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Robust Multi-Objective H∞ Control of GHAME Hypersonic
Vehicle in Subsonic Flight

E. Goz∗ and S. Theodoulis†

Delft University of Technology, Delft, 2628CD, Netherlands

This research is aimed at developing a comprehensive approach for robust hypersonic vehicle
(HV) control utilizing modern H∞ techniques. Initial focus is placed on subsonic flight condition
to validate the framework and controller design in a relatively familiar field, for which the HV are
not primarily optimized. A 6-degree-of-freedom non-linear model of the GHAME hypersonic
vehicle was constructed in MATLAB/Simulink, incorporating tensor-based equations of motion
and embedded parametric uncertainty in the aerodynamic coefficients. The linear short-period
longitudinal dynamics were then extracted at multiple operating points. A controller of fixed
structure was synthesized using multi-objective (multidisk) H∞ mixed-sensitivity techniques
with various performance and robustness requirements covering the pitch moment coefficient
parametric uncertainty domain. Additionally, the design is extended to handle variations in
Mach number, altitude, and fuel mass around the trim point using a multi-model approach. A
single, structured control system successfully stabilized, rejected input and output disturbances
and provided reference tracking for the uncertain short-period models and met the robustness
margin requirements for the entire grid. It was then tested on the non-linear model and
successfully performed the same tasks under parameter variations across the flight point grid.

I. Nomenclature

𝛼 = Angle of attack
𝛽 = Angle of sideslip
𝛿𝑎 = Aileron deflection
𝛿𝑒 = Elevator deflection
𝛿𝑟 = Rudder deflection
𝛿𝑡 = Throttle tab deflection
𝛿𝑣𝑙 = Left elevon deflection
𝛿𝑣𝑟 = Right elevon deflection
𝛾 = Performance tuning metric
𝜌 = Air density
𝜎 = Singular value
𝑎 = Speed of sound
𝐴𝑐 = Engine cowl area
𝐶𝑎 = Capture area ratio
𝐶𝐷 = Drag force coefficient

𝐶𝐷1 = Partial drag force coefficient
𝐶𝐿 = Lift force coefficient
𝐶𝐿1 = Partial lift force coefficient
𝐶𝑙 = Roll moment coefficient
𝐶𝑚 = Pitch moment coefficient
𝐶𝑚1 = Partial pitch moment coefficient
𝐶𝑛 = Yaw moment coefficient
𝐶𝑋 = Longitudinal force coefficient
𝐶𝑌 = Side force coefficient
𝐶𝑍 = Normal force coefficient
𝑓𝑃 = Thrust force
𝑔0 = Gravitational constant
𝑀 = Mach number
𝑛𝑧 = Vertical load factor at IMU location
𝑞 = Dynamic pressure

II. Introduction

Hypersonic vehicles (HV), capable of traveling at speeds and altitudes unreachable by conventional supersonic
aircraft, represent a significant advancement in aerospace technology, and require a careful consideration of

challenges associated with market, operational infrastructure, and, of course, engineering [1]. Their extraordinary speed
capabilities enable drastic reductions in travel time, presenting potential applications for high-priority point-to-point
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transport and emergency response scenarios where time is a critical factor. Furthermore, the high altitudes achieved
by these vehicles not only facilitate reconnaissance missions above conventional flight levels, but also extend beyond
the Earth’s atmosphere. This capability positions hypersonic vehicles as promising candidates for reduced-cost space
access, functioning as single-stage-to-orbit (SSTO) reusable vehicles [2, 3]. Such a development could revolutionize
space utilization for the Low Earth Orbit operations. Although HV designs vary depending on mission profiles, such
as rocket-propelled space launchers [1], in the context of this paper the term HV specifically refers to the horizontal
take-off and landing air-breathing hypersonic transport vehicle, which is able to sustain cruise speed above Mach 5
within the Earth’s atmosphere.

In order to reach these operating conditions, some unique design characteristics must be employed. In general,
the HV tend to have long, slender bodies, where the propulsion system is tightly integrated into the airframe, with
lightweight yet strong structure able to withstand aero-thermodynamic loads [1, 2]. The forward-extended fuselage
is needed to create a series of shock-waves that compress the airflow fed into the engine and to create lift force from
underneath, whereas the rear fuselage is shaped for expanding the exhaust gases externally, hence also contributing to
the lift force. The propulsion system is typically mounted underneath, below the center of gravity (CG), producing a
pith-up moment [2].

Among many engineering challenges, the HV operating conditions and design traits introduce significant problems
related to their stability and control. The vibrations of the fuselage change the pressure distributions across the airframe,
resulting in lift, drag, pitching moment, and intake airflow perturbations [2, 4]. Due to the airframe structure, the
vibrations tend to be of relatively low frequencies posing elastic-body mode interactions, whereas the changes in
the angle of attack during pitch-up maneuvers further alter the flow field at the inlet and can result in variations in
thrust vector magnitude and direction [5], or even in engine flameout altogether [6]. In fact, the airframe-propulsion
interactions are argued in [7] to possibly be the most complex of any vehicle. All of the aforementioned problems
introduce uncertainties into the system, along with a lack of high-fidelity models of accurate aerodynamic data (at
least among those available to the public). Therefore, the flight control system (FCS) designs for HV must account for
the unmodelled nonlinearities, as well as consider specific operational requirements such as atmospheric turbulence
rejection [7], angle of attack variation limitation [6, 8], etc.

The discussed aeroelastic effects have been the primary concern in almost all HV-related works referenced in this
paper, so the modelling and control design approaches must be carefully considered. There are only a handful of HV
aerodynamic models available to the general public for research. Among the widely spread ones are the Winged-Cone
Configuration Hypersonic Vehicle [9] and the Generic Hypersonic Vehicle Model Example (GHAME) [10]. Both are
rigid-body, 6 degrees-of-freedom (DoF), and developed in the 1990’s. However, the former is developed completely
via analytical computer modelling programs, whereas GHAME is a combination of analytical and real empirical data.
There is another model developed later in 2005 [11, 12], which aims to capture the interactions between the airframe,
propulsion system, and aerodynamics, although in longitudinal plane only. The model was derived from first principles,
and incorporates structural bending into the equations of motion. It was then incorporated into Simulink® framework,
for which the initial flight control system was designed with Linear Quadratic Regulator (LQR) [13, 14]. However, the
uncertainties in the original model were not quantified [2], and the LQR does not guarantee any robustness margins
at the plant output. The focus switched later to make the developed LQR controller robust to uncertainties using the
servomechanism theory in [15], but the unmodelled dynamics were considered implicitly as parameter variations with
changes of fuel mass. On the other hand, the H∞ robust control framework allows to address the uncertainties directly,
and guarantees robustness margins.

One of the early attempts of implementing H∞ mixed-sensitivity method on HV using basic 𝑆/𝑇 structure, described
in [16], concluded that the real parameter uncertainties were too large to handle by this method and switched to
H∞ 𝜇-synthesis method instead, which treats the worst-case uncertainty scenario. In fact, 𝜇-synthesis was mostly
used in the earlier designs of robust H∞ controllers for HV. In [7] it was also concluded that H∞ controllers suffer
performance degradation with introduction of simultaneous uncertainties into the system, and called for 𝜇-synthesis
as a better performing control design methodology for this application. A major drawback of 𝜇-synthesis is that it
leads to controllers of very high order, which is computationally inefficient and complicates follow-up gain-scheduled
designs. Additionally, it cannot address real parametric uncertainty directly and rather treats it as complex, introducing
conservatism in the solution. Further work on HV control in [17–19], where the aeroelastic effects are primarily modeled
as parametric uncertainty in 𝐶𝑚 partial coefficients, concluded that the controller order reduction does not provide any
robustness guarantees, whereas synthesizing a fixed-order controller still results in the orders of 5 to 9. Ref. [5] further
outlines the aforementioned problems, stating the need for fixed-structure robust controllers of reduced conservatism,
whereas 𝜇-synthesis treats real parameter uncertainty as complex. It also stated that it is crucial to attenuate the effects
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of atmospheric turbulence in hypersonic flight, for which an additional H2 constraint is required. This results in a
problem of mixed H2/H∞, which had no solution in the 1990’s even in a full-order variant [5]. The public focus then
shifted more towards nonlinear and adaptive control methods for HV [20, 21].

Fortunately, all of the aforementioned problems associated with H∞ controllers have been solved later in [22, 23]
using non-smooth optimization algorithms to synthesize controllers of predefined fixed structure. This led to multi-
objective and multi-model approaches (known as multidisk problem) [24], making it possible to synthesize a single
controller for a variety of performance specifications simultaneously, as well as for multiple plant models and directly
specified parametric uncertainty. The latter is of special interest, as it presents a direct competitor to 𝜇-synthesis. The
multidisk solution not only outperforms 𝜇-synthesis because of controller structure specification ability, but also because
it addresses real parametric uncertainty directly, reducing conservatism [25]. The new methods were incorporated
into functions ℎ𝑖𝑛 𝑓 𝑠𝑡𝑟𝑢𝑐𝑡 and 𝑠𝑦𝑠𝑡𝑢𝑛𝑒 in the MATLAB® Robust Control Toolbox [26] in 2010 and 2012, respectively,
whereas solution for parametric uncertainty case with multidisk method was incorporated in 2015 [22]. The main
difference between the two is that the former uses a joint performance metric for all constraints like the classical
mixed-sensitivity, whereas the latter fully utilizes multidisk capabilities and puts a performance measurement on
each constraint individually, thereby making the controller less conservative and the constraining filter selection more
convenient. Surprisingly, there is an evident lack of application of either of these methods to HV control. The few
recent (after 2015) works on H∞ control of HV still use the basic techniques under a single performance metric that
lead to controllers of full order, such as in [27–30].

The field of hypersonic vehicle control is relatively new and under-researched, partly due to the scarcity of
experimental data and the complexity of the operating conditions. At this point, most focus is aimed at modelling or
accounting for the highly nonlinear aeroelastic effects at hypersonic speeds. The models available to the public are of
low fidelity for high Mach numbers, and are either completely mathematical, or approximations from methods like
DATCOM [31] combined with flight data of other aircraft. Most of the implemented H∞ designs are simply not in line
with the modern tools, which are able to provide flexible frameworks and satisfy various control design requirements
in time and frequency domains. There is still much to be done for the HV flight control system development. One
example of a relatively untreated area is the hypersonic airframe behavior in subsonic flight. The HV are not primarily
designed for it, with long slender airframes and typically limited control surfaces, making them potentially challenging
to optimize for robust performance within that flight regime. An adaptive nonlinear control method has been used for
that purpose in [32], but the implementation of any other methods was not found during the literature survey.

This research establishes a foundation for future investigation of hypersonic vehicle control at TU Delft using
modern H∞ robust control design methods and tools. The scope consists of constructing a 6-degree-of-freedom (DoF)
nonlinear model of the GHAME vehicle in MATLAB [33] and Simulink [26, 34] using tensor-based equations of motion
with a flexible subsystem-separated block structure and embedded parametric uncertainty, setting up trimming and
linearization programs that produce separated longitudinal and lateral linear models in the form of uncertain state-space
systems at any given flight point and condition, synthesizing a flight control system of fixed structure at one of the flight
points using multi-objective (multidisk) H∞ mixed sensitivity techniques to explicitly design for robustness against
structured parametric uncertainty. The design is further extended to be robust against trim condition variations in
airspeed, altitude, and fuel mass using a multi-modelling approach. A model grid is formed around the nominal flight
point (FP), and a single controller is synthesized for all parametrically uncertain models in the grid simultaneously,
and then implemented and tested on the nonlinear model. As a first initial step, the focus is put on the short-period
longitudinal dynamics at a subsonic flight condition. It seems as an appropriate starting point to test the framework and
the controller design in an untreated field.

This paper is structured in three consecutive phases: modelling in Sec. III, FCS design in Sec. IV, and nonlinear
implementation and simulation in Sec. V. The modelling phase consists of GHAME HV aerodynamic model description
and analysis in Sec. III.A, its nonlinear tensor-based model description in Sec. III.B, and trimming and linearization
process outlined in Sec. III.C. The FCS design includes a brief theoretical background in Sec. IV.A, the FCS structure
and synthesis description in Sec. IV.B, and the results and analysis discussion in Sec. IV.C. Finally, conclusion and
recommendations for future work are presented in Sec. VI.
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III. Modelling

A. The GHAME model

1. General description
The hypersonic vehicle model selected is the NASA’s Generic Hypersonic Aerodynamic Model Example developed

at the Dryden Flight Research Facility. The original publication of the model with full description can be found in [10].
GHAME was specifically developed to provide realistic data of hypersonic flight that is unclassified and available to the
general public for performance calculations, trajectory optimization, simulation, and control design purposes. The main
two arguments for selecting this vehicle model are the fact that its aerodynamic data are based on a combination of
realistic data from existing aircraft and theoretical data of a double-delta wing configuration, and the fact that it was
directly available in FORTRAN code and extensively discussed in [35]. Additionally, it is 6-DoF and therefore allows
future work with lateral motion.

GHAME is a horizontal take-off and landing SSTO vehicle with a gross take-off weight of 300,000 pounds (≈
136,080 kg) and a dry weight of 120,000 pounds (≈ 54,432 kg). Its mass and size properties were based on the
XB-70, and the moments of inertia were estimated from simplified geometry. The airframe features a 70° delta-wing
configuration with a single vertical tail rudder and two elevons. The vehicle is 243 feet (≈ 74.07 m) long with a span
of 80 feet (≈ 24.38 m). Its configuration is built from simple geometrical shapes and excludes landing gear and any
variable geometry apart from the aforementioned control surfaces. The wing area is 6,000 square feet (≈ 557.42 𝑚2).
The fuselage consists of a 10° half-angle cone ending in a cylinder with a 20-foot (≈ 6.1 m) diameter, terminating in an
integrated boattail/nozzle. The schematics are shown in Fig.1.

Fig. 1 Schematic of GHAME configuration [36]

2. Aerodynamic model
As has been mentioned, the aerodynamic model was comprised of analytical and empirical data. For lower Mach

numbers, it is a combination of a swept double-delta wing using modified Newtonian Impact Flow method and an actual
flight test data from the Space Shuttle. Above Mach 8, the data are exclusively based on the latter, but properly scaled.
The force and moment coefficient equations have been linearized around a range of angle of attack 𝛼 numbers for a
range of Mach numbers at zero sideslip angle 𝛽. The force coefficient equations are presented in Eq. 1, and the moment
coefficient equations in Eq. 2 [35].
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𝐶𝐿 = 𝐶𝐿0 (𝑀, 𝛼) + 𝐶𝐿𝛼
(𝑀, 𝛼)𝛼 + 𝐶𝐿𝛿𝑒

(𝑀, 𝛼)𝛿𝑒
𝐶𝐷 = 𝐶𝐷0 (𝑀, 𝛼) + 𝐶𝐷𝛼

(𝑀, 𝛼)𝛼 (1)
𝐶𝑌 = 𝐶𝑌𝛽 (𝑀, 𝛼)𝛽 + 𝐶𝑌𝛿𝑎 (𝑀, 𝛼)𝛿𝑎 + 𝐶𝑌𝛿𝑟 (𝑀, 𝛼)𝛿𝑟

𝐶𝑚 = 𝐶𝑚0 (𝑀, 𝛼) + 𝐶𝑚𝛼
(𝑀, 𝛼)𝛼 + 𝐶𝑚𝛿𝑒

(𝑀, 𝛼)𝛿𝑒 + 𝐶𝑚𝑞
(𝑀, 𝛼) 𝑞𝑐

2𝑉

𝐶𝑙 = 𝐶𝑙𝛽 (𝑀, 𝛼)𝛽 + 𝐶𝑙𝛿𝑎 (𝑀, 𝛼)𝛿𝑎 + 𝐶𝑙𝛿𝑟 (𝑀, 𝛼)𝛿𝑟 + 𝐶𝑙𝑝 (𝑀, 𝛼) 𝑝𝑏
2𝑉

+ 𝐶𝑙𝑟 (𝑀, 𝛼)
𝑟𝑏

2𝑉
(2)

𝐶𝑛 = 𝐶𝑛𝛽 (𝑀, 𝛼)𝛽 + 𝐶𝑛𝛿𝑎 (𝑀, 𝛼)𝛿𝑎 + 𝐶𝑛𝛿𝑟 (𝑀, 𝛼)𝛿𝑟 + 𝐶𝑛𝑝 (𝑀, 𝛼) 𝑝𝑏
2𝑉

+ 𝐶𝑛𝑟 (𝑀, 𝛼)
𝑟𝑏

2𝑉

All partial coefficients wrt angles have units of 1/°, and all partial coefficients wrt rotation rates have units of 1/rad.
Lift coefficient 𝐶𝐿 is defined positive upwards and perpendicular to velocity vector, drag coefficient 𝐶𝐷 is positive aft
and parallel to velocity vector. The rest of the coefficients have conventional positive directions. Each of the partial
coefficients is given in the form of a look-up table of 9 𝛼 rows and 13 Mach number columns. Their indices, respectively,
are shown in Eq. 3.

𝛼 = [−3 0 3 6 9 12 15 18 21] (3)
𝑀 = [0.4 0.6 0.8 0.9 0.95 1.05 1.2 1.5 2.0 3.0 6.0 12.0 24.0]

Jumping a little ahead, a fundamental discrepancy in the aerodynamic data was discovered during the implementation
of this aerodynamic model in the simulation. The solution process led to a certain alternative adaptation of the partial
coefficients, so it makes more sense do discuss it in this subsection. The problem only concerns the first two terms in
the computations of 𝐶𝐿 , 𝐶𝐷 , and especially 𝐶𝑚, essentially at subsonic Mach numbers. Since its impact on 𝐶𝑚 is more
severe than on the first two, the following discussion is explained on 𝐶𝑚.

(a) Pitch moment coefficient computed with interpolation for
𝑀 = 0.4-1.0

Angle of attack, deg

Pi
tc

h
m

om
en

tc
oe

ffi
ci

en
t

(b) Pitch moment coefficient as a set of linear functions for 𝑀
= 0.4-1.0

Angle of attack, deg

Pi
tc

h
m

om
en

tc
oe

ffi
ci

en
t

Fig. 2 Comparison of pitch moment coefficient computation using various methods

Naturally, the aerodynamic model with look-up tables means interpolating each of the partial coefficients for active
(i.e., currently set) 𝛼 and 𝑀 values in the simulation. However, it was directly stated by the authors in [10] that the
equations have been linearized around 𝛼 values. When linearizing the entire coefficient equations wrt 𝛼 at equilibrium
at some Mach number, it is the first two terms that contribute to it. Plotting 𝐶𝑚 = 𝐶𝑚0 (𝛼) + 𝐶𝑚𝛼

(𝛼)𝛼, where the terms
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are interpolated at (and multiplied with) respective 𝛼 first and then summed, for a set of Mach numbers between 0.4 and
1.0, leads to the graph shown in Fig. 2a. The red dots are placed at intersections with 𝛼 indices along 𝑀 = 0.4 for better
comprehension.

This unnatural pattern contradicts the values of 𝐶𝑚𝛼
look-up table, which has all entries negative, whereas here the

slope becomes positive just before the next 𝛼 index. As an even better indication of data self-contradiction, note that the
red dots at the indices show a positive slope wrt 𝛼, whereas the 𝐶𝑚𝛼

table states that the slope is always negative. The
phenomena of clearly positive slope between the indices only happens at Mach < 1. There is a possible explanation to
this discrepancy. The coefficient equations have already been linearized in the aerodynamic tables, so𝐶𝑚 = 𝐶𝑚0 +𝐶𝑚𝛼

𝛼

can be perceived as a basic linear function 𝑦 = 𝑎𝑥 + 𝑏. Therefore, the coefficients 𝐶𝑚0 (𝛼) and 𝐶𝑚𝛼
(𝛼) at some fixed

Mach number should not be treated as continuous functions of alpha, but rather as a set of "scheduled" linear functions
𝑦 = 𝑎𝑥 + 𝑏 at discreet 𝛼 values. It is best illustrated in Fig. 2b for the same set of Mach numbers.

In this interpretation, the closest linear function at some active 𝛼 is selected and then its deviation from the index
is multiplied with 𝐶𝑚𝛼

. Although a linear pitching moment coefficient slope may be a useful simplification around
the indices, the "saw" shape is not suitable for full scale simulation, either. As a result, it was decided to compute
the 𝐶𝑚 = 𝐶𝑚0 + 𝐶𝑚𝛼

𝛼 at all 𝛼 indices first, and then interpolate with straight lines between the indices for the entire
Mach range, producing a new aerodynamic table. The same procedure was applied to 𝐶𝐿 and 𝐶𝐷 , since they have the
same structure. The new partial coefficients are called 𝐶𝑚1 , 𝐶𝐿1 , 𝐶𝐷1 , and are defined as a summation of the first two
corresponding aerodynamic tables at the indices (𝑖, 𝑗), as shown in Eq. 4 and plotted in Fig. 3 (red dots again at 𝑀
= 0.4 for comprehension). The new partial coefficients are then substituted into their respective formulas previously
shown in Eq. 1 and Eq. 2, and they are the ones to be interpolated at the active Mach and 𝛼.

(a) Pitch moment coefficient 𝐶𝑚1

Angle of attack, deg

Pi
tc

h
m

om
en

tc
oe

ffi
ci

en
t

(b) Lift coefficient 𝐶𝐿1

Angle of attack, deg

Li
ft

co
effi

ci
en

t

(c) Drag coefficient 𝐶𝐷1

Angle of attack, deg

D
ra

g
co

effi
ci

en
t

Fig. 3 Modified lift 𝐶𝐿1 , drag 𝐶𝐷1 , and pitch moment 𝐶𝑚1 partial coefficients, plotted for Mach = 0.4-1.0
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𝐶𝑚1 (𝑀, 𝛼) = 𝐶𝑚0 (𝑀𝑖 , 𝛼 𝑗 ) + 𝐶𝑚𝛼
(𝑀𝑖 , 𝛼 𝑗 )𝛼 𝑗

𝐶𝐿1 (𝑀, 𝛼) = 𝐶𝐿0 (𝑀𝑖 , 𝛼 𝑗 ) + 𝐶𝐿𝛼
(𝑀𝑖 , 𝛼 𝑗 )𝛼 𝑗 (4)

𝐶𝐷1 (𝑀, 𝛼) = 𝐶𝐷0 (𝑀𝑖 , 𝛼 𝑗 ) + 𝐶𝐷𝛼
(𝑀𝑖 , 𝛼 𝑗 )𝛼 𝑗

3. Actuator model
The model features two elevons that function both as elevators and ailerons, located at the trailing edge of the wing.

The conversions between them are shown in Eq. 5:

𝛿𝑒 =
𝛿𝑣𝑙 + 𝛿𝑣𝑟

2
, 𝛿𝑎 =

𝛿𝑣𝑙 − 𝛿𝑣𝑟
2

(5)

where 𝛿𝑣𝑙 and 𝛿𝑣𝑟 are, respectively, left and right elevon deflections, both defined positive downwards. There is also
a single rudder, which is defined positive trailing edge left. There is no further information on the actuators in the
original model, so it was assumed that limits on deflection angles and rates are intentionally left free to choose. Actuator
modelling is further discussed in Sec. III.B.

4. Propulsion system model
Being not the primary focus of research, the propulsion system was intentionally simplified by the authors just to

"fly" the aerodynamic model [10]. The generic engine model approximates a combined-cycle propulsion system, where
a turbojet operates between Mach 0-2, ramjet operates between Mach 2-6, and supersonic combustion ramjet operates
above Mach 6. The engine cycles are assumed to change automatically. The inlet has variable geometry and its size is
scheduled wrt 𝛼 and Mach. The thrust 𝑓𝑃 is then computed with Eq. 6.

𝑓𝑃 = 0.029𝛿𝑡 𝐼𝑠𝑝 (𝑀, 𝛿𝑡 )𝑔0𝜌𝑀𝑎𝐶𝑎 (𝑀, 𝛼)𝐴𝑐, 𝛿𝑡 = [0 − 2] (6)

Where 𝛿𝑡 is throttle deflection tab, 0.029 comes from the fact that the pilot indirectly regulates the stoichiometric
ratio with the throttle tab, 𝑎 is the speed of sound, and 𝐴𝑐 is engine cowl area factor constant. Specific impulse 𝐼𝑠𝑝 is
dependent on the mass flow, so it is provided in the form of a look-up table for indices of Mach (same as in Eq. 3) and 𝛿𝑡 .
The effective capture area 𝐶𝑎 of the engine inlet is determined by the properties of bow shock wave under the vehicle
fore-body, which is dependent on the angle of attack and dynamic pressure [4], and is therefore given as a look-up table
for indices as from Eq. 3. Evidently, the thrust force is computed instantaneously, i.e., the propulsion system model has
no dynamics. The thrust force is assumed to be aligned with the center of gravity, and parallel to the airframe x-axis.

B. Non-linear model
The modelling of GHAME was largely based on techniques discussed in [35] and its model written in FORTRAN

code, which was built for purposes of full simulation with elliptical Earth equations of motion. The model of GHAME
presented in this paper, however, has its own unique traits and assumptions, which are generally outlined below:

1) The model is 6-DoF, built in MATLAB and Simulink environment, with subsystem-separated blocks mindset.
2) The EoM assume flat, non-rotating Earth, which is an understandable simplification since the model is built for

control law development purposes.
3) The mass of the vehicle 𝑚 and the moment of inertia (MOI) are assumed constant in the EoM, for the same

reason as the previous assumption.
4) The model is tensor-based, using a mix of relations for an aircraft and a hypersonic vehicle, both described in ref.

[35].
5) The center of gravity position is fixed, since its variation is not included explicitly in the original aerodynamic

model.
6) The inertial measurement unit (IMU) is loosely approximated to be located 80 ft (24.384 m) ahead of CG along

the center line, which is geometrically just before the conical nose in Fig. 1. It is merely an initial coarse
reference value for load factor computation near pilot location, and can easily be changed later.

7) The measurement noise is not explicitly included in the initial model and will be added in the future.
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The forces and moments computations directly utilize the aerodynamic coefficients derived in Sec. III.A, and have the
following expressions in body coordinates, respectively:

[ 𝑓𝑎,𝑝]𝐵 =


𝑓𝑎,𝑝1

𝑓𝑎,𝑝2

𝑓𝑎,𝑝3

 =

𝑞𝑆𝐶𝑋 + 𝑓𝑃

𝑞𝑆𝐶𝑌

𝑞𝑆𝐶𝑍

 (7)

[𝑚𝐵]𝐵 =


𝑚𝐵1

𝑚𝐵2

𝑚𝐵3

 =

𝑞𝑆𝑏𝐶𝑙

𝑞𝑆𝑐𝐶𝑚

𝑞𝑆𝑏𝐶𝑛

 (8)

where 𝑓𝑃 is propulsion force (thrust), and the body-frame coefficients 𝐶𝑋 and 𝐶𝑍 are computed directly from 𝐶𝐿 , 𝐶𝐷 ,
and 𝛼 using Eq. 9.

𝐶𝑋 = −𝐶𝐷 cos(𝛼) + 𝐶𝐿 sin(𝛼), 𝐶𝑍 = −𝐶𝐷 sin(𝛼) − 𝐶𝐿 cos(𝛼); (9)

The equations of motion originate from the first principles of Newton’s and Euler’s laws. The translational equations
are based on the Newton’s second law in the inertial frame of reference 𝐼, but with the flat-Earth assumption the Earth
frame of reference 𝐸 becomes identical to 𝐼. The general equation of motion, expressed in body coordinate system 𝐵, is
given in Eq. 10 in matrix form:

𝑚

[
𝑑𝑣𝐸
𝐵

𝑑𝑡

]𝐵
+ 𝑚

[
Ω𝐵𝐸

]𝐵 [
𝑣𝐸𝐵

]𝐵
=
[
𝑓𝑎,𝑝

]𝐵 + 𝑚 [𝑇]𝐵𝐿 [𝑔]𝐿 (10)

where 𝑣𝐸
𝐵

is the velocity vector of the vehicle’s CG wrt inertial frame 𝐸 , Ω𝐵𝐸 is the angular velocity vector of the
vehicle wrt frame 𝐸 , [𝑇]𝐵𝐿 is the direction cosine matrix (DCM) which is used to transform the gravity vector
[�̄�]𝐿 = [0 0 𝑔] from local frame 𝐿 to the frame 𝐵. In coordinate form the translational EoM become:

𝑚



𝑑𝑢/𝑑𝑡
𝑑𝑣/𝑑𝑡
𝑑𝑤/𝑑𝑡


𝐵

+


0 −𝑟 𝑞

𝑟 0 −𝑝
−𝑞 𝑝 0


𝐵 
𝑢

𝑣

𝑤


𝐵 =


𝑓𝑎,𝑝1

𝑓𝑎,𝑝2

𝑓𝑎,𝑝3


𝐵

+

𝑡11 𝑡12 𝑡13

𝑡21 𝑡22 𝑡23

𝑡31 𝑡32 𝑡33


𝐵𝐿 

0
0
𝑚𝑔


𝐿

(11)

The rotational EoM are derived from Euler’s law, and are worked out in a similar fashion as the translational ones,
with the final general expression shown in Eq. 12:[

𝑑𝜔𝐵𝐸

𝑑𝑡

]𝐵
=

( [
𝐼𝐵𝐵

]𝐵)−1 [
−
[
Ω𝐵𝐸

]𝐵 ( [
𝐼𝐵𝐵

]𝐵 [
𝜔𝐵𝐸

]𝐵) + [𝑚𝐵]𝐵
]

(12)

where 𝜔𝐵𝐸 is the vehicle’s angular velocity vector,
[
𝐼𝐵
𝐵

]𝐵 is the vehicle’s moment of inertia, and [𝑚𝐵]𝐵 is from Eq. 8.
Assuming symmetry in longitudinal plane, the MOI has 𝐼13 = 𝐼31. Expanded matrices of Eq. 12 are shown in Eq. 13.


¤𝑝
¤𝑞
¤𝑟


𝐵

=

©«

𝐼11 0 𝐼13

0 𝐼22 0
𝐼31 0 𝐼33


𝐵ª®®®¬

−1 ©«−


0 −𝑟 𝑞

𝑟 0 −𝑝
−𝑞 𝑝 0


𝐵

×
©«

𝐼11 0 𝐼13

0 𝐼22 0
𝐼31 0 𝐼33


𝐵 
𝑝

𝑞

𝑟


𝐵ª®®®¬ +


𝑚𝐵1

𝑚𝐵2

𝑚𝐵3


𝐵ª®®®¬ (13)

Next, the kinematic relations include familiar expressions for the angle of attack and the angle of sideslip:

𝛼 = arctan
(𝑤
𝑢

)
, 𝛽 = arcsin

(
𝑣

√
𝑢2 + 𝑣2 + 𝑤2

)
(14)

The DCM introduced earlier in Eq. 10 is needed to compute the orientation of the vehicle wrt the 𝐸 reference frame. It
is derived with Euler angles [𝜙 𝜃 𝜓] using the angular velocities in the body reference frame [𝑝 𝑞 𝑟]. The Euler
angles method was chosen to compute the DCM because of simplicity of implementation, as it directly uses Euler angles
as states in the program calculated from rotational rates, and then the DCM is easily calculated afterwards. The Euler
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angles are updated with with Eq. 15, and the DCM is then calculated with Eq. 16. There is a singularity at 𝜃 = ±90°,
which can be avoided with simple program operations. Additionally, the HV are not high maneuverability vehicles, so
the singularity region is not their usual operating condition.

¤𝜙
¤𝜃
¤𝜓

 =

1 sin 𝜙 tan 𝜃 cos 𝜙 tan 𝜃
0 cos 𝜙 − sin 𝜙
0 sin 𝜙 / cos 𝜃 cos 𝜙 / cos 𝜃



𝑝

𝑞

𝑟

 (15)

𝑇𝐵𝐿 =


cos 𝜓 cos 𝜃 sin 𝜓 cos 𝜃 − sin 𝜃

cos 𝜓 sin 𝜃 sin 𝜙 − sin 𝜓 cos 𝜙 sin 𝜓 sin 𝜃 sin 𝜙 + cos 𝜓 cos 𝜙 cos 𝜃 sin 𝜙
cos 𝜓 sin 𝜃 cos 𝜙 + sin 𝜓 sin 𝜙 sin 𝜓 sin 𝜃 cos 𝜙 − cos 𝜓 sin 𝜙 cos 𝜃 cos 𝜙

 (16)

The speed of sound 𝑎 and air density 𝜌 are computed using International Standard Atmosphere. The load factor
at the CG is calculated as 𝑛 = [𝑎𝐸

𝐵
]𝐵/𝑔0 (acceleration/gravity), in body reference frame. However, it is desirable to

measure the load factor at the pilot location, where additional forces due to centrifugal and angular acceleration take
place. Therefore, the acceleration at the IMU location is calculated using the Grubin’s form of Newton’s second law,
where all the terms are divided by common mass [35]:

[𝑎𝐸𝑆 ]
𝐵 = [𝑎𝐸𝐵]𝐵 +

[
Ω𝐵𝐸

]𝐵 [
Ω𝐵𝐸

]𝐵 [𝑠𝑆𝐵]𝐵 +
[ ¤Ω𝐵𝐸 ]𝐵 [𝑠𝑆𝐵]𝐵 (17)

where [𝑎𝐸
𝑆
]𝐵 is the acceleration vector at IMU location, [𝑎𝐸

𝐵
]𝐵 = [ 𝑓𝑎,𝑝]𝐵/𝑚 is the acceleration vector at CG, and

[𝑠𝑆𝐵]𝐵 is IMU location vector relative to CG. The load factor at the pilot’s location is then [𝑛𝐸
𝑆
]𝐵 = [𝑎𝐸

𝑆
]𝐵/𝑔0, and the

vertical load factor is 𝑛𝑧 = −[𝑛𝐸
𝑆
]𝐵 (3) to make it positive upwards.

The nonlinear model is initialized at a specific flight point using a separate file containing the initial conditions and
airframe constants. The vehicle mass and MOI are specified for gross take-off weight and at burn-out (dry mass). The
active mass and MOI at initial condition are regulated with fuel mass fraction, e.g., 0.5 of fuel tank corresponds to the
median values of vehicle mass and MOI. The actuator model is taken directly from the FORTRAN version of GHAME
[35] and put into Simulink. Both elevons and the rudder have exactly the same characteristics, and are modelled as
second order systems. The initialization parameters and their values are outlined in Table 7.

C. Uncertainty, Trimming and Linearization
The objective is to retrieve a linear state-space model at some operating point with uncertainty in aerodynamic

parameters. For that purpose, 2 additional Simulink models were created, one for the airframe excluding the actuators,
and one for the propulsion system. The process can be outlined as follows: first, the uncertainty is incorporated into both
models. Then, the airframe is trimmed for equilibrium, so that the actuator deflections and thrust that keep the airframe
in desired state are computed. The throttle tab deflection is then trimmed in the propulsion model to produce the
required thrust. Both models are then linearized at their operating points, producing a full linear uncertain state-space
(𝑢𝑠𝑠) system with all states together. The system is then decoupled into lateral, longitudinal, and short-period dynamics.

1. Uncertainty implementation
The created framework allows the parametric uncertainty to be explicitly defined for all partial aerodynamic

coefficients independently, and can be easily extended to include additional parameters. The real parametric uncertainty
can be implemented in MATLAB using 𝑢𝑟𝑒𝑎𝑙 function, which takes the mean value and the uncertainty range as inputs.
The latter can be specified using ± absolute value range or percentage variation, while the former is trickier. Unlike
some constant parameter such as actuator natural frequency, the partial aerodynamic coefficients vary along the flight
path, which means their values are computed in the simulation directly, and calculating their value at trim condition by
hand is cumbersome. It is significant for the framework to be flexible, such that parameter variation would be specified
at the start, and then it would be carried over to the uncertain state-space system directly and automatically. Therefore,
the nominal values of the partial aerodynamic coefficients computations are left unchanged, and there are generally
two ways to incorporate their variations into Simulink, depending on whether uncertainty is specified as percentage or
absolute value range.

When specifying it as percentage, a separate set of 𝑢𝑟𝑒𝑎𝑙 parameters is created during initialization for all partial
aerodynamic coefficients, with a mean value of 1 and the desired percentage, as in the example of uncertainty variable
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for 𝐶𝑚𝑞
at the top of Eq. 18. They are then added as uncertain state-space 𝑢𝑠𝑠 blocks in Simulink along the path of

nominal parameter values, so that they are multiplied with a mean of 1 and vary by the percentage.

𝑢𝐶𝑚_𝑞_𝑝𝑒𝑟𝑐𝑒𝑛𝑡 = ureal(′uCm_q′, 1,′ Percentage′, 20)
𝑢𝐶𝑚_𝑞_𝑟𝑎𝑛𝑔𝑒 = ureal(′uCm_q′, 0,′ PlusMinus′, 0.0001)

(18)

When the uncertainty is desired to be in absolute value range format, the initialization is done in a similar way, but
with a different specification as at the bottom of Eq. 18, for example. However, in this case, the pitch rate signal 𝑞 is
split in two in the Simulink model. The first branch is multiplied with the nominal computed value of 𝐶𝑚𝑞

, while the
other branch is multiplied with its twin uncertainty variable 𝑢𝐶𝑚_𝑞_𝑟𝑎𝑛𝑔𝑒 with a mean of 0 and absolute value ±
range. They are then added together to produce an uncertain partial aerodynamic coefficient with a range specified for
𝑢𝐶𝑚_𝑞, while the 0-mean does not intervene into calculations.

Fig. 4 Simulink model snippet of uncertainty implementation into aerodynamic coefficients

In this model, both variants of uncertainty were implemented into the framework. The schematic is shown in Fig. 4,
where the Uncertainty Percentage block contains the percentage 𝑢𝑟𝑒𝑎𝑙 variables that are multiplied with their respective
coefficients, whereas the Uncertainty Range block contains the absolute value range 𝑢𝑟𝑒𝑎𝑙 variables that are multiplied
with their respective control deflections and rotational rates. The Coefficients Computation block is where all of them
are added together. When one uncertainty variant is chosen, the other must be replaced by a real value of its mean,
i.e., if percentage variation is chosen, then its twin variable 𝑢𝐶𝑚_𝑞_𝑟𝑎𝑛𝑔𝑒 must be set to 0. Likewise, the uncertainty
for some specific parameter can be "turned off" altogether by setting both of its respective uncertainty variables to
their mean values. The uncertainty variant can be selected independently between parameters - one can be specified in
percentage, and the other in range. However, the absolute value variation can not be implemented on parameters that are
both continuously computed and not multiplied with some continuous signal. This is the case for 𝐶𝑚1 , 𝐶𝐿1 , and 𝐶𝐷1 , as
well as engine parameters. These can only be specified in percentage.

For this initial design, the uncertainty was specified for 𝐶𝑚1 (which includes 𝐶𝑚0 and 𝐶𝑚𝛼
), 𝐶𝑚𝛿𝑒

, and 𝐶𝑚𝑞
. All

three partial aerodynamic coefficients were arbitrarily chosen to vary by ±20%, while the uncertainty variables of the
other coefficients were turned off.

2. Trimming
Before the model is linearized, it must be trimmed to some operating point. At that point, the control inputs are

computed that would keep the system at steady-state (forces and moments are either 0 or constant). The appropriate
selection of which states to keep constant, zero, or free depending on the equilibrium condition is described in [37].
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The nominal operating point was selected at 0.75 Mach, 5000 m altitude, 0.5 fuel fraction of tank, in a steady,
straight, wings-level flight. The trimming process was done via 𝑓 𝑖𝑛𝑑𝑜𝑝 function in MATLAB, which allows for code
trimming specifications for the Simulink model. At this point, the inputs and outputs that would be used in the next
steps must be selected. The uncertain airframe model has 4 inputs: thrust 𝑓𝑃 , left 𝛿𝑣𝑙 and right 𝛿𝑣𝑟 elevon deflections,
and rudder deflection 𝛿𝑟 . Note that these are actuator outputs, not the commanded inputs. The actuator models are
added separately in the next step. The outputs of the uncertain airframe are the IMU-measured load factor and the
rotational rates.

The states of the model and their trimming specifications are outlined for the nominal operating point in Table 1.
The model is then trimmed automatically to find the necessary control inputs. The required thrust is then used to trim
the propulsion system model in a similar fashion.

Table 1 Trimming Specifications for Model States and Inputs

Description Known Initial Value Steady State Min Max

Roll rate 𝑝 Yes 0 Yes −∞ ∞
Pitch rate 𝑞 Yes 0 Yes −∞ ∞
Yaw rate 𝑟 Yes 0 Yes −∞ ∞

Roll angle 𝜙 Yes 0 Yes −90◦ 90◦

Pitch angle 𝜃 No 3° Yes −90◦ 90◦

Yaw angle 𝜓 No 0 Yes −360◦ 360◦

Airspeed 𝑉 Yes 240.4 m/s Yes 0 ∞
Angle of attack 𝛼 No 3° Yes 0 21◦

Sideslip angle 𝛽 No 0 Yes −∞ ∞

Position 𝑥 No 0 No −∞ ∞
Position 𝑦 No 0 Yes −∞ ∞
Position 𝑧 Yes -5000 m Yes −∞ 0

3. Linearization
The uncertain airframe model in Simulink can then be conveniently linearized around the selected operating

point using the function 𝑢𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒. The advantage of this method is that it recognizes the 𝑢𝑠𝑠 blocks with specified
uncertainty in the model, and directly produces an uncertain state space model with embedded uncertain parameters
specified earlier.

The computed full linear state-space model of the airframe has the following properties:

Inputs = [ 𝑓𝑃 𝛿𝑣𝑙 𝛿𝑣𝑟 𝛿𝑟 ]
States = [𝑝 𝑞 𝑟 𝜙 𝜃 𝜓 𝑉 𝛼 𝛽 𝑧𝐸]

Outputs = [𝑝 𝑞 𝑟 𝑛𝑥 𝑛𝑦 𝑛𝑧]
The objective is to retrieve the longitudinal short-period model with virtual elevator input 𝛿𝑒 from the full model.

The selected states are angle of attack 𝛼 and pitch rate 𝑞, and the regulated outputs for the control system are the vertical
load factor 𝑛𝑧 measured by IMU and the pitch rate 𝑞. The short-period state-space model is retrieved by selecting
appropriate rows and columns from the full state-space model matrices corresponding to the desired states and outputs.
The two elevon inputs are converted to a single elevator input 𝛿𝑒 by simply adding the two elevons together in the rows
corresponding to the longitudinal motion. The reason why the Eq. 5 is not used here is because the two elevons are
represented separately with identical values for longitudinal states and outputs in the full linear model, so in this case 𝛿𝑒
action is divided equally between them.

The resulting short-period state-space model is represented by Eq. 19 with respective stability derivatives, according
to [37]. The lateral and full longitudinal models were obtained in a similar way, but any further discussion on them is
outside the scope of this research.
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[
¤𝛼
¤𝑞

]
=

[
−𝑍𝛼/𝑉 1
𝑀𝛼 𝑀𝑞

] [
𝛼

𝑞

]
+
[
−𝑍𝛿𝑒/𝑉
𝑀𝑠

]
𝛿𝑒 =

[
¤𝑥1

¤𝑥2

]
[
𝑛𝑧

𝛼

]
=

[
−𝐴𝛼/𝑔 0

0 1

] [
𝛼

𝑞

]
+
[
−𝐴𝛿𝑒/𝑔

0

]
𝛿𝑒 =

[
𝑦1

𝑦2

] (19)

The stability derivatives were verified using Jacobian linearization on the EoM analytically. The computed nominal
short-period system matrices are presented in Eq. 32 in the Appendix.

The nominal short-period model input-output pole-zero map is shown in Fig. 5. It has a non-minimum-phase
(NMP) zero in the right-half-plane for vertical load factor, which is consistent with this vehicle type since the elevons
are located aft the vehicle’s CG. Small frequencies indicate that the system is relatively slow, and real negative pole
locations indicate that it is open-loop stable and critically damped. The short-period model is in the form of uncertain
state-space system, its properties and operating point conditions are summarized in Table 2.

Fig. 5 Short-period input-output pole-zero map

Table 2 Short-period nominal linear system properties

Trim condition property Value Linear system property Value

Mach number 0.75 Pole 1 𝜆1 -0.965
Altitude 5000 m Pole 2 𝜆2 -1.48
Fuel fraction 0.5 NMP zero 𝑧𝑛𝑚𝑝 3.55
Angle of attack 𝛼 3.89° Damping ratio 𝜁 1.0
Pitch angle 𝜃 3.88° Uncertainty 𝐶𝑚1 ±20%
Elevator deflection 𝛿𝑒 -1.925° Uncertainty 𝐶𝑚𝛿𝑒

±20%
Uncertainty 𝐶𝑚𝑞

±20%

The virtual elevator 𝛿𝑒 is modelled as a 2-nd order linear system with the same natural frequency and damping ratio
as for the elevons, presented in Table 7.
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4. Model grid
To account for variations around the nominal flight condition, additional models were trimmed and linearized at

specified deviations from the trim point. As mentioned earlier, the variations include fuel mass, Mach number, and
altitude. The fuel mass is measured as a fuel fraction that is present in the tank, effectively varying vehicle mass and
MOI. The variations around the nominal flight point are summarized in Table 3.

Table 3 Nominal flight point and variations around it

Property Nominal FP value Variation

Fuel fraction 0.5 0.25-0.75
Mach number 0.75 0.70-0.80
Altitude 5000 m 4500-5500 m

Taking into account the fuel fraction variation at the nominal trim point, a total grid of 11 models was assembled.
All of them are short-period 𝑢𝑠𝑠 models and include parametric uncertainty in 𝐶𝑚 specified earlier. The produced
models and their properties are outlined in Table 4, where the first model corresponds to the nominal flight point

Table 4 Full short-period uncertain linear model grid

Model number Model code name Fuel fraction Mach number Altitude

1 G_sp_05_75_50 0.5 0.75 5000 m
2 G_sp_025_75_50 0.25 0.75 5000 m
3 G_sp_075_75_50 0.75 0.7 5000 m
4 G_sp_025_70_45 0.25 0.7 4500 m
5 G_sp_025_70_55 0.25 0.7 5500 m
6 G_sp_025_80_45 0.25 0.8 4500 m
7 G_sp_025_80_55 0.25 0.8 5500 m
8 G_sp_075_70_45 0.75 0.7 4500 m
9 G_sp_075_70_55 0.75 0.7 5500 m
10 G_sp_075_80_45 0.75 0.8 4500 m
11 G_sp_075_80_55 0.75 0.8 5500 m

IV. Robust flight control system design

A. 𝐻∞ mixed-sensitivity theory
Control system performance and robustness to uncertainty specifications can be addressed with closed-loop (CL)

transfer functions within the system. Consider a typical multiple-input-multiple-output (MIMO) control system shown
in Fig. 6 with plant 𝐺, controller 𝐾 , reference signal 𝑟 , controller input signal 𝑒, controller output signal 𝑢, plant input
signal 𝑢𝑝 , plant output 𝑦𝑝 , system output 𝑦, input and output disturbances 𝑑𝐼 and 𝑑𝑂, and measurement noise 𝑛. If the
system is closed-loop stable, then the fundamental relations between the signals can be derived as in Eq. 20.

𝑒

𝑦

𝑢

𝑢𝑝


=


𝑆𝑂 −𝑆𝑂 −𝑆𝑂 𝑇𝑂

𝑇𝑂 𝑆𝑂 𝑆𝑂 −𝑇𝑂
𝐾𝑆𝑂 −𝑇𝐼 −𝐾𝑆𝑂 −𝐾𝑆𝑂
𝐾𝑆𝑂 0 𝑆𝐼 −𝐾𝑆𝑂



𝑟

𝑑𝐼

𝑑𝑂

𝑛


(20)

where 𝑆𝐼 and 𝑆𝑂 are input and output sensitivity transfer functions, and 𝑇𝐼 and 𝑇𝑂 are input and output complementary
sensitivity transfer functions, respectively, with following relations: 𝑆𝐼 + 𝑇𝐼 = 𝐼, 𝑆𝑂 + 𝑇𝑂 = 𝐼. Basic performance
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Fig. 6 General closed loop control system

objectives include disturbance rejection, noise attenuation, control effort minimization, reference tracking. Attenuating
some signal’s effects on the system involves minimizing the H∞ norm of the transfer function between that signal and
the analysis point that it affects. On top of that, enforcing robust stability to uncertainty involves minimizing the H∞
norms of 𝐾𝑆𝑂 and both complementary sensitivity functions. A more detailed description of the relations between
design specifications and the CL transfer functions can be found in [38]. However, fulfilling all of the requirements
simultaneously at all frequencies is impossible, and thus trade-off must be made between robustness and performance.

The general H∞ control problem can be formulated as [22]:

minimize | |𝑇𝑤→𝑧 (𝑃, 𝐾) | |∞
subject to 𝐾 stabilizes 𝑃

which is schematically represented in Fig. 7a. In its core, the classical mixed-sensitivity H∞ method is a way to
synthesize a controller by putting appropriate weights on the selected closed loop (CL) transfer functions that attenuate
the signals at certain frequencies. Notation is important here: a high frequency (HF) gain of inverted filter corresponds
to HF maximum gain constraint for the transfer function (TF), and low frequency (LF) gain of inverted filter thus
constraints the LF gain of the TF. Essentially, the filters are inverted transfer function gain constraints. For example, for
output disturbance rejection at 𝑦, one can specify a performance channel 𝑇𝑤→𝑧 from 𝑑𝑂 to 𝑦 with a low-pass filter𝑊𝑆𝑂 ,
so that the disturbances are attenuated at low frequencies, where they normally happen. Likewise, for minimization of
control effort at high frequencies and robustness to additive uncertainty, a high-pass filter𝑊𝐾𝑆𝑂 can be put on on the
channel from 𝑑𝑂 to 𝑢. The classic mixed-sensitivity 𝑆/𝐾𝑆 bundle is then put in a single minimization cost function
under a single performance metric 𝛾 [38]: 

[
𝑊𝑆𝑂𝑆𝑂

𝑊𝐾𝑆𝑂𝐾𝑆𝑂

] �����
∞
≤ 𝛾

The original H∞-synthesis algorithms developed in 80-90’s that use linear matrix inequalities (LMI) to solve this
problem produce full-order controllers (order is the same as number of states in 𝑃 plus order of all filters), which is
in many cases undesirable. Furthermore, the optimization of the 𝑆/𝐾𝑆 two-block problem can result in cancellation
of the stable poles in the plant by the controller zeros because the disturbance is considered only at the plant input or
output at a time [38]. On the other hand, a four-block problem with both input and output disturbances complicates
filter selection [39]. The use of LMI-based optimization corresponds to ℎ𝑖𝑛 𝑓 𝑠𝑦𝑛 command in MATLAB. Relatively
recently, in 2006, non-smooth optimization algorithms that allow synthesis of controllers with predefined structure
were developed [22, 23]. The cost of this method is that it converges to local optima instead of the global one, like the
former method does. However, it was shown that in practice the convergence to local optima performs even better, as
it can handle problems of large scale, unlike the classical method which experiences numerical problems [23]. The
non-smooth optimization then led to new solutions of mixed H2/H∞ and multidisk problems. The latter is of special
interest in this case, as it allows controller synthesis for multi-objective and multi-modelling problems.

The multidisk problem formulation in a nutshell means having multiple separate performance channels 𝑇𝑤𝑖→𝑧𝑖 ,
for which multiple plants 𝑃𝑖 are formulated and the controller 𝐾 (𝜅) of fixed structure is connected to all of them
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(a) General H∞ control problem illustration (b) H∞ multidisk control problem illustration

Fig. 7 Standard and multidisk H∞ control problems [22]

simultaneously. The multidisk problem for two performance channels is illustrated in Fig. 7b and can be formulated as:

minimize | |𝑇𝑤1→𝑧1 (𝑃1, 𝐾) | |∞
subject to | |𝑇𝑤2→𝑧2 (𝑃2, 𝐾) | |∞ ≤ 𝛾2

𝐾 stabilizes 𝑃1 and 𝑃2

𝐾 = 𝐾 (𝜅) is structured

Naturally, the multidisk approach can be extended to include more than two performace channels, so that it can be used
to design for multiple models, multiple performance objectives, and parametric uncertainty. Its broader formulation is
then [22]:

min
𝜅∈R𝑛

max
𝑖=1,...,𝑁

𝛼𝑖 ∥𝐹ℓ (𝑃𝑖 , 𝐾 (𝜅))∥∞ (21)

where 𝛼𝑖 is cost weight per channel, and 𝑁 can also be an uncertainty set Δ. The trick lies in the fact that the maximum
H∞ norm among multiple separate norms is equal to the joint H∞ norm. Thus, minimizing the maximum H∞ among
the channels also minimizes the total H∞ norm of the system. This process iterates on a worst-case basis, where at
each iteration a new maximum H∞ norm is found and the controller is updated according to it, until a satisfactory
solution is reached. In the case of real parametric uncertainty, it uses an inner relaxation method with generally the
same logic as above. The solution is certified using 𝜇-analysis as a conservative metric in the end rather than during
synthesis, which outperforms outer relaxation methods such as for 𝜇-synthesis. A more detailed description of the
multidisk problem solution and application can be found in the original publication paper [24], and its application for
parametric uncertainty with inner relaxation can be found in [25]. The non-smooth optimization methods have been put
into the ℎ𝑖𝑛 𝑓 𝑠𝑡𝑟𝑢𝑐𝑡 and 𝑠𝑦𝑠𝑡𝑢𝑛𝑒 MATLAB functions, and therefore both offer structured H∞ controller synthesis with
multi-modelling capabilities. The focus in this paper is put on 𝑠𝑦𝑠𝑡𝑢𝑛𝑒, because it optimizes each constraint individually
in a separate performance channel with its own 𝛾 metric for analysis, which allows a more flexible oversight over the
performance objectives.

B. FCS synthesis
The controlled variables for the flight control system are the vertical load factor 𝑛𝑧 and the pitch rate 𝑞, and the

control input is the commanded elevator deflection angle 𝛿𝑒,𝑐𝑚𝑑 . Due to the exploratory nature of this research it is
unknown how much robust performance can the GHAME provide, so there are no initial concrete numbers on achievable
robustness margins or on how effectively the disturbances can be rejected. The general margin requirements for flight
control systems include a minimum of 6 dB gain margin (GM) and 35° phase margin (PM) evaluated on a Nichols
exclusion region [38]. These requirements are a good first indication of available robustness margins and are thus
included in the design specifications for the FCS. Therefore, the design requirements are of general nature at this point,
and are outlined below:

1) The FCS must robustly stabilize the vehicle for the nominal flight point under parametric uncertainties Δ of
±20% in 𝐶𝑚 partial coefficients.
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2) The FCS must provide a minimum disk GM of 6 dB and a minimum disk PM of 35° at the plant input and
outputs evaluated on a Nichols exclusion region for all Δ.

3) The FCS must provide adequate 𝑛𝑧 disturbance rejection at the plant output for all Δ.
4) The FCS must provide adequate 𝛿𝑒 disturbance rejection at the plant input for all Δ.
5) The FCS must provide adequate tracking of 𝑛𝑧 reference commands for all Δ.
6) The closed loop short-period natural frequency and damping ratio must abide the flying qualities criteria outlined

in [40].
7) The FCS must attenuate high-frequency control gains near actuator bandwidth.
8) The commanded actuator response overshoot must be within adequate limits to avoid actuator saturation.
9) The FCS must meet the design requirements using fixed structure controllers of minimum possible order.

1. Set-up
The Simulink set-up is shown in Fig. 8. The gray 𝐺𝑎 block represents the actuator model with parameters presented

in Table 7, and the gray 𝐺𝑠𝑝 block represents the uncertain short-period state-space model from Eq. 19. The blue blocks
are the tunable controllers, and the green blocks are the inputs into the system, namely: reference 𝑛𝑧 value represented
by signal 𝑟 , input disturbance 𝑑𝐼 , and output disturbance 𝑑𝑂.

Fig. 8 Short-period FCS layout

The actuator model 𝐺𝑎 has 2nd-order dynamics, takes commanded elevator deflection 𝛿𝑒,𝑐𝑚𝑑 as input, and produces
the elevator deflection 𝛿𝑒 and elevator deflection rate ¤𝛿𝑒 as output. The first output 𝛿𝑒 is then fed as an input into the
short-period airframe model 𝐺𝑠𝑝 . The joint actuator-airframe plant 𝐺𝑎𝑠𝑝 can be represented in zero-pole-gain format:

𝐺𝑎𝑠𝑝 (𝛿𝑒,𝑐𝑚𝑑 → 𝑛𝑧) :
291.44(𝑠 + 6.785) (𝑠 − 3.547)

(𝑠 + 0.9654) (𝑠 + 1.479) (𝑠2 + 70𝑠 + 2500)
(22)

𝐺𝑎𝑠𝑝 (𝛿𝑒,𝑐𝑚𝑑 → 𝑞) :
−316.85(𝑠 + 0.9046)

(𝑠 + 0.9654) (𝑠 + 1.479) (𝑠2 + 70𝑠 + 2500)
(23)

Here, the left half plane (LHP) complex poles correspond to the actuator, and the real negative poles correspond to
the airframe, they were already identified back in Table 2. The NMP zero in the 𝑛𝑧 channel is of particular interest here,
as it is located at a relatively low frequency of 3.547 rad/s. This zero imposes a limitation on achievable bandwidth of
the system. The maximum possible crossover frequency 𝜔𝑐 (and thus the bandwidth 𝜔𝐵) for a real RHP zero is [39]:

𝜔𝐵 ≈ 𝜔𝑐 <
𝑧𝑁𝑀𝑃

2
= 1.7735 rad/s (24)

This is the case for an "ideal" controller without any penalty on the input 𝑢, thus making it the theoretical ceiling.
In practice, however, the input would be weighted in the cost function, and the controller would be structured, so
the achievable bandwidth is expected to be considerably lower. Additionally, the bandwidth 𝜔𝐵 is defined here as a
frequency where the sensitivity 𝑆 crosses the -3.01 dB line, so 𝜔𝐵 < 𝜔𝑐, thereby decreasing it further. In a nutshell, this
makes tight control (reference command following and disturbance rejection) possible only in the lower frequency range.
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It is also possible to flip it around and have tight control in the frequencies above the NMP zero, but makes no practical
sense in this case.

A way to bypass the bandwidth limitation is to use non-casual controllers where the output depends on future inputs,
which is unfortunately unrealizable in practice [39]. Only casual controllers can be implemented in real world systems,
and with them the bandwidth limitation from NMP zero simply has to be tolerated. To ensure that the controllers are
casual and thus realizable, the controller transfer function must be proper, i.e., numerator cannot be of higher order than
the denominator.

2. Controller structure
There are a total of 3 controllers to be tuned. Integral controller 𝐶𝑖 is put on the error between the reference signal

and the output 𝑛𝑧 . An integral itself is placed on the line with𝐶𝑖 to ensure zero steady-state error. Proportional controller
𝐶𝑞 utilizes the pitch rate 𝑞 to damp rotation accordingly. A feed-forward controller 𝐶 𝑓 𝑓 is placed outside of the loop
to tune transient response to reference commands, for which a convenient choice is a lead-lag compensator [39]. A
proportional controller on 𝑛𝑧 was found to be redundant. The 𝐶𝑖 and 𝐶𝑞 controller blocks were initially set as tunable
gains, which led to good stability margins yet poor performance in time domain, so the order had to be increased. A
final well-balanced structure was found to be the following:

𝐶𝑖 =
𝐾𝑖 (𝑠 + 𝑧𝑖)
(𝑠 + 𝑝𝑖)

, 𝐶𝑞 = 𝐾𝑞 , 𝐶 𝑓 𝑓 =
𝐾 𝑓 𝑓 (𝑠 + 𝑧 𝑓 𝑓 )
(𝑠 + 𝑝 𝑓 𝑓 )

(25)

Which corresponds to setting 𝐶𝑖 and 𝐶 𝑓 𝑓 blocks to tunable 1-st order transfer functions with one zero and one pole, and
the 𝐶𝑞 to tunable gain.

3. Feedback tuning goals
Unlike the conventional mixed-sensitivity approach, there is no need to restructure the Simulink model from Fig. 8

into a 𝑇𝑤→𝑧 performance channel configuration with 𝑠𝑦𝑠𝑡𝑢𝑛𝑒. Here, the analysis points are used to specify the desired
inputs and outputs of the performance channels for constraints using the related signal names. The program then
computes the corresponding transfer functions and applies the constraints on them. The selected analysis points are the
reference signal 𝑟 , the disturbance inputs 𝑑𝑖 and 𝑑𝑜, the commanded actuator deflection 𝛿𝑒,𝑐𝑚𝑑 , and the output 𝑛𝑧 . They
can be seen as input perturbation and output measurement arrows on the corresponding signals in Fig. 8.

The Simulink model, analysis points, tuned blocks, and model substitutions are input into the 𝑠𝑙𝑇𝑢𝑛𝑒𝑟 object within
𝑠𝑦𝑠𝑡𝑢𝑛𝑒, which is used to create tuning goals. The tuning goals are basically the performance channels, and can handle
time-domain, frequency domain, pole placement, minimum margins, and other constraints. The process is now similar
to setting the conventional weighting filters for classical mixed-sensitivity. The procedure below is described for the
nominal flight point.

First, the output sensitivity function 𝑆𝑂 is constrained for output disturbance rejection at the controlled output. The
𝐺𝑎𝑖𝑛 tuning goal is created with input 𝑑𝑜 and output 𝑛𝑧 . The disturbances are expected to be in LF, so the inverse
weighting function must be a high-pass filer. That way, output sensitivity is attenuated at low frequencies, and allowed
to pass at HF, where the disturbances are not present. LF gain is thus set to a near-zero value of -60 dB. The HF
gain constraint corresponds to the maximum peak value of 𝑆𝑂, which is directly related to the modulus disk margin.
Generally, the disk margin 𝛼𝑚𝑎𝑥 is computed as in Eq. 26 [41]:

𝛼𝑚𝑎𝑥 =
1

∥𝑆 + 𝜎−1
2 ∥∞

(26)

where 𝜎 is the disk skew. When 𝜎 = 1, it becomes the 𝑆-based (modulus) margin with the disk centered exactly at
the critical point in the Nyquist plot, and thus corresponds to the distance from the 𝑛𝑧 open-loop curve to the critical
point. Constraining ∥𝑆∥∞ puts a bound on the minimum distance to the critical point in the Nyquist plot. A common
maximum peak criteria is to constrain the peak gain of 𝑆 to be ≤ 2, which guarantees a GM ≥ 6 dB and PM ≥ 30° [39]
within the 𝑛𝑧 loop. To slightly increase the margins, the HF gain of 𝑆𝑂 was set to 1.9. The achievable bandwidth of 𝑆𝑂
is part of the trade-off between performance and robustness, and is specified with a gain of −3.01 dB at the selected
frequency. The achieved bandwidth 𝜔𝐵 of 𝑆𝑂 is 0.4 rad/s. The low bandwidth is consistent with the expected range
from Eq. 24, and increasing it any further leads to actuator saturation. The inverted filter is set as a proper 1st order
transfer function using a 𝑚𝑎𝑘𝑒𝑤𝑒𝑖𝑔ℎ𝑡 MATLAB command. It is important to note that the inverted weights are passed
directly into 𝑠𝑦𝑠𝑡𝑢𝑛𝑒, and are inverted back automatically within the cost function.
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The second tuning goal is to constrain the gain of −𝐾𝑆𝑂 (which is actually not a negative equivalent of 𝐾𝑆𝑂 since it
is a multiple-output system, but the name is kept for convention). The tuning goal analysis points are 𝑑𝑜 as input and
𝛿𝑒,𝑐𝑚𝑑 as output. To attenuate HF control effort and provide robustness to additive uncertainty, the gain of −𝐾𝑆𝑂 must
roll-off sufficiently at the actuator bandwidth. The LF gain is essentially unconstrained and set to 60 dB, since the actual
gain would be the actuator DC-gain. The HF-gain must approach zero, so it is set to -60 dB. The bandwidth frequency
is equal to actuator bandwidth of 50 rad/s, and the gain at that point is the performance-robustness trade-off parameter
set to -16 dB for sufficient attenuation. The function is scaled with inverse of a singular value of the 𝐺𝑎𝑠𝑝 model at zero
frequency. The weighting filter is 1st order proper TF.

Two more constraints follow a similar pattern for input disturbance. The tuning goal on 𝑆𝑂𝐺 constraints the
sensitivity of output 𝑛𝑧 to input disturbance 𝑑𝑖 , so the analysis points are set accordingly. The DC gain limit is set to -60
dB for disturbance rejection at low frequency range. The HF-gain is set to 2, although the function rolls off at HF due to
system gain 𝐺. The bandwidth at -3.01 dB is set to 0.8 rad/s, which is again a trade-off parameter. The filter is again a
1st order TF.

Finally, constraining the input complementary sensitivity 𝑇𝑖 bounds the control effort wrt input disturbance. The
transfer function 𝑇𝑖 is set from input 𝑑𝑖 to output 𝛿𝑒,𝑐𝑚𝑑 . Its peak value is located in the LF range and is constrained to a
magnitude of 2. The attenuation at the actuator bandwidth of 50 rad/s is set to -23 dB. The 𝑇𝑖 has a steeper slope than
the transfer functions above – a 3rd order filter is necessary to properly constrain the roll-off, and the high-frequency
gain is set to -80 dB. The singular values of all the respective filter inverses are shown in Fig. 9.

Fig. 9 Inverse weighting filters in frequency domain, nominal flight point
Frequency, rad/s
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4. Reference tracking
The reference tracking behavior can be specified with a reference model. The H∞ norm is then placed on the error

between the actual model and the reference model responses. The reference model is a 2nd order transfer function with
identified NMP zero, and has a form:

𝑇𝑟 =
− 𝜔2

ref
𝑧nmp

𝑠 + 𝜔2
ref

𝑠2 + 2𝜔ref𝜁ref𝑠 + 𝜔2
ref

(27)

The natural frequency and damping ratio are selected according to the short-period handling qualities criteria. A
handling qualities analysis was performed on GHAME in [40] for all modes of motion, where GHAME was identified
as a Class III aircraft - large, heavy, low-to-medium maneuverability. For a non-terminal flight condition of Category B
(climb, cruise, descent) corresponding to the selected trim point, the short-period requirements are:

Level 1: 0.46 ≤ 𝜔ref ≤ 3.50 0.30 ≤ 𝜁ref ≤ 2.00
Level 2: 0.36 ≤ 𝜔ref ≤ 6.00 0.20 ≤ 𝜁ref ≤ 2.00
Level 3: 0.36 ≤ 𝜔ref 0.05 ≤ 𝜁ref

Instead of guessing the optimal 𝜔 and 𝜁 values, an optimization program 𝑓 𝑚𝑖𝑛𝑐𝑜𝑛 is used to compute them based on
desired settling time and overshoot values. It is set to minimize the weighted sum of the squared errors in settling time
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and overshoot between the set values and the achieved ones. The settling time is set to 4 seconds, overshoot to 1%. To
meet Level 1 requirements, the bounds on optimal 𝜔ref are set between 0.5 and 3.5, and bounds on optimal 𝜁ref are
between 0.7 and 1.

The optimal values computed to be 𝜔ref = 1.0597, and 𝜁ref = 0.8279, they are substituted into Eq. 27 along with
the NMP zero in the 𝑛𝑧 channel. The constraint is then set directly as 𝑆𝑡𝑒𝑝𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔 tuning goal within 𝑠𝑦𝑠𝑡𝑢𝑛𝑒
environment, which takes the reference model 𝑇ref to optimize the transient response, and a relationship gap that is set
to 15%. The input is 𝑟 and the output is 𝑛𝑧 , forming the final fifth performance channel. This concludes the process
general constraint set-up for the nominal flight point model. All 5 performance specifications are passed as constraints
of equal weight, and are summarized in Table 5. Finally, 𝑠𝑦𝑠𝑡𝑢𝑛𝑒 function is called to compute the controllers.

5. Multi-modelling
In the multi-modelling extension, the design requirements identified earlier in this section now must be met for the

entire model grid using a single controller configuration. Practically, the multi-modelling procedure is very similar
to the one for the nominal flight point. Now, however, a model array is substituted into the 𝐺𝑠𝑝 block in Fig. 8. The
array consists of the uncertain state space models from the grid in Table 4. Given a broad variety of conditions that the
controller must satisfy, there are now two sets of tuning goals. One set contains the hard constraints that are applied on
the uncertain model at the nominal flight point (model 1 from Table 4), whereas the second set contains soft constraints,
which are applied on all the other uncertain models including those with fuel variation at the nominal trim point (models
2-11). Evidently from the name, the hard constraints are prioritized over the soft ones in the algorithm. The new hard
and soft constraints cover the same performance channels as before, carry similar names, and are specified with the
same logic. They are, however, generally more relaxed compared to designing for nominal flight point only, which is
understandable since a single controller now has to satisfy the full grid of models. The final values for hard and soft
constraints for multi-modelling are outlined in Table 5.

C. Results and analysis
The results are analysed in consecutive steps. First, the 𝛾 performance metric is given, one per tuning goal. This is a

first indication if the constraints have been met successfully. The transfer functions are then plotted in frequency domain
with their respective inverse filters to check how well they comply. The robustness is assessed with disk margins at the
plant input and outputs. The open loops are then plotted on the Nichols chart. Each transfer function is then plotted in
the time domain to assess performance wrt disturbance rejection and control effort.

The tuned controllers for the nominal FP design and for the full grid design are presented in Eq. 28.

Nominal FP: Full Grid:

𝐶𝑖 =
−3.7014(𝑠 + 0.9311)

(𝑠 + 3.25) 𝐶𝑖 =
−4.0888(𝑠 + 0.8258)

(𝑠 + 2.434)
𝐶𝑞 = −24.587 𝐶𝑞 = −34.412

𝐶 𝑓 𝑓 =
0.80293(𝑠 + 1.182)

(𝑠 + 0.9454) 𝐶 𝑓 𝑓 =
0.62306(𝑠 + 1.466)

(𝑠 + 0.9135)

(28)

The resulting 𝛾 values for the nominal flight point design are:

Nominal: 𝛾(𝑆𝑂) = 0.9446, 𝛾(−𝐾𝑆𝑂) = 0.9964, 𝛾(𝑆𝑂𝐺) = 0.9968, 𝛾(𝑇𝑖) = 0.9964, 𝛾(𝑇ref) = 0.9935 (29)

The closer 𝛾 is to 1 from the lower side, the better performance is; a value larger than 1 indicates a constraint violation.
The values from Eq. 29 can be related to the graphs in Fig. 10, where the respective transfer functions’ singular values
are plotted with their filter inverses. The 𝛾 values close to 1 from the lower side correspond to singular values from Fig.
10 (blue) being located close to the borders of the weighting filters (yellow), but not violating them. This indicates a
successful constraint selection which uses full potential of the system. It is worth noting that 𝛾 for the reference tracking
constraint is measured in the time domain according to how much the relationship gap is violated. It is therefore possible
that the fifth 𝛾 is violated by one of the sampled models, but the average step tracking for all of them is generally in
line with requirements, so it is better to assess the fifth tuning goal compliance visually. Notice also how the 3rd order
weighting filter on 𝑇𝑖 smoothly constraints its entire roll-off slope, whereas a lower order filter was found to be not steep
enough, basically affecting 𝑇𝑖 only at break-out frequency.
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Table 5 Weighting filters for the nominal flight point (left) and for multi-modelling (right)

Constraint specification Nominal flight point Full grid, hard Full grid, soft

𝑑𝑜 → 𝑛𝑧 : 𝑆𝑂 tuning goal, 1st order TF

LF-gain -60 dB -60 dB -60 dB
Bandwidth 𝜔𝐵 0.4 rad/s 0.35 rad/s 0.3 rad/s

Gain at 𝜔𝐵 -3.01 dB -3.01 dB -3.01 dB
HF-gain 1.9 1.9 1.9

𝑑𝑜 → 𝛿𝑒,𝑐𝑚𝑑 : −𝐾𝑆𝑂 tuning goal, 1st order TF

LF-gain 60 dB 60 dB 60 dB
Bandwidth 𝜔𝐵 50 rad/s 50 rad/s 50 rad/s

Gain at 𝜔𝐵 -16 dB -16 dB -16 dB
HF-gain -60 dB -60 dB -60 dB

𝑑𝑖 → 𝑛𝑧 : 𝑆𝑂𝐺 tuning goal, 1st order TF

LF-gain -60 dB -60 dB -60 dB
Bandwidth 𝜔𝐵 0.8 rad/s 1.4 rad/s 1.3 rad/s

Gain at 𝜔𝐵 -3.01 dB -3.01 dB -3.01 dB
HF-gain 2 2 2

𝑑𝑖 → 𝛿𝑒,𝑐𝑚𝑑 : 𝑇𝑖 tuning goal, 3rd order TF

LF-gain 2 2 2
Bandwidth 𝜔𝐵 50 rad/s 50 rad/s 50 rad/s

Gain at 𝜔𝐵 -23 dB -20 dB -15 dB
HF-gain -80 dB -80 dB -80 dB

𝑟 → 𝑛𝑧 : 𝑇ref tuning goal, using relationship gap

𝜔ref 1.0597 1.0597 1.0597
𝜁ref 0.8279 0.8279 0.8279

Relationship gap 15 % 15 % 20%

For the multi-modelling tuning with hard and soft constraints, two 𝛾 values are now given per performance channel:
one for soft constraint and one for hard constraint, giving a total of 10 performance metrics. The respective 𝛾 values for
the multi-modelling case are presented below:

Hard: 𝛾(𝑆𝑂) = 1.0000, 𝛾(−𝐾𝑆𝑂) = 1.0000, 𝛾(𝑆𝑂𝐺) = 1.0000, 𝛾(𝑇𝑖) = 1.0000, 𝛾(𝑇ref) = 0.7156 (30)

Soft: 𝛾(𝑆𝑂) = 1.0317, 𝛾(−𝐾𝑆𝑂) = 1.0505, 𝛾(𝑆𝑂𝐺) = 1.0009, 𝛾(𝑇𝑖) = 1.0815, 𝛾(𝑇ref) = 1.2557 (31)

Naturally, there are also 10 tuning goal compliance graphs, one per hard and one per soft constraint. They are shown
Fig. 11, and follow similar relationship as in the nominal FP case. As can be seen from the 𝛾 values and the charts, the
hard constraints are perfectly met, whereas some slight violation is present in the soft requirements. This is considered
an acceptable violation, given the variety of trim conditions and the fact that less weight is put on the soft constraints
than on the hard ones. The 𝛾 of reference tracking is understandably large for the soft case, but the average step pattern
follows the desired one closely, and the models have approximately similar transient time, as can be seen in the same
Fig. 11. Overall, the controller satisfies the tuning goals quite well for all 11 𝑢𝑠𝑠 models. Additionally, the observed
successful roll-off of 𝑇𝑖 and −𝐾𝑆𝑂 at the actuator bandwidth frequency of 50 rad/s satisfies FCS requirement 7, whereas
the successful fulfillment of step tracking goal fulfills FCS requirement 6.
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Fig. 10 Tuning goals results for nominal flight point model

For the SISO open-loop analysis, the uncertain state-space models are sampled at random values of uncertain
parameters in 𝐶𝑚𝛼

, 𝐶𝑚𝛿𝑒
, 𝐶𝑚𝑞

using 𝑢𝑠𝑎𝑚𝑝𝑙𝑒 function in MATLAB. For illustration purposes, 20 state-space systems
were randomly sampled per model in the grid. This amounts to 20 models for the nominal flight point design, and
11 × 20 = 220 models for the full grid design. The SISO open-loops were then computed with 𝑙𝑜𝑜𝑝𝑠𝑒𝑛𝑠 MATLAB
function which connects the model array 𝐺𝑎𝑠𝑝 to controller matrix 𝐾 and automatically opens the loops at inputs and
outputs. It also indicates if the closed-loops are stable and, to no surprise, confirmed the stability of all closed loops
in the model arrays, thus satisfying FCS design requirement 1. The SISO open loops were then extracted, and the
𝑑𝑖𝑠𝑘𝑚𝑎𝑟𝑔𝑖𝑛 MATLAB function was called on all of the samples to compute the 𝑆 −𝑇 disk margin (DM) corresponding
to Eq. 26 with 𝜎 = 0. This way the DM is symmetrical, with equal probability that gain and phase can vary in either
direction. The smallest DM, disk gain margin (DGM), disk phase margin (DPM), and multi-loop input-output margin
(MMIO) among all samples were extracted. It is worth noting that the multi-loop disk margin incorporates the structured
singular value 𝜇 in the computation process [41].

The DM’s were then used to plot the disks of the worst-case margins on the Nichols charts (orange), and the 6 dB
DGM requirement was used to plot the exclusion regions (red). The opened SISO loops were then plotted on their
respective Nichols charts, together with DGM (green) and DPM (purple) lines for better comprehension.

The opened loops at the plant input are presented in Fig. 12. Naturally, the margins for the worst case loop among
those sampled at the nominal flight condition in Fig. 12a are significantly larger than the worst-case margins for the
full grid samples in Fig. 12b. Nevertheless, both worst-case sampled scenarios pass the FCS design requirement 2
with flying colors. In contrast, the open loops at the plant output 𝑛𝑧 , shown in Fig. 13, are significantly closer to the
exclusions region. In a similar fashion, the margins for the full grid case in Fig. 13b are smaller than for the nominal
point in Fig. 13a, but still pass the design requirement 2.

Although the 𝑛𝑧 channel is the most important to analyze since that is the output to be controlled by the reference
signal and that is the loop on which the output disturbance is acting, it is still necessary to consider all inputs and outputs
in the system. The Nichols charts for the sampled SISO loops opened at plant output 𝑞 are shown in Fig. 14, and follow
the same trend as in the previous two charts with good DGM and DPM.

Therefore, a single set of controllers successfully handles the short-period dynamics under the specified parametric
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Fig. 11 Tuning goals results for full grid
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Fig. 12 Nichols chart of sampled SISO loops opened at plant input
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Fig. 13 Nichols chart of sampled SISO loops opened at plant output 𝑛𝑧

uncertainty of 20% in all 𝐶𝑚 partial coefficients, and still meets the requirement of 6 dB and 35° at the inputs and
outputs of the plant (FCS requirement 2 satisfied). This is especially a considerable achievement in the multi-modelling
case, where 11 uncertain models from the grid are sampled into 20 each. The controller still guarantees robustness to
unstructured uncertainty with larger margins than required, and that is the case for the worst of the 220 samples. To
summarize the disk margin analysis, the DGM and DPM values from the Nichols charts are presented all together in
Table 6, along with simultaneous MMIO gain and phase margins. The MMIO margins are indeed lower, to no surprise.
However, those are, again, the worst case parametric uncertainty margins, and there are still robustness guarantees
against simultaneous multi-loop changes at inputs and outputs.

Lastly, the CL performance of disturbance rejection and reference tracking were analysed in the time domain. In a
similar fashion as for the SISO loops, the CL transfer functions were sampled in the parametric uncertainty domain
Δ. The nominal flight point design is presented next to the full grid multi-modelling design. The step responses of
the transfer functions are grouped together according to output disturbance rejection case, input disturbance rejection
case, and the reference tracking case. In each of the plots, the thick red line indicates the nominal system response (no
uncertainty) at the nominal operating point.
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Fig. 14 Nichols chart of sampled SISO loops opened at plant output 𝑞

Table 6 Minimum achieved symmetrical disk margins under sampled parametric uncertainty

Margin type Nominal flight point Full grid Units

Disk gain margin at input 𝛿𝑒,𝑐𝑚𝑑 22.28 13.93 dB
Disk gain margin at output 𝑛𝑧 8.75 6.47 dB
Disk gain margin at output 𝑞 21.40 13.10 dB
Multi-loop input-output gain margin 3.90 2.88 dB

Disk phase margin at input 𝛿𝑒,𝑐𝑚𝑑 81.20 67.25 deg
Disk phase margin at output 𝑛𝑧 49.87 39.22 deg
Disk phase margin at output 𝑞 80.28 65.04 deg
Multi-loop input-output phase margin 27.92 25.41 deg

For output disturbance rejection, the step response of 𝑆𝑂 indicating 𝑛𝑧 response to 𝑑𝑜 is plotted together with step
response of −𝐾𝑆𝑂, which represents the commanded control response to reject 𝑑𝑜. The step responses are plotted in
Fig. 15. It is evident that the disturbance is rejected efficiently in under about 3 seconds, thus fulfilling FCS design
requirement 3. Both the overshoot and steady-state amplitudes of the −𝐾𝑆𝑂 plots exceed the actuator deflection limit of
20° = 0.3491 rad. This indicates that the maximum achievable 𝑛𝑧 value is significantly less than 1, which can not be
accounted for in linear simulations directly. The overshoot, however, is contained to not exceed the steady-state value
too far, implicitly avoiding potential actuator saturation and satisfying FCS requirement 8. The control step responses
(−𝐾𝑆𝑂) for the full grid are especially vastly spread, which is expected. For example, look at the plots exactly at 2
seconds into the step in Fig. 15b. The slowly descending response with the highest amplitude at 2 seconds for both 𝑆𝑂
and −𝐾𝑆𝑂 corresponds to the 9th model in the array (refer to grid in Table 4). G_sp_075_70_55 flies at the top altitude
in the grid (smallest speed of sound), and at the smallest Mach in the grid, which together mean it has the smallest
airspeed 𝑉 among the entire model grid. Additionally, it has largest fuel fraction in the tank, thus having larger mass and
MOI, so G_sp_075_70_55 has the least control authority in the grid, predictably making its response slow and required
actuator deflection large.

In the same manner, the input disturbance rejection is assessed with 𝑆𝑂𝐺 for output and 𝑇𝑖 for control response in
Fig. 16. Since the disturbance is acting on the commanded input, it is the actuator deflection that disturbs the output.
Therefore, the 𝑛𝑧 value oscillates around 0 until the input disturbance is completely rejected. As can be seen in the
figures, the input disturbance is rejected smoothly without overshoot in the commanded deflection path, and 𝑛𝑧 is
brought back to zero for all models. The FCS requirement 4 is thus fulfilled.
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Fig. 15 Output disturbance rejection on linear system
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Fig. 16 Input disturbance rejection on linear system

Lastly, the reference 𝑛𝑧 step tracking is presented in Fig. 17 with the transfer functions𝑇𝑟→𝑛𝑧 and [𝐾 𝑓 𝑓𝐾𝑆𝑂]𝑟→𝛿𝑒,𝑐𝑚𝑑
.

In the nominal flight point design in Fig. 17a, where the samples correspond only to previously defined parametric
uncertainty, it can be observed for 𝐾 𝑓 𝑓𝐾𝑆𝑂 how different the steady-state actuator deflections are. Needless to say that
adding another 10 models to the nominal FP in Fig. 17b fills the chart completely. Nevertheless, that is the reason why
the 𝑛𝑧 tracking in the 𝑇 charts is smoothly performed. Although it was possible to set a desired step tracking transient
time 1 second faster than it is here, it resulted in severe actuator response overshoot (about double the steady state value),
so a 1 second slower reference tracking response time was set to avoid actuator overload. Thus, the FCS requirements 5
and 8 are satisfied. As a result, the control system successfully meets all the design requirements specified back in
Sec. IV.B, both for the nominal flight point design and for the multi-modelling design. The next step is to test it in the
nonlinear simulation.
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Fig. 17 Reference step tracking on linear system

V. Non-linear implementation and simulation

A. Implementation
To test the synthesized controllers, a flight control system block is added to the Simulink model, as well as input and

output disturbances. The complete nonlinear Simulink model layout is shown in Fig. 18. The FCS block is placed before
the actuators, with output measurements fed back into it. The input disturbance is positioned to act simultaneously on
both elevons in the Actuators block, and the output disturbance acts directly on the 𝑛𝑧 component of the load factor in
the Sensors block.

Fig. 18 Flight control system implementation into nonlinear model

The expanded FCS block is shown in Fig. 19. The 𝑛𝑧 and 𝑞 are extracted from the output measurements and fed
into the familiar controller block structure. This time, however, 𝛿𝑒,𝑐𝑚𝑑 must be initialized with the trim value, for which
the integrator was moved past the summation point with 𝐶𝑞 . It also contains saturation limits to avoid out-of-bounds
commands. Since the 𝑞 channel is now in the integrator path, it must be differentiated beforehand [42]. Therefore,
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a derivative is placed before the 𝐶𝑞 block. The time step of the simulation is set to 0.001 s, so the derivative block
sampling is set to 0.01 s to have a smaller discrete time step relative to the simulation.

Commanded deflection 𝛿𝑒,𝑐𝑚𝑑 is then fed into conversion block with 𝛿𝑎,𝑐𝑚𝑑 to transform the commanded virtual
elevator and aileron deflections into real elevon deflections. They are then added to the bus with trimmed throttle and
trimmed rudder values and sent into the Actuator block. Lastly, in the top left corner of Fig. 19 there are reference and
disturbance step inputs, each next to its destination: output disturbance and input disturbance into the 𝐺𝑜𝑡𝑜 blocks, and
the reference signal fed directly to feed-forward controller.

Fig. 19 Expanded flight control system block of the nonlinear model

B. Simulation
The controller blocks were set to the full-grid variant from Eq. 28. The model was initialized, trimmed, and

simulated a total of 65 times to cover the operational window of 4500-5500 m, 0.7-0.8 Mach, 0.25-0.75 fuel fraction,
and the 20% variations in the pitch moment partial coefficients. The latter were perturbed by directly multiplying the
computed coefficient values with 0.8 or 1.2, depending on the iteration. The simulations were carried out separately for
the reference tracking and the disturbances. As before, the nominal model response is highlighted with a thick red line.

The results of the step commands tracking are displayed in Fig. 20. The vertical load factor in Fig. 20a smoothly
tracks the reference value for all models. The exception is for the command at 30 seconds into simulation, where the
command was purposely set to a value which is unreachable for some of the models, in order to display the limitations
of achievable load factor commands for GHAME vehicle at this flight point. Both commanded and actual elevon
deflections are plotted in Fig. 20b, where the reached deflection limit is seen for the same reference step at 30 seconds.
The respective actuator deflection rates are shown in Fig. 20c, they are far from saturating the deflection rate limits of
400 °/s. Lastly, the pitch rate is displayed in Fig. 20d. Note that the maximum achievable pitch rate with saturated
elevons is only around 1.5 °/s at these conditions.

The disturbance rejection responses are shown in Fig. 21. The simulation starts with two consecutive input
disturbances, then 3 consecutive output disturbances, and then a final joint input-output disturbance which superimposes
for 𝑛𝑧 . The input disturbance magnitudes can be read from the elevon deflection graph in Fig. 21b, where the deflection
angle is instantaneously changed to disturbance value. The output disturbance magnitudes can be read from impulse
changes in 𝑛𝑧 in Fig. 21a. Note how the commanded deflection separates from the actual one due to input disturbances,
yet controls the elevons well. The input disturbances are also easily spotted in the deflection rate graph in Fig. 21c - they
appear as vertical lines that move past the boundaries of deflection rates. That is because disturbance step inputs act
instantaneously on the deflection angle. Nevertheless, all disturbances are successfully rejected, which is clearly shown
in Fig. 21a where the vertical load factor is brought to zero.
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(a) Vertical load factor response
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Fig. 20 Nonlinear simulation responses to reference load factor commands
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Fig. 21 Nonlinear simulation responses to input and output disturbances
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VI. Conclusion and Recommendations
This research focused on developing a robust flight control system for the GHAME hypersonic vehicle’s subsonic

short-period model under parametric uncertainties. A nonlinear GHAME model was integrated into Simulink, with
a flexible subsystem-separated structure. During linearization, discrepancies in aerodynamic data were resolved by
adjusting interpolation methods for aerodynamic coefficients. The model was trimmed and linearized at 11 operating
points, incorporating 20% uncertainty in pitch moment partial coefficients, the short-period dynamics were extracted.

A fixed-structure flight control system was synthesized using multi-objective H∞ mixed-sensitivity methods for
disturbance rejection, high-frequency control attenuation, and reference tracking at the nominal flight point. This design
was extended to a full grid of uncertain models, and the controller successfully stabilized all sampled models, meeting
robustness margin requirements. The results showed effective disturbance rejection at the plant input and output at low
frequencies, and smooth control signal roll-off at actuator bandwidth. The FCS was incorporated into the nonlinear
model and successfully tested for disturbance rejection and reference tracking under parameter variations, demonstrating
that a single fixed-structure controller can manage the GHAME model’s subsonic dynamics under uncertainty.

Future work should address model limitations and control system enhancements, such as extending the framework
to include phugoid and lateral dynamics, accounting for aeroelastic effects, incorporating engine dynamics, CG and
in-flight mass variations. For future FCS designs, a broader flight envelope should be covered with super/hypersonic
speeds and altitudes, potentially extending to gain-scheduled controllers. HV-specific scenarios like angle of attack hold
during maneuvers should be considered. Furthermore, adding output disturbances for pitch rate, and incorporating gain
and phase margin constraints can improve robustness of this research’s particular design.

Appendix

Table 7 Mechanical and Control Constants

Name Symbol Value Unit

Take-off gross vehicle mass 𝑚0 136077 kg
Total fuel mass 𝑚 𝑓tot 81646 kg
Vehicle mass at burn-out 𝑚1 54431 kg

Moment of Inertia take-off (I11) 𝐼110 1.573 × 106 kg.m2

Moment of Inertia take-off (I22) 𝐼220 31.6 × 106 kg.m2

Moment of Inertia take-off (I33) 𝐼330 32.54 × 106 kg.m2

Moment of Inertia take-off (I13) 𝐼130 0.38 × 106 kg.m2

Moment of Inertia burn-out (I11) 𝐼111 1.18 × 106 kg.m2

Moment of Inertia burn-out (I22) 𝐼221 19.25 × 106 kg.m2

Moment of Inertia burn-out (I33) 𝐼331 20.2 × 106 kg.m2

Moment of Inertia burn-out (I13) 𝐼131 0.38 × 106 kg.m2

Wing area 𝑆 557.42 m2

Wing span 𝑏 24.38 m
Wing chord 𝑐 22.86 m
Engine cowl area factor 𝐴c 27.87 -

IMU position 𝑠𝑆𝐵 24.4 m
Standard gravity 𝑔0 9.80665 m/s2

Maximum actuator deflection 𝛿𝑣max ±20 °
Maximum actuator deflection rate ¤𝛿𝑣max ±400 °/s
Natural frequency of actuator 𝜔𝑣 50 rad/s
Damping ratio of actuator 𝜁𝑣 0.7 -
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The state-space matrices for the nominal short-period model at nominal trim condition are shown in Eq. 32.

𝐴 =

[
−0.9091 1
−0.03207 −1.535

]
, 𝐵 =

[
−0.01765
−0.1267

]
, 𝐶 =

[
22.16 −3.817

0 1

]
, 𝐷 =

[
0.1166

0

]
(32)
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