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ABSTRACT

This paper examines the evolution of closing the Reynolds-averaged Navier–Stokes equations by approximating the Reynolds stresses via the
second-moment transport equations themselves. This strategy first proposed by Rotta is markedly in contrast to the more usual approach of
computing an effective “turbulent viscosity” to deduce the turbulent stresses as in a Newtonian fluid in laminar motion. This paper covers
the main elements in the development of this approach and shows examples of applications in complex shear flows that collectively include
the effects of three-dimensional straining, force fields, and time dependence that affect the flow evolution in ways that cannot be readily
mimicked with an eddy viscosity model.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0065211

I. INTRODUCTION

This review summarizes proposals for closing the Reynolds equa-
tions for a fluid in turbulent motion by the strategy commonly referred
to as stress-transport modeling. The writers adopt the more general
term “second-moment closure” so as to include cases where convective
heat or species transport is either itself the main focus of attention or
where they affect the dynamic flow field. While no attempt is made to
go into all the details of any model, we do, however, try to provide
some explanation of why the subject evolved in the way that it did and
give an impression of the roles played by some of the major contribu-
tors to the subject. Thus, unlike a typical research paper in turbulence
modeling, the authors hope that the contents will be readable and,
indeed, read by many whose own research interest lies in quite different
areas of Computational Fluid Dynamics (CFD) or whose interest in
the physics of turbulence is unconnected with CFD.

This review does not venture into the field of turbulence model-
ing of combustion or of two-phase flows; nor of high-Mach-number
or compressible flows. These important omissions were mandated
partly to keep the paper to a manageable length and partly to acknowl-
edge that these are not areas to which we have personally contributed.

Nevertheless, there seems no reason to suppose that the striking
improvements from adopting second-moment closures presented
below will not carry over to situations where density gradients are
vastly greater than those considered here, particularly if density-
weighted averaging is adopted. To the areas which are covered, the
authors bring not only their knowledge but also their prejudices to this
account. Thus, the reader should recognize that our choice of key pro-
posals and publications is a personal one that may differ in at least
some respects from what others attempting a correspondingly brief
overview would have selected.

We start from the unsteady short-term-averaged form of the
equations of motion first introduced by Osborne Reynolds, commonly
known as the Reynolds equation.1 For most of Reynolds’ paper
he adopted a variable density approach that would have taken him
to what is nowadays termed Favre averaging.2 However, he limited
further analysis to attempting to show why water (considered a uni-
form density fluid) flowing through a plane channel underwent transi-
tion from laminar to turbulent at a particular value of the
dimensionless group we call the Reynolds number. The equation may
be written
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Here, independent variables t and xj track time and space variations in
the mean velocity Ui and pressure P; Fn

i are source-like contributions
from body forces (of which there may be more than one); and q and �
are the fluid density and kinematic viscosity. Finally, the second-order
tensor uiuj is the kinematic Reynolds stress that has arisen from aver-
aging the non-linear convection term in the Navier–Stokes equations.
It is an unknown quantity and the subject of turbulence modeling has,
to a large extent, been, about devising a path for its determination.

Boussinesq3 had suggested, even prior to Reynolds’ paper, that
turbulent flow should be treated in the same way as a laminar flow but
with a much larger effective turbulent viscosity,

uiuj ¼ ��t
@Ui

@xj
þ
@Uj

@xi

 !
: (2)

Thus, the task of determining a second-order tensor was reduced to
that of determining the turbulent viscosity, presumed to be a scalar
quantity. Although their analyses had not explicitly adopted an
eddy-viscosity assumption, Taylor4 and Prandtl,5 examining the con-
sequences in a simple shear flow of an eddy being displaced in the
direction of the velocity gradient, arrived at forms that did imply a
turbulent viscosity: the mixing-length hypothesis was born! In the
years that followed, other far more elaborate if incomplete routes to
modeling turbulence were put forward. However, with the arrival of
the 1960s and the digital computer with its scope for solving numeri-
cally the Reynolds equations (at least for relatively simple cases), the
principal focus of attention of engineering turbulence-modeling
research was once again focused on modeling based on Eq. (2).

Over the rather more than half a century that this class of models
has been used in CFD codes, both in research establishments and
industry, many successful computations have been made. However,
there must have been nearly as many cases, especially in separated
flows or where force fields exert a strong effect on the turbulence struc-
ture, where the predictions either seriously fail to capture some impor-
tant aspects of the flow or where the level of accuracy falls short of that
desired.

The response of the CFD community to these shortcomings has
principally been to turn to a more detailed approach to modeling tur-
bulence: large-eddy simulation (LES) or some less demanding hybrid
of LES and Reynolds-averaged Navier–Stokes (RANS) modeling such
as Detached-eddy Simulation.6 While such innovations are to be wel-
comed and provide a valuable addition to the turbulence-modeling
arsenal, the writers’ belief, developed over the remainder of this paper,
is that many of the shortcomings of widely used turbulence modeling
approaches stem from the use of Eq. (2) rather than an inherent inade-
quacy of Reynolds averaging.

II. DEVELOPMENT OF SECOND-MOMENT CLOSURE

The first explicit proposal that, to determine the Reynolds
stresses, one should approximate and then solve the exact but unclosed
equation for uiuj was made by Rotta.7 The exact equation is obtained
by taking moments of the Navier–Stokes equations weighted by the
turbulent velocity, ui or uj and averaging the result,
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The first terms on the right side of the equation show the direct gener-
ation of the turbulent stresses by mean velocity gradients and force
fields, the fi denoting the fluctuating body force linked to turbulence.
Note that at this level of modeling Pij requires no approximation in a
complete second-moment closure; nor, in many cases, will F ij.
Indeed, much may be learned about the qualitative response of turbu-
lence to different types of strain and force fields just from examining
those terms. As just a single, frequently cited example, consideration
of the additional elements of Pij active in boundary layers developing
on a curved surface explains why the flow is so extraordinarily sensi-
tive to the extra straining that the surface curvature imposes. For then,
in a two-dimensional boundary layer (where subscript 1 denotes the
primary flow direction and 2 the direction of primary velocity gradi-
ent) the generation rate of shear stress, u1u2 , is just

P12 ¼ � u22
@U1

@x2
þu21

@U2

@x1

� �
:

The first term on the right contains the primary velocity gradient while
the second is the curvature strain that will be at least an order of mag-
nitude smaller than the primary term. Nevertheless, because the
streamwise normal stress, u21 , becomes an order of magnitude greater
(and more) than u22 as the wall is approached, the curvature contribu-
tion has an unexpectedly large effect. (Further illustrations of the
insight that examining the generation terms provides appear, for
example, in Hanjalic and Launder8). By contrast, with an eddy-
viscosity model, as is evident from the form of Eq. (2), any extra sensi-
tivity to streamline curvature has to be added empirically, and then
one will usually discover that a correction designed for one type of cur-
vature is not at all suitable for another!

Of course, one cannot escape from the task of modeling, the
unknown terms, here represented by the short-hand symbols Uij, eij,
Dt

ij; andD
p
ij. It is worth noting that Rotta7 advocated this level of clo-

sure not as a refinement to but as a simplification of proposals then in
vogue. Millionshtchikov9 had argued that the fourth-order products,
uiujukul (which appear as unknowns in the triple-product transport
equations, i.e., for uiujuk ) could be reliably approximated in terms of
products of the Reynolds stresses. Thus, workers at the time, e.g.,
Chou,10 had suggested third-moment closure as the logical level at
which to close the equation set. In fact, third-moment closure, even
when computer capacity and speed had grown sufficiently to make
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such an approach feasible, has not attracted a significant following
apart from a few papers on horizontal shear flows strongly damped by
gravitational forces (Andr�e et al.11 and Craft et al.12). Thus, today it is
widely accepted that second-moment closure is the highest level of
RANS modeling worth adopting for general application.

Rotta7 was the first to bring out clearly that the crucially impor-
tant pressure-strain correlation, Uij, should have distinct contributions
from both the turbulence field, Uij1 (sometimes called the “slow” part)
and the mean strain, Uij2 (termed the “rapid” part). His proposal for
the former is still retained in many models to this day,

Uij1 ¼ �c1 uiuj � 2=3dijk
	 


=T ; (4)

where k is the turbulence energy, ukuk=2. The proposal indicates that
the term tends to drive turbulence back toward its isotropic state,
uiuj ¼ 2=3dijk, as is observed to occur in the absence of mean strain.
The timescale T is usually taken as k/e where e is the viscous dissipa-
tion rate of k with the coefficient c1 taken as constant. In fact, some of
the early closure proposals retained just Eq. (4) as the complete model
of Uij. While Rotta had made outline suggestions for the mean-strain
contribution to Uij, the first tensor-based proposal was by Naot
et al.,13 essentially applying a similar return-to-isotropy idea as Eq. (4),

Uij2 ¼ �c2 Pij � 1=3dijPkk
	 


: (5a)

This approximation is known as the “Isotropization of Production,” IP
model. If one adopts a rotating reference frame to examine a spinning
flow, a further quasi-production term, Rij, appears in Eq. (3) associ-
ated with the axis rotation: Rij ¼ �2Xk½ujum�ikm þ uium�jkm� where
Xk is the angular rotation rate about axis xk and �ikm is the third rank
alternating unit tensor. However, in order to make the conventional
convection tensor frame indifferent, it needs to receive half of this
rotational “generation.” Thus, the appropriate form of Eq. (5a) for
such rotating systems should be:

Uij2 ¼ �c2 Pij þ 1=2Rij � 1=3dijPkk
	 


: (5b)

The body-force analog of Eq. (5) has been proposed and successfully
applied to buoyant generation by Launder14 and magnetic effects by
Schumann15 and Kenjeres et al.16 as will be exemplified in considering
stratified flows below. There was initially a wide range of values pro-
posed for the two empirical coefficients, c1 and c2. However, in local
equilibrium where generation and dissipation rates of k are in balance,
it is readily shown that there is really just a single parameter (1 – c2)/c1
and, as we see from Fig. 1, all proposals lie close to the line
c1¼ (1 – c2)/0.23. Thus, for applications close to local equilibrium
undergoing simple shearing, similar results would be given by all the
models named in Fig. 1. Rapid-Distortion Theory (that assumes vis-
cous dissipation to be negligible) applied to isotropic turbulence17

leads to a result that also agrees with Eq. (5) provided the coefficient c2
is chosen as 0.6; in that case, c1 takes a value of approximately 1.7.
Values close to these are commonly adopted in models using this
formulation today.

A powerful early application of this “basic” model of Uij is shown
in Fig. 2 relating to the flow through an annular diffuser of a gas tur-
bine computed by Jones and Manners.18 Of the remaining terms in
Eq. (3) to be modeled, they took the dissipation processes, eij, to be iso-
tropic, i.e.,

eij ¼ 2=3dije; (6)

where e is the viscous dissipation rate (whose modeling is discussed
later) and made simple gradient-diffusion assumptions for the non-
critical diffusion processes. Evidently, the eddy-viscosity model (EVM)
fails to capture the impact on the turbulent shear stress of the stream-
line curvature due to the bends following the inlet and just before the
exit. Consequently, the predicted velocity distribution (at entry to the
combustion chamber) is of quite the wrong shape – indeed, worse
than just assuming a uniform inlet velocity distribution! The second-
moment model, however, closely mimics the experimental data.

In one of the earliest applications of second-moment closure to
an inhomogeneous flow, the present writers considered the strongly
asymmetric flow through a plane channel, the asymmetry being
caused by roughening one of the walls.20 Industry’s interest in such a
basic flow sprang from the suspicion that in strongly asymmetric flows
the position of zero shear stress would not coincide with the position
of maximum velocity. The experiments, indeed, fully confirmed that
the shear stress vanished closer to the smooth surface than the velocity
maximum and that the minimum k lay still closer to the smooth wall.
Moreover, as seen in Fig. 3, these features were all accurately repro-
duced by the subsequent computations.21

In this case, the diffusional transport of the Reynolds stresses was
very important since the separation between the location of peak
velocity and zero shear stress may be unambiguously attributed to that
process. A popular scheme for modeling diffusive transport at the
second-moment level is known as the generalized gradient-diffusion
hypothesis (GGDH) originally adopted by Daly and Harlow,22

Du ¼
@

@xk
cu

kukul
e

@u
@xl

� �
; (7)

FIG. 1. Map of proposals for coefficients in the Basic Model for Uij, Eqs. (4) and
(5). Reproduced with permission from K. Hanjalić and B. E. Launder, Modeling
Turbulence in Engineering and the Environment p. 69 (2011). Copyright 2011,
Cambridge University Press.
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where here the symbol u denotes the Reynolds stress uiuj with the
coefficient cu usually assigned a value of approximately 0.2. In fact,
comparison with the corresponding term in Eq. (3) shows that the ker-
nel of Eq. (7) is not fully consistent with its role as a model of�uiujuk

since, unlike the kernel, the latter is unaltered by re-sequencing the
subscripts i, j, and k. While the potential impact of such infidelities
should always be checked, they were not significant in the case
reported. In Ref. 21, consistency was retained by adopting a more

FIG. 2. Flow development through a faired diffuser: (a) annular flow configuration; (b) mean velocity at the exit from the diffuser; (c) and (d) shear stress profiles at the end of
the inlet bend and at the end of a straight diffusing section, respectively. Symbols: experimental data, Stevens and Fry;19 – – – computed using the k–e linear eddy-viscosity
model; ——— computed with the Basic Model (second-moment closure) Jones and Manners.18 Reproduced with permission from K. Hanjalić and B. E. Launder, Turbulence
Modeling in Engineering and the Environment. Copyright 2011 Cambridge University Press.

FIG. 3. Fully developed flow through a plane channel with ribs on one wall. Symbols and chain line: experimental data, Hanjalić and Launder20 Full lines: computations.21 Note
U1, x2, and u1u2 denote U, y, and uv in the present notation. Reproduced with permission from Hanjalić and Launder, J. Fluid Mech. 52, 620 (1972) with the Copyright 1972,
Cambridge University Press.
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elaborate version comprising three such terms with the subscripts i, j,
and k successively taking the role that k alone plays in the kernel of Eq.
(7). The coefficient cu was thus correspondingly reduced.).

A weakness of Eq. (5) is that in a simple shear flow the normal
stresses orthogonal to the direction of mean motion are equal. While
not of great significance in many 2D free shear flows, in 3D flows, par-
ticularly near-wall flows, this very simple formulation is quite inade-
quate. Reference 21 had avoided that problem by generalizing Eq. (5)
to what Naot et al.23 subsequently called the “quasi-isotropic” linear
model and even adding non-linear products. (The general linear for-
mulation was independently discovered by several groups including
the writers21 and Lumley25 though in practice it has been less success-
ful than the IP model.) A more general approach to expanding the
applicability of the pressure-strain approximation, however, was stim-
ulated by a short note by Schumann24 arguing that modeling pro-
posals should be limited to forms that were impossible to lead to
unachievable states of turbulence (sometimes termed “realizability
constraints”), as, for example, negative normal stresses.

Lumley,25 in a major contribution, took Schumann’s proposal
and from it developed a comprehensive modeling strategy that
required compliance with what is often termed the “two-component
limit,” TCL. The idea is that if a normal stress should fall to zero in the
course of a solution, the model should ensure that thereafter the rate
of change would be greater than or equal to zero. As a complement to
this approach, he introduced the second and third invariants of the
anisotropic stress tensor), A2 and A3

aij � uiuj � 2=3dijk
� �

; A2 � ajiaij; A3 � ajiaikakj: (8)

Most importantly, he showed that the composite invariant A � 1 – 9
[A2 � A3]/8 (sometimes termed Lumley’s flatness parameter) always
vanished in two-component turbulence. With these weapons, he
developed a nuanced elaboration of Uij1

25 and a far more comprehen-
sive representation of Uij2, Shih and Lumley.26 Broadly, the same route
for modeling the latter was subsequently followed by Fu27 though
applying the TCL constraints somewhat differently. The formidable
algebraic detail with both schemes is not appropriate for inclusion
here but is given in the cited references and also in Craft and
Launder.28,29 A companion paper includes a parallel treatment for

stratified flows, of which more later. The model of Ref. 27 has been
successfully applied to a wide range of challenging shear flows includ-
ing the 3-dimensional wall jet by Craft and Launder,29 Fig. 4, and the
flow through a rectangular channel with partially roughened walls by
Launder and Li.30 In both cases, the resultant flow is dominated by the
anisotropy of the Reynolds stresses acting in a plane orthogonal to the
primary flow driving small but highly influential turbulence-driven
secondary velocities in that plane. In the wall jet, these produced a
spreading rate parallel to the wall some five times greater than that
normal to it while, for the latter, illustrated in Fig. 5, major distortions
of the axial velocity were created in close accord with measurements of
Hinze.31 By contrast, any isotropic eddy viscosity model would pro-
duce zero secondary motion in fully developed flow through a straight
channel and a growth rate of the wall jet greater in the wall-normal
direction than that parallel to the wall!.

An alternative approach to applying “realizability” constraints on
the pressure-strain correlation that is algebraically less complex than
the TCL schemes of Refs. 26 and 27 has been developed by Speziale
et al.32 It has been successfully applied to several homogeneous flows
and wall-bounded, two-dimensional boundary layers achieving rea-
sonable agreement with the normal stress profiles without including
wall-proximity additions. Yet a further important route for making
the turbulence model properly sensitive to the wall’s proximity has
been developed by Durbin.33 That strategy is, however, most appropri-
ately considered in the context of viscous and other near-wall effects
on turbulence, the topic of Sec. IV.

III. THE TURBULENCE ENERGY DISSIPATION RATE,
LENGTH, AND TIME SCALES

Readers will have noted that, in approximating the stress dissipa-
tion by viscous action and its diffusion, Eqs. (6) and (7), the turbulence
energy dissipation rate was introduced, though that too was an
unknown. A brief summary of routes adopted for its determination is
now provided.

Originally e had been approximated by direct analogy with the
turbulence-energy transport equation, i.e., Dk=Dt ¼ Dk þ Pkk=2� e.

Thus,

FIG. 4. Three-dimensional wall jet. Left: flow configuration, right: sketch of secondary flow in a cross-sectional plane generated by the anisotropy of the Reynolds stress in the
plane orthogonal to the primary flow. Reproduced with permission from Craft and Launder J. Fluid Mech. 435, 309 (2002). Copyright 2002 Cambridge University Press.
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De
Dt
¼ De þ ce1Pkk=2� ce2e½ � e

k
; (9)

where the empirical coefficients ce1 and ce1 were initially treated as
constants (and still are in many codes) and the diffusion contribution
was obtained by the GGDH approximation,

De ¼
@

@xk
ce
ukul k

e
@e
@xl

� �
: (10)

The three unknown coefficients, ce1, ce2, and ce, were fixed by ref-
erence to experimental data (The present authors first proposed, a half
century ago,21 the three experimental flow test cases, still widely
adopted, to fix the coefficients: grid turbulence decay; the spreading
rate of the plane jet or mixing layer; and the ‘universal’ logarithmic
region of the flat-plate boundary layer.). As the range of flows com-
puted progressively widened, however, weaknesses began to emerge in
the form of Eq. (9) and, naturally, numerous modifications to the origi-
nal formulation were subsequently proposed. These have taken one of
three general forms: (i) additional terms involving the mean velocity
gradient have been added as a source;34,35 (ii) the coefficient ce2 was
made a function of the stress invariants, Eq. (7);25,36 near-wall con-
straints were added to prevent the near wall turbulent length scale
(which may be taken as k3=2=e) departing too far from that found in a
high-Reynolds-number, flat-plate boundary layer.37,38 Perhaps the best
that can be said of current versions of the e equation is that because of
its widespread use, its successes and weaknesses are widely known as
are the adaptations (if any) to the standard version that are best suited
for the class of turbulent flows that the user wishes to compute.

An alternative approach is to adopt a different variable from e
that might be more amenable to modeling. Again, there has been no
shortage of such proposals, the best known andmost promising choice
being x, a quantity proportional to (e/k) proposed by Wilcox.39

Unlike the basic dissipation equation, a gradient-diffusion approxima-
tion for the diffusion process does not cause the near-wall length scale
to grow significantly as the flow approaches separation. It has been
widely and successfully applied to thin shear flows and especially to
boundary-layer flows developing toward and sometimes beyond sepa-
ration.40 It has thus been particularly widely applied to problems of
flow over airfoils and other aerodynamic flows. Like the e equation,
however, it should not be seen as a panacea for determining the length
and timescales of the energy-containing turbulent eddies. More exten-
sive discussion and analysis on determining the alternative scaling
quantities in turbulence may be found in Ref. 8.

IV. SECOND-MOMENT CLOSURE IN VISCOUS AND
WALL-AFFECTED REGIONS (WIN MODELING)

Although not explicitly stated, all the test cases reported above
have limited their coverage to regions where viscous or wall-proximity
effects were unimportant. For flows past walls, that has meant that, in
place of the no-slip boundary condition for all mean and turbulent
velocity components that is strictly applicable at the wall itself, condi-
tions have been applied just outside the region where viscous effects
are important by using what are commonly termed “wall functions.”
Thus, for example, the mean velocity may be presumed to vary accord-
ing to the well-known semi-logarithmic “law of the wall” with consis-
tent assumptions regarding other dependent variables. While this

FIG. 5. Flow through a rectangular-sectioned duct with a partially roughened lower wall. (a) Contours of mean velocity: computations of Launder and Li,30 experiments of
Hinze;31 (b) Predicted secondary flows. Reproduced from Launder and Li, Phys Fluids 6, 1004 (1994) with the permission of AIP Publishing.
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approach is attractively economical, it is by no means applicable to all
flows of practical interest. This wall-adjacent region, while often
referred to as “universal” (when scaled by the local wall shear stress
and fluid properties), is anything but universal in practice!

The assumption of universality ceases to be accurate if the total
shear stress (that is, viscous plus turbulent shear stress) changes signifi-
cantly across the thin wall-adjacent layer where viscous effects are sig-
nificant. Such situations arise at separation, in strongly accelerated
flows or where force fields are important. It is to resolve such non-
compliant flows that wall-integration (WIN) schemes have been devel-
oped. An early approach of this type by the present authors,41 follow-
ing the route of contemporary eddy-viscosity models, introduced a
local turbulent Reynolds number Ret � k2=�e (which vanishes at the
wall) to reduce the Reynolds shear stress to zero at approximately the
correct rate. (This scheme solved transport equations just for the shear
stress and the turbulence energy while the individual normal stresses
were obtained from algebraic connections with those quantities.)
Several successful predictions were reported of laminarizing flows.
Basing the turbulent Reynolds number on purely turbulent velocity
(k1=2) and length (k3=2=e) scales is important for alternative choices of
Reynolds number (based on friction velocity and wall distance) within
eddy-viscosity models had proved to be much less successful.

A more comprehensive treatment of the budget of the individual
stress components was later provided in the work of Launder and
Tselipidakis42 and Hanjalić and Jakirlić.43 Let us note that for an
incompressible fluid, continuity requires that at a wall (x2 ¼ 0)
@u2=@x2 ¼ 0 since @u1=@x1 ¼ @u3=@x3 ¼ 0. That in turn implies
that in the limit as x2 ! 0,

u21 � u23 � x22; u
2
2 � x42; u1u2 � x32: (11)

Indeed, these different exponents are well borne out by direct numeri-
cal simulations such as those of Hoyas and Jimenez44 for fully devel-
oped flow in a plane channel.

Recognizing that close to a wall turbulence is populated largely
by smaller-scale eddies, Hanjalić and Jakirlić45 also included in their
pressure-strain model the corresponding invariants E2;E3 andE of the
stress-dissipation anisotropy where E2 � eijeij, etc., and eij � ðeij=e
�2=3dijÞ, with eij evaluated from an algebraic function in terms of
e; k; uiuj , and Ret . This made it possible to reproduce the wall-limiting
behavior of all stress components and thus, indirectly, the two-
component limit. This scheme, hereafter denoted as the HJ model,
was subsequently successfully applied to a number of attached and
separating wall-bounded flows including cases of laminar-to-turbulent
and reverse transition, rotating and swirling flows, e.g., Hanjalić
et al.,46,47 Jakirlić and Hanjalić.48 Figure 6 shows, for example, the
variations of skin friction in an oscillating boundary layer over a range
of Reynolds numbers based on the Stokes thickness, dS. It is noted that
the final development of this work sprang from a paper by Jovanović
et al.49 that began with the transport equation for the two-point veloc-
ity correlation and ended with the proposal to replace the stress dissi-
pation rate eij by what they termed the homogeneous dissipation rate,
ehij ¼ eij � ð1=2Þ�@2uiuj=@x2j . Jakirlić and Hanjalić50 developed this
idea using the corresponding “homogeneous” dissipation rate of tur-
bulence energy eh ¼ e� ð1=2Þ�@2k=@x2j and showed that this
allowed the exact wall limits of eij to be satisfied for all components
without using any wall-configuration parameters such as wall-normal
unit vectors used in earlier models.

A different and powerful approach to accounting for non-local,
inviscid wall effects has been taken by Durbin.51 As noted in Sec. II, he
had realized that the major effect of a solid wall on the pressure fluctu-
ations in the wall’s vicinity arose principally from non-local, inviscid
blocking, rather than simply viscous effects. Thus, as an extension of
his elliptic-relaxation strategy, Durbin51 determined the pressure-
strain term,Uij, from

Uij � L2r2Uij ¼ Uh
ij (12)

where the “homogeneous” part, Uh
ij, can in principle be chosen as

any pressure-strain model unaffected by wall proximity [e.g.,
Eqs. (4) and (5)]. Equation (12) has an elliptic character implying
that the Laplacian r2 will account for the conditions on the solid or
free surface bounding the flow domain. The characteristic turbulent
length scale, L, may, sufficiently far from a wall or free surface, con-
veniently be taken as k3/2/e. With the appropriate boundary condi-
tions, Eq. (12) preserves the non-local character of the pressure-
strain term and exerts damping due to wall blocking via elliptic dif-
ferential equations rather than as an algebraic expression in terms of
local quantities and wall distance or by the use of stress invariants.
Equation (12) was then recast in terms of an elliptic relaxation (ER)
function fij defined as a ratio of a group of terms in the stress trans-
port equation, which in addition to Uh

ij also included pressure diffu-
sion and eij.

While Durbin’s ER strategy of adapting Uh
ij to include near-wall

effects attracted immediate attention, some shortcomings were identi-
fied and several alternative versions proposed, Wizman et al.,52

Manceau and Hanjalić,53 and Manceau et al.54 Yet, none of these
removed the major drawback: the large number of auxiliary equations
for fij. This challenge led Manceau and Hanjalić55 to devise an elliptic
blending model (EBM) with a scalar elliptic relaxation function a. The
pressure-strain term was taken as a blending of the near-wall and
far-from-the-wall forms of Uij,

Uij ¼ ð1� a2ÞUw
ij þ a2Uh

ij (13)

The ellipticity of the model is achieved by solving an elliptic differential
equation for the blending function: L2r2a� a ¼ �1, satisfying the
conditions a ¼ 0 at the wall and unity very far away from it. In
Eq. (13), Uh

ij can be any homogeneous model, whereas an expression
was proposed for Uw

ij in terms of wall-normal unit vectors. Figure 7
shows results from Manceau56 of computations of the EBM applied to
fully developed channel flow for three levels of orthogonal-mode
rotation (plus the non-rotating case) compared with the LES results of
Lamballais et al.57

The shift of the position of maximum velocity initially toward the
suction surface as the rotation rate is progressively increased is very
well captured while, at the highest spin rate at which measured data
are available, there is a shift back toward the pressure surface. In terms
of the wall shear stresses, the suction-surface friction velocity is rapidly
reduced by rotation while, initially, that on the pressure surface is
raised. Further increase in the rotation, however, produces a steep
decline in Us on the pressure surface too, leading eventually to a lami-
narized flow in which the wall stress is essentially the same on both
surfaces. All these features are accurately captured by the closure
model. Of course, had one used an isotropic eddy-viscosity model, for
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all rotation rates the wall stresses and velocity profiles would have
been precisely the same as for the non-rotating case since there is no
Coriolis term in the k or e equations!

V. STRATIFIED FLOWS

The foregoing example provides a dramatic illustration of how
the action of a force field (in that case a Coriolis force) in the stress-
transport equation can hugely alter a flow’s character. An even
greater diversity of effects may arise from the actions of the gravita-
tional field. In that case, the kinematic fluctuating force in the
instantaneous velocity equation, given by fi � q0gi=q, is conve-
niently expressed in terms of temperature fluctuations so that the
force-field term in Eq. (3) for the turbulent stress transport
becomes

F ij � Gij � q0ujgi þ q0ujgi
� �.

q ¼ �b hujgi þ huigj
� �

; (14)

where b denotes the expansion coefficient defined by b � �ð1=qÞ
ð@q=@HÞjP and the P subscript indicates that the derivative with
respect to temperature is at constant pressure.

To close the mean temperature equation,

@ qHð Þ
@t
þ
@ qUjH
� �
@xj

¼ SHþ
@

@xj
c
@H
@xj
� huj

 !
; (15)

but also to determine the gravitational source F ij in Eq. (3) via
Eq. (14) at the same second-moment-closure level, a transport equa-
tion for the turbulent heat (and/or other scalar) flux is needed, which
can be derived following the analogous steps as in developing Eq. (3):

Dhui
Dt
� @hui

@t|ffl{zffl}
Lhi

þUk
@hui
@xk|fflfflfflffl{zfflfflfflffl}
Chi

¼� uiuj
@H
@xj
þhuj

@Ui

@xj

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Phi¼PH
hiþP

U
hi

þ1
q

X
n

hf ni|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
F hi

þ1
q
p
@h
@xi|fflfflfflffl{zfflfflfflffl}

Uhi

� aþvð Þ @h
@xk

@ui
@xk|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

ehi

þ @
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@xk
þvh@ui
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q
phdik
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(16)

FIG. 6. Oscillating boundary layer over a range of Reds (based on the Stokes thickness ds �
ffiffiffiffiffiffiffiffiffiffiffi
2�=x

p
and maximum free stream velocity): (a) friction factor, (b) phase lead of

the maximum wall shear stress vs maximum free-stream velocity, and (c) variation of wall shear stress through a cycle, Hanjalić et al.46 Reproduced with permission from K.
Hanjalić and B. E. Launder, Turbulence Modeling in Engineering and the Environment. Copyright 2011, Cambridge University Press.8
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As with Uij in the stress-transport equation, the pressure/scalar-
gradient correlation, Uhi, is a crucial term to model. Again the process
needs to contain purely turbulence, mean-strain and force-field contri-
butions. There is a wide range in the algebraic complexity of alterna-
tive models ranging from the very simple counterparts of Eqs. (4)
and (5),

Uhi1 ¼ �c1h
e
k
hui ; Uhi2 ¼ c2hhuk

@Ui

@xk
¼ �c2hPU

hi; (17)

to the far more complex two-component-limit forms that satisfy vari-
ous extreme states of the scalar flux field.8,28 (Notice that in the simple
model of Uhi2 shown in Eq. (17), only the part of the scalar-flux pro-
duction containing mean velocity gradients is included. While that is
the usual practice, variations exist (e.g., Ref. 58), reflecting the fact that
such simple approximations are inevitably of limited validity.) As one
would hope, there is a demonstrated broadening of the range of flows

covered as the model complexity is raised. Here, however, we
forego any examination of the models’ performance where the scalar’s
role is passive in favor of considering more complex stratification
effects.

A complete second-moment closure of the momentum and
energy Eqs. (1) and (15) for flows involving significant thermal and/or
concentration stratification entails solving Eqs. (3) and (16) together
with the scale-determining variable for which, in most applications,
the energy dissipation rate, e, Eqs. (9) and (10), has been adopted.
Moreover, since the gravitational source in the scalar-flux equation,

(16), becomes F ih � Gih � fih ¼ �bgih
2 , a transport equation for

the mean square temperature variance, h2 , is also required. That is
readily obtained (Corrsin59) by multiplying the unsteady equation for

the transport of a scalar, Ĥ, by twice the fluctuating scalar, 2h, and
averaging

FIG. 7. Computations of flow in a plane
channel at Re¼ 7000 rotating around a
spanwise axis for a range of rotation num-
bers (Ro¼ 0, 0.16, 0.5, and 1.5). (a)
mean velocity, (b) turbulent shear stress,
and (c) wall friction velocities. Symbols:
LES Lamballais et al.;57 lines: EBM model.
Reproduced with permission from
Manceau, Proceedings 4th International
Symposium on Turbulence & Shear Flow
Phenomena, 259–264 (2005). Copyright
2005 R. Manceau.
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Dhh

:

(18)
(Here, a denotes the fluid’s thermal diffusivity.) The equation closely
resembles that for the turbulence energy save for the absence of pres-
sure diffusion, with the terms having an analogous physical meaning
to those in Eq. (3).

Now, compared with a linear eddy viscosity model, Eq. (2) and
its equivalent for the scalar flux,

hui ¼ �at
@H
@xi

; (19)

a full second-moment closure may look overly complicated and com-
putationally too demanding. However, the inter-connectivity of the
various stress and heat-flux components gives a strong indication of
the physical complexities that may arise between the two fields. The
couplings among the different contributors to the equation set and
the way their interaction changes depending upon the orientation of
the flow is illustrated schematically in Fig. 8. It compares the inter-
couplings arising in a two-dimensional thin shear flow orientated
horizontally and vertically. For both situations, x1 is the mean flow
direction and x2 the direction in which the mean velocity and density
vary. The lines indicate coupling between the respective second
moments, the arrows indicating that the second moment at the
upstream end of any line contributes to generating the component at
the downstream end.

In modeling the crucial pressure-strain term in stratified flows,
some groups60,61 initially neglected any influence of gravitational
forces on the process (which was logical since the other linear process,
the mean-strain influence, was also neglected). Following the appear-
ance of the IP model, however, Ref. 14 and many later contributions
applied the same approximation strategy to account for the
“redistribution” of gravitational stress generation,

Uij3 ¼ �c3 Gij � Gkkdij=3
� �

(20)

where now there is no strict need (as there was with a Coriolis force)
to make the proportionality coefficient the same as for Uij2.
Nevertheless, the value of c3 has in practice usually been taken equal to
or close to that of c2 with values in the range of 0.5–0.6. The analogous
IP arguments applied to the pressure-temperature gradient product in
the heat-flux equation, Eq. (16), lead to

Uhi3 ¼ �c3hGhi ¼ þc3hbgih2 : (21)

The coefficient c3h is normally assigned the same value as c2h of about
0.5, e.g., Ref. 14.

As an early application of the approach, Fig. 9, compares predic-
tions with the IP model for the case of a nominally homogeneous, sta-
bly stratified, free shear flows measured by Webster.62 The strength of
the stratification is expressed in terms of the flux Richardson number
Rf, defined as the ratio of the rate of removal of turbulence energy by
working against gravity to that supplied by mean-strain action. (The
gradient Richardson number, Ri, is Rf multiplied by the Prandtl num-
ber). The left figure shows that, as the stable stratification gets stronger,
the proportion of fluctuating energy in the vertical direction decreases
while that in the stream direction increases, a feature that is well cap-
tured by the model. So far as the heat fluxes are concerned, Fig. 9(b)
indicates that vertical heat transport is very severely reduced relative to
the streamwise heat flux with increasing stable stratification.

Just as with Uij2 andUhj2, TCL constraints have also been applied
to the buoyant parts of the non-dispersive pressure correlations Uij3

and Uhj3 in order to obtain a still more widely applicable model. The
analyses presented in Craft et al.63 and Craft and Launder64 include
examples of application to several buoyantly modified shear flows that
showed a generally superior performance of the TCL approach com-
pared with the basic IP model, especially in more challenging strongly
inhomogeneous cases. An illustrative example is the negatively buoy-
ant wall jet shown in Fig. 10(a): a downward directed plane wall jet of
warm water is injected parallel to the wall into a slowly upward mov-
ing cool stream, causing the wall jet to break away from the wall,
reversing its direction. Figure 10(b) compares RANS predictions using
the TCL and the IP-based (Basic) approaches with the LES results by
Addad et al.65 [In both cases, the more successful treatment of the wall
sublayer (the “AWF scheme”) is used.] While neither scheme captures
fully the level of mixing exhibited by the LES, the TCL model clearly
achieves the better performance and far better than results with a lin-
ear eddy viscosity model (not shown).

As the foregoing has suggested, the early development of second-
moment closure applied to stratified flows revolved around issues of
how to account for gravitational effects in the resultant model, usually
by reference to relatively simple laboratory-based flows. At about the
same time, however, there appeared several publications from research
groups in the USA, specifically focused on atmospheric flows, e.g., the
already noted Refs. 60 and 61 as well as, inter alia, Donaldson,66

Mellor and Yamada,67 Wyngaard,68 and Lewellen et al.69 Although
recognizing that higher-order-closure models provided a better basis

FIG. 8. Contrasting buoyant couplings
among the second moments in horizontal
(left) and vertical (right) two-dimensional thin
shear flows. Broken arrows indicate buoyant
coupling; full arrows denote coupling through
mean velocity/scalar gradient; pressure-
strain coupling is indicated symbolically by
“waves.” Reproduced with permission from
K. Hanjalić and B. E. Launder, Turbulence
Modeling in Engineering and the
Environment. Copyright 2011 Cambridge
University Press.8
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for representing the physics of turbulence than was possible with
eddy-diffusivity approximations, most early workers acknowledged
that with the state of the art and the computing facilities of the time
such a comprehensive approach was not practicable for real atmo-
spheric meso- or regional scales requiring three-dimensional models
that “can quickly get out of hand computationally.”68 Thus, a complete
second-moment closure model in differential formwas considered pri-
marily as the basis for developing and parameterizing simpler versions
(The spirit of the time, especially in the atmospheric community, was
reflected in Wyngaard:68 “Unfortunately, however, there is little theo-
retical guidance for the rational, systematic formulation of closure
approximations. As discussed by Bradshaw, one can check the effects
of closure assumptions by comparing calculations with detailed

measurements, but rarely are there data suitable for testing the closure
assumptions themselves. Not surprisingly, then, models change as new
flows are calculated and compared with data.”). Yet, to demonstrate its
benefits, Wyngard68 applied a “full” model that included the correla-
tions involving pressure fluctuations, though (as with other US con-
temporary contributors cited above) only the “slow parts,” Uij1 and
Uhi1, Eqs. (4) and (17) were included in the model. He computed sev-
eral simple cases of the horizontally homogeneous flows permitting
sweeping approximations, with the two-dimensional mean velocity
governed solely by geostrophic wind. The structure of the evolving
nocturnal planetary boundary layer (PBL) was explored with the
model by starting from initial conditions typical of a decaying convec-
tive PBL at the instant of transition. The author concluded that the

FIG. 9. Normal stresses and heat fluxes
in stable stratification. (a) Relative normal
stress levels as a function of flux
Richardson number. (b) Variation of verti-
cal to streamwise heat flux with gradient
Richardson number. Symbols/shading,
experiments (Webster62) lines, computa-
tions. Note: x1 denotes the main flow direc-
tion (horizontal); x3 vertical. Reproduced
with permission from Webster, J. Fluid
Mech. 67, 574 and 579 (1975). Copyright
1975 Cambridge University Press.

FIG. 10. Temperature contours for the negatively buoyant wall jet, comparison of different models: (a) flow configuration and (b) RANS computations, Craft et al.,63 LES data from
Addad et al.65 Reproduced with permission from K. Hanjalić and B. E. Launder, Turbulence Modeling in Engineering and the Environment. Copyright 2011 Cambridge University Press.8
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calculated surface-layer profiles of wind shear and temperature gradi-
ent agreed well with field data (the 1968 Kansas measurements).

Lewellen, et al.69 reported the application of a full second-
moment model (accounting, just as Wyngaard,68 only for the “slow”
terms, Uij1 and Uhi1) to several simple (two-dimensional unsteady and
three-dimensional steady) stratified flows including an atmospheric
boundary layer subjected to diurnal variation from stable to unstable
conditions.

A little earlier, Mellor and Yamada67 published a general second-
moment closure scheme for temperature-stratified flows, but focused
on a systematic simplification of the general model aimed at discern-
ing “a level of complexity which is intuitively attractive and which
optimizes the computational speed and convenience without unduly
sacrificing accuracy.” The hierarchy of models was graded according
to the degree of anisotropy (presumably, of the turbulent stress field)
in four levels. The most complex, full second-moment closure (level 4)
consists of 10 differential transport equations for the turbulence sec-

ond moments (uiuj ; hui , and h2 ) in addition to the mean momentum
and energy equations (though, as noted below, not for the turbulent
length scale or equivalent). Two versions of algebraic truncation (levels
2 and 3) were arrived at by dispensing with the differential convection
and (partly) the diffusion terms in the stress and heat flux equations,
while the simplest, eddy-viscosity/diffusivity model, Level 1, dispensed
with all 10 differential equations. The authors focused on a planetary
boundary layer subjected to a sinusoidal diurnal variation of the sur-
face heat flux or temperature. Perplexingly, the authors reported that
all models gave nearly the same results—an outcome that contradicts
the subsequent findings by other authors, admittedly in different con-
figurations of engineering relevance (e.g., Dol et al.,,71 Hanjalić,72 to
which we return below).

The treatment of the characteristic turbulence scale in these early
models is also controversial. While Wyngaard used the standard e
equation, Mellor and Yamada67 introduced several length scales
appearing in different terms of the modeled equations, which were all
assumed to be proportional to each other. The representative
(“master”) scale was prescribed algebraically assuming a linear varia-
tion from the ground, thus avoiding the need to solve a transport
equation for a scale-providing variable. Lewellen et al.69 followed
Rotta’s approach and proposed a transport equation for a length scale
based on the integral of the two-point velocity correlation. Some years
later, Mellor and co-workers70 opted for the kL equation of Rotta,
arguing that the e equation is “fundamentally wrong since a small-
scale parameter like e cannot describe a macro-scale of turbulence”
(Umlauf and Burchard73). This argument was repudiated by many
other workers (e.g., Rodi74) on the grounds that the dissipation rate
was primarily determined by the successive break-down of larger scale
eddies to successively finer scales—a process clearly caused or, at least,
modified by macro-scale actions.

VI. REDUCED, FASTER VERSIONS

A perennial question raised by users of CFD codes has been: Is
there any way one can better capture the sensitivity of turbulent
stresses to a complex strain or to force fields without having to use
stress-transport models? Certainly, in the early 1970s, abandoning the
concept of eddy viscosity and solving modeled versions of the stress-
transport equations was (as noted above in the context of the atmo-
spheric boundary layer) seen by the general CFD community as a step

too far, as much as for conceptual reasons as for the additional compu-
tational cost. However, Rodi75 proposed that a significant simplifica-
tion of the stress transport equations could be achieved by linking the
transport terms to the transport of turbulence energy via the
approximation

Duiuj
Dt
�Dij �

uiuj
k

Dk
Dt
�Dk

� �
¼ uiuj

k
ðPkk=2� eÞ; (22)

Where Du denotes the net diffusion rate of u. With this assumption
(sometimes referred to as “the weak non-equilibrium hypothesis”), the
set of hitherto differential equations was reduced to algebraic form. So,
if one adopts Eqs. (4) and (5a) for the pressure-strain model (as Rodi
did) the resultant stress-strain connection is obtained as

aij ¼ aðPij � Pkkdij=3Þ=e; (23)

where the value of the constant coefficient a is linked to the choice of
coefficients in Eqs. (4) and (5a). This type of model is generally
referred to as an algebraic stress model (ASM). The resultant algebraic
set for the stresses was, however, implicit rather than explicit. This did
not matter in a marching solution of the thin-shear-flow equations
(because the stresses appearing in Pij were then taken as their already-
determined values at the upstream node). Rodi and Scheuerer76

showed that approximation produced results for curved shear layers
very close to the earlier computations employing a full second-
moment closure (with the same model for dissipation and pressure
strain), both of which captured the reduction in spreading rate in the
curved region displayed by experiments but missed by the linear eddy-
viscosity computations. A similar reduction of the stress-transport
equations to algebraic form had earlier been made by Launder and
Ying77 to obtain the first prediction of turbulence-driven secondary
flows in square ducts. In that case, however, the transport terms made
only a tiny contribution to the stress budget.

Nevertheless, it is noted that, especially in axisymmetric free
shear flows where transport effects are usually more important than in
wall-dominated flows, such algebraic stress models cannot be relied on
to mimic the results of a complete second-moment closure. A particu-
larly sensitive case is the round jet in a stagnant stream examined by
Fu et al.;78 for, while the numerical computation is simple, the turbu-
lence field in this flow is strained in complex ways. Here, the ASM
scheme returned peak shear stress levels 40% higher than the second-
moment closure it attempted to imitate!

If one turns to fully elliptic flows, the quasi-explicit strategy for
solving the ASM equations without iteration is no longer available.
Moreover, the appearance of stress components as what amounted to
source terms meant that the equations were commonly unmanageably
stiff, requiring more iterations to convergence than the full transport
equations. As a step toward removing this problem Pope79 began the
task of converting the implicit ASM set into an explicit set of equa-
tions, though the algebraic complexity meant that attention was con-
fined to two-dimensional flows. Subsequently Gatski and Speziale,80

with the help of MathematicaTM (Wolfram81) developed a general
transformation for any linear pressure-strain model (see also Gatski
and Rumsey82 for a detailed presentation). The outcome of their work
was an explicit formula for the stresses as a function of the strain (the
usual linear term) and quadratic product groups of mean-strain and
mean-vorticity tensors. A later formulation of the same type due to
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Wallin and Johansson83 has also become popular. While the
approaches followed in these papers were termed “explicit algebraic
stress models” (EASM) and had a clear analytical development with
directly traceable physical assumptions, their final form was not differ-
ent from the numerous semi-empirical models of the same type that
are usually termed “non-linear eddy-viscosity models” (NLEVMs),
reviewed in Ref. 8.

As already noted in Sec. V, analogous simplifications in the treat-
ment of the second-moment transport terms have also been made by
those concerned with flows strongly dependent upon the gravitational
field, e.g., Mellor and Yamada.67,70 Their so-called level 3 and level
2 1=2 are essentially the algebraic stress/flux models obtained by omit-
ting the convection and diffusion terms from the differential transport
equations, with somewhat different models of the pressure-containing
covariances, but closed with empirically defined length scales. A dis-
tinction between levels 3 and 2 1=2 is in the treatment of the scalar vari-

ance h2 : while at level 3 the modeled differential transport equation

for h2 , Eq. (18), is solved, level 2 1=2 employs a simple gradient model,

h2 / hui@H=@xi. The latter expression obviously fails in a well-mixed
layer above a heated surface where the mean temperature is essentially
uniform. This fundamental weakness can be overcome by treating the
problem as inherently unsteady, i.e., by solving the ensemble-averaged
variables in time when the resolved stress and heat flux generated by

large-scale convective structures recover a realistic field of h2 and other
second-moments (Hanjalić72) as discussed in Sec. VII.

Algebraic models based on truncation of the differential second-
moment transport equation but retaining all production and modeled
pressure-covariance terms have also proved very useful in modeling
flows driven or affected by buoyancy, especially in the fluid layer over
a horizontal, unstably heated surface (known as the penetrative convec-
tive mixed layer), as also found in the classic Rayleigh–B�enard convec-
tion (with the fluid trapped between the heated bottom and cooled top

horizontal walls), e.g., Hanjalić.72 Obviously, as noted above, the verti-
cal heat or mass fluxes cannot be modeled in terms of the mean tem-
perature or concentration gradient as assumed by eddy-diffusivity
models. However, Fig. 11 shows that even a truncated algebraic flux
model (AFM) obtained by neglecting the transport terms in the scalar-
flux transport equation, Kenjere�s89 and Kenjere�s and Hanjalić,84 i.e.,

hui ¼ �
1
c1h

k
e

uiuj
@H
@xj
þ c02hhuj

@Ui

@xj
þ c03hbgih

2

" #
; (24)

(with the empirical coefficients c1h; c02h; c03h taken from the model of
the full transport equation for hui ) meets the challenge well. We note
that here the mean velocity is zero and the mean temperature essen-
tially uniform; thus, the only non-zero source in the equation for the
turbulent heat flux is the third term representing buoyant production.
The scalar variance, h2 , is obtained from the solution of its own trans-
port equation. Clearly, no eddy-diffusivity model can adequately
model the scalar flux since such schemes link heat fluxes purely to
temperature gradients; that is why the “GGDH” predictions in
Fig. 11(a) exhibit spurious temperature gradients in the mixed layer.
For completeness, the vertical heat flux presented in Fig. 11(b) shows
the close accord between the algebraic and differential second-
moment closures (the latter denoted “DSM-DFM”) though, interest-
ingly, in the flux-reversal zone at the top of the mixed layer the
algebraic version aligns more closely with the LES data of Schmidt and
Schumann85 while the differential version follows more closely the
early experimental data of Deardorff et al.86 (A full second-moment
study of mixed layers achieving satisfactory agreement with data was
also reported by Zeman and Lumley87)

For more complex three-dimensional stratified flows where both
the velocity and temperature fields are non-uniform, capturing the tur-
bulent stress components may be essential to reproduce accurately the
heat flux. A reduced algebraic stress model consistent with that for the

FIG. 11. Penetrative convection into an initially thermally stable layer heated from below. Left: the mean temperature field at t ¼ 0, 2.40, 3.38, 4.38, 5.36, 6.39, and 7.34min
after the onset of bottom heating. Right: vertical heat flux. From Kenjere�s & Hanjalić.84 Reproduced with permission from K. Hanjalić and B. E. Launder, Turbulence Modeling
in Engineering and the Environment. Copyright 2011 Cambridge University Press.8
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scalar flux, Eq. (24) (thus retaining all production and modeled pres-
sure covariance terms), derived from Eq. (22), can be written as

uiuj ¼
2
3
dijkþ

k
e

a1 Pij �
1
3
Pkkdij

� �
þ a2 Gij �

1
3
Gkkdij

� �� �
;

(25)

where a1 and a2 are functions of Pk=e; Gk=e and of the coefficients in
the parent modeled differential Eq. (3).

To summarize the position of such truncated versions: if the
transport terms are relatively unimportant, as they will often be in
flows near walls, or where force fields exert a dominant effect, they
may offer a convenient, faster route to a solution that is not signifi-
cantly different from that of the full second-moment closure. In axi-
symmetric or three-dimensional free shear flows, however, as noted in
Ref.,74 serious disagreements may arise when stress transport is sub-
stantial. As a final such example, Craft et al.88 using a widely tested,
successful NLEVM, found that the scheme predicted a significantly
too rapid decay of wing-tip vortices: better than a linear eddy-viscosity
model but far less satisfactory than with a full second-moment closure.
Clearly, if one seeks to compute flows where a successful track record
with such simplified schemes has not been previously established,
emptor caveat—let the buyer beware!

VII. UNSTEADY RANS (URANS)

There has been a view among some model developers that “pure
RANS models can be adjusted to predict boundary layers including
separating [flows] well, but not large separation regions, whether
behind a sphere or past buildings, vehicles, in cavities, and so on,”
Spalart.89 This notion, to some extent conceptual, is however, arguable.
It is a position that may correctly reflect experience with simple eddy-
viscosity models, but it does not recognize the large variation in the
performance of RANS models at different closure levels nor the differ-
ences resulting from how individual processes are approximated—
topics discussed in earlier sections. There is ample evidence in the liter-
ature, some dating back to the mid-1980s (e.g., Celenligil and
Mellor90) that second-moment closures, with integration up to the
wall run in three-dimensional unsteady mode (URANS) even for two-
dimensional geometries, can return, on a relatively coarse grid, most
statistical and even some dynamical features of separated and other
complex flows. That is to say, flows which, when viewed overall, may
appear steady, nevertheless can be crucially affected by significant
“internal unsteadiness” generated by inherent flow instabilities. Such
flows do not necessarily require a different kind of modeling, but rather
just an appropriate RANS model run in unsteady mode with a time
step sufficiently small to resolve the ensemble-averaged large-scale
coherent motion.

The first fully three-dimensional URANS explorations were those
of Tatsumi91 and Kenjere�s and Hanjalić.92 The former examined a
backward-facing-step flow using the cubic NLEVM of Craft et al.93

Kenjere�s and Hanjalić92 applied the URANS strategy via a truncated
second-moment approach concept to Rayleigh–B�enard convection in
which long-term time averaging results in zero mean velocity, and the
fluid motion takes the form of self-organized, unsteady convective roll
structures which fill the whole flow domain and provide the mecha-
nism for turbulent heat transport. The approach returned Nusselt
numbers and an organized flow topology, both close to the wall and in

the bulk region, in accord with LES results obtained with an order-of-
magnitude finer grid. Later, the same workers extended the approach
to more general cases of thermal convection in different configura-
tions, including the effects of a magnetic field,94,95 and to both indoor
and exterior environmental flows dominated by thermal
buoyancy.84,96

A recent URANS examination of flow at high Reynolds number
over an infinite cylinder in cross flow (often considered a paradigm of
massively separated flow), presented in Fig. 12, showed that, in con-
trast to common eddy-viscosity models, a Reynolds-stress-transport
model (RSM) with wall integration captured subtle physical features of
the flow including multiple instantaneous separations and reattach-
ments, as well as a low-frequency modulation of the lift and drag coef-
ficient. This behavior was in close accord with LES results obtained on
a much finer grid, Palkin et al.97 This is also true for most of the char-
acteristic features of the “organized” structures: their origin, pattern,
size, strength, vorticity intensity, frequency, and amplitude. The suc-
cess may be attributed to the fact that the stress-transport closure
accounts both for the stress anisotropy and the phase lag between the
stress and strain eigenvectors. These features resulted in much lower
modeled stress and turbulence energy levels than with eddy-viscosity
models, Fig. 13 (right) confirming that the stress-transport-closure
approach is more sensitive and receptive to internal instabilities. This
is further underlined by the resolved turbulence energy level, Fig. 13
(left) being considerably higher than with the eddy viscosity scheme. A
further quantitative confirmation of the better resolution of the impor-
tant large and medium scales by the RSM is provided in Fig. 14 which
shows the predicted power spectrum in much closer agreement with
the LES than achieved with the EVM.

The accuracy of the computed stochastic field may not be partic-
ularly relevant as in such highly separated flows the broadband fluctu-
ations usually do not play a significant role. The main contribution to
the total stresses comes from the resolved large-scale, semi-determinis-
tic motions, whether considered as a “mode of mean motion” or
coherent turbulent structures. Moreover, a posteriori analysis95 of the
well-resolved LES results for the same flow using a triple decomposi-
tion of the velocity into its mean (long-term average), coherent and
stochastic components, Ui ¼ �U i þ uci þ usi , showed that the “mixed”
stress, uci u

s
i is indeed negligible compared with both the coherent

(uci u
c
i ) and stochastic (usiu

s
i) constituents, at least for high Reynolds

numbers. This confirmed the validity of the (often tacitly hypothe-
sized) scale separation between the coherent and stochastic motion as
a prerequisite for the applicability of URANS in flows dominated by
such unsteadiness.

It should be acknowledged that even linear eddy-viscosity
schemes will sometimes give usefully accurate predictions when run in
URANS mode. This is especially so in wall-adjacent flows where the
numerical solution extends through the viscosity affected sublayer to
the wall (e.g., the study by Basara et al.98 of the flow past a complete
automobile) or where unstable body forces in themean flow equations
exert a substantial influence (e.g., results reported in Craft et al.99 of
flow in rotor disk cavities). However, as in the example of flow past a
cylinder considered above, the modeled contribution of momentum
transport with an EVM is much larger than with a RSM (stress-trans-
port model) while the resolved part is, correspondingly, smaller.

In fact, even with a RSM, the ratio of modeled: resolved stresses
is substantially greater than with large-eddy simulation. However, the
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forward time step can usually be much larger and the grid density
coarser; in consequence, the computational cost to generate a solution
with URANS is typically at least an order of magnitude less than for a
conventional LES treatment. Moreover, a crucial advantage of URANS
in wall-affected flows is its potential to handle flows at very high
Reynolds and Rayleigh numbers, which, at present, remain beyond the
reach of LES.

As a final example of the power of the URANS approach when
employed with a RSM, we consider the off-design flow through a
Kaplan turbine examined by Minakov et al.100 Figure 15 shows the
mean flow streamlines in the draft-tube bend. Clearly the RSM com-
putations capture much more closely than the realizable k–e EVM the

large recirculating vortices present downstream from the impeller pre-
dicted by the large-eddy simulation. Further details are provided in
Fig. 16 which shows the pair of rotating vortex “ropes” from this test
case that were evident in the experiment and well reproduced by the
LES. These are also well captured by the RSM computations on a grid
of 2� 106 cells compared with 6� 106 adopted for the LES. The two-
equation eddy-viscosity computations, however, did not generate a
time-dependent result on a grid of 2� 106 cells. Only by refining the
mesh to 6� 106 cells was a time-dependent solution achieved and evi-
dently the predicted pattern both with the “realizable” k–e version and
with the shear-stress transport (SST) k–x model by no means captures
the rope-like structure.

FIG. 13. Flow over an infinite cylinder in subcritical regime at Re ¼ 1.4� 105. Comparison of the resolved (left) and modeled (right) turbulent kinetic energy from the URANS
EVM and RSM models. Reproduced with permission from Palkin et al., Flow Turb. Combust. 97, 1033 (2016). Copyright 2016 Springer Nature.97

FIG. 12. Flow over an infinite cylinder in the subcritical regime (laminar separation) at Re ¼ 1.4� 105 Top: comparison of vortical structures (iso-surface of Q¼ 0.5) from LES
(post-filtered to the URANS mesh), and URANS RSM, colored with axial velocity. Bottom: a blow-up of the instantaneous near-wall velocity field from LES and RSM at the
same phase (based on the lift coefficient). Reproduced with permission from Palkin et al., Flow, Turb. Combust. 97, 1037 (2016). Copyright 2016 Springer Nature.97
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VIII. CURRENT TRENDS: HIGHER-ORDER MODELS
VERSUS EVMS

The authors have for decades been advocates of using second-
moment closure models in the firm belief that, despite their greater
demands on computer resources, they captured the physics more
faithfully and, thus, should reproduce more accurately complex turbu-
lent flows over a greater range of configurations and conditions than
eddy-viscosity schemes. However, the expectation that, with advances
in computer hardware, our view would gradually prevail has not in
fact come about. Indeed, the opposite has happened: the ever widening
of the CFD community and the expansion in the scope of CFD appli-
cations has brought about greater demands on CFD-code vendors to
ensure their codes’ robustness (i.e., certainty to converge to a result),
computational economy, and “user friendliness”—demands which
inevitably favor simpler models.

Some protagonists of this philosophy have gone so far as to
denounce “the relentless attempts to build into them first-principle
content and rational ideas” Spalart (This remark was made in the con-
text of limiting the use of RANS models to the wall-adjacent region in
hybrid LES-RANS schemes.),89 arguing that no RANS model can pre-
dict flows with massive separation. Industry at large has preferred

FIG. 14. Flow over an infinite cylinder in subcritical regime at Re¼ 1.4� 105.
Power spectra of flow-normal velocity at x/D¼ 0.71 and y/D¼ 0.66. Reproduced
with permission from Palkin et al., Flow Turb. Combust. 97, 1037 (2016). Copyright
2016 Springer Nature.97

FIG. 15. Time-averaged streamlines col-
ored by axial velocity magnitude (linear
color scale from �5.6 m/s, blue, to
þ3.0 m/s, red) in a laboratory model of a
Kaplan hydro-turbine in an off-design
regime (40% load of the best efficiency
point, BEP). Note that the circular cross-
section progressively transforms into rect-
angular at the exit of the draft-tube bend.
Comparisons of URANS computations
(EVM and RSM) with LES results.
Reproduced with permission from
Minakov et al., J. Hydraul. Res. 55, 668
(2017). Copyright 2017 Taylor & Francis
Ltd, on behalf of International Association
for Hydro-Environment Engineering and
Research.

FIG. 16. Twin vortex ropes in the draft tube of a laboratory model of a Kaplan hydro-turbine at low load with meshes of 2 M and 6M cells. (a) Experiment, (b) large-eddy simu-
lation, (c) Reynolds-stress model (second moment closure), and (d) realizable k–e EVM (e) k–x SST EVM. Note: the linear EVMs reproduced unsteadiness only on a much
finer (6 M) mesh. Reproduced with permission from Minakov et al., J. Hydraul. Res. 55, 668 (2017). Copyright 2017 Taylor & Francis Ltd, on behalf of International Association
for Hydro-Environment Engineering and Research.
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simplicity and robustness, even at the expense of physical transparency
and comprehensiveness. As a result, CFD software companies have, to
a great extent, been responsive to such demands. Some new two-
equation and even one-equation eddy-viscosity models have been
proposed, tuned for a family of flows particularly suited to certain
industrial sectors; indeed, some have become quite popular, despite
their containing ad hoc, opaque inputs in terms of empirical functions
and limiters. One might well conclude that the situation is reminiscent
of that of the early days of turbulence modeling a half century ago!
Among these, the Spalart-Allmaras (S-A) one-equation model for
eddy viscosity (Spalart and Allmaras101) and the “shear-stress trans-
port” (SST) k–x model, Menter102 are probably the most widely used,
at least in the aerospace industry. It seems doubtful that this trend will
reverse.

Yet, it is recognized that for certain vital applications (whether
these be industrial, environmental or medical) predictive accuracy still
remains of paramount importance. That fact and the increasing geo-
metric complexity of the flow domains to be resolved would seem to
favor the employment of second-moment closure. However, even
here, the emergence of hybrid LES-RANS approaches (with the RANS
region employing an eddy viscosity model) for flows bounded by walls
of complex configuration and involving heat and mass transfer offer,
for many, the preferred route. So, it may well be the case that differen-
tial second-moment closure is destined to remain a relatively minor
“niche” market in the firmament of turbulence closure schemes.
Nevertheless, there is a reasonable prospect that the better physics
embedded in the second-moment approach to closure will, through
judicious simplification to algebraic form, still make a significant con-
tribution to enhancing the reliability of CFD for turbulent flows.
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47K. Hanjalić and S. Jakirlić, “Contribution towards the second-moment closure
modelling of separating turbulent Flows,” Comput. Fluids 27(2), 137–156
(1998).
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53R. Manceau and K. Hanjalić, “A new form of the elliptic relaxation equation to
account for wall effects in RANS modelling,” Phys. Fluids 12, 2345–2351 (2000).

54R. Manceau, M. Wang, and D. Laurence, “Inhomogeneity and anisotropy
effects on the redistribution terms in RANS modelling,” J. Fluid Mech. 438,
307–338 (2001).
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