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On the Benefits of Torque Vectoring for Automated
Collision Avoidance at the Limits of Handling
Alberto Bertipaglia , Graduate Student Member, IEEE, Davide Tavernini , Umberto Montanaro ,

Mohsen Alirezaei, Riender Happee , Aldo Sorniotti , Member, IEEE, and Barys Shyrokau

Abstract—This paper presents a novel approach integrating
motion replanning, path tracking and vehicle stability for collision
avoidance using nonlinear Model Predictive Contouring Control.
Employing torque vectoring capabilities, the proposed controller
is able to stabilise the vehicle in evasive manoeuvres at the limit of
handling. A nonlinear double-track vehicle model, together with
an extended Fiala tyre model, is used to capture the nonlinear
coupled longitudinal and lateral dynamics. The optimised control
inputs are the steering angle and the four longitudinal wheel forces
to minimise the tracking error in safe situations and maximise
the vehicle-to-obstacle distance in emergency manoeuvres. These
optimised longitudinal forces generate an additional direct yaw
moment, enhancing the vehicle’s lateral agility and aiding in ob-
stacle avoidance and stability maintenance. The longitudinal tyre
forces are constrained using the tyre friction cycle. The proposed
controller has been tested on rapid prototyping hardware to prove
real-time capability. In a high-fidelity simulation environment vali-
dated with experimental data, our proposed approach successfully
avoids obstacles and maintains vehicle stability. It outperforms two
baseline controllers: one without torque vectoring and another
one without collision avoidance prioritisation. Furthermore, we
demonstrate the robustness of the proposed approach to vehicle
parameter variations, road friction, perception, and localisation
errors. The influence of each variation is statistically assessed to
evaluate its impact on the performance, providing guidelines for
future controller design.

Index Terms—Model predictive contouring control, obstacle
avoidance, handling limits, torque vectoring, path tracking.
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I. INTRODUCTION

ENSURING automated vehicles can adeptly avoid obstacles
at the limit of handling, which is essential for maximising

safety in real-world driving scenarios. Nonetheless, the highly
nonlinear characteristics of tyres, mainly when longitudinal and
lateral forces interact, present a notable challenge [1], [2]. A
prevalent strategy entails developing collision avoidance con-
trollers that optimise steering angle and total longitudinal brake
force. However, a pure braking force can potentially lead to
dangerous situations. For example, a vehicle must accelerate
after performing an evasive manoeuvre to avoid a rear-end
collision or quickly steer to the original lane during a double-lane
change manoeuvre. Furthermore, purely braking and steering
commands may not act fast enough to prevent a collision in
an emergency manoeuvre [3]. Thus, we develop a collision
avoidance controller which includes a positive acceleration force
in addition to the typical inputs such as braking force and
steering angle. Moreover, we extend the controller with torque
vectoring capabilities to enhance vehicle lateral agility and yaw
rate control.

Vehicle obstacle avoidance controllers are typically based on a
hierarchical architecture that splits motion planning, path track-
ing, and vehicle stability objectives into separate controllers.
This simplifies the cost function formulation of each layer and
allows the adoption of a different prediction model for each
controller (Fig. 1(a)). For instance, the motion planner can adopt
a simple kinematic model to extend the prediction horizon or
include a probabilistic approach to deal with uncertainties [4].
However, the three different objectives might conflict with each
other, e.g. the vehicle stability controller introduces an unwanted
tracking error to keep the vehicle stable, or the path tracking
cannot perfectly track the motion planner trajectory due to
the different complexity in the prediction models. Thus, vari-
ous Model Predictive Control (MPC) algorithms have recently
been introduced to integrate motion planning, path tracking and
vehicle stability objectives into a single controller for vehicle
collision avoidance during emergency manoeuvres [5], [6], [7],
[8]. Despite the improved performance of integrated vehicle
obstacle avoidance controllers, they have yet to be enabled to
utilise torque vectoring capabilities (Fig. 1(b)). Emerging con-
trol methodologies incorporating torque vectoring have gained
significant appeal in light of the recent development of new
electric powertrains, notably those employing multiple in-wheel
electric motors [9], [10], [11].
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(a)

(b)

Fig. 1. Hierarchical architecture for vehicle obstacle avoidance (a); proposed
architecture (b).

Thus, this paper proposes a vehicle obstacle avoidance ap-
proach consisting of Model Predictive Contouring Control
(MPCC), which combines motion planning, path tracking, and
vehicle stability tasks into a single cost function, prioritising ve-
hicle collision avoidance in case of an emergency. Furthermore,
the approach employs torque vectoring capabilities to improve
the vehicle’s lateral agility at the limit of handling. The torque
vectoring is enabled in the optimal control problem formulation
thanks to the adoption of a double-track vehicle model based on
an extended Fiala tyre model. The proposed tyre model captures
the effect of longitudinal force on the cornering stiffness and the
diminishing tyre saturation region. This improves the accuracy
of the prediction model, reducing the vehicle model mismatch
with the plant while maintaining the real-time feasibility on a
rapid prototyping platform.

This paper is organised as follows: Section II summarises
the previous works and the main paper contributions, high-
lighting the differences and improvements compared with our
previous conference paper [12]. Section III presents the pre-
diction model. Section IV describes the proposed controller.
Section V shows the experimental setup, summarising the results
in Section VI. Section VII concludes the essential findings and
future works.

II. RELATED WORKS

A sizeable amount of literature exists on obstacle avoidance
controllers. For the sake of brevity, a selection of the most
relevant research is presented herein.

One line of research has focused on solutions represented
by a three-layer control framework: a Nonlinear Model Predic-
tive Control (NMPC) for path tracking, a stability controller
to compute the reference yaw rate, and an optimal tyre force
allocation algorithm for torque vectoring [13]. NMPC is based
on a single-track formulation with a linear tyre model. Given the
significant model mismatch intrinsic in the simplistic tyre model,
the stability controller layer calculates a desired steady-state yaw
rate to ensure vehicle stability. Meanwhile, the torque vectoring
layer optimally distributes tyre forces across each wheel based
on the pre-calculated desired yaw rate and longitudinal force.
Simulation results showcase enhancements in lateral stability

and reductions in path tracking error. However, the limited
accuracy of the linear tyre model during emergency manoeuvres
significantly reduces performance. Additionally, separating the
path tracking layer from the reference yaw rate computation
diminishes the advantages of torque vectoring. For instance,
even a simple Linear Quadratic Regulator controller with in-
tegrated path tracking and torque vectoring achieves a higher
entry speed and vehicle agility in a double-lane change than a
split controller configuration [14].

An integrated MPC [3] is proposed to address these chal-
lenges. The MPC incorporates steering and differential braking
strategies to facilitate collision avoidance [3]. The approach
splits the longitudinal and lateral dynamics, with the MPC utilis-
ing a linearised brush tyre model to calculate the desired lateral
tyre force and additional differential braking moment. However,
the accuracy of the linearised tyre model diminishes significantly
at handling limits and neglects the interaction between longitu-
dinal and lateral dynamics. Moreover, the prediction relies on
a single-track vehicle model, limiting the maximum stabilising
yaw moment by a portion of the tyre force capacity. This limita-
tion is necessary to safeguard the vehicle’s lateral force capacity
from unmodeled dynamics, i.e. combined slip and lateral weight
transfer, resulting in a more conservative controller approach.

A similar approach relies on a single-track vehicle model to
control the steering angle, the braking force distribution and an
additional yaw moment [15]. The controller can drive the vehicle
at the handling limit and even maintain the vehicle in a drifting
equilibrium. Nonetheless, due to the constrained prediction hori-
zon of 1 s necessary for real-time execution and the cost function
formulation, there is no possibility for trajectory replanning in
emergency scenarios, when obstacles might suddenly change
their position unless a new reference trajectory is provided to the
path tracking algorithm. A similar limitation is recognisable also
for a dynamic inversion-based path tracking controller recently
proposed to control the vehicle beyond and within the stability
limits [16].

A Model Predictive Contouring Control (MPCC) based on
a nonlinear single-track vehicle model has been proposed for
vehicle collision avoidance at the limit of handling [5]. By
adopting a Cartesian reference frame, the MPCC delineates
the vehicle’s kinematics, ensuring precise measurement of the
vehicle-to-obstacle (V2O) distance, a factor prone to overesti-
mation when employing the Frenet reference frame [6]. Addi-
tionally, it circumvents the need for supplementary optimisation
to compute the distance travelled by the vehicle to the refer-
ence line [5], [17]. Thus, its safety performance is superior to
controllers based on hierarchical architecture [7], [18], [19] and
even surpasses an integrated architecture reliant on the Frenet
reference system [6]. However, the controller does not consider
the torque vectoring capabilities, and the single-track vehicle
model cannot accurately capture the effect of lateral load transfer
on vehicle handling.

This paper extends the design and the analysis of the solution
presented in [12], proposing an MPCC controller based on a
nonlinear double-track vehicle with an extended Fiala tyre model
for collision avoidance at the limit of handling. The approach
is extended to consider the torque vectoring capabilities, and
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it integrates motion replanning, path tracking, torque vectoring
and vehicle stability tasks, prioritising vehicle collision avoid-
ance. The additional complexity brought by the longitudinal tyre
force optimisation requires a reduction of the model mismatch,
specifically in the tyre. Thus, the Fiala tyre model is extended
to accurately reflect the variability of cornering stiffness with
vertical and longitudinal forces and adjustments to its satura-
tion region to capture the tyre behaviour in the combined slip
conditions. The added complexity allows the MPCC to optimise
directly the longitudinal tyre forces and the yaw moment without
using a lower controller for force allocation. This reduces archi-
tecture conservativeness [20], improving the collision avoidance
performance. Despite the controller complexity, the proposed
MPCC runs in real-time on a rapid prototyping platform, con-
trary to our conference paper [12], and is extensively evaluated
in a high-fidelity simulation environment validated with exper-
imental data.

The contributions of this paper are threefold. The first is the
development of the first real-time feasible MPCC controller
augmented with torque vectoring functionalities that can safely
avoid vehicle collisions in a double-lane change manoeuvre
at the limit of handling. In contrast, existing state-of-the-art
approaches [5], [6] would result in a collision under similar con-
ditions or not work in real-time [12]. Leveraging the improved
responsiveness induced by torque vectoring, the vehicle is di-
rected away from the obstacle, ensuring stability and preventing
potential crashes. Unlike our previous conference paper [12],
the first contribution is extended to an analysis of the proposed
controller in low friction conditions (μ = 0.5), e.g. in heavy rain.
Even in these conditions, the proposed controller can success-
fully avoid the obstacles without losing stability. Furthermore,
it is tested at different initial velocities, highlighting its higher
performance in a broader set of initial conditions compared to
the baselines.

The second contribution involves applying and rigorously
evaluating an extended Fiala tyre model capable of capturing
variations in cornering stiffness relative to longitudinal and
vertical forces and adjusting the gradient within the tyre’s sat-
uration region without losing the continuity of the function. It
significantly enhances the accuracy of the prediction model, so
its applicability for the controller in scenarios with high levels of
force coupling, e.g. when torque vectoring is enabled. Due to the
increased accuracy provided by the extended Fiala tyre model,
the wheel dynamics can be neglected in the prediction model.
This simplification allows for an increased sampling time and
reduced computational effort.

In contrast to our conference paper [12], the third contribution
is the robustness evaluation of the proposed MPCC with torque
vectoring against variations in vehicle and tyre parameters,
perception inaccuracies, false negatives, and localisation errors,
compared to baseline controllers. Notably, the collision rate
of the proposed controller is 31.20% and 38.50% for vehicle
parameter and perception inaccuracies, respectively, compared
to nearly ∼ 100 % for the baseline controllers. Additionally, the
sensitivity analysis offers numerical insights into which parame-
ters and perception inaccuracies have the most significant impact

on the performance degradation of obstacle avoidance MPCC
controllers. Specifically, the lateral peak friction coefficient and
the obstacle localisation inaccuracies in the lateral direction
emerge as the most influential factors affecting controller per-
formance.

III. PREDICTION MODEL

This section presents the prediction model implemented in
the proposed MPCC controller. At first, the double-track vehicle
model is described. Second, the extended Fiala tyre model with
the proposed improvements is presented.

A. Double-Track Vehicle Model

The proposed MPCC integrates a nonlinear double-track ve-
hicle model, chosen over the single-track vehicle model [3],
[6], [21] due to its ability to capture lateral weight trans-
fer and its superior accuracy at the vehicle’s handling lim-
its [2]. However, it is simplified by neglecting roll and
pitch dynamics due to their relatively small contribution
to load transfer for the considered vehicle class. The pre-
diction model comprises twelve states denoted by x =
[X,Y, ψ, vx, vy, r, θ, δ, Fx, fl, Fx, fr, Fx, rl, Fx, rr]. These states
describe the vehicle’s position and orientation in a Cartesian
reference system: longitudinal position (X), lateral position
(Y ), and the heading angle (ψ) of the vehicle’s centre of gravity
(CoG) relative to an inertial frame. Additionally, longitudinal
and lateral velocities at the CoG (vx and vy , respectively) and
yaw rate (r) are included. The MPCC requires knowing the
vehicle’s travelled distance (θ), utilised by the cost function to
compute the vehicle’s position relative to the reference line; thus,
θ is incorporated as an extra state [5]. The road wheel angle
(δ) and the longitudinal forces at the front left (Fx, fl), front
right (Fx, fr), rear left (Fx, rl), and rear right (Fx, rr) wheels
are controlled via their derivatives, leading to five additional
equations of motion. The state derivatives are computed as
follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ = vx cos (ψ)− vy sin (ψ)

Ẏ = vx sin (ψ) + vy cos (ψ)

ψ̇ = r

v̇x=
1
m

(
(Fx, fl + Fx, fr) cos (δ)−(Fy, fl + Fy, fr) sin (δ)

+Fx, rl + Fx, rr − Fres

)
+ rvy

v̇y=
1
m

(
(Fx, fl + Fx, fr) sin (δ)+(Fy, fl + Fy, fr) cos (δ)

+Fy, rl + Fy, rr

)
− rvx

ṙ = 1
Izz

(
(Fy, fl + Fy, fr) cos (δ) lf − (Fy, rl + Fy, rr) lr

+(Fx, fl + Fx, fr) sin (δ) lf +
tf
2 (Fy, fl − Fy, fr) sin (δ)

+
tf
2 (Fx, fr − Fx, fl) cos (δ) +

tr
2 (Fx, rr − Fx, rl)

)
θ̇ =

√
v2
x + v2

y

(1)

where Fx, ij and Fy, ij are the longitudinal and lateral tyre
forces, i stands for front (f) or rear (r), and j stands for left
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TABLE I
VEHICLE PARAMETERS DESCRIPTION

(l) or right (r). All other vehicle parameters are reported in
Table I. Moreover, Fres is the aerodynamic drag and the rolling
resistance computed according to the following equation:

Fres =
1
2
ρAfCd1v

2
x + Cd0 (2)

The vehicle model inputs are the rates of the previously men-
tioned road wheel angle and the rates of longitudinal forces ap-
plied to each wheel, i.e. (uv = [δ̇, Ḟx, fl, Ḟx, fr, Ḟx, rl, Ḟx, rr]).
The rates are used as inputs to apply constraints representing
actuator dynamics and create further responses. The decision to
use longitudinal forces as inputs, rather than motor torques or
longitudinal slips, simplifies the vehicle model by eliminating
the need to account for wheel or motor dynamics in the MPC pre-
diction model. This not only reduces computational complexity
but also facilitates the implementation of constraints, allowing
tyre forces to be constrained using the tyre friction circle [6],
[22].

The vehicle and obstacles are represented as circles so the
MPCC controller can constantly monitor the V2O distance. A
similar approach is implemented for the vehicle-to-edge (V2E)
of the road distance. Their Euclidean distance is computed as
follows:

DV 2O =

√
(X −Xobs)

2 + (Y − Yobs)
2 − robs − rveh (3)

where X, Y and Xobs, Yobs are, respectively, the longitudinal
and lateral position of the vehicle and obstacle centre, and rveh
and robs are the radii of the vehicle and obstacle circles. The
proposed MPCC controller aims to keep DV 2O above a user-
defined safety distance. The vehicle and the obstacles will collide
if DV 2O is lower than zero.

B. Extended Fiala Tyre Model

The lateral tyre forces for each wheel of the double-track
vehicle model are captured by an extended Fiala tyre model. The
classic Fiala tyre model is modified to capture the variation of
cornering stiffness depending on the longitudinal and vertical
force [2], and the saturation region is adapted to include a
negative gradient. The latter allows the prediction model not
to overestimate the maximum lateral force when the tyre works
with a high lateral slip angle, e.g. driving at the limit of han-
dling or drifting. The extended Fiala tyre model is defined as

follows:

Fy (α, Fx, Fz)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−Cym (Fx, Fz) tanα+
C2

ym(Fx,Fz) tanα tan |α|
3Fy,max

−C3
ym(Fx,Fz) tanα3

27F 2
y,max

, |α| ≤ αthr

2Cym(Fx,Fz)(ζ−1) tanα
3 − C2

ym(Fx,Fz)(ζ−1) tanα| tanα|
9Fy,max

−Fy,maxζ sign(α), |α| > αthr

(4)

where α is the tyre slip angle, Cy is the tyre cornering stiffness,
which is a function of the vertical (Fz) and longitudinal (Fx)
tyre force, Fy,max is the maximum lateral tyre force, αthr is
the tyre slip threshold corresponding to the peak of the tyre
lateral force, and ζ is a parameter defined between 0 and 2 which
characterises the gradient of the saturation region. When α ≤
αthr, apart from the effect of Fx, which is also active for low
lateral slip, the extended Fiala model is formulated as the classic
Fiala tyre model [23], while the saturated region (α > αthr) is
modified to have a gradient that better captures the maximum
lateral force reduction with large slip angles. At the same time,
the proposed model still keeps the advantages of the classical
Fiala tyre, so it is fully continuous and differentiable when α =
αthr. A gradient different from zero in the saturation region
helps numerical optimisation algorithms based on the gradient
calculation to avoid derivative vanishing and to optimise the road
wheel angle when the tyre works in the saturation region [24].
Furthermore, the proposed solution has a positive gradient when
ζ ∈ [1, 2] and a negative one when ζ ∈ [0, 1].

To further reduce the tyre model mismatch, the Cy is not
considered constant, but it is firstly adapted depending on the
vertical force [2] as follows:

Cy (Fz) = c1Fz0 sin

(
2 atan

(
Fz

c2Fz0

))
(5)

where c1 and c2 are tunable parameters, and Fz0 is the nominal
vertical load. Second, the tyre model considers the coupling
effect between longitudinal and lateral axle forces, so the pre-
viously computed Cy is further modified to capture the Fx

dependency in accordance with literature [2], [25] as follows:

Cym (Fx, Fz) =
1
2
(μFz − Fx)

+

(
1 −

( |Fx|
μFz

)c3
)1/c3

(
Cy (Fz)− 1

2
μFz

)
(6)

where c3 is a user-defined parameter, which is in the range of 2
to 8 [25], and μ is the friction coefficient. The Cym(Fx, Fz) is
used to compute the tyre slip threshold (αthr) as follows:

αthr =
3Fy,max

Cym (Fx, Fz)
(7)

The maximum lateral tyre force (Fy,max) is limited by the tyre
friction circle, defined as follows:

Fy,max =

√
(μFz)

2 − F 2
x (8)
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TABLE II
TYRE PARAMETERS DESCRIPTION

(a)

(b)

Fig. 2. Lateral force of the high-fidelity Delft tyre model, the classic Fiala, the
simplified Magic Formula and the extended (proposed) Fiala tyre model for pure
slip conditions (a); lateral forces of the models in the combined slip conditions
(b).

All the parameters used in the extended Fiala tyre model are
reported in Table II, and their value is obtained by performing
a nonlinear optimisation known as Two-Stage Bayesian Opti-
misation [26]. The parametrisation process involves two steps:
first, the tyre models are optimised to minimise discrepancies in
lateral forces compared to a high-fidelity Delft-Tyre 6.2 model,
using nominal loads from 1000N to 8000N representative of
double lane change manoeuvres at the limit of handling. Second,
the tyre parameters are further optimised against experimental
data from skidpad manoeuvres in clockwise and counterclock-
wise directions. Notably, the optimisation and evaluation ma-
noeuvres differ to avoid overfitting and ensure robust model
validation. Fig. 2 shows how the proposed extended Fiala tyre
model captures the effect of the normal load on the tyre cornering
stiffness and how the model mismatch between the Delft tyre
model and the proposed one is reduced not only in the linear
region but also around the peak lateral force area. Particularly
relevant is the saturated region, which is well matched by the
extended Fiala tyre model while it is overestimated by the
classic Fiala tyre model with a constant saturation region [2],
[6], [23] or by the simplified Magic Formula when subjected to
an increased vertical force of 7300N. A model mismatch in the
tyre’s large slip angle working area is particularly detrimental
for obstacle avoidance controllers at the limit of handling. Fig. 2
shows that the cornering stiffness of the proposed extended Fiala
model captures the longitudinal and lateral force coupling more
accurately, which is important for the scope of this work. The

(a) (b)

Fig. 3. Front (a) and rear (b) lateral forces for the classic Fiala, the simplified
Magic Formula, the extended (proposed) Fiala tyre model and experimental
measurements in a quasi-steady-state circular driving test.

Fig. 4. Front (a) and rear (b) lateral forces for the classic Fiala, the simplified
Magic Formula, the extended (proposed) Fiala tyre model and experimental
measurements in four braking-in-a-turn manoeuvrers with different longitudinal
accelerations.

reason is that the proposed MPCC uses torque vectoring capa-
bilities, which implies using a longitudinal force coupled with a
lateral one. Furthermore, the optimised tyre model is experimen-
tally validated by performing a quasi-steady-state circular driv-
ing test and four braking in a turn manoeuvrers with different lon-
gitudinal accelerations ranging from a minimum of −1.5m/s2

to a maximum of −8.5m/s2. Fig. 3 shows how the extended
Fiala tyre model captures the linear and nonlinear tyre working
regions, slightly outperforming the simplified Magic Formula in
these conditions. Furthermore, the proposed extended Fiala tyre
model outperforms both the classic Fiala and simplified Magic
Formula models in four experimentally recorded braking-in-turn
manoeuvrers, as shown in Fig. 4. It is particularly noteworthy
that as the longitudinal force increases, the model mismatch
between experimental data and both the classic Fiala and sim-
plified Magic Formula becomes more pronounced, whereas the
extended Fiala tyre model continues to maintain its accuracy.

IV. MODEL PREDICTIVE CONTOURING CONTROL USING

TORQUE VECTORING

This section explains how the cost function and the constraints
of the proposed MPCC are formulated. Section IV-A focuses on
describing the MPCC cost function and how it is designed to
prioritise obstacle avoidance over path tracking in case of emer-
gency. Section IV-B explains how the MPCC constraints are de-
fined to improve safety, taking into account the vehicle actuators’
limitations, and avoid redundant torque vectoring utilisation.

A. Cost Function With Obstacle Avoidance Prioritisation

The proposed MPCC is based on iterative optimisation of a
nonlinear cost function (J = Jtrack + Jinp + Jobs) [5], which
is responsible for ensuring path tracking (Jtrack), minimising
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the control effort (Jinp) and obstacle avoidance prioritisation
(Jobs) in case of emergency.

The path tracking properties in the cost function are defined
as follows:

Jtrack =

N∑
i=1

(
qeCon

e2
Con,i + qeLag

e2
Lag,i + qeV el

e2
V el

)
(9)

whereN is the length of the prediction horizon, eCon is the con-
touring error, eLag is the lag error, eV el is the velocity error and
q∗ are the weights of the respective quadratic errors. The path is
followed by minimising the contouring (eCon) and the lag error
(eLag) [5], [17]. eCon represents the vehicle position projection
onto the desired trajectory, depending on the vehicle’s travelled
distance related to the reference line (θs). However, contrary
to MPC or NMPC controllers [1] based on a Frenet reference
system, θs is unavailable for an MPCC based on a Cartesian
reference frame. Thus, θs is approximated by the vehicle total
travelled distance (θ), and the approximation accuracy is ensured
by the lag error minimisation, defined as the norm between the
two distances. Mathematically, eCon and eLag are defined as
follows:

eCon=sin (Ψt (θ)) (X −Xt (θ))− cos (Ψt (θ)) (Y − Yt (θ))

eLag=− cos (Ψt (θ)) (X−Xt (θ))−sin (Ψt (θ)) (Y −Yt (θ))
(10)

Xt, Yt, and Ψt are the desired longitudinal and lateral posi-
tions and heading angle. Despite the added nonlinearities and
complexities of eCon and eLag , they allow an approximation
of the Frenet reference frame with a Cartesian reference frame,
which means that V2O distance is never overestimated [5]. The
MPCC based on a Cartesian frame is more pre-emptive than an
NMPC based on a Frenet reference frame in prioritising collision
avoidance over path tracking [5]. Thus, the vehicle is more prone
to stay inside a safe and stable working area even when it needs
to avoid a collision at the limit of handling. Furthermore, the
eLag is equal to zero only when the vehicle follows the reference
trajectory perfectly. As soon as the desired velocity is unfeasible
for the planned trajectory, the MPCC will modify the desired
velocity to minimise the eLag . The reference velocity is tracked
by minimising the quadratic error between the vehicle velocity
(vx) and the desired one (vdes). For what concerns the weights,
they are firstly empirically tuned to reduce the path tracking error
and the vehicle sideslip angle peaks [27], [28]. Second, they are
fine-tuned using a two-stage Bayesian optimisation [26]. It is
important to highlight that qeV el

is tuned to have a low weight
in magnitude because the controller must allow the vehicle to
slow down in case of obstacle avoidance prioritisation [5], [6].

The minimisation of the control inputs is ensured in the cost
function as follows:

Jinp =

N∑
i=1

(
qδ̇ δ̇i

2
+ qḞx

Ḟ 2
x,FL, i + qḞx

Ḟ 2
x,FR, i

+ qḞx
Ḟ 2
x,RL, i + qḞx

Ḟ 2
x,RR, i

)
(11)

TABLE III
UPPER AND LOWER CONSTRAINTS [1], [5], WHERE i STANDS FOR FRONT OR

REAR, AND j FOR LEFT OR RIGHT

where δ̇ is the road wheel angle rate, and Ḟx,FL, Ḟx,FR, Ḟx,RR,
and Ḟx,RR are the rate of the longitudinal forces applied to each
of the vehicle’s four wheels. These cost terms are added in order
to make the control inputs smooth, and they are considered equal
to simplify the tuning.

The motion replanning for obstacle avoidance prioritisation
is defined as follows:

Jobs =

N∑
i=1

⎛
⎝Nobs∑

j=1

(
qeV 2Oe

2
V 2O, j, i

)
+

Nedg∑
j=1

(
qeV 2Ee

2
V 2E, j, i

)⎞⎠
(12)

where Nobs and Nedg are the number of obstacles and road
edges, eV 2O and eV 2E are the difference between the V2O and
V2E distances and the user defined safety distances between
the obstacles (DSft,O) and the road edges (DSft,E). When
the vehicle is at a safe distance from obstacles or road edges,
it does not interfere with the path tracking properties of the
MPCC. On the other hand, the eV 2O and eV 2E errors allow
the MPCC controller to dynamically perform a short trajectory
replanning when the vehicle passes close to the obstacles. The
obstacle avoidance prioritisation is due to the dynamically vary-
ing weights associated with eV 2O and eV 2E [5]. The weights,
here reported only qV 2O for compactness, vary as follows:

qV 2O =

⎧⎪⎪⎨
⎪⎪⎩
Pk, if DV 2O < 0

Pk e
− 2D2

V 2O
D2

Sft,O , elseif 0 ≤ DV 2O ≤ DSft,O

0, otherwise

(13)

where Pk denotes the upper limit of the achievable value for
qV 2O. The magnitude of qV 2O increases with a Gaussian-shaped
curve with the decrease of the V2O distance, and it is zero when
V2O is above DSft,O.

B. Constraints

The constraints are designed to accommodate actuator limita-
tions, vehicle stability, and path tracking and to avoid redundant
torque vectoring utilisation. The actuators’ limitations are ap-
plied to δ, Fx,FL, Fx,FR, Fx,RR, and Fx,RR and their respec-
tive rates. The values implemented are reported in Table III.

The vehicle stability is enforced using the tyre friction circle,
as described in the extended Fiala tyre model, and as follows [5],
[6]:

Fx, ij ≤ SfμFz, ij (14)

where Sf is a safety factor that limits the applicable longitudinal
force considering the tyre road friction coefficient uncertainty
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(μ), and the subscripts ij represent the front-rear axle and left-
right side.

The following inequality forces the vehicle to stay inside the
road boundaries:∥∥∥∥

[
X

Y

]
−
[
Xcen

Ycen

]∥∥∥∥
2

≤
(
Wt

2

)2

(15)

where Xcen and Ycen are the longitudinal and lateral locations
of the track’s centre, and Wt is the road width [17].

The MPCC is constrained not to use redundant torque vector-
ing while driving in a straight to avoid excessive tyre wear and
energy consumption as follows:

|Fx,FL − Fx,FR| ≤ |Fz,FL − Fz,FR|Ts
|Fx,RL − Fx,RR| ≤ |Fz,RL − Fz,RR|Ts (16)

whereTs is a user-defined parameter which works as a safety co-
efficient, allowing a difference in the longitudinal forces higher
than the normal load difference between the right and left sides
of the vehicle.

V. SIMULATION SETUP AND EXPERIMENTAL VALIDATION

This section is split into three subsections. Section V-A
describes how the proposed MPCC is implemented in a real-
time rapid prototyping platform and how it is assessed in
high and low friction conditions. Section V-B explains how
the high-fidelity and prediction models are validated using
experimental data. Section V-C presents how the MPCC ro-
bustness is evaluated and how the controller sensitivity to
vehicle parameter variations and perception inaccuracies is
computed.

A. Hard Real-Time Implementation and Simulation Setup

The proposed MPCC is tested using the dSPACE SCALEXIO
real-time platform, which operates on a multi-core DS6001
processor (2.8 GHz quad-core, 1 GB DDR2 SD RAM). In this
setup, the MPCC is allocated to a distinct core separate from
the vehicle plant. The prediction model is discretised using
the Runge-Kutta 2 method, chosen for its balanced trade-off
between computational effort and accuracy [6]. A control in-
tegration interval of 0.05 s is used, with 10 integrator nodes
and a prediction horizon of 30 steps to ensure the real-time
feasibility of the controller implementation. The optimisation
problem is solved using the nonlinear interior-point solver avail-
able in FORCESPro [29], with the Hessian matrix approxima-
tion based on the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm. Rather than initializing the Hessian with an identity
matrix, an efficient initial estimate is employed by averaging
optimised BFGS matrices from multiple manoeuvrers, reducing
computational effort without compromising performance. To
further decrease computational time, especially on embedded
platforms, the variational derivative method is utilised for dif-
ferentiation method instead of the conventional chain rule [29].
The maximum number of iterations is set to 100 as extensive
testing revealed that the solver consistently finds an optimal
solution within this limit. The platform demonstrates effective

execution of the nonlinear optimisation, achieving an average
solving time of 38.9ms, with minimum and maximum solving
times of 30.7ms and 41.8ms, respectively. The computational
solving time corresponds to the total time required by dSPACE
to compute the parameters, such as the reference trajectory sent
to the MPCC, solve the optimization problem, and transmit
the optimized control inputs to the vehicle plant. Although the
maximum number of iterations is limited to 100 to partially
control the solving time, it is important to note that there is
no formal guarantee of solver convergence within this prede-
termined time frame [6]. However, no convergence issues were
observed in the performed test. The vehicle plant operates on
a separate core at 1000Hz. It is a high-fidelity representation
of a BMW Series 545i vehicle built upon an IPG CarMaker
platform, modified to include four in-wheel electric motors.
Experimental measurements conducted on a proving ground
are used for validation purposes to appropriately select the
vehicle parameters. The suspension settings are tuned based
on Kinematics & Compliance test rig measurements, while the
tyre dynamics are described using the experimentally validated
Delft-Tyre 6.2 model. Steering dynamics are accounted for
using a second-order transfer function to enhance the fidelity
of the vehicle model [30]. The electric motors exhibit faster
dynamics than conventional powertrains, and they are modelled
with a first-order transfer function and a delay adjusted based
on measurements conducted on a powertrain rig provided by
the electric motor manufacturer. The electric motor has a time
constant of ∼ 25 ms, and the initial inverter reaction can be ne-
glected [31], [32]. The control inputs for the MPCC, representing
longitudinal forces mapped to the desired torque, are subse-
quently passed to a low-level control system that tracks these
inputs [31], [32]. It is important to highlight that, although the
MPCC prediction model does not account for wheel and electric
motor dynamics, these dynamics are incorporated in the vehicle
plant model. The torque ripple is modelled as a Fourier series as
follows [33]:

Trip = As1 sin (p1ωr) +Ac1 cos (p1ωr)

+As2 sin (2p1ωr) +Ac2 cos (2p1ωr) (17)

where ωr is the rotor velocity, p1 is the least common multiple
of the electric motor’s stator slots and pole numbers, and As1,
As2, Ac1, and Ac2 are coefficients dependent on the electric
motor. The torque ripple (Trip) is added to the electric motor
torque calculated by a first-order transfer function. Although
the influence of torque ripple is minor for vehicle path track-
ing, mainly due to its effects being filtered by the drivetrain
and tyres [33], incorporating torque ripple in the high-fidelity
simulation model can reveal discrepancies under different load
conditions or varying speed scenarios.

The proposed MPCC controller with torque vectoring and
collision avoidance properties (MPCC TV+CA) is compared
with two baselines:
� MPCC CA: it uses the state-of-the-art MPCC controller

for path tracking and motion replanning [5], but without
torque vectoring capabilities. The goal is to evaluate the
benefits of torque vectoring in terms of added stability
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(a) (b) (c)

Fig. 5. Experimental model validation of the vehicle characteristics for a skidpad manoeuvre with 40m radius: (a) understeer gradient, (b) yaw rate and (c)
sideslip angle.

and agility during evasive manoeuvrers, specifically for
obstacle avoidance at the limit of handling;

� MPCC TV: it uses the same MPCC with torque vectoring as
the proposed approach but excludes the collision avoidance
prioritization term Jobs, see (12), from the cost function.
The goal is to demonstrate that the proposed approach
provides advantages not only in torque vectoring but also
in enhancing overall vehicle safety by prioritising collision
avoidance.

All the controllers are evaluated on a double lane change
manoeuvre with two obstacles with high and low friction con-
ditions, respectively 1 and 0.5. Additionally, a split μ condition
is analysed to assess the controllers’ ability to adapt to vary-
ing friction levels, thereby preventing excessive sideslip angles
while manoeuvring to avoid obstacles. The split μ condition is
designed with a high friction coefficient on the right lane (μ = 1)
and a low friction coefficient on the left lane (μ = 0.5). A coarse
trajectory function of the road distance and the road curvature is
provided to the MPCC, simulating the output of a behavioural
planner [3], [5]. The desired velocity is assumed constant along
the manoeuvre. The controller must track the reference trajectory
and perform an online trajectory replanning when the vehicle
passes dangerously close to one of the obstacles. This can
happen due to different handling limits of the behaviour planner
and the path tracking controller, as well as the intervention of
the stability controller. The scenario contains two obstacles to
demonstrate that the short trajectory replanning around the first
obstacle does not interfere with the vehicle’s capacity to avoid
the subsequent obstacle. The key performance indicators (KPIs)
are the V2O and the V2E distances, which must be higher than
zero to avoid a collision and preferably higher than 0.5m to
avoid a near-miss collision. A test is considered failed when the
vehicle collides with an obstacle or goes outside the road edges.

B. Experimental Model Validation

The computationally efficient vehicle model with the ex-
tended Fiala tyre used within the MPCC and the high-fidelity
vehicle model with Delft Tyre model are validated with exper-
imental data collected on a proving ground. The test platform
was equipped with the conventional Inertial Measurement Unit
(IMU), Kistler wheel force transducers, and SKF intelligent
bearings installed on each wheel. Additionally, it had a dual
antenna GNSS system and a Corrsys-Datron non-contact optical
sensor dedicated to measuring the sideslip angle, boasting a

measurement accuracy of approximately ±0.2 deg. Intercon-
nection of all equipment was facilitated through the Controller
Area Network (CAN) interface, with the sampling rate config-
ured to operate at 100Hz.

The accuracy of the models during a 40m radius skidpad
test, a brake-in-turn manoeuvrer with longitudinal and lateral
accelerations of 8m/s2 and 4m/s2 respectively, and a double
lane change at 70 km/h are depicted in Figs. 5, 6, 7. In the
quasi-steady-state behaviour, both the prediction models and
the high-fidelity model demonstrate high accuracy across both
linear and nonlinear regions of tyre operation. The only mi-
nor discrepancy observed is an overestimation of the sideslip
angle by the prediction model, remaining below 1deg. This
overestimation is more pronounced when the Magic Formula
tyre model is used, particularly when the absolute value of
lateral acceleration exceeds 4m/s2. The high-fidelity model
exhibits the highest alignment with experimental data during
the brake-in-turn manoeuvrer. The prediction model based on
the extended Fiala tyre model also achieves high accuracy in
predicting yaw rate and vehicle sideslip angle, albeit with a
slight overestimation of lateral acceleration. In contrast, the
prediction model using the Magic Formula tends to overestimate
lateral acceleration and shows a differing trend, underestimating
the vehicle’s yaw rate during combined longitudinal and lateral
forces due to a greater mismatch in the tyre model under such
conditions. Given that torque vectoring inputs increase the du-
ration of coupled longitudinal and lateral forces, these results
emphasize the importance of the proposed extended Fiala tyre
model. Regarding transient vehicle behaviour, all models can
capture even the lateral acceleration and the yaw rate peaks
recorded with the experimental vehicle. The most significant
difference is noticeable in Fig. 7(c), which shows that the high-
fidelity model overestimates the measured vehicle sideslip angle
at most 0.5deg, while the prediction model based on the Magic
Formula slightly underestimates the peaks of the sideslip angle
by a similar margin. However, this minor discrepancy does not
interfere with vehicle model validation. The superior accuracy
of the prediction model based on the proposed extended Fiala
tyre model, compared to the one based on the Magic Formula,
underscores the importance of the proposed tyre model. Addi-
tionally, it validates the design choice to neglect wheel dynamics
in the prediction model, which facilitates increased discretisa-
tion time and reduces the computational time of the MPCC,
making the real-time implementation feasible on an embedded
platform.
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(a) (b) (c)

Fig. 6. Experimental model validation of the vehicle characteristics for a brake-in-turn manoeuvre with a |8|m/s2 longitudinal and |4|m/s2 lateral acceleration:
(a) G-G diagram, (b) yaw rate and (c) sideslip angle.

(a) (b) (c)

Fig. 7. Experimental model validation of the vehicle characteristics for a double lane change at 70 km/h: (a) lateral acceleration, (b) yaw rate and (c) sideslip
angle.

C. Robustness and Sensitivity Analysis Setup

The collision avoidance performance and robustness of the
proposed controller are evaluated by considering variations in
vehicle parameters and perception inaccuracies. Two different
Monte Carlo analyses are conducted to simplify the evaluation
of the results, focusing on a double lane change manoeuvre
with two obstacles and high friction conditions (μ = 1). The
first only assesses the performance by altering the vehicle and
tyre parameters, and the second evaluates the effects of obstacle
and vehicle localisation inaccuracies. The first Monte Carlo
analysis considers the variation of the additional mass (Δm)
and corresponding moment of inertia (Izz), electric motor time
delay (τem), and the scaling factors of the front and rear cor-
nering stiffness (KyF , KyR), lateral peak friction coefficients
(μyF

, μyR
), longitudinal stiffness shape factors (KxF , KxR)

and tyre relaxation lengths of the vehicle plant (Rel), leaving
the vehicle prediction model unchanged. The additional mass
variation simulates the change in the vehicle mass due to dif-
ferent amounts of fuel, number of passengers and pieces of
luggage. Thus, the nominal additional mass correspondent to
160 kg is varied by ±10% of the total vehicle mass according
to a Gaussian distribution [15], and its changes are associated
with the corresponding variation of Izz . The Δm distribution
is visible in Fig. 8(a), and the same approach is used for all the
parameters varied according to a Gaussian distribution. A vari-
ation of ±15% is associated with the electric motor delay, and
it simulates the effect of different load conditions, power supply
and environmental factors [34]. The tyre cornering stiffnesses,
lateral peak friction coefficients, longitudinal stiffness shape
factors and tyre relaxation lengths of the vehicle are modified
by ±15% over their nominal value to simulate the effect of tyre

Fig. 8. Gaussian distribution of additional mass Δm (a); normal multivariate
distribution of the scaling factors for the cornering stiffness, lateral peak friction
coefficients, and longitudinal stiffness shape factors (b).

wear, temperature variations, suspension kinematics, bushing
wear and other effects [15], [35]. Considering that tyre wear
is not always homogeneous in the four wheels, and that the
wear in the suspension bushings can affect the characteristics
of the front and rear axles differently [35], the parameters
variations of the front and rear axles are varied according to
a multivariate normal distribution, see Fig. 8(b). This can model
the different front and rear axle variations, but it avoids the
unrealistic scenario of a simultaneous increased front cornering
stiffness equal to +15% and a −15% reduction in the rear axle
cornering stiffness. A similar concept is applied for scaling the
μyF

, μyR
and KxF , KxR. Specifically, the prediction model

can accommodate a maximum estimation error of ±15% for
the friction coefficient, distributed according to a multivariate
normal distribution, as depicted in Fig. 8(b). The same variation
is considered for the front and rear axles regarding the relaxation
length. The first Monte Carlo analysis consists of 11000 different
simulations generated by a random combination of the varied
parameters.
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(a) (b)

(c)

Fig. 9. Multivariate distribution of the standard deviations for lateral and
longitudinal errors of obstacle (a) and vehicle (b) localisation; c) distributions
of the vehicle and obstacle localisation distance errors generated by the nominal
standard deviations.

The second Monte Carlo analysis considers the variation of
obstacle localisation error in the longitudinal (σObs,X ) and lat-
eral direction (σObs,Y ) [36], [37], vehicle localisation error in the
longitudinal (σV eh,X ) and lateral direction (σV eh,X ) [38], [39]
and the percentage of false negative obstacle detections [40].
The obstacle localisation inaccuracies in X and Y directions are
modelled as random Gaussian noises in which the standard devi-
ations are varied according to a multivariate normal distribution,
see Fig. 9(a). The longitudinal and lateral inaccuracies are not
always considered equal because the performance of the obstacle
detection algorithm is influenced by the obstacle aspect ratio bias
and camera perspective, which can influence in which direction
the perception algorithm is more accurate [36]. Fig. 9(c) shows
that the most probable standard deviation combination creates a
mean distance error equal to 0.13m for vehicle obstacle local-
isation, corresponding to the mean average translation error in
vehicle detection for the leaderboard works using the nuScenes
dataset [41]. The same approach is applied to vehicle localisation
which errors in the longitudinal and lateral directions are treated
as random Gaussian noises. The noises are varied according
to a multivariate normal distribution; see Fig. 9(b). In this
situation, the nominal standard deviations create a mean distance
error equal to 0.19m, see Fig. 9(c). The mean value is chosen
comparing the performance of different localisation techniques
for automated vehicles [42]. Furthermore, the analysis considers
the percentage of false negatives modelled through the parameter
(λ) of a Poisson distribution, which defines the number of times
a random event occurs given a period. It is varied according
to a Gaussian distribution with a mean equal to 0.5 and a
standard deviation of 0.15. Thus, it corresponds to a probability
equal to 16.3% of having a single false negative during the
simulation, 1.7% of two and 0.2% of three, corresponding to
the performance of the leaderboard works [41]. It is essential
to specify that we only model the probability that this event
occurs, but where and for how many times it happens is not
regulated in the simulation scenario, but it depends on the

Poisson distribution. This Monte Carlo analysis consists of 3000
simulations generated by a random combination of the varied
parameters. The lower number of simulations compared to the
first Monte Carlo analysis is due to the lower number of assessed
parameters.

The controller performance is evaluated by computing the
Collision Rate (CR), defined as the percentage of simulations
in which the vehicle collides with an obstacle or goes out from
the road edges. This is measured through the minimum distance
between the V2O and V2E, represented by the symbol (mVD).
Furthermore, the robustness is evaluated through the Near Miss
Rate (NMR), which measures the percentage of simulations in
which the vehicle has a mVD lower than 0.5m.

The mVD is also used to perform a sensitivity analysis and
mathematically evaluate the standing of which vehicle param-
eters and perception inaccuracies influence the controller per-
formance most. The proposed sensitivity analysis is based on
the PAWN approach [43], and it computes the density-based
sensitivity (SI) indices. The PAWN approach assesses the impact
of input variables, e.g. vehicle parameters, on the cumulative
probability distribution of the output, e.g. mVD, considering
the entire distribution rather than just specific moments. Thus, it
is less sensitive to skewed or multi-modal distribution than the
classical Variance-based sensitivity analysis [44]. The SI indices
are dimensionless absolute measures ranging between zero and
one. Thus, the non-influential inputs will have a value of zero,
and, vice versa, the most influential ones will have a value closer
to one.

VI. RESULTS

This section is split into three subsections. Section VI-A
demonstrates the improved performance of the proposed MPCC
over the baselines in high and low friction conditions with the
high-fidelity model based on nominal parameters. Section VI-B
proves the robustness of the proposed approach to varying vehi-
cle parameters and perception inaccuracies in the high-fidelity
vehicle model. Section VI-C presents the sensitivity analysis
results aimed at evaluating the parameters that most significantly
influence the controller’s performance.

A. Controller Performance

Fig. 10(a) shows the trajectories of the high-fidelity vehicle
model with nominal parameters attained by the three different
controllers. The proposed MPCC TV+CA is the only controller
to drive through the double lane change manoeuvre without
colliding with either of the two obstacles. The MPCC TV is
unaware of the obstacles’ location, so its path tracking and
vehicle stability objectives lead the vehicle to collide with the
first obstacle located at 99m. On the other hand, the MPCC CA
can successfully avoid the first obstacle, replanning the initial
trajectory in a very similar way to the MPCC TV+CA. However,
it cannot avoid a collision with the second obstacle due to a loss
of stability despite harsh braking from ∼ 105 m to ∼ 115 m.
Vice versa, the MPCC TV+CA stabilises the vehicle between
100m and 120m, reducing the vehicle sideslip angle from a
peak higher than 15deg to a peak equal to 7.5deg. This is
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Fig. 10. States and control inputs of the controllers in a double lane change manoeuvre with high friction conditions (µ = 1).

possible thanks to the extra yaw moment, up to ∼ 2000 Nm,
at the vehicle CoG generated by torque vectoring. Furthermore,
it is relevant to notice that thanks to the lower sideslip angle, the
vehicle controller MPCC TV+CA can drive through the double
lane change at a higher speed than the MPCC CA, without
performing any harsh braking after avoiding the first obstacle.
Fig. 10(f) shows that the minimum speed of the vehicle driven by
the MPCC TV+CA is 16m/s, while the MPCC CA cannot avoid
the second obstacle despite reducing the speed to 13m/s. The
MPCC TV+CA also optimises the front and rear longitudinal
force repartition (Fig. 10(c)). The controller moves the brake
repartition to the front axle during the hard braking at 90m.
However, the front-rear ratio is restored to 50% or even moved
to the rear axle, when the vehicle enters the corner, and the front
axle has a high road wheel angle (Fig. 10(e)). It is relevant to
notice that in both the front and rear axle, the added yaw moment
generated by the torque vectoring is substantial in magnitude
only during the manoeuvre and at its exit to stabilise the vehicle.
On the contrary, the added inequality constraints prevent the
MPCC TV+CA from using torque vectoring when the vehicle is
driving straight. Regarding the road wheel angle computed by
the MPCC CA, it is visible how it already exceeds the constraints
at∼ 120 m because the controller cannot converge to an optimal
solution. Fig. 10(b) shows that both MPCC controllers with
CA capabilities reach the maximum lateral acceleration, which
can be generated with the available road friction coefficient.
On the contrary, the maximum braking capability is not fully
exploited by any controller. This work demonstrates that TV can
be integrated into an MPCC with CA avoidance prioritisation
and that TV is essential to stabilise the vehicle while avoiding
obstacles at the limit of handling. However, the strong coupling
between longitudinal and lateral dynamics brings complexity
to the MPCC. For this reason, it was essential to improve the
accuracy of the prediction model, e.g. including an extended
version of the Fiala tyre model.

The proposed controller and the two baselines are also tested
in a double lane change manoeuvre with a low friction condition
(μ = 0.5) and a 55 km/h desired initial velocity, corresponding
to a heavy rain scenario. Fig. 11(a) shows the three vehicle
trajectories, and it is visible how only the newly developed
controller can successfully avoid the two obstacles. This further
proves the robustness of the proposed controller to different
friction conditions. Fig. 11(b) shows how this is achieved while
the proposed controller drives the vehicle at the handling limits.
To evaluate the controllers’ capacity to react to a sudden change
in the friction coefficient, we tested the proposed controllers
and baselines during a double lane change manoeuvrer under a
split μ condition with a desired initial velocity of 55 km/h. This
manoeuvrer featured a high-friction surface on the right lane
(μ = 1) and a low-friction surface on the left lane (μ = 0.5),
as shown in Fig. 12(a). An analysis of the trajectories, shown
in Fig. 12(a), indicates that only the proposed controller and
the baseline MPCC TV successfully avoided the two obstacles,
guiding the vehicle at the limit of handling (see Fig. 12(b)).
However, while the baseline MPCC TV approaches the un-
safe area near the first obstacle, generating a near-miss event,
the proposed approach maintains a safer distance, highlighting
the importance of collision avoidance prioritisation. The base-
line without collision avoidance prioritization successfully nav-
igates around the first obstacle but fails to avoid the second
one due to the sudden drop in road friction. The friction drop,
together with the saturation of the steering actuator, leads to
an instability which can only be mitigated by controllers that
incorporate torque vectoring. The additional yaw moment ap-
plied at the vehicle’s centre of gravity (Fig. 12(d)) stabilizes the
vehicle during the manoeuvrer, allowing it to avoid obstacles
effectively. Conversely, the MPCC CA attempts to manage the
sudden change in friction primarily through adjustments in the
road-wheel angle (Fig. 12(c)) and additional braking force. A
particularly notable aspect is the comparison of the additional
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Fig. 11. Vehicle trajectories and G-G diagram in a double lane change manoeuvre with low friction conditions (µ = 0.5).

(a) (b)

(c) (d) (e)

Fig. 12. States and control inputs of the controllers in a double lane change manoeuvre with split µ conditions. The white area has µ = 1, and the light blue area
has µ = 0.5.

yaw moment generated by controllers with torque vectoring in
the split μ condition versus scenarios with a constant friction
coefficient. Fig. 12(e) demonstrates that both controllers with
torque vectoring generate additional yaw moments to stabilize
the vehicle under the split μ condition, which was unnecessary
during the high-friction scenario. This confirms the ability of
the proposed controllers to effectively react to sudden changes
in the tyre-road friction condition.

B. Robustness Analysis

The performance of all the controllers is also evaluated in the
same double lane change with high friction conditions (μ = 1),
varying the initial and desired vehicle velocities to determine
the point at which each controller begins to fail. Fig. 13 shows
that the proposed controller effectively avoids the obstacles in
the simulated scenario with velocities up to 73 km/h, a 7.5%
improvement over the MPCC CA. In contrast, the MPCC TV
successfully executes the manoeuvre only at velocities up to
60 km/h. This analysis further highlights the advantages of
incorporating collision avoidance prioritisation and torque vec-
toring.

Fig. 13. Analysis of the mVD at the variation of desired initial vehicle velocity
in a double lane change.

The robustness of the proposed controller MPCC TV+CA
and the baseline MPCC CA, as explained in Section V-B, are
compared at varying velocities in Fig. 14. The controller without
collision avoidance is not analysed in this section because it
already shows a low performance in nominal conditions; see
Fig. 13. Both the analysed controllers show an exponential
growth of the collision rate with the increase of vehicle velocity;
see Fig. 14(a). However, the proposed controller is substantially
more robust to vehicle parameter variations for velocities higher
than 60 km/h. On the other hand, they show a similar CR,
corresponding to ∼ 5 % for lower velocities because the vehicle
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(a) (b)

Fig. 14. Robustness evaluation to vehicle parameters (a) and perception inac-
curacies (b) of the analysed controllers at varying velocities.

TABLE IV
MONTE CARLO ANALYSIS RESULTS RELATED TO VEHICLE PARAMETER

VARIATIONS AND PERCEPTION INACCURACIES FOR THE PROPOSED

CONTROLLER

behaves less nonlinearly and the scenario allows a higher margin
of error. Thus, the controller task is simplified, and both can
achieve an optimum level of robustness. Vice versa, vehicle
dynamics become highly nonlinear at high velocities, and the
scenario becomes more challenging. In this situation, both con-
trollers reduce their robustness. However, the MPCC TV+CA
can achieve adequate robustness thanks to the extra added yaw
moment, which increases the vehicle responsiveness.

Fig. 14(b) shows the controllers’ robustness to vehicle per-
ception inaccuracies at different velocities. Similar to the above
case, the proposed approach shows a higher robustness than the
controller without torque vectoring. However, it is noticeable
that the MPCC TV+CA and the MPCC CA show similar ro-
bustness to velocities up to 65 km/h. A possible explanation
is that the most significant cause of failure up to this velocity
is the obstacle lateral error noise, which leads to an impossible
scenario for both MPCCs. Thus, the major difference between
MPCC TV+CA and MPCC TV for perception inaccuracies
robustness happens at a velocity equal to 70 km/h, where the
torque vectoring allows a higher accuracy even in nominal
conditions.

Considering the scope of the paper, which is to assess the
performance of the proposed controller at the limit of handling,
we will focus on the robustness analysis of the MPCC TV+CA
during the double lane change at 70 km/h. Table IV presents the
results of the controller robustness analysis against variations in
vehicle parameters. The proposed MPCC TV+CA is the only one
with a CR lower than 100% among the controllers evaluated.
Although the vehicle parameters variations impact the proposed
controller’s performance, a CR equal to 31% and an NMR of
35% demonstrate the MPCC TV+CA robustness. The slight
difference between NMR and CR suggests that the controller
can avoid obstacles only a few times when it enters the danger
zone. However, the vehicle collides with a velocity on average
29% lower than its reference velocity. Thus, it can still mitigate
the consequences of collisions. Particularly interesting are the

TABLE V
DIFFERENT COLLISION PATTERNS OBSERVED IN THE MONTE CARLO ANALYSIS

FOR THE PROPOSED CONTROLLER

(a) (b)

Fig. 15. Collision and Near Miss Rates change to the probabilities variation
of parameter configurations for parameter variations (a) and perception inaccu-
racies (b).

collision patterns at the variation of the vehicle parameters;
see Table V. Approximately 50% of collisions occur due to
the vehicle driving off-road on the right side. This indicates
that the controller can successfully drive the vehicle around the
obstacles, but it compromises its ability to rejoin the original
trajectory. This behaviour may stem from increased model mis-
match caused by parameter variations, impacting the controller’s
efficacy. Further proof is the 23% of collision with the second
obstacle, which indicates how the vehicle can safely avoid the
first collision but cannot avoid the second one. Although the
collision rate is at 31%, as depicted in Fig. 15(a), it is evident
that the trend in collision rates is exponentially decreasing
with the occurrence of vehicle parameter configurations with
higher probability. This observation underscores the robustness
of the proposed controller to vehicle parameter variations, as it
highlights that the 90% of collisions occurs for configurations
where parameters are situated in the tails of the Gaussian dis-
tribution, so less probable configurations in a real-life scenario.
The configurations with the highest probability have only ∼ 1
% of collisions.

Table IV also presents the results of the controller robust-
ness to perception inaccuracies. The proposed MPCC TV+CA
demonstrates robustness comparable to that under vehicle pa-
rameter variations, achieving a CR of 38.5% and an NMR
of 49.5%. This underscores the robustness of the proposed
approach not only against vehicle parameter variations but also
against uncertainties in vehicle and obstacle localisation. In con-
trast to the previous scenario, when the controller fails, it leaves
the roadway only 44% of the time, see Table V. Particularly
noteworthy is that in 55% of collision cases, the first obstacle
encountered results in a collision. This suggests that the MPCC
TV+CA, influenced by uncertainties in the vehicle and obstacle
localisation, can fail to promptly replan its trajectory around
obstacles. In comparison, under vehicle parameter variations,
the MPCC TV+CA primarily fails after successfully avoiding
the first and second obstacles. An explanation for this could
be the increased error in obstacle localisation, which causes
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(a)

(b)

Fig. 16. Sensitivity analysis results for vehicle parameter variations (a) and
vehicle perception inaccuracies (b).

the MPCC TV+CA to be unaware of its proximity to ob-
stacles, leading to hazardous situations. Furthermore, erro-
neous obstacle localisation can mislead the MPCC TV+CA
into believing that the road ahead is obstructed, pre-
venting the vehicle from passing safely with adequate
distance.

Fig. 15(b) shows the trend in collision and near miss rates
as the probability of perception inaccuracies decreases. As
expected, the 75% of collisions happens when the proposed
controller is affected by the lowest probability of perception
accuracies. Once again, the exponential decrease in the number
of collisions and near-miss rate events with the increase of
perception accuracy probability highlights the robustness of the
proposed controller.

C. Sensitivity Analysis

Fig. 16(a) shows the SI indices for the PAWN sensitivity
analysis evaluating the vehicle parameter variations. The box
plot area represents the uncertainty of these indices, which has
been minimised due to the extensive number of simulations
conducted. It is visible that the nine analysed parameters can
be split into three influential groups. The most influential group
consists of only one parameter: the lateral peak friction coeffi-
cient for the rear axle (μyR

). This suggests that μyR
influences

the performance of the proposed controller the most, which can
be explained by the fact that a decrease in μyR

can lead the
vehicle to an oversteer behaviour, which is particularly difficult
to control and stabilise even for a human driver [45]. The second
group is composed of Δm, the front and rear axle cornering
stiffness (KyF andKyR) and the front axle lateral peak friction
coefficient. Once again, the parametersKyF ,KyR and μyF

can
strongly vary the vehicle behaviour, changing it from understeer
to oversteer and vice versa. A similar conclusion can also be
stated for Δm because it is not placed in the vehicle CoG,
so it moves the CoG location. The least influential parameters

are the front and rear axle longitudinal stiffness shape factors
(KxF and KxR), the tyre relaxation length (Rel) and the
electric motor delay (τ ). The relative non-influential effect on
the proposed controller performance can be explained by the
fact that the analysis scenario involves primarily the vehicle
lateral dynamics and not the longitudinal one, which is most
affected by the KxF and KxR. The analysis of the effect of
Rel and τ suggests that the controller can deal adequately with
an additional delay. A proof is that a similar MPCC controller has
also successfully been implemented for a vehicle with hydraulic
brakes [5], which have even slower dynamics. Fig. 16(b) shows
the SI indices for vehicle perception uncertainties. The analysis
reveals that the five examined parameters can be categorised
into three distinct levels of influence. The most influential one
consists of the lateral obstacle localisation (σObs,Y ) error which
strongly limits the controller’s capacity to avoid obstacles. A
possible explanation is that the increased σObs,Y can lead to an
impossible scenario for the MPCC. For instance, a further step
of the first or second obstacle towards the road centre can make
collision avoidance unfeasible. The second group consists of
σObs,X . Interestingly, controller failure can occur not only due
to the magnitude of noise but, more critically, due to the direction
and timing of misleading obstacle localisation. This means that
vehicle obstacle localisation errors are the most influencing
factors for controller performance, and they must be carefully
considered during the controller design. The third group include
the vehicle localisation errors and the false negative probability.
It is expected that σV eh,X , σV eh,Y could have a similar effect
on the MPCC performance than σObs,X and σObs,Y . However,
the MPCC feedback on the vehicle localisation can partially
compensate for their effect. The relatively lower influence of
the false negative percentage (coefficient λ) can be attributed
to its probabilistic nature. Since we cannot control when a
false negative occurs within a scenario, it may happen when
the vehicle is too far from the obstacle to be influenced by it.
However, controlling the timing of false negatives is unrealistic
and, thus, has not been analysed in this study.

VII. CONCLUSION

This paper presents a novel approach to vehicle obstacle
avoidance. It is based on a nonlinear Model Predictive Con-
touring Control, which employs torque vectoring capabilities
to stabilise the vehicle, performing evasive manoeuvres at the
limit of handling. The proposed controller with torque vectoring
and collision avoidance successfully avoids the two obstacles in
the Double Lane Change manoeuvre with high and low friction
conditions, and it has proven to work on a rapid prototyping
platform in real-time with an average solving time of 38.9ms.
The first baseline controller without collision avoidance collides
with the first obstacle due to its lack of motion replanning capa-
bility. The second baseline controller without torque vectoring
cannot stabilise the vehicle after avoiding the first obstacle,
and it collides with the second one. The proposed controller
produces an extra yaw moment up to ∼ 2000 Nm in magnitude,
increasing the vehicle’s lateral agility to avoid the obstacles and
reduce the vehicle sideslip angle peak down to 7.5deg rather
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than the 16deg for the second baseline controller without torque
vectoring. However, the proposed controller requires a more
accurate prediction model, so an extended Fiala tyre model has
been developed to describe the tyre behaviour in combined slip
conditions. Using extended Monte Carlo analyses, the proposed
controller shows robustness to vehicle parameter variations and
perception inaccuracies with a collision rate of respectively
31.20% and 38.50%. As further proof, the percentage of crashes
occurring with simulated values near the nominal vehicle param-
eters and the most probable vehicle perception inaccuracies is
below 1.5%. Furthermore, the results of sensitivity analysis are
statistically assessed to evaluate the sensitivity indices to each
analysed parameter. The lateral peak friction coefficient of the
rear axle and the obstacle localisation error in the lateral direction
have a higher effect on the controller performance. Future works
involve the experimental validation of the proposed controller
and the enhancement of the algorithm to better deal with the
most influential parameters.
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