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1.1 A brief history of humans and microbes 

Even though the first identification of microbial life dates to late 1600s, humans have 

unknowingly coexisted with microbes since the first of us walked the Earth. Earliest 

evidence for active use of various microbes and yeast dates back to 13.000 years ago1 

which provided early humans with richer nutrients through fermentation. Conversely 

up until early 1900s one of the most common reasons of death were diseases 

transmitted by microorganisms2. Thus, our relationship with microbes were 

complicated at best since the dawn of time. 

Up until the discovery of microbial life and single cells by Antonio van Leeuwenhoek 

or Athanasius Kircher (debate ongoing) in late 1600s3, the basic building blocks of life 

were unknown. In fact, people believed that life arises from combinations of various 

inanimate objects, namely “spontaneous generation” and diseases were attributed to 

supernatural phenomena. Germ theory of disease; which is the identification of 

microorganisms as the cause of most diseases, had to wait till late 1800s for the work 

of Louis Pasteur and Robert Koch3.They also showed that fermentation was a 

microbial process, linking different microscopic lifeforms to macroscopic effects for the 

first time. 

Since then we have discovered antibiotics and viral tools to fight against the “bad 

bacteria”4,5. Methods which allowed us to enhance fermentation strains -good 

bacteria- led to more efficient and tastier nutrient generation6,7. Furthermore, we 

constructed microorganisms which can produce commercial and medical compounds 

that they naturally could not8,9. All of these were allowed by recent advances in biology, 

chemistry, material sciences, computational techniques and many more disciplines 

and a deeper understanding of the inner workings of microbial life. With these 

developments diseases caused by microorganisms are no longer such a large portion 

of deaths2. Furthermore scientists are looking to utilize microbes in futuristic tasks, 

such as mining regolith from the surface of the moon10 

In this introductory chapter we will briefly review the history and recent developments 

in bacterial culturing techniques which have led to the generation of microfluidic flow 

cells. These devices allow scientists to observe single cell dynamics without disrupting 

their growth by constantly supplying nutrients and removing waste. Such a device was 

instrumental in some of the work reviewed in chapter 2 and our research described in 

chapter 3. Further we will discuss how advancements in genetics, structural biology 

and protein engineering are allowing scientists to create proteins with functions that 

do not naturally occur. Our work in chapter 4 would not be possible without the modern 

tools to modify genetic data and the structural understanding of protein function. 
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1.2 Growing and observing microbes 

Currently up to a trillion species of bacteria are estimated to populate the Earth11. Of 

these, only a small fraction has been individually isolated from natural environments 

and grown in laboratories12. Bacteria like all other species have evolved to survive and 

thrive in their natural environments. However, in order to understand how specific 

bacteria function in molecular detail, it is imperative to isolate a pure sample and grow 

it in laboratory conditions. This allows researchers to grow bacteria in large quantities 

and observe various functions in molecular detail. 

It has been more than 200 years since the invention of agar plates by Richard Petri in 

Robert Koch’s laboratory. Since then, they still allow scientists today to isolate 

individual colonies of bacteria which arise from a single cell, guaranteeing isolation. 

Agarose can be dissolved in water at high temperatures when cooled to room 

temperature, agarose polymerizes and leads to a gelatinous solid which presents a 

solid surface for bacteria to be grown and isolated. However, in order to grow high 

quantities of bacteria and isolate products, agar plates are not appropriate. This is 

where liquid media becomes effective. 

The first method of observing single cells was used by van Leeuwenhoek himself when 

he looked at a drop of pond water using his microscope. Pond water is the natural 

growth environment of many microorganisms and thus he inadvertently used a liquid 

media to observe different microscopic life forms. Artificially created liquid media allow 

bacteria to grow to high densities. Today various different liquid media are used to 

grow and analyse different species of bacteria13. Measurements and identification of 

various cellular components such as DNA, protein and metabolites along with many 

industrial applications would not be possible without liquid growth media such as M9, 

MOPS or LB. Further these defined media allowed scientists to test specific nutritional 

requirements of bacteria shining light on their biochemistry. It was also shown that 

bacteria such as E. coli could grow under a large variety of conditions. Under 

favourable conditions bacteria would grow fast and if the nutrient quality is low, growth 

would be slower14. Utilizing only basic macro nutrients; glucose, ammonium, 

phosphate and sulphate along with micronutrients such as magnesium or iron, in a pH 

balanced environment E. coli can double its numbers every 45 minutes. This 

suggested an immense biochemical potential for E. coli as synthesis of a new bacteria 

from these simple nutrients requires thousands of different chemical reactions. In turn 

if a cocktail of amino acids is also added to this media, doubling time goes down to 25 

minutes since bacteria spends more of its resources on growth. 

Both methods above however present the bacteria with a finite source of nutrient and 

growing space. Therefore, after consuming the nutrients or filling the space, bacteria 

stop growing and enter into stationary phase15. In order to research and use bacteria 

as microscopic factories, bioreactors were then developed. Bioreactors are volumes 

of liquid media where new nutrients can be supplied at the same rate of bacterial 

growth. Furthermore acidity, oxygenation, waste levels and so on can be monitored 
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and modified to keep a constant growth environment. This allows a culture to run 

indefinitely as long as nutrients are supplied, and excess bacteria growth is removed. 

Which in turn allows continuous production of the target chemical and increases 

efficiency for bio-industrial purposes. Also, since the environment can be modified at 

the will of the researcher, various functions of bacteria can be observed under induced 

changes16–18 which could be harder or impossible to replicate using cells grown in a 

limited liquid environment due to time constraints.  

Tiny versions of these bioreactors, generally named “microfluidic flow cells”, allow 

researchers to observe dynamics of individual cells under the microscope while 

feeding in nutrients and removing excess growth and waste. These devices are 

typically made out of transparent PDMS which can be poured into moulds to achieve 

nano to micro-meter scale features19,20. After removal from the mould, PDMS device 

can then be attached to glass slides covalently using plasma treatment. The features 

can be designed to trap bacteria between the chip and the glass slide while nutrients 

can be pumped in and excess cells can be removed through built in flow channels. 

This allows for continuous growth and observations of individual bacteria throughout 

the experiment. Using switches prior to chip’s input, researchers can shift between 

different media conditions rapidly and observe the effects on the bacteria at the single 

cell level revealing hidden biology. Dynamical single cell measurements help 

characterize biological functions by observing for example correlations between 

bacterial growth rate and metabolism21 or localization of various macro-molecules22. 

New developments in nanoscale fabrication start to allow chips that can generate 

gradients23 and dynamic incremental switches24 between multiple inputs which will no 

doubt allow more complex experiments and increase our understanding of bacterial 

life. 

1.3 Reading and altering the code of life 

Methods to isolate and grow bacteria in large quantities allowed scientists to answer 

basic questions regarding the chemical composition and function of life. Identification 

of DNA as the hereditary material dates back to early 1900s. This was allowed by 

growing virulent and non-virulent Pneumococci strains to large quantities and 

harvesting biochemical materials. A mix of the purified DNA fraction of a virulent strain 

with a live non-virulent strain was shown to be virulent when either of the components 

by themselves were not25. This proved that ability to build a capsid which led to 

virulence was carried by the DNA. Soon after the identification of DNA’s structure by 

Franklin, Watson and Crick, coining of “central dogma” linked the nucleotide sequence 

of DNA with amino acid sequence of proteins in 1958. It took more than a decade 

however for first method to sequence DNA was perfected by Sanger in 1977. He then 

used it to sequence the first full genome, albeit a puny bacteriophage genome with 

around 170.000 base pairs26. In 2003 full genome of a person was sequenced after 

years of work and 2.7 billion dollars spent (~3.000.000.000 base pairs). Today a whole 

human genome costs as low as 1000 dollars to sequence with the use of modern 

sequencing techniques27,28. This inflow of sequence information gave rise to a new 
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field of computational genetics which among other things revealed hereditary links 

between all living life forms and became one of the strongest tools to analyse life 

history. 

Back in early 1900’s, even though DNA was not known as the information carrier, 

researchers were already modifying it using X-Rays. Nobel prize winning work of 

Muller showed that hereditary information of organisms could be altered by X-

Rays29,30. Since then a myriad of methods were discovered to alter genetic information 

in a more nuanced manner. These methods either use externally built genetic 

sequences to be transformed into target bacteria31 or small alterations in bacteria’s 

own genetic manipulation machinery to precisely control where and what will be 

changed32,33. Methods such as Restriction Cloning, SLICE or Gibson Assembly allow 

scientists to build DNA sequences ranging from 10s of base pairs to hundreds of 

thousands. Using such techniques entire genes and even chromosomes can be built 

and transformed into bacteria34. For example insulin was produced by the company 

Genentech in late 1970s by transforming human insulin gene into E. coli35. Famously 

CRISPR/Cas9 system of bacteria was recently modified to precisely manipulate 

genetic material of living cells36. Techniques developed using this allows turning on/off 

genes and deletions or manipulations to the genetic code in vivo. Recently even 

human embryos were genetically altered using a variation of the CRISPR system 

leading to the first genetically modified humans and a deep ethical discussion37. Today 

a researcher can create an arbitrary combination of genes from different life forms 

over a single week which has been resulting in new discoveries at an increasingly 

faster rate. 

1.4 From sequence to structure and structure to function. 

Sanger’s sequencing capabilities were beyond DNA, he also managed to discover the 

amino acid sequence of the human protein Insulin back in 194938. This was the first 

direct proof that proteins were sequences of amino acids. Even though it was first 

theorized by Astbury as early as 1930s after realizing that many proteins were 

denaturing into fibrous structures39. In the late 1950s first structures were being 

resolved for haemoglobin and myoglobin40. Today several new techniques allow for 

atomic scale resolution such as  Cryo-EM microscopy where individual proteins are 

frozen and imaged with electron microscopy41, Nuclear Magnetic Resonance 

Spectroscopy where quantum mechanical properties of each nucleus are measured 

to reveal structure42, and x-ray crystallography where hundreds of proteins align to 

form a crystal which allows scientists to reconstruct structures from x-ray diffraction 

patterns43. Today there is more than 100.000 structure entries in the protein data 

bank44. Furthermore, advances in structure prediction allow scientists to estimate the 

structure of a protein from its sequence40 which aids in discovering new functions and 

proteins from genetic sequences. 

The advances in computational power, sequencing, mutagenesis and structure 

resolving led to the discovery of distinct functional domains in proteins. First hints that 
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proteins had functional domains came with the discovery of specific inhibitors that are 

similar in structure and chemistry to the natural substrate45. Later specific amino acids 

were hypothesized to be “located at the active site” using chemical alterations to the 

reaction environment and observing the activity differences of enzyme46. A general 

approach where mutations on single amino acids or larger alterations to gene 

sequences followed by activity testing, since then revealed thousands of functional 

domains47 responsible for localization48, DNA binding49, protein-protein interactions50, 

light responding51 and so on. With the increase in known sequence and structure 

activity information, predictive computational models helped discovering many more 

domains from different species’ gene sequences40, along with different functions such 

as fluorescent proteins52. 

By combining known functional domains in creative ways scientists have created a 

myriad of chimeric proteins and gene circuits53,54. These allow distinct functions which 

normally do not co-occur in nature to be combined in single bacteria. For example by 

combining a light responding domain from a cyanobacteria with an E.coli kinase EnvZ 

in a single enzyme, researchers managed to control the kinase reaction with light55. 

Later by combining other genetic elements from a phage and other bacteria in a single 

E.coli they created a genetic circuit that could detect edges on a projected image56 a 

feat normally achieved by computer software. Another group created a circuit which 

oscillates production of two fluorophores. The colour information can then be used to 

estimate time the bacteria spent in a given environment such as patient gut57. This 

type of research where cell’s DNA is programmed like software to achieve abstract 

tasks is possible through not only a deep understanding and control of each 

component but also modelling tools which allow calculation of the interactions. In the 

coming years with advances in computational tools and structural biology, we could 

start engineering protein structures and functions from scratch. The genetic and 

functional diversity on Earth is a testament to the possibilities arising from different 

combinations of 20 amino acids. This represents one of the biggest promises to 

improving humankind’s ability to conduct biochemistry. 

1.5 Regulatory loops that keep bacteria alive 

Understanding how bacteria work will allow us to unlock the hidden biochemical 

potential of bacteria for our purposes. In order to manipulate and engineer bacteria 

however, we first have to figure out how their systems work so that we can predict the 

effects of various alterations we might try. Here we discuss recent discoveries in 

cellular physiology and our work focusing on regulation of growth, cell size and 

metabolism. 

In Chapter 2 we review the work that has been conducted in the past couple decades. 

With the advancements on single cell microscopy techniques allowing enzyme and 

metabolite quantification, it has been revealed that almost all processes in living cells 

are stochastic in nature. This “randomness” is a challenge for bacteria to overcome as 

fluctuations in metabolism is expected to lead to fluctuations in growth and hence 
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fitness. While some of this randomness allows creation of population heterogeneity 

and bet hedging strategies, some systems require precise control to maximize fitness. 

We will discuss new approaches and results which shine light onto the personalities 

of individual bacteria. This will reveal how recent developments in single cell imaging 

and culturing techniques are allowing a deeper understanding of the inner workings of 

life. However, this also presents a major challenge in understanding how bacteria can 

grow as robustly as they do. 

E. coli has to produce thousands of different components in a balanced manner in 

order to grow and spawn two healthy daughter cells which in turn can do the same. 

This is a monumental task for a life form that is measured in micrometres. Because it 

requires the identification of the optimum concentrations and activity levels for all the 

cellular components under stochastic conditions. Cells mostly achieve this by means 

of individual feedback loops that govern each production pathway. For example 

production of amino acids is suppressed by the presence of excess amino acids, 

allowing reallocation of resources for production of other components that are 

lacking58. Conversely if the bacteria experience a shortage of amino acids, this is 

sensed through uncharged tRNA’s and leads to the activation of the Guanosine Tetra 

Phosphate (ppGpp) synthesis enzyme RelA. ppGpp in turn activates amino acid 

production genes and decreases ribosome production and transcription rates. This 

allows cells to limit the number of  ribosomes in the face of substrate limitation and 

boost production of said substrates59. If for example a specific amino acid is missing 

in the environment, the combination of the above two systems makes sure that only 

the required amino acid is synthesized by the cell. Furthermore, this system is also 

theorized to lead to the optimum ratio of ribosome to amino acid production under any 

given environment60,61. The more amino acids are present in the environment the 

faster the bacteria can grow14 since the resources that would otherwise be spent on 

the production of these amino acids can be diverted to metabolism and growth. It was 

also observed that faster growing cells are also on average larger, another possible 

optimization cells undertake to house the extra production capacity. 

Signalling molecule ppGpp was first discovered in 1969 by Cashel and Gallant and 

named as the “Magic Spot”62. This naming was apt as the molecule ppGpp was 

identified as a dark spot which appeared in chromatographs of starved bacteria. Since 

then it was discovered that ppGpp not only appears under extreme stress (stringent 

concentrations) but is also involved in regulation of growth and metabolism under 

different growth rates (basal concentrations)63. If the environment allows for fast 

growth, ppGpp levels are low, on the other hand if the environment is limited and 

growth is slow, ppGpp levels are higher. Level of ppGpp then mostly regulates the 

total transcription and ribosome numbers and hence the total metabolic activity of the 

cell according to growth rate64. However surprisingly ppGpp levels respond to many 

different stress factors such as iron65, carbon source66 or fatty acid limitations67. Then 

up to a thousand enzyme’s concentrations are altered through transcriptional 

regulation59 and recently it was shown that ppGpp could bind to more than 40 enzymes 
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with possible direct regulatory activity68. In this sense ppGpp acts as a balancer of 

metabolism at any given growth rate.  

There are however more questions regarding ppGpp and its activity at the basal 

concentrations in single cells. Since ppGpp is a regulator with a wide range of effects, 

understanding how ppGpp orchestrates the cell under various conditions is 

instrumental in developing a full picture of bacterial physiology. While there is currently 

no available technique that allows quantification of ppGpp in single cells, it is important 

to answer if ppGpp has a role in stochasticity dampening. Even though we cannot 

measure ppGpp in single cells, we can alter the level of ppGpp without changing the 

nutrient environment by means of ectopic production of synthesis or hydrolysis 

enzymes64,69,70. Therefore, observing single cells under shifts between different ppGpp 

conditions can reveal unknown functions of ppGpp. By observing phenomenology 

such as growth rate or cell size after a change in ppGpp levels dynamically, we can 

reveal information on the web of regulation of ppGpp. 

Chapter 3 will discuss our work on another one of the recent discoveries in cellular 

physiology and its links with ppGpp. Much like many other systems, cell’s size also 

has a stochastic nature. Divisions or DNA replication initiation can be mis-timed and 

force the cell to divide slightly earlier or later, leading to variations in cell size. This 

when unchecked would create large differences in observed cell size of a population 

where some are tiny and some huge. The way in which E. coli cells maintain size 

homeostasis was recently discovered to be an “Adder Mechanism” where the same 

length is added in each cell cycle regardless of birth size by each cell on average. 

However, the molecular details of the mechanism are not clear. In Chapter 3 we will 

present our work on ppGpp where we externally controlled its concentrations using 

fusion enzymes. We then observed cells’ size, growth and cell cycle duration changes 

during shifts from one induction level to the other. This revealed functional links 

between ppGpp and cell size regulation machinery which is independent from ppGpp’s 

regulation of growth rate.  

Chapter 4 presents our efforts in creating a chimeric enzyme which can be activated 

by light. Concentrations of ppGpp are known to respond rapidly to changing 

environments. In order to understand the effects of this on bacteria we need to 

simulate such changes, however currently there are no available techniques to 

achieve these rapid changes without altering the growth environment. We will show 

how by combining a protein domain from a plant enzyme with a metabolic enzyme 

from a fruit fly, we managed to create a light activatable chimeric enzyme which 

hopefully will allow us to conduct new science. This work was possible due to decades 

long research into protein structure and function and we will discuss in detail how two 

domains can be pieced together like Lego bricks to create new function. 

Chapter 5 will discuss the direct regulation of phospholipid production by ppGpp. We 

show that the activity of the enzyme PlsB regulates the flux through the phospholipid 

production pathway. This activity in turn is directly inhibited by ppGpp which allows 
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cells to maintain the same concentration of PlsB under slow and fast growth 

conditions. Having excess inactive PlsB around allows cells to rapidly respond to 

changes in the environment. ppGpp concentration decrease rapidly upon an increase 

in nutrient quality and thus cells can suddenly “turn on” their ability to produce 

phospholipids within minutes. This allows cells to take advantage of the improved 

media as soon as possible and stay competitive among other bacteria. 
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Abstract 

Advances in our ability to zoom in on single cells has revealed striking heterogeneity 

within isogenic populations. Attention has so far focussed predominantly on underlying 

stochastic variability in regulatory pathways and downstream differentiation events. In 

contrast, the role of stochasticity in metabolic processes and networks has long 

remained unaddressed. Here we review recent studies that have begun to overcome 

key technical challenges in addressing this issue. First findings have already 

demonstrated that metabolic networks are stochastic in nature and highlight the 

plethora of cellular processes that are critically affected by it. 
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2.1 Stochasticity and metabolism 

Elucidating the role of molecular stochasticity in metabolic processes is a central issue 

in cellular physiology. It is key to understanding cellular homeostasis, and could help 

explaining heterogeneous phenotypes ubiquitously observed across all domains of life, 

ranging from persistence to cancer [1,2]. Stochasticity in metabolism could underlie 

bet-hedging strategies, in which distinct sub-populations anticipate future 

environmental change [3,4]. On the other hand, metabolic stochasticity could limit 

optimal growth and require regulatory mechanisms to ensure homeostasis [5]. More 

generally, as metabolism ultimately drives all cellular processes, fluctuations and 

instability could impact a myriad of phenomena ranging from the cell cycle to 

differentiation events. So far however, stochastic variability is commonly considered to 

have negligible effects in metabolic networks, as reflected by current theoretical 

models [6]. Indeed, metabolic fluctuations may be insignificant because of averaging 

over the many reaction events underlying metabolism in cells, chemical equilibration, 

metabolite secretion, or a lack of limiting steps within metabolic pathways [6–13].  

At the practical level, quantifying any type of metabolic fluctuations comes with its own 

specific challenges. In contrast to regulatory proteins within signalling networks, which 

can be tagged fluorescently, metabolites are difficult to visualize at the single-cell level. 

Metabolites can be quantified by single-cell mass spectrometry [14], but so far not 

dynamically in time. Spectroscopic methods can follow metabolite abundance in time, 

but only for specific highly abundant molecules such as lipids [15]. FRET and 

fluorescent sensors hold a lot of promise, but remain limited to some metabolites and 

cannot yet quantify stochastic fluctuations [16–20].  

Recently, important progress has been made in developing novel approaches that 

circumvent these limitations. In this review, we will examine these new efforts, their 

first findings, as well as related theoretical modelling. We will also cover recent work 

that is addressing the impact metabolic variability has on other cellular phenomena.  

2.2 Enzyme expression generates metabolic noise 

Early single-cell experiments showed how the expression of transcription factors 

fluctuate and propagate to downstream genes [21–23]. Similarly, such expression 

noise in key metabolic enzymes could generate variations in the flux of the reaction 

they catalyse, even if reaction-event noise averages out [24]. Moreover, if these flux 

variations propagate down-stream along the pathway, they could produce variations in 

the rate of cellular growth. A recent study by Kiviet et al [25] was based on this premise. 

While such an approach presents the challenge of quantifying enzyme expression and 

cellular growth with high accuracy, it avoids the need to measure fluctuations in 

metabolite concentrations. 
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Growth was quantified by following the size of individual cells by time-lapse 

microscopy. Specifically, using the known overall shape of E. coli - a rod capped with 

half-domes - its length could be determined to below the diffraction limit, which may be 

compared to how fluorophores are positioned in super-resolution microscopy [25]. 

Currently, a range of different single-cell image analysis approaches are available [26–

33], including ones utilizing machine learning [34–36]. Cellular growth has also been 

quantified by measuring cellular dry mass [37], and by using AFM-like cantilevers [38], 

as will be discussed more exhaustively below. 

The data on the instantaneous cellular growth rate appeared correlated with the 

expression of metabolic enzymes [25]. However, such correlations could signal that 

growth fluctuations perturb expression, rather than the other way around. Time 

dependent correlation analysis can be used to address this issue [21,22] (Fig. 2.1). 

This approach showed that the correlations were on average stronger after a certain 

delay, consistent with enzyme production fluctuations happening first, and growth 

fluctuations happening some time later (Fig 2.1a). In line with the idea that enzyme 

(expression) fluctuations affect the flux of the reaction they catalyze, this delay was 

observed only for genes that were considered limiting, such as gltA and icd in acetate 

media, and pfkA and icd in lactose media. 

Interestingly, even when considering non-limiting genes, the expression rate was still 

strongly correlated with growth – however the correlations were now instantaneous 

and did not show a delay (Fig. 2.1b). It suggested that more generally, proteins are 

expressed significantly faster in cells that transiently grow faster, which is actually not 

unreasonable given that some cells grow twice as fast others for almost a full 

generation, and expression needs diverse metabolites. Put differently, fluctuations in 

growth-controlling factors, which may be anything from ribosomes to ATP, are also a 

source of gene expression noise [39]. In turn, metabolic fluctuations may thus affect 

processes that are controlled by gene expression, such as differentiation events 

[40,41]. Metabolic noise can be compared to other noise sources such as transcription 

factors [42] and the cell cycle [43], which can also affect more than one gene or process 

and hence may be considered as extrinsic noise sources. A picture thus emerges of a 

system as a cycle of reciprocally interacting sources of extrinsic noise: metabolic 

fluctuations simultaneously affecting the expression of multiple genes, including 

transcription factors, polymerases, and metabolic enzymes, and conversely, noise in 

the latter resulting in fluctuations in metabolic fluxes. At the same time, the precise 

relations between noisy signals, and hence their ultimate mechanistic origin remains 

largely unresolved. For instance, it is unclear whether different pathways fluctuate 

independently, or alternatively, whether observed fluctuations result from a continuous 

dynamic interplay between them. Overall, the data so far shows that expression and 

growth are tightly intertwined, not only in terms of their mean levels when comparing 

different media [44], but also dynamically within constant external conditions.  
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2.3 (Mis)matching pathways 

The notion that metabolic pathways are stochastic raises questions about the dynamic 

interaction between them. For instance, it is thought that cells co-regulate functionally 

related genes to balance their overall input and output fluxes [24,45]. In yeast, genes 

related to either stress response, mitochondria or amino acid biosynthesis were found 

to fluctuate jointly in response to general regulators [46]. Mismatches between (parts) 

of the cellular pathways can have large effects. Specifically, it was observed that 

metabolic imbalance within glycolysis can amplify non-genetic variability within the 

population [47]. When the upper and lower parts of this central pathway are not well 

matched, glycolytic intermediates can accumulate while ATP levels are reduced, thus 

strongly affecting cellular physiology. Expression variability has also been suggested 

to drive changes in flux partitioning [48]. These studies underscore the importance of 

further dissecting how cells coordinate different cellular processes in the face of the 

random fluctuations of its components, and which regulatory mechanisms they employ. 

2.4 Metabolism at the center 

Metabolism and growth ultimately power all cellular activity. A fluctuating or unstable 

metabolism thus could have wide-ranging effects. For instance, perturbations of 

metabolic homeostasis may cause fluxes to collapse and metabolite pools to deplete, 

which in turn can induce persistence [2]. Metabolic heterogeneity has been suggested 

to affect the synchronization of metabolic oscillations observed in dense yeast 

populations, and hence the communication between cells [49], while a recent study 

revealed a coupling between metabolic oscillations and the cell cycle in yeast [50]. 

Strikingly, it has recently been reported that slow-growing yeast sub populations 

display downregulated ribosomal activity and upregulated stress response genes, 

increased RNA polymerase error rates and indications of DNA damage, which may be 

explained  by oxidative stress [51]. 

One may also expect that metabolic and growth fluctuations impact cell size. Bacteria 

grow in exponential fashion - increases in growth rate could thus produce large 

increases in cell size, which could be further amplified and diverge in subsequent 

cycles because larger cells effectively grow faster. Some answers to how cells deal 

with this issue are already emerging. First, the timescale of growth fluctuations in E. 

coli was found to be just below that of the cell cycle for a range of growth media [25]. 

Cells thus inherit faster growth for just one or two generations, which limits amplifying 

effects. Second, while the molecular mechanism is unclear, it has been found that cells 

compensate for growth variability [52–58]. Cells that grow faster on average have a 

smaller interdivision time, thus yielding similar sizes at division as slow-growing cells 

(Fig. 2.2a). Moreover, faster-growing cells were also found to initiate DNA replication 

earlier, providing a further indication of underlying regulatory compensations [52,56]. 

These findings support the suggestion that the cells compensate for growth variability 

by measuring size rather than time.  
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Figure 2.1: Fluctuations from enzyme expression to metabolism, and from metabolism to enzyme 

expression. Expression measurements of a single metabolic enzyme and growth rates in individual 

cells can be used to reveal metabolic stochasticity. Two key modes of noise transmission have been 

observed, which can act both individually and jointly, and may interact. (a) Noise in the expression of a 

single enzyme (blue trace), result in fluctuations in metabolic flux that are transmitted through the 

metabolic network and affect growth with some time delay (orange trace). The delay can be quantified 

by cross-correlation analysis. The cross-correlation curve illustrates that on average, current enzyme 

expression correlates better with growth sometime later, as illustrated by the expression-growth scatter 

plots. Note that the sources of expression noise here are not only intrinsic or caused by molecular 

processes specific to one gene. They also include extrinsic or transmitted noise from other processes, 

such as transcription factor, polymerase, or metabolic factors such as amino acid abundance, which 

may affect expression but not growth. Noise sources that affect both expression and growth are 

discussed in panel b. (b) Noise sources within the metabolic network that perturb both expression (green 

trace) and growth (orange trace). Fluctuations in components that affect both expression and growth, 

such as ATP and other central metabolites, could define such sources of noise. In contrast to panel a, 

the cross-correlation here is symmetric because expression and growth respond approximately equally 

fast to the fluctuations. Note that the resulting expression noise may affect growth (panel a) or may not 

(this panel) - for instance because the expressed enzyme is not metabolically active or because it is 

abundant and hence does not limit growth. 
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Figure 2.2. Impact on cell cycle 

and population structure. 

(a)Cell cycle compensations. 

Recent work has shown that 

spontaneously faster growing 

cells initiate DNA replication 

earlier, and divide earlier, than 

slower-growing cells in the 

population. Such compensations 

limit the effects of heterogeneity in 

growth rate on cell size. (b) 

Effects on population structure. 

Faster-growing and faster-

dividing cells increase their 

frequency within the population. 

As a result, growth noise can 

result in population growth rates 

that are higher than the average 

cellular growth rate within a 

lineage. 

 

2.5 Benefits of metabolic fluctuations 

Stochasticity of growth and expression is directly observed within individual cells, but 

it can also affect the composition of the population in non-trivial ways. This issue has 

been studied theoretically and in experiments [59–61]. Counter-intuitively, analysis 

showed that growth rate distribution along a single a lineage is not necessarily equal 

to the distribution within the population at a single time point [61]. The cause however 

is actually quite simple: faster growing phenotypes produce more offspring, and hence 

become overrepresented within the population (Fig. 2.2b). The effects are most striking 

when the mean concentration of a growth-controlling enzyme is suboptimal, as gene 

expression noise and resulting growth noise can then increase the growth rate of the 

population as a whole [59]. Such sub-optimal regulation of enzyme expression has 

been observed experimentally (e.g. [62]), and in one direct study, population growth 

rates were found to be almost 10% faster than the average single-cell growth rate [61].  

A similar study in yeast showed a 4-7% increase in growth rate for the population as a 

whole [60]. Additionally, an artificial reduction of gene expression noise in catabolic 

networks decreased heterogeneity in cellular division times [60], consistent with noise 

in metabolic enzymes controlling growth [25].  

The advantage of fluctuating gene expression in variable environments was studied 

earlier in a synthetic system, in which bistable switching allowed cells to be prepared 

for environmental change [63]. The idea of "stochastic sensing" has been addressed 

theoretically [3] and observed in metabolic networks [64–66]. It has been proposed that 

the regulatory control of metabolic genes constrains the space of possible random 
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metabolic phenotypes, and hence come with entropic energy costs [67]. Overall, noise 

in metabolic systems thus may not exclusively limit optimal growth but can also be 

beneficial. This point is further illustrated by observed evolutionary adaptation towards 

more heterogeneous phenotypes [51,68–71].  

2.6 An expanding array of experimental approaches 

Tracking cell size and fluorescence has already led to surprising insights to the 

dynamics of cellular physiology. Novel approaches will open up additional possibilities.  

Fluorescence methods have been used to detect the synthesis of single proteins in 

eukaryotic cells [72]. The growth rates of eukaryotic cells are difficult to measure using 

time-lapse microscopy, given their complex three-dimensional shapes. A recent 

technique overcomes this problem, by quantifying how the cell volume reduces the 

abundance of fluophores in the surrounding medium [73]. The accuracy of gene 

expression measurements is also improving. Single proteins could be visualized in E. 

coli cells by slowing down their diffusion [74]. Measuring metabolite concentrations 

would allow direct access to fluxes. Concentrations of FAD and NADH can be 

measured using auto fluorescence [49,75], while FRET sensors have already been 

developed for calcium [16,17], ATP [18,19] and cAMP [20]. Additionally, it is possible 

to obtain single cell Raman spectra, which allow for determination of concentrations of 

certain abundant metabolites [15]. Together, these novel and existing approaches will 

be central to arrive at a dynamic view of physiology at the single-cell level.   

2.7 Concluding remarks 

In this review, we have discussed recent studies that have revealed the stochastic 

nature of metabolism and its interplay with gene expression and other cellular 

processes. The results press the notion of cells as autocatalytic and stochastic systems 

engaged in a dynamic equilibrium, with metabolism and enzyme expression as two 

fluctuating and interdependent processes.  One may expect other processes to be in 

similar dynamic equilibria, and it will be intriguing to decipher how the result can be 

stable and robust. In recent decades, growth has not been considered as an important 

piece of the cellular puzzle. This new wave of experiments is revising this view and re-

affirms metabolism and growth at the centre of cellular activity and dynamics.  
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3.1 Summary 

Growth and division are central to cell size. Bacteria achieve size homeostasis by 

dividing when growth has added a constant size since birth, termed the “adder” 

principle, by unknown mechanisms1–4. Growth is well known to be regulated by ppGpp, 

which controls anything from ribosome production to metabolic enzyme activity and 

replication initiation, and whose absence or excess can induce the stress response, 

filamentation, and yield growth-arrested miniature cells5–8. These observations raise 

unresolved questions about the relation between ppGpp and size homeostasis 

mechanisms during normal growth. Here, to untangle effects of ppGpp and nutrients 

on growth and cell size, we gained control of cellular ppGpp by inducing the synthesis 

and hydrolysis enzymes RelA and Mesh1. We found that ppGpp not only exerts control 

over the growth rate, but also over cell division and hence the steady state cell size. 

The added size responds rapidly to changes in the ppGpp level, aided by transiently 

accelerated or delayed divisions, and establishes its new constant value while the 

growth rate still changes. Importantly, the magnitude of the added size and resulting 

steady-state birth size correlate with the ppGpp level, rather than with the growth rate. 

The resulting differences in overall size yet identical growth rates underscoring the 

size control exerted by ppGpp. Our results suggest that ppGpp serves as a critical 

regulator that coordinates cell size with growth.  

3.2 Results 

3.2.1 Ectopic control of ppGpp synthesis and hydrolysis 

To study the relation between ppGpp and cell growth and division, two enzymes were 

used: the catalytic domain of the E. coli ppGpp synthesis enzyme RelA (RelA*)9,10, 

and the ppGpp hydrolysis enzyme Mesh1 from Drosophila melanogaster11,12, which 

were fused to YFP and CFP respectively (Fig. 3.1A). The former was inducible by 

doxycycline (dox) and the latter by isopropyl-β-D-thiogalactopyranoside (IPTG). We 

characterized this co-expression system in a ppGpp0 strain (relA, spoT) that cannot 

produce ppGpp. In minimal medium lacking amino acids, growth was undetectably low 

in absence of RelA* induction, consistent with previous reports8,12, as ppGpp is then 

required to activate amino acid biosynthesis operons13,14. However, growth became 

exponential if both RelA* and Mesh1 we co-expressed (S. Fig. 3.2A). These findings 

confirm that balanced synthesis and hydrolysis can achieve the constant ppGpp levels 

that are critical to normal exponential growth. If RelA* and Mesh1 indeed counteract 

in ppGpp production, then the same growth rates should be achievable by increasing 

both in parallel, as the additional synthesis by RelA* can then be cancelled by the 

additional hydrolysis by Mesh1. The data indeed showed similar growth profiles for 

different combinations of RelA* and Mesh1 expression; with both either at lower levels, 

or both at higher levels (S. Fig. 3.2A).  

3.2.2 ppGpp exerts cell size control 

We studied the effects of ppGpp at the single-cell level using a microfluidic chip that 

allowed media exchange, phase contrast and fluorescence microscopy, and cell-

tracking algorithms15. We determined the length at birth (LB) and division (LD), the 
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cycle duration (Tcyc) and exponential growth or elongation rate (µ) for each cell cycle, 

and RelA* and Mesh1 enzyme concentrations, as quantified by the mean fluorescence 

per pixel (Fig. 3.1B, Supp. Fig. 3.1A-D). Here, we expressed either RelA*-YFP or 

Mesh1-CFP at moderate levels in the WT background (relA+ and spoT+), in order to 

produce minor deviations in the ppGpp concentration, from above to below basal 

levels, while maintaining balanced exponential growth (Fig. 3.1C, D). As a control, we 

showed that expression of a fluorescent protein alone did not significantly affect cell 

size or growth rate (S. Fig. 3.1E-F).  

The (population-mean) trend in the growth rate µ showed an optimum while the birth 

size LB went up monotonically, as ppGpp decreased from above to below basal levels 

(Fig. 3.1C, D). The relation between LB and µ (Fig. 3.1E) contained a number of 

intriguing features. First, as ppGpp decreased, both LB and µ increased initially (Fig. 

3.1E), in agreement with the well-known finding that faster growing cells are larger. 

However, decreasing ppGpp further led to an inverted trend, in which slower growing 

cells are larger (Fig. 3.1E). This deviation began at near-endogenous ppGpp levels 

(Fig. 3.1C-E). A counter-intuitive consequence of this inversion is that excursions 

above and below this endogenous ppGpp level leads to cells that differ in size but 

grow equally fast (Fig. 3.1E). The same trends were observed for the ppGpp0 strain 

with RelA* and Mesh1 (S. Fig 3.2B-C). 

The data are thus inconsistent with models in which ppGpp is a regulator of growth, 

and in turn, growth sets cell size, as described by the general growth law16,17. In such 

hierarchical models, LB would follow the increase-optimum-decrease trend observed 

for µ (Fig. 3.1C). Instead, the monotonic increase of LB with increasing ppGpp (Fig. 

3.1D) suggested that ppGpp affects size in a way that is not mediated by µ. In recent 

years, it has become clear that the bacterial cell size is set by adding a constant size 

each cell cycle. Hence, we surmised that if ppGpp plays a µ-independent role in setting 

LB, as our data suggests, it should also play a role in this adder mechanism. 

3.2.3 ppGpp dynamically controls added cell size 

In order to investigate the effect of ppGpp on the added size, we quantified the added 

length (L) each cell cycle. First, we found that the adder principle was obeyed at all 

ppGpp concentrations: for the different levels of dox and IPTG induction, L was birth-

size independent (Fig. 3.2A). In line with previous adder principle observations, we 

find that Tcyc rather than µ is modulated to achieve a constant L, as larger-born cells 

divide sooner (Fig. 3.2B). Indeed, L increased monotonically with decreasing ppGpp 

(S. Fig. 3.2D), and thus did not follow the trend observed for µ (Fig. 3.1C). These data 

indicated that the added size correlated with population-average ppGpp concentration 

rather than the rate of growth. 

Next, we considered how shifts in ppGpp concentration affect cell size and its control 

dynamically. Within the microfluidic flow-cell, we followed individual cells as they were 

exposed to a shift from basal ppGpp concentrations (-dox) to different levels of RelA* 

induction (+dox), in various growth media. First, the growth response underscored the 

important differences between the moderate induction that we focus on here (1 and 2 
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ng/ml) and the strong induction that mimics the stringent response (10 ng/ml dox), with 

strong induction yielding a rapid growth arrest while moderate induction led to an 

approximately two-fold slower decrease in growth rate and allowed exponential growth 

to continue (Fig. 3.2C).  

Notably however, the added size did respond rapidly even to low RelA* induction 

levels. Added size L decreased halfway at about 25 min., and subsequently reached 

its final value at about 55 min (Fig. 3.2D, red trace). In contrast, µ responded 

substantially slower, and required about 100 min. to decrease halfway and over 300 

min. to stabilize (Fig. 3.2C, blue trace). A similar pattern of rapid L and slow µ 

responses were observed for different media and dox induction levels (Fig. 3.2E), as 

well as for Mesh1 induction (Fig. 3.2F). Consistently, L increased more rapidly than 

µ decreased upon Mesh1 induction (Fig. 3.2F). 

The data show a temporal order in which L responds to ppGpp deviations prior to µ. 

Indeed, L typically has already stabilized to its post-shift level when µ has decreased 

only half-way from pre-induction to post-induction level (Fig. 3.2D-F). These data 

support the idea that µ and L are decoupled, and further extend the notion that ppGpp 

affects cell size independently from its role in growth rate control. We hypothesize that 

a change in ppGpp concentration sets a new added size by affecting the division rate, 

which in turn results in a new steady-state birth size. 
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Figure 3.1. ppGpp exerts control over bacterial cell size. A Scheme to control the cellular ppGpp 

concentration. A RelA truncate from E. coli (relA*), which synthesizes ppGpp, is fused to YFP and 

induced by doxycycline (dox). The ppGpp hydrolysis enzyme Mesh1 is fused to CFP and induced by 

IPTG. See S. Fig. 3.1 and 3.2 for characterization of these constructs. B Measured length of single cells 

grown in a microfluidic device. For each cell cycle we quantify; size (length) at birth (LB), cell cycle 

duration (Tcyc), added size (L), and the growth rate (μ) by exponential fitting. C Growth rate for 

decreasing ppGpp levels. ppGpp increases above basal levels when inducing relA* with dox, and 

decreases below when inducing mesh1 by IPTG, in WT (relA+, spot+) cells. Left to right: N = 42, 316, 

257, 403, 241 cell cycles. μ peaks at basal (endogenous) ppGpp levels, and then decreases. D Birth 

size for decreasing ppGpp levels. Conditions as in panel C. LB increases continuously while μ decreases 

for below-basal ppGpp levels. The LB thus follows the ppGpp trend rather than that of μ. E Birth length 

against growth rate. Closed circles: single cell cycles in minimal media, colors and conditions as panels 

C and D. Drawn lines are guides to the eye. For below-basal ppGpp, slower growing cells are larger, 

owing to an inversion of the growth law. Cells of different size can thus have the same growth rate 

(black dots). Open circles: single cell cycles in rich media, with 2 ng/ml, 1 ng/ml, or 0 ng/ml dox, and N 

= 66, 35, 336 cell cycles (dark to light gray).  

 

 

 

 



ppGpp is a bacterial cell size regulator 
--------------------------------------------------------------------------------------------------------------------------------------   
 

32 
 

 

Figure 3.2. ppGpp dynamically controls added cell size. (A) Cell length added (ΔL) per cell cycle 

against birth length (LB) of that cycle, for different constant ppGpp levels. Dots are single cell cycles, 

squares are means for LB bin, bars are s.e. Left to right: clouds for decreasing ppGpp levels of ppGpp, 

starting with dox in ng/ml: 2 (red), 1 (orange), 0 (yellow), and then 100 uM IPTG (blue). N = 42, 316, 

257, 241 cell cycles. For each cloud, ΔL is constant for different LB, consistent with “adder” principle. 

(B) Cell cycle duration (Tcyc) against birth length (LB) of that cycle. When LB is smaller, Tcyc is larger, 

indicating it is modulated as cells compensate for stochastic variations in LB, which is consistent with 

the adder principle. Colours and conditions as in panel A. (C – F) Cells during ppGpp shift, from basal 

to above and below basal levels. (C) Growth rate (μ) during ppGpp increases, by RelA* induction with 

dox, in rich and minimal media. μ response timescale for these various conditions is assessed by 

normalizing rate to initial (pre-shift) and final (post-shift) value. Top bar indicates dox induction. In 

minimal media, shift from 0 ng/ml dox to: 2 (pink), and 1 (orange). In rich media, shift from 0 ng/ml to: 1 

(dark grey), 2 (intermediate grey), and 10 (light grey). Bars are s.e., averaged over multiple cell cycles. 

Curves show similar adaptation time for moderate shifts, in contrast to the large 10 ng/ml shift, which is 

significantly faster, and serves as a control: growth indeed arrests at high ppGpp levels, as studied 

before, in line with the stringent response. (D) Growth (μ) and added size (L) during ppGpp increase. 

Circles are single cell cycles, lines are moving averages, for shift from 0 to 2 ng/ml dox, in rich medium. 

L responds faster than μ and stabilizes to post-shift value while μ still varies. (E) Stabilization time for 

μ (blue) and L(red). See methods for quantification approach. Each black dot shows the results of the 

analysis from 1/3rd of the available data points. L responds faster than μ under all moderate shifts. (F) 

Growth (μ) and added size (L) during ppGpp decrease. Circles are single cell cycles, lines are moving 

averages, for shift from 0 to 100 μM IPTG dox, in minimal medium. 
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3.2.4 Division accelerates transiently to achieve constant added size after 

induced ppGpp synthesis 

We used mathematical modelling to understand the interplay between growth, 

division, and size, and compare different possible scenarios. Current size homeostasis 

models consider constant growth conditions, as well as a strict coupling between μ 

and ΔL2,3,18,19. We first tested a hierarchical model (Fig. 3.3A), which thus preserves 

the μ-ΔL coupling as growth conditions change. This model takes the observed initial 

and final values of μ and ΔL as input, lets μ decrease exponentially with the observed 

rate, and averages over multiple resulting simulated stochastic trajectories in ΔL and 

division rate 1/Tcyc. The results of the hierarchical model (Fig. 3.3A) appeared 

inconsistent with the experimental observations (Fig. 3.3B). In particular, L and µ 

decrease at similar rates in this model, while LB decreases slower than µ (Fig. 3.3A), 

while the experiments show that both L and LB decrease faster than µ (Fig. 3.3B). 

Notably, the experimental data also indicate a transient increase in 1/Tcyc before it 

decreases (Fig. 3.3B), unlike the hierarchical control model (Fig. 3.3A). 

Next, we considered a model of direct ppGpp control (Fig. 3.3C), which allows μ and 

ΔL to respond to ppGpp changes via independent routes and timescales. In this 

model, as also observed in the data (Fig. 3.2D), the mean ΔL responds directly by 

decreasing linearly to its post-shift value in about two pre-shift cell-cycles (note that 

division events in the averaged lineages are not synchronized), while μ decreases in 

the same way as in the previous model (Supp. Fig. 3.3A). The direct control model 

reproduces many features of the experimental data. Specifically, LB responds slower 

than ΔL but faster than µ, and surprisingly, 1/Tcyc showed a transient increase (Fig. 

3.3B and C).  

This increase in 1/Tcyc may appear paradoxical, as it must decrease ultimately to 

match the lower μ. However, as illustrated by the model, it is a logical consequence of 

the μ and ΔL speed differences: ΔL reaches the lower post-shift value rapidly, while μ 

is still close to its high pre-shift value. With a comparatively high μ, the post-shift ΔL is 

achieved early, and hence divisions are early as well. Yet, it is indeed notable that the 

division rate appears readily modulated upwards and downwards. Together with the 

observation that ΔL is already stable at its new value while µ and 1/Tcyc are still varying 

towards theirs (Fig. 3.3B), these findings support a picture in which the cells act to 

realize their target ΔL (set in part by the concentration of ppGpp), and consequently 

LB, regardless of the rate of growth, and thus yielding a corresponding division rate. 

Further observations are consistent with this picture. First, 1/Tcyc changes on a 

timescale (within 25 minutes of the shift) that is shorter than the cell cycle duration, or 

even the C+D period (~65-75 minutes)20. Scenarios in which division occurs a fixed 

time after the moment of replication initiation21–23, with ppGpp affecting the added size 

by modulating the initiation rate, are inconsistent with these observations. These 
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Figure 3.3 Division accelerates transiently to achieve constant added size. (A) Predictions of 

hierarchical model, in which ppGpp affects the growth rate (μ), and size in turn adjusts to the growth 

rate. To compare response speeds, indicated quantities are normalized to initial (pre-shift) and final 

(post-shift) values. Top bar indicates ppGpp increase. (B) Experimental data. Conditions and display 

as in panel A. (C) Predictions of direct model, in which ppGpp exerts control over division and hence 

(added) size independently of μ. Conditions and display as in panel A. Experiments agree with direct 

model in terms of the temporal order of the responses and the transient acceleration of divisions. (D) 

Quantification of transient effects in the division frequency (1/Tcyc). Data is averaged in purple and green 

zones to obtain data in panels E and F. Circles are single cell cycles for shift from 0 to 2 ng/ml dox, in 

minimal medium. Drawn line is moving average. (E) Pre- and post-shift division frequency (1/Tcyc), as 

defined in panel D. In rich media, a ~15% increase is observed between the purple and green zones. 

Star: p < 0.01.  (F) Direct model reproduces transient acceleration in rich media but not in minimal 

media, as seen in the experiments (panel E). 

 

 



Chapter 3 
-------------------------------------------------------------------------------------------------------------------------------------- 
 

35 
 

scenarios require completion of ongoing cell cycles before registering ppGpp effects. 

The 1/Tcyc response would then exceed the C+D period and decrease exclusively, to 

match the new μ. Second, the growth rate independent model predicts the 1/Tcyc 

increase is too small to detect in minimal media (Fig. 3.3D and E), owing to the lower 

µ, which is indeed observed in the experiments (Fig. 3.3F). Third, upon Mesh1 

induction, Tcyc increases within 20 minutes and then stays constant (S. Fig. 3.3B). 

These results indicate that ppGpp can exert control over division, and hence over cell 

size, in a way that is not mediated hierarchically through its effects on initiation and 

the rate of growth. 

3.3 Conclusions 

Elucidating the coordination between cell growth and cell cycle progression is a foundational 

challenge of microbial physiology. The adder mechanism has emerged as a key principle in 

recent years: it is observed across diverse domains of life and experimental conditions, and 

elegantly explains how size remains constant despite (division) stochasticity and exponential 

volume growth[2–4,15,22–26]. By adding a constant size every cycle, stochastic size 

variations are averaged out without needing a specific response to size deviations. How the 

adder mechanism relates to ppGpp is central, given the inherently intertwined nature of size 

and growth, yet remains poorly understood. ppGpp is implicated in diverse cellular metabolism 

and growth processes, including regulating ribosome production[27–29], modulating 

membrane synthesis[30,31] DNA replication initiation[5,32–34], and triggering the stringent 

response[35–37], a stress reaction that arrests growth until conditions improve.  

Here we found that ppGpp is a cell size regulator, and hence serves as a link between growth 

and size control mechanisms. More specifically, we showed that E. coli cells do not follow a 

hierarchical model, in which cell size adjusts to the growth rate (as described in the general 

growth law[1,16–18]), and ppGpp controls growth (by tuning ribosome production depending on 

amino acid availability, for instance). Rather, the (added) size correlates with the level of 

ppGpp (instead of the growth rate), and adjusts rapidly to ppGpp deviations, prior to the growth 

rate response, indicating that ppGpp exerts independent control over cell division and growth. 

The findings give rise to a number of speculations. ppGpp-mediated cell cycle control could 

help accommodate different physiological limitations. For instance, the metabolic burden 

caused by ribosome excess may favour larger cells, rather than the smaller cell size resulting 

from a strictly positive size-growth correlation in hierarchical models. Consistently, 

overexpression of a non-functional protein was shown to yield larger cells[38]. The growth 

adjustments caused by the minor ppGpp changes studied here were also notably slowed than 

those that characterize the stringent response and large ppGpp changes. The former could 

be caused by ppGpp inhibition of ribosome production, and the resulting dilution of ribosomes 

by volume growth. 

In recent years, diverse mechanisms have been proposed to explain cell size homeostasis 

and its dependence on growth[2–4,15,22–26]. Our findings suggest these mechanisms are 

under control of ppGpp. For instance, the constant added size is proposed to result from the 

accumulation of a signalling molecule throughout the cell cycle, which triggers division when 

a threshold is exceeded[23,39]. One may speculate that ppGpp alters the production of this 

molecule and its threshold. Owing to the central role of ppGpp in metabolism and its many 
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regulatory targets (hundreds of genes[40] and dozens of proteins[41]), ppGpp could control 

size in many possible ways. It was found that OpgH can suppress FtsZ ring formation 

depending on the growth rate. One may consider whether OpgH mediates the ppGpp division 

effects, though it is not a known ppGpp interactor[42]. Nucleoid occlusion mechanisms have 

also been proposed to explain variations in added size[2]. Nucleoid volume could be 

modulated by ppGpp-induced decreases in the overall DNA replication initiation[43–45] or 

transcription rates[46,47]. 

3.4 Supplementary Information 

 

Supplementary Figure 3.1: Mild induction produces homogeneous populations and excess 

functionless protein synthesis (CFP) does not lead to changes in size and growth rate at our 

induction levels. A, B, C, D, For all the induction and initial growth conditions, fluorescence reporter 

distributions confirm that all the observed cells are getting induced homogeneously. E-F Strains carrying 

RelA* (a-b), RelA*+CFP(c) or Mesh1(d) plasmids were grown in the same nutritional media and RelA* 

or Mesh1 was induced (vertical dotted line left-right, before-after induction).  For strain c CFP was 

constantly induced. Growth rates of constant CFP induction and Mesh1 plasmid carrying strains(c,d) 

are slightly lower than RelA* plasmid carrying strains (a,b) before induction of RelA* or Mesh1. After 

induction all the strains grow slower. Induction of Mesh1 leads to a significant increase cell size which 

is not observed under constant CFP induction indicating that the effect from Mesh1 induction is not 

related to cost of the peptide. 2 ng DOX induction (a) decreases growth rate to ~0.25 doubling/hr while 

1ng induction in b or c leads to a similar final growth rate 0.75 and 0.89 doubling/hr respectively. Red 

dotted line shows the average of 4 experiments before spike. 



Chapter 3 
-------------------------------------------------------------------------------------------------------------------------------------- 
 

37 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 3.2: Varying induction of RelA* and Mesh1 leads to changes in cell size 

correlating with ppGpp concentration while growth rate shows optimum behavior. A OD data 

(range 0-0.5(AU)) through time (range 0-900(min)) from a ppGpp0 (RelA, SpoT) strain that is co-

transformed with both RelA* and Mesh1 plasmids in minimal media with different carbon sources (black-

glucose, green-glycerol, red-malate). With no IPTG (bottom row) there is no growth as presumably 

leakage from RelA plasmid is lethal due to accumulation of ppGpp. Similarly, if Mesh1 is induced at 

maximum rate while RelA is not induced (top right plots) growth is minimal since lack of ppGpp is 

detrimental to growth in minimal media. Growth defects caused by increase or decrease of Mesh1 or 

RelA induction can be compensated by balancing the induction of the other enzyme. This is shown by 

diagonal boxes (top-left to bottom-right) showing the fastest growth. B As in (A) when a ppGpp0 strain 

is transformed with both enzymes, stochastic differences between individual cells reveal similar result. 

Too high or too low YFP/CFP level (which indicates unbalanced Mesh1 and RelA production) leads to 

slower growth. D Even though the cells are slower growing with low ppGpp (low YFP/CFP level) they 

are larger. High YFP/CFP cells are slower and smaller due to higher than optimum ppGpp. C Altered 

ppGpp levels reversely correlate with L similar to (Fig 3.1D) independent of growth. 
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Supplemental Figure 3.3. A Green bars above the plots represent no induction and orange bars shows 

induction, vertical line shows induction and horizontal lines show half-way between initial and final 

normalized values. μ-dependent adder simulation fails to represent the experimentally observed ΔL 

trajectory, while the μ-independent adder simulation shows close match. Same plots for 4 different 

experimental conditions are shown. B Induction of Mesh1 leads to rapid increase in Tcyc suggesting 

inhibition of division by decreased ppGpp levels. 
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3.5 Materials and Methods 

Strains and plasmids 

E. coli K-12 strain NCM3722 (CGSC# 12355) and ppGpp0 (CF10237) which were 

transformed with the RelA_YFP and/or Mesh1_CFP induction plasmids were used in 

all the experiments. A negative control of Mesh1 expressing plasmid where instead of 

Mesh1_CFP, only CFP is present was also used to test protein cost effects.  Plasmid 

pRelA* was constructed by replacing mCherry on a pBbS2k-RFP plasmid (KAN 

Resistance, Tet promoter, sc101** origin) with a DNA sequence encoding the first 455 

amino acids of the native RelA gene. YFP fluorophore mVenus was fused to RelA* via 

a glycine-serine linker using restriction cloning. Similarly, a codon optimized sequence 

of Mesh1 or CFP replaced mCherry in the plasmid pBbA5a-RFP (AMP Resistance, 

lacUV5 promoter, p15A origin). CFP was later fused to Mesh1 with a GS linker using 

restriction cloning. 

Chemocompotent NCM3722 cells were transformed with the pRelA* plasmids and 

spread on LB Agar plates with 25ug/ml KAN. pMesh1_CFP and pCFP plasmids were 

transformed and plated on LB Agar plates with 50ug/ml AMP. Plates older than 3 

weeks were discarded and fresh transformations were prepared to prevent mutants. 

Chemocompotent ppGpp0 cells were co-transformed with pRelA* and pMesh1_CFP 

and plated on LB Agar plates with 50ug/ml AMP, 25ug/ml KAN and 100uM IPTG to 

allow growth. Without 100uM IPTG, leakage from pRelA* inhibits growth enough to 

prevent visible colonies next day morning (data not shown). Plates with colonies were 

only used on the day where the colonies first appear (next morning after 

transformation) as older plates loose viability rapidly due to lack of ppGpp. 

Culture Conditions 

Cells for bulk and microscopy experiments were grown using defined MOPS medium 

containing 0.2% (with volume) carbon source 47 with 100uM MnCl2 (minimal media). 

Rich medium is the same as minimal media except for the supplementation of 0.2% 

Casamino Acids, 400µg/ml Serine and 40µg/ml Tryptophan. AMP 50ug/ml and KAN 

25ug/ml were added to the media along with appropriate plasmid bearing strains. 

For the microscopy experiments, cells were initially inoculated in 10mL tubes with 5ml 

MOPS rich medium from a single colony in the morning. The tube was placed in a 

370C room on an orbital shaker until the growth becomes visible (OD~=0.1). Cells 

were then spun down at 4000G for 5 minutes and re-inoculated in 10µL top media. 

2µL of the concentrated cells were injected into the microfluidic chip by hand via a p2.5 

pipette and appropriate pipette tip.  

ppGpp0 strain requires different handling due to its inability to respond to stress. For 

the 96 well plate experiments a single colony was inoculated in 5ml Glucose rich media 

with 100uM IPTG and placed on a shaker for up to 4 hours until OD reaches 0.4. After 
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that 40ng/ml DOX is added to prime the culture with high ppGpp production which 

allows it to handle stress and initiate growth in minimal media. This culture is then 

diluted in fresh media (MOPS minimal with different carbon sources) without any 

inducers. Immediately after the dilution 98uL of the culture is pipetted into wells of 96 

well plates with 1+1uL (DOX + IPTG with 100x final concentration) inducers present, 

reaching a final volume of 100uL. 96 well plates which were prepared as above were 

placed in a Biotek Synergy HTX plate reader @370C with constant orbital shaking. 

OD was measured every 10 minutes. A similar method is applied for the microscopy 

experiment with the ppGpp0 strain. A single colony is grown in rich media with proper 

antibiotics from the morning and when OD reached 0.1, 40ng/ml DOX is added to 

induce ppGpp production. This allows cells to survive the stressful process of being 

concentrated and loaded into the chip by forcing them to produce ppGpp beforehand. 

The chip is then placed under the objective in a warm chamber set to 370C for all the 

experiments. After cells populate the growth chamber input and output tubes are 

connected to the chip and appropriate media is pushed through the chip at 0.5ml/hr. 

This corresponds to 250-500x dilution per hour since the chip’s inner volume is 

between 1-2uL. 

Microfluidic Chip 

The microfluidic chip’s Epoxy mould which was kindly sent by Daan J. Kiviet from 

Ackermann Lab is a variant of the mothermachine from Jun lab. Each flow line consists 

of an input which splits up into 2 arms, in each arm there are a number of extruding 

growth chambers varying in depth and width (80, 60, 40, 20, 10, 5 µm width, 60, 30, 

50, 40 µm depth) and a single output after the 2 arms reconnect into a single line. 

Chip is built by first preparing the PDMS mix using the protocol from 15. Polymer and 

curing agent (Sylgard 184 elastomer, Dow Corning) were prepared by mixing 7.7 g of 

polymer with 1mL of curing agent. The slight deviation from the suggested 10g/1mL 

were implemented to create a more rigid chip allowing low height growth chambers to 

not collapse. Mixture was then thoroughly mixed using a vortexer and plastic mixer. 

The mixture is then poured into the Epoxy mould (provided by Ackermann lab) and 

placed in a desiccator for 30 minutes to remove air bubbles formed during mixing. 

Then the mould is baked at 800C for 1hr. After the baking period, the PDMS chip is 

removed from the mould using scalpels and rough edges were cut to allow for better 

binding to glass. Inlet and outlet holes were punched using a hole puncher. The PDMS 

chip is then covalently attached to a glass slide by using a hand-help corona treatment 

device (model BD-20ACV, Electro-Technic Products). Application was done by 

passing the corona treatment device 6-7 times, each pass lasting ~5seconds, 5-10mm 

away from the surface of both the PDMS chip and glass cover slip. After the corona 

application, PDMS chip is placed on the treated glass surface and tapped by a gloved 

finger to assure full bonding. Prepared chips could be used couple weeks after 

preparation however after more than a month, chambers start to collapse, so chips 

older than 1 month were not often used. 
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Imaging and Image Analysis 

Cells growing in the microfluidic chambers were imaged using an inverted Nikon 

TE2000. Using 100x and a 1.5x zoom lenses in tandem a pixel size of 0.041 µm was 

achieved. Imaging was done using a CMOS camera (Hamamatsu Orca Flash 4.0) via 

illumination from an LED light source (ImSpec, HPX-L5) with a liquid light guide. The 

microscope stance was equipped with computer-controlled stage (Marzhauser, SCAN 

IM 120 3 100) allowing to move between several chambers for imaging. A phase 

contrast image was taken every minute and a YFP image every 5min using Chroma 

filter set 49003 and a computer-controlled shutter (Sutter, Lambda 10-3 with 

SamrShutter). Control of the automated microscopy systems was achieved through 

MetaMorph software. Each experiment lasts between 24-36 hours, images were 

initially visually analysed to check for major issues such as cells washing away from 

the wells or halting of growth due to clogs.  

After the initial checks, a MatLab based software customized by Tans Lab was used 

to quantify growth rates and cell sizes. Individual cells are identified and tracked from 

phase contrast images. Cell’s lengths and volumes were estimated assuming the 

shape of cylinders with semi-circular caps and fitting a polynomial to skeleton data. 

Estimated length data through time is used to calculate either instantaneous growth 

rate or average growth rate using exponential fits. Fluorescence values are calculated 

from a small strip inside the cells to decrease errors caused by fluorescence falloff that 

occurs at the edges of the cell. Added length is calculated by simply subtracting size 

at division (end of cycle) from size at birth (beginning of cycle). Duration of the cycles 

are calculated from timestamps of the initial and final image a cell has been seen. Any 

cell that does not divide within the growth chamber is ignored along with cells that 

approach the exit of the wells due to increase speed and possible tracking issues that 

arise.  

Calculation of stabilization time 

Data points enclosed by a sliding window with width (~1xTcyc) starting from the 

beginning of the experiment is compared against all the data points where growth rate 

is stable after induction. As the sliding window moves through time, both growth rate 

and added length change and start to approach the final stable value. When the t-test 

between the sliding window and final stable growth regime results in a p-value greater 

than 0.05, 3 times in a row, the centre of the window is taken as “Stabilization Time”. 

For each experiment the data is split into 3 by maintaining relative data density through 

time and each 1/3rd batch is analysed using the same method to estimate technical 

repeatability (black dots, Fig. 3.2D). 

Division frequency analysis 

All the data points representing 60/Tcyc from before induction (-150<->0 min) are 

compared against the data points from immediately after (0<->2*Tcyc minutes). A 

simple t-test is applied, and boxplots represent the tested data points (Fig. 3.3E-F). 
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Models  

We considered two alternative models describing size control during the transient. In 

both models a cell divides with a hazard rate19 that depends on the added size and a 

target added size ΔL (which in stationary conditions corresponds to the average added 

size). Both the target added size ΔL(t) and the growth rate µ(t) are functions of time 

during the transient. In both the models the growth rate µ(t) is exponentially relaxing 

to the stationary value observed in each of the experiments. 

The two models differ for the relation between growth rate and size scale during 

transient. In the growth dependent model, the typical size is a deterministic function of 

the growth rate ΔL(t) = D exp( µ(t) T ). Parameters were as follows: T = log(sizeFinal / 

sizeInitial) / (µFinal - µInitial) and D = sizeInitial * exp(-µInitial * T). In the growth independent 

model, ΔL(t) is relaxing to the stationary value linearly in two pre shift cycle duration 

time. 
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4.1 Introduction 

E. coli metabolism responds rapidly to changes to the nutrient conditions [1-6]. This is 

beneficial since slower response would lead to decreased growth and fitness amongst 

faster responding competitors. For example, E. coli’s transcription rate was shown to 

increase within 1 minute of a nutritional upshift where amino acids are added to a 

minimal growth media. It was shown that the decrease in the intracellular 

concentration of the signalling molecule Guanosie-tetraphosphate (ppGpp) which 

occur after an amino acid upshift, is the main cause of the rapidly increased 

transcription rate [6]. ppGpp is a signalling molecule whose concentration reversely 

correlates with steady state growth rate and adjusts overall translation and 

transcription rate [7]. This achieves optimum translation capacity under various media 

conditions. However, it takes several hundred minutes to reach a new steady state 

concentration of a protein after a change in production rate, such as induction. [8]. On 

the other hand, some enzymes’ activity can be directly controlled by ppGpp 

concentration allosterically [9,10,11]. For example, we have recently shown that 

membrane synthesis can be regulated by ppGpp via allosteric regulation of PlsB 

whose activity controls flux into phospholipid synthesis pathways[12-Preprint]. This 

was shown by modulating ppGpp concentrations using chloramphenicol, rifampicin 

and ectopic ppGpp synthesis and measuring flux through phospholipid synthesis 

pathway. Results matched well with simulations where ppGpp modulated PlsB activity 

allosterically. Activity of PlsB responded to changes in the ppGpp concentration within 

2 minutes. 

Currently it is still not fully understood whether basal concentrations of ppGpp 

observed during steady state growth (>0.5/hr) affect other processes such as DNA 

replication initiation, division and translation post-translationally [13-14]. Unfortunately, 

methods applied to identify PlsB as a ppGpp target, cannot be used to test other 

machinery as they interfere with translation and replication initiation itself. Other 

methods such as amino acid upshifts to decrease ppGpp levels [5] are also limiting 

because it becomes impossible to decouple the effects of the nutritional change itself 

from the effects of decreased ppGpp. For example, in order to test whether ppGpp 

can inhibit translation allosterically, one can add amino acids to the minimal growth 

media and rapidly decrease ppGpp levels in growing cells. If ppGpp is inhibiting 

translation rate allosterically, when ppGpp concentrations decrease translation rate 

should increase. However, a possible increase in translation rate after the upshift, 

could be caused by the increased amino acids concentration itself simply by increasing 

the substrates of translation. In order to answer the above question, one needs to 

develop a method to decrease ppGpp levels rapidly without changing the nutrient 

condition. 

A way to decrease ppGpp levels in an exponentially growing E. coli is to induce 

translation of a ppGpp hydrolysis enzyme such as Mesh1[15-16]. It was shown that 

induction of Mesh1 leads to a lower ppGpp concentrations in-vivo [16]. However, the 
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limitation with this approach is the speed with which ppGpp would decrease and this 

was only shown for steady-state growth. Induction of an enzyme is on the same 

timescale as transcriptional regulation since most induction systems rely on triggering 

transcription of a gene via addition of specific inducers. This could lead to a gradual 

decrease in ppGpp levels as the enzyme concentration slowly stabilize. In order to 

probe possible direct allosteric regulation of ppGpp on various metabolic pathways 

one possibility is to engineer a ppGpp decreasing mechanism which is faster than 

transcription->translation timescale. Because otherwise by the time ppGpp change 

happens, proteome can be altered by the slowly changing ppGpp. This would make it 

impossible to decouple the effects of ppGpp from the effects of changing proteome 

itself. 

A light activated Mesh1 construct would allow rapid changes to ppGpp levels without 

needing nutrient change. The enzymes production could be induced under dark 

conditions and allowed to stabilize. Later when desired the light can be applied to 

induce a sudden burst of ppGpp hydrolysis by activating the enzyme. There are 

several ways to engineer a light activated version of a target enzyme (reviewed in 

[17]). In general, these methods utilize conformational changes that occur on various 

known light-sensitive domains. Two main strategies were followed in these studies. 

(1) A genetic construct was created to fuse a target enzyme with a light-sensitive 

domain which changes confirmation under light. This change is then relayed to the 

fused enzyme and leads to variable activity under dark and light conditions 

[18,19,20,21]. (2) Protein-protein interactions were used to localize or sequester the 

target enzyme which is fused to a light-sensitive domain [22,23,24]. For our purposes 

a method under the first category using light sensitive LOV2 domain from Avena sativa 

is the most appropriate. LOV2 domain has a C-terminal alpha-helix which under blue 

light (470nm) is free to move. However, under dark conditions the helix is attracted to 

the rest of the domain [25]. This conformational change can be used to alter the activity 

of a fused enzyme using light. If fused enzyme has an N-terminal alpha-helix, the two 

helices can be fused to create a continuous helix link between LOV2 and target 

enzyme. This link can be used to trigger changes to the confirmation and decreased 

activity of the target enzyme by attracting the shared helix to the LOV2 domain in dark. 

Later when light is turned on and the shared helix is released from the LOV2 domain, 

the target enzyme can assume its correct confirmation and gain increased activity. 

Here we describe how we engineered and tested a LOV2_Mesh1 fusion (LOVEsh-

m14) using a simple growth assay as a way to measure enzyme activity. As described 

before, ppGpp levels need to be balanced to allow for optimum growth. Too much or 

too little ppGpp is detrimental to E. coli growth under various conditions [Chapter 2 

This Thesis, 16, 26]. We tested our constructs with two complimentary experiments 

where ppGpp hydrolysis would either promote or inhibit growth and showed that a final 

construct (LOVEsh-m14) shows higher hydrolysis activity in light compared to dark. 

Preliminary measurements of in-vivo ppGpp concentrations also show ~20% 

decreased ppGpp levels 3 minutes after light activation of LOVEsh-m14. While the 
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observed change in ppGpp concentration after light induction is not large this construct 

can be used to probe various allosteric effects of ppGpp. Further, our results support 

that LOV2 domain is a viable modular light-sensitive domain for enzymes with N-

terminal alpha helices. 

4.2 Results 

4.2.1 Methodology of engineering and testing a light activatable ppGpp 

hydrolysis enzyme 

We have designed two experiments where light would promote or inhibit growth if the 

tested variant is light responsive. (1) In a strain where excess RelA production can be 

induced growth arrest occurs due to overproduction of ppGpp. Later when a ppGpp 

hydrolysis enzyme such as Mesh1 is induced growth can resume since excess ppGpp 

is hydrolysed. If a light activated Mesh1 variant can be constructed it is expected to 

recover growth under RelA overexpression with blue light but not in dark (Fig 4.1A). 

(2) If the growth medium is lacking amino acids, an optimum concentration of ppGpp 

is required for fastest growth [16,27]. If the ppGpp concentrations are decreased in 

minimal media, growth is slower. Therefore, another experiment is designed where 

growth is expected to be limited in minimal media in light but not in dark with possible 

light activated variants (Fig 4.1B). This allows us to identify possible effects of light 

itself on growth and removes the possibility of identifying false positive constructs. 

In the first cycle of variant generation we tested different locations for where to fuse 

the two alpha helices of LOV2 and Mesh1 peptides. We initially created several 

“indents (-1 to -10 amino acids)” in Mesh1 while using all of the LOV2 domain. A 

positive control was also constructed where LOV2 domain and Mesh1 were connected 

with a GS-Linker. Because glycine-serine is a helix-breaking linker, such a construct 

is expected to prevent light-driven conformational changes in the LOV2 domain from 

affecting Mesh1 activity. This thus served as a control which allowed us to have a 

variant which should always have light independent high activity. A metabolically non-

active protein (Cerulean) was used as a negative control which should never show 

ppGpp hydrolysis activity (Fig 4.1C). 

Once a variant was identified to be light activated (v-3), the activity difference between 

dark and light was then improved by using targeted mutagenesis. Two amino acids at 

the fusion point (Tyr4, Pro5) were identified as alpha-helix breakers and semi-random 

primers were used to rapidly generate a mutant library with several alpha helix joining 

amino acids replacing the two. 
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Figure 4.1. Engineering a new variant with less activity in dark by increasing the shared helix’s 
stability using site directed semi-random mutagenesis. (A) Two amino acids at the interface 
between LOV2 and Mesh1 (4Tyr-Y and 5Pro-P) are known to disrupt alpha helix formation. Forward 
and reverse primers with 5 prime phosphorylation allow for easy ligation and transformation. Using a 
degenerate forward primer which limits the possible amino acids at Mesh1 positions 4 and 5 in 1 cloning 
step we generate numerous possible mutants. (B) Testing of the mutants reveals that in competition 
against RelA the original -3 variant can grow in the dark when enough time is allowed, however some 
of the new mutants(14, 18, 32) show no growth in dark indicating less activity due to presumably 
increased shared alpha helix stability 

 

4.2.2 Variant (-3) rescues growth from ectopic ppGpp synthesis in 

response to light 

In order to test the light responsiveness of the assorted variants, we designed a simple 

light box (S. Fig 4.1A) which can house a standard petri dish. All the variants created, 

along with controls were transformed in MG1655 carrying an inducible RelA plasmid. 

Each transformant was then grown to mid exponential phase in LB media without any 

induction. Next the cultures were diluted to the same OD (0.01) and 5 µl spots were 

placed on two agar dishes containing the inducers for RelA and LOV2_Mesh1 

variants. Another plate where no inducer was present was also used to test the viability 

of the cells under no induction. The plates were grown under dark or light conditions 

for 18 hours. Results showed that positive control was able to grow both in dark and 

light. Since activity of Mesh1, flexibly fused to LOV2 domain via a GS linker, should 

be light insensitive (Fig. 4.2A). Similarly, negative control where a protein with no 

ppGpp hydrolysis activity (Cerulean) was produced, did not growth under light nor 

dark, however it did grow with no inducer. This shows that our controls were working 

properly. When different variants were tested -M (-1) and -2 were shown to behave 

like the positive control. Indicating that the alpha helix link has not formed in these 

variants and Mesh1 is free from LOV2 -like the GS linker-. This was expected as the 

first 5-6 amino acids of the Mesh1 peptide is thought to not join the N terminal alpha 

helix [pdb entry 3NQW]. Variants -3 and -4 showed interesting results. Both of them 

showed growth in light but very little growth was observed in dark. This was the 

expected behaviour from a light activated Mesh1(Fig. 4.2A and Fig. 4.1A). Deeper 
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variants (-5 to -10) showed behaviour similar to either one of the controls indicating 

light insensitive behaviour. 

To test the variants under different light intensities the light box was modified to 

illuminate 3 plates (S. Fig. 4.1B). The plate closest to the light source (1st) should 

experience the highest intensity of light and later plates less. Cells were allowed to 

grow for an overnight (~16hrs) to see small differences in growth rate. If the growth is 

allowed for long, different growth rates can create similar looking colonies as faster 

growing colonies reach the maximum size and stop growing (Fig. 4.2B). We observed 

again that positive control grew, and negative did not regardless of light. However 

interestingly variant -4 did not show colonies under dark nor light, most likely indicating 

that the activity of -4 is lower than -3 and thus requires longer growth times to become 

visible. Variant -3 however showed light dose dependent growth. Colonies closest to 

the light source created the densest growth on the plate. 

In order to allow for proper light dimming an Arduino based light box prototype was 

built (Supplementary Fig. 4.1C). Arduino is a cheap and small programmable 

computer which allows hobbyists and scientists to build electronic devices. This 

prototype was designed to illuminate a 6 well plate and had individually controllable 

LED’s for each well. Similar results were observed where -3 and -4 showed growth in 

light but not in dark. Furthermore, it was shown that the LED lamps that we used were 

highly directional and only allowed growth of a colony directly under the LED (Fig. 

4.2C). This led to the building of the final light box where 6 LED’s were illuminating 

each well of a 6 well plate (S. Fig. 4.1D). With proper light dimming and a higher 

throughput testing method we then showed that mutants -3 and -4 were allowing 

growth in a light and inducer concentration does dependent manner. The variants were 

placed under IPTG inducible promoters which allowed us to show that at higher 

inducer concentrations, growth starts to be visible even in the dark, indicating 

background activity from the variants even in dark. Furthermore, when little inducer 

was used for variants, growth could be recovered by increasing light intensity (Fig. 

4.2D). Again, supporting a light responding enzyme behaviour. 
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Figure 4.2. Variants (-3 and -4) rescues growth from ectopic ppGpp synthesis in response to 
light (A) 10 variants were tested against ectopic ppGpp synthesis on 3 plates with the same strains grown under 
different conditions (1) In dark with no inducers, all the strains manage to grow as expected(Bottom left). (2) In 
dark where RelA and LOV2_Mesh1 variants are induced, negative control does not grow and positive does while 
variants behave differently (Bottom right). (3) Finally, with inducers in the light, variants except-3 and -4 behave 
as they do in dark, indicating no light sensitive behaviour. However, -3 and -4 show higher growth in light plate 
(Top). (B) When the light is applied from one side (cyan arrow), the colonies closest to the source grow the most 
for variant -3. 1st plate is closest to the light source while 3rd is farthest (C) A new Arduino light box prototype 
shows that LED’s are quite directional and only allow growth directly under each lamp. (D) A new light box allows 
testing of 36 spots under 6 different condition. -3 and -4 show light and LOV2_Mesh1 induction dose dependent 
growth as expected from a light activated enzyme. 
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4.2.3 Engineering an improved variant with less activity in dark by 

increasing the shared helix’s stability 

The variant which showed the greatest difference was further improved using the 36 

LED Arduino controlled light box which allowed us to test 33 possible new variants 

with 3 controls (GS(+), CFP(-), best fusion(-3)) and targeted mutagenesis at the fusion 

location. We have identified 2 amino acids in the merging position of two alpha helices 

which are known to not-participate or indeed disrupt the formation of alpha helices 

(Tyr4, Pro5) (S. Table 4.2) [28,30]. This suggested that the required continuous alpha 

helix link between the LOV2 domain and Mesh1 in variant -3 could be unstable. This 

would explain the present activity in dark. Since we did not know which specific amino 

acids would be best suited to replace the two (Tyr4, Pro5) we designed a degenerate 

primer (Fig. 4.3A) which replaces each 4th and 5th position with 12 possible amino 

acids and 2 stop codons (S. Table 4.2). By using degenerate primers one can exclude 

specific nucleotides from occurring in a location. However, this does not allow picking 

any amino acid. We picked a degenerate primer with …NWNNWN… corresponding 

to Tyr4 and Pro5 sequence. W allows an A or a T and excludes C and G nucleotides. 

The possible codons from this degenerate primer are marked with red stars in 

supplementary table 4.2 and shows a possible amino acid pool with on average higher 

alpha helix joining propensity. This allowed us to create a mutant library which has 

high chance of replacing 4th and 5th position with high alpha helix joining propensity 

amino acids while still producing numerous different combinations to hopefully find 

one that is better than -3. 

We then tested the new mutants in rich media competing against RelA, where growth 

was allowed longer before imaging the plates. Longer growth time(24hrs) allows 

growth to be visible in the variant -3 even in the dark because activity in dark is still 

present presumably due to weak alpha helix link. If one of our mutants has less activity 

in dark, we should see a difference in growth between -3 and the mutant in dark where 

an improved mutant’s growth is expected to be slower. 

Indeed, the results show several promising candidates. At growth times where -3 starts 

to grow in dark, several mutants such as 14, 18 and 32 don’t show any growth in dark. 

Supporting that the mutations helped stabilize the alpha helix and decreased activity 

in dark. Furthermore, in light these mutants show comparable growth to -3 variant 

which suggests that the decreased activity in dark was not accompanied by a 

decreased activity in light (Fig. 4.3B). Sequencing confirmed that mutant 14 had 

replaced Tyr4 and Pro5 with Val4 and Lys5. Both Val and Lys have higher propensity 

to join an alpha helix (S. Table 4.2). 
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Figure 4.3. Engineering a new variant with less activity in dark by increasing the shared helix’s 
stability using site directed semi-random mutagenesis. (A) Two amino acids at the interface 
between LOV2 and Mesh1 (4Tyr-Y and 5Pro-P) are known to disrupt alpha helix formation. Forward 
and reverse primers with 5 prime phosphorylation allow for easy ligation and transformation. Using a 
degenerate forward primer which limits the possible amino acids at Mesh1 positions 4 and 5 in 1 cloning 
step we generate numerous possible mutants. (B) Testing of the mutants reveals that in competition 
against RelA the original -3 variant can grow in the dark when enough time is allowed, however some 
of the new mutants(14, 18, 32) show no growth in dark indicating less activity due to presumably 
increased shared alpha helix stability. 
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4.2.4 Testing the new mutants in minimal media to observe growth arrest 

with light on agar plates and in liquid culture. 

In the previous experiments the variants were competing against RelA’s ppGpp 

synthesis so the increase in variant activity led to permission of growth under light, by 

increased hydrolysis activity. In order to have a more rigorous confirmation we 

performed another test where the activity of variants would lead to slower growth, 

removing doubt that light itself could be allowing growth not the constructs. This can 

be done as explained before (Fig. 4.1B). 

8 mutants were selected from the results in Fig. 4.3B (mutants 6, 11, 14, 17, 18, 27, 

32, 33). These 8 were then spotted on minimal agar plates and allowed to grow under 

light or in dark overnight. Results showed that for the positive control where Mesh1’s 

activity is light independent; growth is not possible in dark nor light. Conversely the 

negative control which does not hydrolyse ppGpp grow occurs both in light and dark. 

As described (Fig. 4.1B and Chapter 3) ppGpp is needed in minimal media conditions 

for growth. Of the 8 tested mutants 3 show behaviour expected from an improved 

enzyme (mutants 14, 18, 32). All these 3 manage to grow in the dark where Mesh1 

was evidently inactive/less active. However, under light, growth is not permitted as 

presumably activity of Mesh1 is restored and ppGpp is hydrolysed (Fig. 4.4A).  

After identifying 3 mutants that appeared better than the original -3 variant, we 

conducted several liquid media experiments. Initially the mutants were competed 

against RelA and a measure of GrowthLight/GrowthDark was used to attempt at 

quantifying the activity difference (Supplementary Table 4.1). These results showed 

that mutant 14 was consistently faster growing in light compared to dark 

(GrowthLight/GrowthDark = 1.27 and 1.56 unitless, 2 experiments’ results). By using 

mutant 14 we also show that it is possible to inhibit growth in liquid minimal media 

under light however not in dark. (Fig. 4.4B). Supporting that mutant 14 can be used in 

liquid media as a light activatable enzyme. Preliminary results from a ppGpp 

harvesting experiment revealed that 3 minutes after activating the LOVEsh-m14 via 

blue light, ppGpp levels showed a ~22% decrease (S. Fig. 4.2). While more 

experiments are needed to confirm the speed and amplitude of the effect, these results 

show that rapid changes in ppGpp levels can be achieved using our construct 

LOVEsh-m14.  

Furthermore sequencing the 3 mutants which showed least activity in dark (14,18,32) 

(Fig. 4.4A, bottom left plate) revealed the 2 amino acids replacing the Tyr4 and Pro5 

were indeed high alpha helix joining propensity amino acids (mutant14=>Val4-Lys5, 

mutant18=> Met4-Val5, mutant32=>Val4-Val5). Valine, methionine and lysine all have 

higher alpha helix joining propensities (S. Table 4.2). This supports the suggested 

mechanism of LOV2 domain based light activated enzymes. Alpha helix stability 

appears important to regulate activity in dark. 
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Figure 4.4. Testing the new mutants in minimal media to observe growth arrest with 
light on agar plates and in liquid culture. (A) Experiments conducted on minimal media 
reveal that the positive control cannot grow under light or dark due to light independent activity 
of Mesh1. Conversely negative control can grow under both conditions because it does not 
have ppGpp hydrolysis activity. Mutants 14, 18 and 32 appear to grow in dark indicating less 
hydrolysis activity and do not grow in light showing that the activity was regained in light. All 3 
of these mutants appear better than -3 which cannot grow in dark nor light indicating high 
activity in dark, presumably due to less stable shared alpha helix which was improved in the 
new mutants.(B)The experiment was repeated in liquid media using LOVEsh-m14 and the 
results are similar to the plate experiment. CFP grows both under dark and light while Mesh1 
cannot grow due to constant excess ppGpp hydrolysis. LOVEsh-m14 on the other hand only 
grows in dark but not in light, indicating light activated ppGpp hydrolysis activity. 
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4.3 Discussion 

There are several questions regarding the function of the signalling molecule ppGpp 

which remained unanswered. This is in part because currently there are no techniques 

which can mimic the wild-type behaviour of rapid concentration drops. Existing 

methods rely on either (1) changes to the nutrient media which itself overshadows the 

effects of ppGpp drop or (2) induction of a hydrolysis enzyme and allowing ppGpp to 

decrease as fast as the hydrolyser concentration increases, which happens at the 

timescale of Transcription->Translation. Both of these methods make it hard to 

decouple the effects ppGpp decrease from other influencers like changing substrate 

concentration (1) or changes in the proteome itself (2). 

In order to create a tool which can decrease ppGpp rapidly without needing nutrient 

shifts, we looked to create a light activated Mesh1. We used a simple growth assay to 

asses activity difference of the created variants in dark and light and further improved 

one of the variants by site directed mutagenesis. Our results reveal that using a proper 

fusion location between light sensitive domain LOV2 and Mesh1, we could create a 

ppGpp hydrolysis enzyme which could compete with RelA’s ppGpp synthesis activity 

under light and permit growth (Fig. 4.2). This was shown using several different 

versions of the light box. Intensity of the light was also shown to have a dose 

dependent effect on growth. However, we also observed that there was still ppGpp 

hydrolysis activity in dark of the best working variant (-3) (Figs. 4.3B and 4.4A). In 

order to decrease the activity in dark we next sought to improve the -3 variant by using 

site directed mutagenesis with degenerate primers. 

Sequence analysis of the supposed shared alpha helix of the variant -3 revealed two 

amino acids right at the interface between the LOV2 domain and Mesh1 which have 

very low propensities to join alpha helices (Tyr4, Pro5) (S. Table 4.2). We designed 

primers that only allow for 12 possible amino acids to replace the 4th and 5th amino 

acid location that were biased to be higher alpha helix joining (S. Table 4.2). This 

makes it so that in 1 round of PCR -> Ligation, we can get create many different 

combinations. By testing 33 randomly selected strains we were likely to try different 

combinations of amino acids on 4th and 5th position. Our results where these mutants 

competed against RelA showed that while -3 allowed growth in the dark at longer 

growth times due to present activity, some of the mutants did not grow in the dark at 

all. A subset of these mutants also allowed growth in the light (Fig. 4.3). We picked 8 

of these supposedly better mutants and tested them in minimal agar and liquid media 

using the design explained in Fig. 4.1B. 

In minimal media lack of ppGpp is detrimental to growth which allows for an experiment 

with an opposite expected result under light (lower growth) compared to RelA 

competition experiments. Indeed 3 of our newly tested mutants showed that they could 

grow in the dark while -3 couldn’t. This supports that the new mutants had less activity 

in dark and allowed sufficient ppGpp production which permitted growth. However, in 

light these 3 mutants did not grow again suggesting that they had high enough activity 
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in light to hydrolyse ppGpp and stop growth (Fig. 4.4). Further testing of the mutants 

revealed that mutant 14 (LOVEsh-m14) was the most consistent version. This mutant 

replaced the Tyr4 and Pro5 with Val4 and Lys5 both amino acids with high alpha helix 

joining propensity (S. Table 4.2). In competition against RelA experiments in liquid 

media this mutant resulted in 25-50% higher growth rates under light compared to 

dark. Preliminary experiments also revealed that 3 minutes after turning on the Light, 

LOVEsh-m14 was decreasing the ppGpp concentration by ~22% (p<0.05). 

Our results show that LOV2 is indeed a modular light sensitive domain which can be 

used to create light activatable versions of enzymes with N-Terminal alpha helices. 

The final mutant (LOVEsh-m14) can possibly be further improved by altering other 

amino acids, especially Serine-6 is a good target to test as it (while not as bad as Tyr 

or Pro) also has low alpha helix joining propensity. Initial tests in liquid media revealed 

the enzyme to be usable in liquid media growth to sample various cellular 

biochemicals. While more liquid media experiments are needed to confirm the activity 

difference between dark and light to show that ppGpp levels are indeed rapidly 

changing, we believe LOVEsh-m14 can be used to rapidly decrease ppGpp levels. 

Measuring DNA replication and initiation, translation, metabolite levels from various 

pathways, cell division and other cellular machinery; immediately after light activation 

of LOVEsh-m14, could reveal allosteric effects of ppGpp on these machineries if a 

quick response is observed. Furthermore, localized changes to the ppGpp levels that 

can be applied on a growing biofilm could allow for probing the effects of ppGpp on 

biofilm formation and maintenance [31] 
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3.4 Supplementary Information 

 

Supplementary Figure 4.1. Different light box designes used throughout the project. (A) Initial 
light box (v1) which allowed a single petri dish to be tested in light with binary light intensity (ON/OFF). 
(B) Using the box v1, different light intensities were created by placing petri dishes at a different distance 
from the light source. (C) An Arduino based prototype box (v2) was made to test proper light dimming 
possibilities. (D) Final light box design with a total of 36 LED’s (6 LED’s per single 6-wellplate well).  
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Supplementary Figure 4.2. Sampling of ppGpp after application of light on a LOVEsh-m14 
producing strain. (A) a strain carrying RelA and LOVEsh-m14 plasmids were grown and LOVEsh-m14 
was induced at -50 minutes, then RelA was induced at -30 minutes, finally at minute 0 light was turned 
on. We observe that in the light ppGpp concentrations were ~22% lower than that of the dark, supporting 
the light activatable nature of the LOVEsh-m14 ppGpp hydrolysis activity.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Table 4.1. Ratio of growth rates in dark and light of 3 mutants and controls 
against ectopic RelA synthesis in liquid media. Mutant 14 consistently grows faster in light when 
Mesh1 activity is needed to counter RelA activity. 2 repeats are shown in 2 columns. 
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Supplementary Table 4.2. 
Predicted alpha helix 
joining propensities of all 
20 amino acids. Amino acids 
which are possible to occur 
using our degenerate primer 
have been marked with a gray 
star. As can be seen possible 
amino acids are biased 
towards higher alpha helix 
joining propensity. Two stop 
codons are also possible for 
us (TAG, TAA) which were not 
shown on this table. Mutants 
where a stop codon replaces 
the 4th and 5th position would 
behave as negative controls.  

 

 

 

 

 

 

4.4 Materials and Methods 

Strains and plasmids 

E. coli K-12 strain MG1655 or its derivatives prepared by transforming 

chemocompotent cells either with pRelA and/or various mutants and controls of 

AsLOV_Mesh1 fusions. pRelA* and pMesh1 plasmids were prepared as described in 

Chapter 2. As a control for various mutants generated, a plasmid with the same 

backbone where CFP instead of AsOV2_Mesh1 fusions was used similarly in Chapter 

2. Inducers doxycycline and IPTG were used to induce pRelA* and pLac based 

AsLOV2_Mesh1 fusions or CFP respectively. 

Initial variants of AsLOV2_Mesh1 fusions were prepared by using primers which 

create a 20bp overhangs on both sides of the PCR product which also creates 

homologous regions at the 5’ and 3’ ends of the PCR product. This allows SLICE to 

be used to remove amino acid’s codons from the sequence and indenting of AsLOV2 

domain into the Mesh1. In order generate a mutant library from variant -3, degenerate 

forward primer with 5’ phosphorylation(/5Phos/) along with a fully matching reverse 

primer which also has 5’ phosphorylation (Fig. 4.3) was used. /5Phos/ allows for direct 
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ligation of the linear DNA produced from PCR and does not require homology. This 

allowed rapid generation of numerous mutants in 1 cloning step. 

Culture Conditions 

For all experiments, cells were grown by diluting overnights 1/100 into fresh media. 

For plate experiments, this new culture was 10ml and was allowed to grow to 

0.3<OD<0.5 and diluted down to OD 0.01. 5uL of this dilution was later pipetted on 

agar plates with proper induction and nutrient levels. Experiments in liquid media were 

conducted similarly where an overnight was diluted 1/100 into fresh media and allowed 

to growth either in dark or light in 5ml volumes in 6well plate wells. For ppGpp sampling 

experiments an overnight was diluted in fresh media and allowed to growth until OD0.1 

is reached. At this point RelA was induced and 20mins later LOVEsh-m14 was 

induced. At time 0, light was turned on and samples were taken at times indicated in 

the plot (Fig. 4.4). LB was used as rich media and MOPS medium containing 0.2% 

glucose with 100uM MnCl2 was used as minimal media. 

Agar plates for LB were prepared by simply pouring LB-Agar 1.5% onto plates. 25ml 

was used for standard petri dishes and 5ml was used in each 6well plate well. Minimal 

plates were prepared by adding 2x MOPS minimal media onto 3%Agar and pouring 

5m into 6well plate wells. Plates were imaged using BioRad ChemiDoc XRS+. 

Light Boxes 

All of the light boxes used 5mm Blue AlGaInP LEDs (theledlight.com) with the part 

number SS5B4SDACY and typical wavelength between 465-470nm. Note the 

company has since shut down, however similar light bulbs should also work. Spec 

sheet for our LEDs can be requested from the author of this thesis if needed. 

Light box V1 was designed and built by TU Delft Electronic & Mechanical Support 

Division. This box operated on 8x1.5V batteries and used 12LED’s to disperse the 

light onto the entire plate. Later hand-made diffusers (lab gloves glued to transparent 

lids) were used to distribute the light equally. 

Light box V2 was designed and built by the author, using an Arduino Genuino and the 

same LED bulbs. This allowed control of light brightness via the Arduino. Light box V3 

was designed and built by AMOLF Electronics Assistance Department. This box had 

36 LED’s of which each block of 6 LEDs was independently controllable. V2 and V3 

were attached to a plate cover of a 6 well plate using McGyverian methods to allow 

them to be placed on plates with bacteria and stay stable under vibrations in the warm 

room. Both of these plates were powered from a wall plug. 

ppGpp Sampling 

An LCMS based method was used to measure ppGpp. The details of the sampling 

and measurement methods are discussed in Chapter 5 Materials and Methods  
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Abstract 

Every cell must produce enough membrane to contain itself. However, the 

mechanisms by which cells couple the rate of membrane synthesis with the rate of 

growth remain unresolved. By measuring precursors, intermediates, and enzymes of 

the fatty acid and phospholipid synthesis pathways of Escherichia coli, we show that 

while fatty acid and membrane synthesis capacities are maintained at a constant level 

across a 3-fold range of growth rates, the steady-state rate of phospholipid synthesis 

is principally mediated by allosteric control of a single enzyme, PlsB. Surprisingly, 

metabolic modelling indicates that PlsB activity also strongly influences flux into the 

synthesis pathway of lipopolysaccharide, the second-most abundant membrane 

component. In contrast to steady-state regulation, we find that responses to 

environmental perturbations are triggered directly via changes in acetyl-CoA 

concentrations, enabling rapid adaptation. Adaptations are further modulated by 

ppGpp, which regulates PlsB activity during slow growth and growth arrest. The strong 

reliance upon post-translational regulation for flux control ensures both robustness and 

responsiveness of membrane synthesis. 
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5.1 Introduction 

The viability of growing cells demands that membrane synthesis be tightly 

orchestrated with biomass production. The asymmetric architecture and composition 

of the cell envelope in Gram-negative bacteria demands further coordination between 

multiple pathways that synthesize membrane components: phospholipid (PL) 

synthesis must be balanced with lipopolysaccharide (LPS) synthesis to ensure 

membrane stability (1, 2). PL and LPS pathways must also be coordinated with protein 

synthesis, which supplies the lipoproteins that tether the outer membrane to 

peptidoglycan (3). Although several targets and mechanisms of regulation have been 

identified or proposed in the model organism Escherichia coli, how cells use these 

regulation points to control membrane synthesis remains unclear (4). 

Reaction rates (metabolic fluxes) may be modulated through either transcriptional 

regulation, which adjusts enzyme concentrations, or by post-translational mechanisms 

that adjust the activities of enzymes that are already present. For instance, the steady-

state synthesis rate of proteins is widely thought to be controlled in many bacteria by 

ribosome abundance, which is transcriptionally regulated to balance amino acid supply 

with consumption (5). In contrast, fluxes through many essential metabolic pathways 

are determined instead by steady-state concentrations of substrates and inhibitors 

(post-translational regulation) rather than by transcriptional regulation (6, 7). Although 

post-translational regulation has long been known to play a significant role in 

membrane synthesis (8, 9) (10–12), the exact contributions of transcriptional and post-

translational control to the coordination of membrane synthesis with growth remain 

unclear.  

In order to understand how the membrane synthesis rate is coordinated with the 

growth rate (μ), we quantified enzymes, substrates and intermediates of the fatty acid 

and PL synthesis pathways in steady-state and dynamic conditions. We find that 

allosteric regulation of the first enzyme in the PL synthesis pathway, PlsB, ensures μ-

dependent regulation of PL synthesis and strongly influences flux into the LPS 

synthesis pathway. We furthermore find that the fatty acid and PL synthesis pathways 

are highly sensitive to changes in precursor concentrations caused by internal and 

external metabolic shifts. This sensitivity enables a rapid response to environmental 

changes that can be further modulated by allosteric inhibitors such as the global 

regulator guanosine tetraphosphate (ppGpp). 

5.2 Results 

5.2.1 The PL to biomass ratio varies inversely with μ  

Lipid precursors of both LPS and PL are synthesized in the cytosol as fatty acyl 

thioesters covalently attached to the acyl carrier protein (acyl-ACP). PL are 

synthesized by membrane-bound enzymes from long-chain acyl-ACP and sn-glycerol-

3 phosphate (G3P). G3P is produced either from glyceraldehyde-3-phosphate, an 



Chapter 5 
-------------------------------------------------------------------------------------------------------------------------------------- 
 

69 
 

intermediate of central carbon metabolism, or via glycerol catabolism (Fig. 5.1A). We 

grew cultures of E. coli NCM3722 in 6 defined media that support a 3-fold range of μ 

(MOPS medium containing 0.2% acetate, succinate, malate, glycerol, glucose, or 

glucose with Cas-amino acids). Quantities of phosphatidylglycerol (PG), 

phosphatidylethanolamine (PE), and cardiolipin (CL) per unit biomass (as determined 

by culture optical density (OD) (13)) decreased with increasing μ (Fig. 5.1B), 

consistent with previous observations in E. coli and other bacteria (14, 15). The PG/PE 

ratio remained constant across all μ. We quantified steady-state PL flux by multiplying 

total PE LC/MS counts by μ, which closely approximates the overall PL synthesis rate 

as PE turnover is slow relative to synthesis (16). PL flux decreased by 2-fold over 3-

fold range of μ (Fig. 5.1C). The higher PL to biomass ratio of slow-growing cells likely 

reflects their higher surface-to-volume ratio (17).  

5.2.2 Allosteric regulation of PlsB activity is sufficient to couple PL flux with μ  

We first sought to evaluate whether steady-state substrate concentrations determine 

PL flux. If the PL and fatty acid synthesis rates are modulated by substrate 

concentrations during steady-state growth, concentrations of these species would 

necessarily correlate positively with μ and PL flux. We quantified nucleotides, G3P, 

acyl-ACP, and PL synthesis intermediates using LC/MS (18). No correlation was 

observed between concentrations of the fatty acid precursor acetyl-CoA or with μ (Fig. 

5.1D). We also found no significant correlation between PL flux and long-chain acyl-

ACP substrates of PL synthesis (Fig. 5.1E, Pearson correlation coefficients r < 0.4, p 

> 0.4, S. Table 5.1). Although G3P concentrations correlate strongly with PL flux (r 

>0.99), growth in glycerol medium increased G3P by 20-fold without affecting PL 

content or flux. These trends imply that steady-state PL flux is not modulated by fatty 

acid or PL precursor concentrations. 

In contrast to PL synthesis substrates, concentrations of the fatty acid initiation and 

elongation substrate malonyl-ACP strongly correlate with PL flux (Fig. 5.1E, r = 0.9, S. 

Table 5.1), suggesting that the fatty acid initiation and elongation rates are determined 

by malonyl-ACP concentrations and thus by the rate of malonyl-ACP synthesis by 

ACC and FabD. Concentrations of hydroxyl-acyl-ACP intermediates, including C14:0-

OH-ACP, the lipid precursor of LPS, also correlate strongly with PL flux (r >0.99), 

implying a simple flux-sensitive coupling mechanism between the PL and LPS 

synthesis pathways (Fig. 1E, S. Fig. 5.1). As ACC substrates acetyl-CoA and ATP do 

not correlate with μ (Fig. 5.1D, S. Fig. 5.2), and as concentrations of ACC protein 

subunits and FabD also do not correlate significantly with PL flux (S. Fig. 5.3, S. Table 

5.1), we infer that ACC activity is primarily modulated during steady-state conditions 

via allosteric control. Biochemical experiments have identified several regulators of 

ACC activity, including nitrogen-responsive regulator GlnB (19) and acyl-ACP 

substrates of PL synthesis (20).  

Unlike long-chain acyl-ACP, the concentrations of all PL synthesis intermediates 

downstream of PlsB correlate tightly with PL flux (Fig. 5.1F, r > 0.89-0.99, S. Table 
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5.1). The contrast between the trends observed in substrates and products of PlsB 

suggests that the rates of the reactions following PlsB are primarily determined by 

substrate concentrations, further implying that transcriptional regulation of PlsB 

concentration or post-translational regulation of PlsB activity is sufficient to regulate 

flux into the PL pathway. Transcription of plsB, and thus PlsB abundance, is controlled 

by the μ-sensitive regulator guanosine tetraphosphate (ppGpp) (21) and by the 

membrane stress-activated sigma factor RpoE (22). Concentrations of ppGpp are 

inversely correlated with μ (Fig. 5.1D), implying that PL flux may be coupled to μ by 

transcriptional control of the plsB gene by ppGpp. We measured fatty acid and PL 

synthesis pathway enzymes in each culture using LC/MS to determine whether 

enzyme concentrations are adjusted to couple PL flux with μ. We found no significant 

correlation between PL synthesis flux and PlsB concentration (Fig. 5.1G, S. Table 5.1, 

p >0.1). Instead, PlsB concentrations per unit biomass (OD) are nearly constant across 

the conditions studied, indicating that PlsB can accommodate at least a 2-fold range 

of PL flux without a corresponding change in concentration. Surprisingly, the 

concentrations of most fatty acid synthesis pathway enzymes also do not correlate 

significantly with PL flux (S. Table 5.1, S, Fig. 5.3). The lack of correlation between PL 

flux and concentrations of PlsB or its acyl-ACP substrates implies that PL flux is 

regulated via allosteric control of PlsB. μ can also be modulated independently of 

culture conditions by artificially varying ppGpp (Fig. 5.1D). Titrating ppGpp above 

basal concentrations, but far below concentrations experienced during starvation, 

reduces steady-state μ by reducing ribosomal RNA synthesis (23). Furthermore, PlsB 

activity is inhibited at high ppGpp concentrations encountered during starvation (24).  

We titrated μ by expressing the catalytic domain of the ppGpp synthesis enzyme RelA 

(RelA*) from an inducible promoter (PTet) in glucose medium. As previously observed 

(23), RelA*-titrated cultures exhibit ppGpp concentrations that are elevated 2-fold 

above wild-type cultures growing at similar rates (Fig. 5.1D). Trends in PL abundance, 

PL flux, acyl-ACP species, PL intermediates, and PL synthesis enzyme concentrations 

in ppGpp-limited cultures are highly similar to trends observed as μ is varied by carbon 

source (Fig. 5.1B-C, 5.1E-G, A Fig.s 5.1, 5.3). Concentrations of PlsB and fatty acid 

pathway enzymes do not substantially vary in ppGpp-limited cultures (Fig. 5.1G, S. 

Fig. 5.3). The trends in substrate, enzyme, and intermediate concentrations observed 

in ppGpp-limited cultures are consistent with regulation of PL flux occurring via 

allosteric control of PlsB. Unexpectedly, concentrations of LpxC, which catalyses the 

committed step in the LPS pathway (25), decrease 2-fold as PE flux increases (S. Fig. 

5.3). 
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Figure 5.1. Characterization of the E. coli fatty acid and PL synthesis pathways during steady-

state growth. A. E. coli fatty acid and PL synthesis pathways highlighting the metabolites and enzymes 

discussed in the main text. Fatty acid synthesis is initiated by carboxylation of acetyl-CoA by acetyl-

CoA carboxylase complex (ACC) to produce malonyl-CoA, from which the malonyl group is transferred 

to holo-ACP by FabD. Fatty acids are then elongated by iterated cycles of condensation of acyl-ACP 

with malonyl-ACP, followed by reduction and dehydration. sn-glycerol-3-phosphate (G3P) is acylated 

by PlsB primarily using long-chain acyl-ACP species C16:0-ACP or C18:1-ACP to yield 

lysophosphatidic acid (LPA), which is acylated by PlsC using C16:1-ACP or C18:1-ACP to yield 

phosphatidic acid (PA). PA is converted by CdsA to (d)CDP-diacylglycerol ((d)CDP-DAG) using either 

CTP or dCTP. At the branch point in PL synthesis, PgsA combines G3P with (d)CDP-DAG to produce 

phosphatidylglycerol phosphate (PGP). Dephosphorylation of PGP by PgpA yields PG, which typically 

comprises 25% of total PL. Two PG molecules may be further converted to CL, which accounts for ~5% 

of total PL. (d)CDP-DAG is also converted by PssA to phosphatidylserine (PS), which is decarboxylated 

by Psd to yield PE (70% of total PL). B, C. Growth rate (µ)-dependent abundance of total PG, PE, and 

CL (B) and μ-dependence of PE flux (C), normalized to average values across conditions for each 

strain. D. Steady-state concentrations of acetyl-CoA and ppGpp. E, F, G. Concentrations of G3P and 

acyl-ACP species (E), PL intermediates (F), and PL synthesis pathway enzymes (G) as functions of PL 

flux. Concentrations of soluble substrates and enzymes with exclusively soluble substrates are 

calculated using cell volume (proportional to OD). For membrane-bound phospholipid intermediates 

and for enzymes that react with membrane-bound substrates (all enzymes following PlsB in the PL 

synthesis pathway) we calculate concentration within the membrane volume, proportional to total PE. 

S/OD, E/OD, S/PE, and E/PE are defined as the concentration of a substrate S or enzyme E (amount 

per OD or per PE) relative to its average concentration across all conditions measured in that strain 

(either wild-type (WT) or pRelA). Values are log(2)-transformed. Error bars represent the standard 

deviation of measurements from three samples of one culture. 
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5.2.3 Mathematical modelling supports PlsB control of steady-state PL 

synthesis 

To test whether modulation of PlsB activity alone is sufficient to govern PL synthesis 

flux, we constructed a simplified differential equation model of fatty acid, LPS initiation, 

and PL biosynthesis (Fig. 5.2A). The model includes competitive inhibition of ACC by 

C16:0-ACP as the sole regulatory interaction. The model also includes a branch point 

at C14:0-OH-ACP into LPS synthesis. This branch point is represented by a single 

step that combines reactions catalysed by LpxA and LpxC, as LpxC catalyses the first 

irreversible reaction in the LPS pathway (25). Concentrations of G3P and C16:1-ACP 

are fixed in the model to reflect experimental observations of enzyme saturation and 

substrate invariance, respectively (see Supplementary Methods for model details, 

parameter sets, and sensitivity analysis).  

We used the model to predict which enzymes and substrates exert control over PL 

and LPS flux. Increasing ACC and PlsB Vmax parameters by 4-fold each increased PE 

and LPS synthesis fluxes in parallel by 2-fold, while changes in the Vmax parameters 

of all other enzymes in the model had little or no effect on simulated PE flux. 

Surprisingly, simulated LPS flux correlates positively with PlsB activity when LpxC Vmax 

is held constant due to the coupling between PE flux and concentrations of the LPS 

precursor, C14:0-OH-ACP. Changes in the C14:0-OH-ACP dehydration reduction rate 

and LPS initiation rate (catalysed in the model by FabZ and LpxC, respectively) 

exerted strong and opposite effects on LPS flux without significantly changing PE flux. 

Increasing the Vmax parameters of PL synthesis enzymes downstream of PlsB also did 

not change PE synthesis flux, suggesting that the observed variations in PlsC and 

CdsA concentrations do not affect PE flux. Of the two substrates considered (acetyl-

CoA and C16:1-ACP), only variations in acetyl-CoA strongly influences PL and LPS 

flux (Fig 5.2B).  

Simulated variations in acetyl-CoA concentrations and ACC and PlsB enzyme Vmax 

parameters generate changes in intermediate concentrations that closely reproduce 

most experimentally-observed trends, supporting our model. However, our steady-

state measurements strongly contradict simulated C16:0-ACP concentration trends 

caused by variations in acetyl-CoA and ACC activity. Simulated variations in PlsB Vmax 

closely approximate observed C16:0-ACP trends (Fig. 5.2C). We therefore conclude 

that PL synthesis flux is primarily regulated during steady-state growth by allosteric 

control of PlsB activity. However, changes in acetyl-CoA concentration or ACC activity 

may also influence PL flux during environmental or metabolic perturbations. 
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Figure 5.2. Simulated steady-state fluxes and metabolite concentrations of fatty acid and PL 

pathways identifies PlsB as site of flux control during steady-state growth. A. Reactions simulated 

in the model. For simplicity, only reactions late in the saturated fatty acid pathway are included, and 

branching of the PL pathway into PE and PG is not included. Each reaction is modelled as an 

irreversible one- or two-substrate Michaelis-Menten reaction. ACC activity is competitively inhibited by 

C16:0-ACP. Reactions catalysed by FabI/FabZ and LpxA/LpxC are considered in the model as single 

reactions represented by “FabZ” and “LpxC”, respectively. B. Response of PE and LPS fluxes to varying 

Vmax parameters of pathway enzymes and acetyl-CoA and C16:1-ACP concentrations. 4-fold variations 

in C14:0-β-keto-ACP synthesis, FabG, CdsA, PssA, and Psd Vmax did not change PE or LPS flux and 

are therefore not shown. C. Simulated changes in metabolite concentrations in response to variations 

in PlsB and ACC Vmax and acetyl-CoA overlaid on experimentally-measured concentrations (data from 

Figure 5.1). Line plots are offset to prevent overlap. Differential equations and parameters are provided 

in the 

5.2.4 Translation inhibition causes carbon overflow into fatty acid 

synthesis  

We set out to evaluate whether a known allosteric regulator of PlsB, ppGpp, is able to 

directly regulate PlsB activity during steady-state growth. High concentrations of 

ppGpp are known to inhibit PlsB (24), while low concentrations of ppGpp correlate 

inversely with μ (Figure 5.1D). The notion that ppGpp concentrations might regulate 

PL synthesis even at the low basal concentrations present during steady-state growth 

has been proposed but never tested (26). Although steady-state PlsB activity clearly 

decreased in response to ppGpp titration, the mode of control by ppGpp 

(transcriptional regulation of a PlsB-regulating process or protein, or direct post-

translational inhibition) cannot be determined from steady-state data alone. We first 

wished to observe the effects of high concentrations of ppGpp on fatty acid and PL 

synthesis using our assay. Synthesis of high concentrations of ppGpp by RelA (the 
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stringent response) is triggered by any stress or starvation conditions that lead to the 

specific biochemical cue of uncharged tRNA bound to the ribosome. During the 

stringent response, ppGpp accumulates by more than 10-fold over basal 

concentrations and PL synthesis rates are reduced by approximately half (24, 26), 

likely due to PlsB inhibition (27).  

We triggered ppGpp accumulation by adding the tRNA aminoacylation inhibitor 

mupirocin to glucose cultures of wild-type and ΔrelA E. coli. Mupirocin inhibits 

translation in both strains and causes a 10-fold accumulation of ppGpp in the wild-type 

strain within 1 minute to over 400 pmol/OD, reaching >800 pmol/OD after 3 minutes 

(S. Fig. 5.4, 5.5). To our surprise, mupirocin treatment also transiently increased 

malonyl-ACP and hydroxyl-ACP at the expense of holo-ACP in both strains (Fig. 5.3A, 

S. 5.Fig. 6). The increase in acyl-ACP is matched by a corresponding increase in PL 

synthesis intermediates, suggesting that mupirocin diverts a pulse of carbon into the 

fatty acid pathway that is efficiently transmitted into PL synthesis (Fig. 5.3B). In the 

wild-type strain, the pulse of fatty acid synthesis activity is rapidly followed by C16:0- 

and C18:0-ACP accumulation, consistent with ppGpp inhibition of PlsB (Fig. 5.3A, S. 

Fig. 5.6). C16:0-ACP accumulation is followed in turn by an increase in holo-ACP and 

a decrease in malonyl-ACP, indicating ACC inhibition (Fig. 5.3A). PL intermediates 

PA, PS, and PGP are rapidly depleted in the wild-type strain after briefly increasing 

(Fig. 5.3B). The transient carbon influx shifts acyl chains incorporated into PL towards 

longer-chain fatty acids, likely due to increased malonyl-ACP concentrations favouring 

fatty acid elongation at the expense of membrane incorporation by PlsB and PlsC (S. 

Fig. 5.7). While suppression of fatty acid synthesis in the wild-type strain can be 

attributed to ppGpp, it is unclear what attenuates the carbon influx in the ΔrelA strain; 

however eventual C14:0-ACP accumulation likely contributes to ACC inhibition. 

Inhibition of fatty acid elongation also depletes LPS precursor C14:0-OH-ACP, which 

is expected to decrease LPS synthesis in parallel with PL synthesis (Fig. 5.3A). 

As the transient increase in malonyl-ACP after mupirocin treatment occurs in both wild-

type and ΔrelA strains, we hypothesized that translation inhibition somehow channels 

excess carbon into lipid synthesis. We added the ribosome inhibitor chloramphenicol 

and the transcription initiation inhibitor rifampicin to glycerol cultures of wild-type E. 

coli. Both compounds inhibit translation via mechanisms that suppress ppGpp 

synthesis. As with mupirocin, chloramphenicol triggered a rapid decrease in holo-ACP 

and an increase in long-chain unsaturated acyl-ACP species C16:1-ACP and C18:1-

ACP (Fig. 5.3C). Both antibiotics triggered an increase in PL synthesis intermediates 

PA and PS that resembled the increase observed in the ΔrelA strain after mupirocin 

treatment (Fig. 5.3D).  What might cause the transient increase in fatty acid synthesis 

observed after translation inhibition? Interestingly, both rifampicin and 

chloramphenicol increased acetyl-CoA concentrations by 3-fold (Fig. 5.3E), 

suggesting a possible cause. Acetyl-CoA also increased in both the wild-type and the 

ΔrelA strain after mupirocin addition in glucose medium before decreasing ~30% in 

the wild-type strain (S. Fig. 5.4, 5.5). While it is unclear why translation inhibition would 
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increase acetyl-CoA, the observed response of the fatty acid pathway is consistent 

with our mathematical model, which predicts fatty acid flux to be highly sensitive to 

acetyl-CoA. We confirmed the sensitivity of the fatty acid and PL synthesis pathways 

to environmental changes using a fast nutritional upshift. Addition of glucose and 

amino acids to a glycerol culture also caused a rapid accumulation of PA and PS 

species that resemble the increases observed following translation inhibition (S. Fig. 

5.8).   

Figure 5.3. Response of the fatty acid and PL synthesis pathways to translational inhibition. A, 

B. Responses of acyl-ACP (A) and PL intermediate pools (B) to mupirocin treatment. Mupirocin was 

added at 0 min (indicated by dashed lines) to glucose cultures of E. coli wild-type and ΔrelA. C, D. 

Addition of translation inhibitor chloramphenicol or the transcription inhibitor rifampicin to glycerol 

cultures of wild-type E. coli (indicated by dashed lines at 0 min) leads to an influx of carbon into the fatty 

acid pathway as suggested by a decrease in holo-ACP levels and an increase in unsaturated long-

chain acyl-ACP species (C). The pulse of carbon continues further into the PL synthesis pathway, as 

indicated by transient increases in total PA and PS (D). Trajectories in A-D are each obtained from 

individual cultures. E. Chloramphenicol and rifampicin both trigger a rapid decrease in ppGpp and 

accumulation of ACC and FabH substrate acetyl-CoA. Values depicted in E are averages of triplicates 

from single cultures. 

5.2.5 Moderate ppGpp concentrations regulate PlsB via post-translational 

control 

In order to clearly discern the effects of ppGpp on the fatty acid and PL synthesis 

pathways without complications introduced by translation inhibition, we monitored fatty 

acid and PL synthesis pathways after inducing RelA*. The response in the fatty acid 

and PL synthesis pathways is consistent with PlsB inhibition by ppGpp followed by 

ACC activity suppression by accumulated long-chain acyl-ACP, depleting malonyl-

ACP (Figure 5.4A). PL intermediates also respond in a manner consistent with PlsB 

inhibition: LPA species steadily decrease, followed by PA, PS, and PG (Figure 4B). 

Addition of chloramphenicol 10 minutes following RelA* induction causes an increase 

in unsaturated long-chain acyl-ACP, though the response of the PL pathway is 

attenuated. We note that the PS pool is depleted more after ppGpp induction than the 
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LPA and PA pools, suggesting an additional regulatory mechanism downstream of 

PlsB. 

We next sought to evaluate whether basal ppGpp concentrations are also capable of 

regulating PlsB via post-translational control. As the effects of post-translational 

control are more rapidly apparent than those that follow transcriptional regulation, we 

followed the timescale of the response of the PL pathway to ppGpp synthesis. We 

measured ppGpp and PL synthesis intermediates during RelA* induction to moderate 

levels. ppGpp increased within 10 minutes of RelA* induction and reached its elevated 

steady-state concentration (~150 pmol/OD) by 20 minutes. Concentrations of PL 

intermediates PA and PS began to decrease within 10 minutes (Figure 5.4C). 

Interestingly, PS decreases further after ~25 minutes, at which point PA increases 

slightly, suggesting that PS may be back-converted to PA by PssA (28) (Figure 5.4C). 

The immediate decay of PA and PS pools indicates that ppGpp inhibits PlsB via post-

translational regulation at moderate concentrations. To verify that the immediate PA 

and PS depletion is too fast to be explained by transcriptional regulation, we compared 

the PA and PS response kinetics with the kinetics of a ppGpp-driven response known 

to be mediated by transcriptional control. Cyclopropyl PL are produced from 

unsaturated fatty acids of membrane PL by the enzyme Cfa, expression of which is 

induced transcriptionally by ppGpp (29). PL cyclopropylation begins 25 minutes after 

RelA* induction, much slower than the decrease in PA and PS. We conclude that the 

rapid decrease in PA and PS 5-10 minutes after RelA* induction is mediated via post-

translational regulation of PlsB. 

We used our model to simulate the observed response of PA and PS concentrations 

immediately following mild RelA induction (up to 25 minutes post-induction) in order to 

estimate the concentrations at which ppGpp inhibits PlsB. As the mode of inhibition is 

unknown (i.e. competitive inhibition, mixed inhibition, or indirect inhibition via a ppGpp-

responsive mediator), we used an empirical allosteric inhibition term to obtain an 

effective KI parameter (model details provided in Supplemental Methods). We 

estimate KI to be approximately 300 pmol/OD, well above the concentrations observed 

during the slowest steady-state growth condition used here (60 pmol/OD at μ ~ 0.5 

/hr). Direct ppGpp inhibition of PlsB may be relevant to PL flux during extremely slow 

growth when ppGpp concentrations are above 150 pmol/OD, which may occur at μ 

well below 0.5 hr-1. 

5.3 Discussion 

Our comprehensive characterization and modelling of the fatty acid and PL 

biosynthesis pathways establishes the specific regulatory tools used by E. coli to 

couple membrane synthesis with μ. Most importantly, we find that allosteric control of 

PlsB is sufficient to balance steady-state PL flux with μ. PlsB demand controls flux into 

the fatty acid pathway through ACC via inhibition by PlsB substrates, consistent with 

metabolic control theory (30). Membrane synthesis is regulated very differently than  
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Figure 5.4. PlsB activity is suppressed by moderate to high concentrations of ppGpp via post-

translational inhibition. A, B. Response of acyl-ACP (A) and PL intermediate pools (B) to maximal 

induction of RelA*. RelA* expression was induced by addition of 40 ng/mL doxycycline at -10 minutes 

(dashed blue line), followed 10 minutes later by chloramphenicol addition (dashed grey line at 0 min). 

C. Response of PL intermediates and cyclopropyl-PE to mild induction of RelA* expression by addition 

of 1 ng/mL doxycycline (dashed grey line at 0 min). Superimposed are simulated kinetic data assuming 

allosteric inhibition of PlsB by ppGpp with an empirical allosteric inhibition constant KI = 300 pmol/OD. 

Simulation details are included in the Supplemental Methods. 

 

protein synthesis, as membrane synthesis capacity (i.e. concentrations of PlsB and 

fatty acid synthesis pathway enzymes) is maintained at stable levels across a 3-fold 

range of μ. Counterintuitively, increased transcription of the fatty acid and PL synthesis 

pathways reported to occur at higher μ (31) does not increase concentrations of these 

enzymes, but rather maintains them at a constant concentration. Maintaining a 

constant capacity for membrane synthesis enables the cell to address any change in 

membrane synthesis demand at the cost of expressing enzymes that remain inhibited 

at slow or moderate μ (32). 

Both our model and our experimental data indicate that ACC and PlsB activities 

determine the concentrations of LPS precursor C14:0-OH-ACP, indicating that PL 

synthesis control also plays a role in coordinating LPS synthesis flux with μ. Perhaps 

counterintuitively, increasing PL synthesis does not come at the cost of LPS flux, but 

rather, increases in PL flux directly increase C14:0-OH-ACP by relieving feedback 

inhibition of ACC. As we observed that LpxC concentrations decrease in response to 

higher μ, we propose that LpxC concentrations are regulated in response to over-

accumulation of LPS that occurs due to increasing concentrations of C14:0-OH-ACP. 

This regulation may be mediated by increased degradation by the FtsH protease (33), 

although we cannot exclude that LpxC concentrations are also modulated by 

transcriptional regulation. Our data will be essential in evaluating existing models of 

PL-LPS pathway coordination (34).   
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Although PlsB determines PL flux during steady-state growth, this control is not 

absolute, as the fatty acid and PL pathways (and likely the LPS pathway) are highly 

sensitive to fluctuations in acetyl-CoA concentrations and ACC activity. The sensitivity 

of PL flux to central metabolism and even protein synthesis arrest renders membrane 

synthesis extremely responsive to small environmental changes. While this sensitivity 

facilitates rapid adaptation of PL flux to changes in μ, the tight connection between 

protein synthesis, central carbon metabolism, and membrane biogenesis demands 

additional allosteric control (including inhibition by ppGpp) to re-balance the pathway 

with μ and prevent PL overflow. If protein synthesis is inhibited in a manner that does 

not decrease carbon flow into the fatty acid pathway (e.g. by sudden nitrogen 

starvation), we hypothesize that continued PL and LPS synthesis would outpace 

synthesis of the lipoproteins that tether the outer membrane to the peptidoglycan layer. 

Inhibition of PL and LPS pathways by ppGpp would thus prevent production of excess 

membrane, enforcing the coupling of PL and lipoprotein synthesis. Consistent with this 

notion, strains lacking the ppGpp response (known as relaxed strains) have been 

observed to generate higher quantities of extracellular PL and LPS, likely as outer 

membrane vesicles (35). 

We estimate that post-translational control of PlsB by ppGpp, reflected by a relatively 

high effective KI (~300 pmol/OD), suggests that ppGpp contributes to steady-state 

membrane synthesis regulation during growth in conditions that support μ > 0.5 hr-1. 

Although it is generally believed that ppGpp directly inhibits PlsB, multiple groups have 

been unable to observe ppGpp inhibition of PlsB in vitro when acyl-ACP are used as 

substrates (36, 37). ppGpp may therefore control PlsB indirectly by modulating activity 

of a regulator or a cellular process that interacts with PlsB. Several candidates for the 

allosteric regulator of PlsB activity have been discovered. In immunoprecipitation 

experiments, PlsB has been found to interact with proteins including ACP and PssA, 

as well as several whose roles are unclear (PlsX and YbgC) (38), suggesting that PlsB 

forms part of a PL synthesis complex that may couple PlsB activity with μ. As PL 

synthesis flux has been observed to oscillate with the cell division cycle in E. coli and 

other bacteria (39), PlsB may also be regulated by the divisome or by septum 

formation. Degradation of PL by phospholipases may also play an important role in 

membrane homeostasis during steady-state growth (40), as is known to occur during 

growth and division in eukaryotes (41). In addition to identifying the allosteric 

regulators of PlsB, studies that integrate connections between PL catabolism and 

transport with PL synthesis are needed for a comprehensive understanding of 

membrane homeostasis. 
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5.4 Supplementary Information 

 
Supplemental Figure 5.1. Steady-state concentrations of acyl-ACP species within E. coli NCM3722 in 

six media (blue) and steady-state acyl-ACP concentrations in glucose cultures of E. coli pRelA* limited 

by excess ppGpp (magenta). ppGpp is titrated by inducing RelA* with increasing concentrations of 

inducer. Concentrations and PL fluxes are normalized to concentration and flux averages obtained 

across each strain as described in Figure 1. Error bars represent standard deviation of 3 sampling 

replicates. 
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Supplemental Figure 5.2. Steady-state concentrations of nucleotides within E. coli NCM3722 in six 

media (blue). Overlaid are steady-state concentrations in glucose cultures of E. coli pRelA* limited by 

excess ppGpp (magenta). ppGpp is titrated by inducing RelA* with increasing concentrations of inducer. 

Error bars represent standard deviation of 3 sampling replicates.  

 

 

 

 

 

 

 

 



Chapter 5 
-------------------------------------------------------------------------------------------------------------------------------------- 
 

81 
 

 

 

 

 

 

 

 

Supplemental Figure 5.3. Concentrations of enzymes in the fatty acid synthesis pathway during 

steady-state growth in carbon-limited (blue) in ppGpp-limited (magenta) cultures. Values are normalized 

as described in Figure 1. Error bars represent standard deviation of 3 sampling replicates. 
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Supplemental Figure 5.4. A. Dynamics of nucleotide pools of wild-type E. coli after mupirocin addition 

(dashed line at t=0 minutes). Data points indicate individual measurements from a single culture. B. 

Response of nucleotide pools of wild-type and ΔrelA strains to mupirocin, added at t=0. Error bars 

represent standard deviation of 3 sampling replicates. 
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Supplemental Figure 5.5. Response of acyl-ACP species (counts per OD unit) to mupirocin at t = 0 in 

wild-type and ΔrelA E. coli. Values are normalized such that the concentrations before t = 0 are 

averaged to 1. Data points indicate individual measurements from a single culture. 
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Supplemental Figure 5.6. Response of individual PL species (counts per total PE) to mupirocin at t = 

0 in wild-type and ΔrelA E. coli. Values are normalized such that the concentrations before t = 0 are 

averaged to 1. Data points indicate individual measurements from a single culture. 
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Supplemental Figure 5.7. Response of PL species (counts per total PE) to addition of glucose and 

amino acids at t = 0 to a glycerol culture of wild-type E. coli. Values are normalized such that the 

concentrations before t = 0 are averaged to 1. Data points indicate individual measurements from single 

cultures. 

Supplemental Figure 5.8. Sensitivity analysis of the fatty acid and phospholipid synthesis model 

demonstrates that the steady-state metabolite concentration trends simulated from PlsB Vmax variations 

are robust against variations in model parameters. Parameters were simultaneously varied across a 4-

fold range centered around the model parameter used and PlsB Vmax was varied as described in the 

main text. 
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Species 
Pearson correlation 

coefficient (r) 

Significance (p, 

two-tailed) 

malonyl-ACP 0.84 0.04 

G3P* 0.99 <0.01 

C14:0-OH-ACP 0.99 <0.01 

C16:0-ACP -0.54 0.26 

C16:1-ACP 0.43 0.40 

C18:1-ACP -0.25 0.63 

LPA 0.95 <0.01 

PA 0.99 <0.01 

(d)CDP-DAG 0.89 0.02 

PS 0.95 <0.01 

PGP** 0.99 <0.01 

*G3P: calculated with glycerol point excluded.  

**PGP: calculated with glucose + Cas-amino acids point excluded.  

Enzyme 
Pearson correlation 
coefficient (r) 

Significance (p, 
two-tailed) 

PlsB -0.52 0.29 

PlsC 0.59 0.22 

CdsA 0.86 0.03 

PssA -0.47 0.35 

Psd 0.09 0.87 

PgsA -0.73 0.10 

PgpA 0.94 0.01 

AccA 0.69 0.13 

AccB 0.35 0.50 

AccC 0.51 0.30 

AccD -0.37 0.47 

AcpP 0.02 0.98 

FabA 0.38 0.46 

FabB 0.45 0.38 

FabD 0.53 0.28 

FabF 0.75 0.09 

FabG 0.63 0.18 

FabI 0.81 0.05 

FabZ 0.77 0.08 

GpsA -0.69 0.13 

 

Supplemental Table 5.1. Pearson correlation coefficients and significance determined for PL flux and 

species abundance during steady-state growth in wild-type E. coli. Correlations were calculated from 

log(2) normalized concentrations and PL fluxes using the Descriptive Statistics function (OriginPro v. 

2015). Shaded cells indicate p < 0.05. 
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5.5 Materials and Methods 

Culture conditions 

Cultures were grown in 250-1000 mL Erlenmeyer flasks filled up to 10% of nominal 

volume with MOPS minimal medium (42) with 9.5 mM NH4Cl or 15NH4Cl and 0.2% 

(w/v) carbon source (acetate, succinate, malate, glycerol, glucose, U-13C-glucose 

(Cambridge Isotope Laboratories) or glucose supplemented with 0.1% Cas-amino 

acids). Culture flasks were placed in a Grant Instruments Sub Aqua Pro dual water 

bath at 37 °C and agitated by stirring with a 12 mm magnetic stir bar (VWR), coupled 

to a magnetic stir plate (2mag MIXdrive 1 Eco and MIXcontrol 20) set at 1200 rpm. 

Growth was monitored by optical density measurement at 600 nm using Ultrospec 10 

Cell Density Meter (GE Healthcare). Samples for acyl-ACP, lipid analysis and 

proteomics were collected using cultures without isotopic labelling. Samples for 

nucleotide phosphate measurements were collected from U-15N-labeled cultures and 

samples for G3P measurements were collected from U-13C-labeled cultures. 

Strains and plasmid pRelA* 

All experiments were performed using Escherichia coli K-12 strain NCM3722 (CGSC# 

12355) and its derivatives. NCM3722 relA::kan was constructed by P1 phage 

transduction using strain CF7974 (MG1655 Δlac (rph+) relA255::kan) as a donor. 

Plasmid pRelA* was created by cloning DNA encoding residues 1-455 from the E. coli 

RelA protein into BglBrick plasmid pBbS2k (43) (SC101* origin of replication, PTet 

promoter, kanamycin resistance). The fluorescent protein mVenus was fused by 

restriction-digestion to the C-terminus of RelA via a glycine-serine linker. 

Metabolite sampling 

Samples for acyl-ACP, proteomics and lipid analysis were acquired by fast quenching 

of 1 mL of culture sample into 250 μL of ice-cold 10% trichloroacetic acid. After 10 min 

incubation at 0°C cells were pelleted by centrifugation and stored at -80°C until 

analysis. For nucleotide phosphates and polar metabolites analysis, samples were 

acquired by a modified fast vacuum filtration method (44). 1 mL of culture was 
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collected by vacuum on a pre-wetted 2.5 cm 0.45 μm HV Durapore membrane filter. 

After rapid collection the filter was immediately placed upside-down in quenching 

solution. For the measurement of nucleotide phosphates, 1 mL of ice-cold 2 M formic 

acid with 10 μL internal standards mix was used as a quenching solution, which was 

subsequently neutralized by 25 μL of 28% ammonium hydroxide. For G3P 

measurements, 1 mL of 50:30:20 (v/v/v) mixture of methanol, acetonitrile and water 

with 0.1% formic acid with 10 μL internal standard solution (cooled on dry ice) was 

used as a quenching solution. After 10 min incubation cells were washed from the 

filter, transferred to a tube and stored at -80°C until analysis. 

Preparation of internal standards 

Isotopically-labeled internal standards (IS) were used to control for sampling and 

measurement variation. For acyl-ACP and proteomics assays U-15N E. coli whole cell 

extracts were prepared using a MOPS minimal medium culture with 15NH4Cl as the 

sole nitrogen source. At OD of ~0.5 10% TCA was added 1:4 to the culture to facilitate 

quenching of metabolism. After 10 min incubation on ice 10 mL single-use IS aliquots 

were collected by centrifugation and stored at -80°C until the sample preparation. For 

the phospholipid measurement U-13C lipid extract was prepared using a culture grown 

in minimal MOPS medium with 0.2% U-13C glucose as the sole carbon source. At OD 

of ~0.5 10% TCA was added 1:4 to the culture and insoluble cell material was collected 

by centrifugation after 10 min incubation on ice. Pellets were resuspended in mixture 

consisting of 75 μL MeOH, 10 μL 15 mM citric acid/ 20 mM dipotassium phosphate 

buffer and 250 μL of methyl-t-butyl ether per 1 mL of initial culture volume. After 

vortexing and 10 min sonication phase separation was induced by addition of 70 

μL/1mL of 15 mM citric acid/ 20 mM dipotassium phosphate buffer. After further 

vortexing, sonication and 10 minutes of incubation at room temperature phases were 

separated by 10 min centrifugation at 4000 rpm at room temperature. Upper phase 

was collected to a glass vial and stored at -20°C until sample preparation.  

Instrumentation 

All LC/MS runs were performed using Agilent LCMS consisting of binary pump 

(G1312B), autosampler (G7167A), temperature-controlled column compartment 

(G1316A), and triple quadrupole (QQQ) mass spectrometer (G6460C) equipped with 

a standard ESI source, all operated using MassHunter data acquisition software 

(version 7.0). Mass spectrometer operated in dynamic MRM mode using transitions 

generated in silico by a script written in Python using RDkit library using chemical 

structures of target compound as input. Transitions for targeted proteomics assays 

were developed using Skyline (45) based on protein sequences from the Uniprot 

database. Details of transition setting are included in Supplemental Tables 3-7. 
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LC/MS quantification of acyl-ACP intermediates 

Acyl-ACP were measured using a published method (18) with minor modifications. 

Lysis buffer was prepared by suspending appropriate number of frozen U-15N-labeled 

E. coli pellets in 10 mL of 50 mM potassium phosphate buffer, pH 7.2, 6 M urea, 10 

mM N-ethyl-maleimide, 5 mM EDTA and 1 mM ascorbic acid. 1 mL of lysis buffer was 

added to each of TCA-quenched and pelleted cells and proteins were isolated by 

chloroform/methanol precipitation as described previously. Protein pellets were 

resuspended in 10 μL of digestion buffer (4% 2-octyl-glucoside in 25 mM potassium 

phosphate buffer, pH 7.2) and after adding 10 μL of 0.1 mg/mL GluC protease 

(Promega) incubated overnight at 37°C. After quenching by addition of 5 μL MeOH, 

samples were centrifuged and 10 μL was injected in LC/MS system. Separation was 

performed on 2.1 mm x 50 mm 1.7 μm CSH C-18 column (Waters) held at 80°C using 

a binary gradient: 15% B, 3 minute ramp to 25%, 9 min increase to 95% and 1 minute 

hold at 95% B before 3 minute re-equilibration at starting conditions (A: 25 mM formic 

acid, B: 50 mM formic acid) at a flow rate of 0.6 mL/min.  

LC/MS quantification of phospholipids 

Phospholipids sample preparation procedure is a combination of an MTBE extraction 

method (46) and an established LC/MS method (47) Pelleted E. coli were 

resuspended in mixture containing 150 μL of MeOH, 250 μL of U-13C E. coli extract 

prepared as described above and 250 μL MTBE. After vigorous vortexing and 

sonication 125 μL of 15 mM citric acid/ 20 mM dipotassium phosphate buffer was 

added to homogenized pellets. Following further vortexing and 10 min incubation at 

room temperature, liquid phases were separated by centrifugation for 10 min at 

20000g. 500 μL the of upper phase was moved to a new tube and dried in a vacuum 

centrifuge (Labconco). Dried lipid films were resuspended in 10 μL 65:30:5 (v/v/v) 

isopropanol/acetonitrile/H2O, supplemented with 10 mM acetylacetone. After 

resuspension, 5 μL H2O was added to reduce the organic content of the buffer and 5 

μL of resulting mixture was injected into the LC/MS system. Separation was performed 

on 2.1 mm x 50 mm 1.7 μm CSH C-18 column (Waters) at 60°C with a flow rate of 0.6 

mL/min using the following binary gradient: 25% B, ramp to 56%B in 6 min followed 

by linear increase to 80% B in 6 min, 2 min hold at 100% B and 3 min re-equilibration 

(A: 0.05% NH4OH in water, B: 0.05% NH4OH in 80% isopropanol 20% ACN). 

LC/MS quantification of nucleotide phosphates  

Frozen cell extracts were defrosted by 1-2 minute incubation in a 37°C water bath and 

sonicated for 10 minutes in water ice slurry. After 10 minute centrifugation at 20000g, 

samples were loaded on 1 mL/30 mg Oasis Wax cartridge (Waters) preconditioned 

with 1 mL of MeOH and 1 mL 50 mM ammonium acetate buffer, pH 4.5. After washing 

with 1 mL ammonium acetate buffer, analytes were eluted with 200 μL of 2.8% 

ammonium hydroxide in MeOH:ACN:H2O 50:30:20 (v:v:v). After addition of 10 μL of 

5% trehalose and brief vortexing samples were dried down in a vacuum centrifuge 
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(Labconco). Dried trehalose-stabilized extracts were re-dissolved in 20 μL of 

MeOH:ACN:H2O 50:30:20 (v:v:v) and moved to an autosampler vial for analysis. 

Separation was performed on 2.1 mm x 100 mm 3.5 μm iHilic column (HILICON) or 

SeQuant Zic-cHILIC, 2.1mm x 100 mm, 3μm (Merck) at 0.3 mL/min using the following 

binary gradient: 100% B, ramp to 85%B in 1.5 min followed by 10 min isocratic hold at 

85% B and linear decrease 30% B in 3 minutes with 2 minute hold at 30% B and 8 

minute re-equilibration at initial conditions. (A: 3.75 mM ammonium acetate, 1.25 mM 

acetic acid, 2 mM acetylacetone in MQ, B: 11.25 mM ammonium acetate, 3.75 mM 

acetic acid, 2 mM acetylacetone in 80% ACN). Injection volume was 2 μL. 

LC/MS quantification of G3P  

Stored metabolite extracts were dried down in a vacuum centrifuge (Labconco), re-

dissolved in 20 μL of MeOH:ACN:H2O 50:30:20 (v:v:v) and moved to an autosampler 

vial for analysis. Separation was performed on 2.1 mm x 100 mm 3.5 μm iHilic column 

(HILICON) at 0.3 mL/min using the following binary gradient: 100% B, ramp to 80% B 

in 10 min followed by linear decrease to 30% B in 3 min, 2 min hold at 30% B and 8 

min re-equilibration. Injection volume was 2 μL. 

LC/MS targeted protein quantification  

Relative concentrations of enzymes were measured by targeted proteomics using a 

modified version of the acyl-ACP assay. Lysis buffer was prepared by suspending 

appropriate number of frozen U-15N-labeled E. coli pellets in 10 mL of 50 mM 

potassium phosphate buffer, pH 7.2 and 6 M urea. 1 mL of lysis buffer was added to 

each of TCA-quenched and pelleted cells and proteins were isolated by 

chloroform/methanol precipitation as described previously. Protein pellets were 

resuspended in 10 μL of digestion buffer (4% 2-octyl-glucoside in 25 mM Tris buffer, 

pH 8.1 supplemented with 1 mM CaCl2 and 5 mM TCEP). Alkylation of cysteine 

residues was performed by adding 3 μL of 50 mM iodoacetamide followed by 15 

minutes of incubation in darkness. Digestion was performed by adding 10 μL of 0.2 

mg/mL Trypsin Gold (Promega) and overnight incubation at 37°C. Samples were 

centrifuged and 10 μL was injected in LCMS system. Separation was performed on 

2.1 mm x 50 mm 1.7 μm CSH C-18 column (Waters) held at 40°C using a binary 

gradient: 2% B, 20 minute ramp to 25% B, 4 min increase to 40% B, 0.5 ramp to 80% 

and 1 minute hold at 80% B before 3 minute re-equilibration at starting conditions (A: 

25 mL formic acid, B: 50 mM formic acid) at a flow rate of 0.5 mL/min.  

Data Analysis 

All LC-MS data files were processed in Skyline versions 4.x using target list based on 

in silico generated transition list. Each target compound had matching isotopically-

labeled internal standard (IS). Processed data were exported as target compounds 

and IS peak areas and processed further using a set of Python scripts. Growth rates 

were obtained from linear fits to log-transformed growth curves. OD-corrected data 

were obtained by dividing the signal by OD600 value interpolated from growth curve at 
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the time of sampling. PE-corrected results were produced by dividing the signal by 

sum all of signals for all phosphatidyl-ethanolamine species from the same 

measurement (in case of phospholipids) or matching sample (in case of other assays). 

In nucleotide phosphate and G3P assay absolute concentrations were estimated 

based on amounts of internal standards in IS-spike solution assuming RR = 1 implies 

equimolar amounts of target compound and IS at the moment of quenching. 

Concentrations of IS in the spike mix are provided in the supplement. 

Steady-state model description 

 The simplified pathway model was set up using COPASI as a series of 

irreversible Michaelis-Menten equations. Most reactions in the fatty acid pathway were 

excluded in order to determine whether the experimentally-observed trends in 

intermediate concentrations could be captured in a simplified model. Acetyl-CoA and 

C16:1-ACP concentrations were fixed at their initial values. For simplicity, Vmax 

values and KM parameters of each reaction were set to similar values (around 10 and 

30 µM, full parameter set given below). For steady-state calculations, we do not claim 

that the model parameters reflect the exact in vivo values. However the values are 

useful in capturing the basic steady-state behaviours of the system. The simulated 

steady-state fluxes and metabolite concentrations depicted in Figure 5.2 were 

obtained using the “Parameter Scan” function in COPASI. The differential equations 

that determine the fluxes through each intermediate pool are defined below. 

 The strong flux control exerted by PlsB is a consequence of its use of a 

substrate (C16:0-ACP) that strongly inhibits its own synthesis (i.e. inhibits ACC), as 

predicted by metabolic control analysis. Although acyl-ACP species are predicted from 

experiments to exhibit mixed inhibition of E. coli ACC with respect to acetyl-CoA (49), 

we use competitive inhibition to minimize the number of parameters in the model. 

Changes in concentrations of other substrates (e.g. ATP, bicarbonate) or allosteric 

regulators of ACC (e.g. GlnB) would be expected to exert a similar influence on ACC 

activity and fatty acid synthesis as variations in ACC Vmax. 
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Differential equation definitions 

 Steady-state fluxes are defined as follows. Note that ppGpp inhibition of PlsB 

was not considered in steady-state calculations (i.e. ppGpp was set to 0 µM). 
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Values used in mathematical model of fatty acid and PL synthesis pathways. No relationship 

between simulated values and actual in vivo values is implied. 

Initial Species Values Species 
 

Concentration 
 acetyl-CoA 

 
300 µmol/l 

 malonyl-ACP 
 

0 µmol/l 
 C16ACP 

 
0 µmol/l 

 LPA 
 

0 µmol/l 
 ppGpp 

 
0 µmol/l 

 PA 
 

0 µmol/l 
 CDPDAG 

 
0 µmol/l 

 PS 
 

0 µmol/l 
 C161ACP 

 
30 µmol/l 

 C14BKACP 
 

0 µmol/l 
 C14OHACP 

 
0 µmol/l 

 C14ACP 
 

0 µmol/l 
 C16BKACP 

 
0 µmol/l 

 C16OHACP 
 

0 µmol/l 

Kinetic Parameters Reaction Parameter Value 
 acetyl-CoA carboxylase 

 
 

 
 

Km 300 µmol 
 

 
V 50 µmol/s 

 
 

Ki 1 µmol 
 C14 synthesis 

 
 

 
 

Km 30 µmol 
 

 
V 10 µmol/s 

 LPA synthesis 
 

 
 

 
Km 30 µmol 

 
 

V 10 µmol/s 
 

 
Ki 200 µmol 

 PA synthesis 
 

 
 

 
vmax 20 µmol/s 

 
 

Kma 30 µmol 
 

 
Kmb 30 µmol 

 CDPDAG synthesis 
 

 
 

 
Km 30 µmol 

 
 

V 10 µmol/s 
 PS synthesis 

 
 

 
 

Km 30 µmol 
 

 
V 10 µmol/s 

 PE synthesis 
 

 
 

 
Km 30 µmol 

 
 

V 10 µmol/s 
 C14 reduction 

 
 

 
 

Km 30 µmol 
 

 
V 10 µmol/s 

 LPS initiation 
 

 
 

 
Km 30 µmol 

 
 

V 10 µmol/s 
 C14 dehydration 

 
 

 
 

Km 30 µmol 
 

 
V 10 µmol/s 

 C14 elongation 
 

 
 

 
vmax 20 µmol/s 

 
 

Kma 30 µmol 
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Kmb 30 µmol 
 C16 reduction 

 
 

 
 

Km 30 µmol 
 

 
V 10 µmol/s 

 C16 dehydration 
 

 
 

 
Km 30 µmol 

 
 

V 10 µmol/s 

Sensitivity analysis 

 The Vmax values of PlsB and other enzymes were varied over a 4-fold range 

and new steady-state values for fluxes and metabolites obtained. The stability of the 

model was assessed by a sensitivity analysis in which the KI, KM, and Vmax values 

of each individual enzyme were simultaneously varied over a 4-fold range centered 

around the values used in the main model (Supplemental Figure 5.8). Values for the 

“C14 synthesis” pseudo-reaction and the C14 reduction (FabG) were varied together. 

Kinetic modelling of PlsB inhibition by ppGpp 

 For kinetic simulation of ppGpp inhibition, the model described by the above 

differential equations was used, aside from the LPA synthesis rate, described by 

equation 1 below. The kinetics of ppGpp response were first obtained by simulating 

mRNA synthesis and decay, RelA translation and protein dilution, and ppGpp 

synthesis and decay, and adjusting parameters until simulated kinetics of ppGpp 

accumulation closely matched the observed values. ppGpp inhibition of PlsB was 

simulated using the standard Michaelis-Menten equation multiplied by an empirical 

inhibition term (equation 1): 

LPA synthesis rate =  𝑉𝑚𝑎𝑥 × (
[C16:0-ACP]

𝐾𝑀 +  [C16:0-ACP]
) × (

𝐾𝐼

𝐾𝐼 +  [ppGpp]
)       (1) 

The KI parameter was varied until the simulated output agreed with the initial PA and 

PS data points (from 0 to 25 minutes, Figure 5.4C), as this timescale is more likely to 

reflect the fast-acting post-translational response to ppGpp. We cannot explain the 

subsequent drop in PS concentrations after 25 minutes, though we note that PA 

slightly accumulates beginning with the drop in PS. We note that PS synthase PssA 

has been found to possess PS hydrolase activity, generating PA (50). Further studies 

will be needed to understand PS dynamics during growth transitions. 
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Summary 
Bacteria have been an integral part of human life since the ancient times either as 

cooperative tenants living in and around us or as constant threats to our health and 

wellbeing. Since prehistoric times we unknowingly used them as tools of fermentation 

and fought against them with haphazardly discovered natural remedies. Today, after 

more than 3 centuries since they were first observed with a microscope, our 

understanding of their functions has increased immensely along with our ability to alter 

it. We have discovered on a molecular level how life stores and transfers information, 

how this information is used to build biochemical machines with a myriad of functions, 

namely proteins, and how these proteins undertake their functions. Along with a better 

understanding came the ability to alter the biological information within DNA and to 

create new proteins that does not occur in nature. 

An increased understanding of life at a molecular level led to the design of new strains 

of bacteria and other microorganisms to produce chemicals and enzymes for industrial 

purposes such as biofuels and insulin. Better drugs targeting specific molecular 

machinery were developed to help combat against bacterial diseases. We are even 

developing bacteria to achieve tasks that we do not need yet such as mining on the 

moon. However even with all the progress, our knowledge and abilities are limited 

compared to the complexity of life. Central questions such as how bacteria respond to 

changing environments, how they manage the inevitable stochasticity at the molecular 

level, how they cooperate with us and other life forms and many more are active areas 

of research. Unique biochemistry and functions are being discovered every year along 

with new species of bacteria and microorganisms. So, there is quite a lot to still learn 

about life at the molecular level. 

In chapter 2 we reviewed how stochasticity affects the lives of bacteria. Our ability to 

observe single cells has increased significantly in the last decade with new live cell 

microscopy techniques involving flow cells to trap and feed bacteria. This led to a 

massive increase in the single cell data available to scientists and allowed observation 

of differences between individual bacteria with the same genetic code. This showed 

that bacteria, while being one of the simplest life forms, is dealing with a fundamental 

problem, stochasticity. Biochemical reactions are inherently stochastic in nature 

meaning whether a reaction will happen depends partially on “chance”. Since the basis 

of all life is biochemistry, all life forms have evolved alongside this inherent 

stochasticity. Bacterial cells have evolved hundreds of known regulatory pathways 

which control biochemistry of the cell to achieve damping of stochasticity. Some of 

these are well known and understood. However, the debate is still ongoing about how 

much stochasticity effects bacterial cells overall; is it a simple nuisance, a massive 

problem or just a part of their lives they co-evolved with to take advantage of? 
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Research in the recent years showed that it’s a bit of all. For some reactions there are 

so many substrates and enzymes involved that the randomness averages over many 

reactions and is not even observable, like flipping a coin 1000 times and getting around 

500 heads and 500 tails. However, for biological functions which depend on a small 

number of reactants, fluctuations in these numbers were shown to lead to growth rate 

differences. For example, unlucky cells were slowing down due to not having enough 

of a crucial component. For other biochemical functions a long list of different enzymes 

are needed to carry out several in between steps. It was shown that an unlucky 

fluctuation in one of the components can cause inefficiencies down the line effectively 

decreasing fitness. However, some bacteria evidently use the inherent randomness to 

generate heterogeneous populations where some of the members are less fit to the 

current environment. When the environment changes however, the less fit members 

could be more prepared to the new environment allowing the genetic information of 

the population to survive. A non-stochastic population would simply die off when a 

negative environmental factor appears while a heterogenous population could survive. 

Furthermore, this allows lucky members in the population to grow much faster under 

favourable conditions and increase the population average growth, increasing 

population fitness. So, stochasticity appears to be an integral part of how bacteria 

function and this is an active area of research promising to understand more about the 

effects of randomness on biology. 

In chapter 3 we focused on one of the stochasticity dampening mechanism namely 

cell size control. All bacteria start their lives as a small daughter cell from a mother 

which has just divided. However as mentioned, life at the molecular level is stochastic 

which leads to various possibilities for our new daughter cell. Its mother might have 

divided a bit later or earlier than required leading to bigger or smaller daughters, or the 

division might not have been perfectly at the middle and now one of the daughters 

would be smaller while other is larger. If these effects are not corrected somehow by 

the new cell, eventually the population would have giant and tiny cells which is not 

what is observed. It was recently shown that bacteria achieve this by the “adder 

mechanism” where every cell tries to add the same amount of length to itself before 

dividing. Even if one is borne large or small it adds the same length to itself and divides. 

This allows next generation to be closer to the population average and dampens 

heterogeneity and stochasticity. However how bacteria manage to measure the length 

that they added to decide on when to divide is not known. Furthermore, bacteria size 

changes according to the growth rate. In an environment where growth is faster cell 

size is larger compared to a slow growth environment. So, bacteria not only manage 

to keep size homeostasis in stable environments but is also able to adjust the average 

size if the growth rate changes. How this is done is also not understood. 

There is a signalling molecule called guanosine-tetraphosphate (ppGpp). Level of 

ppGpp reversely correlates with growth and controls growth rate and many growth 

dependent processes. If growth is fast, ppGpp is low, if it is slow ppGpp is high. It has 

many other functions such as stress response under growth arresting conditions 
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where ppGpp concentrations increase dramatically. However, these are mostly well 

understood, what it does at concentrations where growth is still permitted on the other 

hand is not clear. In this chapter we show that the level of ppGpp control not only 

growth rate but also cell size. A sudden increase in ppGpp levels triggered by 

production of an engineered enzyme resulted in cell size decreasing rapidly while 

growth rate takes much longer to stabilize. Indicating that the connection between 

ppGpp and cell size is growth rate independent. Furthermore, we observed that in 

order to decrease cell size rapidly, cells transiently decrease their cycle durations. 

Dividing earlier than they should allow them to become smaller, while growth rate is 

still high. Later as growth slows down cycle duration also increases to match the new 

growth regime. These rapid changes to the cycle duration by ppGpp manipulation 

suggests a link between division machinery and ppGpp which suggest that ppGpp is 

a link between growth rate and division to regulate average size in a given growth rate. 

In chapter 4 we describe our efforts to create a light activated ppGpp hydrolysis 

enzyme. In wild type bacteria, ppGpp levels respond within couple minutes to a 

change in the environment. Our method to change ppGpp levels from chapter 3 does 

not create as fast of a change. This is because it takes time for an induced enzyme to 

be produced and start to produce or hydrolyse ppGpp. Therefore, in order to answer 

some questions regarding the effects of rapid ppGpp changes which bacteria normally 

experience, we need a faster system. To this aim light activated enzymes can be used 

as they allow instant activation of enzymes. In particular a newly discovered plant 

enzyme domain called LOV2, can be engineered to fuse with another enzyme to 

regulate its activity. LOV2 domain has a protein structure called alpha-helix at the end 

of the enzyme. These helices are structures which occur when specific amino acids 

are placed in a row in the protein sequence and these then fold onto each other to 

create a helix. The helix in LOV2 changes localization when correct wavelength of light 

interacts with the domain. If a target enzyme has an alpha-helix at the beginning, 

LOV2’s end helix can be fused to the target enzyme’s and create a continuous alpha 

helix. This allows the localization change upon light to alter the shape and thus activity 

of the target enzyme. 

A newly discovered ppGpp hydrolysis enzyme from fruit flies called Mesh1 has an 

alpha helix at the beginning. We tried various different fusion locations to find a version 

which would change activity under light. One of the constructs that we tried appeared 

to hydrolyse ppGpp only in light. We tested this by overexpressing a ppGpp synthesis 

enzyme. In a cell with no other modification, this leads to growth stopping due to 

ppGpp accumulation. When we added our light activated construct, cells could grow 

in light but not in dark. Because in light the construct is active and hydrolyses the 

excess ppGpp allowing growth, however in dark this does not happen as the enzyme 

is inactive. We further improved this construct by changing some amino acids at the 

shared helix to increase stability. This led to a better variant where activity in dark was 

much less. 
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In chapter 5 we revealed a direct inhibitory role of ppGpp on phospholipid (PL) 

synthesis. Phospholipids are the building blocks of microbial membranes and their 

production is directly linked to growth rate. In our work we show that the concentration 

of the enzyme which diverts resources towards PL synthesis called PlsB does not 

change with growth rate. Cells always have the same concentration of PlsB, however 

at slower growth ppGpp inhibits PlsB and diverts resources away from PL production. 

This allows cells to rapidly increase their PL production upon an improvement to the 

nutrient condition. If cells were responding slowly by changing the concentration of 

PlsB enzyme in order to regulate resource flow towards PL synthesis, they would not 

be able to respond rapidly when the environment improves. 

This shows that ppGpp’s general role as a transcriptional regulator is only a part of the 

full story. This molecule can control various enzyme levels directly, responds rapidly 

to changing environments and balances not only metabolism but also cell size with 

growth rate. We hope that future developments in visualizing ppGpp at the single cell 

level along with better control methods such as our efforts in chapter 4 will allow 

uncovering of the intricate details of bacteria’s lives. 
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Samenvatting 
 

Sinds de oudheid zijn bacteriën een integraal deel van het menselijke bestaan, hetzij 

als coöperatieve huurders die in en om ons heen wonen, hetzij als een constante 

bedreiging voor onze gezondheid en ons welzijn. In het begin gebruikten we ze 

onbewust als hulpmiddelen voor  fermentatie en bestreden we ze met lukraak ontdekte 

natuurlijke remedies. Vandaag de dag, meer dan 3 eeuwen sinds we bacteriën voor 

het eerst waarnamen, is ons begrip van hun functies enorm toegenomen, samen met 

ons vermogen om deze functies aan te passen. We hebben op moleculair niveau 

ontdekt hoe het leven informatie opslaat en overdraagt, hoe deze informatie wordt 

gebruikt om veelzijdige biochemische machines te bouwen die eiwitten worden 

genoemd en hoeveel van deze eiwitten hun functies uitoefenen. Samen met een beter 

begrip kwam het vermogen om de biologische informatie opgeslagen in het DNA aan 

te passen en om nieuwe eiwitten te creëren die niet in de natuur voorkomen. 

Door een beter begrip van het leven op moleculaire schaal waren we in staat om 

nieuwe bacteriestammen en andere micro-organismen te ontwerpen om chemicaliën 

en enzymen voor ons te produceren, zoals biobrandstoffen en insuline. Er werden 

betere geneesmiddelen ontwikkeld die gericht zijn op specifieke moleculaire machines 

om te helpen bij de bestrijding van bacteriële ziekten. We ontwikkelen zelfs bacteriën 

om taken uit te voeren die we nog niet nodig hebben, zoals mijnbouw op de maan. 

Maar zelfs met alle vooruitgang zijn onze kennis en mogelijkheden beperkt in 

vergelijking met de enorme complexiteit van het leven. Kernvragen zoals hoe 

bacteriën reageren op een veranderende omgeving, hoe ze omgaan met de 

onvermijdelijke stochasticiteit op moleculair niveau, hoe ze met ons en andere 

levensvormen samenwerken en nog veel meer zijn actieve onderzoeksgebieden. 

Ieder jaar worden nieuwe unieke biochemie en functies ontdekt net als nieuwe soorten 

bacteriën en micro-organismen. Er valt dus nog veel te leren over het leven op 

moleculair niveau. 

In hoofdstuk 2 hebben we gekeken naar de effecten van stochasticiteit. Het 

vermogen om individuele cellen te observeren is de afgelopen tien jaar aanzienlijk 

toegenomen met nieuwe microscopie technieken voor levende cellen waarbij flow 

cells (Eng. Stromingscellen) worden gebruikt om bacteriën op te vangen en te voeden. 

Dit heeft geleid tot een enorme toename van data over individuele cellen die 

beschikbaar zijn voor wetenschappers en maakte het mogelijk om verschillen tussen 

individuele bacteriën met dezelfde genetische code te observeren. Dit toonde aan dat 

bacteriën, hoewel ze een van de eenvoudigste levensvormen zijn, te maken hebben 

met een fundamenteel probleem, namelijk de stochasticiteit. Biochemische reacties 

zijn inherent stochastisch van aard, wat betekent dat de vraag of een reactie zal 

gebeuren gedeeltelijk afhangt van "toeval". Aangezien de basis van al het leven de 

biochemie is, zijn alle levensvormen in de aanwezigheid van deze inherente 
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stochasticiteit geëvolueerd. Bacteriële cellen hebben honderden regulerende paden 

ontwikkeld die de biochemie van de cel controleren om de stochasticiteit te dempen. 

Sommige daarvan zijn welbekend en begrepen. Echter, het debat over tot in welke 

mate stochasticiteit een effect heeft op de bacteriële cellen hebben, is nog steeds 

gaande; is het simpelweg hinderlijk, een enorm probleem of is het slechts een deel 

van hun leven waarnaast ze zijn geëvolueerd om er voordeel uit te halen?  

Onderzoek in de afgelopen jaren heeft aangetoond dat het een beetje van allemaal is. 

Bij sommige reacties zijn er zoveel substraten en enzymen betrokken dat de 

willekeurigheid gemiddeld over veel reacties heen gaat en niet eens waarneembaar 

is, zoals 500 kop en 500 keer munt krijgen bij 1000 potjes kop of munt. Voor 

biologische functies die afhankelijk zijn van een klein aantal reactanten is echter 

aangetoond dat fluctuaties in deze aantallen leiden tot verschillen in de groeisnelheid. 

Zo vertraagden ongelukkige cellen omdat ze niet genoeg van een cruciaal component 

hadden. Voor andere biochemische functies is een lange lijst van verschillende 

enzymen nodig om een aantal tussenstappen uit te voeren. Er werd aangetoond dat 

een ongelukkige schommeling in een van de componenten kan leiden tot inefficiënties 

in de rest van de kettingreactie, waardoor de fitness effectief afneemt. Sommige 

bacteriën maken echter duidelijk gebruik van de inherente willekeurigheid om 

heterogene populaties te genereren waar sommige van de leden minder geschikt zijn 

voor de huidige omgeving. Maar wanneer de omgeving verandert, kunnen de minder 

passende leden beter voorbereid zijn op de nieuwe omgeving waardoor de genetische 

informatie van de populatie kan overleven. Een niet-stochastische populatie zou 

eenvoudigweg afsterven wanneer een negatieve omgevingsfactor verschijnt terwijl 

een heterogene populatie zou kunnen overleven. Bovendien kunnen de gelukkige 

leden van de populatie hierdoor veel sneller groeien onder gunstige omstandigheden 

en de gemiddelde groei van de populatie verhogen, wat de fitheid van de populatie 

ten goede komt. Stochasticiteit blijkt dus een integraal onderdeel te zijn van hoe 

bacteriën functioneren en een beter begrip van alle effecten hiervan is nog steeds een 

actief onderzoeksgebied. 

In hoofdstuk 3 hebben we ons gericht op een van de stochasticiteitsdempende 

mechanismen, namelijk de regeling van de celgrootte. Alle bacteriën beginnen hun 

leven als een kleine dochtercel van een moeder die zich net heeft gedeeld. Maar zoals 

eerder gezegd, is het leven op moleculair niveau stochastisch, wat leidt tot 

verschillende mogelijkheden voor onze nieuwe dochtercel. Het kan zijn dat de moeder 

zich iets later of vroeger heeft opgesplitst dan nodig is, wat leidt tot grotere of kleinere 

dochters, of dat de verdeling niet perfect in het midden is geweest en dat nu één van 

de dochters kleiner is, terwijl de andere groter is. Als deze effecten niet worden 

gecorrigeerd door de nieuwe cel, zou de populatie uiteindelijk reusachtige en kleine 

cellen vertonen die niet worden waargenomen. Onlangs werd aangetoond dat 

bacteriën dit bereiken door het "adder mechanisme" waarbij elke cel probeert dezelfde 

hoeveelheid lengte aan zichzelf toe te voegen voordat hij zich deelt. Zelfs als men 

groot of klein wordt gedragen, voegt het dezelfde lengte aan zichzelf toe en verdeelt 
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het zich. Hierdoor kan de volgende generatie dichter bij het bevolkingsgemiddelde 

komen en wordt de heterogeniteit en stochasticiteit gedempt. Het is echter onbekend 

hoe bacteriën erin slagen om de lengte te meten die ze hebben toegevoegd om te 

beslissen wanneer ze moeten delen. Bovendien verandert de grootte van de bacteriën 

afhankelijk van de groeisnelheid. In een omgeving waar de groeisnelheid hoger ligt, 

zijn cellen groter dan in een omgeving met een langzame groei. Dus bacteriën slagen 

er niet alleen in om celgrootte te reguleren in een stabiele omgeving, maar zijn ook in 

staat om de gemiddelde grootte aan te passen als de groeisnelheid verandert. Hoe dit 

gebeurt, is ook nog niet bekend. 

Er is een signaalmolecuul genaamd guanosine-tetrafosfaat (ppGpp). Het niveau van 

ppGpp hangt tegenovergesteld samen met de groei en controleert de groeisnelheid 

en vele processen afhankelijk van groei. Als de groei snel is, is ppGpp laag en als het 

langzaam is, is ppGpp hoog. Het heeft nog menig andere functies zoals bij de 

stressrespons onder groeiremmende omstandigheden waarbij de ppGpp-

concentraties dramatisch toenemen. Deze reacties zijn echter grotendeels bekend, 

daarentegen wat het doet bij concentraties waar groei nog wel mogelijk is, is 

onduidelijk. In dit hoofdstuk laten we zien dat het niveau van ppGpp niet alleen de 

groeisnelheid controleert, maar ook de celgrootte. Een plotselinge toename van de 

ppGpp-niveaus, veroorzaakt door de productie van een gemanipuleerd enzym, leidde 

tot een snelle afname van de celgrootte, terwijl het veel langer duurde voordat de 

groeisnelheid zich stabiliseerde. Dit geeft aan dat het verband tussen ppGpp en de 

celgrootte onafhankelijk is van de groeisnelheid. Bovendien zagen we dat om de 

celgrootte snel te verminderen, cellen tijdelijk hun cyclusduur verminderen. Door 

eerder te delen dan nodig is het mogelijk om kleiner te worden, terwijl de groeisnelheid 

nog steeds hoog is. Later, als de groei vertraagt, neemt ook de duur van de cyclus toe 

om aan te sluiten bij het nieuwe groeiregime. Deze snelle veranderingen in de 

cyclusduur door ppGpp-manipulatie suggereert een verband tussen het 

delingsmechanisme en ppGpp, wat suggereert dat ppGpp een schakel is tussen 

groeisnelheid en deling om de gemiddelde celgrootte in een bepaalde groeisnelheid 

te reguleren. 

In hoofdstuk 4 beschrijven we onze inspanningen om een licht geactiveerd ppGpp 

hydrolyse enzym te creëren. Bij wild-type bacteriën reageren de ppGpp-niveaus 

binnen enkele minuten op een verandering in de omgeving. Onze methode om de 

ppGpp-niveaus uit hoofdstuk 3 te veranderen, doet dit niet snel genoeg. Dit komt 

omdat het tijd kost om een geïnduceerd enzym te produceren en te beginnen met het 

produceren of hydrolyseren van ppGpp. Om enkele vragen te beantwoorden over de 

effecten van de snelle ppGpp-veranderingen die bacteriën in normale 

omstandigheden ervaren, hebben we een sneller systeem nodig. Hiervoor kunnen 

lichtgevoelige enzymen worden gebruikt, omdat ze een ogenblikkelijke activering van 

enzymen mogelijk maken. Een nieuw ontdekt planten-enzym domein genaamd LOV2 

kan worden ontworpen om te fuseren met een ander enzym om de activiteit ervan te 

reguleren. Het LOV2-domein heeft een eiwitstructuur aan het einde die een alfa-helix 
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wordt genoemd. Deze alfa-helices zijn structuren die ontstaan wanneer specifieke 

aminozuren op een rij in de eiwitsequentie worden geplaatst en deze vervolgens in 

elkaar vouwen om een helix te creëren. De helix in LOV2 verandert van locatie als 

licht van de juiste golflengte het domein raakt. Als een target (Eng: doelwit) eiwit een 

alfa-helix aan het begin bevat, kan de eind-helix van LOV2 worden gefuseerd met het 

target enzym waarbij een a onafgebroken alfa helix wordt gecreëerd. Hierdoor kan de 

locatieverandering van de alfa-helix van LOV2 ook de vorm van het target enzym 

veranderen en daarmee de functionaliteit. 

Een nieuw ontdekt ppGpp-hydrolyse-enzym uit fruitvliegjes genaamd Mesh1 heeft een 

alfa-helix aan het begin. We hebben verschillende fusie-locaties geprobeerd om een 

versie te vinden waar de enzymatische activiteit onder licht zou veranderen. Een van 

de constructies die we probeerden leek ppGpp alleen in licht te hydrolyseren. Dit 

hebben we getest door een ppGpp-synthese-enzym over te produceren. In een cel 

zonder extra modificatie leidt dit tot het stoppen van de groei door ppGpp-accumulatie. 

Bij toevoeging van ons licht-geactiveerde construct bleken de cellen in het licht 

groeien, maar niet in het donker. Dit komt doordat het construct actief is in het licht en 

dan overschot aan ppGpp afbreekt, waardoor groei mogelijk is, maar in het donker 

gebeurt dit niet omdat het construct dan inactief is. We hebben dit construct verder 

verbeterd door een aantal aminozuren op de gedeelde helix te veranderen om de 

stabiliteit te verhogen. Dit leidde tot een betere variant waarbij de activiteit in het 

donker gereduceerd was. 

In hoofdstuk 5 hebben we een directe remmende rol van ppGpp op de 

fosfolipidesynthese onthuld. Fosfolipiden zijn de bouwstenen van microbiële 

membranen en de productie hiervan is direct gekoppeld aan de groeisnelheid. In ons 

werk tonen we aan dat de concentratie van het enzym dat de toestroom van middelen 

richting de fosfolipideproductielijn regelt, PlsB genaamd, niet varieert met de 

groeisnelheid. De concentratie van PlsB in cellen is constant, echter bij tragere groei 

heeft ppGpp een remmende werking op PlsB en wordt de toevoer van grondstoffen 

weggeleid van de fosfolipideproductielijn. Dit stelt cellen in staat om hun 

fosfolipideproductie snel te verhogen bij een verbetering van de aanwezige 

voedingsstoffen. Als cellen langzaam zouden reageren door de concentratie van het 

PlsB enzym te wijzigen om de stroom van grondstoffen richting fosfolipidesynthese te 

reguleren, zouden ze niet snel kunnen reageren wanneer de omstandigheden 

verbeteren. 

Dit laat zien dat de algemene rol van ppGpp als transcriptie-regulator slechts een deel 

van het verhaal is. Dit molecuul kan het niveau van verschillende enzymen direct 

controleren, reageert snel op veranderende omstandigheden en brengt niet alleen het 

metabolisme in balans, maar ook de celgrootte door middel van de groeisnelheid. We 

hopen dat toekomstige ontwikkelingen in het visualiseren van ppGpp op individueel 

celniveau in combinatie met betere controlemethoden, zoals onze inspanningen in 

hoofdstuk 4, het mogelijk zullen maken om de fijne kneepjes van het leven van 

bacteriën bloot te leggen. 
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