
Property Based Testing in Rust, How is it Used?
A case study of the ‘quickcheck‘ crate used in open source repositories

Max Derbenwick1

Supervisor(s): Andreea Costea1, Sára Juhošová 1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Max Derbenwick
Final project course: CSE3000 Research Project
Thesis committee: Andreea Costea, Sára Juhošová, Marco Zuñiga

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Property-based testing (PBT) is a method of veri-
fying software correctness in which a property, a
statement about the behavior of the program which
should always hold true, is verified with a large
number of arbitrary inputs. While it is a pow-
erful method, properties can be complex and fail
on obscure inputs, making them difficult to rea-
son about. We qualitatively analyze a large num-
ber of property-based tests (PBTs) written with
Quickcheck for Rust from public repositories, in or-
der to gather insights about how PBT is utilized
in practice. We find that the majority of analyzed
PBTs verify by comparing against a known cor-
rect implementation, composing inverse operations
to form an identity, or asserting a desired contract
about a system’s state. These findings offer valu-
able direction to the development of PBT, aiming
to tailor PBT frameworks to developer needs and
make them more natural to work with.

1 Introduction
Verifying the correctness of software is one of the most im-
portant stages of software development. However, despite its
critical role, it is normally too difficult to guarantee correct-
ness completely. As a result, numerous different techniques
exist with varying tradeoffs between effort and guarantee, in-
cluding unit testing, end-to-end testing, and even formal ver-
ification. Property-based testing (PBT) is a particularly ver-
satile type of automated testing which tests large amounts of
a program’s functionality with little intervention from the de-
veloper [5]. It can also guide and complement formal veri-
fication, making it suitable for even more rigorous software
verification demands [4]. It works by passing large amounts
of random inputs, created by generators, through manually
defined properties, formal statements about a program’s be-
havior which should always hold for a certain class of inputs
[11]. Properties can be devised in many ways, with common
examples including properties which verify:

• that multiple operations which should be equivalent
yield the same result,

• that two inverse operations applied successively yield
the original input, or

• that the result of an operation matches another imple-
mentation which is known to be correct [16].

Despite the advantages of PBT, it is often a less chosen
method of software verification, as properties are difficult to
devise and often perplexing to reason about [13]. The latter
issue can even be exacerbated when the property fails to hold
for a strange input. Shrinkers help to mitigate the problem of
large inputs by computing smaller versions of those inputs,
in an attempt to find a smaller fail case. One way to combat
the obscurity of PBT to make property-based tests (PBTs)
smaller, which we consider in two ways:

• reducing the amount of logic and assertions in a PBT,
which we refer to as horizontal decomposition, and

• reducing the scope of the functionality being tested,
which we refer to as vertical decomposition.

In order to better understand this decomposition as well as
gain valuable insights into improving property-based testing,
we aim to investigate how and within what scope property-
based testing is used in the real world. We chose Quickcheck
for Rust as the testing framework and language to narrow in
on, for isolated and specific research. More specifically, we
will describe

• the themes which emerge in real-world properties,

• how properties are implemented,

• their role in the overall correctness guarantee, and

• in which cases they use explicit generators and/or
shrinking support.

Quickcheck for Rust is a testing framework based on
Haskell’s original Quickcheck framework, the first real-world
implementation of PBT [2]. The Rust language is quickly
gaining popularity due to its modern design and compile time
guarantees [12]. Contrary to other more traditional systems
languages, it also offers zero-cost memory safety, making it
highly appealing from a security perspective as well [12].
All in all, its growing prevalence in the field made it a great
candidate for performing relevant research. Within the Rust
ecosystem, Quickcheck is one of the two dominant PBT li-
braries, alongside Proptest.

In order to obtain our results, we investigate real-world
repositories utilizing Quickcheck for Rust, aiming for at least
50 individual properties used for testing. We then qualita-
tively analyze these properties using open coding with hash-
tags and constant comparison, a technique for building a con-
sistent dataset out of qualitative data [9].

We are performing this research in parallel to four other
similar research endeavors, answering the same questions for
different languages and frameworks. The other languages
and frameworks being investigated are Rust and Proptest
[1], Haskell and QuickCheck [17], Java and Jqwik [15], and
Python and Hypothesis [7]. We pay extra attention to the
work being done on Proptest, as the relationship between it
and Quickcheck in the Rust ecosystem is important to con-
sider.

The paper is presented in the following structure. First,
the full methodology of the data collection is given in chapter
2. Then, the results are explained and presented visually in
chapter 3. This is followed by a deeper discussion and analy-
sis of the results in chapter 4. Chapter 5 then discusses threats
to validity and responsible research considerations made dur-
ing the research. Finally, chapter 6 draws final conclusions
about PBT’s role in software development with Rust, as well
as future work to be done.

2 Methodology
In this section we detail our methodology of data collection,
including both the selection of repositories and PBTs as well
as the qualitative analysis methods used to build the dataset.

1



2.1 Repository Selection
In order to select PBTs for analysis, we first selected a set
of public repositories which are representative of common
practices in the Rust development ecosystem. We selected
candidate repositories based on being reverse dependencies
of Quickcheck, and having at least one PBT.

We then ranked candidate repositories such that the highest
ranked ones would form this representative set. Both GitHub
stars and number of downloads were considered, and we ul-
timately chose the latter. While GitHub stars often indicate
a repository’s popularity, they demand action from the user
and are not required for usage of the repository. On the other
hand, the number of downloads more accurately represents
the extent to which the repository is used in other projects,
which we believe to be a better indicator of a repository’s
contribution to the Rust ecosystem.

Searching reverse dependencies of Rust repositories is
trivial using crates.io, where the reverse dependencies of
Quickcheck can be listed and sorted by number of downloads.
We selected repositories sequentially from this list, analyzing
as many as possible within the scope of the project.

Accounting for Rust Workspaces
Rust offers a feature called workspaces, which allow for mul-
tiple crates, the Rust term for a package or library, to be bun-
dled together as a single unit [14]. Up until this point, we
have assumed that crates are analogous to repositories when
browsing Quickcheck’s reverse dependencies. However, in
practice, a crate may be only part of a repository which con-
tains multiple crates. Thus, as we intend to analyze reposito-
ries, we selected every repository containing a selected crate,
and skipped any selected crate belonging to a repository we
have already fully analyzed.

2.2 Repository Analysis
Before analyzing specific PBTs, we collected basic informa-
tion about each repository to give additional context to the
dataset. The information collected includes

• the number of GitHub stars,

• the number of published versions,

• the number of reverse dependencies, and

• the number of tests, separated into traditional tests and
PBTs.

The number of published versions and the number of re-
verse dependencies were both collected through crates.io.
The number of traditional (non-PBT) tests was calculated
through the following grep command:

grep -r ’ˆ\s*#\[test\]’ . | wc -l

Note that this is a rather naive approach to test counting, as
it only counts the number of #[test] attributes, which does
not account for macro-generated tests. Rust does not provide
a way to count tests out of the box, and more advanced auto-
mated test counting is beyond the scope of this project. How-
ever, as macro-generated tests are infrequent, this heuristic
provides a general order of magnitude of the number of tradi-
tional tests, which is sufficient for the research.

On the other hand, PBTs implemented with Quickcheck do
not have the #[test] attribute, and thus were counted man-
ually. Rust supports declarative macros, which allow similar
code snippets to be repeatedly generated with small differ-
ences, including Quickcheck PBTs. Thus, as our analysis of
PBTs is much more precise, we count them in two separate
ways:

• the number of uniquely written PBTs, including tests
which occur inside of macro definitions, and

• the number of real PBTs in the test suite after macro
expansion.

With the repository information collected, we then selected
PBTs from the repository to analyze. Note that these PBTs
correspond to the first mentioned counting method: uniquely
written PBTs, even within macros. To ensure that a diverse
set of repositories could be analyzed within the scope of the
project, the number of PBTs to analyze per repository was
limited to ten. If a repository has more than this amount, ten
PBTs were selected at random to analyze.

Note that in reality these rules were not followed exactly. A
limit on PBT count was only imposed after more thoroughly
analyzing a single repository, and the decision to keep the ad-
ditional data was deemed more valuable than removing it for
exactly equal representation. Similarly, some repositories fell
slightly short of ten PBTs analyzed due to time constraints.

2.3 PBT Analysis
For each PBT, we investigated both the test itself and and
the system under test (SUT), in order to gain a general under-
standing of the functionality being tested and how the test was
implemented. Then, we qualitatively analyzed the PBT using
open coding techniques such as hashtag coding and constant
comparison [9], as well as answering a set of questions about
the PBT which seek to describe its behavior and implementa-
tion. These questions include

• how many assertions the PBT makes,

• whether its assertions are functionally independent,

• how many times it invokes the SUT, and

• whether they use a custom generator and/or shrinker.

In the spirit of open coding, the dataset started off with a
small number of only baseline questions and codes inspired
by a guide on creating properties [16], which was slowly ex-
panded as new discoveries were made. The central part of
this baseline dataset is a set of built-up hashtag codes catego-
rizing a test’s intention, which characterizes the way in which
the test composes operations of the SUT in order to form a
property which holds. Throughout the data collection, the
following intentions were identified and incorporated:

• DifferentPaths: Verifies the equivalence of two trans-
formations that should give identical results when per-
formed on the same input.

• RoundTrip: Verifies that an operation composed with
its inverse when applied to an input gives the same out-
put.

2

https://crates.io
https://crates.io


Figure 1: A PBT testing the reverse function

• Invariant: Verifies the invariance of a component of a
state which should not change when the state is trans-
formed in some way.

• Idempotence: Verifies that applying an idempotent op-
eration n>1 times is equivalent to applying it once.

• StructuralInduction: For recursive problems, verifies
that the result returned from an operation upholds some
recursive contract.

• HardToProveEasyToVerify: Verifies the correctness of
the result returned by the SUT with some ‘easy‘ verifi-
cation algorithm.

• TestOracle: Compares the result returned by the SUT to
the one returned by an oracle, which is a known correct
implementation.

• StateContract: Verifies that, after some operations, the
state of the SUT upholds a contract defined by or derived
from its specification.

• KnownOutput: Given some set of inputs, the output
can be trivially derived from the input, requiring no more
than a few cases.

• NoErrors: Ensures that the given operation does not
throw some kind of error on any input.

After the first analysis of each PBT, we performed a second
iteration in which all gaps in the dataset generated from later
discoveries were revisited and bridged. For the full set of
questions asked for each PBT, refer to [Appendix reference].

PBT Analysis Example
Figure 1 shows an example of a PBT to be analyzed. The
reverse function, whose implementation is hidden, takes an
arbitrary list as input and returns a reversed version. The PBT
reverse ident verifies that for any list of integers, reversing
the list twice is equivalent to the original list. This PBT would
be coded as follows:

• Assertion count: 1

• Calls to SUT: 2

• Intention: RoundTrip

• Input type(s): List(Numerical)

• Custom generator: No

Note that this is a small snippet of this PBT’s coding, and
that codings in the dataset contain many more fields and a
deeper analysis.

Figure 2: The distribution of test intentions in the dataset

Figure 3: The number of PBTs observed for each count of assertion

3 Findings
In the end, we analyzed a total of 86 PBTs from 13 reposi-
tories. In this section, we report our most important and rel-
evant findings from the gathered data. The full dataset from
which these findings were derived is published [8].

Firstly, the test counts for each analyzed repository are
shown in Table 1. As expected, we see that traditional testing
is most prevalent, and that property-based tests fall short by
almost an order of magnitude in most cases. On average from
this dataset, property-based tests make up 24.76% of the total
number of tests in a repository.

Proceeding to the PBTs themselves, the distribution of test
intentions across the dataset is shown in Figure 2. We can
see that TestOracle, RoundTrip, and StateContract occurred
roughly as often as one another, and collectively make up over
75% of the analyzed PBTs. On the other hand, Idempotence
and StructuralInduction, both of which are predetermined in-
tentions derived from prior research [16], did not appear at
all in the dataset. Furthermore, few anomolies were observed
in the test intentions, with only Invariant and NoErrors being
created as single-instance intentions.

Beyond test intentions, we have also grouped PBTs by
how many assertions they make, and whether these assertions
would be independent enough to meaningfully perform hori-
zontal decomposition. Figure 3 shows this grouping in terms
of number of PBTs observed for each assertion count, fur-
ther classified into dependently- and independently-asserting

3



Repository Regular Test Count PBT Count Expanded PBT Count
indexmap 106 33 33

time 506 61 61
regex 398 5 5

itertools 140 203 203
memchr 920 24 115

byteorder 32 3 30
http 132 1 1
h2 55 1 1

crc32fast 1 5 5
flate2 62 5 5

num-bigint 205 47 47
unicode-segmentation 9 5 5

bumpalo 78 19 19

Table 1: The number of tests per analyzed repository

Figure 4: The number of properties for each count of SUT calls

PBTs. The Figure demonstrates that PBTs heavily favor a
small number of assertions, and that a significant number of
PBTs with more than one assertion could be split into sub-
properties.

We additionally categorized PBTs by the number of times
in which they invoke the SUT. Following this, we labeled the
PBTs by which could reasonably undergo a naive approach
to vertical decomposition wherein we simply split SUT invo-
cations into separate properties where possible. The results
of this analysis are shown in Figure 4. We can see that the
majority of analyzed PBTs are not decomposable in this way,
but that it becomes slightly more probable when having more
than a few SUT invocations.

3.1 Additional Findings
On top of the general results, we identified a number of pat-
terns which are worth discussing and offer valuable insights
into how Quickcheck is being used.

In the dataset, we found that 29.07% of PBTs use custom
generators for its input, and only 20.93% of PBTs use custom
shrinkers. However, we found a strong correlation between
using custom generators/shrinkers and passing the SUT as in-
put to the test. That is, generated SUT instances often use cus-
tom generators and shrinkers. This correlation is justified by
Figure 5, which shows the percentage of PBTs using custom

Figure 5: How often custom generators and shrinkers are used when
the SUT is passed as input

generators and shrinkers, firstly when the SUT is not passed
as input, and secondly when it is.

Secondly, we found a strong correlation between a test’s in-
tention, and whether or not it makes assumptions. We define
assumptions in property-based testing as referring to condi-
tions on the input which are required to hold in order for the
test to be valid. If an assumption does not hold, the test sim-
ply returns a dismissive true, or in some other way discards
the test without failing. We found that while a total of 23.26%
of analyzed PBTs make assumptions, these tests belong en-
tirely to the TestOracle and RoundTrip intentions, with a ma-
jority concentration in TestOracle. This is displayed visually
in Figure 6, which shows the percentage of PBTs which make
assumptions, bucketed per intention.

4 Discussion
From the repositories analyzed and data gathered, we found
that PBT remains a more seldom used testing method, even
in repositories which make significant use of it. Of the PBTs
analyzed, we saw that the majority fall into a small number
of intention categories. Examples of PBTs that fall into these
categories are as follows:

TestOracle:
• check against baseline - Checks a fast crc32

4



Figure 6: How often PBTs make assumptions per test intention

checksum implementation (the SUT) against a known
slow implementation.

• test shr unsigned - Tests a big integer shift-right op-
eration (the SUT) against the default system implemen-
tation.

RoundTrip:
• quickcheck signed conversion - Converts a big in-

teger to and back from a string of some radix.
• hpack fuzz - Encodes and then decodes an HTTP

header.
StateContract:
• insertion order - Ensures the insertion order of ele-

ments is maintained in the SUT’s state.
• prop state read write pattern ids - Ensures that

IDs added to the SUT are able to be read back.
PBTs with descriptions such as those are frequent in the

dataset, and all have in common that they are simple and ap-
parent use cases of PBT, without complex logic. While most
PBTs in the dataset share this simplicity, we observed that
chasing it seems to evoke property intentions which fit more
naturally to the SUT. Of course, it is commonplace to imple-
ment inverse operations, and SUTs often claim to guarantee
a property about their state, making StateContract tests a nat-
ural choice. The prevalence of test oracles is particularly in-
teresting, and we believe it to be directly tied to the types of
repositories which tend to utilize Quickcheck. The reposito-
ries analyzed include custom allocators, fast implementations
of low-level and cryptographic operations, and widely appli-
cable utility libraries. Many of these problems have slow or
limited reference implementations, which make good test or-
acles for certain inputs.

We observed a similar tendency for simplicity in horizon-
tal and vertical PBT complexity. We found that the analyzed
PBTs preferred to make fewer assertions and fewer calls to
the SUT. The assertion count is generally decreasing, while
the number of SUT calls has a mode of three, as multiple SUT
calls are usually necessary to create a viable property. Little
correlation is found between the assertion count and potential
for horizontal decomposition, and likewise between the num-
ber of calls to the SUT and the potential for vertical decom-
position. However, it does remain that a significant number

of PBTs from the dataset can be horizontally decomposed,
and that a select few can be vertically decomposed using the
naive approach of splitting independent SUT invocations into
different tests.

In our findings, we demonstrated a significant correlation
between whether or not the SUT is passed as input, and the
presence of custom generators and shrinkers. In the data, we
found that the majority of non-SUT input consists of primi-
tives, for which Quickcheck has built-in generators. Not only
does this closely align with the low-level operations being im-
plemented by these repositories, but also supports the afore-
mentioned correlation. As the SUT is nearly always a non-
primitive type defined within the repository (but not always,
as Rust supports remote implementation on types), a custom
generator would be required in order to supply it as input to
PBTs. Furthermore, Quickcheck states that the default shrink-
ing behavior of a custom arbitrary type is not to shrink at all
[3]. Thus, programmers wishing to pair a custom generator
with any kind of shrinking must do so manually. This sup-
ports the tight relationship between SUT input and both cus-
tom generators and shrinkers, and by extension the relation-
ship between the presence of custom generators and shrinkers
themselves.

Finally, we previously showcased a correlation between the
test intention and whether that test makes assumptions, and
found that test oracle PBTs make extensive use of them. We
believe that this is due to the nature of the test oracles, which
we found to often be naive implementations of the same prob-
lem, but with speed or input space limitations. Thus, many of
these tests used assumptions to fit the input space to what
is viable for the test oracle. For example, the aforemen-
tioned test shr unsigned test uses a system shift-right im-
plementation which cannot accept nearly as large of inputs as
the SUT. It is also worth noting that while Quickcheck does
not support input space filtering aside from assumptions, we
observed many tests limit numerical input space by using nu-
merical datatypes with smaller range as input.

4.1 Framework Comparison

First a foremost, a number of differences were identified be-
tween Quickcheck and Proptest, and how they are used by
Rust repositories. Proptest is usually known for its versatility
and feature-richness, including an adaptable shrinking model
that requires little programmer intervention [6]. On the other
hand, Quickcheck is known for being signficiantly faster, es-
pecially regarding shrinking [6]. Of course this comes at a
cost, and indeed Quickcheck’s stateless shrinking model re-
quires more frequent manual intervention and does not nec-
essarily obey constraints imposed by the generator unless
done manually [10]. This hypothesis is strongly supported
by our data, where we found that Proptest PBTs are gener-
ally more complex, and used in higher level repositories than
Quickcheck. Furthermore, we found that Quickcheck reposi-
tories tend to have far more PBTs, with an average of 31.69
PBTs per repository, while Proptest repositories have an av-
erage of only 9.25 PBTs per repository. This seems to con-
firm the claim that speed is far less of a concern when using
Quickcheck.

5



4.2 The NoErrors Intention
The NoErrors intention is particularly interesting due to its
applicability. This intention was employed only once in the
dataset, and was in fact created to fit that one test. This shows
us that this is a seldom utilized use case of PBT. The test
which was labeled with this intention is described as follows:

• vec resizes causing reallocs - Continuously in-
vokes ‘realloc‘ with different parameters, and simply
verifies that they do not panic (throw an error), as no
other assertions are made by this test.

In fact, this is a universally applicable type of property, as
any SUT can be invoked with many arbitrary inputs, with the
only meaningful property being ‘does not crash.‘ Arguably,
this method can be quite powerful; with enough inputs, all
program-crashing bugs can be detected. However, such tests
like this have a number of limitations:

• The intended behavior may be to crash in certain cases,
and thus the input space would have to adequately fil-
tered.

• Unintended runtime errors which crash the program are
only a small subset of all bugs, and all others would be
undetected by this type of test.

Given that this test intention is so infrequent, we conclude
that the speed penalty and effort required to implement such
a test to be seldom worth it. These tests would have to ade-
quately filter inputs to those which should not crash the SUT,
while still providing enough inputs to feasibly trigger unin-
tended runtime errors. That being said, it makes the most
sense in ‘resilient‘ systems, which should be able to withstand
any input without failing, such as the allocator implementa-
tion in which our test was found.

5 Threats to Validity and Responsible
Research

Despite the unparalleled rigor of this research, it is of course
still subjective in nature, and there are a number of biases
worth mentioning.

5.1 Reproducibility of Methodology
In general, we designed the methodology to be specific and
rigorous so that it is reproducible. However, due to random
PBT selection in large repositories, results may differ when
repeating the methodology. Furthermore, inconsistencies in
the application of the methodology also hinder authentic re-
producibility. Namely, as we stated previously, we were not
able to follow the ‘ten PBTs per repository‘ rule exactly, lead-
ing to slight over- and under-representation in some reposi-
tories. Nevertheless, a large number of PBTs were analyzed,
and thus we believe that the statistical significance of our find-
ings is likely to persist in a second iteration, given enough
PBTs.

It is also worth noting that the qualitative coding process is
subjective, and bias on part of the researchers is always pos-
sible. Knowledge of the language, Quickcheck, and the tech-
nology specific to the repositories analyzed, all make room

for potential bias and misinterpretations. These biases can in-
fluence the resulting dataset, and threaten the reproducibility
of the methodology as a whole. We aimed to circumvent this
bias through multiple iterations of analysis per PBT, and qual-
itative coding techniques such as constant comparison [9].

5.2 Biases in PBT Representation
Beyond the reproducibility, the potential for systemic bias
also exists in the methodology. For example, we chose to
only analyze most downloaded repositories, as they represent
a large part of the current Rust ecosystem. However, they
are not exhaustive, and a large subset of developers and prac-
tices may not have been encountered with this approach. In
particular, three of the repositories we analyzed are primarily
maintained by BurntSushi, the same author of the Quickcheck
library itself. This fact introduces a degree of bias, as a large
portion of the data now not only comes from the same au-
thor, but also represents an informed and idealistic use of
Quickcheck, that may not be representative of how the re-
mainder of the community uses it.

5.3 Software Licenses
In this research, we analyzed source code from public repos-
itories. To ensure that the research was performed legally,
we verified that all analyzed repositories were licensed under
terms that permit analysis for research purposes, including
the MIT license and Apache 2.0 license. We adhered to the
conditions of these licenses, and ensured that no proprietary
or confidential code was included.

6 Conclusions and Future Work
In the end, we have unveiled a number of insights into
property-based testing with Rust and Quickcheck. With this
information, we answer our original questions:

• What themes emerge in real-world properties?
We found that most properties in Quickcheck are based
on test oracles, composition of inverse operations, or
verifying desired contracts about the SUT’s state.

• How are properties implemented?
We saw that most properties are rather small, making
few assertions and calls to the SUT. Most larger proper-
ties exist because of dependent assertions or to avoid re-
dundancy. We also observed that PBTs usually pass only
primitives or the SUT as input, making assumptions to
filter the input space.

• What is PBT’s role in correctness guarantees? As ex-
pected, we saw that PBT still plays a small role when
compared to other testing forms, making up on average
only 24.76% of the total tests in a repository. Neverthe-
less, repositories using Quickcheck make substantial use
of PBT with an average of 31.69 PBTs per repository,
with substantial coverage of the SUT even on their own.

• When do PBTs use explicit generators/shrinkers?
We found that custom generators are used primarily
when the SUT is passed as input to the test, as primi-
tive inputs tend to be used in most other cases. Because
Quickcheck’s default behavior with custom arbitraries is

6



not to shrink, we found as well that custom generators
are most often coupled with custom shrinkers.

We additionally showed that in many cases, decomposition
of properties, both horizontally and vertically, would be fea-
sible. As stated earlier, doing so could make properties more
granular and easier to reason about. However, Quickcheck
can make this somewhat more difficult for complex input
types, as it does not shrink by default, leading to obscure fail
cases.

6.1 Future Work
The motivation of this research was to give a clearer direction
to the future of PBT by identifying the most important aspects
of how it is used in practice. Thus, the results of this research
open several opportunities for further development of PBT
and PBT analysis.

Firstly, the biases of this research could be tackled by re-
peating the methodology for a wider variety of PBTs with a
richer repository selection method. Doing so could reveal in-
sights about PBTs in both high and low profile projects, as
well as a wider variety of domains. Perhaps there exist some
higher level repositories which also use Quickcheck.

Secondly, an extension of this research could be done that
investigates specifically the relationship between PBTs and
their respective SUTs. This could reveal some better insights
related to vertical decomposition, as the goal is to better iso-
late components of the SUT when building properties. We,
on the other hand, investigated vertical decomposition at only
a surface level. We determined the potential for vertical de-
composition by analyzing the feasibility of splitting the literal
SUT invocations into multiple properties without losing func-
tionality.

Finally, this research could motivate an attempt at design-
ing a method for horizontal and/or vertical property decom-
position. Using the insights we have gathered, a number of
common cases of PBTs could be investigated, and decompo-
sition could be generalized across them. Of course, this is a
substantial undertaking on its own which would require far
more than an understanding of PBT’s usage in practice, but
nevertheless such an understanding offers valuable direction
to the endeavor.

References
[1] Antonios Barotsis. Property-Based Testing in Open-

Source Rust Projects: A Case Study of the proptest
Crate. Bachelor Thesis, Delft University of Technol-
ogy, 2025.

[2] Valentin Bogad. The properties of quickcheck,
hedgehog and hypothesis. https://seelengrab.github.
io/articles/The%20properties%20of%20QuickCheck,
%20Hedgehog%20and%20Hypothesis/, Jan 2024.

[3] BurntSushi. quickcheck. https://docs.rs/quickcheck/
latest/quickcheck/index.html, n.d.

[4] Zilin Chen, Christine Rizkallah, Liam O’Connor, Partha
Susarla, Gerwin Klein, Gernot Heiser, and Gabriele
Keller. Property-based testing: Climbing the stairway

to verification. In Proceedings of the 15th ACM SIG-
PLAN International Conference on Software Language
Engineering, SLE 2022, page 84–97, New York, NY,
USA, 2022. Association for Computing Machinery.

[5] Jesper Cockx. An introduction to property-based test-
ing with quickcheck. https://jesper.sikanda.be/posts/
quickcheck-intro.html, Dec 2020.

[6] Proptest contributors. Differences between quickcheck
and proptest. https://proptest-rs.github.io/proptest/
proptest/vs-quickcheck.html, n.d.

[7] David de Koning. Property-Based Testing in Practice
using Hypothesis: In-depth study on how developers
use Property-Based Testing in Python using Hypothe-
sis. Bachelor Thesis, Delft University of Technology,
2025.

[8] Max Derbenwick, Harald Toth, David de Koning,
Antonios Barotsis, Ye Zhao, Andreea Costea, and
Sára Juhošová. Property-based testing in the wild!
4TU.ResearchData, 2025. doi: 10.4121/368f63ab-10fc-
4603-a15a-bde25e72e778.

[9] Rashina Hoda. Qualitative Research with Socio-
Technical Grounded Theory. Springer Cham, Cham,
Switzerland, September 2024.

[10] David MacIver. Integrated vs type based shrinking.
https://hypothesis.works/articles/integrated-shrinking/,
Dec 2016.

[11] David Maclver. What is property based
testing? https://hypothesis.works/articles/
what-is-property-based-testing/, May 2016.

[12] Yuliia Panasenko and Mykhailo Maidan. Rust mar-
ket overview: reasons to adopt rust, rust use cases,
and hiring opportunities. https://yalantis.com/blog/
rust-market-overview/, Jun 2025.

[13] Nataly Rocha. Diving into property-based testing with
js - part 3. https://www.stackbuilders.com/insights/
diving-into-property-based-testing-with-javascript-part-3/,
Apr 2024.

[14] Carol Nichols Steve Klabnik and Chris Krycho. The
Rust Programming Language. No Starch Press, 2022.

[15] Harald Toth. Property-Based Testing in the Wild!: Ex-
ploring Property-Based Testing in Java: An Analysis
of jqwik Usage in Open-Source Repositories. Bachelor
Thesis, Delft University of Technology, 2025.

[16] Scott Wlaschin. Choosing properties for property-
based testing. https://fsharpforfunandprofit.com/posts/
property-based-testing-2/, Dec 2014.

[17] Ye Zhao. Property-Based Testing in the Wild!: A Study
of QuickCheck Usage in Open-Source Haskell Reposi-
tories. Bachelor Thesis, Delft University of Technology,
2025.

7

https://seelengrab.github.io/articles/The%20properties%20of%20QuickCheck,%20Hedgehog%20and%20Hypothesis/
https://seelengrab.github.io/articles/The%20properties%20of%20QuickCheck,%20Hedgehog%20and%20Hypothesis/
https://seelengrab.github.io/articles/The%20properties%20of%20QuickCheck,%20Hedgehog%20and%20Hypothesis/
https://docs.rs/quickcheck/latest/quickcheck/index.html
https://docs.rs/quickcheck/latest/quickcheck/index.html
https://jesper.sikanda.be/posts/quickcheck-intro.html
https://jesper.sikanda.be/posts/quickcheck-intro.html
https://proptest-rs.github.io/proptest/proptest/vs-quickcheck.html
https://proptest-rs.github.io/proptest/proptest/vs-quickcheck.html
https://doi.org/10.4121/368f63ab-10fc-4603-a15a-bde25e72e778
https://doi.org/10.4121/368f63ab-10fc-4603-a15a-bde25e72e778
https://hypothesis.works/articles/integrated-shrinking/
https://hypothesis.works/articles/what-is-property-based-testing/
https://hypothesis.works/articles/what-is-property-based-testing/
https://yalantis.com/blog/rust-market-overview/
https://yalantis.com/blog/rust-market-overview/
https://www.stackbuilders.com/insights/diving-into-property-based-testing-with-javascript-part-3/
https://www.stackbuilders.com/insights/diving-into-property-based-testing-with-javascript-part-3/
https://fsharpforfunandprofit.com/posts/property-based-testing-2/
https://fsharpforfunandprofit.com/posts/property-based-testing-2/

	Introduction
	Methodology
	Repository Selection
	Accounting for Rust Workspaces

	Repository Analysis
	PBT Analysis
	PBT Analysis Example


	Findings
	Additional Findings

	Discussion
	Framework Comparison
	The NoErrors Intention

	Threats to Validity and Responsible Research
	Reproducibility of Methodology
	Biases in PBT Representation
	Software Licenses

	Conclusions and Future Work
	Future Work


