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A Vision-based Semi-autonomous Impedance
Control Method in Teleoperation

Student: Yu-Chih Huang(4799100)
Supervised by Prof. dr. ir. David Abbink

and Dr. Luka Peternel

Abstract—Teleoperation of a robot is often necessary when
the remote site is not safe for humans. Moreover, to interact
with dynamic environments safely, a teleoperation method called
teleimpedance, which allows the human operator to control the
impedance of the robot, is used. The main drawback of this
method is that the human workload may increase. This could
be tackled by using autonomous impedance controllers to relieve
the human operator from this added workload. However, most of
the existing autonomous impedance controllers require physical
contact before adjusting to unexpected environmental changes.
This study presents a novel semi-autonomous impedance control
method that includes a vision-based autonomous impedance
controller and a voice-based impedance control interface. The
first element allows the robot to adjust to the environment before
contact, whereas the second element allows the human operator
to interact with the impedance controller when the vision-based
autonomy is performing poorly or not sufficient under the
environment. The method has four modalities: (i) Perturbation
rejection mode, (ii) Object property detection mode, (iii) Verbal
confirmation mode, (iv) Voice control mode. To provide a proof-
of-concept of the proposed method, experiments were performed
on a teleoperation setup that uses a Force Dimension Sigma.7
as the slave robot, a computer mouse as the master device,
and a camera device. The proposed method was analyzed with
a position tracking task and contact establishing task, where
changing impedance can be crucial and beneficial.

Index Terms—Impedance, Teleoperation, Vision-based, Semi-
autonomous.

I. INTRODUCTION

Tasks in hazardous or remote environments often require
robots to perform them because such environments are unsafe
or hard to reach for humans. Moreover, some of these tasks
involve the interaction with dynamic environments, which
could be too complex for fully autonomous robots to handle
with the current artificial intelligence (AI) capacity. To make
robots able to interact with dynamic environments, human
adaptability and cognitive capabilities are introduced to robot
systems through human-in-the-loop control. One common way
to achieve this is teleoperation [1].

In classical teleoperation, the human operator can control
the motion of the slave robot remotely through a master device.
However, the fact that it focuses only on position control can
result in the robot damaging the environment with high interac-
tion forces or causing unstable interactions when establishing
contact with an environment. Unlike robots, humans can
instinctively adjust their neuromuscular impedance according

Online resource available at: https://www.youtube.com/playlist?list=
PLyVZusC3uqby-yTSGuCyibykTLqpMdVae

to changes in the environment [2], [3]. In order to address
the lack of ability to interact with dynamic environments in
classical teleoperation, a concept called teleimpedance that
allows the human operator to control the impedance of the
robot was developed in the past years [4], [5].

Teleimpedance includes an additional channel of impedance
command to the classical teleoperation setup, which can
be realized with an interface. Although using teleimpedance
allows the robot to interact with dynamic environments, it
also comes with some drawbacks. The state-of-the-art inter-
faces in teleimpedance, such as the button interface [6] and
the Electromyography (EMG) interfaces [7]–[9], have certain
shortcomings. For the button interface, the human operator
must press the button with one finger, thus losing 1 Degree of
Freedom (DoF). Moreoever, the EMG interface needs a setup
of electrodes to measure the EMG signals, and requires time-
consuming calibrations.

Another drawback of using teleimpedance is that the setup
may significantly increase the workload of the human operator
compared to a classical teleoperation setup. Therefore, if the
human operator’s workload can be partially relieved, their
overall performance might improve because they only have
to focus on motion control instead of both tasks. The fatigue
of the human operator would also not accumulate as fast. Au-
tonomous impedance controllers and shared control methods
can be introduced to the teleportation system to offload the
impedance control task from the human operator.

There are numerous studies dedicated to developing au-
tonomous impedance controllers, but only a few can be used in
teleoperation. Autonomous impedance controllers developed
with learning methods, such as reinforcement learning [10]
or learning from demonstration [11]–[13] cannot be used
in teleoperation systems because the impedance values are
learned with a fixed trajectory. This is not compatible with
teleoperation because human operators need to change the
trajectory rapidly while the impedance is adjusting. One type
of impedance controllers that is suitable for teleoperation sys-
tems is an adaptive impedance controller. Within this category,
research has been conducted to develop controllers that mimic
human behaviour [14], or that adjust the impedance relying
on information of the environment acquired through sensors
[15]–[17]. However, most of them adjust the impedance only
after interaction with the environment has been established,
which might not be an optimal approach in situations where
the environment is unstable or fragile. To solve this problem,
the appropriate change in impedance prior to contact could be
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estimated by visual feedback.
In addition to an autonomous impedance controller, a shared

control method is needed to offload the impedance control
task. Many studies investigated the shared control method in
teleoperation with different purposes, such as teaching with
shared control [18]–[20], assistive shared control [21]–[23],
or collaborative shared control [24]. However, most of these
studies focus mainly on motion control, and only a few con-
sidered impedance control [8], [16]. Although in the studies of
[8] and [16], impedance control was considered, both studies
do not have vision-based impedance capability and requires
interactions with the environment to make adjustments in their
impedance.

This research aims to develop a vision-based semi-
autonomous impedance control method that can adjust the
impedance of the robot prior to contact, in order to fill the
gap in research and address the disadvantage of autonomous
impedance controllers that require physical contacts to adjust.
The method is inspired by how humans use vision to adjust
their postural impedance before interacting with the environ-
ment.

The proposed method, which includes a vision-based au-
tonomous impedance controller and a voice-based impedance
control interface, has four modalities with different levels of
autonomy. The two fully autonomous modes are incorporated
within the vision-based autonomous impedance controller. The
controller uses collision detection to predict incoming per-
turbations in the perturbation rejection mode and uses object
property detection algorithms to acquire environment informa-
tion without physical contact in the object property detection
mode. However, because current detection algorithms do not
have perfect accuracy yet, the voice-based impedance control
interface is included to allow the human operator to interact
with the vision-based autonomous impedance controller and
override its decisions if necessary. The voice-based impedance
control interface also contains two modes, where the verbal
confirmation mode shares the impedance control between the
operator and the controller, and the voice control mode takes
over the impedance control entirely.

This study introduces a novel vision-based semi-
autonomous impedance control method in teleoperation
and conducts proof-of-concept validation experiments. The
experiments were performed on a teleoperation setup with a
Force Dimension Sigma.7 haptic device as the slave robot,
a computer mouse as the master device, and a camera
device for visual feedback. The experiments consist of two
tasks that demonstrate the performance of each modality of
the proposed method: rejecting external perturbations in a
position tracking task and establishing contact with different
objects.

A description of the impedance control of the robot
used in this study is given in section II. The two ele-
ments in the proposed impedance control method, the vision-
based autonomous impedance controller and the voice-based
impedance control interface, are introduced in section III and
IV, respectively. This is followed by the proof-of-concept
experiments in section V, the discussion of the results in
section VI, and conclusions in section VII.

II. IMPEDANCE CONTROL OF THE ROBOT

A. General Control Scheme

The block scheme of the proposed vision-based semi-
autonomous impedance control method is shown in Fig. 1.
The human operator controls the motion of the robot through
a master device with optional force feedback on the master
device (see Appendix A.1). The method has four modalities:
(i) Perturbation rejection mode; (ii) Object property detection
mode; (iii) Verbal confirmation mode; (iv) Voice control mode.
The two autonomous modes (mode i, ii) are part of the vision-
based autonomous impedance controller, where the controller
processes the camera feed with vision algorithms and sends
the proper impedance command to the robot. The impedance is
performed by the robot using the Cartesian impedance control
method. The physical interactions between the slave robot
and the environment are shown in Fig. 1, where the robot
exerts a force Fs on the environment, and the environment
exerts a force Fext on the robot. During the interactions,
the human operator can assess the situation through visual
feedback and, if needed, activate the voice-based impedance
control interface to override the robot impedance value with
the verbal confirmation mode (mode iii) or the voice control
mode (mode iv).

B. Robot Stiffness Control

The Cartesian impedance control method was used on the
Sigma.7 robot which has 7 DOFs where 6 DoFs are from
the rotation and translation of the robot, and 1 DoF is from
the gripping button on the robot. However, the proposed
method in this study focuses only on controlling the stiffness
and damping coefficient in translation axes of the robot end-
effector so the following derivation will only consider 3 DoFs
instead of 7 DoFs, which excludes the degrees of freedom for
rotation (3 DoFs) and the gripping button (1 DoF).

The robot’s physical interactions are controlled by a Carte-
sian impedance controller defined as:

f =D(ẋd − ẋa) +K(xd − xa) (1)

where f ∈ R3 is the endpoint force exerted by the robot on
the environment, xd ∈ R3 and xa ∈ R3 are the desired and
the actual end-effector position of the robot. K ∈ R3x3 is
the Cartesian stiffness matrix and D ∈ R3x3 is the Cartesian
damping matrix. The stiffness matrix K is given by either the
autonomous impedance controller or the human operator as
diag{k} where k = [kx ky kz] [25]. The damping matrix D
was designed based on the stiffness matrix K at each time-
step:

D = 2Dξ

√
K (2)

where Dξ ∈ R3x3 is a diagonal matrix that contains the
damping factors, which were set to 0.7 for critical damping in
this study.
A robot model of n-flexible joints [26] is considered in joint
space because the robot is controlled by actuating each joint
with the desired torque:

M(q)q̈ +C(q̇)q̇ + g(q) = τ + τext (3)
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Fig. 1. Block diagram of the vision-based semi-autonomous impedance control method. The bottom block (red) is the teleoperation framework for motion
control. The upper half is the impedance control loop. The autonomous impedance control block (blue) contains the vision-based autonomous impedance
controller with the perturbation rejection mode (mode i) and the object property detection mode (mode ii). The human impedance control block (green)
contains the voice-based impedance control interface with the verbal confirmation mode (mode iii) and voice control mode (mode iv).

where τ ∈ R3 is a vector of robot joint torques, q ∈ R3 is
a vector of robot joint angles, M ∈ R3x3 is the robot mass
matrix, C ∈ R3x3 is the Coriolis and centrifugal matrix, and
g ∈ R3 is the gravity vector.

The desired interaction force f can be mapped into the
torque controlled scheme with the Jacobian matrix of the robot
J , and the torque input of the robot can be derived by:

τ =M(q)q̈ +C(q̇)q̇ + g(q) + JT (q)f (4)

where J ∈ R3x3 is the Sigma.7 Jacobian matrix.

III. VISION-BASED AUTONOMOUS IMPEDANCE
CONTROLLER

A. Perturbation Rejection Mode

1) Design Concept and Implementation: It is important for
robots to follow the trajectory closely in a position tracking
task if slight position errors could lead to unstable movements
or damage the environment. For example, in a drilling task,
the robot should hold its position perpendicular to the drilling
direction under external perturbations to minimize the dam-
age on the environment. To reject perturbations, the robot
needs to increase its stiffness when perturbations are detected.
The proposed perturbation rejection mode detects incoming
perturbations through vision and increases the impedance
beforehand to minimize position errors.

The advantage of the proposed perturbation rejection mode
is that it does not require contact to adjust the impedance and
can do so before any interaction unlike most of the existing
autonomous impedance controllers mentioned in section I.

In order to detect perturbations with vision, a motion
detection algorithm and a tracking algorithm are integrated
(see Appendix A.2). The motion detection algorithm is used
to detect any unknown objects that are moving within the
camera view, and the object tracking algorithm is used to track
the position of the robot. A perturbation is identified when

the minimum distance between the detected motion and the
robot is less than a defined safe distance. The robot will then
increase its stiffness from a relatively low impedance KL to
high impedance KH when perturbations are detected.

The algorithm is implemented using 2D vision since the
objective of the design concept is to demonstrate the behaviour
of reacting prior to making contact with the environment
and before position tracking errors occur. However, other 3D
collision detection vision algorithms could also be integrated
into this impedance control method. In short, the key of
the concept is to switch from relative low impedance KL

to high impedance KH when the vision algorithms detect
perturbations.

2) Design Evaluation: A position tracking experiment
was conducted in simulation to compare the vision-based
impedance controller with sensor-based impedance controllers.
This approach is selected in order to generate the same
perturbations, which would be hard to achieve in the real
world.

We conducted the simulation with only one dimension
(x-axis) for simplicity so we will refer to the impedance
coefficients in robot impedance control as k and c, instead
of the matrices K and D in this section. The sensor-based
impedance controllers used in the simulation can be catego-
rized into two types according to the sensor used, as shown
in Table I.

To better standardize the comparison between vision-based
controller and the two different types of sensor-based con-
trollers, a position perturbation and a force perturbation were
simulated to make the process repeatable (see Appendix B). To
compare the vision-based controller with the position sensor-
based controller group, a collision between an object and the
robot arm was simulated to generate position perturbations.
An impact force perturbation was simulated to compare the
vision-based controller with the force sensor-based controller
group.
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TABLE I
A VISION-BASED AND SENSOR-BASED CONTROLLER SUMMARY

Controller Impedance Value
Vision-based
(Perturbation detection)

kL → kH ,
if perturbation detected

Position sensor-based
(Function of position error)

k = kL + α(xd − x)2
α ≥ 0 is a constant

Position sensor-based
(position error
threshold, ep,th, switching)

k =

{
kL if

∣∣(xd − x)
∣∣ < ep,th

kH if
∣∣(xd − x)

∣∣ ≥ ep,th
Force sensor-based
(Function of external force)

k = kL + βFext
2

β ≥ 0 is a constant
Force sensor-based
(external force
threshold, ef,th, switching)

k =

{
kL if |Fext| < ef,th
kH if |Fext| ≥ ef,th

The desired position of the robot xd is set to 0, so the reaction
force of the robot with impedance control is calculated as:

F = −kx− cẋ (5)

where k is the stiffness of the robot, c is the damping
coefficient, which equals to 2 ∗ 0.7

√
k, and x is the position

of the robot, which also equals to the displacement from the
desired position xd since it is 0.

The system is considered to act as a spring-mass-damper
system with the robot under impedance control, and the
perturbations are the external forces exerted on the system.
The robot positions were calculated by solving the following
differential equation:

ẍ ==
c

m
ẋ− k

m
x+

Fext
m

(6)

where x is the position of the robot. m is the total mass of the
robot and the object, if it is a collision perturbation. Otherwise,
m is the mass of the robot. Fext is the external forces exerted
on the system by perturbations. k is the stiffness of the robot,
which is commanded by the impedance controller, and c is the
damping coefficient which equals to 2 ∗ 0.7

√
k.

The results of the robot under the object collision pertur-
bation show that the vision-based controller has a maximum
position error of 0.063m, the position sensor-based controller
(function of position error) has a maximum position error
of 0.069m, and the position sensor-based controller (position
error threshold switching) has a maximum position error
of 0.088m. Moreover, under the impact force perturbation,
the vision-based controller has a maximum position error of
0.05m, the force sensor-based controller (function of external
force) has a maximum position error of 0.058m, and the force
sensor-based controller (external force threshold switching)
has a maximum position error of 0.091m. Under both per-
turbations, the vision-based controller had the least maximum
position error among the other controllers, as shown in Fig. 2.

B. Object Property Detection Mode

1) Design Concept and Implementation: Humans often use
their experience along with visual cues to estimate the property
of an object, and adjust their neuromuscular impedance to

Fig. 2. Design evaluation of the perturbation rejection mode (mode i).
The graph on the left shows the position of the robot controlled with the
vision-based and the position sensor-based controllers under object collision
perturbation. The graph on the right shows the position of the robot controlled
with the vision-based and the force sensor-based controllers under impact
force perturbation

interact with the object. Inspired by this behaviour, the object
property detection mode was designed to adjust the impedance
according to the detected material. To make this possible, the
relation between the material properties and the impedance
has to be established.

The main two databases that were used in known studies
on material recognition algorithms are the Flickr Material
Database (FMD) and the Materials in Context Database
(MINC). FMD was introduced in [27], the database has
10 categories with 100 samples in each category. MINC
was introduced in [28], the database contains 23 categories
with at least 14000 patches in each category. 10 materials
(Glass, Leather, Metal, Paper, Plastic, Stone, Concrete, Wood,
Ceramic, Rubber) were chosen from the databases and cate-
gorized into groups by their properties: elasticity and fragility
(see Appendix C).

The results are shown in Table II. The chosen materials were
categorized into three groups: ”Rigid, Fragile”, ”Rigid, Not
Fragile”, ”Elastic, Not Fragile”, each group has a correspond-
ing impedance value for better interaction performance. For
example, if the material is in the ”Rigid, Fragile” group then
the robot should have a low impedance value for compliant
interactions so that the robot will not damage the object, and
if the material is in the ”Elastic, Not Fragile” group, the robot
should have a higher impedance so that the damping matrix
would be higher to stabilize the interaction.

The developed relation between the material and the
impedance was integrated into an object detection algorithm
(see Appendix A.2). Ideally, the object property detection algo-
rithm should be a material recognition algorithm instead of an
object detection algorithm. However, the material recognition
algorithms are not as widely available as object detection
algorithms. Since this study did not focus on vision and visual
recognition itself but rather on impedance control method that
makes decision based on the vision output, an object detection
algorithm (YOLOv3) [29] that can be easily implemented
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TABLE II
A MATERIAL PROPERTY CATEGORIZATION TABLE

Material Elasticity Fragility
Glass Rigid Fragile
Leather Elastic Not Fragile
Metal Rigid Not Fragile
Paper Rigid Fragile
Plastic Rigid Not Fragile
Concrete Rigid Fragile
Stone Rigid Not Fragile
Wood Rigid Not Fragile
Ceramic

Rigid Not Fragile
(Engineering)
Rubber Elastic Not Fragile

was used. The algorithm output was adjusted into a type of
material to make the method work smoothly for demonstration.
Also note that the material recognition databases were taken
as a reference when selecting the materials to analyze their
properties and select corresponding impedance values, so it is
still possible to implement material recognition algorithms in
future work.

2) Design Evaluation: In the object property detection
mode, the robot would change the impedance autonomously
when the algorithm detects a material. In this case, the
human operator only has to focus on the motion control of
the robot. However, the detection algorithms can sometimes
have low detection accuracy. Moreover, the impedance can
only be changed discretely by switching between predefined
impedance values, which might be insufficient if the task
requires dynamic impedance changes. We improved the down-
falls of the object property detection mode by having human
input to correct the detection results or control the impedance
dynamically.

IV. VOICE-BASED IMPEDANCE CONTROL INTERFACE

A. Verbal Confirmation Mode

1) Design Concept and Implementation: To deal with sit-
uations where the detection algorithm might not be accurate,
a verbal command function was implemented in the verbal
confirmation mode. It is activated when the confidence score
of the detection result is lower than a predefined threshold.
The robot will then announce the detected material, and the
human operator is required to either confirm the detection
results by saying ”yes” or override the results by saying the
correct material. This mode allows the human operator to
partly offload the impedance control task to the robot, but
can still have control when the robot is not so confident.

2) Design Evaluation: The object property detection mode
and the verbal confirmation mode both have the same draw-
back, which is the impedance values can only be switched dis-
cretely between the predefined impedance values and cannot
have impedance values in between or make small adjustments.
This might be sufficient when the robot is approaching the
object and establishing contact with different materials, except
when it comes to executing an interactive task after the contact

is established where the human operator would need to change
the impedance continuously instead of switching discretely.

B. Voice Control Mode

1) Design Concept and Implementation: The voice control
mode gives the human operator the ability to adjust the
impedance value dynamically hands-free. This is done by
analyzing the nominal frequencies of the audio data. The voice
control mode can be activated by making a high pitch tone
for 2-3 seconds. Once it is activated, the impedance control is
assigned entirely to the human operator. The human operator
can then adjust the impedance by making a high/low pitch
tone.

The voice control mode changes the impedance value with a
fixed speed determined by the set increment size and sample
time. It processes the audio data in each loop to adjust the
impedance as follow:

1) Receive audio data from the microphone.
2) Perform fast Fourier transform (FFT) on the audio data.
3) Get the top 3 nominal frequency signals, f1, f2, f3 (large

to small amplitude).
4) Calculate the average amplitude of f1, f2, f3.
5) If the average amplitude is less than a noise threshold,

then no impedance changes will be made. Otherwise, the
voice command frequency fc will be calculated to best
represent the current tone: fc = 3f1+2f2+f3

6 .
6) If fc is higher than the threshold frequency fth, the

impedance k increases by a increment size. On the
contrary, the impedance k decreases by a increment size.

2) Design Evaluation: : An impedance profile following
experiment on a graphic user interface (GUI) was performed
to evaluate the control performance of the voice control mode
(see Appendix D).

The user was asked to follow the given impedance profiles,
which are a profile with step changes in impedance and a
sine wave profile, using the voice control interface in this
experiment. The impedance profile that contains step changes
of impedance is an imitation of the real-world application, and
the sine wave profile is used to evaluate the dynamic nature of
this interface. The results in Fig. 3 show that the impedance
increases when fc ≥ fth, and decreases when fc < fth. Also,
a dropping behaviour in the high voice command frequency
can be seen compared to the low voice command frequency
in the top graphs of Fig. 3. This indicates that it is harder for
the user to maintain a high pitch tone than a low pitch tone.
The commanded impedance k in the bottom graph of Fig. 3a
shows that the impedance increased 150N/m within 1.1s and
decreased 100N/m in 0.7s with a fixed slope. This is because
the speed of changing in impedance is determined by the set
increment size and the sample time. From the result shown in
Fig 3b, the following performance could be evaluated with the
impedance error kerr, which is defined as |kd − k|. The mean
value of kerr is 15.33 N/m and the maximum value of kerr is
45.58 N/m. Both values can be corrected in 4-10 sample time
which means that the method follows the sine wave impedance
profile closely.
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(a) Step change

(b) Sine wave

Fig. 3. Design evaluation of the voice control mode (mode iv). The top graphs
show the voice command frequency fc and the threshold frequency fth. The
bottom graphs show the desired impedance profile kd and the impedance
commanded by the user k. (a) shows the step changes impedance profile
following performance (b) shows the sine wave impedance profile following
performance. (increment size: ±5N/m, sample time: 0.035s).

V. EXPERIMENTS

Proof-of-concept experiments were performed on a tele-
operation setup that includes the Force Dimension Sigma.7
(7 DoF), a computer mouse (2 DoF), and a camera device
(see Appendix A) to demonstrate the proposed vision-based
semi-autonomous impedance control method in real-world
applications (see Fig. 4). The computer mouse is the master
device that controls the y-z plane motion of the Sigma.7,
and the proposed method processes the camera feed captured
by the camera device and sends the impedance value to
the Sigma.7. The experiments involved two tasks, a position
tracking task and a contact establishing task, where changing
the impedance of the robot could be crucial or beneficial.

In all the experiments, there was no rotation with respect to
the robot base frame in the impedance command matrixK and
the proposed method commands the same impedance value for
all axes in Cartesian space. Therefore, K was diagonal and
had the same impedance value in all three axes. From now
on, we will only simply describe and plot K as one value
that represents the impedance in all three Cartesian axes.

Fig. 4. Photos from the experiments. The photo on the top shows the human
operator controlling the slave robot through the master device (computer
mouse). The photo on the bottom left shows the position tracking experiment.
The human assistant applies physical perturbations on the end-effector of
the robot. The photo on the bottom right shows the contact establishing
experiment. The human operator controls the robot to approach the object.
The robot base frame orientation is illustrated by the blue arrows for y-axis
and z-axis. The x-axis follows the right-handed coordinate system.

The first task was a position tracking task, the goal was
to control the robot to hold its position while undertaking
external perturbations. Ideally, the robot should be compliant
to avoid large interaction forces that might damage the robot
if possible. However, in some cases, where small position
errors could lead to unstable interactions such as drilling, the
priority of the task is to minimize position error caused by
perturbations while following a reference trajectory, the robot’s
impedance had to be increased. Considering such cases, the
perturbation rejection mode was implemented to reject external
perturbations in the position tracking task and to demonstrate
the stiffen up behaviour of the robot.

The goal of the second task was to approach and establish
contact with different objects. If the object property is un-
known to the human operator due to lack of visual feedback
or the exact position of the object is unknown because of
sensory uncertainty, the robot should approach the object
slowly and compliantly. While that may be true, if the robot
could obtain knowledge about the object property beforehand,
it can approach the object slightly faster and without the risk of
breaking it by using the proper impedance. The object property
detection mode, the verbal confirmation mode, and the voice
control mode were used during this task to approach different
objects with the proper impedance.

A. Position Tracking Task

The robot was controlled to hold the desired position with
the initial impedance K set to 100N/m, and the human
assistant applied an external force mainly along the x-y
plane to perturb the robot. If a perturbation is detected by
the proposed method, the impedance K will increase from
100N/m to 400N/m. The results of the experiment are shown
in Fig. 5. The robot was first perturbed without the perturbation
rejection mode activated, then the robot was perturbed again
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Fig. 5. Experiment results using the perturbation rejection mode (mode i)
on the position tracking task. The blue shaded area shows when the robot is
perturbed with the mode disabled. The red shaded area shows when the robot
is perturbed with the mode activated. The first graph shows the commanded
impedance K. The second graph shows the external force exerted on the slave
robot. The third graph shows the end-effector position of the slave robot xs,
ys, zs.

with approximately the same external force with the per-
turbation rejection mode. The displacement difference under
perturbations can be seen in the third graph. The displacement
of the second perturbation was much smaller than the first
perturbation because the robot impedance K was set to 400
N/m as the method detects a perturbation.

B. Contact Establishing Task

In the second set of experiments, different objects were
placed in front of the robot to show the proposed method
changed the impedance of the robot accordingly. Then, the
human operator controlled the robot to approach the object
and establish contact with teleoperation. The purpose of this
experiment is to demonstrate different modes of the method
changing the impedance to handle different scenarios, includ-
ing when the vision system performed poorly and human
interventions were required. In each scenario, the robot was
perturbed with approximately the same amount of force for
better visual comparison on the position displacements in the
figures and videos between different impedance values.

Three scenarios that requires different extents of human
intervention were considered:
1) The first scenario is when the vision algorithm has

good accuracy (high confidence score) and does not
need human interventions. The object property detection
mode was demonstrated by establishing contact with
three different objects that represent metal, glass, and
rubber. The results are shown in Fig. 6. The top left
graph shows that the robot had an initial impedance K
100N/m, which later changed to 300N/m, 50N/m, and
200N/m by detecting metal, glass, and rubber, respec-
tively. The bottom left graph shows that approximately
3N of external forces were applied to the robot after the

impedance value changed. The effect of the impedance
change could be visually interpreted by the difference in
position displacements under the same amount of force
showed in the yellow shaded area on the top right graph.

2) The second scenario is when the vision algorithm has
poor performance and requires humans to confirm or
command the correct material. The scenario was created
by placing an object that is (a) made of glass but has low
confidence detection result, (b) made of plastic but was
identified as glass. The verbal confirmation mode was
used to handle the scenario and complete the task. The
robot had an initial impedance K 100N/m in both cases.
In (a), the impedance changed to 50N/m after confirming
the result by saying ”yes”; In (b), the impedance K
increased to 300N/m after overwriting the detection by
saying ”plastic”. The demonstration videos are available
in the online resource and Appendix E.

3) The third scenario is when the human operator wishes
to take over the impedance control and change the
impedance dynamically because the vision algorithm is
performing poorly or switching discretely between pre-
defined impedance values is no longer sufficient for the
task. The scenario was created by placing an object made
of plastic which the robot mistook as glass. The robot had
an initial impedance valueK 100N/m, and the impedance
K changed to 50N/m when the robot identified the object
as glass. The voice control mode was used to take over
the impedance control from the robot. By activating the
voice control mode, the robot impedance K was reset to
100N/m and the human operator can start adjusting the
impedance value by making high and low pitch tones. The
demonstration video is available in the online resource
and Appendix E.

VI. DISCUSSION

The vision-based autonomous impedance controller has the
advantage of adjusting the impedance of the robot before
making contact with the environment. If the environment
is fragile or unstable, adjusting before contact can avoid
damaging the environment or induce unstable interactions. On
the other hand, some methods [14]–[17] adjust the impedance
by using sensors to gather environmental information through
physical interactions, which could be risky for fragile or
unstable environments.

The perturbation detection mode can reject perturbation
by increasing the impedance of the robot before incoming
perturbations are felt. The advantage was demonstrated in
the design evaluation of the perturbation rejection mode. The
simulation results (see Fig. 2) show that the vision-based
autonomous impedance controller has better performance in
the position tracking simulation under perturbations because
the controller can detect perturbations before contact and
adjust the impedance beforehand.

The object property detection mode can adjust the
impedance according to the detected material using visual
feedback. The advantage of doing so is that the robot ap-
proaches the object with the proper impedance, which could
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Fig. 6. Experiment results using the object property detection mode (mode ii) on the contact establishing task. The green shaded area indicates when the
human operator is moving the slave robot by teleoperation. The yellow shaded area indicates when the robot is perturbed with external forces. The ’x’ marker
indicates the robot position and the interaction force between the robot and the object when contact is first established. The top left graph shows the impedance
command, K, received by the slave robot. The top right graph shows the position of the slave robot end-effector xs, ys, zs. The bottom left graph shows
the absolute magnitude of external force exerted on the slave robot end-effector, Fext. The bottom right graph shows the components of Fext.

lower the risk of breaking the object or induce unstable
interactions.

However, there are also disadvantages to the two modes.
The disadvantage of the perturbation detection mode is that
the interaction forces cannot be measured so the force sensor-
based methods are better suited for force tracking tasks. The
disadvantages of the object property detection mode are that
the detection results can sometimes have low accuracy, and the
mode can only change the impedance discretely which might
be insufficient if the situation requires dynamic changes in
impedance.

Another advantage of the proposed method is that it can
handle different environments with unexpected scenarios. This
was achieved by including human interventions using the
voice-based impedance control interface to interact with the
vision-based autonomous impedance controller. The human
operator can correct the detection results with the verbal
confirmation mode when the vision algorithm is performing
poorly. The voice control mode allows the human operator
to take full control over the impedance when changing the
impedance discretely is no longer sufficient under the task
scenario.

The results of the impedance profile following task with
the voice control mode show that the voice control interface
can follow the desired impedance profile closely (see Fig.
3). This interface does not require physical contacts like the
button interfaces [6] or other complex devices [7], [30] that
require physical contact. Also, the microphone setup is much
cheaper and easier to setup compared to the EMG interfaces

[7], [8], [13]. The potential disadvantage of this interface is
that the impedance changing speed is fixed whereas the button
interface can have varied changing speed controlled by the
acceleration of pressing motion. Also, prolonged production
of voice signals, especially high pitch tones, may cause fatigue
or discomfort faster than other interfaces that use fingers or
arms because human limb muscles are generally stronger than
vocal cords.

The proposed method was implemented on a teleoperation
setup to validate it in real-life task scenarios. The position
tracking task demonstrated the stiffening up behaviour of
the robot to minimize the position displacement with the
perturbation rejection mode. The contact establishing task
experiment demonstrated the method adjusting the impedance
under various task scenarios using different levels of autonomy
within the proposed method. The results of the first scenario,
where the vision is perfect, proved that the autonomous
object property detection mode can adjust the impedance
autonomously according to the object material (see Fig. 6).
The second scenario, where the vision has poor performance,
showed that the human operator can successfully interact
with the vision-based autonomous impedance controller with
the verbal confirmation mode when the autonomous mode is
not working properly. A mutual limitation of the two modes
mentioned above is that they are not able to handle scenarios
if the task requires dynamic changes or small adjustments
in impedance because they can only change the impedance
discretely. The voice control mode tackles this limitation by
allowing the human operator to take over the impedance
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control fully with the voice control interface as demonstrated
in the third scenario. Overall, the method was able to offload
the impedance control task from the human operator with
the vision-based autonomous impedance controller, as well as
handling various scenarios using the voice-based impedance
control interface which creates a shared control framework to
keep human in the impedance control loop.

With the proposed method, the human operator can establish
contact with an object using the proper impedance and reject
perturbations during the approaching phase. After the contact
is established, the human operator can use the voice control
mode to make dynamic impedance adjustments according to
the task requirements. A potential limitation of the current
method is that the object property detection mode and the
verbal confirmation mode would not work if the environment
contains objects or scenes that are unknown to the object
property detection algorithm. Although the human operator
can still control the impedance with the voice control interface,
it defeats the purpose of offloading the impedance control to
relieve workload from the human operator.

VII. CONCLUSION

The scope of this study was to introduce the novel method
that explores the identified research gaps and addresses the
disadvantages in existing researches and further demonstrate
proof-of-concept experiments on a teleoperation setup. Hence,
we focused mainly on developing a novel vision-based semi-
autonomous impedance control method and validated it on
a teleoperation setup. In future work, we will go beyond
validation experiments and conduct an in-depth human factor
experiment to study whether or not the workload would de-
crease with the proposed method. Another interesting direction
to explore would be to study the user experience of the
proposed voice control interface and compare it with state-of-
the-art teleimpedance interfaces, such as a button interface.
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12 A. Experiment Setup

The technical details of the teleoperation setup are elaborated in this chapter. The hardware setup for the
teleoperation motion control is introduced in section A.1, the vision system is introduced in section A.2.

A.1. Teleoperation hardware setup
The slave robot is a Force Dimension Sigma.7 haptic device, the specifications can be found on the Force
Dimension company website [5]. The master device is a computer mouse so there is no force feedback in
this teleoperation setup. The master device and the slave robot communicates through local user datagram
protocol (UDP) ports.

The motion command is generated by the planar motion of the mouse which is captured by tracking the
cursor movement on a window (See Fig. A.1). The motion command is used to control the y-z plane motion
of the slave robot.

Figure A.1: Motion control window for tracking the cursor position. The green dot represent the starting robot position. The orange
dashed line represents the safe work space. The blue line is the robot path.

The robot receives the commands and realizes them in a C++ framework that came with the Force Dimen-
sion haptic SDK. A simple visualization of the motion control loop and the corresponding hardware is shown
in Fig. A.2.

Figure A.2: Teleoperation motion control loop
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A.2. Vision system setup
The impedance command of the robot is given according to the output of the algorithms. The impedance
command is realized on the slave robot through the Cartesian impedance control method.

The vision system uses an Asus Zenfone 2 with the DroidCam application installed and connected to the
PC with an USB cable that also has a DroidCam PC interface installed[3]. This allows the PC to access the
microphone and camera of the phone.

The perturbation rejection mode uses a motion detection algorithm and a tracking algorithm to detect
perturbations (see Fig. A.3a). The motion is detected by calculating the first video frame (static background)
with the current video frame, and then bound the difference between the two frames with a rectangle. The
robot tracking is done with the OpenCV built-in object tracker, the CSRT tracker was chosen because the per-
formance seems to be more optimal comparing to other types of trackers. The perturbation will be detected
when the motion bounding rectangle and the centroid of the tracker are less than a safe distance set by the
user depending on how careful they wish to be.

The object property detection mode uses a pre-trained object detection algorithm (YOLOv3) [8] with the
output results that are changed from objects into materials to demonstrate the autonomous changing of
impedance (see Fig. A.3b).

(a) Detection algorithm Implementation by combing the tracking algorithm (box on the
left) and the motion detection algorithm (box on the right).

(b) Object detection algorithm output displaying the detected materials and its confi-
dence score.

Figure A.3: Implementation of the vision algorithms in the vision-based impedance controller.
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16 B. Controller Comparison Simulation

A detailed explanation of the simulation in the design evaluation of the perturbation rejection mode
(mode i). The simulation was considered to be only in one dimension for simplicity and was carried out
in MATLAB.

B.1. Object and robot arm collision simulation
The parameters used in this simulation are listed in table B.1.

Table B.1: THE PARAMETERS OF THE OBJECT COLLISION SIMULATION

Symbol Property Quantity
m1 incoming object mass 2 kg
v1 object initial velocity 5 m/s
m2 robot mass 10 kg
v2 robot initial velocity 0 m/s
k robot initial stiffness 100 N/m

c
robot initial damping coefficient
(2∗0.7∗p

(k))
14 Ns/m

M total mass (m1 +m2) 12 kg
v f velocity after collision 0.6667 m/s

An object with an initial speed of 5 m/s collides with the robot that is holding the desired position in a position
tracking task as shown in Fig. B.1. The collision is assumed to be a non-elastic collision e=0 so the final
velocity of the robot and the object can be derived from the conservation of the momentum:

m1v1 +m2v2 = (m1 +m2)v f = M v f (B.1)

v f =
m1v1

M
(B.2)

Figure B.1: the object (orange) colliding with the robot (blue)

After the collision, the robot and the object are attached and moving with the velocity of v f . The reaction
force of the robot is generated as follow since the robot is under impedance control:

F =−kx − cẋ (B.3)

where x is the position displacement of the robot.
The situation is equivalent to a spring-mass-damper system so the position of the robot is derived by solving
the differential equation (eq. B.4) using the ode function in MATLAB.

M ẍ + cẋ +kx = 0 (B.4)

where x is the robot position.

Figure B.2: The equivalent spring-mass-damper system before and after the object detached from the robot.



B.2. Impact force simulation 17

The equivalent spring-mass-damper system when the object and the robot are attached has a mass of M ,
and when the object drops out, the spring-mass-damper system only has the mass of the robot m2 as shown
in Fig. B.2. For the sake of completeness, the simulation starts from the object colliding with the robot until
the robot goes back to its equilibrium position (initial position). However, only the maximum position dis-
placement was considered when evaluating the performance of the controllers because the human operator
is likely to react through the master device after the object drops out. Hence, the results are zoomed in around
the maximum displacement.

The impedance commands of the controllers during the collision simulation are shown in Fig. B.3. The
vision-based controller has a slight time advantage over the other position sensor-based controllers which
results in better performance when rejecting the perturbation.

Figure B.3: The controllers impedance command versus time plot under object collision perturbation

B.2. Impact force simulation
The parameters used in this simulation are listed in table B.2.

Table B.2: THE PARAMETERS OF THE IMPACT FORCE SIMULATION

Symbol Property Quantity
m robot mass 10 kg
v robot initial velocity 0 m/s
k robot initial stiffness 100 N/m

c
robot initial damping coefficient
(2∗0.7∗p

(k))
14 Ns/m

Fext impact force See Fig. B.4

The robot is under impedance control same as the object collision simulation. The system can be viewed
as a spring-mass-damper system and the robot position is also obtained by solving the differential function.
The difference is that an external force is exerted on the spring-mass-damper system to induce impact force
perturbation.

M ẍ + cẋ +kx = Fext

where x is the robot position. Fext is the impact force perturbation.
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The impact force was simulated with an impact time of 200 ms which is within the average reaction time
for humans [1]. We can assume that the human operator is not likely to react during the sudden impact force
perturbation as shown in Fig. B.4. Additionally, for the same reasoning mentioned in the object collision
simulation section that the human operator might react after the perturbation is over, we focused only on the
maximum position displacement.

Figure B.4: The simulated impact force versus time figure.

The impedance commands of the controllers are shown in Fig. B.5. The vision-based controller has a slight
time advantage over the other force sensor-based controllers which results in better performance in rejecting
the perturbation.

Figure B.5: The controllers impedance command versus time plot under impact force perturbation.
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In order to implement the object property detection mode (mode ii), the relation between the object
property and the impedance was explored. The data was collected mainly from the "Material Data Book"
from the Cambridge Engineering Sector [2] along with some extra resources [4][6][9][7] to supplement the
data for certain materials.

The categorization is based on the elasticity and the fragility of the material. The elasticity is defined
based on the Young’s Modulus E of the material. The material is considered rigid if E is larger than 0.5 GPa,
and elastic if E is less than or equal to 0.5 GPa. The fragility is related to the Yield Strength σy or Tensile
Strength σt s (for materials stronger in compression such as glass, ceramic, stone, concrete, and paper), and
the Fracture Toughness K IC which is a quantitative way of expressing a material’s resistance to crack propa-
gation. The material is considered not fragile if the material is elastic or σy /σt s is larger than 10 MPa and K IC

is larger than or equal to 1 MPa·m1/2. Otherwise, the material is considered fragile. The chosen materials are
categorized into three groups: "Elastic, Not Fragile", "Rigid, Not Fragile", and "Rigid, Fragile". The results are
shown in table. C.1.

Three impedance values are assigned to the groups in order to demonstrate the autonomous impedance
changing behaviour. The actual optimal impedance to interact with the materials in each group still needs
to be determined through experiment. However, this is not the main focus of this study so the assigned
impedance values will suffice for the study.

Figure C.1: Raw data and categorization of the chosen materials. The categorization results are shaded in different color for better
visualization. The tensile strength values are written in blue to distinguish from the yield strength.
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22 D. Voice control GUI design

A GUI (graphic user interface) was designed for the evaluation experiment of the voice control mode. The
GUI allows easy access to the voice control interface. It is designed with the intention to conduct a human
factor experiment on the voice control interface. Although in this master thesis the interface was only used
on one user for the design evaluation of the voice control mode.

For the sake of future possibilities in exploring the user experience of this interface, a thorough explana-
tion of the interface design is included here:
The user can set the current phase to "practice" or "task" depending on which trial he/she is currently in. The
recorded data will only be saved during the task phase when the user presses the "Stop" button. Additionally,
the user can set the threshold frequency fth (default is 300 Hz) by entering the number in Hz since female
and male have different range of voice frequency.

(a) step change (b) sine wave

Figure D.1: The GUI with two different desired impedance profiles.

The videos of the evaluation experiment where a user is trying to follow the desired impedance profiles with
the voice control interface is available at:
(a) step change: https://youtu.be/bZfjJkvtbZw
(b) sine wave: https://youtu.be/vcTUFGrB2YM.

https://youtu.be/bZfjJkvtbZw
https://youtu.be/vcTUFGrB2YM
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24 E. Proof-of-concept Experiment Results

This chapter contains the results of the proof-of-concept experiments. The plots are shown in the first
section and the video links of the experiments are listed in the second section.

E.1. Results of the proof-of-concept experiments
As mentioned in the main context, the impedance matrix K has no rotation with respect to the robot base
frame, and the proposed method commands the same value for all three axes in Cartesian space. Therefore,
the impedance matrix K will be described in a single value and plotted with one value in graphs.

The force data collected during experiments were noisy which we assumed were generated from the robot
hardware. To make the plot clear, all the force data plotted in the following figures were filtered with a lowpass
filter which has a cutoff frequency of 3 Hz. The cutoff frequency was chosen by analyzing the collected force
data with fast Fourier transform.

The result of the proof-of-concept experiment for the perturbation rejection mode (mode i) is shown in
Fig. E.1. The robot is perturbed with approximately the same amount of external force with and without the
perturbation rejection mode activated.

Figure E.1: The experiment result of the perturbation rejection mode. The blue shared area indicates when the robot is perturbed without
the perturbation rejection mode activated. The red shaded area indicates when the robot is perturbed with the perturbation rejection
mode activated. The top graph is the impedance command K . The middle graph is the components of the external force exerted on the
robot Fext . The bottom graph is the position of the robot xs ys zs .
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The following experiment results are all plotted in the same format which is four subplots: The top left
graph shows the impedance command K sent to the robot; the top right figure shows the position of the robot,
xs , ys , and zs ; the bottom left graph shows the absolute magnitude of the external force exerted on the robot,
Fext . The bottom right graph shows the components of Fext .

The result of the proof-of-concept experiment for the object property detection mode (mode ii) is shown
in Fig. E.2. Three objects that the object detection algorithm detects as metal, glass, and rubber were placed
in front of the vision system. The robot changed the impedance accordingly and approximately 3N of external
force was exerted to validate that the impedance was realized on the robot.

Figure E.2: The experiment results of the object property detection mode. The green shaded area indicates when the human operator is
teleoperating the robot. The yellow shaded area is when the robot is under perturbation. The ’x’ marker indicates the robot position and
the interaction force between the robot and the object when contact is first established.
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The results of the proof-of-concept experiment for the verbal confirmation mode (mode iii). Two objects
were placed in front of the vision system where one is correctly detected and the other detection was incor-
rect. The result of the correct detection scenario is shown in Fig. E.3a where the human operator confirmed
the detection result by saying "yes" to the microphone. The result of the incorrect detection scenario is shown
in Fig. E.3b where the human operator overwrites the detection result by saying "plastic" to the microphone.

(a) The experiment results of the verbal confirmation mode under correct detection scenario.

(b) The experiment results of the verbal confirmation mode under incorrect detection scenario.

Figure E.3: Results of the experiments using the verbal confirmation mode. The green shaded area indicates when the human operator
is teleoperating the robot. The yellow shaded area is when the robot is under perturbation. The ’x’ marker indicates the robot position
and the interaction force between the robot and the object when contact is first established.
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The result of the proof-of-concept experiment for the voice control mode (mode iv) is shown in Fig. E.4.
An object was placed in front of the vision system where the robot automatically adjusts the impedance.
However, the human operator wished to change the impedance as they assess the situation. The voice control
interface was activated when the time is around 32s where the impedance resets to 100 N/m and the human
operator took over the impedance control.

Figure E.4: Results of the experiments using the voice control mode. The green shaded area indicates when the human operator is
teleoperating the robot. The yellow shaded area is when the robot is under perturbation. The ’x’ marker indicates the robot position and
the interaction force between the robot and the object when contact is first established.

E.2. Online video resource listings
1. Perturbation Rejection Mode:

A video showing the robot being perturbed with approximately 3N of external force with and without
the perturbation rejection mode is available at:
https://youtu.be/Ic4oGVHgjbA.

2. Object Property Detection Mode:
A video showing the robot adjusting the impedance according to the detected material while the human
assistant perturbs the robot with approximately 3N of external force is available at:
https://youtu.be/EIz4RqWDxEc.

3. Verbal Confirmation Mode:
Correct detection scenario: A video showing the human confirming the detection result by saying "yes"
is available at:
https://youtu.be/QhzELui8RuE.
Incorrect detection scenario: A video showing the human overwriting the detection result by saying
"plastic" is available at:
https://youtu.be/9aouEGbxdM8.

4. Voice Control Mode:
A video showing the human operator controlling the robot impedance with the voice control interface
is available at:
https://youtu.be/oV4HbYZ8P7U.

https://youtu.be/Ic4oGVHgjbA
https://youtu.be/EIz4RqWDxEc
https://youtu.be/QhzELui8RuE
https://youtu.be/9aouEGbxdM8
https://youtu.be/oV4HbYZ8P7U
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