and C2 for each direction are
determined with the tgo from the vertical motion and the current target and state information
(see Eq. (5-31)). These calculations are repeated very guidance cycle, for all axes. If needed,
the surface-fixed reference frame may be updated simultaneously to reduce the effects of the
moon’s spherical shape, but it is important to track the target position during all frame
updates, because its location follows from a hazard map that was taken with respect the
surface-fixed frame at that instance of time. Note that the desired acceleration along the
XS-axis as calculated with Eq. (5-27) includes the gravitational acceleration, which must be
subtracted in to generate the actual acceleration command for the lander control system.
The gravitational acceleration should not be assumed constant during the flight: the initial
guidance system simulations returned a position error in the order of 70 m for an initial
altitude of 3000 m in case genc “ genc,0.

The search for a suitable tgo starts with Eq. (5-35), because the desired vertical acceleration
is usually zero to avoid large velocity changes shortly before the touchdown. The assumption
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of a linear acceleration profile reduces the degree of freedom of Eq. (5-27), so not every
combination of initial and target state will lead to a valid result. The time-to-go is negative
and thus invalid in case – for example – a descent trajectory (rt ´ r0 ă 0) with vt “ 0 is
desired, but the spacecraft is currently moving upward (v0 ą 0). Equation (5-34) may be
used to find tgo in case at is specified, but similar restrictions to the initial and final lander
state apply. Note, that tgo ą 0 only indicates that it is mathematically possible to reach the
target state. To check the actual reachability, the calculated tgo must be tested in the way as
discussed in the next segment.
A more general approach is to determine a range of tgo for all at within the main engine
limitations. The main engine is freely throttleable between 10% and 100% of the rated
thrust, see Table 3-2. The lander is not allowed to accelerate downward for safety reasons, so
the allowable at range is 490N

335kg r0, 1s` genc “ r´0.1135m
s2 , 1.3492m

s2 s. The tgo range follows now
from inserting the at range into Eq. (5-34) and eliminating all results leading to a negative
tgo. Figure 5-13 shows the time-to-go as a function of the of previously derived at range for a
lander at an altitude of 1000 m with a forward and downward velocity of 34 m

s (0.2Vc) and -30
m
s , respectively, aiming at a target on the surface 1000 m in front of the initial sub-satellite
point. The curve is discontinuous as a consequence of the form of Eq. (5-34). The initial and
target states with respect to the surface-fixed reference frame are collected in Table 5-3.

Name Symbol Value Unit

initial position r0 [1000, 0, 0] m
initial velocity v0 [-30, 34, 0] m

s
target position rt [0, 1000, 0] m
target velocity vt [0, 0, 0] m

s
target acceleration at [-0.1135, 1.3492] m

s2

Table 5-3: Quadratic guidance simulation parameters (S-frame)

As can be seen in Fig. 5-13, the time-to-go increases exponentially when atx is negative and
approaches 0. This is a consequence of the initial and target states given in Table 5-3: For
a negative atx , the term 2vt`v0

at
in Eq. (5-34) is positive and approaches infinity for atx Ñ 0.

On the other hand, for a positive atx , this term is negative and cancels out the first term in
the square root. The value of tgo for atx Ñ 0 approaches the result of Eq. (5-35) for the case
tgo “ 0.
The next step is to determine the factors C0, C1 and C2 for all axes for each remaining value
of tgo, which allows the analysis the complete trajectory for each tgo. All invalid values for
tgo are then filtered out in three consecutive steps.
Firstly, all tgo are discarded for which the initial acceleration value a0x is outside the available
acceleration range. The vertical motion along the XS-axis is treated differently than the two
horizontal motions due to the additional gravitational acceleration. Based on Eq. (5-27) and
(5-31), the following relation must be true for all remaining values:

0 ĺ C0x ´ genc ĺ
Trated
m0

` genc (5-36)

The target acceleration for the XS-axis is as discussed before always within the acceleration
range, so if both a0x and atx are valid, all intermediate values ax are also valid due to the
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Figure 5-13: Time-to-go as a function of the target acceleration (XS-axis). tgo increases
drastically for small negative at,x; the output is limited here to tgo “ 600 s.

linear character of the acceleration profile. Figure 5-14 shows the values of a0x as a function
of atx for initial and target states from Table 5-3. No values must be removed, as atx-a0x-pairs
are within the boundaries set Eq. (5-36).

Secondly, all tgo are removed that lead to a negative altitude at any time during the descent.
The local altitude extremes occur at the instances of time t˚ for which the first time derivative
of the altitude – the vertical velocity – is zero. The candidate points are thus

t˚1,2 “ ´
C0x

C1x

˘

d

C2
0x

C2
1x

´ 2 v0
C1x

. (5-37)

In case the conditions

0 ĺ t˚ ĺ tgo ^ apt˚q ą 0 (5-38)

are met, rpt˚q is the local minimum. The lowest value rmin of the altitudes r0, rpt˚q and rt
then is global minimum, and all tgo for which rmin ă 0 are disregarded. Figure 5-15 shows
the values of rmin as a function of at,x for the same example as used before. The red line
marks all rmin ´ atx-pairs that will be removed in this step. Note, that even the eliminated
tgo’s – theoretically – guide the lander to the desired target state.

Thirdly, all tgo must be removed that, at any time, lead to a required total acceleration larger
than the maximum acceleration the main engine can provide. The total acceleration the main
engine must deliver is

aengptq “

b

raxptq ´ gencs
2
` ayptq2 ` azptq2. (5-39)
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Figure 5-14: Initial acceleration as a function of the target acceleration (XS-axis). No
elements were removed. The discontinuity is a consequence of the discontinuity in Fig. 5-13.
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Figure 5-15: Minimum altitude as a function of the target acceleration (XS-axis). The red line
indicates all elements that will be removed. The discontinuity is a consequence of the

discontinuity in Fig. 5-13.
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Figure 5-16: Maximal acceleration of the main thruster as a function of the target acceleration
(XS-axis). The red line indicates all elements that will be removed.

The maximum total acceleration amax,eng is hard to find analytically. The alternative is to
successively increase t by a step-size ∆t until tgo is reached, and simply safe the largest value
of aeng. As the fuel consumption is directly related to the current thrust level and thus the
acceleration integrated over time, finding amax,eng should be combined with calculating the
fuel consumption of the entire trajectory. The fuel consumption mf at time t is

mf “
aengptqmptq

g0Isp
(5-40)

where g0 is the standard acceleration due to gravity (9.80665 m
s2 ). The total fuel consumption

for a given tgo follows from the numerical integration process. Note, that calculations of
amax,eng and mfuel,max must be repeated for each value of tgo. Figure 5-16 shows the values
of amax,eng as a function of atx . The red line indicates all values that exceed the maximum
thrust the main engine can provide; these values are removed from the candidate pool.

At this point, all remaining values for tgo can be used by the quadratic guidance law for a safe
touchdown. The tgo with the lowest fuel consumption will be used as input for the guidance
system. Figure 5-17 shows the values tgo and atx as a function of fuel consumption. The
minimum fuel consumption is about 7.6 kg including the effect of genc for a time-to-go of 57.8
s and a vertical target acceleration of 0.76 m

s2 .

The position, velocity and acceleration as a function of time for the found tgo “ 57.8 s can be
found in Fig. 5-18a, 5-18b and 5-18c, respectively. The target state is reached as expected,
with a linear vertical acceleration profile, and quadratic horizontal acceleration profiles. The
tgo for the YS- and ZS-axis might be reduced by a few seconds to avoid a spacecraft rotation
close to the surface.
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Figure 5-17: Time-to-go and vertical target acceleration as a function of the fuel consumption
(S-frame)

The above calculations of tgo, C0, C1 and C2 are repeated every guidance cycle, each axis
separately (the gravitational acceleration must be taken into account for the vertical axis).
The results are then substituted in acceleration profile (Eq. (5-27)). The commanded accel-
eration then is the difference between the actual acceleration and aptq. Near the target area,
tgo gets small and causes an explosion of the expressions for C0, C1 and C2. This problem can
be avoided by selecting a new target state some seconds before the critical values of tgo. The
LM used a target below the lunar surface for the approach phase in order to achieve a better
visibility for the astronauts. This is also important for the LIDAR-based hazard avoidance
system of the Enceladus lander.

In summary, the guidance system recalculates an acceleration profile between the current
position and the target position, taking into account possible derivations from previous tra-
jectory. The quadratic guidance logic was successfully used for the Apollo landings, but also
future missions to the Moon (Kos et al., 2010) or Mars (Wong et al., 2002) take this method
into consideration due to its robustness along with its relatively high fuel-efficiency.

Just like the moon landers, Silenus will perform a pitch-up maneuver at the end of the braking
phase in order to allow the LIDAR to scan the target area and return data to the hazard
avoidance system. The exact time of the maneuver is a trade-off between the efficient range
of the LIDAR (maximal range is 2 km, see Section 6-1-7) and the time left for maneuvering.
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Figure 5-18: Quadratic guidance simulation for tgo = 57.8 s
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5-1-3 Velocity Nullifying Guidance

The terminal phase ideally consists only of a vertical descent to the designated landing spot.
A non-zero horizontal touchdown velocity can cause an overturning of the vehicle, which
results in the failure of the mission. The velocity and roll rate limits depend on the landing
gear design - for Apollo 11 lander they were 0.45 ms´1 horizontal, 0.2 ms´1 vertical, -1.5
degs´1 pitch, -6.2 degs´1 yaw and -3.7 degs´1 roll (Lee, 2011). A rough estimation for the
landing gear limits of the Enceladus lander can be found in Section 3-3. During the near-
target navigation, the horizontal velocity – and, if necessary, also the vertical velocity – can
be controlled with a basic velocity nullifying guidance logic of the form

acmd,S “ ´
1

∆t

¨

˝

V0x,S ´ Vtx,S
V0y,S
V0z,S

˛

‚´

¨

˝

g0enc
0
0

˛

‚, (5-41)

where ∆t is the time available for the velocity corrections, V0,S the velocity at the beginning
of the nullifying guidance phase, Vtx,S the target velocity along the XS-axis, and g0enc the
gravitational acceleration at the surface. Vtx,S should be negative to avoid hovering or even
climbing. The Enceladus Lander Simulator incorporates two velocity nullifying guidance
modes: The first mode controls only the horizontal velocity and can be activated in case the
quadratic guidance logic terminates the control of the motion along the YS- and ZX -axis,
while the guidance for the vertical motion is still due to a slightly larger tgo for that axis (see
discussion in previous section). In that case, the top element of acmd,S is reset to zero. The
control system will automatically only activate thrusters in the XBYB-plane provided that
the ZB-axis approximately points in nadir direction, which should always be the case at the
end of the quadratic guidance phase.

The velocity nullifying guidance law for the rotational state is

9ωcmd “ ´
1

∆t

¨

˝

p0
q0
r0

˛

‚ (5-42)

where p0, q0 and r0 are the rotational velocities about the body axes at the beginning of the
velocity nullifying guidance phase. The reference moment about the vehicle’s center of mass,
Mcm, then follows from Eq. (4-62) and becomes

Mcm “ I ¨ 9ωcmd ` ω ˆ I ¨ ω (5-43)

which is used instead of the output of the linear quaternion controller from Eq. (5-52).

Note, that Eqs. (5-41) and (5-42) represent the most basic acceleration commands to eliminate
the initial velocities and cannot be updated during the time ∆t. It is possible to derive more
elaborated feedback controllers, see, for example, Astolfi and Rapaport (1998) and Aeyels
(1985). The lander’s translational and rotational velocity, however, is already small due to
the quadratic guidance, so the effort to implement a complex velocity nullifying guidance law
would be disproportionate to the benefits. A comparatively simple first step would be to use
the existing quaternion controller for velocity nullifying by fixing the attitude command to
its value at the beginning of the nullifying phase, but this requires another optimization cycle
to find values for the proportional and derivative gains. The design of an explicit velocity
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nullifying guidance scheme for both rotational and translational motion is a promising subject
of future work on the Enceladus Lander Simulator.
Other options for the control of both the position and translational velocity is the implemen-
tation of guidance laws based on Q-guidance or on optimal control. Q-guidance is used in
missiles and can be applicable to the terminal guidance phase of planetary lander, see Gregory
et al. (2008). Optimal control theory is particularity useful when the horizontal velocity is
unexpectedly large. JPL identified this fault scenario as an optimal control problem with a
cost function J that aims at minimizing the touchdown velocity over a free or fixed horizontal
distance, or downrange. The control variables are the thrust vectors, which are constrained
by the engine performance. This optimization problem can be solved using the classic calculus
of variations technique. The result is a the optimal control of the thrust vector as a function
of time, see for the full derivations Lee (2011) and Guo and Han (2010).

5-1-4 Hybrid Ballistic-Quadratic Repositioning Guidance

In theory, the most fuel efficient repositioning sequence in an atmosphere-less environment will
consist of maximum thrust maneuvers at optimal angles at the beginning and the end of tra-
jectory. This technique minimizes the gravitational losses, but it imposes strict requirements
on the control and navigation system, because the thrust magnitude and thrust orientation
must be as close to the required values as possible for an acceptable landing precision. The
Enceladus lander will use a maximum acceleration command in the desired direction to ini-
tiate the repositioning phase. Initially, the thruster points downward and is not aligned with
the desired elevation angle. This will lead to a misaligned lander velocity vector and thus a
wrong touchdown location. The implemented quadratic and velocity nullifying guidance will
be used during the last leap phase to reduce the accumulated position and velocity errors.
It is possible to add additional guidance laws to reduce the initial velocity errors, but this is
beyond the scope of this report.
The velocity change ∆v in an ideal situation and in absence of any perturbing forces follows
directly from the current spacecraft massm, and can be calculated with Tsiolkovsky’s equation

∆v “ g0Isp ln
´m0
m

¯

(5-44)

where g0 and Isp are the standard acceleration due to gravity and the main engine specific
impulse, respectively. The initial and final lander velocity is the same for an idealized purely
ballistic trajectory. The total fuel consumption then is double the fuel consumption following
from Eq. (5-44) for one impulsive shot:

mf “ 2m0

ˆ

1´ e´
∆v

g0Isp

˙

(5-45)

The fuel consumption is higher in reality due to the gravitational losses during the acceleration
phase, the perturbing forces, and – most importantly – the initial thrust angle error between
the ZB-axis and desired launch angle. The traveled horizontal distance (downrange along the
YS-axis) of the ballistic trajectory depends on the initial velocity v0 and its elevation angle α
and can be derived as

y “ 2 v2
0

genc
sinα cosα. (5-46)
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The maximum range is achieved with α=45˝. The hazard avoidance system, however, imposes
a minimal altitude requirement hreq for the generation of a hazard map. The minimal vertical
initial velocity is thus always

V0 sinα “
a

2genchreq, (5-47)

while the minimum range for which α can be set to the optimal angle is ymin “ 4hreq. If the
desired value for y is below this limit, v0 follows from Eq. (5-47), and the elevation angle from
inserting Eq. (5-47) in Eq. (5-46):

tanα “ 4hreq
y

. (5-48)

The guidance logic for the first part of the ballistic trajectory in terms of the desired initial
velocity and direction can then be summarized as

v0, α “

$

&

%

?
2genchreq

sinα , tan´1
´

4hreq

y

¯

if y ă 4hmin
?
ygenc, 45˝ if y ě 4hmin

(5-49)

The actual ballistic trajectory starts as soon as the lander has reached v0 using the maximal
available thrust, and the main engine is switched off. The S-frame is defined such that the
target is located on the YS-axis; any motion along the ZB-axis is automatically a cross-range
error, because the spacecraft ideally moves only in the XSYS-plane.

5-1-5 Quadratic Guidance Repositioning

The quadratic guidance logic in combination with the procedure to find an appropriate time-
to-go (see Section 5-1-2) is capable to define a reference trajectory for the repositioning
between two points on the surface. The lander is initially guided to the desired maximum
altitude, and only then to the actual target point. The guidance scheme is generally not fuel
optimal, but it is reliable and does not involve extreme maneuvers and high thrust levels. The
latter is in fact a critical factor in case the center of mass is not very close the main engine’s
thrust vector, because the control system is not able to cope with the disturbing moments.
This is discussed in more detail in Chapter 8.

The S-frame for the quadratic guidance repositioning is defined in the same way as for the
ballistic repositioning discussed in the previous section. In this way, the intermediate target
consists only of the desired maximum altitude (`XS-axis), a downrange δ, and a downrange
velocity vδ (both `YS-axis).

The intermediate target position is chosen to be at the required altitude hreq as defined in
the previous section, at a downrange equal to half the desired jump distance yt, with zero
cross-range. The intermediate target velocity consists of a downrange velocity equal to the
ballistic velocity, which would bring the lander to final target position, and a cross-range and
downward velocity both equal to zero. The intermediate target state xt,1 then can be written
as

xt,1 “
„

hreq,
1
2yt, 0, 0, 1

2yt
c

genc
2hreq

, 0


.
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Figure 5-19: Quadratic guidance acceleration commands
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Figure 5-20: Position and velocity as a result of the acceleration shown in Fig. 5-19

This choice is generally not fuel optimal within the framework of the quadratic guidance logic,
but some simple grid search optimization applied to the nonzero parameters of xt,1 indicated,
that the fuel consumption only changes by a few percent – at the expense of the trajectory
smoothness.

Figure 5-19 shows the acceleration commands for a jump distance yt of 2000 m and a required
altitude hreq of 500 m. The intermediate and final targets are both reached as illustrated in
figures 5-20a and 5-20b. The acceleration curves are not symmetrical, because the initial
conditions for the time-to-go search are different at the beginning of each guidance phase.
The fuel consumption for this example is about 6.5 kg, while the ideal ballistic repositioning
requires 3.3 kg. The purely quadratic guidance repositioning and the combined ballistic and
quadratic guidance repositioning are compared in Section 8-4.
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5-1-6 Guidance Phases

A guidance system commonly consists of several routines that are activated during different
mission phases. This strategy is necessary, because each mission phase has different guidance
requirements. The largest part of the descent trajectory should be designed with the focus on
fuel-efficiency. However, perturbations and imperfect control will always lead to deviations
from the nominal trajectory. These errors can be fatal during the landing phase, so there
will always be some kind of trade-off between an optimal minimum fuel trajectory and a
robust trajectory. The gravity turn guidance logic cannot be used as an exclusive guidance
algorithm without modifications, as the final conditions are fully defined by the (uncertain)
initial conditions. The sub-optimal quadratic guidance uses the current state of the vehicle
to calculate the optimal steering commands to reach the (fixed) target. This guidance logic
has a higher robustness, especially in environments where not all disturbing accelerations are
exactly known Huang and Wang, 2007. During the terminal guidance phase, the focus is on
the elimination of the remaining translational and rotational velocities – for a safe touchdown,
large maneuvers close to the surface should be avoided.

h

d
yt “ 1000 myd “ 10 km

descent target repositioning target

lander

1 with h0 “ 3000 m

2h ă 2000 m:

2 +tgo ă 12 s: 3

3tgo ă 2 s:

4
L

5
2yt ą 500 m:

2 + 3tgo ă 12 s:

3tgo ă 2 s:

1 gravity-turn guidance
2 quadratic guidance
3 velocity-nullifying guidance
4 ballistic-repositioning guidance
5 quadratic-repositioning guidance

Figure 5-21: Guidance phases

The surface topography of Enceladus imposes strict requirements on the guidance system.
As discussed earlier, the surface near the south-polar region is relatively hilly, covered with
ice chunks and fine fault lines, so the landing accuracy should be better than 10 m. The
landing gear can handle a maximal total landing velocity of 2.0 m/s, with maximal efficiency
for vertical touchdowns. The lander’s final GNC system incorporates an autonomous hazard
avoidance system, which uses a LIDAR to analyze the landing area and to determine whether
the surface topography allows for a safe touchdown. The hazard-avoidance system is discussed
in Section 6-2 of the next chapter.

Five descent guidance logics have been discussed in this section: the gravity turn, the
quadratic guidance law, and the velocity nullifying guidance law for the descent phase, and
ballistic and quadratic guidance for repositioning. Figure 5-21 illustrates the active guidance
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logics during the descent and repositioning phases, including the switch conditions, which
were derived in the previous sections.

5-1-7 Simulator Configuration: Guidance System Parameters

The Enceladus Lander Simulator incorporates all guidance systems discussed in the previous
sections. The identification numbers listed in Table 5-4 are used in the program code and in
the simulator configuration files to refer to a specific guidance logic.

Logic Number Description Comment

0 no guidance no thruster active
1 gravity turn, spherical model see Section 5-1-1
2 quadratic guidance see Section 5-1-2
3 velocity nullifying guidance see section 5-1-3
4 gravity turn, flat model see Section 5-1-1
5 combination of 2 and 3 for XS-axis and YSZS-plane, resp.
6 ballistic repositioning see Section 5-1-4
7 quadratic repositioning see Section 5-1-5

Table 5-4: Identification numbers for the currently active guidance logic

The guidance system can be programmed to use one or a combination of different guidance
logics in a specific order. The guidance modes available in the Enceladus Lander Simulator are
shown in Table 5-5. Unless specified otherwise, all descent simulations in Chapter 8 use mode
4, thus a sequence of gravity turn, quadratic guidance and velocity nullifying guidance. The
conditions to switch from one logic to the next one are defined in terms of altitude or time-
to-go, and can be specified in the configuration files. The repositioning simulations use either
mode 5 or 6 at the beginning, but automatically switch to mode 4 for the terminal guidance
phase. Only modes 1, 2 and 3 never switch between guidance logics. The guidance mode
identification number is a required input for the simulator configuration file. The simulator
automatically changes the currently active guidance logic based on the lander state and the
simulator configuration.

Mode Number Description Comment

1 gravity turn only —
2 quadratic guidance only —
3 velocity nullifying guidance only test mode
4 gravity turn Ñ quadratic Ñ velocity nullifying —
5 hybrid ballistic-quadratic repositioning –
6 quadratic guidance repositioning –

Table 5-5: Guidance system modes

The guidance-system related simulator parameters can be found in Table 5-6. The variable
names are chosen such that their meaning in the context of this chapter should be clear, but
the references to particular report sections or equations are listed nonetheless.
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Variable Name Comment

General
guidanceFrequency [Hz]
guidanceMode [-], see Table 5-5

Gravity Turn Guidance
gravityTurnConstantThrust on/off, see Fig. 5-4
timeOfSingularUpdate [s], after sim. start

Quadratic Guidance
altitudeForSwitchToQuadratic [m], switch from logic 1 or 4 to 2
timeForSwitchToQuadratic [s], alternative to previous entry
stepsizeTargetAccSearch [ms2 ], in at-range
fuelConsumptionCalculationStepSizeFactor [-], for Eq. (5-39) and (5-40)
timeBetweenCfactorsUpdate [s], for update Eq. (5-30)
timeBetweenT2GoUpdate [s], for recalculation tgo
t2GoSearchOption [-], Eq. (5-34), (5-35) or free at
guidanceOptionT2GoUnsuccessful see Table 5-4
YZaxisT2GoLead [s], see discussion Fig. 5-18c
minimalT2GoForCalculationCfactors [s], for update Eq. (5-30)
t2GoWhenQuadraticGuidanceEnds [s], then: logic 0 or 3

Velocity Nullifying Guidance
nullifyingDuration [s], ∆t in Eq. (5-41) and (5-42)
nullifyingActivationT2Go [s], or link with logic 5
xSaxisTargetVelocity [ms ], along XS-axis

Hybrid Ballistic-Quadratic Repos. Guidance
hopDistance [m], y in Eq. (5-49)
altitudeRequirement [m], hreq in (5-49)
durationLowThrustTurn [s]
percentageMaxThrustDuringTurn [%]
altitudeBallisticToQuadratic [m], switch to logic 2 (and 5)

Table 5-6: Guidance system related program parameters, both in the lander and the simulator
configuration file

5-2 Control

The lander’s attitude control system consists of three elements: The quaternion controller
(section 5-2-1) interprets the commanded attitude from the guidance system and determines
the adequate torque for a reorientation maneuver. The required torque values are then passed
to the thruster selection logic (section 5-2-3), which uses Tables and schemes to identify the
required thrusters and the available thrust ranges. Finally, this information is passed to the
pulse modulator (section 5-2-4), where an optimal series of thrust firings is calculated to meet
the moment command about each axis.
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5-2-1 Quaternion Controller

The lander’s equations of rotational motion are implemented in terms of quaternions and
their derivatives. Instead of translating the quaternion attitude back to Euler angles and
design a control logic for the angles ψ, θ and φ, it is more obvious to use a quaternion
controller. Additionally, a single eigenaxis rotation maneuver, as mentioned in Section 4-2-4,
has lower maneuver time then the according successive rotation sequence about the body
reference frame axes (Wie et al., 1989). A fast reaction to the control command is crucial
for successful touchdown and repositioning. A basic proportional-derivative (PD) controller
design for quaternions can handle large-angle commands, in contrast to a comparable PD-
controller for Euler angles. The former system is thus applicable for a wider range of control
commands, so the lander requires less specialized control handles.

The linear controller for the quaternion model will introduce a rest-to-rest eigenaxis rota-
tion maneuver to minimize the deviation from the desired attitude. The basic equation of
rotational motion is, see Eq. (4-62),

I ¨ 9ω ` ω ˆ I ¨ ω “ M̃cm “ Mc `Mrel

The total moment M̃cm about the body’s center of mass is now extended by the disturbing
moment Md, which accounts for any moment that is not included in the navigation filter,
such as a thrust imbalance. Md has a direct influence on the derivation of the control gains,
but initially, it will be set to zero and only activated in case the attitude control shows an
unexpected long-term behavior. The equation of rotation motion thus becomes

I ¨ 9ω ` ω ˆ I ¨ ω “ Mc `Mrel `Md (5-50)

The relative moment Mrel, or control input, is now chosen such that Eq. (5-50) can be brought
to a form that allows a simple dynamical analysis. Mrel should counteract the gyroscopic
term of Euler’s equation, and introduce a PD-control for the term I ¨ 9ω:

Mrel “ ω ˆ I ¨ ω ´Mc ´K ¨ qe ´D ¨ ωe (5-51)

The PD-control is based on the quaternion error qe and the rotational rate error ωe (the
desired value of ω is zero, so actually ωe “ ω). Note, that in this case qe consists only of
the vector part of the complete error quaternion. The proportional gain matrix K and the
derivative gain matrix D determine how the target state is approached. Wie (2008) shows
that the control logic in Eq. (5-51) is globally asymptotically stable in case the result of
K´1D is positive definite. This is always the case if K “ kI and D “ dI for k ą 0 and d ą 0.
Equation (5-51) is then rewritten as

Mrel “ ω ˆ I ¨ ω ´Mc ´ kI ¨ qe ´ dI ¨ ωe (5-52)

Combining Eq. (5-50) and (5-51) gives the closed-loop form of the system:

I ¨ 9ω ` kI ¨ qe ` dI ¨ ωe “ Md (5-53)

The above equation is in fact a rotation about the eigenaxis, if the error quaternion qe is the
quaternion rotation from the current q to the commanded quaternion qc. If the controller used
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for a rest-to-rest maneuver, then ω0 “ 0 and ω may be interpreted as the rotation velocity 9θ
about the eigenaxis. The rotation about the normalized eigenaxis e is (see Eq. (4-3))

q “

¨

˚

˚

˝

cos θ2
e1 sin θ

2
e2 sin θ

2
e3 sin θ

2

˛

‹

‹

‚

(5-54)

which leads to the closed-loop expression for the eigenaxis rotation maneuver (see also Wie
(2008)):

:θ ` d 9θ ` k sin θ2 “
`

I´1Md

˘

¨ e (5-55)

The right-hand side of Eq. (5-55) translates the disturbing moment to the according moment
about the eigenaxis. As the orientation of Md is independent of e, the result of pI´1Mdq ¨ e
is time-dependent which leads to varying gains. This problem can be avoided by assuming
the worst-case scenario, where Md is acting in the same direction as e, with a constant value
mde . As mentioned before, expression (5-55) is derived under the assumption of a rest-to-rest
maneuver. The lander’s guidance system constantly produces new attitude commands, so
the initial rotational velocity for each control cycle is not zero. ω will be small for safety
and navigational reasons anyway, but the chosen control logic sets the actual limits of the
maximal allowable rotational velocity.

Translating Eq. (5-55) into the Laplace domain, assuming a constant Md0 about the eigenaxis
and a small rotation angle θ so that sin θ « θ, leads to the equation

s2θpsq ` dsθpsq `
k

2θpsq “
`

I´1Md0

˘

¨ e
s

(5-56)

For the case where Md0 is not a null vector, the proportional gain depends on the maximal
acceptable steady-state error of θ. Applying the final value theorem2 on Eq. (5-56) (see Chu
(2012)),

lim
tÑ`8

θptq “ θss “ lim
sÑ0

θpsq ¨ s “ lim
sÑ0

`

I´1Md0

˘

¨ e
s2 ` ds` k

2
“

2
`

I´1Md0

˘

¨ e
k

(5-57)

which leads to the proportional gain factor k

k “
2
`

I´1Md0

˘

¨ e
θss

(5-58)

where θss is the desired steady-state value of the Euler rotation angle θ. In case Md0 is a
null vector, the closed-loop expression in Eq. (5-55) can be compared with the expression for
a damped harmonic oscillation (Wie, 2008)

:θ ` d 9θ ` k
θ

2 “
:θ ` 2ζωn 9θ ` ω2

nθ “ 0 (5-59)

2The final value theorem states, that in case lim
nÑ8

fptq has a finite value, then it is equal to lim
nÑ0

s ¨ F psq in
Laplace space.
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where ζ is the damping ratio and ωn the natural frequency. ζ is set to the optimal damping
value of

?
2

2 (Chu, 2012). The standard relation between the settling time tset, or maneuver
time in this case, and ωn and ζ is (Wie et al., 1989)

tset “
4
ζωn

(5-60)

so comparing terms in Eq. (5-59) and using the expression for tset, the proportional gain
factor for the undisturbed case is

k “ 2ω2
n “ 2

ˆ

4
ζtset

˙2
“ 2

ˆ

8
tset
?

2

˙2
“

64
t2set

(5-61)

The derivative gain factor d for both cases follows again from comparing terms in Eq. (5-59),
which finally leads to the expression

d “ 2ζ
c

1
2k “ 2

?
2

2

c

1
2k “

?
k (5-62)

For a desired steady-state error of 0.001 in terms of quaternion elements — or, equivalently,
a settle time tset of 6.2 s—, the resulting PD gains k and d for the given constant disturbing
and the given inertia tensor are 1.6587 and 1.2879, respectively.

The only missing element in the expression for the control torque (Eq. (5-51)) is an expression
for the quaternion error qe. The quaternion error is the quaternion rotation between the
desired attitude qc and the current attitude q. In quaternion form, this can be written as

qe “ q´1
c b q (5-63)

where b indicates the quaternion multiplication, and q´1
c is the inverse of qc. The quaternion

inverse for a unit quaternion only changes the sign of the vector part. In matrix form,
Eq. (5-63) becomes

»

—

—

–

qe0
qe1
qe2
qe3

fi

ffi

ffi

fl

“

»

—

—

–

qc0 qc1 qc2 qc3
´qc1 qc0 qc3 ´qc2
´qc2 ´qc3 qc0 qc1
´qc3 qc2 ´qc1 qc0

fi

ffi

ffi

fl

»

—

—

–

q0
q1
q2
q3

fi

ffi

ffi

fl

(5-64)

Note that for Eq. (5-50), (5-51) and (5-52), the error quaternion only consists of the vector
elements of rqe0 , qe1 , qe2 , qe3s, so qe “ rqe1 , qe2 , qe3sT.

Figure 5-22 shows the response of the lander model to a commanded attitude change of
rφc, θc, ψcs “ r50˝, 25˝,´10˝s, in absence of any disturbances, for k “ k0 “ 1.6587 and
h “

?
k0 “ 1.2879. The inertia tensor I is diagonal with Ixx “ Iyy “ Izz “ 150 kgm2

(see Table 3-1), and the control is proportional and unlimited, so the control torque Mrel

is directly inserted in the equations of rotational motion. By close inspection of Fig. 5-22b,
the settling time tset is with about 8 s above the expected 6.2 s. This is a consequence of
the approximation sin θ « θ in Eq. (5-56), which is not accurate for large rotation angles.
Reducing the attitude command by a factor 10 or more leads to a convergence below tset.

Figure 5-23a shows the response of the same lander model to a varying attitude command
rφc, θc, ψcs “ r0.2 sinp0.4tq, ´0.02t , 0.02ts rad. With the original proportional gain k0, the
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spacecraft’s true attitude lags behind the commanded attitude. This problem can be solved
by increasing k, see Fig. 5-23b, where k “ 20 ¨ k0. A disadvantage is obviously the higher
required torque levels: The maximal torque for the first case is 106 Nm and 2130 Nm for the
second (both about the `XB-axis).
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Figure 5-22: Constant attitude command (dashed lines) and true attitude (solid lines)
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Figure 5-23: Attitude command (dashed lines) and true attitude (solid lines) for different
proportional gains. d is equal to

?
k in both cases.

5-2-2 Attitude Command Generation

The guidance system returns an acceleration command with respect to the I-frame. The
lander’s main engine points in the direction of the `ZB-axis, so the B-frame – or, the lander
itself – must always be oriented such that the acceleration command vector and the ´ZB-axis
are collinear and point in the same direction. Close to the target, the control system includes
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the attitude verniers in the translational control, but at that instance of time, the flight-path
angle is already -90˝.

The lander attitude as part of the state vector is expressed in terms of a quaternion rotation
from the I-frame to the B-frame, or qBÐI . According to the theory discussed in Section
4-2-4, it is possible to bring a body from any initial orientation to the desired orientation,
given the correct rotation axis, or eigenaxis, e, and the rotation angle θ. The eigenaxis for a
rotation to align the two known vectors acmd,I and x-ZB ,I follows from the normalized cross
product

e “ |aacc,I ˆ x-ZB ,I|

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

aacc,I ˆTIÐB

¨

˝

0
0
´1

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.
(5-65)

The general formula for the cross product of two vectors a and b is (Török, 2000)

a ˆ b “ |a| |b| sin θn (5-66)

which leads to the corresponding rotation angle

θ “ sin´1
ˆ

aacc,I ˆ x-ZB ,I
}aacc,I} }x-ZB ,I}

˙

. (5-67)

Equation (5-65) and (5-67) now fully define the quaternion rotation error qerr (see also
Eq. (4-3)):

qerr “

¨

˚

˚

˝

cos θ2
e1 sin θ

2
e2 sin θ

2
e3 sin θ

2

˛

‹

‹

‚

(5-68)

The commanded attitude qc then becomes

qc “ qerr b qBÐI . (5-69)

One problem in the above derivation of qc is the direct application of θ on e: The definition of
the cross product in Eq. (5-66) involves the unit direction vector n. This vector is parallel to
e, but may point in the opposite direction, leading to a wrong rotation angle if the system is
rotated about e. Both Eqs. (5-65) and (5-66) are unambiguous on their own, so there exists a
combined mathematical expression. The most practical solution at this point is to determine
whether the commanded attitude qc given qBÐI in fact leads to an orientation where acmd,I
and x-ZB ,I are collinear and point in the same direction (the unit direction vectors must be
equal). If this is not the case, e should point in the opposite direction.

This attitude command does not control the orientation of the lander about the ZB-axis. A
real lander probably has an additional requirement for the pointing direction of the XB-axis
due to the LIDAR’s field-of-view. For the Enceladus Lander Simulator, the orientation of
the YB-{ZB-axis is only important as soon as the attitude verniers are used for translational
control – which is not the case with the current velocity nullifying guidance setup. Simulations
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in MATLAB with the basic control system indicated that it is possible to use the same principle
as shown in the previous equations to align the YB-axis with the YS-axis. This results in two
different qc, which do not conflict – i.e., address the same thrusters – as long as the rotation
axes are perpendicular to each other. This is only true during the terminal-descent phase.
A reorientation during the approach phase will require a more advanced system that trades
opposing thrust commands based on the current lander state.

5-2-3 Thruster Selection Process

The Enceladus lander has four attitude thrusters for each axis. To eliminate the effects on
the translational motion, they are activated in pairs, firing in opposite directions at opposite
locations on the lander. This idealized design was chosen to limit the complexity of the lander
simulator. However, it offers, in fact, already a certain degree of redundancy: in case one
thruster fails, attitude control about that axis is still possible, but with small effects on the
translational motion. As will be explained in the next section in more detail, verniers are
either activated or deactivated. Consequently, they always produce a fixed torque level. The
lander’s 12 attitude thrusters can produce two different torque levels about each axis. The
moment arms and thrust levels are the same for all verniers, so the torque produced by two
verniers is twice the torque produced by one.
The thruster selection logic can either be based on a linear programming technique or on a
phase-plane system.
The linear programming approach is particularly useful if the spacecraft has a large number
of verniers that are not aligned with the body axes. The result is always the optimal thruster
combination for a commanded attitude change. The attitude control system of the Enceladus
lander produces a moment command Mrel, which can be translated into a thrust about each
body axis. Each thrust level corresponds to one or two out of four available thrusters - or
none at all. Linear programming is not required for this relatively simple problem.
The second selection logic type defines regions in the phase-plane plot of θe and ωe, each
corresponding to a predefined thruster combination. The Space Shuttle’s reaction control
system includes 38 thrusters (Wie, 2008), which are activated by means of a phase-plane
logic for each axis, such as shown in Fig. 5-24. This phase-plane defines nine regions, some
of which directly initiate thruster firings, and others use additional information to determine
the appropriate actions. The phase-plane logic was used in Apollo and Space Shuttle mission
(Wie, 2008), and can have a high level of detail due to the various control logics for each
thruster combination. The Enceladus lander uses a modification of the phase-plane logic. It
is not based on the error angle and the error rotational rate, but on the required torque Mref
from the quaternion controller. The selection logic first identifies the thruster or thruster
combination that is responsible for rotation direction that is demanded by Mref. Then, based
on the magnitude of each element of Mref, it is determined whether the torque about each
axis should be generated by one or two verniers. The selection logic will always designate
either one or two verniers out of the pool of four verniers for each axis. The thrusters are not
activated by the thruster-selection logic. Instead, the theoretical torque levels are passed to
the pulse modulator (section 5-2-4), which determines how the identified thrusters should be
fired to approximate Mref.
The exact location of each vernier is shown in Fig. 3-2b. From this figure, and the vernier
characteristics given in Table 3-3, it possible to allocate a rotational direction and a potential
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Figure 5-24: Thruster selection phase-plane logic of the Space Shuttle (Wie, 2008)

torque to each attitude thruster. Table 5-7 summarizes this information. As mentioned in
Section 3-2, the moment arm for verniers responsible for the pitch control is larger than the
ones for the roll and yaw control (L and

?
3

2 L, respectively). This leads to a slightly higher
potential torque about the XB-axis. The torque level for each axis is now either the torque
produced by one thruster, or the torque produced by two thrusters - which is double the value
of the other case.

Rotation Axis Vernier Number Torque Level 1 Torque Level 2

`XB 1, 3 4.80 Nm 9.60 Nm
´XB 2, 4 4.80 Nm 9.60 Nm
`YB 5, 7 4.16 Nm 8.36 Nm
´YB 6, 8 4.16 Nm 8.36 Nm
`ZB 9, 11 4.16 Nm 8.36 Nm
´ZB 10, 12 4.16 Nm 8.36 Nm

Table 5-7: Attitude thruster torque levels. Step 1 of the thruster selection
process. See Table 3-3 for naming and positioning

The identification of the correct thruster combination and their theoretical torque levels
conclude the first step of the thruster selection process. The torque level passed to the pulse
modulator depends on the values of rMref1 ,Mref2 ,Mref3s. For both positive and negative
rotations, the logic returns the lower torque level 1 for absolute values below 4.80/4.16 Nm,
and the higher torque level 2 for all other values. The complete phase logic for the Enceladus
lander is shown in tabulated form in Table 5-8. The torque-level selection is the second
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and last step of the thruster selection process. The vernier identification numbers and the
theoretical torque levels can now be passed to the pulse modulator for the determination of
the firing sequence. The logic may be expanded and refined based on the attitude thruster
characteristics. In case the simulations show that more powerful verniers are required, the
values in Table 5-7 can be modified accordingly. If proportional thrusters seem to have more
advantages, both Tables change, and a phase-plane plot logic in the form of Fig. 5-24 might
become necessary, because the selection logic might activate the thrusters directly for certain
thrust ranges.

Name Mref boundaries Torque Passedlower upper

Region 1 ľ 0 ĺ Level 1 Level 1
Region 2 > Level 1 `8 Level 2
Region 3 ľ ´Level 1 < 0 Level 1
Region 4 ´8 <´Level 1 Level 2

Table 5-8: Torque levels passed to the pulse modulator for a
given Mref. Step 2 of the thruster selection process.

5-2-4 Pulse-Width Pulse-Frequency Modulator

The thrust level of attitude verniers is usually not freely controllable, because the design of
proportional valves is complex, and the thruster itself is relatively small. Furthermore, low
thrust levels cause dirt particles to stick to the valve opening and block their complete closure
(Wie, 2008). This results in leakage and in disturbing forces, which can eventually endanger
the entire mission. The valves are thus either open or closed, so the thruster produces its rated
thrust or no thrust at all. Pulse modulation is a technique to approximate the commanded
thrust level by a series of thrust pulses. The vernier valves have a high operational speed
that allows a wide range of pulse widths. Modification of the pulse frequency can lead to
a lower number of required thrust pulses, which will reduce the wear-out of the verniers.
The pulse-width pulse-frequency (PWPF) modulator can influence both characteristics, and
thus optimize for a specific objective, such as fuel consumption or number of thruster firings.
The basic PWPF modulator shown in Fig. 5-25 is a combination of the schemes given in
Wie (2008) and McCelland (1994). The PWPF modulator consists of a first-order lag filter
in front of a Schmitt trigger, both inside a feedback loop. Uon and Uoff are the cut-in and
cut-out values. The Schmitt trigger returns the predefined trigger output Uout in case the
input value is larger than Uon, and output ´Uout in case the input value is smaller then
´Uon. The trigger incorporates hysteresis, which means, that a previous Uout or ´Uout is
deactivated by the according Uoff or Uoff, respectively. The filter gain Km, the filter time
constant Tm and the dead-band size h “ Uon´Uoff are the modulator parameters. The values
of these parameters can follow from an optimization process, a trial-and-error approach or
from tabulated standard values. Note that the hysteresis region should be between Uon and
´Uon — in that case, the trigger would be unable to return a zero output, and the PWPF
modulator becomes a bang-bang controller. This condition can be written as

0 ă h ă 2Uon (5-70)

Master of Science Thesis Guido C. Holtkamp



94 Guidance and Control

Figure 5-25: Pulse-Width Pulse-Frequency Modulator

The output of the filter element in Laplace space is, by inspection of Fig. 5-25,

M1psq “ rMcpsq ´M2psqs
Km

Tms` 1 (5-71)

which can be written as

rMcpsq ´M2psqsKm “M1psq ` sM1psqTm (5-72)

Equation (5-71) can be translated back to the time domain by applying the inverse Laplace
transform. For the two time steps k and k ` 1, the transformation L´1tsM1psqT u is the
time derivative of M1ptqTm. As Tm is constant, the discrete time-step version of Eq. (5-72)
becomes (McCelland, 1994):

rMcpk ` 1q ´M2pkqsKm “M1pkq `
M1pk ` 1q ´M1pkq

∆t Tm (5-73)

where ∆t is the PWPF sampling time. The vernier’s minimum impulse bit for the maximal
thrust of 6 N is 0.3 Ns (see Table 3-3), so the idealized minimum activation time is 0.05
s. If ∆t is below this value, the modulator might try to set the thrust to 0, which is not
possible for 0.05 s after the activation. Consequently, ∆t is set to 0.05 s in the Enceladus
lander simulator. The PWPF modulator output, however, changes for different values of ∆t,
because a larger sample time leads to a delayed response: the filter output is determined
every ∆t, so the actual crossing of Uon or Uoff might be recorded late. The modulator output
converges for small values of ∆t. The filter output at the time instance k ` 1 follows from
solving Eq. (5-73) for M1pk ` 1q(McCelland, 1994):

M1pk ` 1q “ rMcpk ` 1q ´M2pkqsKm
∆t
Tm

`M1pkq

„

1´ ∆t
Tm



(5-74)
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Figure 5-26: PWPF output for a sine wave as input

The current valueM1pk`1q is fed in the Schmitt trigger, whose outputM2pk`1q is conditional
and can be written as:

M2pk ` 1q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Uout if M1pk ` 1q ľ Uon

0 if |M1pk ` 1q| ă Uon ^
“`

M2pkq “ Uon ^M2pk ` 1q ă Uoff
˘

_
`

M2pkq “ ´Uon ^M2pk ` 1q ą ´Uoff
˘‰

´Uout if M1pk ` 1q ĺ ´Uon

(5-75)

Equation (5-74) and (5-75) form the basis of the code implementation in both MATLAB and
C++. The former program is used for the PWPF-modulator configuration, the results are then
inserted in the Enceladus Lander Simulator. The correct implementation has been checked by
comparing the results for specific inputs with the plots shown in McCelland (1994) and Krøvel
(2005). A representative PWPF modulator output for sine-wave input with a 0.2 amplitude
is shown in Fig. 5-26. The filter output rises until it reaches Uon “ 0.45, which triggers the
output Uout “ 1. Due to the feedback loop, this in turn leads to a decreasing filter output
until it falls below Uoff “ 0.15, setting the trigger output to zero. The PWPF modulator
does not respond to input values with an absolute value below Uon

Km
, as the filter output does

not reach Uon. On the other hand, the modulator will reach saturation — thus, a constant
output of ˘Uout — when the input is above Uout `

Uoff
Km

(Krøvel, 2005). The saturation level
can be used in the thruster-selection logic as an indication to use a higher thrust level. The
lower and upper input boundaries influence the pointing accuracy of the lander. A large Km

and small ˘Uon will have a positive effect on the attitude error.
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Figure 5-27: Fuel consumption for different values of Km and Tm

Name Symbol Optimization Range Nominal Value

cut-in value Uon 0 to 1 0.45
hysteresis h 0 to 2 0.3
filter gain Km 0 to 10 4.5
time constant Tm 0.02 to 1 s 0.15 s
command input Mc — 0.75
trigger output Uout — 1
sampling time ∆t — 0.01 s
simulation time Tf — 10 s

Table 5-9: PWPF modulator parameters for the basic optimization process

The filter gains Km and Tm and the Schmitt trigger factors Uon and Uoff will be determined
using two optimization processes that aim at minimizing the fuel consumption and the num-
ber of required thruster pulses. This principle is based on Krøvel (2005), who executes the
optimization process on a static, dynamic and full system model. In this section, the investi-
gation is limited to the PWPF modulator as shown in Fig. 5-25 for a step input and without a
system model. The full control system, consisting of the PD controller, the thruster selection
and the PWPF modulator, will be tested and configured at the end of this chapter (section
5-2-5).

The PWPF modulator parameters for the basic optimization process are given in Table 5-9.
The nominal values indicate the values used when the corresponding parameters are not an
optimization variable. Note that the time constant Tm cannot be zero due to the fraction
∆t
Tm

in Eq. (5-74). The values in Table 5-9 are equal to those suggested in Krøvel (2005), so
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Figure 5-28: Thrust pulses about XB-axis for different values of Km and Tm
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Figure 5-29: Fuel consumption for different values of Uon and h
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Figure 5-30: Thrust pulses about XB-axis for different values of Uon and h

the simulation results can be used as an additional unit test for the PWPF modulator. Uoff
follows from the previously mentioned relation h “ Uon´Uoff. h is chosen instead of Uoff due
to the relation in Eq. (5-70).

Figure 5-27 and 5-28 show the fuel consumption and number of thruster pulses for a Km-
range of [0,10] and a Tm range of [0.02,1] s. The fuel consumption is measured in terms of
consumption-seconds, so for an actual mass indication, this number must be multiplied by
the thruster mass flow. The fuel consumption increases drastically for values of Tm ă 0.05 s,
and, on the other hand, decreases for filter gains below 3. The pulse number can be inferred
from changes in the Schmitt trigger output, because a jump from 0 to ˘Uout or back indicates
a valve activation inside the corresponding vernier. The pulse number is thus the number of
changes divided by two, as a pulse consists of an activation and a deactivation. The number
of thruster pulses can be decreased by choosing a large value for Tm in combination with a
small value for Km.

Figure 5-29 and 5-30 show the fuel consumption and number of thruster pulses, respectively,
for a Uon-range of [0,1] and a h range of [0,2]. The fuel consumption is lower for larger Uon,
which on the other hand increases the thruster pulses. A similar contrary behavior can be
seen for the hysteresis range: A large h decreases the thruster pulses, but increases the fuel
consumption.

Note that in both Fig. 5-29 and 5-30, all results for which h ą 2Uon are in fact invalid according
to Eq. (5-70). In those cases, the output cannot become zero, so the fuel consumption is always
equal to the simulation time. Krøvel (2005) treats these parts of the plot differently, which
leads to a mirroring of the fuel consumption results along the line h “ 2Uon in Fig. 5-29.
Other than that, all optimization results in this section are very similar the results shown in
(Krøvel, 2005).

Guido C. Holtkamp Master of Science Thesis



5-2 Control 99

0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

proportional gain k [−]

m
a

x
im

u
m

 t
o

rq
u

e
 [

N
m

]

0 2 4 6 8 10
0

5

10

s
e

tt
le

 t
im

e
 [

s
]

(a) maximal reference torque and settle time
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(b) fuel consumption and thruster pulses

Figure 5-31: Control system performance for d “
?
k and different values of k

5-2-5 Control System Configuration

The system model of the Enceladus lander has been incorporated in several MATLAB files for
unit tests before, so it is relatively simple to add the PD-controller from Section 5-2-1, the
thruster selection logic from Section 5-2-3 and the equations for the PWPF modulator. The
full lander simulator in C++ will then use the values found in the optimization runs.
The first step in the spacecrafts’ control cycle is the determination of a reference or command
torque with the PD-controller. As discussed in Section 5-2-1, the idealized PD-controller
requires only the specification of the steady-state error θss or the settling time tset. The
PD-controller, however, is part of an imperfect system without proportional control and
unlimited thrust. Furthermore, a dynamic excitation can lead to a delayed system response,
which might require different PD-controller configuration (see Fig. 5-23. It is thus decided to
first investigate the system response to a step input for different values of the proportional
gain k and a fixed derivative gain value of d “

?
k (see Eq. (5-62)). When a suitable k is

found, the process is repeated with a fixed k and different values of d. The optimization range
in both cases is [0,10].
Initially, the lander is aligned with the Enceladus inertial reference with rotational rates equal
to zero. The attitude command in terms of Euler angles was at the beginning the same step
input as shown in Fig. 5-22, thus rφc, θc, ψcs “ r50˝, 25˝,´10˝s. But simulations indicated
that a large attitude command of 50˝ allows no gain optimization, because the thrusters
are active all the time, and the spacecraft is unable to reach a stable final state within the
simulation time of 10 s (about 15 s are required for this). The following calculations will
thus focus on a 10˝ realignment command about the XB-axis. The available torque levels
are 4.8 Nm and 9.6 Nm, see Table 5-8. The PWPF modulator parameters are fixed at their
respective nominal values of Uon “ 0.45, h “ 0.3, Km “ 4.5, Tm “ 0.15 and ∆t “ 0.01 s
(see Table 5-9). Note, that in this case Uon and Uoff are factors which must be multiplied
with the current torque level (Uout). The fuel consumption is now measured in grams instead
of consumption-seconds, because the mass flow of each vernier is known to be 2.8 gs´1, see
Table 3-3.
Figure 5-31 shows the settling time, total fuel consumption and number of thruster pulses for
the range k “[0,10]. The maximum torque shown in Fig. 5-31a is the largest torque command
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(b) fuel consumption and thruster pulses

Figure 5-32: Control system performance for k “ 5 and different values of d

for a given k, determined by the PD-controller (Eq. (5-52)). The settling time is the instance
of time, where the difference between the commanded attitude and the true attitude exceeds
0.5˝, starting at the simulation end and working backwards in time. This approach was chosen,
because for larger proportional gains, the attitude error oscillates with a decreasing amplitude
about zero until it finally falls below the 0.5˝-threshold. k-values below 1, in general, do not
lead to convergence within the simulation time of 10 s. A large k results in a large torque
command, which in turn leads to more constant and high thrust output — thus, a lower
number of thrust pulses and with larger fuel consumption. The fuel consumption approaches
the maximal value of 56 g (two thrusters with a consumption of 2.8 gs´1 each are active over
full simulation run of 10 s). The settling time is minimal for proportional gains between 4 and
6. In that interval, the fuel-consumption and the thruster-activity curves are in a depression.
A proportional gain of 5 seems to be a reasonable trade-off between the three parameters.
k “ 5 is chosen as a new proportional gain value for the PWPF modulator optimization.

Similar to Fig. 5-31, Fig. 5-32 shows the settling time, total fuel consumption and number
of thrust pulses for k “ 5 and the range d “ r0, 10s. The maximum torque value in this
case is independent of the derivative gain value, so the mean absolute torque as a function
of d is given instead. Increasing d leads to a decreasing overshoot. Values of d larger than
3 completely eliminate the overshoot and slower approach to the reference command — this
has a negative effect on the settling time, but it decreases the mean absolute torque levels and
thus the fuel consumption. The number of thrust pulses does not show a general trend for
an increasing d. Small changes in d leads to different reference torques and in consequence to
a different PWPF modulator behavior. The minimization of the settling time is the primary
objective, but a derivative gain slightly larger than 3 is at the same time reasonable trade-off
between fuel consumption and thruster firings. The derivative gain is chosen to be 3.5, which
is larger than the value used in Fig. 5-31, d “

?
5 “ 2.24. All following simulations use a

PD-controller with k “ 5 and d “ 3.5.

Figure 5-33 and 5-34 show the results of filter- and trigger-optimization process. The basis
of the calculations is the same as in Section 5-2-4, but the input is now the output of the
torque selection logic, which in turn depends on the PD-controller output. The simulation
parameters are the same as shown in Table 5-9. The filter output, however, is limited to
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(b) thruster pulses

Figure 5-33: Filter optimization results for a the control system with k “ 5 and d “ 3.5
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(b) thruster pulses

Figure 5-34: Trigger optimization results for a the control system with k “ 5 and d “ 3.5

1.5Uon (see a similar approach in McCelland (1994)). A limit is necessary to prevent the
filter from accumulating large error values, in particular for larger k with the large reference
torque levels. This would lead to a thruster action opposite to the currently required thrust
direction, because the filter tries to reduce the eliminate errors from the past.

The filter optimization results for the system are similar to those used in the unit tests shown
in Fig. 5-27 and 5-28: Km and Tm should be small for lower number of thrust pulses. The
fuel consumption increases again with decreasing Tm, but the trend for Km is now reversed:
a larger Km leads to lower fuel consumption, in particular for the interval r0, 2s. A large
Km is also advantageous for the a smaller trigger dead-band range, because the PWPF
modulator does not respond to input values with an absolute value below Uon

Km
(see Section

5-2-4). Considering this, the combination Tm “ 0.45 s and Km “ 8 seems to be a good choice
for the Enceladus Lander Simulator.

The trigger optimization results shown in Fig. 5-34 show only minor differences when com-
pared to the unit test results from Section 5-2-4: combinations of h and Uon

Uout
close to the
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critical limit h “ 2 Uon
Uout

and beyond lead – again – to a massive increase in fuel consumption,
but the consumption for h ă 2Uon is now relatively stable. The thruster pulses, on the other
hand, follow the same trend as shown in Fig. 5-30: a lower Uon

Uout
and a higher h result in

a lower number of thruster pulses. For the Enceladus Lander Simulator, the combination
Uon
Uout

“ 0.6 and h “ 0.5 will be used.

The different behavior of the full system compared to the PWPF modulator only is caused
by the additional system elements, in particular the thrust thruster selection logic, the lander
system model, and the large reference torques with the respect to the low available torque
levels. The thruster selection logic reduces in many cases the fuel consumption in the region
h ą 2 Uon

Uout
below the maximum value of 56 g (two thrusters active during the full 10 s

simulation time), because it deactivates one thruster despite the fact that the modulator is
unable to return zero output. Furthermore, the body model adds inertia to the list of system
parameters. The spacecraft inertia causes a continuous rotation, when a single thrust pulse
is commanded. A low cut-in value leads to a series of opposing thruster firings that aim at
correcting the drift caused by the previous firings. This behavior is not present in the PWPF
model itself. Finally, a large attitude command, such as the 10˝ used in previous calculations,
causes the controller to activate a pair of thrusters and leave it on over a long period of time,
reducing the total number of thruster pulses.

Name Symbol Value Comment

proportional gain k 1.5 reduced from 5
derivative gain d 3.5 ą

?
k

cut-in value Uon 0.6¨Uout —
cut-out value Uoff 0.1¨Uout —
hysteresis h 0.5¨Uout = Uon ´ Uoff
filter gain Km 8.0 —
filter limit M1max 1.5¨Uon must be ą Uon
time constant Tm 0.45 s —
sampling time ∆t 0.05 s = min. vernier on-time

Table 5-10: Control system parameters for the Enceladus Lander
Simulator

The control-system parameters used in the Enceladus Lander Simulator are collected in Ta-
ble 5-10. The proportional gain of 5 used in this section had to be reduced to 1.5 in the
simulator setup, because the reference moment calculated from the guidance-system output
has large and quickly changing values – in particular, in combination with a large initial state
estimation error. In some cases, this leads to uncontrollable rotational velocities and thus to
a mission failure, see Section 8-3-2. The following simulations demonstrating the effects of
the selected control-system parameters are thus not fully representative for the actual lander
behavior. It will react a bit slower to the current attitude commands for the aforementioned
reasons.

Figure 5-35 and 5-36 show the response of the command system to a step input and a varying
input, using the original configuration parameters from Table 5-10. To better compare the
results, the input commands are the same as used for the PD-controller unit, see Fig. 5-22
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Figure 5-35: Simulation for the commanded attitude from Fig. 5-22 and the PWPF modulator
parameters from Table 5-10. Dashed lines indicate reference values, solid lines true values.
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Figure 5-36: Simulation for the commanded attitude from Fig. 5-23 and the PWPF modulator
parameters from Table 5-10. Dashed lines indicate reference values, solid lines the true values.
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and 5-23 — with the only exception of the reference roll angle, which was reduced from 50˝
to 10˝ during the PWPF optimization process.

The curves in Fig. 5-35a representing the spacecraft’s true attitude over time (solid lines)
overshoot their respective reference command (dotted lines). This is a consequence of the
proportional gain being larger than the value for optimal damping; see discussion in Section
5-2-1. The system was optimized primarily for a low settling time, so k “ 5 leads to a lower
tset at the expense of a higher fuel consumption. The fuel consumption, however, is still
within acceptable limits, see the discussion on Fig. 5-31. The large step inputs cause a large
PD-controller output (dotted line in Fig. 5-35b). This in turn leads to long thrust pulses at
the maximum available torque level.

The lander’s true attitude lags behind the dynamic reference command, which might have
been expected from the previous PD-controller unit tests. The error is, however, lower than
for the case where tset “ 1.6587 s, see Fig. 5-23a. The thruster activity is high for the
periodic reference command about the XB-axis. The torque level is always minimal for pitch
and yaw rotations, because the reference commands are low enough for the PWPF to trigger
a thrust pulse, before the error exceeds the threshold for the higher torque level. In fact, this
behavior should be expected for most of the trajectory, as the guidance system always returns
a reference acceleration command based on the current and the target attitude.

5-2-6 Simulator Configuration: Control System Parameters

The Enceladus Lander Simulator incorporates a linear quaternion controller, a PWPF con-
troller and a thruster manager as discussed in the foregoing sections. The thruster manager
has a very simple basic setup and has no configurable parameters, but is by far the largest
program file within the control system due to the large number of thrusters and the routines
to check for thrust limits and to distinguish between positive and negative moments or forces.

All control-system related simulator parameters are listed in Table 5-11 together with the
references to the according variable names or to the equations in this chapter.

Variable Name Comment

PWPFactive on/off, if off: perfect Mcmd

proportionalGainQuaternionController [-], k in Eq. (5-52)
derivativeGainQuaternionController [-], d in Eq. (5-52)
PWPFfilterGain [-], Km in Eq. (5-73)
PWPFtimeConstant [s], Tm in Eq. (5-73)
PWPFsamplingTime [s], δt in Eq. (5-73)
PWPFcutInFactor [-], multiplied with Uout
PWPFcutOutFactor [-], multiplied with Uout
PFPWfilterLimitFactor [-], multiplied with Uout

Table 5-11: Control system related program parameters
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Chapter 6

Navigation and Hazard Avoidance

This chapter presents the second part of the lander’s flight software, namely the navigation
and hazard avoidance subsystems.

Section 6-1 introduces the concept of sensor fusion and state estimation with an extended
Kalman filter, and of observability of a dynamic system. This information is then applied
to a basic sliding body example to analyze the effects of different instrument choices on the
state estimation results. The next step is setup of the Enceladus lander navigation system,
which includes a filter tuning process and discussion of the available sensors.

Section 6-2 deals with the lander’s hazard avoidance system, and shows, how a reachability
and fuel consumption map can be derived from the scan of a true surface hazard map, and
how these maps used in the retargeting process.

Each section closes with a summary of the simulator configuration parameters relating to the
foregoing discussion.

6-1 Navigation

Navigation is the process of determining the state of an object at a given instance of time.
The position and velocity of an interplanetary spacecraft can be inferred from a transmitted
signal, so navigation is to some extent part of the communication system (Brown, 2002).
Traditionally, the orbit determination is a ground-based process: position data are collected
from several ground stations over a period of time, which gives a very good position estimate
at a certain instance of time in the past. From there, the equations of motion are used for
orbit propagation (Wertz et al., 2009).

Precise attitude determination and near-target positioning, on the other hand, require spe-
cially designed instruments, which will be presented in the following sections. Real-time
navigation is often necessary for thruster firings or a correct targeting (Wertz et al., 2009).
This is usually done in the on-board inertial navigation system (INS), which is designed to
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Figure 6-1: Basic inertial navigation system elements (Groves, 2008)
.

track the changes of the spacecraft’s inertial state over time. The inertial state for any three-
dimensional object has six degrees of freedom (three translations and three rotations). The
INS uses real-time translational and rotational acceleration data from the instrumentation to
determine the changes in position, velocity and attitude with respect to the initial conditions.
Inertial navigation is a dead-reckoning process, which means, that the current position esti-
mation is determined by adding the measured velocity to the previous position, taking into
account the plane changes that follow from the propagated attitude. This system obviously
suffers from cumulative errors for longer observation times. Inertial navigation is commonly
combined with external, lower-frequency measurements to correct for these errors. Silenus
incorporates star sensors for attitude corrections during all mission phases. The position
corrections follow from relative position data between the orbiter and the lander during the
entry phase, and from absolute distance measurements during the approach phase.
Figure 6-1 shows the basic elements of a general INS. The navigation processor includes one
or more filters for the handling of the sensor measurement data. This is necessary, because
every instrument has a different accuracy, measurement rate and reliability - sometimes they
return unacceptable results or no results at all.
The initial conditions for the velocity and position (see Fig. 6-1) for interplanetary spacecraft
are determined in ground-based processes, as mentioned before. There are many techniques
available for orbit determination, including two-way ranging, Doppler positioning, direction
finding and marker beacons (Groves, 2008). Doppler measurements of the downlink carrier
frequency are commonly used to determine the spacecraft’s velocity (Brown, 2002). The
position follows from the time difference between the transmission and receiving of the signal
at different ground stations. The motion of all planetary bodies, including Enceladus, is
studied extensively, and the rotation of any ground station about the Earth axis and about
the Sun is in principle known at all time. This allows for the elimination of the relative
motion between the antennas on Earth and on the spacecraft. The algorithms for processing
the observation data, including models to minimize the errors due to the Earth atmosphere,
are well-established (Wertz and Larson, 1999). The main space navigation instrument of
a mission to the Saturnian system will be a space-tracking network, such as NASA’s Deep
Space Network (DSN) or ESA’s European Space Tracking network (ESTRACK). The former
system was successfully used for the Cassini-Huygens mission. This navigation principle is,
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Figure 6-2: Normalized two-way Doppler range measurements for Cassini, using the DSN
ground stations in Madrid, Goldstone and Canberra (Antreasian et al., 2006)

.

however, no option for the other mission element - the planetary lander - due to its limited
signal strength and long signal travel time. Furthermore, the position error of a few kilometers
(see Cassini orbit determination performance, for example, Antreasian et al. (2006)) is in this
case much too high.

The exact position of the Mars Rovers is inferred on-ground by comparing the images from the
panoramic cameras with satellite images from the Martian surface. The inertial navigation
in that case is based on odometry (i.e., tracking the wheel activity), tilt sensors, gyros and
accelerometers. A comparable technique will be used for the Enceladus mission. An orbiter
can provide a very precise relative position estimate for the lander. Even without knowing
the exact position of the spacecraft with respect to Enceladus, the orbiter can always define
a position with respect to the lander. This is a very important tool to set, for example, a
target point for repositioning.

The position, velocity and attitude measurements from Silenus’ instruments must be suf-
ficiently accurate to allow for a safe descent, touchdown and repositioning. The guidance
system selects a landing spot based on a goodness map, which also accounts for measurement
errors. Consequently, less accurate state data will lead to a lower number of safe landing areas.
The landing gear can only handle velocities below 0.6 ms´1 in both vertical and horizontal
direction (see Section 3-3), and the pointing accuracy directly reduces the maximal allowable
surface elevation. The required accuracy for distance measurements depends on the accuracy
of the velocity measurements. Assuming that the velocity of the lander can be determined
with an accuracy of 0.3 ms´1, the maximum allowable positioning error is 40 cm. In the
worst case, the instrument would then measure a vertical velocity of 0 ms´1 and a height of
0 m, when the lander is in fact moving downwards with 0.3 ms´1 from an altitude of 40 cm.
The impact velocity then does not exceed the landing gear limits. The design of the landing
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gear assumes a maximal pointing error of 2˝ (see Section 3-3). Silenus’ sensor configuration
must be able to meet these requirements.
The software implementation of the navigational filter is complex, as it must be able to handle
both internal and external measurements for the estimation of the six translational and the
six rotational states, taking into account the concepts of filter calibration and observability.
It was decided to first generate a simple model with one degree of freedom, and then extend
this to the full lander model with six degrees of freedom.

6-1-1 Sensor Fusion and State Estimation

There are several filter techniques for the estimation of a system based on imperfect measure-
ments. The GNC system of a hopper on Enceladus requires real-time position and attitude
information, thus the calculations must be performed very quickly with an acceptable accu-
racy level. As indicated during the selection process of the navigational sensors, the overall
accuracy of the position, velocity and attitude determinations should be better than 0.4 m,
0.3 ms´1 and 2˝, respectively. The extended Kalman filter (EKF) seems to be the best choice,
as it is a common, reliable and relatively fast system. The EKF is a first-order correction of
the linear Kalman filter, which is the optimal filter for the estimation of a linear system. This
correction consists of a linearization of the system about the last estimation, and thus neglects
higher-order terms. The EKF is a widely-used and effective filter for most spacecraft attitude
estimation processes (Crassidis et al., 2007); for example, this filter was successfully used in
the HAYABUSA navigation system, with position inputs from optical navigation cameras,
LIDAR and laser range finder (Kubota et al., 2006). The shortcomings of the EKF arise
from the linearization process, which will lead to a divergence over a longer period of time
or to inaccurate results in case the system is highly nonlinear. Recent developments, such as
the unscented Kalman filter or the backwards-smoothing EKF, aim at the minimization of
these errors. Sigma-point filter and particle filters are new alternatives to the EKF and in-
corporate higher-order approximations of the nonlinear system (Crassidis et al., 2007). These
more sophisticated filter techniques are complex, and it is assumed that the performance of
the simpler EKF is sufficient for the Enceladus lander. This is because the duration of the
descent and repositioning process is short and the dynamic behavior of lander is known and
not highly non-linear.
Each instrument of the lander works at a different frequency. Inertial navigation data from
the IMU is available at a high frequency between 100 and 1000 Hz, and are as such an input
for the on-board state propagation to the instance of time, where an external measurement
from the star sensors, LIDAR, or other sensor, is available. The navigation filter uses these
external measurements to correct the state estimation and update the error estimations. It
is obvious, that the entire process is discrete due to the discontinuous measurements. The
following section will, therefore, focus on the discrete version of the Extended Kalman Filter.
Note, that in theory it is possible to translate parts of the navigational filter into a continuous-
time system, for example, by applying a curve fitting process to the IMU measurements and
then propagate the relevant elements analytically, or by integrating the time derivatives of the
these elements. The latter was applied to a simple test case with a falling body in atmosphere,
and it was concluded, that a hybrid EKF offers no real advantages, because the overall system
remains discrete, and the discrete filter essentially becomes continuous for a small sampling
time.
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6-1-2 The Extended Kalman Filter

The basic Kalman filter consists of a set of linear equations for the estimation of the state of a
system based on imperfect measurements. Invented 1960 by Rudolf E. Kalman, the Kalman
filter underwent several modifications and nowadays is the standard real-time estimation
technique for various navigational systems. This navigation filter design is only valid for linear
measurement and system models, which is an reasonable assumption for many ground-based
systems. The navigation systems of spacecrafts, however, are nonlinear and they depend on
a large number of factors. The Extended Kalman Filter is a first-order correction of the basic
Kalman filter and linearizes the system and measurement matrices each computation cycle
for better estimation quality. This section discusses the elements and the implementation of
a discrete Extended Kalman Filter.

Until stated otherwise, the following discussion is based on Welch and Bishop (2006). The
change in true state x P Rn of a nonlinear system at time instance k can be represented by
the nonlinear differential equation

9xk “ f pxk´1,uk´1,wk´1q (6-1)

where f is the state transition function, u P Rl is an optional control input and w P Rn is
the system noise vector. The control input comprises any influences, that do not depend on
the current system state, for example the thrust forces or external disturbing accelerations.
The measurement vector z P Rm is modeled as a nonlinear function of the current x and the
measurement noise v P Rm:

zk “ h pxk,vkq (6-2)

For the EKF it is assumed that the system noise and the measurement noise are independent
of each other, white and have a normal distribution with covariances equal to the square of
the of the elements in w and in v, respectively. The discrete measurement noise covariance
matrix is then given by (Groves, 2008)

Rk “ E
`

vkvTk
˘

, (6-3)

where E is a function that returns the expected values of the inserted matrix. Due to the
previous assumption, that v is white noise - which is a random fluctuation of a measurement
value with a constant power spectral density, that can change over time, depending on the
modeled system and its environment - E sets all elements, that are not on the matrix main
diagonal, to zero. Similarly, the discrete process noise covariance becomes

Qk “ E
“

wk´1wT
k´1

‰

. (6-4)

While Rk essentially remains each step apart from the random fluctuations of its diagonal
values, the determination of Qk is more complex, because a noise on one system variable has
a direct influences on the noise on the other variables. This usually results in a non-diagonal
system noise covariance matrix. The correct determination of Qk will be discussed later, as
this requires additional definitions.
The difference between the true state x and the time-propagated state estimate x̂´ (thus
the result of the intermediate step after the propagation and before the update of x), and
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the difference between the true state x and the updated state estimate x̂` define the time-
propagated and the updated error estimates, respectively:

e´k ” xk ´ x̂´k (6-5)
e`k ” xk ´ x̂`k (6-6)

The according time-propagated and updated error covariance are expected values of the ma-
trix spanned by the error estimate vectors times their transposes:

P´k “ E
”

e´k e´Tk
ı

(6-7)

P`k “ E
”

e`k e`Tk
ı

(6-8)

To find the correct expressions for P´k and P`k , and in fact, also the discrete process noise
covariance Qk discussed before, it is necessary to derive the so-called fundamental matrix Φk,
which propagates the state vector of the previous time step k´1 to the current step k, , using
a linearization of the state transition function in Eq. (6-1). The linearization L of a general
function y “ fpxq about the point x “ a is (Stewart, 2003, p. 262)

L rfpxqs “ fpaq ` f 1paqpx´ aq (6-9)

which at the same time is equal to the fist two terms (n “ 1) of the Taylor series representation
of f (Stewart, 2003, p. 761)

fpxq “
8
ÿ

n“0

f pnqpaq

n! px´ aqn (6-10)

The general expression of Eqs. (6-9) and (6-10) can now be applied to the state-space equations
(6-1) and (6-2). Assuming that w and v have a zero mean and thus can be set to zero as
a first approximation, the estimated linearized state vector x̂k and the estimated linearized
measurement vector ẑk then become

L rx̂kptqs “ x̂kptkq ` Fk´1x̂kptkq pt´ tkq (6-11)
L rẑkptqs “ ẑkptkq `Hkx̂kptkq pt´ tkq , (6-12)

where Fk´1 and Hk are the nˆn dynamics matrix and the mˆn measurement matrix, re-
spectively, and can be calculated with

Fk´1 “
Bfpxq
Bx

ˇ

ˇ

ˇ

ˇ

x“x̂`
k´1,w“0

(6-13)

Hk “
Bhpxq
Bx

ˇ

ˇ

ˇ

ˇ

x“x̂´
k
,w“0

(6-14)

Equations (6-13) to (6-14) are so-called Jacobian matrices. Let f “ pf1, f2, ..., fmq be a general
function which translates a vector with the coordinates x “ px1, x2, ..., xnq from Rn to Rm.
For a vector a, the Jacobian matrix Jpaq then is defined as

Jpaq “ Bfpaq
Bx “

»

—

—

–

Bf1paq
Bx1

. . . Bf1paq
Bxn... . . . ...

Bfmpaq
Bx1

. . . Bfmpaq
Bxn

fi

ffi

ffi

fl

. (6-15)
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Based on (6-11), the linearized fundamental matrix for Eq. (6-11) is

Φkptq “ I` Fk´1t (6-16)

For many problems it is sufficient to only use the first two terms of the Taylor series to
approximate Φ (see, for example, Zarchan and Musoff (2005)). However, for larger sampling
times or an observability analysis (which is discussed later in this chapter), it might be
necessary to add more terms or use more terms. The following discussion is based on Zarchan
and Musoff (2005), unless stated otherwise. The exact expression for the fundamental matrix
is

Φkptq “ eFt “ I` Ft` F2t2

2! `
F3t3

3! ` . . . (6-17)

where I is a nˆn identity matrix. The time t in the context of a discrete EKF is equal to the
sample time Ts of the measurement zk. The discrete process noise matrix Qk then follows
from the expression

Qk “

Ts
ż

0

ΦkpτqQΦT
k pτqdτ (6-18)

where Q is the continuous process noise matrix from Eq. (6-4). The integration is usually
straightforward - especially, if some elements on main diagonal of Q are zero. This is a com-
mon situation, because according to Zarchan and Musoff (2005) process noise should always
be added to the highest derivative of correlating state elements only (for example, only to
the velocity, if the position is a state variable, too). The process noise is propagated in the
navigation filter and will in the end also influence the other depending states.

At this point, all relevant information for the application of the so-called Riccati equations
has been derived. The Riccati equations use the time-propagated error covariance P´k to
determine a suitable gain Kk for interpreting the incoming measurements, and then update
the error covariance to P`k . The updated state estimate x̂`k follows from the time-propagated
state estimate x̂´k and a weighted measurement difference between the actual and the true
measurement:

x̂`k “ x̂´k `Kk

`

zk ´ h
`

x̂´k
˘˘

(6-19)

The Kalman gain matrix Kk is thus multiplied with the measurement innovation in order to
update the propagated state estimate. The goal now is chose the form of Kk which minimizes
the updated error covariance P`k (Eq. (6-8)). It can be shown that optimal Kalman gain
matrix is given as (Groves, 2008)

Kk “ P´k HT
k

`

HkP´k HT
k `Rk

˘´1 (6-20)

Using the above relations, Eqs. (6-7) and (6-8) can be rewritten as (Groves, 2008; Welch and
Bishop, 2006)

P´k “ ΦkP`k´1Φ
T
k `Qk´1 (6-21)

P`k “ pI´KkHkqP´k . (6-22)
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Equations (6-20), (6-21) and (6-22) form the aforementioned Riccati equations and are the
core of each Kalman filter. The intermediate mathematical conversions and derivations are
described in more detail in Terejanu (2004) and Ribeiro (2004).

Given the initial estimates x̂`k´1 “ x̂`0 and P`k´1 “ P`0 , the EKF process starts with the
propagation of the state estimation x̂k using

x̂k “ g
`

x̂`k´1,uk´1,wk´1
˘

(6-23)

which is usually a numerical integration of Eq. (6-1). The state prediction x̂k is then used
to determine the measurement matrix Hk in Eq. (6-14). The fundamental matrix Φk is
calculated with the previous corrected state estimation and follows from Eq. (6-16) or (6-17),
which also allows the determination of the discrete process noise matrix Qk in Eq. (6-18). A
common initial configuration for the continuous process noise Q required at this step is the
squared estimated difference between the initial true state and the initial estimated state,
divided by the observation time Tf (Zarchan and Musoff, 2005):

Q “ diag
˜

“

x10 ´ x̂
`
10

‰2

Tf
,

“

x20 ´ x̂
`
20

‰2

Tf
, . . . ,

“

xn0 ´ x̂
`
n0

‰2

Tf

¸

(6-24)

The prediction phase is concluded by the propagation of the error covariance from P´k´1 to
P´k . The update phase starts with the determination of the Kalman gain Kk using Eq. (6-20),
which finally allows for the update of both the predicted state estimation and the predicted
error covariance to x̂`k and P`k , respectively.

The stability and effectiveness of the Kalman filter depends on the choice of the system
and measurement error matrices Qk and Rk, and on the initial value of the error covariance
matrix P`0 . The choice of P`0 and Rk directly influences the Kalman gain, see Eq. (6-20),
and thus the weighting of the recent measurements. According to Groves (2008), the choice
of the ratio P{R is the decisive factor in a Kalman filter: an underestimation of P{R results
in an slow conversion process, an overestimation to instability (see Fig. 6-3). In practice, the
values for P`0 and Qk follow from the instrument specifications and tests. A common strategy
is to determine the smallest possible value of R for a stable Kalman filter, given fixed values
for P`0 and Qk (Groves, 2008).

The navigation filter converges correctly (see, for example, Zarchan and Musoff (2005)), if
the residual x̂k´xk is at least 67% of the observation time within the theoretical limits given
by square-root of the according values on the main diagonal of P`k .
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Figure 6-3: Tuning of the Kalman filter based on the ratio P{R (Groves, 2008)

6-1-3 Observability

A necessary condition for a successful navigation filter is the observability of the dynamic
system. A system is said to be observable, if one can derive the internal states from a given
input and a measured output. In case one or more states are completely unrelated to the
output, it is impossible to deduce those variables, and the system is not observable. Note
that observability is only a necessary, not a sufficient condition for reliable navigation system:
both the initial state and the control vector influence the estimation process. Consequently,
it is very likely that the convergence of the navigation filter requires excitations of several
state elements, for example by thruster firings. The observability of a dynamical system can
be determined by investigating the state-space model, such as described in Eqs. (6-1) and
(6-2). For convenience, these equations are repeated here. The state space model for the
state vector xk and the output vector zk is

xk “ g pxk´1,uk´1,wkq (6-25a)
zk “ h pxk,vkq (6-25b)

As shown in Eq. (6-17), the system transition matrix for this dynamic system at the discrete
time index k is

Φkptq “ I` Ft` F2t2

2! `
F3t3

3! ` . . . . (6-26)

Note that it is usually not sufficient to only consider the first two terms for an observability
analysis, because this might eliminate relationships between state variables, which is a crucial
element for derivation of the internal states. The so-called observability Gramian at index k
then is defined as (Guermah et al., 2008)

W p0, kq “
k´1
ÿ

j“0
ΦT
j HT

j HjΦ. (6-27)

The system in Eq. (6-25a) is observable if, and only if, there is a time index k for which the
rank of the observability Gramian is equal to the number of state variables n (see theorem 5,
Guermah et al. (2008)). The rank in this case is defined as the number of linear independent
column vectors in W p0, kq as defined in Eq. (6-27). Since the Gramian here is always a
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nˆn quadratic matrix, the maximal - or full - rank is n. Only a matrix with a full rank
is invertible (see Körner (2012)), so the necessary condition for an observable system is a
non-zero determinant of W p0, kq. The diagonal values of the Gramian give a qualitative
indication about the observability of all state variables.

6-1-4 Navigation Filter Implementation: Sliding Body Model

The initial model consists of a body that moves frictionless along one axis. The body carries
an accelerometer and is observed by an external sensor, which can provide position or velocity
measurements. The internal sensor suffers from a bias, a scale error and white noise, whereas
the external sensor only suffers from the latter. The body is accelerated by an external force
along its direction of movement. The situation is depicted in Fig. 6-4.

The goal of this model is to estimate the position x and velocity 9x of the sliding body,
given an imprecise, high-frequency on-board accelerometer and a limited number of external
measurements. In this simple case, the accelerometer model is

am “ p1` saq fs ` ba ` va (6-28)

where sa is the scale factor error, ba the measurement bias, va a random noise error and fs the
specific force (or non-gravitational acceleration) acting on the sliding body. va for accelerom-
eters is commonly expressed in terms of root power spectral density (PSD), which means,
that a basic averaged error is divided by the root of the sensor’s measurement frequency,
leading to the customary unit of µg{

?
Hz (Groves, 2008), see Section 6-1-7 about the IMU

for information about accelerometer error models. The values of the two non-random error
sources are important for a good position and velocity estimation, so they are added to the
state vector, which then becomes

x “

¨

˚

˚

˝

x
9x
ba
sa

˛

‹

‹

‚

. (6-29)

The external sensor will initially take position measurements only. As indicated before, the
external measurements errors are limited to random noises, so the measurement equation only
depends on the true position. Assuming that the errors are time-independent, the state-space
representation of the sliding body model is

9x “ f pxq `w “

¨

˚

˚

˝

9x
fa
0
0

˛

‹

‹

‚

`

¨

˚

˚

˝

w1
w2
w3
w4

˛

‹

‹

‚

(6-30)

z “ h pxq ` vp “ x` vp (6-31)

where w1, w2, w3 and w4 are the random process noises on the four state-vector elements. In
theory, both w1 and w2 should be zero, as as they correspond to the position and velocity,
which are integrals of the remaining two state variables - as discussed in Section 6-1-2, process
noise should only be added to the highest derivatives of correlating state elements. However,
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accelerometer

generic external sensor

9x
m

x

fs

Figure 6-4: Sliding body example to test the early stage of the navigational filter

the simulations have shown, that the effect of w3 and w4 is on the first state vector element is
very small, which leads to a an insensitivity to external measurements after some time. It is
therefore decided to assume that all elements of w are nonzero. Equations (6-30) and (6-31)
lead to the following system-dynamics and measurement matrix:

Fk´1 “
Bf pxq
Bx

ˇ

ˇ

ˇ

ˇ

x“x̂`
k´1

“

»

—

—

–

0 1 0 0
0 0 f23 f24
0 0 0 0
0 0 0 0

fi

ffi

ffi

fl

“

»

—

—

—

–

0 1 0 0
0 0 ´am`b̂a

p1`ŝaq
2

´1
1`ŝa

0 0 0 0
0 0 0 0

fi

ffi

ffi

ffi

fl

(6-32)

Hk “
Bh pxq
Bx

ˇ

ˇ

ˇ

ˇ

x“x̂´
k

“
“

1 0 0 0
‰

(6-33)

The continuous process noise matrix Q is a diagonal matrix with the diagonal entries equal
to process noise vector w. The discrete process noise matrix Qk follows from integrating the
quadratic form of the system transition matrix Φk and Q over the sampling time Ts. Note
that the sampling time is the measurement frequency of the external sensor only; the internal
accelerometer has a higher measurement frequency independent from z. For simplicity, Φk in
the derivation of Qk is determined using only the first two terms of the Taylor-series expansion
(see Eq. (6-16)), which gives

Qk “

Ts
ż

0

ΦkpτqQΦT
k pτqdτ (6-34)

“

Ts
ż

0

»

—

—

–

1 τ 0 0
0 1 f23τ f24τ
0 0 1 0
0 0 0 1

fi

ffi

ffi

fl

»

—

—

–

w1 0 0 0
0 w2 0 0
0 0 w3 0
0 0 0 w4

fi

ffi

ffi

fl

»

—

—

–

1 0 0 0
τ 1 0 0
0 f23τ 1 0
0 f24τ 0 1

fi

ffi

ffi

fl

dτ (6-35)
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“

»

—

—

—

—

–

w3
T 3

s
3 ` w1Ts w2

T 2
s
2 0 0

w2
T 2

s
2 w3f

2
23
T 3

s
3 ` w4f

2
24
T 3

s
3 ` w2Ts w3f23

T 2
s
2 w4f24

T 2
s
2

0 w3f23
T 2

s
2 w3Ts 0

0 w4f24
T 2

s
2 0 w4Ts

fi

ffi

ffi

ffi

ffi

fl

. (6-36)

This completes the derivation of all relevant elements of the navigation filter for the one-
instrument-case. Table 6-1 gives an overview of the exact values used during the simulations.
The integration time step ∆t refers to the time step used inside the EKF to propagate x̂`k´1
to x̂´k between two accelerometer measurements. The accelerometer measurement is updated
every accelerometer sample time Ta. The state correction x̂`k is performed as soon as an
external measurement is available, i.e. every position sample time Ts. The true state xk is
propagated with a basic Runge-Kutta 4th order integrator before the actual navigation filter
is initiated. The external measurements zk and the internal accelerometer measurements am
follow from the original true state acting on the sliding body, the latter is modified by the
true values ba and sa.

Figures 6-5 and 6-6 show the error in the estimation of sa and ba as a function of the simulation
time for a constant and for a varying true acceleration, respectively. The error is always the
difference between the true and the current estimated value. The theoretical limits, indicated
by dotted red lines, follow from the square roots of the values on the main diagonal of P`k .
Note that the estimations for both the position and the velocity in all cases are within the
theoretical limits and thus not shown here. As can be seen, the filter cannot track the
bias and scale error if the acceleration is constant. This might be expected, because of
the found combination of sa and ba in fact yields the correct value for the specific force as
given in Eq. (6-28). However, as soon as the acceleration is changing, such as shown in
Fig. 6-6, the derived value for fs is inaccurate. This leads to deviation between xk and x̂`k ,
which is corrected by the external position measurements. Consequently, one error source
must be removed from the state vector in case the acceleration is constant. The theoretical
estimation limits of ba and sa are in the order of 0.12 ms´2 and 0 08, which is not sufficient
for many applications. The main reason for low observability of these states just based on
position measurements. The observability Gramian for the one-instrument-case is generated
during the simulation run according to Eq. (6-27), and the values on its main diagonal are
r2000, 0.2, 1.06ˆ10´5, 2.5ˆ10´6s. The rank of the observability Gramian is 3, which indicates,
that the system is, in principle, not observable.
The observability of ba and sa can be improved by adding external measurements of another
state element, in this case, velocity measurements. Equation (6-31) and (6-33) then become

z “ hpxq ` v “
„

x
9x



`

„

vp
vv



(6-37)

Hk “

„

1 0 0 0
0 1 0 0



(6-38)

As can be seen in Fig. 6-7, the errors are slowly diverging from the theoretical limits in case
the true acceleration is constant; the reason for this is same as for the one-instrument-case. A
periodic acceleration, on the other hand, leads to faster and more precise estimates for ba and
sa compared with the previous case. The theoretical estimation limits are now 0.0008 ms´2
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Description Variable Value

true initial state x0

»

—

—

–

´10 m
2 ms´1

0.5 ms´2

1 ms´2

fi

ffi

ffi

fl

estimated initial state x̂`0

»

—

—

–

0 m
0 ms´1

0 ms´2

0 ms´2

fi

ffi

ffi

fl

process noise
- pos. measurement only

w1

»

—

—

–

0.5 m
0.02 m

0.0013 ms´2

0.005 ms´2

fi

ffi

ffi

fl

process noise
- pos. and vel. measurement

w2

»

—

—

–

0.5 m
0 m
0 ms´2

0 ms´2

fi

ffi

ffi

fl

measurement noise v
„

0.01 m2

0.01 m2s´2



estimated initial covariance P`0

»

—

—

–

100 m2 0 0 0
0 4 m2s´2 0 0
0 0 0.25 m2s´4 0
0 0 0 1 m2s´4

fi

ffi

ffi

fl

accelerometer noise va 0.001 ms´2

simulation length Tf 200 s
position sensor sample time Ts 0.1 s
accelerometer sample time Ta 0.01 s
integration time step ∆t 0.001 s
true acc. bias ba 1 ms´2

true acc. scale error sa 0.5

Table 6-1: Simulation configuration for the sliding body example

and 0.0006, respectively. The values on the main diagonal of the observability Gramian are
r2000, 2000, 0.385, 0.09s, which is a clear improvement with respect to the one-instrument-case.
The rank of the observability Gramian is now 4, so the system should be observable.

The sliding body problem shows, that is important to determine the observability of the
lander model for a specific instrument configuration – and even if the observability Gramian
has a full rank, the navigation filter requires filter tuning and excitations on all states for
good state estimation. The design of the lander navigation system in the next section will
account for the observability requirements, and the filter tuning even has its own section
(Section 6-1-6).
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Figure 6-5: Error estimations for a constant true acceleration, using position measurements
only. Dashed line indicates the theoretical limit.
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Figure 6-6: Error estimations for a varying true acceleration, using position measurements only.
Dashed line indicates the theoretical limit.
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Figure 6-7: Error estimations for a constant true acceleration, using position and velocity
measurements. Dashed line indicates the theoretical limit.
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Figure 6-8: Error estimations for a varying true acceleration, using position and velocity
measurements. Dashed line indicates the theoretical limit.
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6-1-5 Navigation Filter Implementation: Enceladus Lander

The full lander model has six degrees of freedom and is constantly influenced by its environ-
ment and by its own thrust commands.
As discussed before, the lander navigation system is based on an IMU, aided by external
attitude and position measurements. The absolute attitude information is generated with the
on-board star sensors. The orbit determination far away from Earth, on the other hand, is
complicated, because it is not possible to use global navigation systems such as GPS. It is
possible to determine the position of an interplanetary spacecraft with Earth-based antenna
networks, but the position error will be in the order of kilometers and arrives with a time
delay due to the large distance between the spacecraft and ground station. The semi-major
axis of Saturn is about 1,433.53ˆ106 km (see Table 4-2), so the one-way light time is about

∆tEarth´Saturn “
p1, 433.53´ 149.60q ¨ 106 km

299, 792.5 km ¨ s´1 “ 4283s “ 71.4 min. (6-39)

The orbiter will be tracked during its entire mission life. The on-board position estimation
is then regularly updated with delayed absolute position measurements. It is impossible to
accurately land the lander at an exact, predefined location on Enceladus due to the limita-
tions of the orbit determination process. However, it is possible to let the spacecraft define a
landing target on the moon’s surface and then navigate with respect to this point. The idea
behind the lander’s autonomous navigation system is that ground control defines a target
area – in this case, on the Enceladus south pole, near a Tiger Stripe – and the lander then
analyzes the region and selects a suitable landing spot. It is decisive that the spacecraft can
determine its position with respect to this target point, using the LIDAR and, if necessary,
additional instruments such as altimeters, in combination with the IMU. The IMU is an
inertial sensor and measures the acceleration and rotational rate of the spacecraft. However,
it needs an external reference to begin(Groves, 2008), and must be calibrated well before
the descent process starts to minimize the accumulated errors. The external measurements
required for this follow from the star sensors and from position data provided by the orbiter.
As the orbiter’s sensor configuration is unknown at this point, it will be assumed that ei-
ther the orbiter or the lander combines and processes range and range-rate information to
(relative) position data. The navigational filter thus incorporates both loosely and tightly
coupled system models, because both raw IMU data and processed position information are
filter inputs (see Mooij and Chu (2001)). Note that the filter performance might be further
increased by processing the raw range and range-rate measurements inside the filter, at the
costs of higher complexity and longer integration times.

This section will start with the derivation of the IMU instrument models. This models are
then applied to the spacecraft’s equations of motion to derive the system dynamics matrix and
all depending elements of the navigation filter. The calibration process and the performance
during the actual mission is then tested for different external instruments.
As mentioned in Section 6-1-7, the main error sources of the IMU’s accelerometers and gyro-
scopes are biases, scale factors, misalignments and random errors. Following these explana-
tions, the accelerometer measurement output can be modeled by (see Mooij and Chu (2001)
and Groves (2008))

axm “ ax ` sxax `mxyay `mxzaz ` bx ` vax
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aym “ ay ` syay `myxax `myzaz ` by ` vay (6-40)
azm “ az ` szaz `mzxax `mzyay ` bz ` vaz

where ax, ay and az are true specific forces, sx, sy and sz are scale factor errors, mxy, mxz,
myx, myz, mzx and mzy are the misalignments, bx, by and bz are biases and vax , vay and vaz

are the random white noises for each axis. Similarly, the gyroscope model is

pm “ p` spp`mpqq `mprr ` bp ` vp

qm “ q ` sqq `mqpp`mqrr ` bq ` vq (6-41)
rm “ r ` srr `mrpp`mrqq ` br ` vr

where p, q and r are the true rotational rates, sp, sq and sr are the scaling errors, mpq, mpr,
mqp, mpr, mrp and mrq are the misalignments, bp, bq and br are biases and vp, vq and vr are
the random noises. The scaling errors and the misalignment errors are usually combined in a
single matrix, whose elements would be zero in case the instrument is perfectly aligned and
calibrated. Then, Eqs. (6-40) and (6-41) reduce to

am “ pI`Maqa ` ba ` va (6-42)
ωm “ pI`Mgqω ` bg ` vg (6-43)

with

Ma “

»

–

sx mxy mxz

myx sy myz

mzx mzy sz

fi

fl (6-44)

Mg “

»

–

sp mpq mpr

mqp sq mqr

mrp mrq sr

fi

fl (6-45)

and

ba “

¨

˝

bx
by
bz

˛

‚, bg “

¨

˝

bp
bq
br

˛

‚, va “

¨

˝

vax

vay

vaz

˛

‚, vg “

¨

˝

vp
vq
vr

˛

‚. (6-46)

The estimated true values for the specific force and rotational rate are the inputs for the
equations of translational and rotational motion and follow from solving Eqs. (6-42) and
(6-43) for a and ω. The random measurement errors are disregarded in this step, as they
have a zero mean and are completely independent of the state history. Then, given the specific
force measurements axm , aym and azm , the non-gravitational acceleration components for the
equations of translational motion with respect to the inertial reference frame are (Mooij and
Chu, 2002)

âI “ FIÐB

»

–

1` sx mxy mxz

myx 1` sy myz

mzx mzy 1` sz

fi

fl

´1 $
&

%

»

–

axm

aym

azm

fi

fl´

»

–

b̂x
b̂y
b̂z

fi

fl

,

.

-

“ FIÐB

´

I` M̂a

¯´1 ´
am ´ b̂a

¯

(6-47)
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where the hat characters indicate estimations, and given the angular velocity measurements
pm, qm and rm, the rotational rates for the equations of rotational motion are (Mooij and
Chu, 2002)

ω̂ “

»

–

1` sp mpq mpr

mqp 1` sq mqr

mrp mrq 1` sr

fi

fl

´1 $
&

%

»

–

pm
qm
rm

fi

fl´

»

–

b̂p
b̂q
b̂r

fi

fl

,

.

-

“

´

I` M̂g

¯´1 ´
ωm ´ b̂g

¯

(6-48)

The approximate error values for space grade IMU are discussed in Section 6-1-7.
Note that the acceleration is measured with respect to the body reference frame and must be
translated into the inertial reference frame using the transformation FIÐB.

The state vector in the navigational filter will contain the scale errors, misalignments and
biases for both the accelerometer and the gyroscope. In this way, the errors can be estimated
and tracked during the entire mission. The lander’s rotational rate ω follows directly from the
gyroscope measurement and is as such not part of the navigation state vector, but directly
added to the output state vector for the guidance system. Furthermore, the attitude is
expressed in terms of the quaternion’s vector part only, because the navigation filter is unable
to distribute the attitude estimation updates in a way that would comply with the rule shown
Eq. (4-2) (the norm of an attitude quaternion must be equal to one). To some extent, the
error is reduced by the corrective term Kq

“

1´
`

q2
0 ` q

2
1 ` q

2
2 ` q

2
3
˘‰

q̄ during each prediction
step (see Eq. (4-66)) — the first, uncorrected EKF implementation yielded almost the same
results as the revised one —, but the filter will return invalid attitude quaternions most
of the time, nevertheless. The scalar part of the attitude quaternion thus follows from the
quaternion norm, see Eq. 4-2.
The state vector inside the navigation filter is then

x “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

r
v

qI{B
ba
sa
ma

bg
sg
mg

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(6-49)

where the misalignment vectors ma and mg consist of the elements of the error matrices in
(6-44) and (6-45), sorted row by row:

ma “

¨

˚

˚

˚

˚

˚

˚

˝

mxy

mxz

myx

myz

mzx

mzy

˛

‹

‹

‹

‹

‹

‹

‚

, mg “

¨

˚

˚

˚

˚

˚

˚

˝

mpq

mpr

mqp

mqr

mrp

mrq

˛

‹

‹

‹

‹

‹

‹

‚

(6-50)
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The system dynamics matrix involves the derivatives of the IMU instrument models with
respect to the error state elements. The derivative of the inverse matrices in Eqs. (6-47) and
(6-48) lead to very long expressions, but they can be simplified considerably by rewriting the
partial derivative of the inverse matrix. Let A be a nˆn non-singular matrix, whose elements
are functions of the elements xi of the vector x. In this case,

A´1A “ I (6-51)

where I is an identity matrix of the order n. Differentiating Eq. (6-51) with respect to element
i of x leads to

B

Bxi

`

A´1A
˘

“
BI
Bxi

“
BA´1

Bxi
A`A´1 BA

Bxi
“ 0. (6-52)

The partial derivatives of A´1 can then be written as:
BA´1

Bxi
“ ´A´1 BA

Bxi
A´1 (6-53)

Applying this new expression to the instrument models in Eqs. (6-47) and (6-48) simplifies the
derivation of the system-dynamics matrix, because the partial derivatives of pI`Maq

´1 and
pI`Mgq

´1 with respect to the error states ba, sa, ma, bg, sg and mg are matrices consisting
of zeros and ones. In the full instrument models, the inverse matrices are multiplied with the
difference of the actual measurement vector and the bias vector, which are not a function of
the elements of the matrix. Representing this mˆ1 vector by y, the expression (6-53) can be
written as

B
`

A´1y
˘

Bxi
“
BA´1

Bxi
y`A´1 By

Bxi
“ ´A´1 BA

Bxi
A´1y, (6-54)

because By
Bxi

“ 0. The derivative with respect to the complete vector x can thus not be
simplified further and is

BA´1

Bx “

„

´A´1 BA
Bx1

A´1y ´A´1 BA
Bx2

A´1y ¨ ¨ ¨ ´A´1 BA
Bxn

A´1y


(6-55)

The next step is construction of the state derivative 9x. The only forces acting on the lander
are thrust forces of the engines and the gravitational attraction of Enceladus. As discussed
in Section 2-1, the third body perturbations and the effects of the gravitational moments of
both Saturn and Enceladus itself are small and will be not be part of the navigation filter.
The time derivative of the second state vector element v is then the sum of the estimated
specific acceleration from Eq. (6-47) and the local gravitational acceleration, gEnc. The local
gravitational acceleration with respect to the inertial reference frame is (see also 4-4-1):

gEnc “

¨

˝

:xg
:yg
:zg

˛

‚“ ´
µEnc

x2 ` y2 ` z2 ¨
1

a

x2 ` y2 ` z2

¨

˝

x
y
z

˛

‚ (6-56)

The time derivative of the third state element q follows from inserting the gyroscope mea-
surement from Eq. (6-48) in a modified version of the quaternion derivative 9̄q in Eq. (4-64),
where the first row of Ωq̄ corresponding to the excluded q0 is removed:

9qI,B “
1
2

»

–

q0 ´q3 q2
q3 q0 ´q1
´q2 q1 q0

fi

fl

¨

˝

p
q
r

˛

‚“
1
2Ωqω (6-57)

Master of Science Thesis Guido C. Holtkamp



124 Navigation and Hazard Avoidance

The state-space representation for the Enceladus lander then becomes

9x “ f pxq `w “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

v
TIÐB pI`Maq

´1
pam ´ baq ` gEnc

1
2Ωq pI`Mgq

´1
pωm ´ bgq

0
0
0
0
0
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

`

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

wr

wv

wq

wba

wsa

wma

wbg

wsg

wmg

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(6-58)

z “ h pxq ` v “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

rx
ry
rz
q0
q1
q2
q3

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

`

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

vrx

vry

vrz

vq0
vq1
vq2
vq3

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

(6-59)

The measurement vector in Eq. (6-59) assumes direct external position and attitude mea-
surements in order to limit the filter complexity. The difference between two instrument
measuring one state element – for example, range and light tracking and LIDAR for posi-
tion determination – only lies in the different sample time and measurement accuracy. The
measurement matrix H is accordingly simple and constant for all time steps k:

Hk “
Bh pxq
Bx

ˇ

ˇ

ˇ

ˇ

x“x̂´
k

“

„

I3 0 0 0 0 0 0 0 0
0 I3 0 0 0 0 0 0 0



(6-60)

The system dynamic matrix, on the other hand, is complex and is different for each time step:

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

∆ 9r
∆ 9v
∆ 9q
∆ 9ba
∆ 9sa
∆ 9ma

∆ 9bg
∆ 9sg
∆ 9mg

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

»

—

—

—

—

—

—

—

—

—

—

—

—

–

0 I3 0 0 0 0 0 0 0
F21 0 F23 F24 F25 F26 0 0 0
0 0 F33 0 0 0 F37 F38 F39
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

∆r
∆v
∆q
∆ba
∆sa
∆ma

∆bg
∆sg
∆mg

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(6-61)

where

F21 “
”

δ 9v
δrx

δ 9v
δry

δ 9v
δrz

ı

(6-62)

F23 “
”

δ 9v
δq1

δ 9v
δq2

δ 9v
δq3

ı

(6-63)

F24 “
”

δ 9v
δbx

δ 9v
δby

δ 9v
δbz

ı

(6-64)
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F25 “
”

δ 9v
δsx

δ 9v
δsy

δ 9v
δsz

ı

(6-65)

F26 “
”

δ 9v
δmxy

δ 9v
δmxz

δ 9v
δmyx

δ 9v
δmyz

δ 9v
δmzx

δ 9v
δmzy

ı

(6-66)

F33 “
”

δ 9q
δq1

δ 9q
δq2

δ 9q
δq3

ı

(6-67)

F37 “
”

δ 9q
δbp

δ 9q
δbq

δ 9q
δbr

ı

(6-68)

F38 “
”

δ 9q
δsp

δ 9q
δsq

δ 9q
δsr

ı

(6-69)

F39 “
”

δ 9q
δmpq

δ 9q
δmpr

δ 9q
δmqp

δ 9q
δmqr

δ 9q
δmrp

δ 9q
δmrq

ı

(6-70)

with

δ 9v

δrx
“

µEnc

px2 ` y2 ` z2q
5
2

»

–

2x2 ´ y2 ´ z2

3xy
3xz

fi

fl (6-71)

δ 9v

δry
“

µEnc

px2 ` y2 ` z2q
5
2

»

–

3xy
´x2 ` 2y2 ´ z2

3yz

fi

fl (6-72)

δ 9v

δrz
“

µEnc

px2 ` y2 ` z2q
5
2

»

–

3xz
3yz

´x2 ´ y2 ` 2z2

fi

fl (6-73)

δ 9v

δq1
“ 2

»

–

q1 q2 q3
q2 q1 q0
q3 ´q0 ´q1

fi

fl pI`Maq
´1
pam ´ baq (6-74)

δ 9v

δq2
“ 2

»

–

´q2 q1 ´q0
q1 ´q2 q3
q0 q3 ´q2

fi

fl pI`Maq
´1
pam ´ baq (6-75)

δ 9v

δq3
“ 2

»

–

´q3 q0 q1
´q0 ´q3 q2
q1 q2 ´q3

fi

fl pI`Maq
´1
pam ´ baq (6-76)

δ 9v

δbx
“ TIÐB pI`Maq

´1

»

–

´1
0
0

fi

fl (6-77)

δ 9v

δby
“ TIÐB pI`Maq

´1

»

–

0
´1

0

fi

fl (6-78)

δ 9v

δbz
“ TIÐB pI`Maq

´1

»

–

0
0

´1

fi

fl (6-79)

δ 9v

δsx
“ ´TIÐB pI`Maq

´1

»

–

1 0 0
0 0 0
0 0 0

fi

fl pI`Maq
´1
pam ´ baq (6-80)
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δ 9v

δsy
“ ´TIÐB pI`Maq

´1

»

–

0 0 0
0 1 0
0 0 0

fi

fl pI`Maq
´1
pam ´ baq (6-81)

δ 9v

δsz
“ ´TIÐB pI`Maq

´1

»

–

0 0 0
0 0 0
0 0 1

fi

fl pI`Maq
´1
pam ´ baq (6-82)

δ 9v

δmxy
“ ´TIÐB pI`Maq

´1

»

–

0 1 0
0 0 0
0 0 0

fi

fl pI`Maq
´1
pam ´ baq (6-83)

δ 9v

δmxz
“ ´TIÐB pI`Maq

´1

»

–

0 0 1
0 0 0
0 0 0

fi

fl pI`Maq
´1
pam ´ baq (6-84)

δ 9v

δmyx
“ ´TIÐB pI`Maq

´1

»

–

0 0 0
1 0 0
0 0 0

fi

fl pI`Maq
´1
pam ´ baq (6-85)

δ 9v

δmyz
“ ´TIÐB pI`Maq

´1

»

–

0 0 0
0 0 1
0 0 0

fi

fl pI`Maq
´1
pam ´ baq (6-86)

δ 9v

δmzx
“ ´TIÐB pI`Maq

´1

»

–

0 0 0
0 0 0
1 0 0

fi

fl pI`Maq
´1
pam ´ baq (6-87)

δ 9v

δmzy
“ ´TIÐB pI`Maq

´1

»

–

0 0 0
0 0 0
0 1 0

fi

fl pI`Maq
´1
pam ´ baq (6-88)

δ 9q

δq1
“

1
2

»

–

0 0 0
0 0 ´1
0 1 0

fi

fl pI`Mgq
´1
pωm ´ bgq (6-89)

δ 9q

δq2
“

1
2

»

–

0 0 1
0 0 0

´1 0 0

fi

fl pI`Mgq
´1
pωm ´ bgq (6-90)

δ 9q

δq3
“

1
2

»

–

0 ´1 0
1 0 0
0 0 0

fi

fl pI`Mgq
´1
pωm ´ bgq (6-91)

δ 9q

δbp
“

1
2Ωq pI`Mgq

´1

»

–

´1
0
0

fi

fl (6-92)

δ 9q

δbq
“

1
2Ωq pI`Mgq

´1

»

–

0
´1

0

fi

fl (6-93)

Guido C. Holtkamp Master of Science Thesis



6-1 Navigation 127

δ 9q

δbr
“

1
2Ωq pI`Mgq

´1

»

–

0
0
´1

fi

fl (6-94)

δ 9q

δsp
“ ´

1
2Ωq pI`Mgq

´1

»

–

1 0 0
0 0 0
0 0 0

fi

fl pI`Mgq
´1
pωm ´ bgq (6-95)

δ 9q

δsq
“ ´

1
2Ωq pI`Mgq

´1

»

–

0 0 0
0 1 0
0 0 0

fi

fl pI`Mgq
´1
pωm ´ bgq (6-96)

δ 9q

δsr
“ ´

1
2Ωq pI`Mgq

´1

»

–

0 0 0
0 0 0
1 0 0

fi

fl pI`Mgq
´1
pωm ´ bgq (6-97)

δ 9q

δmpq
“ ´

1
2Ωq pI`Mgq

´1

»

–

0 1 0
0 0 0
0 0 0

fi

fl pI`Mgq
´1
pωm ´ bgq (6-98)

δ 9q

δmpr
“ ´

1
2Ωq pI`Mgq

´1

»

–

0 0 1
0 0 0
0 0 0

fi

fl pI`Mgq
´1
pωm ´ bgq (6-99)

δ 9q

δmqp
“ ´

1
2Ωq pI`Mgq

´1

»

–

0 0 0
1 0 0
0 0 0

fi

fl pI`Mgq
´1
pωm ´ bgq (6-100)

δ 9q

δmqr
“ ´

1
2Ωq pI`Mgq

´1

»

–

0 0 0
0 0 1
0 0 0

fi

fl pI`Mgq
´1
pωm ´ bgq (6-101)

δ 9q

δmrp
“ ´

1
2Ωq pI`Mgq

´1

»

–

0 0 0
0 0 0
1 0 0

fi

fl pI`Mgq
´1
pωm ´ bgq (6-102)

δ 9q

δmrq
“ ´

1
2Ωq pI`Mgq

´1

»

–

0 0 0
0 0 0
0 1 0

fi

fl pI`Mgq
´1
pωm ´ bgq (6-103)

The determination of the discrete process noise Qk for the full six degrees-of-freedom lander
model requires a different approach as the previous one degree-of-freedom model: the system
transition transition matrix Φ and the continuous process noise matrix Q now have the
dimensions 34ˆ34, which would lead to a complicated analytical integration process. Gibbs
(2011) mentions that approximations for the process noise work well in Kalman filters, as the
full expression for Qk in fact only describes the random error growth during one sample time.
It is therefore possible to use again the Taylor-series expansion from Eq. (6-10) to propagate
the Q from one measurement step to the next, which leads to an expression for Qk. In case
Φ is the first-order approximation I`FTs, such as shown in Eq. (6-16), the discrete process
noise may be written as (Gibbs, 2011)

Qk “ QTs `
“

FQ`QFT
‰ T 2

s

2 ` FQFT T
3
s

3 (6-104)
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where Q is the diagonal matrix of the squared process errors for each state vector element.

This concludes the mathematical description of the lander’s navigational filter. At this point,
it is not clear whether a state element can be estimated with sufficient accuracy; this is
determined in the filter-tuning process. It may be necessary to modify the instrumentation
or the filter state vector.

6-1-6 Filter Tuning

The performance of the on-board EKF can be heavily influenced by tuning the variable
parts of the filter. In general, these variable elements are the measurement noise matrix R,
the process noise covariance matrix Q, and the initial estimates x̂0 and P`0 . Tuning these
parameters influences the filter’s stability, i.e., the stability of the state estimations over time.
In addition to this, the filter might require excitations of the tracked states to derive the
internal states (see discussion on observability, Section 6-1-3). The excitation is realized by
means of maneuvers before the lander initiates the descent process.

The accuracy of the instruments is usually determined with a series of on-ground tests before
the mission start. As an initial estimation, R will be based on the manufacturer’s specifi-
cations. The values of the diagonal elements of P`0 are chosen to be the squared differences
between elements of x0 and x̂0:

P`0 “ diag
´

“

x10 ´ x̂
`
10

‰2
,
“

x20 ´ x̂
`
20

‰2
, . . . ,

“

xn0 ´ x̂
`
n0

‰2
¯

(6-105)

Zarchan and Musoff (2005) uses this relation for the EKF implementation in a satellite nav-
igation and a falling body problem simulation. With Eq. (6-105) it is possible to fix P`0 , if
x̂0 is chosen such that it represents the largest expected deviation from the true state x0. In
reality, the initial state estimation is then always better as x̂0 used in the tuning process.
The only remaining tuning parameter is Q. A larger Q leads to larger influence of the mea-
surement zk on the state update, as the Kalman gain K will be larger (see Section 6-1-2). This,
however, also means a higher influence of the measurement noise v on the state estimation, so
x̂k might become unstable for large values of Q. The process-noise elements are determined
in a trial-and-error process for a fixed P`0 and R, and a given maneuver that excites all states.

The initial calibration-maneuver simulation uses only the attitude thrusters to change the
translational and rotational motions. The lander’s attitude control is based on 12 verniers,
4 for each rotation axis and two for each rotation direction (see Section 3-2). The attitude
thruster configuration as shown in Fig. 3-2b in fact does not allow for a translational force
in the ˘XA-direction, because the thruster anchors all lie within the same geometrical plane.
In the simulator it will be assumed that the lander has four additional verniers connected to
the two thruster anchors for the pitch control; two pointing in the `XB-direction, and two
in the ´XB-direction. These thrusters are only used for translational control, so the attitude
control theory discussed in Section 5-2 remains untouched. In reality, the thrust direction of
all verniers would be determined in a trade-off process between system weight and reliability
— this usually leads to thrust directions, that are not aligned with the spacecraft’s body axes.

The maximal thrust in one direction in this scenario is thus 2ˆ6 N along each axis. The
maximal torque about each body axis is about 8.36 Nm (˘YB,˘ZB) or 9.60 Nm (˘XB), see
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Table 5-8 and the discussion of the thruster selection process in Section 5-2-3. For simplicity,
the lower torque value will be used in the gyroscope calibration process.

The values for the true and estimated state vectors x0 and x̂0 are listed in Table 6-2. Initially,
the differences in position, velocity and attitude are relatively low, because the lander with
an assumed mass of 340 kg has just been separated from the orbiter. As indicated before,
the orbiter is tracked during the entire mission to reduce the absolute position error to a few
kilometers. The accelerometer calibration is based on the relative motion between the orbiter
and the lander in the (imperfect) inertial planetocentric reference frame set by the orbiter.
This process is valid as long as both spacecraft experience the same apparent disturbing
acceleration – which is in fact the acceleration that follows from the difference between the true
and the estimated inertial reference frame. For example, the true gravitational acceleration
might be different from the estimated one, but this will not result in a relative positioning
error while the lander is still close to the orbiter.

The simulation configurations for both the accelerometer and gyroscope calibration runs are
listed in Table 6-3. The normally distributed random noise values and the sampling times of
the instruments are taken from the respective Tables in Section 6-1-7. Note, that the star
tracker random noise value of 30 arcsec is translated in a quaternion value by performing an
Euler rotation of 30 arcsec about one axis, and then take the difference between the initial
and the final value of the quaternion element corresponding to the rotation axis. Note, that
star trackers return attitude measurements in terms of quaternions. The accelerometer and
gyroscope calibration must be performed consecutively for maximal thrust levels. The EKF
requires external attitude and position measurements. The ideal response of the spacecraft
model to the commanded thruster activities is determined in the environment simulator, which
in this case consists of the equations of translational and rotational motion for a basic three-
dimensional body moving through the idealized µenc

r2 gravity field. The environment simulator
thus returns the lander’s true state during the entire simulation time Tf . Every sample time
Tr and Tq, the true position and attitude and data are passed to the EKF’s instrument models,
which add the fixed and random error components to produce the measurement vector zk.
The propagation of the estimated state x̂´k uses the IMU data – corrected with the current best
estimates for bias, scale error and misalignments – as input. Both the environmental simulator
and EKF use a basic RK4 integrator for state propagation. Note, that in principle the EKF
propagator may be a lower-order integrator, because even with perfect measurements, the
EKF state estimates will diverge from the actual true states due to discrete character of
the measurement inputs. Thus, a more precise integrator will not necessarily translate to a
more accurate state estimation. The integrator configuration for the actual Enceladus Lander
Simulator is different. All calibration simulation runs are executed in MATLAB, the full lander
simulator in C++ will then use the results found in this section. This method is also used in
the control-system configuration, see Section 5-2-5.

The prerequisite for a successful gyroscope calibration is a varying rotational rate of the
spacecraft. The torque command is chosen such that the rotational rates oscillate between
positive and negative values, with a varying amplitude and a phase shift with respect to the
other axes. The following torque command was found to produce satisfying results for several
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Description Variable Value Unit

true initial state x0
– position r0 p352000, 0, 0qT m
– velocity v0 p0, 0, 0qT m

s
– attitude1 q0 p0.2836,´0.5088, 0.3050qT –
– rotational rate ω0 p0, 0, 0qT rad

s
– acc. bias ba p1,´2, 3qT ¨ 10´4 m

s2
– acc. scale error sa p´1, 1, 2qT ¨ 10´4 –
– acc. misalignment ma p´3, 2, 3, 1, 4,´6qT ¨ 10´4 –
– gyr. bias bg p3, 4,´5qT ¨ 10´3 rad

s
– gyr. scale error sg p1, 2,´1qT ¨ 10´4 –
– gyr. misalignment mg p1,´1, 2, 1, 4,´3qT ¨ 10´5 –
estimated initial state x̂0
– position r̂0 r0 ` p´10, 30,´101qT m
– velocity v̂0 v0 ` p´1,´3.9,´19qT m

s
– attitude q̂0 q0 ` p0.01, 0.01, 0.01qT –
– acc. bias b̂a p0, 0, 0qT m

s2
– acc. scale error ŝa p0, 0, 0qT –
– acc. misalignment m̂a p0, 0, 0, 0, 0, 0qT –
– gyr. bias b̂g p0, 0, 0qT rad

s
– gyr. scale error ŝg p0, 0, 0qT –
– gyr. misalignment m̂g p0, 0, 0, 0, 0, 0qT –

Table 6-2: True and estimated states for the navigation system simulations. 1Corresponds to
the Euler rotation pφ, θ, ψq “ p20˝,´70˝, 30˝q

simulation runs:

Mref “ 8.36 Nm ¨

¨

˚

˚

˚

˝

sin
´

π
2 ` 122πt

Tf

¯´

1´ t
Tf

¯

sin
´

82πt
Tf

¯

t
Tf

´ cos
´

62πt
Tf

¯

t
Tf

˛

‹

‹

‹

‚

(6-106)

The reference torque as a function of time is visualized in the first graph of Fig. 6-9. The other
two graphs show the changes in attitude and in rotational rate that follow from the thruster
activities. Note, that the discontinuities in the attitude curves are a consequence of jumps
between -180˝ and 180˝, and do not represent sudden changes in orientation. One goal of the
navigation system and the EKF is to find the best possible estimates for these true rotational
state elements. All input data for the gyroscope calibration simulation runs are listed in
Table 6-2 and 6-3. The process noise Q for the rotational state elements was determined
in a trial-and-error process; a process noise of 10´6 on each gyroscope misalignment element
leads to a convergence of all rotational state estimates within the theoretical limits set by P`k .
Larger noise values, or process noises on other rotational state elements, lead to saturation of
the higher-order estimates b̂g, ŝg or m̂g, which means, that the estimates hardly change over
time. Furthermore, it was necessary to deviate from the rule of thumb for P`0 in Eq. (6-105)
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Description Variable Value Unit

measurement noise R
„

Rr 03
03 Rq



– pos. random noise Rr 0.005 ¨ I3 m
– att. random noise Rq 0.53 ¨ 10´8 ¨ I3 –
random noise acc. va 20 µg{

?
Hz

random noise gyr. vg 0.002 ˝{
?
hr

process noise Q diagp01ˆ27 Qqq

– on m̂g Qmg 10´6 ¨ I1ˆ6 –
integration step size ∆t 0.005 s
sampling time IMU Tsimu 0.005 s
sampling time pos. Tsr 0.01 s
sampling time att. Tsq 0.25 s
simulation length Tf 120 s

Table 6-3: Setup for the navigation system simulations

for elements on the main axis corresponding to b̂g, ŝg and m̂g: convergence was reached when
these values were set to absolute difference between the true and estimated state.

The attitude and the rotational-rate estimation results are shown in Fig. 6-10. The EKF
tracks the quaternion attitude (top graph); these results are translated into Euler angles in
the middle graph for a better insight. Only the graph for q̂ incorporates the theoretical limit
(dotted line), as only the quaternion attitude is part of the EKF filter - the Euler attitude and
the rotational rate are both derived variables. Note, that the Euler angle attitude estimation
error values explode at about at t “ 92 s and t “ 112 s as a consequence of the jumps between
the extremes of the angle range [-180˝, 180˝] (see middle graph, Fig. 6-9) - this behavior is one
of the reasons why the attitude is processed in terms of quaternions. The converged attitude
and rotational rate estimation accuracies are in the order of 0.3˝ and 0.002 rad

s , respectively.
The estimation accuracies of the three main error sources vary significantly. The percentage
error can be calculated with

percentage error “ |estimated state´ true state|
|true state| ˆ 100% (6-107)

Using the best (latest) values for b̂g, ŝg and m̂g from several simulation runs, the estimation
error of the gyroscope bias was found to be below 0.1%. The estimation errors of the scale
factor and the misalignment can be up to 200% and 900%, respectively. The observability
Gramian Φ as defined in Eq. 6-27 for the rotational state elements (q, bg, sg and mg) is
16, which is the full rank and indicates a fully observable system. The values of Φ, however,
range from 480 for the attitude, to about 8 for the bias, to below 1 for the scale factor and
misalignments. A lower value indicates a lower observability, see Section 6-1-3. Choosing a
different calibration maneuver does change these values, but it does not significantly increase
the observability of sg and mg. The main reason high error values are – apart from the
star sensor’s low update frequency – the limited capabilities of the attitude thrusters: higher
thrust levels would lead to a larger – and more correctable – error accumulation, as the
spacecraft’s rotational velocity has a larger amplitude. On the other hand, the star sensors
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Figure 6-9: Input torque and the resulting true attitude and rotational rate changes

precision deteriorates for higher values of ω (see Section 6-1-7), so it is questionable whether
the estimation accuracy can be improved significantly. At this point, the scale factor and the
misalignment cannot be estimated with acceptable accuracy, so they are both not included
in the EKF of the Enceladus Lander Simulator.

Similar to the gyroscope calibration process, the thrust commands are chosen such that the
resulting acceleration aref excites all axis periodically with a varying amplitude and a phase
shift with respect to the other axes:

aref “
12 N

340 kg ¨

¨

˚

˚

˚

˝

´ sin
´

π
2 ` 22πt

Tf

¯´

1´ t
Tf

¯

sin
´

π
2 ` 22πt

Tf

¯

t
Tf

´ sin
´

π
2 ` 32πt

Tf

¯

t
Tf

˛

‹

‹

‹

‚

(6-108)

The maximal thrust of 12 N produces an acceleration of 12N
340kg “ 0.0353m

s2 , which is not
sufficient to overcome the gravitational acceleration of 0.0583 m

s2 at an orbital radius of 352
km, so a change of the lander’s XI -position will not oscillate between positive and negative
values – in contrast to the YI - and ZI -position changes. The position measurements follow
from range and light tracking measurements. The chosen frequency of 100 Hz does not fully
exploit the instrument’s potential, but for the simulations, the IMU’s sampling time must
always be below the sampling times of all external instruments. In exchange, it is assumed
that the accuracy of the range measurements with a lower measurement frequency can be
reduced to 0.5 cm (see Section 6-1-7 for more details on this instrument).
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Figure 6-10: Attitude and rotational rate estimation errors for the input torque from 6-9
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Figure 6-11: Bias, scale factor and misalignment estimation error
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Figure 6-12: Input acceleration and the resulting true position and velocity changes
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Figure 6-13: Position and velocity estimation errors for the input acceleration from 6-12
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Figure 6-14: Bias, scale factor and misalignment estimation error

The top graph of Fig. 6-12 shows the reference acceleration as a function of time. The mid and
bottom picture show the resulting changes in true position and velocity. As indicated before,
both the position and the velocity along the XI -axis decreases and is merely decelerated and
accelerated by the thrust firings. The process noise Qr for the estimation of the translational
state elements is zero for all elements, because all estimations converge within the theoretical
limits. However, convergence was only possible when the elements in P`0 for ŝa and m̂a were
increased to the maximum error values 2 ¨ 10´4 and 6 ¨ 10´4, respectively (see Table 6-2). So
in this case, not all elements in P`0 follow from Eq. (6-105).

The position and velocity estimation converge rapidly and are in the order of 0.01 m and 0.002
m
s , see Fig. 6-13. Note, that these estimations might be further improved by including range-
rate measurements from the same instrument - currently, they are not included due to the
concept character of the range and light tracking system. The best estimates for b̂a, ŝa and
m̂a from several simulation runs are in the order of 0.1%, 100% and 100%, respectively. An
example of the estimation precision for these state vector elements over time is shown in Fig. 6-
14. The Gramian for the translational state elements indicates a very low observability for ŝa
and m̂a in the order of 10´8, whereas the values for r̂, v̂ and b̂a are 12000, 1.2 and 0.3¨10´4,
respectively. In fact, some values of Φ for the scale factor and misalignment estimation error
are so small, that MATLAB’s rank-function returns 15 instead of the full 18. Adding a velocity
measurement to the system, the rank increases to 18, but the estimation accuracy does
not improve significantly. Just like the gyroscope calibration simulation, the accelerometer
calibration simulations indicates that both scale factor and misalignment cannot be estimated
with sufficient accuracy – they will also be excluded from the EKF of the Enceladus Lander
Simulator. The true values for sa and ma remain part of the environment simulator, but their
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effect is transferred to b̂a and the other state elements during the estimation process.

6-1-7 Available Sensors

This section presents the most important attitude and position determination instruments.
Each instrument has specific advantages and disadvantages - a good combination of different
instruments will not only increase the redundancy, but also allows for a more rapid data
processing and more accurate results. Some instruments used for hazard detection and avoid-
ance, for example the LIDAR, also provide position and attitude data, but these instruments
are discussed in Section 6-2.
Optical sensors, such as used for the HAYABUSA mission, are not feasible for the Enceladus
mission, because the approach and touchdown phases are much shorter and the velocities
much higher without extensive thruster firings – the requirements for the image processing
would be too high. To what extent the on-board descent imager could provide additional
navigation data might be an interesting subject for further studies, but this is beyond the
scope of this report.

Inertial Measurement Unit

A Inertial Measurement Unit IMU is a combination of gyroscopes and accelerometers for
determining the angular rate and acceleration of a vehicle. Usually, they consist of three
accelerometers and three gyroscopes, and sometimes additional sensors for redundancy. These
sensors can only measure changes in velocity and orientation, the absolute values must be
determined with other instruments. A typical navigation system is based on a combination
of star sensors and an IMU (Wertz et al., 2009): The absolute attitude information provided
by the star sensors can be updated over time with estimations based on the IMU data.
Gyroscopes commonly have a high update rate in the order of 100 to 1000 Hz (Groves, 2008)
and are as such very useful to track the spacecraft’s orientation during rapid changes induced
by the thrusters (Wertz et al., 2009). The IMU processor usually integrates the measured
specific forces and angular rates during one sampling interval, and outputs non-dimensional
values that provide information about the change in specific impulse and in attitude. The
instrument output is then translated into SI units using the IMU characteristic scaling factors
(Groves, 2008). The simulator IMU model assumes that the scaling is performed internally,
so the instrument outputs are given in terms of the specific force am with respect to the body
reference frame, and of the rotational rate ωm of the body reference frame with respect to
the inertial reference frame. The integration of am and ωm to velocity and attitude changes
is often performed by the IMU processor, but in the Enceladus lander simulator, this is part
of the state propagation in the navigation filter.
The accuracies of the accelerometers and the gyroscopes are limited and change over time.
This has a direct influence on the navigation system, so it is necessary to add error mod-
els to the instrument simulator. According to Groves (2008), the main error sources are
biases, scaling errors, misalignment errors and random errors. The IMU processor uses in-
ternal calibration libraries, a clock and a temperature sensor to minimize constant offsets,
temperature-dependent errors and the errors due to sensor location with respect to the space-
craft’s center of mass. The magnitudes of the other error sources change in-between or even
during one measurement cycle, and must be corrected or tracked outside of the IMU.
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A bias is a error independent of the current specific force and rotational rate. They have,
in general, the largest influence on the total measurement error (Groves, 2008). The bias in
accelerometers is constant, whereas the bias of gyroscopes increases over time. The gyroscope
bias is called drift, and is measured in the non-SI unit deg/hr and describes the loss of accuracy
over time. The drift rate depends on the used technique, and can range from 0.0007 to 0.2
deg/hr in space applications (Wertz et al., 2009). As the gyroscopes can be restarted on
Enceladus’ surface and a repositioning cycle lasts a few minutes at most, the IMU is a very
suitable attitude determination system for a moving lander.

Scaling errors are a consequence of internal imprecisions in the conversion process between
the instrument input and output. They scale linearly with the true specific force or rotational
rate.

Misalignment errors arise, when the instrument axes are not perfectly aligned with the space-
craft’s body reference frame. In this case, the measurement of an excitation along one body
axis will have small components along the other axes. Both scaling errors and misalignments
can be minimized by an elaborated on-ground calibration process, but they will always be
present to some extent. Random noise in a given system, on the other hand, cannot be
calibrated. It is commonly expressed in terms of root PSD, namely µg{

?
Hz for the ac-

celerometers, and ˝{hr{
?
Hz for the gyroscopes (Groves, 2008). The standard deviation then

follows from multiplying the root PSD with the root measurement frequency.

Accelerometers measure the relative movements of the internal test masses with respect to
the moving body on which they are mounted. This movement is the result of a specific force
and is translated internally to the output acceleration. Usually, the distance between the test
masses and the lander’s center of gravity is relatively small, so the gravitational acceleration
on the lander is the same as on the instrument, and is not registered by the accelerometer
until touchdown. Consequently, the gravitational acceleration should always be included as a
separate element in the state propagation. This requires the implementation of gravitational
models in the navigation system, which will inevitably lead to an offset between the true and
the estimated total acceleration.

IMU element Name Variable Value Comment

Accelerometer bias ba 0.01 mg 9 local g
misalignment ma 10´4-10´3 no unit
scale error sa 10´4-10´3 no unit
random error va 20µg/

?
Hz 9 local g

Gyroscope bias bg 0.001 hr´1 -
misalignment sg 10´4-10´3 no unit
scale error mg 10´5-10´4 no unit
random error vg 0.002 ˝{

?
hr -

System measurement frequency fimu 100 - 1000 Hz

Table 6-4: IMU model characteristics (Groves, 2008). Note that this are approximate values for
space grade systems.

The preliminary lander design includes an IMU with a ring laser gyroscope, which offers higher
accuracies then the spinning mass gyroscopes. Table 6-4 lists the instrument characteristics
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that will be used in the navigation filter of the Enceladus lander simulator. Note that there
exist a wide range of different gyroscopic systems, so the actual numbers might diverge from
the given specifications. The random error here has a uniform distribution.

Star Sensors

Star sensors determine the direction of one or more stars within their instrument reference
frame. The spacecraft attitude then follows from comparing the measurement results with
a star catalog. The star sensors evolved rapidly during the last years as a consequence of
the advances in the charge-coupled device (CCD) technology. Current star sensors have low
power requirements, are relatively light and have built-in processing electronics, including the
star catalog. Many instruments can also monitor multiple stars over time, which has positive
effects on the accuracy; these star sensors are called star trackers. CCD star sensors consist
of an optical system with a lens and a measurement plane with photocells. The light rays
of a star illuminate a number of the light-sensitive cells. The processing system analyzes the
light intensity from each cell and calculates the focus. The plane angles of the star follow
combining the focus location with the characteristics of the optical system. The light intensity
also allows a correlation with a certain star of the star catalog, which ultimately yields the
orientation of the spacecraft with respect to that star.

Star trackers have a higher accuracy about the axes normal to the center line (boresight) of
the CCD plane, which is consequence of the more complex star vector separation in small
field-of-views (Pisacane, 2005). The accuracy of star trackers decreases significantly for ro-
tational velocities above some degrees per second, unless some image stabilization software
is incorporated. Additionally, higher rotational speeds reduce the probability of a successful
attitude determination (VECTRONIC, 2012). The preliminary design uses two VST-41M
star trackers, mounted on the sides of vehicles body. The specifications of this instrument
can be found in Table 6-5. The accuracy is given in terms of 2σ values off boresight and
about boresight, but according to Pisacane (2005), it is necessary to consider additional er-
ror sources, such as optical errors, velocity aberration, catalog uncertainties, noise equivalent
angle and more. Table 6-6 lists some general star tracker data, including information about
systematic and random errors.

Characteristic Value Comment

accuracy 2σ x-,y-axis 18 arcsec off boresight
accuracy 2σ z-axis 122 arcsec about boresight
acquisition probability ą99.7 % for angular rates ă0.8 degs´1

field of view 14˝ ˆ 14˝ –
time to first acquisition 800 ms typically
update rate 4 Hz after first acquisition
dimensions 80 mm ˆ 100 mm ˆ 180 mm –
power requirement 2.5 W -
mass 1.1 kg –

Table 6-5: VST-41M characteristics (VECTRONIC, 2012)
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Characteristic Value Comment

accuracy 0.0003˝ - 0.01˝ –
random error below 0.1 arcsec = 2.78ˆ10´5 deg
sampling time 0.25 s = 4 Hz
power requirement 5 - 20 W for a pair
mass 2 - 5 kg for a pair

Table 6-6: Star sensor characteristics (Wertz et al., 2009;
Pisacane, 2005). Note that star sensors currently undergo a rapid

evolution.

Horizon Sensors

Horizon sensors are passive infrared instruments that determine the location of the transi-
tion between the warm surface and the cold space. There exists a wide range of horizon
sensor types, more than for any other attitude sensor (Wertz et al., 2009). The focus in this
section will be on conical scanning horizon sensors for 3-axis stabilized spacecrafts, as these
instruments are most suitable for near-surface measurements with a relatively high level of ac-
curacy. The direction of the center of the planet can be inferred from three or four sufficiently
separated transition points (Parkes and Silva, 2002). However, if the spacecraft’s altitude is
known from other sensors, two points are sufficient. This allows the use less complex and
lighter instruments. Horizon sensors in general suffer from two problems. Firstly, the terrain
relief disturbs near-surface measurements. Attitude data from altitudes below ca. 1 km is
probably not useful (Parkes and Silva, 2002). Secondly, horizon sensors used on celestial
bodies with an atmosphere are less accurate as a consequence of the temperature extremes
between the lit and dark sections of the surface (Wertz et al., 2009). The second downside
is not applicable to Enceladus with its negligible atmospheric density. Horizon sensors are
an important attitude determination system due to their reliability, proven design and tech-
nique, which is very different from the working principle of the other attitude sensors - this
is beneficial for the redundancy.

Table 6-7 lists some general characteristics static and scanning horizon sensors.

Characteristic Value Comment

accuracy 0.02˝ - 1˝ scanning sensor more accurate
random error 0.05˝ - 0.5˝
update rate 1 Hz estimation for scanning sensor
power requirement 0.3 - 10 W scanning sensor more demanding
mass 0.5 - 4 kg scanning heavier than static

Table 6-7: Static and scanning horizon sensor characteristics (Wertz et al.,
2009). Comparisons under Comment always with respect to static sensors.
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Magnetometer

The investigation of Enceladus’ influence on the magnetic field of the other bodies in the
Saturnian system is part of the scientific goals, so a combination of a plasma detector and
magnetometer is part of the lander’s preliminary scientific instrumentation package (Ampe
et al., 2009). This three-axes fluxgate magnetometer measures the local gradient of the
magnetic field with a high accuracy. In case the magnetic field of the central body is mapped
and its changes due to solar activity, orbital position of the body and others can be modeled,
magnetometers offer a very simple, low-cost, lightweight and reliable way to determine a
spacecraft’s attitude (Acuna, 2002).

A major disadvantage on the other hand is the relatively low accuracy, especially for low-
altitude orbits: Even for Earth, whose magnetic field is the extensively studied, the accuracy
is about 5˝ at 200 km altitude (Wertz and Larson, 1999). Enceladus magnetic field and its
variability is widely unknown, and many measurements are taken near the surface during
the repositioning process. Consequently, magnetometers will not be part of the attitude
determination system, but will be used as scientific payload. In case of emergency, they can,
however, provide rough attitude information.

Characteristic Value Comment

accuracy 0.5˝ - 5˝ highly conditional, from Wertz and Larson (1999)
random error 0.35˝ - 1.1˝
update rate high continuous
power requirement less than 1 W -
weight 0.3 - 1.2 kg -

Table 6-8: Magnetometer characteristics (Wertz et al., 2009)

Directional Antenna

The preliminary design of the lander includes two helical, redundant antennas with a length
of 40 cm and a diameter of 5 cm (Ampe et al., 2009). These antennas have a beamwidth
of about 25˝, and can each be aligned with a tracking and pointing system. The directional
characteristics of any antenna allow the determination of the antenna adjustment, which
in turn provides information about the attitude of the spacecraft. Directional antennas in
general not part of the attitude determination system, because it requires a constant link to a
second signal source. In case of Silenus, the orbiter can act as a reference during the contact
phases. The accuracy of this system is between 0.01˝ and 0.5˝, typically 1 % of the antenna
bandwidth (Wertz and Larson, 1999), thus about 0.25˝ for the preliminary lander design.
The directional antennas can be uses as an additional source of attitude data, which increases
the redundancy and (possibly) the accuracy of the attitude determination system. Table 6-9
lists some general characteristics of the attitude determination with directional antennas.
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Characteristic Value Comment

Accuracy 0.01˝ - 5.0˝ about 1% of bandwidth (Wertz and Larson, 1999)
Systematic Error various instrument is part of payload
Random Error various instrument is part of payload
Total Error various instrument is part of payload
Power Requirement [side product] -
Weight various -

Table 6-9: Directional antenna characteristics (Wertz et al., 2009)

Range and light tracking

Range and range-rate navigation derives position and velocity information from the travel
time and the phase shift of an emitted electromagnetic signal. The signal itself contains
the sending time, so the receiving spacecraft on-board computer compares this time with the
arrival time to determine the travel time. Obviously, the on-board clock must be synchronized
with the transmitter’s clock. The Doppler shift of the signal contains information about the
relative velocity between the transmitter and receiver, so if the position and velocity of the
transmitter is known, the velocity of the receiver can be derived. This system is, in fact, the
working principle of the GPS satellites. When range measurements from at least two different
sources are available and the spacecraft position is known, it even possible to determine the
receiver’s attitude by carrier phase measurements, which requires two receiver antennas at
different locations on the spacecraft. An unambiguous position estimation, on the other hand,
requires three different sources, and only one receiving antenna.

A limiting factor to signal range measurements is the exact determination of the arrival time.
Modern military GPS receivers have a timing accuracy of about 1 ns, which leads to a range
accuracy of 0.3 m (Mio, 2013). The LIDAR system discussed in the next section suffers from
similar limitations. Such a ranging accuracy would to large pointing errors and thus position
errors, in case the distance between the three transmitters and receivers is too small. A
solution might be to install a light or a beacon on the lander and use a instrument similar
to a sun sensor to determine the elevation and azimuth of the signal with respect to the
orbiter. A single range measurement, using either time information in the beacon signal or
a separate range measurement system, would then fully determine the position of the lander
with respect to the orbiter. This also would allow to chose a more complex range finder with
a higher accuracy. Modern LIDAR systems can reach accuracies in the order of 2 to 10 cm
with range measurement frequencies up to 10 kHz, see Liebe et al. (2003) and Section 6-1-7.
A laser altimeter developed recently developed by John Hopkins APL for landing applications
on low-gravity planetary bodies reached accuracies up to 1 cm with an desired update rate
between 1 and 5 kHz (Bruzzi et al., 2012).

Sun sensors are widely used attitude determination system, that determines the position
of the Sun on the spacecraft-centered celestial sphere by identifying the transition between
light and shadow on the optical cells. The accuracy is about 0.18˝ for simple analogue sun
sensors (Astrium, 2013), so the accuracy of a specially designed system to track a distinct
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light on another spacecraft will be higher. Analogous Sun sensors allow a continuous read-
out of measurement data, so in case the same technique can be used, the limiting factor
for the update frequency for a combined range and light tracking instrument are the range
measurements. Table 6-10 lists the estimated performance of a combined range and light
tracking system. The error off the line of sight will depend on the distance to the target, but
as a first approximation, the distance between the orbiter and lander is assumed small, which
is true for some time after the separation.

Characteristic Value Comment

update rate > 1kHz
accuracy 0.02 m estimated 1σ, varies off-axis
mass ca. 1.5 kg sun sensor about 0.25 kg

Table 6-10: Estimated characteristics of a range and light tracking
system for relative position determination, see text for discussion

LIDAR

The light detection and ranging LIDAR instrument measures the distance to an object by
emitting a laser pulse and recording the time of the return. The range then follows from
dividing the time-of-flight by two times (one way) the speed of light. Scanning LIDARs use
a continuous stream of light pulses, which is reflected by a rotating mirror scan a target area
(Johnson et al., 2002). The mirror kinematics must be precisely known for a correct range
calculation, but there will be an extra noise. The measurement results are then combined in
an elevation map, which forms the basis of the hazard avoidance system, and of course gives
distance information for close-target navigation. LIDARs are usually designed specifically
for one mission, which results in very different instrument characteristics. The preliminary
lander design uses a LIDAR comparable to the HAYABUSA mission; its specifications can
be found in Table 6-11. Currently, the Jet Propulsion Laboratory is building a dual-axis
gimbaled mirror LIDAR for a hazard avoidance purposes. The specifications are unknown
yet, some estimations can be found in Table 6-12. For more information about the LIDAR
in the context of hazard avoidance, see Section 6-2.

Characteristic Value Comment

repetition rate 1 Hz -
footprint size 12.0 m ˆ 4.9 m at 7 km
range 50 m to 50 km also used at 30 m
range accuracy 10 m at 50 km, 1 m at 50 m relatively constant
range resolution 0.5 m -
power requirement 22 W -
mass 3.56 kg -

Table 6-11: Characteristics of the HAYABUSA LIDAR (NASA, 2012a)
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Characteristic Value Comment

sample rate 10 kHz sample = 1 range point
field of view 10˝ ˆ 10˝ -
range about 50 m to 2 km -
range resolution 0.02 m -
range error 0.02 m 1σ-value
pointing error 0.001˝ 1σ-value
pointing resolution 0.001˝ -
divergence 0.1˝ -

Table 6-12: Estimated characteristics of the JPL LIDAR (Johnson et al., 2002)

6-1-8 Chosen Sensors

The navigation system of the preliminary design of the Enceladus lander is based on two star
sensors, two horizon sensors, one IMU and one LIDAR. This choice is still reasonable, because
it covers the required input of external measurements including redundancy. The IMU is a
very efficient instrument to propagate the vehicle’s velocity and position, in particular during
the short repositioning cycles. The IMU is thus the critical navigation sensor for soft landings,
as it allows for a continuous measurement of accelerations and rotations. The star sensors are
the main attitude determination instrument, but they cannot be used on a (rapidly) rotating
spacecraft. Star sensors are very often used in combination with IMUs, because they provide
absolute attitude data needed to propagate the relative measurements from the IMU. The
periods between the reposition cycles allow for a very precise attitude estimation, as the stars
can be tracked over a long period of time. The accuracies of the attitude and acceleration
measurements are very high (see Table 6-4 and 6-6) and meet the requirements stated in the
previous section. The two horizon sensors were intended to aim at Saturn and at Enceladus
during the orbital phase of the spacecraft, as an additional way to determine the attitude.
However, star sensors are more accurate, have a lower weight and can be used on the surface
of moon. Horizon sensors might be an option for redundancy, but they will not increase the
overall accuracy of the attitude measurements and are thus excluded from the lander. The
LIDAR is the main hazard avoidance instrument. This instrument was successfully used for
the HAYABUSA mission, in combination with optical navigation cameras. The preliminary
hazard avoidance system of the Altair lunar lander is also based on an active scanning LIDAR
(see Section 5-1).

6-1-9 Simulator Configuration: Navigation System Parameters

The navigation system in the Enceladus Lander Simulator consists of the EKF with a state
vector consisting of the position, velocity, attitude, accelerometer bias and gyroscope bias.
As discussed in Section 6-1-5, the misalignment and scale factor errors cannot be estimated
with sufficient with sufficient accuracy and are not included in the actual filter – their true
values, however, remain part of the IMU model.
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The navigation system related simulator parameters are listed in Table 6-13, with references
to the variable names used in the previous navigation system sections. Just like the previous
parameter lists, variable names are only listed once in the table if only their axis designation
changes – in those cases, an indication of the number of excluded variable names is added in
brackets.

Variable Name Comment

General
propagationStepSizeFactor [s], ∆t in Table 6-3

External Instruments
frequencyRangeInstrument [1/s], fpos, see Table 6-10
frequencyStarSensors [1/s], fatt , see Table 6-6
measurementNoiseRange [m], 1σ error, vr
measurementNoiseStarS 1σ q-error, vq

IMU Data
frequencyIMU [1/s], fimu, see Table 6-4
randomNoiseAccelerometer [m2], 1σ error, va in Table 6-3
randomNoiseGyroscope 1σ q-error, vg in Table 6-3
processNoisePosition [m2], σ2, Qr

processNoiseVelocity [m2/s2], σ2, Qv

processNoiseAttitude [-], σ2, Qq

processNoiseBiasAcc [m2/s4], σ2, Qba

processNoiseBiasGyr [rad2/s2], σ2, Qbg

covariancePosition [m2], initial σ2, P`0,r
covarianceVelocity [m2/s2], initial σ2, P`0,v
covarianceAttitude [-], initial σ2, P`0,q
covarianceBiasAcc [m2/s4], initial σ2, P`0,ba

covarianceBiasGyr [rad2/s2], initial σ2, P`0,bg

biasAccelerometerX (+2) [m/s2], ba,x in Table 6-2
biasAccelerometerXest (+2) [m/s2], initial estimated ba,x
biasGyroscopeX (+2) [rad/s], bg,x in Table 6-2
biasGyroscopeXest (+2) [rad/s], initial estimated bg,x
scaleErrorAccelerometerX (+2) [-], sa,x in Table 6-2
scaleErrorAccelerometerXest (+2) [-], initial estimated sa,x
scaleErrorGyroscopeX (+2) [-], sg,x in Table 6-2
scaleErrorGyroscopeXest (+2) [-], initial estimated sg,x
misalignmentAccelerometerXY (+5) [-], ma,xy in Table 6-2
misalignmentAccelerometerXYest (+5) [-], initial estimated ma,xy

misalignmentGyroscopeXY (+5) [-], mg,xy in Table 6-2
misalignmentGyroscopeXYest (+5) [-], initial estimated mg,xy

Table 6-13: State vector program parameters

Guido C. Holtkamp Master of Science Thesis



6-2 Hazard Avoidance 145

6-2 Hazard Avoidance

The hazard avoidance system of the Enceladus Lander is based on the analysis of the hazard
map of the target area. The hazard map indicates the landing risk for a certain landing area
by assigning values between 0 for no risk and 1 for maximum risk to each image pixel (Parreira
et al., 2008). The hazard map is the result of the LIDAR image analysis process: The LIDAR
generates a topography model of the target area’s surface. This three-dimensional map is
then translated into incidence angle and surface roughness maps (Johnson et al., 2002). The
maximal incidence angle and maximum obstacle height for Enceladus lander are 15˝ and 0.5
m, respectively, see Chapter 3 and Ampe et al. (2009). Each pixel on both maps receives a
hazard value between 0 and 1. The normalized combination of these two maps is a surface
hazard map; the mission will fail if the touchdown takes place in the region of a pixel with
a value equal to 1. The area required for a safe touchdown is called Vehicle Dispersion
Footprint Ellipse (VDFE), and it consists of the area defined by the lander model diameter
and uncertainties caused by the GNC system errors (Johnson et al., 2008). Consequently, all
areas on the surface hazard map within one VDFE around a pixel with a value equal to 1
are inaccessible, so the according pixels all receive the value 1 as well. The result is the full
hazard map, which gives a realistic impression of the landing risks in the target area. The
derivation the incidence angle and the roughness map from the LIDAR topography model is
complex and beyond the scope of this report. The surface hazard map is thus assumed to be
an input for the lander’s hazard avoidance system. The true surface hazard maps for both
descent and repositioning are generated before the actual landing simulations for the regions
around the nominal target spots.

6-2-1 True Surface Hazard Map Generation

The true surface hazard map (SHM) is defined in the YSZS-plane, with the origin coinciding
with the yS ´ {zS´coordinates of the nominal target position. The XSHM -axis is collinear
with the YS-axis and points in the same direction, while the YSHM -axis is collinear with the
ZS-axis, but points in the opposite direction (see the definition of the surface-fixed frame,
Fig. 4-4). The true SHM must be large enough to allow for LIDAR scans from all viewing
angles about the target position, including aiming errors. The instrument’s field-of-view is
about 100 m ˆ 100 m for the scan altitude (see Section 6-2-2), while the repositioning target
can be anywhere between approximately -2500 m and 4000 m on the YS-axis (see Section
8-4). Consequently, the true SHM has the dimensions of 200 m ˆ 6500 m, with the origin
located at the nominal repositioning target of yS “ 1000 m and zS “ 0 m.

The topography of Enceladus’ is subject of current scientific research, so there currently exists
no exact data on the average rock size and rock density on the surface. Based on the discussion
in Section 2-2 and the surface images shown in Fig. 2-6, the average rock size is chosen to be
10 m. These rocks will cover about 15% of the target area, which is more than comparable
terrain models for Mars (Sinclair and Fitz-Coy, 2003). The SHM generator assumes, that the
boulders have a circular shape with a normally distributed diameter drock „ N p10m, 1m2q.
The rocks are randomly placed on the SHM and may overlap. The lander’s ground clearance
is 0.5 m in the preliminary design (Ampe et al., 2009), so all map pixels with values larger
than 0.5 m indicate a hazardous landing spot and are thus set to 1. The maximal inclination
angle of 15˝ does not add further constraints, because a boulder of 0.5 m in combination with
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Figure 6-15: True surface hazard with a resolution of 0.1 m

the lander diameter of 4.5 m only leads to an inclination angle of about 6˝. Figure 6-15b
shows a detail of the true SHM for the repositioning with the focus on the map origin – the
actual YSHM ranges over 6.5 kilometers, as indicated in Fig. 6-15a. The resolution is set 0.1
m, which is clearly below the maximal boulder size. The map indicates the landing risk for the
terrain map only – the LIDAR sees only the section within its field-of-view, and the lander’s
on-board hazard avoidance system uses this input to determine the best landing spot.

6-2-2 LIDAR Surface Hazard Map

The sub-satellite point (SSP) on the true surface hazard map for a spacecraft at the position
xS depends on the nominal target xtnom,S , which defines the origin of the SHM:

SSPSHM “

ˆ

´zS
yS

˙

´

ˆ

´ztnom,S

ytnom,S

˙

(6-109)

The minus sign in front of the first vector elements is a consequence of the opposite pointing
direction of the ZS- and the XSHM -axis. The Enceladus lander aims at the initial target
xt0,S , which coincides with the origin of the true SHM for the nominal simulation run. The
spacecraft position error causes a divergence of the line-of-sight on the horizontal plane, so
the LIDAR now aims at the position

xt,SHM “

ˆ

´zt0,S
yt0,S

˙

´

ˆ

´ztnom,S

ytnom,S

˙

` pSSPest,SHM ´ SSPtrue,SHM q (6-110)

where the difference between the estimated and the true position is the position estimation
error, on the YSZS-plane. The lander is generally not exactly located above the YS-axis in
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the horizontal plane, so the LIDAR sees the target xt,SHM at a certain azimuth angle. The
SHM image rotation depends on the true SSP and the true target xt,SHM , and follows from
the problem geometry. The counter-clockwise rotation angle φSHM is:

φSHM “ ´ tan´1
ˆ

SSPx,true,SHM ´ xt,SHM
SSPytrue,SHM ´ yt,SHM

˙

(6-111)

The target area is scanned at the maximum altitude for which all hazardous surface elements
are detectable to maximize the field of view. With a LIDAR angular resolution of ∆θ “ 0.1˝
and a the maximum rock size of 0.5 m, the scan altitude is about 290 m. It will be assumed,
that the elevation angle between the local vertical and the LIDAR line-of-sight is 90˝ for the
image acquisition – other elevation angles introduce tilt effects, which significantly increase
the problem complexity. The LIDAR’s field-of-view now is a square area, with the center
xt,SHM , rotated over the angle φSHM with respect to the true SHM, and with a side length
of

dFOV “ 2h tan θFOV2 (6-112)

where θFOV is the instrument’s angular field-of-view. The LIDAR takes measurements each
∆θ along the scan lines. The relation between a position on the LIDAR image frame and the
true SHM is

xSHM “ xt,SHM `
„

cosφSHM sinφSHM
´ sinφSHM cosφSHM



xlidar

“ xt,SHM `TSHMÐlidarxlidar.
(6-113)

Note, that a LIDAR image pixel does not generally have a resolution of 1 m, so there is an
additional translation – derived from Eq. (6-112) – required to get from a position on the
image to xlidar.

Name Value

Initial State
estimated position r290.00, 200.00, 50.00s m
true position r290.00, 198.00, 52.00s m
estimated velocity r´2.00, 3.00,´1.00s m/s
true velocity r´2.00, 3.00,´1.00s m/s

Target State
nominal target position r0.00, 500.00, 0.00s m
current target position r0.00, 500.00, 0.00s m

Table 6-14: Inital and target state information for the hazard
avoidance simulations

The initial and target state information for the hazard avoidance simulation in this section
are listed in Table 6-14. The target is chosen to be xtnom,S , so xt0,S coincides with the origin
of the true SHM. The true initial SSP is not located above YS-axis relative to the YSZS-plane;
the image rotation φSHM is -9.15˝ based on Eq. (6-111). The position estimation error causes
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Figure 6-16: Surface hazard map generated with the LIDAR

an image shift of -2 m in both directions of the true SHM. Figure 6-16 shows the surface
hazard map generated with the LIDAR based on the true SHM given in Fig. 6-15b.

The field-of-view at an altitude of 290 m is about 76 m for θ “ 15˝, which is relatively small
for a lander with a base diameter of 4.5 m. It might be necessary to use a LIDAR with higher
angular resolution or with a wider field-of-view.

6-2-3 Piloting

Piloting is the complete process of selecting a safe landing spot on a given risk map. In
general, a piloting function first determines values for the fuel consumption, the visibility,
the thrust profile and more for each candidate point, and then combines this data in a score
map, which forms the basis for the retargeting choice (Parreira et al., 2008). The Enceladus
Lander Simulator is limited to a basic reachability and fuel-consumption analysis.

The surface hazard map in Fig. 6-16 does only contain hazard information about the (small)
areas related to each image pixel. The Enceladus lander, however, has a certain base diameter,
and can never exactly land at the desired position due to the GNC errors during descent and
repositioning. The Vehicle Dispersion Footprint Ellipse (VDFE) is a combination of these two
values, and thus describes the minimal (circular) area that should be free of any hazardous
elements for a safe landing (Johnson et al., 2008). The landing precision of the lander is in
the order of 2 m, see Section 8-4. With a lander base diameter of 4.5 and some contingency,
the VDFE is chosen to be 9 m. To determine the safe landing areas from the LIDAR image, a
circle with a radius equal to the VDFE is drawn around each pixel on the SHM with a value
larger than 0.9. All areas inside one or more circles are inaccessible, and all areas outside
are considered candidate points for a safe touchdown. The reachability map for Fig. 6-16
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Figure 6-17: Reachability map based on Fig. 6-16 – green marks the candidate points, red the
hazardous area.

is shown in Fig. 6-17. Note, that also the areas within a distance of one VDFE diameter
is inaccessible, because there is no information available about the hazards just outside the
LIDAR image.

At this point, the hazard avoidance system checks whether the original target location (here:
xLIDAR “ yLIDAR “ 0 m) is a candidate point: The target should only be changed when it
is critical to the mission success, because the new target not the desired touchdown position,
and retargeting can introduce new errors. In case the original target is not reachable, a new
target must be selected from the available candidate points. This choice will be based on the
amount of fuel required to reach a given target, because this system has a higher degree of
autonomy. It is also possible to chose the candidate point closest the to original target, or
apply a variety of different filters to find the optimal retargeting option, but this is beyond
the scope of this report.

The relation between a position in the LIDAR image frame and a position in the S-frame
follows from a combination of Eqs. (6-109) and (6-113) and can be written as

ˆ

zS
yS

˙

“

ˆ

ztnom,S

ytnom,S

˙

`

„

´1 0
0 1



pxt,SHM `TSHMÐlidarxlidarq . (6-114)

It is now possible to determine a target state vector for every position on the LIDAR image
by combining the result of Eq. (6-114) with the xS-value and the target velocity of the true
target state vector. The target state and the estimated initial state are then inserted quadratic
guidance logic as shown in Section 5-1-2 – the fuel consumption is one of the byproducts of
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(b) combined with reachability map

Figure 6-18: Fuel consumption for the LIDAR image

the time-to-go determination process. The fuel consumption for the complete LIDAR hazard
map is shown in Fig. 6-18a. The plot is not symmetrical, because the lander initially has a
sidewards velocity, see Table 6-14. The fuel consumption is lower for more distant targets,
because the deceleration and thus the thrust level is lower. The Enceladus lander piloting
function only investigates the fuel consumption of the candidate points; the result is shown
in Fig. 6-18b. The fuel consumption is translated into a score with values between 0 and 0.8
to discriminate between the inaccessible areas with a score of 1.

The new target is then chosen to be the area related to the pixel with the lowest candidate
point score – for Fig. 6-18b, the new target would be xLIDAR “ yLIDAR “ ´31 m, if the
original target was unreachable. In case there is not a single candidate point on the LIDAR
image, the lander automatically interrupts its descent and selects a target one field-of-view
side length further ahead. The entire process is then restarted.

The Enceladus lander hazard avoidance system is relatively basic, and its refinement is an
interesting subject of future work.

6-2-4 Simulator Configuration: Hazard Avoidance System Parameters

The hazard avoidance system of the Enceladus lander requires a true SHM written in a
comma-separated *.txt-file. Each lander model scans a segment of the true SHM depending
on the current sub-satellite point and the current position estimation error, and generates
a reachability map from this image. In case the original target cannot be reached, each
reachable target point is related to the required amount of fuel. The candidate point with
the lowest fuel consumption score is then selected as new target.

All hazard avoidance system related simulator parameters are listed in Table 6-15.
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Variable Name Comment

isHazardAvoidanceActive on/off
scanAltitude [m], 290 m to see 0.5 m hazards with ∆θ “ 0.1˝
resolutionOfTrueSHM [m], set to 0.1
VDFE [m], 9 m incl. 0.5 m contingency
reachabilityMapHazardThreshold [-], set to 0.9
originOfSHMinMapcoordinateX [-], relates the MATBLAB map to the SHM
originOfSHMinMapcoordinateY [-], see above
nominalTargetinSframeZ [-], ztnom in Eq. (6-109)
nominalTargetinSframeY [-], ytnom in Eq. (6-109)

Table 6-15: Control system related program parameters
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Chapter 7

Simulator Setup

The following sections describe the major elements of the software package designed to eval-
uate the behavior of a lander during descent, touchdown and repositioning.

The program design turned out to be far more complex than initially assumed due to the large
number of parameters and interaction of virtually every single system. The program must be
able to generate a continuous data flow, and thus connect all isolated system elements dis-
cussed in the previous sections. The result, however, is a comprehensive simulation software,
which is able to simulate a complete GNC system of a spacecraft in different situations.

The discussion in this chapter will be limited to basic program functionality, the actual C++
code is not discussed here.

7-1 Program Structure

The Enceladus Lander Simulator must be able to simulate a large number of lander elements
with different initial states and configurations in order to determine the mission success rate
under realistic circumstances. Ideally, the program structure is modular to allow future
additions and to simplify the program maintenance and testing.

The program overview is shown in Fig. 7-1. The simulator has three main elements, or
namespaces in C++: the flight software, the flight hardware and the flight dynamics. The flight
software represents the lander’s on-board computer system, which is connected to the flight
hardware – the main engine, the attitude verniers and the sensors for internal and external
measurements. The flight dynamics represents the true environment of the spacecraft; it
determines the lander’s motion under the influence of various forces. The true state outputs
follow from the state propagator inside the flight dynamics section, while the lander software
only works with the estimated states.

All elements in Fig. 7-1 are briefly discussed in Section 7-2. The four orange blocks are the
user interfaces – the lander and simulator configuration files as well as simulator outputs are
discussed in Section 7-7.
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7-2 Program Elements and Testing

Every code module of the Enceladus lander simulator is tested for its correct functionality.
Most test routines use the unit test framework of the boost C++ test library, which allows
performing tests in an environment separate from the main function. It offers simple tools
to compare data types, to execute successively multiple test cases and to collect pass/fail
information.

Some classes, in particular the integrators and spherical harmonics gravity field model, are
based on functions inside the Tudat toolbox and tested independently. Tudat is the TU
Delft Astrodynamics Toolbox written in C++, and a project of the astrodynamics and satellite
mission research group of the faculty of aerospace engineering.

The unit tests are designed such that all interfaces of a code block are tested. Some code
modules are tested in conjunction with other modules, as they require data from each other.
For example, the thirdBodyForceModel needs pointers to an existing thirdBodyModel ob-
ject, a massModel object and a referenceFrames model. In cases like this, the lower-class
modules are tested beforehand, and the higher-class modules often work with input objects
in their default state.

The unit tests check whether the code block returns the expected data for the given input.
This expected data can come from an external source, such as data bases or text books, or
from own calculations. Furthermore, the unit tests check if the module is stable for all inputs,
in particular, in the boundary regions or in the default state.

The following lists describes the functionality of the Enceladus Lander Simulator program
elements together with the used test method. Most of these elements are shown in Fig. 7-1.

Enceladus Lander namespace

coordinateSystemTransformations
Includes functions to translate between degree and radians, between Euler rotation
angles and quaternions, and between Cartesian and spherical coordinates.
Unit Tests: basic axis rotations and back-and-forth translations.

output
Contains several functions to write matrices and vectors to *.txt-files and print
the contents of data maps onscreen.
Unit Tests: inspection of generated files.

referenceFrames
Collects the attitude data of the current lander model, and can return the orien-
tation of the I-, R-, V -, S- and B-frames with respect to each other, all in terms
of both quaternions and rotation matrices. Updated constantly by the state prop-
agator.
Unit Tests: axis rotations and back-and-forth translations.

simulatorConfiguration
Reads the lander and simulator configuration files, initiates all systems and passes
pointers and setup data. By far the largest file.
Unit Tests: checking of correct initiation of each class.
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Flight Dynamics namespace

thrustForceModel, thrustMomentModel
Base classes to determine forces and moments in the I-frame.
Unit Tests: force model in Tudat, moment model by recalculation.

constantPerturbingForce, thirdBodyForceModel, j2GravityField
Extensions of the force/moment models, with different setup but inherited func-
tions to determine the forces/moments in the I-frame.
Unit Tests: gravity fields in Tudat, constant force by recalculation.

equationsOfRotational/-TranslationalMotion, massDerivative
Determines the translational and rotational state derivatives and the current mass
flow, given the force and moment models and the current state estimations.
Unit Tests: equations of translational motion in Tudat, equation of rotational
motion using results from literature (quaternion derivative) and Simulink, mass
derivative by recalculation.

stateDerivativeCombined
Collects the results from the equations of motion and combines them with the mass
flow to generate the complete state derivative vector.
Unit Tests: inspection of end result.

massModel
Comprises the current true and estimated values for the lander total mass, inertia
tensor and center of mass shift. Constantly updated by the propagator and control
system.
Unit Tests: inspection of saved data.

stateIntegrator, statePropagator
Propagates the true state using the chosen RK or RKF integration techniques, and
checks whether the simulation end conditions are reached.
Unit Tests: integrators in Tudat, propagator as part of flight dynamics system
test with Simulink.

Flight Hardware namespace

thrustModel
Base class for all thrusters; includes engine performance and alignment data, and
applies thruster magnitude and alignment errors.
Unit Tests: inspection of returned values.

attitudeThrusterModel, mainEngineThrusterModel
Extend the thrust model and add additional values (minimum impulse bit).
Unit Tests: inspection of returned values.

Flight Software namespace

missionManager
Central class for the lander models. Calls the guidance, navigation and control
system, organizes the hazard avoidance and targeting cycles, checks for landing
failures, changes between guidance modes, initiates the true state propagation and
saves the system data for the simulation output.
Unit Tests: check for correct function calls by inspection of output.
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eventFinder
Determines which GNC system or other software element must be called after the
next time step, based on the system frequencies. Constantly called by the mission
manager.
Unit Tests: inspection of results for various input frequencies.

targeting
Transforms target state between different frames, and contains the hazard avoid-
ance routines such as scanning the true SHM, generating reachability and fuel
maps, and selecting a new target.
Unit Tests: comparison of results with referenceFrames, hazard avoidance: op-
tical inspection of maps.

guidanceSystem, controlSystem, navigationSystem
Main system files to coordinate the different subsystems; interface with the mission
manager.
Unit Tests: check for correct function calls by inspection of output.

guidance: gravityTurnGuidanceLogic
Returns the acceleration command for a spherical and flat moon gravity turn.
Unit Tests: Comparison with literature (see Section 5-1-1).

guidance: quadraticGuidanceLogic
Returns the acceleration command for the quadratic guidance, given a target and
a time-to-go search option.
Unit Tests: Integration of acceleration command and comparison with target.

guidance: velocityNullifyingGuidance
Returns the acceleration command to nullify the current horizontal and – if de-
manded – vertical velocity.
Unit Tests: Integration of acceleration command and comparison with target.

guidance: repositioning
Returns the acceleration commands for the hybrid ballistic-quadratic and the
purely quadratic repositioning guidance.
Unit Tests: from quadratic guidance; integration of acceleration command.

navigation: navigationSystem
Determines the state estimations given the previous state estimations. The instru-
ment models are not exported to external files for simplicity, so the true state for
the measurement generation is also also an required input.
Unit Tests: basic version with literature, end version by inspection.

control: quaternionController
Determines the reference moment using a linear quaternion controller, given the
current state estimation.
Unit Tests: Integration of result and comparison with target.

control: pwpfController
Calculates the thrust pulses required to approximate the moment command from
the quaternion controller.
Unit Tests: comparison with literature (see Section 5-2-4)

control: thrusterManager
Determines the appropriate thrust levels for the PWPF controller and directs its
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output to the correct thrusters.
Unit Tests: Checking the results for different moment commands.

7-3 Monte Carlo Simulation

The Monte Carlo simulation is a technique in the field of probability theory and uses a large
number of random experiments to analyze complex numerical problems. In this report, the
Monte Carlo technique is used to determine the effects of varying initial conditions on the
spacecraft’s landing precision. The sensitivity of the system to deviations from the nominal
state is a valuable input for the further system development, because it translates into the
system fault tolerance. In case a certain variable seems to have a large influence on the end
result, the detailed lander design should ensure that its value is always within the given limits.

The Enceladus Lander Simulator uses default values for each base lander model. These
nominal values are saved in the lander configuration files, see Appendix A-1. The other lander
sample models are the result of modifications of the base lander parameters, initiated by the
Monte Carlo simulator. The deviation from the nominal value is determined using a Gaussian
– or normal – distribution. The probability density function of the normal distribution for
the random variable x is a bell-shaped curve with the Eq. (Teunissen et al., 2006)

fpxq “
1

σx
?

2π
exp

#

´
1
2

ˆ

x´ µ

σx

˙2
+

(7-1)

where µ is the mean and σx the standard deviation. µ and σx fully define the normal distri-
bution, so Eq. (7-1) is often written as x „ N pµ, σ2

xq. In this notation, σ2
x is the variance.

Table 7-1 lists all variances implemented in the Enceladus Lander simulator. The symbols
shown here will be used later in this report to present the simulator setup for each simula-
tion run. Note, that each variance is related to a certain subsystem: the velocity estimation
variance, for example, has no influence on guidance (G), or guidance and control (GC) simu-
lations – it is only relevant for the full guidance, navigation and control (GNC) simulations.
The variance values of the initial conditions are listed in the simulator configuration file, see
Appendix A-2, and may be set to any desired value.

For example, the mass of a sample lander model follows from the simulation parameters listed
in Table 8-3 and is

m “ N pm0, σ
2
mq “ N p335 kg, 10 kg2q.

Due to the probability density function shown in Eq. (7-1), the mass deviation of the lander
model from the nominal value is σm “ 3.16 kg or less in 68.3% of all cases, and in 99.7% of
all cases, the deviation is 2σm “ 6.32 kg at most.

Guido C. Holtkamp Master of Science Thesis



7-3 Monte Carlo Simulation 159

Variable Name Symbol Applicable Simulation Type

massVariance σ2
m GNC, GC, G

massMomentInertiaVariance1 σ2
moi GNC, GC

COMshiftVariance1 σ2
com GNC, GC

thrustMagnitudeVariance2 σ2
tm GNC, GC

thrustAlignmentVariance2 σ2
ta GNC, GC

positionVariance σ2
r GNC, GC, G

velocityVariance σ2
v GNC, GC, G

eulerAngleVariance σ2
q GNC, GC

positionEstimationVariance σ2
r,e GNC

velocityEstimationVariance σ2
v,e GNC

eulerAngleEstimationVariance σ2
q,e GNC

hopDistanceVariance σ2
y GNC, GC, G (repos. only)

hopAltitudeReqVariance σ2
h GNC, GC, G (repos. only)

1 see explanation at the end of this section
2 for main engine and verniers

Table 7-1: Program parameters for the Monte Carlo Simulation

The meaning of the center of mass shift variance σ2
com and the mass moment of inertia variance

σ2
moi is not directly evident, and will be explained in the following.

As indicated in Section 3-1, the lander’s nominal center of mass is located in the geometrical
center of the spacecraft body. It is furthermore assumed, that the mass is homogeneously
distributed in the shape of a cube, which leads to a diagonal inertia tensor. The Monte Carlo
simulations include deviations from the cubic shape – which will change the mass moments of
inertia Ixx, Iyy and Izz – and a shifting center of mass – which will lead to non-zero products
of inertia Ixy, Ixz and Iyz. The implementation of a rectangular parallelepiped instead of a
cube is straightforward, and is achieved by modifying the mass moments of inertia with the
according variance values (see Table 3-5. The center of mass shift is achieved by shifting the
mass block inside the spacecraft bus, so effectively, the B-frame is shifted with respect to the
A-frame. This will influence the lander rotation behavior, because all thrusters remain fixed
in the A-frame and now have different thrust arms. In particular the main engine generates
a thrust moment, if the thrust vector does not pass through the center of mass. For the
center of mass shift r∆xcom,∆ycom,∆zcoms with respect to the original center of mass, the
new inertial tensor then becomes

I “

»

–

Ixx 0 0
0 Iyy 0
0 0 Izz

fi

fl`m

»

–

∆y2
com `∆z2

com ´∆xcom∆ycom ´∆xcom∆zcom
´∆ycom∆xcom ∆x2

com `∆z2
com ´∆ycom∆zcom

´∆zcom∆xcom ´∆zcom∆ycom ∆x2
com `∆y2

com

fi

fl (7-2)

where the first term is the moment of inertia about the center of mass, and the second term
follows from the parallel-axis theorem. The theory behind Eq. (7-2) is discussed, for example,
in Meriam et al. (2002).

The Enceladus Lander Simulator uses the external Boost C++ library to determine the value
for x given the mean value of the base lander model and the according variance for the Monte
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Carlo simulations. The random number generator has fixed seed numbers. In this way,
the respective random values are equal each simulation run, which allows an easier problem
analysis and is necessary for the reproducibility of the results.

7-4 Simulator Configuration and Output

The Enceladus Simulator is fully configured by two separate *.txt files.

The complete true lander state for the Enceladus Lander Simulator is defined in the lander
configuration file. This file also includes all data that define the nominal – or main – lander
model characteristics, such as the inertial tensor, the thruster orientation and the thrust limits.
The simulation parameters, on the other hand, are listed in the simulator configuration file,
and range from the maximal simulation time and the propagator selection to the Monte Carlo
Simulation parameters to the various GNC options and success conditions.

The implemented file reader automatically parses the a text string that is not started with
a number sign. The reader will return an error if the text line does not correspond to the
format ’variable name’ – ’=’ – ’number’. Activations and deactivations are thus represented
by the values 1 and 0, respectively. This principle is illustrated in the following extract from
the simulator configuration file:

# CONTROL OPTIONS
# PWPF controller options:
# 0.0 deactivated: moment_B = torque_ref from controller, no thrust limits
# 1.0 activated: filter & trigger used, thrust limitations
proportionalGainQuaternionController = 2.5
derivativeGainQuaternionController = 3.5
PWPFactive = 0.0

The proportional and derivative control gains will have the values 2.5 and 3.5, respectively,
while the PWPF controller is inactive.

The Enceladus Lander Simulator generates a series of result *.txt-files that collect the esti-
mated and true initial and final states, and the position data as a function of time for each
lander model. The complete simulation data is only saved for the main lander model, but
may be activated for all Monte Carlo elements if desired. The simulation parameters are
discussed in Section 7-7. Note, that this requires a lot of disk space, and is only necessary
to investigate anomalies. All figures shown in this chapter are generated in MATLAB using the
output files of the Enceladus Lander Simulator.

7-5 System Test of Flight Dynamics

Many code modules of the simulator’s flight dynamics part can be tested with the MATLAB
Simulink block Simple Variable Mass 6DoF (Quaternion), which is part of the Aerospace
Blockset. This Simulink block can propagate the translational and rotational state of body
with respect to the inertial and the body-fixed reference frame, given the forces and moments
acting on the body.
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Figure 7-2: Simulink model used for the flight dynamics system test

In the flight dynamics system test, the state of a lander model is propagated for a specific set
of initial thruster settings. The result should ideally be the same as a propagation with the
same settings in Simulink.

Although the basic equations of the Simulink model and the Enceladus Lander Simulator are
the same, the program structure and thus the method for arriving at the result is different.
This inevitably will lead to (small) differences.

Floating-point numbers as used in both simulations have a high precision, but suffer from
a limited accuracy. Almost all decimal numbers have no exact binary counterpart, which
leads to the introduction of roundoff errors when calculating with floating-point numbers.
The magnitude of this error is limited by the so-called machine epsilon, which is defined as
the smallest increment of the floating-point number 1.0 that can be represented as a new
floating-point number. The machine epsilon for the Enceladus Lander Simulator can be
determined with the C++ standard library class numerical_limits and is 2.22045ˆ10´16 for
double-precision floating-point values. An additional source of roundoff errors are the C++
standard library trigonometric functions used in the reference frame transformations class,
because these function are based on polynomial approximations that return (small) non-zero
results in situations where they are expected to return zero (Bezanson, 2013). In general,
these errors are very small, but they are magnified when divided by small numbers, for
example during a numerical integration process. The latter can introduce additional error
sources, in particular, a loss of significance. This effect occurs on the one hand, when a very
small floating-point number is added to a comparably large floating-point number: During
the arithmetic operation, the least significant bits of the smaller number are shifted and
subsequently lost (Press et al., 2002). On the other hand, a subtraction of two very close
values will result in a large relative error, as the result loses significant bits (Bezanson, 2013).
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These effects can be minimized and quantified by a numerical analysis of all code blocks of
the Enceladus Lander Simulator, but this is beyond the scope of this thesis. Consequently,
it is expected that the results produced with the Simulink model and with the Enceladus
Lander Simulator will not perfectly match, but the discrepancies must be within acceptable
limits.
The system test consists of a state vector propagation for a lander with at an initial mass of
320 kg, a fixed diagonal inertia matrix with Ixx = Iyy = Izz = 150 kgm2 and the following
translational and rotational state vector elements:

xtranslational “

»

—

—

—

—

—

—

–

0.0
312345.0

0.0
0.0
0.0
0.0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, xrotational “

»

—

—

—

—

—

—

—

—

–

1.0
0.0
0.0
0.0
0.2
´0.32
0.29

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(7-3)

The main engine produces a constant thrust of 100 N in the thruster reference frame, and
the verniers generate constant thrust moments of [0.4, 0.61, -0.71] Nm. Both simulators use
a Runge-Kutta 4 integrator with a fixed stepsize of 0.1 s over a total simulation time of 300
s. The variable step-size integrator is not suitable for the system test, because the step-size
determination logic is different in the Simulink model, which will lead to different step-sizes
and thus to meaningless discrepancies in the results. Table 7-2 shows the absolute and the
relative deviation of the Enceladus Lander Simulator results from the Simulink model results;
the actual final state after the 5-minute-propagation is given in Fig. 7-2. Differences are listed
as approximately zero for values below 1.0ˆ10´8. The attitude quaternions are translated
into the corresponding Euler angles for a better insight. The final mass of the body is no
output of the basic 6DoF -block - but this is not even necessary, as the mass flow is kept
constant during the integration process, which leads to a linearly decreasing vehicle mass.
The mass loss is significant (about 10 kg), so faulty mass integration would quickly lead to
large errors in the equations of translational motion.

State Element Absolute Difference Relative Difference

XI 0.990 m 0.113 %
YI 2.936 m 0.001 %
ZI -1.496 m -0.135 %
Vx,I 0.094 m/s 0.701 %
Vy,I -0.117 m/s 0.582 %
Vz,I 0.120 m/s 0.615 %
ψB{I -0.307ˆ10´6 ˝ « 0 %
θB{I -0.320ˆ10´6 ˝ « 0 %
φB{I 0.155ˆ10´6 ˝ « 0 %
p « 0 rad/s « 0 %
q « 0 rad/s « 0 %
r « 0 rad/s « 0 %

Table 7-2: Absolute and relative deviation of the Enceladus Lander
Simulator results from the Simulink model results
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As can be seen, the relative and absolute error of the rotational rates and attitude angles
is very low, while the errors in velocity and position are higher, reaching a maximal relative
error of 0.7% for the Vx-velocity. The increase in error from the table’s bottom to top is
expected, because errors in rotational rates are passed to the attitude angles, which in turn
pass their errors in terms of imperfect transfer matrices to the acceleration vector and thus
subsequently the velocity vector. All errors are in the end collected during the position
determination. Further testing showed, that the errors increase in particular with increasing
rotation velocities. It is therefore decided to design an additional test case focusing only on
a rotating thrust vector, and compare the results with precise analytical solutions.

7-6 Rotating thrust vector

The exhaust of the main engine points in the direction of the `ZB-axis, so the T - and the B-
frame coincidence at all times (see Section 3-2). When the spacecraft is in a rotational motion,
the thrust force vector TB always points in the ´ZB-direction - in contrast to the continuously
changing components of TI and the accompanying acceleration aI . The integration of the
equations of translational motion requires precise values for aI .

Trial runs of the software have shown that an inaccurate definition of aI - in particular,
the assumption that the thrust vector TI is constant during one integration step and thus
not independent on the current rotational state - will quickly lead to large errors in the
translational part of the propagated state vector. Consequently, a separate test case was
designed to benchmark the integration of aI . The test scenario is shown in Fig. 7-3. The
spacecraft is rotating about the ZB-axis with a rotational rate q with an activated main
engine, resulting in an acceleration aB. The XI - and the YB-axis are aligned, so the scenario
is viewed in the XIZI -plane only.

Assuming that no moments are acting on the spacecraft and that the rotational rates are zero
for the other axes, the inertial velocity of the lander at time t then follows from integrating
the XI - and ZI -components of aT and applying the boundary condition vy,Ip0q “ vz,Ip0q “ 0
ms´1:

vI “
T

m

1
q

»

–

0
cos pqtq ´ 1

sin pqtq

fi

fl (7-4)

Similarly, the inertial position dI should be

dI “
T

m

1
q2

»

–

0
sin pqtq ´ tq
1´ cos pqtq

fi

fl (7-5)

In the test scenario, the spacecraft is rotating with a relatively high angular velocity of 0.2π
rads´1 in combination with a thrust setting of 100 N. Figure 7-4 shows the deviations of the
simulator and the Simulink results from the exact analytical solutions (equations (7-4) and
(7-5)) over a period of 10 minutes, using again the RK4 integrator with a step-size of 0.1 s.
The velocity errors along the ZI -axis are in the order of 10´5 and grow over time, while the
errors along the YI -axis are very small and periodic. The resulting accumulated position error
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Figure 7-3: The acceleration of a lander model rotating about the YB-axis, with respect to the
inertial and the body reference frame I and B
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Figure 7-4: Analytical and simulated results for a rotating body with a body-fixed thrust vector

for the Enceladus Lander Simulator is about 2 mm and 0.5 mm, respectively. Considering the
high angular velocity of the spacecraft over a long period of time and the comparable results
from the Simulink model, the state propagator seems to work as intended. The accuracy of
the results can be increased by selecting a higher-order integrator or reducing the step-size.

7-7 Simulator Configuration: Simulation Parameters

The Enceladus lander simulator incorporates five different simulation modes (see Table 7-3;
three for the descent and two for the repositioning process. The mode selection activates or
deactivates the different subsystems and prepares the guidance mode selection (see Table 5-5.
A deactivated navigation systems sets all estimated states equal to the true states, because
the flight software has no means to propagate the state estimations. The deactivation of the
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control system limits the lander dynamics to three degrees of freedom; the lander becomes
a point mass, and the desired thrust vector based on the commanded acceleration is aligned
perfectly.

Mode Number Description Comment

1 Descent: G simulation see Section 8-3-1
2 Descent: GC simulation see Section 8-3-2
3 Descent: GNC simulation see Section 8-3-3
4 Repositioning: GC simulation not used
5 Repositioning: GNC simulation see Section 8-4

Table 7-3: Simulation mode numbers

The parameters to define the simulation output and the boundary conditions that stop the
current simulation run, are listed in Table 7-4. The initial and final states for each lander
element together with the according parameter variations are always saved. The full simula-
tion data, such the true position in different reference frames, as a function of time is only
saved if requested. It is possible to simulate single lander elements, which the fastest way to
analyze landing failures or unexpected behavior of single lander elements. The state results
mentioned in Table 7-4 refers to a single file collecting the position data of all lander elements.
This data package is necessary to plot the trajectories of all lander elements in a single figure,
for example in Fig. 8-2. The state results data package is a large file, and its generation can
increase the simulation time considerably.

Variable Name Comment

General
simulationMode option 1 to 5, see Table 7-3

Output Options
saveResultsBaseLander on/off save all data
saveResultsAllLander on/off save all data
saveStateResultsAllLander on/off generate position data
saveResultsLanderNumber save all data for specific element
onlySimulateLanderNumber simulate specific element only
saveResultsStepSize [s], step size for all data saves
excludeFailLandings on/off include fails in state

Boundary Conditions
simulationStartEpoch [s]
simulationEndEpoch [s], t ą tmax means failure
maxVelocityErrorForFail [m/s], higher ∆vend means failure
maxPositionErrorForFail [m], higher ∆rend means failure
minimalAltitude [m], h ă hmin means failure

Table 7-4: Simulation parameters, all in the simulator configuration file
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Chapter 8

Simulation Results

This chapter presents the simulation results of Enceladus Lander Simulator. The theory
behind the program and the software setup were discussed in the previous chapters.

The simulations are performed separately for the descent phase and the repositioning phase,
and not all elements of the GNC system are activated at the same time. The simulation plan
presented in Section 8-1 gives more detail about the exact simulation sequences.

The Enceladus Lander Simulator uses different reference frames for the data input and output:
the initial state must be specified with respect to the I-frame, the target state with respect
to the R-frame, and the simulation results are mainly expressed with respect to the S-frame.
The initial and target states are derived in Section 8-2, including a discussion of the general
simulator setup.

Section 8-3 discusses the simulation results for the descent phase, with a partially and fully
activated GNC system to analyze the effects of the single subsystems on the landing precision.
Section 8-4 deals with the repositioning of the lander on the surface, with a fully activated
GNC system and a large number of different targets.

8-1 Simulation Plan

The main target of the Enceladus Lander Simulator is finding the answer to the question
whether a hopping planetary lander can safely land and reposition on the surface of Enceladus.
There are two main characteristics to track: on the one hand, the landing precision under the
influence of disturbing forces, because it is critical for a successful touchdown at the end of
the descent phase and of each repositioning cycle. On the other hand the fuel consumption,
as it has the largest influence on the lander’s surface coverage, and is the decisive factor when
comparing the different guidance options.

The guidance, navigation and control systems are activated sequentially to investigate the
effects on the end results. Each system adds new, system-related Monte Carlo variances to
simulations. The random number generators inside the Enceladus Lander Simulator use fixed
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seed numbers, so parameter variations are equal each simulation run – this is a prerequisite
to allow for a comparisons between multiple simulation runs.

Table 8-1 below gives an overview of the simulation runs that will discussed in the following
section. The letters G, GC and GNC refer to guidance, guidance and control, and guidance,
navigation and control simulation runs, respectively. The guidance system is active in all
cases. It is decided against a separate GN run due to time constraints. The choice fell on GC
instead of GN, simply because the control system was implemented in the C++ code before
the navigation system.

Simulation Mode Objective Reference

Orbital Descent Section 8-3
G landing precision, fuel consumption Section 8-3-2
GC landing precision, error tolerance Section 8-3-2
GNC landing precision, error tolerance Section 8-3-3

Repositioning Section 8-4
GNC landing precision, fuel consumption –

Table 8-1: Simulation plan for the Enceladus Lander Simulator

8-2 Initial conditions and Simulation Setup

The Tiger Stripes cover a large part of Enceladus’ southern hemisphere. The target area for
the GNC simulations is chosen to be the depression with the name Baghdad (see Fig. 2-5)
along the 70˝ south longitude and between the 10˝ and 40˝ latitude. The rotating reference
frame in the Enceladus Lander Simulator is not directly connected to the a base-map such
as shown in Fig. 2-5, so the actual target latitude depends on the initial orientation of these
two reference frames. The target state must be expressed with respect to the rotating frame.
Thus, for a simpler translation to Cartesian coordinates, the desired target latitude is set to
0˝. The target position rtR with }rtR} “ Renc thus is a vector that initially pointed in the
XR-direction and then rotated 70˝ about the YR-axis, see Fig. 4-2 and 4-7. This leads to a
target position of r86223.28, 0, ´236896.51sm.

The target velocity with respect to the surface-fixed frame is set to r´0.5, 0, 0s ms , as horizon-
tal velocities should always be avoided and a vertical velocity of 0.5 m

s is below the maximum
velocity that the landing gear can absorb (see Section 3-3). Using the same transformation
as for the position vector, this leads to a target velocity vtR at rtR of r´0.17, 0.02, 0.47s ms .

The circular velocity at the initial altitude h0 can be calculated with

Vc “

c

µenc
Renc ` h0

(8-1)

and is 168.11 m
s at h0 “ 3 km. The descent phase is initiated at the point where a pure

gravity turn will guide the lander close to the actual target point. This approach is necessary
to allow for a (fair) comparison between the implicit gravity turn and the explicit quadratic
guidance logic. In contrast to the target state, the lander’s initial state in the Enceladus
Lander Simulator must be expressed with respect to the inertial planetocentric reference
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frame. The approximate gravity turn downrange for an assumed initial velocity of 0.4 Vc or
67.25 m

s follows from Eq. (5-25) and is 10.63 km. The initial position then is the location in
a 70˝ inclination orbit, 10.63 km in front of the target measured along the surface. The orbit
is in prograde motion with respect to the rotating moon to reduce the required ∆V . As a
vector rotation follows from a reference frame rotation in the opposite direction, the initial
inertial lander position is

r0I “ T2 p´70˝qT3

ˆ

2π10, 630 m
2πRenc

˙

¨

˝

renc ` h0
0
0

˛

‚“

¨

˝

87180.71
´ 10116.35
´239527.02

˛

‚ m

where the expressions for T2 and T3 are given in Eqs. (4-12b) and (4-12c). This can be
translated to the spherical coordinates τ “ ´6.62˝, δ “ ´69.88˝ and r “ 255.1 km.

The surface velocity with respect to a motionless spacecraft at the 69.88˝ south longitude is

Vsurf “ ωencRenc cos p69.88˝q “ 4.60 ms´1

which leads to an initial velocity with respect to the I -frame at the previously determined
initial position r0I of

v0I “ T2 p´70˝qT3

ˆ

2π10, 630 m
2πRenc

˙

¨

˝

0
67.25

0

˛

‚m/s´

¨

˝

0
4.60

0

˛

‚m/s “

¨

˝

0.91
62.60
´2.51

˛

‚m/s.

The above expression for v0I does not include the Coriolis effect – the resulting small devia-
tions will be corrected by the quadratic guidance logic.

The lander’s initial attitude is chosen such that the XB-axis points in the direction of velocity
vector v0I . In this way, the cross-range (zS-value) between the initial and the final position
is zero, which allows an easier interpretation of the results. The rotation matrix from the
I-frame to the B-frame at r0I located at the 69.88˝ south longitude is

TBÐI “ T1 p69.88˝qT1 p´90˝qT3 p90˝q

which can be translated to the Euler angles φ “ ´20.12˝, θ “ 0˝ and 90˝ or the attitude
quaternion r0.6962,´0.1235,´0.1235, 0.6962s (see Section 4-2-4 for the appropriate trans-
formations). The S-frame is defined using a series of transformations based on the initial
position, velocity and attitude in the I-frame (see Section 4-3-2). The initial and final lander
state vectors with respect to the S-frame together with the other state vectors as derived up
to now are collected in Table 8-2. Note, that the I- and R-frame are used for the simulation
setup, while the S-frame is the primary tool for the evaluation of the simulation results.
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Name Value

Initial State
position in I-frame r87180.71, ´10116.35, ´239527.02sm
velocity in I-frame r0.91, 62.60, ´2.51sm/s
position in S-frame r3000.00, 0.00, ´0.00sm
velocity in S-frame r0.19, 58.03, ´0.51sm/s
attitude B Ð I in
– Euler angles p´20.12˝, 0˝, 90˝q
– quaternions r0.6962,´0.1235,´0.1235, 0.6962s

Target State
– position in R-frame r86223.28, 0, ´236896.51sm
– velocity in R-frame r´0.17, 0.02, 0.47sm/s
– position in S-frame r´198.25, 9997.34, 0.00sm
– velocity in S-frame r´0.50, 0.00, 0.00sm/s
attitude B Ð I (ZB-axis pointing nadir)

Table 8-2: Nominal initial and target conditions for the simulations in the
next sections.

The Enceladus Lander Simulator considers a landing as a success, if the total velocity at
touchdown in the S-frame is below 2 ms´1, and the horizontal distance to the actual target
spot is 10 m at most. The velocity end condition is relaxed by 0.6 ms´1 from the 1.4 ms´1 as
mentioned in Chapter 3-3. The landing gear design is conceptual only, and the simulations
indicated that the end velocity is the most critical parameter for the given system design.
While the current basic velocity nullifying guidance is working as intended, there is still room
for improvement, and it would be wrong to count a lander element for lost, if its end velocity
slightly exceeds the original boundary. Note that only a very low number of landers in fact
ends with a velocity between 2 ms´1 and 1.4 ms´1, see for example Fig. 8-13a. The maximal
position error of 10 m as discussed in Section 5-1 remains unchanged. Furthermore, any
simulation run is stopped and counted as failure, when the lander model rotates faster than
1 rads´1 or does not hit the ground within the maximal simulation time,
Most of the lander and simulator configuration parameters do not change from one simu-
lation run to another, so for better structuring, each of the following sections will specify
the deviations from the basic configuration, and list the most important parameters for the
current simulation series. The contents of the basic lander and simulator configuration files
are shown in appendix A-1 and A-2, respectively. The exact meaning and nominal value of
each parameter has been defined in the corresponding chapters.

8-3 Orbital Descent

This section discusses the simulation results for the orbital descent for three different GNC
modes: Only guidance is active (subsection 8-3-1), guidance and control is active (subsection
8-3-2), and guidance, control and navigation is active (subsection 8-3-3). The GNC modes in
the Enceladus Lander Simulator are discussed in Section 7-7.
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8-3-1 Guidance System Simulations

The guidance system simulations evaluate the landing precision for the spacecraft in case the
control navigation system work perfectly, while the guidance system uses all available guidance
logics in combination with varying initial conditions and settings. In this configuration, the
spacecraft model has only three degrees of freedom, because the rotational motion is steered
by the (ideal) control system. The simulator software uses a separate main engine model which
is not related to the lander’s attitude and is always aligned perfectly with the commanded
acceleration vector.

Name Value Comment

integrator RK 4 with ∆t = 0.5 s
lander number 1000 –
true position 1σr 200 m –
true velocity 1σv 4.5 ms´1 –
mass variance 1σm 3.16 kg σ2

m = 10 kg2

altitude switch 1σas 200 m mean is 2000 m
guidance frequency 1 Hz higher freq. unnecessary
force models – gravity field Enceladus J2 and central

– gravity field Saturn J2 and central
other options – rotating moon –

– variable lander mass –

Table 8-3: Important simulation parameters

Ideally, the equations for the quadratic guidance discussed in Section 5-1-2 should ensure that
the lander’s final position and velocity match the target state given in Table 8-2, and negate
all deviations caused by the implicit gravity turn guidance - for all acceptable initial lander
states. The quadratic guidance is activated at the switch altitude of 2000 m in the nominal
case, deactivated for the horizontal plane 10 s before touchdown, and completely disabled 2 s
before touchdown in order to avoid exploding terms for time-to-go values close to 0 s. The
velocity nullifying guidance, which is active from 10 s before touchdown until the end, is not
designed to reduce position errors, so it is expected that the lander will have always have a
(small) landing error.
The initial conditions for the nominal lander modal are listed in Table 8-2 and in full detail
in the configuration files in A-1, while the simulator configuration parameters together with
the Monte Carlo simulation options are given in simulator configuration file in A-2. The
exact meaning of all parameters together with their influence on the lander’s behavior is
discussed in the respective chapters of this report. Table 8-3 gives an overview of the most
important simulation parameters for the guidance system simulations. In particular, these are
the number of simulated lander models, the variance values for position, velocity, mass and
switch altitude, and the basic integrator setup. The variance values for the inactive control
and navigation system are set to zero for this simulation run, as indicated in the simulation
plan.
The S-frame for all lander models is initiated using the initial state of the nominal lander
model, because the initial and final states of the Monte Carlo lander element can then be
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Figure 8-1: Nominal mission parameters: descent G simulations

expressed as a deviation from the nominal lander state. In particular, the target location in
the S-frame is identical and thus comparable only for this case.

The plots in Fig. 8-1 give an overview of the most important flight parameters for the nominal
lander mission. In this section, the spacecraft is modeled as a point mass with perfect thrust,
so the nominal mission parameters shown here are limited to the thrust, mass, position and
velocity as functions of time. The gravity turn guidance logic returns a constant acceleration
command, so the initial main engine thrust shown in Fig. 8-1a is approximately 72 N during
the first guidance phase, and decreases only slightly due to the decreasing lander mass (see
Fig. 8-1b). At an altitude of 2000 m – represented by the blue line in Fig. 8-1c – the quadratic
guidance is activated, and the thrust level drops to about 55 N. The thrust then follows a
S-shaped curve, which is the result of the quadratic guidance solution between the current
and the target state. The horizontal velocity is about twice as high as the vertical velocity
at the start of the quadratic guidance phase – the linear thrust profile for the XS-direction
is overlaid by the quadratic profile for the YS-direction. The velocity nullifying guidance
is activated 10 s before touchdown, and returns relatively large thrust values up to 100 N,
which is a consequence of the shot update period – the guidance system tries to eliminate all
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velocities over a period of 1 s. The target position and velocities are all reached; the final
values are close to the target state defined in Table 8-2.

Figure 8-2 shows the descent trajectory for the nominal lander model (cyan) and for the 1000
other lander models with diverting initial states from the Monte Carlo simulation (blue). The
guidance system is able to handle all initial states and bring each lander close to the specified
target position. The maximal initial position, velocity and mass divergence is about 720 m,
17 ms´1 and 9 kg. In particular the velocity divergence has a large influence on the interim
cross-range and downrange deviations from the nominal trajectory. These deviations can add
up to values in the order of kilometers, but they have no influence on the actual landing
precision. The individual Monte Carlo element trajectories are removed from Fig. 8-3 and
replaced by gray envelopes for a better overview. The shape for the XSZS- and XSYS-plane
is mainly defined by singular outliers.

The landing precision on the horizontal YSZS-frame in terms of distance to the actual target
point is illustrated in Fig. 8-4. The simulation results cluster around two landing spots and
display a maximal landing error in the order of 6 cm. This is a direct consequence of the
simulation parameter for the smallest time-to-go for which the C-factors may still be updated
(minimalT2GoForCalculationCfactors, see Table 5-6, here: 2 s) and the comparatively
low guidance frequency of 1 Hz: The simulator propagates the state vectors with an overall
integration step size based on the highest GNC frequency, thus 1 s for a 1 Hz guidance
frequency. The propagation is stopped at the last valid state, directly before touchdown. In
the worst-case scenario, the end condition is not exactly reached two seconds after the last
C-factor update, and the quadratic guidance command is based on state vector estimations
older than 2 s. For all other cases, the last C-factor update was 2 s ago. In combination
with the effects of the rotating reference frame and the gravity fields of Saturn and Enceladus
itself, this leads to two distinct landing spots. The effect can be reduced by reducing the
minimal time-to-go requirement for C-factor updates to 1 second and eliminated by selecting
a higher guidance frequency in addition.

On a related note, the time-to-go should not be updated too often with the search scheme
discussed at the end of Section 5-1-2, because this sometimes leads to time-to-go jumps and,
accordingly, strong thrust fluctuations. The base time-to-go in this section is only determined
at the very beginning of the simulation: the second update possibility occurs at the end of the
hazard avoidance process, but the original target point is accessible for all lander models, and
the target is thus not changed. The time-to-go is in this case simply updated by subtracting
the current system time.

The end velocity errors for the horizontal and the vertical plane are shown in Fig. 8-5a
and 8-5b, respectively. The precision is in the order of mm

s due to the velocity nullifying
guidance, which uses nullifying cycle lengths equal to the overall integration step size of 1 s.
This guidance logic only considers the current velocity, and therefore cannot account for the
current disturbing accelerations from the gravity field models. A small steady-state error is
thus always expected.

The plot of the fuel consumption as a function of divergence from the nominal switch altitude
is shown in Fig. 8-6a. The point distribution indicates, that a higher switch altitude – thus
an earlier switch from the gravity turn guidance to the quadratic guidance – tends to have
a positive effect on the fuel consumption. On the other hand, the data points have a high
spread in general, so other factors probably have a higher influence. The initial vertical
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Figure 8-2: Nominal (orange) and diverging (blue) descent trajectory and their envelope (gray)

Figure 8-3: Nominal descent trajectory (red) and envelopes of the diverging lander models
(gray)
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Figure 8-4: Landing precision on the horizontal plane
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Figure 8-5: Velocities at touchdown
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Figure 8-6: Correlation between the fuel consumption and the initial vertical velocity, and
altitude at which the guidance system switches from gravity turn to quadratic guidance
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Figure 8-7: Correlation between the fuel consumption and the initial vertical velocities with
respect to the nominal lander
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velocity divergence, for example, also as a influence on the fuel consumption, see Fig. 8-
6b – in fact, the spread is comparable. The fuel consumption as a function of the initial
horizontal velocity, altitude and mass is much more intuitive. The correlation between the
fuel consumption and the initial downrange and cross-range velocities is exemplary illustrated
in Figs. 8-7a and 8-7b. A non-zero ZS-velocity requires additional fuel to decelerate, while a
slightly lower forward velocity – down to 5 m/s slower than the nominal lander model – can
reduce the fuel consumption.

8-3-2 Guidance & Control Simulations

The combined guidance and control (GC) system simulations evaluate the landing precision
of a spacecraft in case the navigation system is the only deactivated GNC system, returning
perfect state estimations. The lander models are now no longer point masses, but three-
dimensional objects, whose rotational and translational motion is coordinated by the control
system, using the outputs of the guidance system. The control system determines the refer-
ence torque necessary to align the thrust vector (´ZB-axis) with the acceleration command
produced in the guidance system. Then, the PWPF controller and the thruster selection
logic are called to find the appropriate main engine and vernier thrust settings. The acti-
vation of the control system will lead to a delayed translation of the acceleration command,
and a limitation of the thrust magnitudes between the specified minimal and maximal thrust
levels – the guidance system simulation in the previous section assumed a perfectly aligned
main engine thrust without any thrust magnitude limitations. It is expected, that some of
the previously successful landings will now fail because the GC system is unable to handle
the involved errors. The GC system simulation use the same initial position, velocity and
mass values for each lander model as used in the previous guidance system simulation due to
unchanged variance values and a fixed seed value for the random number generators in the
Monte Carlo simulation setup. In this way it is possible to investigate the effects of activated
control system. Note that the true attitude standard deviation was active during the guidance
system simulation runs, but did not have any effect the results, because all lander models
were point masses.

The initial state as defined in Table 8-2 introduces a large initial alignment error in the order
of 90˝, because the main engine aligned with the ZB-axis points in the northern direction
instead of in the flight direction. The moment commands and thus the vernier thrust levels
are expected to be large during the first couple of seconds. An exemplary thrust moment
history is given in Fig. 8-8, which also shows the discrepancy between expected and the true
thrust levels as a consequence of the control variances.
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Figure 8-8: Thrust moments for the nominal lander and the first Monte Carlo lander model

Name Value Comment

integrator RKF45 with ∆t0 = 0.01 s
altitude switch 1σas 0 m not of interest here
true attitude 1σq 5˝ now has effect
c.o.m. shift 1σcom 0.04 m 5% of lander base radius
moment of inertia 1σmoi 7.5 kgm2 5% of nominal value
thrust magnitude 1σtm 5% –
thrust alignment 1σta 0.5˝ –
guidance frequency 10 Hz increased
control frequency 20 Hz –
velocity nullifying duration 10 s increased

Table 8-4: Changes and additions to the simulation parameters for the
combined GC system, with respect to the previous section

The simulation parameters for the GC system are collected in Table 8-4. The list comprises
only the changes and additions with respect to the setup used in the previous section. The
guidance frequency is increased from 1 Hz to 10 Hz to cope with the new rotational mo-
tion. The control frequency of 20 Hz is sufficiently high to eliminate situations where there
spacecraft becomes uncontrollable due to slow thrust setting updates. The velocity nullifying
guidance duration is increased from 1 s to 10 s, because the attitude control generates large
moment commands in case the duration is small. If this value was left unchanged, the nul-
lifying guidance causes a high percentage of all lander simulation models to fail during the
terminal guidance phase. The modification solves this problem, but it is another indication
(see Section 5-1-3) that the implementation of a feedback nullifying guidance logic should be
a subject of future work.
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Figure 8-9: Influence of control variances on the landing success

The robustness of the control system is tested by applying variances on the center of mass
position, the moment of inertia, the thrust magnitudes and the thrust alignment. The system
sensitivity to the control variances was determined in a separate simulation run, where the
standard deviations were so high that more than half of all landings failed. Figure 8-9 shows
the simulation results for standard deviations σcom = 0.1 m, σmoi= 30 kgm2, σtm = 20% and
σta = 10˝. The system sensitivity to variations of the moment of inertia, and to the thrust
magnitude and alignment error is relatively low; the lander can handle errors in the order of
80 kgm2, 25% and 20˝, respectively. The main reason for the low sensitivity is the feedback
loop in the PWPF controller: the motion errors from a previous control cycle have a direct,
corrective influence on the subsequent cycles. The center of mass shift, on the other hand,
has a large influence on the mission success: the position shift is less than 0.1 m for 50% of
all successful landings, while the median for the failed landings is 0.17 m. The main reason
for failures in this case is the moment induced by the main engine as a consequence of the
wrong mass distribution. The attitude verniers are not powerful enough to compensate for
this effect beyond a certain threshold.

The standard deviations for the guidance and control system simulations are considerably
lower, but still large enough to account for other error sources that are not included in the
lander models. The 1σ-value for the center of mass shift is 5% of the lander base radius, and
the one for the moment of inertia 5% of the nominal value of 150 kgm2. A normal thruster
has a misalignment in the order 0.1˝ (Cornelisse et al., 1979), while the thrust magnitude
error can determined in experiments with high accuracy.

The plots in Fig. 8-10 give an overview of the most important flight parameters for the nominal
lander mission. The spacecraft model is no longer a point mass, so the rotational rate and
flight-path angle are now added to the nominal mission parameters (compared with Fig. 8-1).
The gravity turn guidance phase is approximately the same as for the G simulations. At the
beginning of the quadratic guidance phase, the main engine is not perfectly aligned with the
thrust command vector. The control system requires about 10 s to reorient the spacecraft;
in this phase, the rotational rate values increase (see Fig. 8-10e), and thrust main engine
thrust fluctuates, as the quadratic guidance updates the acceleration commands based on
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Figure 8-10: Nominal mission parameters: descent GC simulations

the current state. The velocity nullifying guidance again returns comparatively large thrust
values up to 100 N, but the values with the original update period of 1 s were much higher
and exceeded the engine thrust limit. The target position and velocities are all reached; the
final values are close to the target state defined in Table 8-2.

The failure rate for current GC system configuration is 7.3%. The center of mass shift in
all these cases is more than 0.053 m and thus clearly above the 1σ-value of 0.04 m listed in
Table 8-4. As might be expected based on the sensitivity analysis from Fig. 8-9, the other
parameters have no significant influence on the simulation results. The success rate can be
increased further by applying stricter requirements on lander’s mass distribution. Most of
the failed lander simulations were stopped due to large, uncontrollable rotational rates. The
end values for position, velocity and attitude are not meaningful and thus excluded from the
following discussions in this section.

Figure 8-11 shows the decent trajectory envelopes for the successful landings with activated
GC system. The envelope shapes are similar to the ones generated with deactivated control
system given in Fig. 8-3. The extreme values increase slightly as a consequence of the new
control reaction time and thrust limitations.

The landing precision in the horizontal plane for the GC system is illustrated in Fig. 8-12a
The result clusters present in the results for the guidance system simulations in Fig. 8-4 have
disappeared due to the higher guidance frequency. The mean cross-range and downrange
errors are 0.11 m and -0.69 m, respectively. The position errors are not corrected while the
velocity nullifying guidance is active, so the slightly negative downrange error is a consequence
of the last quadratic guidance logic commands, the disturbing forces during the terminal
approach and possibly the common approach direction along the `YS-axis. This tendency
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Figure 8-11: Nominal descent trajectory (red) and envelopes of the divergent lander models
(gray)
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Figure 8-12: Landing accuracies and pointing errors for the combined GC system

Master of Science Thesis Guido C. Holtkamp



182 Simulation Results

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

y
S
−axis target velocity error [m/s]

z
S
−

a
x
is

 t
a

rg
e

t 
v
e

lo
c
it
y
 e

rr
o

r 
[m

/s
]

(a) horizontal velocities

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1
0

10

20

30

40

50

60

70

x
S
−axis (vertical) end velocity error [m/s]

n
u

m
b

e
r 

o
f 

la
n

d
e

rs
 [

−
]

(b) vertical velocity

Figure 8-13: Velocities at touchdown for the combined GC system

is also indicated in Fig. 8-4 and further amplified by the control system activation. The
standard deviation from the mean landing point is 0.94 m.
The pointing error, or the angle between the ZB-axis and nadir, is a variable that could
not be measured in the previous simulations with only three degrees of freedom. Ideally,
it is zero, because the quadratic guidance system is programmed to eliminate the horizontal
velocities 10 s before touchdown, so the acceleration vector should be vertical at that instance
of time. The velocity nullifying guidance, however, aims at removing of the translational and
rotational velocities by realigning the main engine and activating appropriate vernier pairs.
These orientation errors cannot be corrected due to the high velocity nullifying duration as
discussed before. Figure 8-12b indicates, that the pointing error is below 5˝ for majority of
all landings; the pointing error has a mean value 1.92˝ with a standard deviation of 2.06˝.
These small errors allow the landing gear to absorb the impact energy more efficiently, see
Section 3-3.
The end velocity errors for the horizontal and vertical plane are shown in Fig. 8-13a and
8-13b, respectively, and can be directly compared with Fig. 8-5a and 8-5b in the previous
section. The downrange and cross-rang velocities are now clustered around the mean values
-0.08 ms´1 and 0.01 ms´1 with a standard deviation of 0.12 ms´1. The mean value of the
vertical velocity error is -0.19 ms´1 with 1σ = 0.13 ms´1 and thus higher than its horizontal
counterparts. The main reason for this is the combination of the lander’s pointing error
and the main engine’s thrust magnitude error, which are not recognized during the terminal
descent phase, where quadratic and velocity nullifying guidance are active simultaneously
(guidance mode 5, see Table 5-4). Note, that the vertical target velocity is -0.5 ms´1, so
a positive velocity error does describe an upward velocity, but merely a lower touchdown
velocity. Despite the disadvantages of the current velocity nullifying guidance setup, the GC
system is able to bring the end velocities very close the desired target values.
All four control-system variances given in Table 8-4 have only a low influence on the land-
ing precision of the successful touchdowns. The most precise landings tend to have lower
divergences from the nominal values, but higher divergences only slightly increase the result
spread.

Guido C. Holtkamp Master of Science Thesis



8-3 Orbital Descent 183

8 10 12 14 16 18
0

50

100

150

200

250

true fuel consumption [kg]

n
u

m
b

e
r 

o
f 

la
n

d
e

rs
 [

−
]

 

 

guidance only

guidance and control

Figure 8-14: Comparison of the fuel consumption for G- and GC-simulations

The average fuel consumption for the GC system simulations is 12.39 kg and thus – as expected
– higher than the 9.56 kg for the G system simulations, because the attitude thrusters are
now active, and the main engine is not perfectly aligned. A comparison of the two values
is shown in Fig. 8-14, the discussion on the fuel consumption as consequence of the PWPF
controller can be found in Section 5-2-4.

8-3-3 Guidance, Control & Navigation Simulations

The guidance, navigation and control system simulations evaluate the landing precision of
the Enceladus lander with the fully operational flight software. With the activation of the
navigation system, the input for the spacecraft GC system are now state estimations, which
are generated and regularly updated with the on-board navigation system. The navigation
system uses the IMU to propagate the previous state estimation to the instance of time, where
external measurements from the range instrument or the star sensors or both are available.
These noisy data are then used to update the state predication and the error estimations. The
IMU model includes bias, alignment errors and scale factor errors for both the accelerometers
and the gyroscopes, but as discussed in Chapter 5, only the biases can be estimated with
sufficient accuracy. The alignment and scale-factor errors must be determined in pre-flight
calibrations as accurately as possible, so that the navigation filter can use the best estimates
for these values. The remaining uncertainty is thus divided over all state estimations, which
will cause the bias estimations to diverge from the true bias values. For the simulations it is
assumed that pre-flight calibrations provide alignment and scale-factor error estimation with
an accuracy of 90%. The exact parameters are based on the IMU characteristics listed in
Table 6-4, and can be found in the simulator configuration file in Appendix A-2. All values
are slightly higher than the typical maximal errors in order to account for error sources
not included in the IMU model and to test the robustness of the system. The biases have
a large influence on the IMU output and on the state estimations, and should always be
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estimated with by means of in-situ measurements from other instruments, in this case, the
range instrument and the star sensors. The initial bias estimations are thus zero for all axes.

Name Value Comment

position estimation 1σr,e 630 m >σr, Table 8-3
velocity estimation 1σv,e 10 ms´1 >σv, Table 8-3
attitude estimation 1σq,e 10˝ >σq, Table 8-4
IMU frequency 20 Hz low, see discussion
Range Instrument
– frequency 10 Hz low estimate
– 1σ noise 0.2 m high estimate

Star Sensors
– frequency 4 Hz –
– 1σ noise 0.0001 quaternion element error

Table 8-5: Additions to the simulation parameters for the GNC system

The relevant GNC system simulation parameters are listed in Table 8-5. No values were
changed with respect to the previous section. The range instrument frequency and measure-
ment noise values follow from conservative estimations, because the device is a concept design
only, as discussed in Section 6-1-7. The performances of the laser rangers and the light sensors
are individually much better, so it is expected, that system will have a higher frequency and a
lower measurement noise than the assumed 10 Hz and 0.2 m, respectively. The performance
of the star sensors, on the other hand, is well-known; their frequency and noise values follow
from Table 6-6. The 1σ noise must be specified in terms of quaternion elements. The conver-
sion between the accuracy in terms of degree and quaternion elements is discussed in Section
6-1-5. The chosen IMU frequency of 20 Hz is clearly below the instrument capabilities, but
initial simulations showed that a reduction from 100 Hz to 20 Hz has no significant influence
on the end results. On the other hand, a lower IMU frequency greatly reduces the required
simulation time, which is already high with more than 8 hours for 1000 lander elements with
a fully activated GNC system. The numerous navigation filter parameters are not listed here;
their values follow from the discussions in the respective sections of this report and can be
directly in the simulator configuration file in Appendix A-2.

Similar to the approach in the previous section, the sensitivity of the navigation system is
tested in a separate simulation run with very large values for the navigation system related
Monte Carlo variance parameters of position, velocity and attitude estimation. Note, that a
variance on the initial rotational rate estimation has no effect, because the navigation filter
extracts this information directly from the gyroscope measurements; the rotational rate is not
part of the EKF state vector, see discussion in Section 6-1-5. For very large values σr,e = 15
km, σv,e = 20 ms´1 and σq,e = 90˝, the failure rate increases to 46%. The main reason for
this is in fact not directly related to the navigation system, but to the gravity-turn guidance:
in almost halve of all cases, the estimated altitude is below Enceladus’ surface, as the initial
lander altitude is only 3 km (varies based on σr). A negative altitude estimation leads to
undefined behavior particularly in the gravity turn guidance system – not a singe successful
touchdown can be achieved with a negative altitude estimation, see Fig. 8-15 . The state
estimates are corrected quickly, but the largely implicit gravity turn guidance logic is not able
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Figure 8-15: Influence of navigation variances on the landing success

to update the acceleration commands. The guidance system may be updated in order to deal
with these situations, but the simplest solution is to reject any negative altitude estimation.
For the remaining unsuccessful landings with a positive initial altitude estimation, there is
only a very weak correlation to the initial vertical velocity estimation error, but it is not
possible derive upper boundaries for the position, velocity and attitude estimation standard
deviations. Again, the current setup of the gravity turn guidance logic is the reason for the
failures: For unfavorable combinations of true and estimated state vectors, the commanded
thrust direction is too shallow to bring the lander to switch altitude of 2000 m. In these
cases, the singular gravity-turn update (see Table 5-6) after 5 s is ineffective. The activation
of continuous gravity turn acceleration command updates (see discussion Eq. (5-15)) in the
simulator configuration in theory solves this problem at some point, but simulations with the
GC system indicated a low tolerance for the variances on the control system related parameters
and an increased failure rate. The effect of state estimation errors and an imperfect lander
models on the gravity turn guidance is an interesting subject for further studies.

The plots in Figs. 8-16 and 8-17 give an overview of the most important flight parameters for
the nominal lander mission. The navigation system is now active, so the evolutions of the state
estimations are now added to the nominal mission parameters (compared with Fig. 8-10). The
differences between the thrust, mass, position, velocity rotational rate and flight-path angle
results for the GC- and the GNC-simulations are hardly visible. This is a consequence of the
good estimation results: the accelerometer and gyroscope bias estimation errors are below
5%, see Figs. 8-17b and 8-17c, and the position, velocity and attitude estimation errors are
in the order of 0.1 m, 0.02 m/s and 0.1˝, respectively – see Figs. 8-17d, 8-17e and 8-17f. The
torque levels shown in Fig. 8-17a are only maximal, when – according to the guidance system
– the orientation error of the lander is high; this is the case at the beginning of the simulation,
at the switchover time between the gravity turn guidance and the quadratic guidance after
about 190 s, and at the switchover time between the quadratic guidance and the velocity
nullifying guidance after 390 s.
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Figure 8-16: Nominal mission parameters: descent GNC simulations, part 1
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(b) accelerometer bias est.
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(c) gyroscope bias est.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

to
ta

l 
p
o
s
it
io

n
 e

s
ti
m

a
ti
o
n
 e

rr
o
r,

 m

time, m
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Figure 8-17: Nominal mission parameters: descent GNC simulations, part 2
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Figure 8-18: Nominal descent trajectory (red) and envelopes of the divergent lander models
(gray)

The GNC simulations with the normal system configuration based on Table 8-5 have a failure
rate of 10.6%, which is an increase of 3.3 percent points with respect to the GC simulations
in the precious section. The main reason for this does not actually lie in the navigation
system, but – as mentioned before – in the guidance system: the guidance system now is
confronted with state estimations instead of the true state – large initial state estimation
errors will lead to inadequate guidance commands. The navigation is able to accurately
determine the accelerometer and gyroscope biases within seconds, see Figs. 8-17b and 8-17c.
The accelerometer biases deviate slightly more from the true values than the gyroscope biases,
because the EKF does not include the third body perturbation from Saturn and the effects of
the J2-terms from the gravitational field of both Enceladus and Saturn. The initial estimation
errors are reduced rapidly due to the comparatively high instrument accuracy.

Figure 8-18 shows the descent trajectory envelopes for the successful landings with fully
activated GNC systems. The activation of the navigation system has no visible impact on
the envelope shapes compared with results from the GC simulations shown in Fig. 8-11. The
actual values obviously change due to the additional uncertainties, but the differences are
minimal. For a better insight into the true trajectory shapes, a scaled version of Fig. 8-18 is
given in Fig. 8-20.

The true horizontal landing precision for the GNC simulations is displayed in Fig. 8-19a. The
mean downrange and cross-range errors are -0.78 m and 0.16 m, respectively, with a standard
deviation of 1.04 m. Compared with the GC simulations, the landing precision decreases by
a few centimeters, combined with a higher result spread. The accuracy loss is in the same
order as the position estimation errors. The overall accuracy is still well within the required
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Figure 8-19: Landing precision and pointing errors at touchdown for the complete GNC system

Figure 8-20: Scaled descent trajectories for the full GNC simulations
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Figure 8-21: Velocities at touchdown for the complete GNC system

10 m boundary.

The influence of the navigation system on the pointing error is also small; the mean error
increases by 0.15˝ to 2.08˝ with a decreased standard deviation of 1.55˝. As discussed before,
the attitude estimations errors are very small, so any changes in the pointing errors are
mainly a consequence of the position and velocity estimation errors and their influence on the
commanded thrust direction.

The horizontal velocity errors are illustrated in Fig. 8-21a. The mean downrange and cross-
range velocity errors are -0.08 m and 0.01 m, respectively, with a standard deviation of 0.11
m. The vertical velocity error shown in Fig. 8-21b has a mean value of -0.19 ms´1 with a
standard deviation of 0.14 ms´1. The true end velocity errors are almost equal to the results
from the GC simulations.

As might have been expected, the values for the initial position, velocity and attitude estima-
tion errors have no direct influence on the landing precision for successful touchdowns. It is
therefore decided to not include graphs showing precision as functions of the deviations from
the nominal states in this section.

The average fuel consumption for the complete GNC simulations is 12.43 kg, which is only
just above the average of 12.39 kg for the GC system. The navigation system tends to have a
negative effect on the landers with an already above-average fuel consumption – for the lower
end, the opposite is true. A comparison of the true fuel consumptions for the G, GC and
GNC simulations can be found in Fig. 8-22.
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Figure 8-22: Comparison of the fuel consumption for G-, GC- and GNC-simulations

8-4 Repositioning

The reposition simulations evaluate the precision and fuel consumption of the purely quadratic
repositioning guidance and the hybrid ballistic-quadratic guidance system discussed in Sec-
tion 5-1. Both systems use the full GNC system as in the previous sections with the same
configuration parameters unless specified otherwise. The nominal jump distance and required
altitude are 1000 m and 300 m, respectively. The latter generally follows from the hazard
avoidance requirements, in particular the LIDAR specifications. All landers start on the same
point, but their respective target on the YS-axis different depending on the jump distance
variance in the Monte Carlo simulation.

The hybrid ballistic-quadratic guidance system is initiated with a 20 s low thrust command
(15% of maximum value) in the direction of the calculated elevation angle. This technique
is necessary to ensure that the lander is oriented correctly by the control system, before the
short phase of maximal thrust is initiated. The main engine is completely shut down as soon
as the lander reaches the desired impulsive shot velocity. A virtual acceleration command in
the ´YS-direction reorients the main engine in the opposite flight direction, which reduces
the initial pointing error for the deceleration process. As soon as the lander is descending and
reaches a certain altitude (set to 200 m), the quadratic guidance system is initiated, which in
turn activates the velocity nullifying guidance in the terminal guidance phase. This guidance
sequence with the logic identification number 4 – see Table 5-4 – has been successfully used
in the previous simulations.

The pure quadratic guidance logic first brings the lander to the pre-programmed intermediate
target. As soon as the guidance system indicates that the time-to-go for the first flight phase
is reached, the quadratic guidance system is reset and reprogrammed with the actual target
location on the `YS-axis, initiating the second repositioning phase. The terminal phase is,
again, controlled by the velocity nullifying guidance.
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Figure 8-23: Influence of the center of mass shift on the success rate of the hybrid
ballistic-quadratic guidance

Name Value Comment

lander number 500 reduced for better trajectory visibility
true position 1σr 0 m lander on ground
true velocity 1σv 0 m/s lander on ground
true attitude 1σq 0˝ lander on ground
position estimation 1σr,e 5 m landing accuracy
velocity estimation 1σv,e 0 m/s lander on ground
attitude estimation 1σq,e 0˝ very low
hop altitude req. 1σh 100 m –
hop distance 1σr 1000 m –
proportional gain k 2.5 increased for hybrid ballistic-quadratic g.

Table 8-6: Changes and additions to the simulation parameters for the combined GC
system, with respect to the GNC simulations.

Table 8-6 lists the relevant simulation parameters for the repositioning simulations. All true
state variances – except for the mass – are set zero, because each all lander start from the
same position. Similarly, the velocity estimation standard deviation is also removed, as the
lander standing on the moon’s surface. The position and attitude estimation errors exist,
but are small due to the foregoing successful descent process. It was necessary to increase
the proportional gain k of the quaternion controller to decrease the reaction time during the
ballistic guidance high-acceleration phase.

The hybrid ballistic-quadratic repositioning guidance system in the current configuration has
a failure rate in the order of 70%. The overwhelming majority of unsuccessful landings are
caused by large rotational velocities after the acceleration phase. The main reason for this are
the center of mass shifts: in contrast to the previous GC and GNC descent simulations, the
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Figure 8-24: Fuel consumption for different repositioning conditions

guidance system commands maximum thrust. The disturbing moments induced by the main
engine cannot be compensated for by the comparatively weak thrust of the attitude verniers,
and the linear quaternion controller is not designed to handle large rotational velocities,
see discussion in Section 5-2-1. The influence of mass variations on the landing success is
illustrated in Fig. 8-23. As might be expected, the requirements on the maximal allowable
center of mass shift value are much stricter than for the low-thrust situation shown in Fig. 8-
9b; the success median is now at 4 cm instead of 10 cm. The mean fuel consumption is for
the successful landings is 4.8 kg. The fuel consumption for the nominal jump over a distance
of 1000 m with a minimal required altitude of 300 m is 4.24 kg, which is clearly above the
ideal impulsive shot fuel consumption of 2.35 kg (from Eq. 5-45) mainly due to the quadratic
guidance phase, but below the value for the purely quadratic guidance repositioning discussed
later in this section.

The plots in Figs. 8-25 and 8-26 give an overview of the most important flight parameters
for the nominal lander repositioning phase. The full GNC system is active, so the nominal
mission parameters are the same as in Section 8-3. The intermediate target is reached after
about 125 s. The main engine is not active shortly before this time instance due to the small
tgo. The flight software imitates a 10 s coasting phase during which the lander is rotated
such, that the main engine is pointing in the direction opposite to the flight direction. The
rotational rates increase during this period of time, see Fig. 8-25e, and the flight-path angle
changes accordingly, see Fig. 8-25f. The position, velocity and attitude estimation errors are
comparable to the results in the previous section, and are still in the order of 0.1 m, 0.02 m/s
and 0.1˝, respectively – see Figs. 8-17d, 8-17e and 8-17f.

The success rate for the quadratic repositioning guidance is 98.2%, the only failures are caused
by lander-model elements with center-of-mass shifts larger than 15 cm. The acceleration com-
mands in general very smooth, which allows for a steady adaption to the reference attitude.
The explicit guidance scheme constantly corrects for small deviations, unlike the gravity turn
guidance used in the descent GNC simulations. In about 40% of all cases, the hazard avoid-
ance indicated, that the original target is not reachable. The retargeting process is successful
in all cases. The average fuel consumption is 5.4 kg, and 5.3 kg for the nominal lander model.
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Figure 8-25: Nominal mission parameters: repositioning GNC simulations, part 1
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Figure 8-26: Nominal mission parameters: repositioning GNC simulations, part 2
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Figure 8-27: Nominal (orange) and divergent (blue) repositioning trajectories

This is a 24% increase with respect to the hybrid repositioning guidance system. The impact
of the hazard avoidance system on the trajectory plot is not visible, because the maximal
deviation from the initial target is smaller than the LIDAR field-of-view side length, which is
about 76 m.

The fuel consumption as a function of the altitude requirement and the jump distance is
shown in figures 8-24a and 8-24b. The fuel requirements are approximately proportional to
the jump distance, and increase with for higher altitude requirements. In absolute numbers,
the impact of altitude changes is much higher: a increase of hreq by 100 m costs about the
same amount of fuel as doubling the jump distance from 1000 m to 2000 m.

The repositioning trajectories for the successful landings are shown in Fig. 8-27. The cross-
range errors are below 5 m for all cases. The maximal downrange shown here is in the
order of 3 km, but this is purely a limit set by the combination of the nominal value jump
distance and the chosen standard deviation; the lander is in fact able to cover a much larger
range, with the available amount of fuel as only limiting factor. The available fuel mass for
repositioning is about 20 kg (see Table 3-1), so the lander is able to execute three separate
jumps of approximately 2 km.

The landing accuracy in the horizontal plane is shown in Fig. 8-28a. With mean downrange
and cross-range errors of -0.27 m and 0.18 m, respectively, and a standard deviation of 0.61
m, the landing accuracy for the repositioning is slightly higher than for the GNC descent
simulations. This is the consequence of lower overall velocity, the exclusion of the gravity
turn guidance and the lower number of parameter variances. The same applies to the pointing
errors illustrated in Fig. 8-28b with a mean value of 1.41˝ and a standard deviation of 0.9˝.
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Figure 8-28: Landing accuracies and pointing errors for the quadratic repositioning system
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Figure 8-29: Velocities at touchdown for quadratic repositioning system
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The mean downrange and cross-range velocity errors are -0.02 ms´1 and 0.02 ms´1, respec-
tively, with a standard deviation of -0.05 ms´1, see Fig. 8-29a. The mean vertical velocity
error is -0.15 ms´1 with a 0.05 ms´1 standard deviation. These values are again lower than
the corresponding values in the previous simulations.

It is possible that the range and light tracking instrument cannot be used during the reposi-
tioning phase. In that case, another instrument – or the LIDAR – must be able to produce
relative position data. Tests show that a reduction of the position measurement frequency
from 10 Hz to 0.5 Hz still has a very high success rate.

Guido C. Holtkamp Master of Science Thesis



Chapter 9

Conclusions and Recommendations

The answer to the initial research question is, that it is possible to safely land and reposition
a hopping lander on Enceladus with current technology.

The correct implementation of propagator in combination with the translational and rota-
tional equations of motion was tested with Simulink. The integration error with the RK4
propagator is below 3 m even extreme case with a constant thrust of 100 N combined with
increasing rotational velocities. The unit test of the gravity turn guidance logic is based on
a lunar landing situation from literature and showed very good agreement. The remaining
guidance logics were tested by comparing the simulation results with the expected results,
which is in particular for the quadratic guidance and the quadratic repositioning guidance
a valid method, because they represent a two-point boundary value problem. The PWPF
modulator implementation is tested with results from literature, while the linear quaternion
controller functionality is evaluated by observing the effects of the proportional and derivative
gains on the lander dynamics and comparing the settling time and the steady-state errors with
the expected values. The testing of the navigation system is a bit more complex, because its
design is tailored to the Enceladus landing mission, but the state estimates were close the to
the true states, and the filter tuning process indicated a normal EKF behavior.

The Monte Carlo simulations include variances of the lander’s position, velocity, attitude,
mass, moment of inertia, center of mass, thrust magnitude and alignment, quadratic guidance
switch altitude, hop distance and altitude, and the estimations of position, velocity and
attitude. This simulator setup allows for a realistic testing of the system performance in
presence of various error sources.

The full descent GNC simulations have a failure rate of 10.6%. The mass distribution has
been identified as the most critical factor – a center of mass shift of more than 0.05 m becomes
dangerous in combination with higher thrust levels, because the perturbing moment caused
by the main engine cannot be compensated with the comparatively weak attitude thrusters.
This effect is even more obvious in the repositioning simulations using the ballistic guidance
logic: The maximal thrust causes almost 70% of all lander model elements to fail; the critical
center of mass shift here is 0.04 m. A reposition sequence based on quadratic guidance, on
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the other hand, has a success rate of 98.2% due to smooth acceleration commands with much
lower magnitudes.

The landing errors for the descent and the repositioning phase are below 0.5 m and 1 m,
respectively, in most cases, with velocity errors in the order of 0.2 ms´1. The pointing errors
are generally below 5˝, and highly depend on the interaction between the quadratic guidance
logic and the velocity nullifying guidance during the last seconds before touchdown.

The hazard avoidance system re-targeted about 40% of lander during the repositioning sim-
ulations. This process was successful in all cases. Retargeting was not necessary during
the descent phase, because the initial target site is reachable and free of hazardous surface
elements.

The navigation system proved to be capable of finding good state estimations within seconds.
A decrease of the measurement frequencies and the measurement accuracies does not have a
significant effect on the mission success, in particular for the repositioning cycle.

The control system is fully capable of controlling the lander’s attitude in all mission phases
and respond errors, but it cannot handle larger rotational velocities due to the limitations of
the linear quaternion controller.

The GNC subsystems all worked as intended. The reasons for the landing failures can all be
identified, and are a consequence of large mass shifts inside the lander body, and large initial
state estimation errors, which lead to problematic gravity turn guidance commands. With
further adaptions it is expected, that the success rate can be increased even further. The
gravity turn logic and the velocity nullifying logic were identified as the critical components
– modifications to these systems will lead a higher reliability.

During the thesis work, some shortcomings of the Enceladus Simulator became obvious.

The simulation time increases drastically for large numbers of lander model elements. This
increase is not linear, as might be expected: the full GNC descent simulations for 500 lander
models take approximately 1.5 hour, while 1000 elements require more than 8 hours. This is
not a problem of the state propagation or the high control and navigation frequencies, but
probably of the simulator configuration data and result information stored in maps. A large
number of map keys has a negative effect on the access time. This problem is not easy to
solve at this point without completely rewriting the simulator configuration, which is a core
function in the Enceladus Lander Simulator.

The definitions of the initial and target states in the Enceladus Lander Simulator are not
straightforward, because they use both the inertial frame and the rotating frame, while the
results are in fact returned with respect to the surface-fixed frame. A routine, that accepts
state definitions in any frame would significantly improve the user-friendliness of the software
package.

The hazard avoidance system is based on a true surface hazard map, that is generated with
rock sizes and rock densities derived from single surface images. A more detailed topography
model of Enceladus will increase the trustworthiness of the hazard avoidance system. Fur-
thermore, the hazard avoidance system in its current state only uses a reachability and fuel
consumption map to determine a new target spot. It is very interesting to investigate the
effect of additional filters on the retargeting process.
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The velocity nullifying guidance in its current form is not inherently stable, and can cause
landing failures if not configured well. The initial idea was to design a very basic veloc-
ity nullifying guidance logic, because the effort to implement a feedback version would be
disproportionate to the benefits. The time required to track the reasons for the landing fail-
ures and to update and change the logic parameters, however, was probably longer than the
time needed to implement a explicit velocity nullifying guidance system from the start. This
guidance logic currently works, but still is not trustworthy and should be updated.

The performance of the gravity turn is considerably lower, if the state estimations are too
imprecise. Currently, the gravity turn guidance is activated at the same time of the first
navigation system cycle, so the state estimates can diverge considerably from the true state.
As first solution, the gravity turn acceleration command is recalculated after a few seconds,
but there must a more stable solution. The gravity turn with constant recalculations of the
required acceleration works fine in the isolated system simulations, but in combination with
the full GNC system with added errors, this system proved to be unstable. The reasons for
this are unclear at this point, but this might be an interesting subject for future work.

The lander has currently no means to control the rotation about the ZB-axis, because the
quaternion controller is only designed to align the main engine’s thrust direction (´ZB-axis)
with the current thrust command. In the simulations it is assumed, that the LIDAR always
aims at the target area during the scan process – regardless of the current lander orientation.
The implementation of an additional controller for the XS ´{YS´axis pointing direction will
give a more realistic hazard avoidance system, as it then imposes more requirements on the
lander’s state at the time of the image acquisition.
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Appendix A

Simulation Configuration Files

This Appendix shows the basic lander and simulator configuration files. The former comprises
the main lander data such as the initial and target state variables, whereas the latter is used
to set up the simulator itself, which includes the propagator, the active disturbing forces and
the Monte Carlo simulation options. The variable names in general are self-explanatory, and
their exact meaning and influence is discussed in the corresponding chapters.

A-1 Lander Configuration File

This is the lander configuration file at the beginning of the G system simulations. All changes
during the simulation process are discussed in the respective sections of Chapter 8.

# Lander configuration file reader for the NOMINAL LANDER

# Set the file name. This line is required in every configuration file.
fileName = lander1

# Initial lander mass [kg]
landerMass = 335

# Inertia tensor [kgm^2]
inertiaTensorXX = 150.0
inertiaTensorYY = 150.0
inertiaTensorZZ = 150.0
inertiaTensorXY = 0.0
inertiaTensorXZ = 0.0
inertiaTensorYZ = 0.0
xCOMshift = 0.0
yCOMshift = 0.0
zCOMshift = 0.0

# DESCENT: Initial true translational state vector [m,...,m/s] in I-frame
xPosition = 87180.71
yPosition = -10116.35
zPosition = -239527.02
xVelocity = 0.91
yVelocity = 62.60
zVelocity = -2.51
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# DESCENT: Initial true rotational state vector [deg,...,rad/s] in I-frame
# Note: attitude is expressed in terms of Euler angles for a rotation from I-frame
# to B-frame, giving the transformation matrix T_I2B. (phi,theta,psi = X-,Y-,Z-axis)
eulerAnglePhi = -20.1234
eulerAngleTheta = 0.0
eulerAnglePsi = 90.0
rotationalRateX = 0.0
rotationalRateY = 0.0
rotationalRateZ = 0.0

# DESCENT: Target state vector [m,...,m/s,...,m/s^2] in R-frame
xPositionTarget = 86223.28
yPositionTarget = 0.0
zPositionTarget = -236896.51
xVelocityTarget = -0.17
yVelocityTarget = 0.02
zVelocityTarget = 0.47
xAccelerationTarget = 0.0
yAccelerationTarget = 0.0
zAccelerationTarget = 0.0

# REPOSITIONING: Initial true translational state vector [m,...,m/s] in I-frame
# Note: 1 m initial altitude was added, or the propagator ends program!
xPositionRepositioning = 86223.62015
yPositionRepositioning = 0.0
zPositionRepositioning = -236897.44939
xVelocityRepositioning = 0.0
yVelocityRepositioning = 4.576157
zVelocityRepositioning = 0.0

# REPOSITIONING: Initial true rotational state vector [deg,...,rad/s] in I-frame
# Note: attitude is expressed in terms of Euler angles for a rotation from I-frame
# to B-frame, giving the transformation matrix T_I2B. (phi,theta,psi = X-,Y-,Z-axis)
eulerAnglePhiRepositioning = -20.0
eulerAngleThetaRepositioning = 0.0
eulerAnglePsiRepositioning = 90.0
rotationalRateXRepositioning = 0.0
rotationalRateYRepositioning = 0.0
rotationalRateZRepositioning = 0.0

# REPOSITIONING: Target in S-frame
# hopDistance: along +Y_S-axis
# altitudeRequirement: altitude the lander has to reach at least
hopDistance = 1000.0
altitudeRequirement = 300.0

# Initial thrust and moment commands w.r.t. B-frame [N]
# Note: thrust of main engine must be positive (or zero)!
mainEngineThrust = 0.0
xThrustMoment = 0.0
yThrustMoment = 0.0
zThrustMoment = 0.0

# GUIDANCE SYSTEM
# Note: for guidance mode 4 only: conditions for switching (whatever happens earlier)
altitudeForSwitchToQuadratic = 2000.0
timeForSwitchToQuadratic = 300.0

# NAVIGATION SYSTEM
# Note: w.r.t. initial position R-frame) [m/s2, m/s2, m/s2]
constantDisturbingAccelerationX = 0.0
constantDisturbingAccelerationY = 0.0
constantDisturbingAccelertaionZ = 0.0

# CONTROL SYSTEM: varying parameters
# thrustMagnitude: output thrust = nominal thrust * thrustMagnitude[factor]
thrustMagnitude = 1.0

# CONTOL SYSTEM: Main engine data
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# Note: Location w.r.t. B-frame [m], orientation w.r.t B-frame [rad] (Z->Y->X)
xPositionMainEngine = 0.0
yPositionMainEngine = 0.0
zPositionMainEngine = 0.0
eulerOrientationXmain = 0.0
eulerOrientationYmain = 0.0
eulerOrientationZmain = 0.0
# Characteristics:
# - thrust range [N]
# - specific impulse [s]
# - minimum impulse bit [Ns]
minimumThrustMainEngine = 15.5
maximumThrustMainEngine = 490.0
specificImpulseMainEngine = 312.0
# Switch engine off/on (for testing)
thrustForce = 1.0

# CONTROL SYSTE: Attitude thruster data
# Note: Location w.r.t. B-frame [m], orientation w.r.t B-frame [rad] (Z->Y->X)
# Note: Do NOT chance orientation without rewriting the thruster selection class!
# Nr. 1: x-axis, 1 out of 4
xPositionVernier1 = 0.0
yPositionVernier1 = -0.693
zPositionVernier1 = 0.0
eulerOrientationX1 = 0.0
eulerOrientationY1 = 0.0
eulerOrientationZ1 = 0.0

# Nr. 2: X_B-axis, 2 out of 4
xPositionVernier2 = 0.0
yPositionVernier2 = -0.693
zPositionVernier2 = 0.0
eulerOrientationX2 = 180.0
eulerOrientationY2 = 0.0
eulerOrientationZ2 = 0.0

# Nr. 3: X_B-axis, 3 out of 4
xPositionVernier3 = 0.0
yPositionVernier3 = 0.693
zPositionVernier3 = 0.0
eulerOrientationX3 = 180.0
eulerOrientationY3 = 0.0
eulerOrientationZ3 = 0.0

# Nr. 4: X_B-axis, 4 out of 4
xPositionVernier4 = 0.0
yPositionVernier4 = 0.693
zPositionVernier4 = 0.0
eulerOrientationX4 = 0.0
eulerOrientationY4 = 0.0
eulerOrientationZ4 = 0.0

# Nr. 5: Y_B-axis, 1 out of 4
xPositionVernier5 = 0.8
yPositionVernier5 = 0.0
zPositionVernier5 = 0.0
eulerOrientationX5 = 0.0
eulerOrientationY5 = 0.0
eulerOrientationZ5 = 0.0

# Nr. 6: Y_B-axis, 2 out of 4
xPositionVernier6 = 0.8
yPositionVernier6 = 0.0
zPositionVernier6 = 0.0
eulerOrientationX6 = 180.0
eulerOrientationY6 = 0.0
eulerOrientationZ6 = 0.0

# Nr. 7: Y_B-axis, 3 out of 4
xPositionVernier7 = -0.8
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yPositionVernier7 = 0.0
zPositionVernier7 = 0.0
eulerOrientationX7 = 180.0
eulerOrientationY7 = 0.0
eulerOrientationZ7 = 0.0

# Nr. 8: Y_B-axis, 4 out of 4
xPositionVernier8 = -0.8
yPositionVernier8 = 0.0
zPositionVernier8 = 0.0
eulerOrientationX8 = 0.0
eulerOrientationY8 = 0.0
eulerOrientationZ8 = 0.0

# Nr. 9: Z_B-axis, 1 out of 4
xPositionVernier9 = 0.8
yPositionVernier9 = 0.0
zPositionVernier9 = 0.0
eulerOrientationX9 = 90.0
eulerOrientationY9 = 0.0
eulerOrientationZ9 = 0.0

# Nr. 10: Z_B-axis, 2 out of 4
xPositionVernier10 = 0.8
yPositionVernier10 = 0.0
zPositionVernier10 = 0.0
eulerOrientationX10 = -90.0
eulerOrientationY10 = 0.0
eulerOrientationZ10 = 0.0

# Nr. 11: Z_B-axis, 3 out of 4
xPositionVernier11 = -0.8
yPositionVernier11 = 0.0
zPositionVernier11 = 0.0
eulerOrientationX11 = -90.0
eulerOrientationY11 = 0.0
eulerOrientationZ11 = 0.0

# Nr. 12: Z_B-axis, 4 out of 4
xPositionVernier12 = -0.8
yPositionVernier12 = 0.0
zPositionVernier12 = 0.0
eulerOrientationX12 = 90.0
eulerOrientationY12 = 0.0
eulerOrientationZ12 = 0.0

# Characteristics:
# - thrust range [N]
# - specific impulse [s]
# - minimum impulse bit [Ns]
minimumThrustVerniers = 1.85
maximumThrustVerniers = 6.0
specificImpulseVerniers = 220.0
minimumImpulseVerniers = 0.0028

# Switch verniers off/on (for testing)
verniersForce = 1.0

A-2 Simulator Configuration File

This is the simulator configuration file at the beginning of the G system simulations. All
changes during the simulation process are discussed in the respective sections of Chapter 8.

# Simulation configuration file reader. This file is unique.
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# Set the file name. This name is used during in simulatorconfiguration.cpp.
fileName = lander1simulatorConfiguration

##############################################################################
########## PART A.): Propagator setup ########################################
##############################################################################

# Maximal value that is considered equal to zero
toleranceForZero = 0.00001

# Integrator data [s]
simulationStartEpoch = 0.0
simulationEndEpoch = 700.0

# Choice of integrator for the true state: Select one of the following IDs
# 1.0 - RK4
# 2.0 - RKF45
# 3.0 - RKF56
# 4.0 - RKF78
integratorID = 1.0

# Activate rotating moon and variable mass model
rotatingReferenceFrame = 1.0
variableMassModel = 1.0

# STATE INTEGRATION
# Note: for fixted-step integrators: initialStepSize = fixed step size
minimumStepSize = 0.01
maximumStepSize = 2.0
relativeErrorTolerance = 0.001
absoluteErrorTolerance = 0.001
initialStepSize = 0.01

# Minimal altitude considered touchdown [m]
minimalAltitude = 252100.0

# MONTE CARLO OPTIONS
# Note: variance = squared standard deviation
# thrustAlignmentVariance - [deg], about all axes
# eulerAngleEstimateionVariance - [deg], about all axes
# thrustMagnitudeVariance - [%], deviation from nominal
landerNumber = 1000.0
velocityVariance = 20.0
positionVariance = 40000.0
eulerAngleVariance = 0.0
massVariance = 10.0
guidanceSwitchVariance = 40000.0
massMomentInertiaVariance = 56.25
COMshiftVariance = 0.0016
thrustMagnitudeVariance = 25.0
thrustAlignmentVariance = 0.25
positionEstimationVariance = 25.0
velocityEstimationVariance = 0.0
eulerAngleEstimationVariance = 0.0
hopDistanceVariance = 1000000.0
hopAltitudeReqVariance = 1000.0

# SAVE OPTIOINS
# Note: - initial and final results for all models always saved
# - if onlySimulateLanderNumer != 0, then no collectedResults and no
# base lander results
# - excludeFailLandings: only in collected position results; use indicator
# in landingFailed.txt to remove invalid collected state results
# - maximal error numbers: refer to total error (vector norm)
saveResultsBaseLander = 1.0
saveResultsAllLander = 0.0
saveStateResultsAllLander = 1.0
saveResultsLanderNumber = 12.0
onlySimulateLanderNumber = 0.0
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saveResultsStepSize = 4.0
excludeFailLandings = 1.0
maxVelocityErrorForFail = 2.0
maxPositionErrorForFail = 10.0

##############################################################################
########## PART B.): GNC setup ###############################################
##############################################################################

# SIMULATION MODE
# 1.0 Descent: Guidance only
# 2.0 Descent: Guidance and control
# 3.0 Descent: Guidance, navigation and control
# 4.0 Repositioning: Guidance and control
# 5.0 Repositioning: Guidance, navigation and control
simulationMode = 1.0

# GNC UPDATE FREQUENCIES [Hz]
# Note: navigation frequency follows from highest instrument frequency
guidanceFrequency = 1.0
controlFrequency = 20.0

# Guidance modes, both descent and repositioning
# 1.0 Gravity turn only
# 2.0 Quadratic guidance only
# 3.0 Velocity nullifying only
# 4.0 First gravity turn, then quadratic, then velocity nullifying
# 5.0 Ballistic and quadratic guidance (mode must be 4 or 5)
# 6.0 Quadratic guidance repositioning (mode must be 4 or 5)
guidanceMode = 4.0

# GRAVITY TURN GUIDANCE LOGIC OPTIONS
gravityTurnConstantThrust = 1.0
velocityRatioSwitchToSphericalModel = 0.5
timeOfSingularUpdate = 5.0

# QUADRATIC GUIDANCE LOGIC OPTIONS
# Note: stepsize for numerical integration to find the fuel consumption is
# [t2go under investigation]/[fuelConsumptionCalculationStepSizeFactor]
#
# Update options for the C-factors:
# -1.0 Use frequency of navigation system
# value > 0 Set number of seconds between updates
#
# Update options for the underlying time-to-go:
# -1.0 Use instant of time of retargeting with hazard map
# value > 0 Set number of seconds between updates
#
# Time-to-go search options:
# 1.0 a_target is zero
# 2.0 a_target as specified
# 3.0 a_target free (standard)
# Guidance options in case time-to-go search not successful
# 1.0 gravity turn (standard)
# 2.0 Q-guidance
# 3.0 no guidance
#
# YZaxisT2GoLead:
# how many seconds the Y_S- and Z_S-axis target states must be reached
# before the final state along the X_S-axis (avoid critical maneuvers
# just above the surface). If t2go < lead: lead set 0. 10s standard.
#
# minimalT2GoForCalculationCfactor:
# in case there is a YZ-lead, the C-factors for the Y_S-/Z_S-axes
# will be 0 when the X_S-t2go is still large enough
#
# t2GoWhenQuadraticGuidanceEnds:
# if in mode 4 -> velocity nullifying guidance,
# if in mode 2 -> no guidance
#
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stepsizeTargetAccSearch = 0.01
fuelConsumptionCalculationStepSizeFactor = 50.0
timeBetweenCfactorsUpdate = 3.0
timeBetweenT2GoUpdate = -1.0
t2GoSearchOption = 3.0
guidanceOptionT2GoUnsuccessful = 3.0
YZaxisT2GoLead = 10.0
minimalT2GoForCalculationCfactors = 2.0
t2GoWhenQuadraticGuidanceEnds = 2.0

# VELOCITY NULLIFYING GUIDANCE LOGIC OPTIONS
# Switch options:
# -1.0 Use instance of time where t2go = YZaxisT2GoLead
# value > 0 Set number of seconds before touchdown.
# Must be <= YZaxisT2GoLead and <= nullifyingDuration.
nullifyingDuration = 1.0
nullifyingActivationT2Go = -1.0
xSaxisTargetVelocity = -0.5

# BALLISTIC GUIDANCE OPTIONS
# Note: turn refers to the rotation from vertical to desired flight direction
durationLowThrustTurn = 20.0
percentageMaxThrustDuringTurn = 15.0
altitudeBallisticToQuadratic = 200.0

# HAZARD AVOIDANCE OPTIONS
isHazardAvoidanceActive = 1.0
scanAltitude = 290.0
resolutionOfTrueSHM = 1.0
VDFE = 9.0
reachabilityMapHazardThreshold = 0.9
originOfSHMinMapcoordinateX = 100.0
originOfSHMinMapcoordinateY = 2500.0
nominalTargetinSframeZ = 0.0
nominalTargetinSframeY = 0.0

# CONTROL OPTIONS
# PWPF controller options:
# 0.0 deactivated: moment_B = torque_ref from controller
# 1.0 activated: filter & trigger used, thrust limitations
proportionalGainQuaternionController = 1.5
derivativeGainQuaternionController = 3.5
PWPFactive = 1.0
PWPFfilterGain = 8.0
PWPFtimeConstant = 0.45
PWPFsamplingTime = 0.1
PWPFcutInFactor = 0.6
PWPFcutOutFactor = 0.1
PFPWfilterLimitFactor = 1.5

# NAVIGATION OPTIONS
# Changeable navigation parameters
frequencyIMU = 20.0
frequencyRangeInstrument = 10.0
frequencyStarSensors = 4.0
propagationStepSizeFactor = 0.1
processNoisePosition = 0.001
processNoiseVelocity = 0.0
processNoiseAttitude = 0.00001
processNoiseBiasAcc = 0.0
processNoiseBiasGyr = 0.0
covariancePosition = 1000.0
covarianceVelocity = 25.0
covarianceAttitude = 0.0004
covarianceBiasAcc = 0.01
covarianceBiasGyr = 0.01
biasAccelerometerXest = 0.0
biasAccelerometerYest = 0.0
biasAccelerometerZest = 0.0
biasGyroscopeXest = 0.0
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biasGyroscopeYest = 0.0
biasGyroscopeZest = 0.0
scaleErrorAccelerometerXest = 0.0022
scaleErrorAccelerometerYest = -0.0063
scaleErrorAccelerometerZest = -0.0033
scaleErrorGyroscopeXest = -0.0011
scaleErrorGyroscopeYest = -0.0045
scaleErrorGyroscopeZest = -0.0066
misalignmentAccelerometerXYest = 0.009
misalignmentAccelerometerXZest = 0.022
misalignmentAccelerometerYXest = -0.027
misalignmentAccelerometerYZest = 0.0
misalignmentAccelerometerZXest = 0.0022
misalignmentAccelerometerZYest = -0.0066
misalignmentGyroscopeXYest = -0.0009
misalignmentGyroscopeXZest = 0.0022
misalignmentGyroscopeYXest = -0.0027
misalignmentGyroscopeYZest = 0.0044
misalignmentGyroscopeZXest = -0.0055
misalignmentGyroscopeZYest = -0.0056
# IMU instrument model parameters
# NOTE: - random errors have a uniform distribution
# - random error gyroscope: in terms of quaternion elements
biasAccelerometerX = -0.007
biasAccelerometerY = 0.006
biasAccelerometerZ = 0.005
biasGyroscopeX = -0.02
biasGyroscopeY = 0.03
biasGyroscopeZ = -0.04
scaleErrorAccelerometerX = 0.002
scaleErrorAccelerometerY = -0.007
scaleErrorAccelerometerZ = -0.003
scaleErrorGyroscopeX = -0.001
scaleErrorGyroscopeY = -0.005
scaleErrorGyroscopeZ = -0.006
misalignmentAccelerometerXY = 0.01
misalignmentAccelerometerXZ = 0.02
misalignmentAccelerometerYX = -0.03
misalignmentAccelerometerYZ = 0.0
misalignmentAccelerometerZX = 0.002
misalignmentAccelerometerZY = -0.006
misalignmentGyroscopeXY = -0.001
misalignmentGyroscopeXZ = 0.002
misalignmentGyroscopeYX = -0.003
misalignmentGyroscopeYZ = 0.004
misalignmentGyroscopeZX = -0.005
misalignmentGyroscopeZY = -0.006
randomNoiseAccelerometer = 0.00002
randomNoiseGyroscope = 0.00002
# Range instrument and star sensor model options
# Note: 1-sigma values; star sensor in terms of quaternion elements
measurementNoiseRange = 0.2
measurementNoiseStarS = 0.0001

###############################################################################
########## PART C.): Force Options ############################################
###############################################################################

# NAVIGATION SYSTEM: Choice of gravity fields
# Note: 3rd body perturbation force directional vector in rotating RF from Enceladus
# is fixed at [0;1;0] - always along y-axis. Change this if needed.
centralGravityFieldEnceladus = 1.0
centralGravityFieldSaturn = 1.0
J2GravityFieldSaturn = 1.0
J2GravityFieldEnceladus = 1.0
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