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Abstract: We address the demand-side management (DSM) problem for smart grids where the
users have energy generation and storage capabilities, and where the energy price depends on the
renewable energy sources and on the aggregate electricity demand. Each user aims at reducing
its economic cost by selecting the best energy schedule subject to its local preferences and
global restrictions on the aggregate net demand. From a game-theoretic perspective, we model
the problem as a generalized Nash equilibrium problem. We propose a shrinking-horizon semi-
decentralized DSM algorithm that exploits the most recent forecast on the renewable energy
sources to perform real-time adjustments on the energy usage of the users. We investigate the
potential of the proposed approach via numerical simulations on realistic scenarios, where we
observe improved social welfare compared to day-ahead DSM algorithms.
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1. INTRODUCTION

Energy demand in populated areas is currently growing
fast and will be growing even faster in the near future.
Smart grids are envisioned to facilitate the transition to
efficient and reliable user-oriented electricity supply via
intelligent, distributed energy generation (DG) and dis-
tributed energy storage (DS), bi-directional information
flow and control mechanisms [Gao et al. 2014]. Among the
latter, pricing mechanisms represent a promising technique
to implement demand-side management (DSM), namely,
to incentivate prosumers to shift their flexible energy con-
sumption to non-peak times, hence minimize the peak-to-
average ratio (PAR) of the demand. In these mechanisms,
at each time period, the energy price is usually designed
to be proportional to the aggregated net load over the
grid [Chen et al. 2014, Mohsenian-Rad et al. 2010]. To
model and design DSM algorithms for the smart grid,
game theory has been recently, yet extensively, adopted
[Mohsenian-Rad et al. 2010, Atzeni et al. 2013a]. Each
prosumer (player, agent) in the day-ahead market (ag-
gregative game) aims to select an energy schedule (deci-
sion variable) that minimizes its economic expense (cost
function), which also depends on an aggregate measure
of the schedules of the other prosumers [Grammatico
2016a], [Grammatico 2016b]. Since the prosumers are self-
interested parties, a usual market equilibrium is the cele-
brated (generalized) Nash equilibrium.

1 E-mail addresses: roestrella6@gmail.com, g.belgioioso@tue.nl,
s.grammatico@tudelft.nl. This work was partially supported by
NWO (projects OMEGA, 613.001.702; P2P-TALES, 647.003.003)
and by the ERC (project COSMOS, 802348).

For example, in [Wu et al. 2011], a decentralized DSM pro-
gram is presented to integrate wind power and to minimize
the total energy cost in an isolated microgrid, showing
that direct load control can reduce generation costs for
the utility. In [Dave et al. 2011], the authors develop a
hybrid day-ahead and real-time consumption scheduling
scheme for households that participate in a DSM program,
where energy storage devices are not considered. In [Wang
et al. 2018], the authors consider the user discomfort in
their cost functions and propose a game-theoretic algo-
rithm to reduce the grid PAR, however without global
grid constraints and the most recent forecast on renew-
able generation. Global coupling constraints on the grid
capacity, decoupled via dual decomposition, are considered
in [Deng et al. 2014], where, however, the uncertainty
of renewable energy sources is not modeled. A two-stage
DSM mechanism is formulated in [Atzeni et al. 2014]; first,
a noncooperative day-ahead, iterative bidding mechanism
is proposed; then, real-time adjustments are made on the
local energy allocations to alleviate the impact of real-
time deviations with respect to their day-ahead bidded
schedules.

In the literature, most DSM techniques are day-ahead
problems that do not directly embed real-time adaptation
to recent forecasts and real-time realizations of uncertain
power generation. It follows that the realized schedules are
not locally or individually optimal in general. In this paper,
we design a receding-horizon, game-theoretic DSM mech-
anism that exploits the latest information on renewable
energy availability, e.g. short-time wind generation fore-
cast. Specifically, we consider grid users with dispatach-
able energy generation, storage and consumption charged
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based on the aggregate load and the renewable genera-
tion. We formulate a DSM problem as a generalized Nash
equilibrium problem (GNEP) and propose a shrinking-
horizon, semi-decentralized solution algorithm that allows
the prosumers to adjust their energy schedules based on
the most recent forecast of renewable energy generation.
Finally, we conduct numerical simulations with real data
for wind profiles, energy consumption curves and energy
prices in The Netherlands.

2. SMART GRID MODEL

We adopt the smart grid model in [Atzeni et al. 2013a],
which we review in the following subsections.

2.1 Demand-side model

Let us consider a smart power grid with an energy provider
that includes a wind farm and a common generator (e.g.
coal or gas) and provides energy to several users. Since
we focus on DSM, let us model the demand side of the
smart grid. Demand-side users are all characterized by
their individual per-slot energy consumption profile at
time period h, i.e, ei(h). We denote the set of all demand-
side users by D = P ∪ N , where P is the set of passive
users and N is the set of active users. Passive users are
regular energy prosumers, while active users have flexible
schedules. Each active user is connected to the power grid
and to a communication line between his smart meter and
the central unit.

The active users N are divided in dispatchable energy
producers G ⊆ N and energy storage users S ⊆ N . Each
user i ∈ G is characterized by its per-slot energy generation
at time slot h, i.e., gi(h), while users i ∈ S by the per-slot
energy storage at slot h i.e., si(h), for h = 1, . . . , H.

The per-slot load profile li(h) is defined as

li(h) =

{
ei(h) if i ∈ P
ei(h)− gi(h) + si(h) if i ∈ N .

(1)

The energy consumption of each user is restricted by
maximum and minimum operating power at each time
period and by a maximum consumption over the horizon
H, i.e.,

emin
i (h) ≤ ei(h) ≤ emax

i (h), ∀i, h (2)∑H
h=1 ei(h) ≤ ξmax

i , ∀i. (3)

Let us introduce ei = col(ei(1), . . . , ei(H)) as the collective
energy consumption vector, over the horizon of length H
and define the strategy set Ωei

for each producer i ∈ N as

Ωei
= {ei ∈ RH | (2), (3) hold}. (4)

2.2 Energy generation model

Energy generators can use the produced power to either
support their energy consumption, or to charge their bat-
teries. The energy producers can be classified into dis-
patchable and non-dispatchable producers. The latter refer
to generators that are always producing whenever possi-
ble, e.g. renewable sources of intermittent nature which
have fixed costs and do not require a strategy for energy
production. Instead, dispatchable energy producers, e.g.

internal combustion engines and gas turbines, experience
a variable cost, e.g. fuel cost, hence are willing to optimize
their energy generation schedule. We denote by Wi(gi(h))
the price for producing the amount of energy gi(h). The
generation constraints are

0 ≤ gi(h) ≤ gmax
i , ∀i, h (5)

∑H
h=1 gi(h) ≤ ψmax

i , ∀i (6)

where (5) represents a generation capacity on each
time period h and (6) the maximum generation over
the multi-period horizon. Next, we introduce gi =
col(gi(1), . . . , gi(H)) as the overall energy generation
schedule, and we define the feasible set Ωgi

for dispatch-
able energy producers i ∈ G as

Ωgi
= {gi ∈ RH

≥0 | (5), (6) hold}. (7)

2.3 Energy storage model

Storage devices, e.g. batteries, of all users are characterized
by charging efficiency, discharging efficiency, leakage rate,
capacity, and maximum charging rate. With no loss of
generality, it is possible to define the per-slot energy stored
as the sum of charging and discharging, with charging and

discharging inefficiencies, 0 < β
(+)
i ≤ 1 and β

(−)
i ≥ 1,

respectively. Let 0 < α ≤ 1 be the leakage rate of the
storage device. Namely, if qi(h) denotes the charge level at
(the end of) time period h, then qi(h) reduces to αiqi(h) at
(the end of) period h+1. The maximum amount of energy
that the storage device i can accumulate is the capacity ζi.
Lastly, the maximum charging rate, smax

i , represents the
maximum amount of energy that can be charged into the
device during one time period.

The charge level qi(h) is modeled as

qi(h) = αiqi(h− 1) + β�
i si(h) (8)

where si(h) = [s
(+)
i (h), s

(−)
i (h)]� and βi = [β

(+)
i , β

(−)
i ]�.

Since the charge level must lie in the interval [0, ζi],
equation (8) can be rewritten as

−αiqi(h− 1) ≤ β�
i si(h) ≤ ζi − αiqi(h− 1), (9)

where we can use the closed-form solution

qi(h) = αh
i qi(0) +

∑h
t=1 α

(h−t)
i β�

i si(h). (10)

In addition, the total stored energy must satisfy the
capacity limit of the storage device, i.e.,

β�
i si(h) ≤ smax

i , ∀i, h. (11)

Finally, we impose that the battery charge at the end
of the horizon, i.e., at the beginning of the next day, is
approximately the same as the initial one:

|qi(H)− qi(0)| ≤ εi, ∀i, (12)

where εi > 0 is a small and positive constant.

In compact form, the energy storage scheduling vec-

tor reads as si(h) = [s
(+)
i (h), s

(−)
i (h)]�, with s

(+)
i =

col(s
(+)
i (1), . . . , s

(+)
i (H)) and analogously for s

(−)
i , and the

feasible strategy set Ωsi for energy storage user i ∈ S as
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based on the aggregate load and the renewable genera-
tion. We formulate a DSM problem as a generalized Nash
equilibrium problem (GNEP) and propose a shrinking-
horizon, semi-decentralized solution algorithm that allows
the prosumers to adjust their energy schedules based on
the most recent forecast of renewable energy generation.
Finally, we conduct numerical simulations with real data
for wind profiles, energy consumption curves and energy
prices in The Netherlands.
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at time slot h, i.e., gi(h), while users i ∈ S by the per-slot
energy storage at slot h i.e., si(h), for h = 1, . . . , H.

The per-slot load profile li(h) is defined as

li(h) =
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ei(h) if i ∈ P
ei(h)− gi(h) + si(h) if i ∈ N .

(1)

The energy consumption of each user is restricted by
maximum and minimum operating power at each time
period and by a maximum consumption over the horizon
H, i.e.,

emin
i (h) ≤ ei(h) ≤ emax

i (h), ∀i, h (2)∑H
h=1 ei(h) ≤ ξmax

i , ∀i. (3)

Let us introduce ei = col(ei(1), . . . , ei(H)) as the collective
energy consumption vector, over the horizon of length H
and define the strategy set Ωei

for each producer i ∈ N as

Ωei
= {ei ∈ RH | (2), (3) hold}. (4)

2.2 Energy generation model

Energy generators can use the produced power to either
support their energy consumption, or to charge their bat-
teries. The energy producers can be classified into dis-
patchable and non-dispatchable producers. The latter refer
to generators that are always producing whenever possi-
ble, e.g. renewable sources of intermittent nature which
have fixed costs and do not require a strategy for energy
production. Instead, dispatchable energy producers, e.g.

internal combustion engines and gas turbines, experience
a variable cost, e.g. fuel cost, hence are willing to optimize
their energy generation schedule. We denote by Wi(gi(h))
the price for producing the amount of energy gi(h). The
generation constraints are

0 ≤ gi(h) ≤ gmax
i , ∀i, h (5)

∑H
h=1 gi(h) ≤ ψmax

i , ∀i (6)

where (5) represents a generation capacity on each
time period h and (6) the maximum generation over
the multi-period horizon. Next, we introduce gi =
col(gi(1), . . . , gi(H)) as the overall energy generation
schedule, and we define the feasible set Ωgi

for dispatch-
able energy producers i ∈ G as

Ωgi
= {gi ∈ RH

≥0 | (5), (6) hold}. (7)

2.3 Energy storage model

Storage devices, e.g. batteries, of all users are characterized
by charging efficiency, discharging efficiency, leakage rate,
capacity, and maximum charging rate. With no loss of
generality, it is possible to define the per-slot energy stored
as the sum of charging and discharging, with charging and

discharging inefficiencies, 0 < β
(+)
i ≤ 1 and β

(−)
i ≥ 1,

respectively. Let 0 < α ≤ 1 be the leakage rate of the
storage device. Namely, if qi(h) denotes the charge level at
(the end of) time period h, then qi(h) reduces to αiqi(h) at
(the end of) period h+1. The maximum amount of energy
that the storage device i can accumulate is the capacity ζi.
Lastly, the maximum charging rate, smax

i , represents the
maximum amount of energy that can be charged into the
device during one time period.

The charge level qi(h) is modeled as
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i si(h) (8)

where si(h) = [s
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Since the charge level must lie in the interval [0, ζi],
equation (8) can be rewritten as

−αiqi(h− 1) ≤ β�
i si(h) ≤ ζi − αiqi(h− 1), (9)

where we can use the closed-form solution

qi(h) = αh
i qi(0) +
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t=1 α

(h−t)
i β�

i si(h). (10)

In addition, the total stored energy must satisfy the
capacity limit of the storage device, i.e.,

β�
i si(h) ≤ smax

i , ∀i, h. (11)

Finally, we impose that the battery charge at the end
of the horizon, i.e., at the beginning of the next day, is
approximately the same as the initial one:

|qi(H)− qi(0)| ≤ εi, ∀i, (12)

where εi > 0 is a small and positive constant.

In compact form, the energy storage scheduling vec-

tor reads as si(h) = [s
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Ωsi
= {si ∈ R2H

≥0 | (9), (11), (12) hold}. (13)

2.4 Energy cost and pricing model

On day-ahead markets, energy prices are set by the pro-
duction offers of the energy suppliers and the consumption
bids by the energy prosumers. As in [Mohsenian-Rad et al.
2010],[Fang et al. 2012], [Atzeni et al. 2013b], here we con-
sider a single price curve by aggregating the conventional
generator and the wind turbine.

Let ω(h) be the power generated by the wind turbine at
time period h. Next, we introduce the function Ch, namely
the cost per unit of energy at time period h, that varies
linearly with the difference between the total aggregate
load L(h) and the generated wind power [Wu et al. 2011]:

Ch(L(h)− ω(h)) = Kh · (L(h)− ω(h)), (14)

where Kh > 0, for h ∈ {1, . . . , H}, are time-varying
coefficients because the energy production varies over the
horizon, and L(h) is the aggregate energy load,

0 < L(h) = LP (h) +
∑

i∈N li(h), (15)

and LP (h) =
∑

i∈P ei(h) denotes the aggregate per-slot
energy consumption of the passive users.

The overall cost for the smart grid at each time period
h is then given by Ch(L(h) − ω(h))L(h) = Kh(L(h) −
ω(h))L(h), whereas the generic user i pays Ch(L(h) −
ω(h))li(h) to purchase the load li(h). The aggregate per-
slot energy load in (15) must satisfy

Lmin(h) ≤ L(h) ≤ Lmax(h), ∀h ∈ {1, . . . , H} (16)

where the lower bound is introduced to prevent additional
costs arising from turning off some base power plant and
the upper bound represents the maximum load that the
grid can afford before a blackout occurs.

3. DEMAND-SIDE MANAGEMENT ON THE SMART
GRID AS A GENERALIZED AGGREGATIVE GAME

3.1 Aggregative game formulation

Since the grid users are self-interested, we model the DSM
problem as a noncooperative game. Each active user is
a player who chooses its energy consumption, generation
and storage strategies to minimize his cost function, i.e.,
his economic expense, given the aggregate load over the
horizon and the available wind power forecast. For each
user i ∈ N , let us define the strategy vector xi =
(ei, gi, si)

� and the per-slot strategy profile

xi(h) = (ei(h), gi(h), si(h))
�, ∀h = {1, . . . , H} (17)

In view of the feasible sets Ωei ,Ωgi ,Ωsi in (4), (7) and (13),
respectively, we define the local strategy set for a generic
user i ∈ N as

Ωxi = {xi ∈ R4H |ei ∈ Ωei , gi ∈ Ωgi , si ∈ Ωsi}. (18)

Then, by using the pricing model in (14), we define the
cost function of user i ∈ N as

fi(xi,x−i) =
∑H

h=1 Kh

(
l−i(h) + δ�xi(h)− ω(h)

)
·

·
(
δ�xi(h)

)
+
∑H

h=1 Wi(δ
�
g xi(h)) (19)

where l−i = col(l−i(1), . . . , l−i(H)), l−i(h) = LP (h) +∑
j∈N\{i} lj(h), is the aggregate per-slot energy load of

the other players at time-slot h, while δ = (1,−1, 1,−1)�

and δg = (0, 1, 0, 0)� are auxiliary vectors. In compact
form, the cost function in (19) reads as

fi(xi,x−i) = (l−i +∆xi − ωH)KH(∆xi) + ∆�
g W (20)

where KH = diag(Ki) , ωH = col(ω(1), . . . , ω(H)), ∆ =
[IH ,−IH , IH ,−IH ]� and ∆g = [0H , IH , 0H , 0H ]�. Let us
denote the collection of local feasible sets of all the agents

as Ω =
∏N

i=1 Ωxi
. Moreover, the strategies of the agents

are coupled not only via their cost functions but also via
their feasible strategy sets. The coupling constraint in (16)
can be represented by an affine function x �→ Ax−b, where
A = [A1, ..., AN ] = 1N ⊗∆, where Ai = col(∆,−∆), ∀i ∈
N represents how user i is involved in the coupling
constraints and b = col(Lmax(1) − LP (1), . . . , Lmax(H) −
LP (H), LP (1)−Lmin(1), . . . , LP (H)−Lmin(H). Thus, the
collective global feasible setX is defined as the intersection
of local and coupling constraints:

X = Ω ∩ {y ∈ R4HN | Ay − b ≤ 02H}. (21)

Next, we model that each active user i ∈ N chooses its
energy consumption, production and storage strategy to
minimize his cost function, i.e.,

∀i ∈ N :

{
min
xi∈R

fi(xi,x−i)

s.t. (xi,x−i) ∈ X .
(22)

The N inter-dependent optimization problems in (22)
define a GNEP, that we denote in compact form by
G = (X ,f), with X as in (21) and f = col(f1, . . . , fN ).
From a game-theoretic perspective, solving the problems in
(22) simultaneously means computing a generalized Nash
equilibrium (GNE), which is a feasible strategy profile x∗

such that no single player i can benefit by unilaterally
deviating from his strategy to another feasible one:

fi(x
∗
i ,x

∗
−i) ≤ inf

xi∈Ωxi

{fi(xi,x
∗
−i) | (xi,x

∗
−i) ∈ X}. (23)

3.2 Semi-decentralized GNE computation

Different algorithms are available in the literature to find
a GNE of the aggregative game in (22), e.g., [Belgioioso
and Grammatico 2017]. Most of these works focus on a
special subclass of GNE characterized by the solutions of
the variational inequality VI(X ,F ) which is the problem
to find x∗ ∈ X such that

(x− x∗)�F (x∗) ≥ 0, ∀x ∈ X , (24)

where F is the so-called pseudo-gradient, defined as

F (x) = col (∇x1f1(x1,x−1), . . . ,∇xN
fN (xN ,x−N )) .

(25)
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It follows from [Scutari et al. 2012, Lemma 4.2] that
every solution to the variational inequality VI(X ,F ) is
a GNE of our game G = (X ,f). To efficiently compute
a GNE in a semi-decentralized fashion, let us consider
the preconditioned Forward Backward (pFB) algorithm
[Belgioioso and Grammatico 2018, Alg. 1] (κ ∈ N):
Algorithm 1 pFB

xi(κ+ 1) = projΩxi
[xi(κ)

−γ(∇xi
fi(xi(κ),x−i(κ)) +A�

i λ(κ))
]

λ(κ+ 1) = projRm
≥0

[λ(κ) + γ(2Ax(κ+ 1)−Ax(κ)− b)]

Algorithm 1 has a semi-decentralized structure: a central
unit broadcasts the grid coefficients KH and the wind
power forecast ωH , as well as the incentive signal λ and
the aggregative load L. Specifically, at each iteration, the
users update their strategies xi by solving (22) given the
current value of the grid coefficients, the aggregative load
and the λ incentive, taking a gradient step of length γ,
projected onto the local feasible set Ωxi . The central unit
updates the incentive λ based on the expected violation
of the coupling constraints. Thus, there is no exchange of
information among the selfish users.

4. REAL-TIME DSM ALGORITHM

In real-time, we assume that the demand-side users have
a forecast of the upcoming wind power generation, ω(h),
which is more accurate than that made the day ahead.
Therefore, we propose an iterative algorithm that exploits
the latest information on the wind power generation. The
proposed on-line DSM algorithm works in a shrinking-and-
rolling horizon fashion: the DSM problem is solved on-line
at each stage using the current data of the aggregated
load and the latest data of the wind power forecast over
the shrinking-horizon. The solution generates strategies for
the remainder of the horizon, but only the current stage
component is applied. More specifically, the shrinking-
horizon framework is as follows:

At each stage k, xk represents the predicted strategies over
the remaining time slots of the horizon, {k, k+ 1, . . . , H},
and x∗,k

s {k} = xk{k} the actual strategy played by the
agents at stage k, where xk{τ} = col(xk

i {τ}, . . . , xk
N{τ})

is used to denote the τ -th time component of xk. This
means, that at each stage k, the output of the algorithm
x∗
s is equal to the k-th element of the current predicted

strategy xk of the agents (which ranges from time k to
time H). A graphical representation is provided in Fig. 1.

We remark that the strategies of each player i ∈ N must
satisfy the local and global constraints at each stage, given
the previous strategies. Thus, we define the updated global
set of feasible strategies at each stage k as

X̄ k = X ∩ Θ̄k �= ∅, (26)

where Θ̄k =
⋂k

h=1 Θh accounts for all the strategies
already applied up to period k. At each time period k
of the horizon, a new game Gk is defined with the updated
global set and solved using Algorithm 1 with the latest

wind forecast. Each user computes its strategy x∗,k
i {k}

to minimize his cost for the remaining time periods,

Fig. 1. Shrinking-horizon approach.

{k, . . . , H}. The proposed real-time approach is formalized
in Algorithm 2.

Algorithm 2 Shrinking-horizon pFB Algorithm

1: Initialization: Set Θ1 = R4HN

2: for k = 1, . . . , H do

3: Θ̄k =
⋂k

h=1 Θh

4: X̄ k = X ∩ Θ̄k

5: Consider the new game Gk = (X̄ k,F )
6: Update wind power forecast ωH

7: Compute GNE of Gk, x
∗,k, via Algorithm 1

8: Apply x∗,k{k} and discard x∗,k{k + 1, . . . , H}
9: Θk+1 = {y ∈ R4HN | y{k} = x∗,k{k}}

10: end for

Algorithm 2 can be seen as a repeated Nash game: at each
stage k, a new GNE x∗,k is computed with the most up-
to-date wind information and incorporating future actions.
After that, users apply strategy x∗,k{k} while discarding
the rest. Next, the new global feasible set X̄ k is updated
by considering the strategies that have been applied and
should be taken into consideration for future strategies.

5. NUMERICAL SIMULATIONS

In this section, we present numerical results to test the
performance of the algorithm. A smart grid with N = 100
demand-side users is considered, with a time horizon of
H = 24 hours. Each demand-side user has a random
energy consumption curve, i.e., ei(h) for h = 1, . . . , H
according to an average household demand profile in The
Netherlands [EDSN, the Dutch Energy Data Hub 2014],

with an average daily consumption of
∑H

h=1 ei(h) = 12
kWh. Each user i ∈ G with power generation capabilities
has a linear production cost as in [Atzeni et al. 2013a],
[Walt 2004] i.e., Wi(x) = ηi x for some ηi > 0.

For simplicity, we assume that all active users are subject
to the same production and storage constraints (4), (7),
(13) as in [Atzeni et al. 2013a],[Stephens et al. 2015], with
ηi = 0.039 e/KWh. Moreover, we set gmax

i = 0.4 kW
and ψmax

i = H · 0.8 gmax
i , ∀i ∈ G. For users with storage

capabilities, we set the parameters of the storage devices
(Lithium-ion batteries) as in [Atzeni et al. 2013a], [Wang
et al. 2018]: αi = 0.91/24 which represents leakage rate

of 0.9 over the full day, β
(+)
i = 0.9, β

(−)
i = 1.1, ζi = 4
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It follows from [Scutari et al. 2012, Lemma 4.2] that
every solution to the variational inequality VI(X ,F ) is
a GNE of our game G = (X ,f). To efficiently compute
a GNE in a semi-decentralized fashion, let us consider
the preconditioned Forward Backward (pFB) algorithm
[Belgioioso and Grammatico 2018, Alg. 1] (κ ∈ N):
Algorithm 1 pFB

xi(κ+ 1) = projΩxi
[xi(κ)

−γ(∇xi
fi(xi(κ),x−i(κ)) +A�

i λ(κ))
]

λ(κ+ 1) = projRm
≥0

[λ(κ) + γ(2Ax(κ+ 1)−Ax(κ)− b)]

Algorithm 1 has a semi-decentralized structure: a central
unit broadcasts the grid coefficients KH and the wind
power forecast ωH , as well as the incentive signal λ and
the aggregative load L. Specifically, at each iteration, the
users update their strategies xi by solving (22) given the
current value of the grid coefficients, the aggregative load
and the λ incentive, taking a gradient step of length γ,
projected onto the local feasible set Ωxi . The central unit
updates the incentive λ based on the expected violation
of the coupling constraints. Thus, there is no exchange of
information among the selfish users.

4. REAL-TIME DSM ALGORITHM

In real-time, we assume that the demand-side users have
a forecast of the upcoming wind power generation, ω(h),
which is more accurate than that made the day ahead.
Therefore, we propose an iterative algorithm that exploits
the latest information on the wind power generation. The
proposed on-line DSM algorithm works in a shrinking-and-
rolling horizon fashion: the DSM problem is solved on-line
at each stage using the current data of the aggregated
load and the latest data of the wind power forecast over
the shrinking-horizon. The solution generates strategies for
the remainder of the horizon, but only the current stage
component is applied. More specifically, the shrinking-
horizon framework is as follows:

At each stage k, xk represents the predicted strategies over
the remaining time slots of the horizon, {k, k+ 1, . . . , H},
and x∗,k

s {k} = xk{k} the actual strategy played by the
agents at stage k, where xk{τ} = col(xk

i {τ}, . . . , xk
N{τ})

is used to denote the τ -th time component of xk. This
means, that at each stage k, the output of the algorithm
x∗
s is equal to the k-th element of the current predicted

strategy xk of the agents (which ranges from time k to
time H). A graphical representation is provided in Fig. 1.

We remark that the strategies of each player i ∈ N must
satisfy the local and global constraints at each stage, given
the previous strategies. Thus, we define the updated global
set of feasible strategies at each stage k as

X̄ k = X ∩ Θ̄k �= ∅, (26)

where Θ̄k =
⋂k

h=1 Θh accounts for all the strategies
already applied up to period k. At each time period k
of the horizon, a new game Gk is defined with the updated
global set and solved using Algorithm 1 with the latest

wind forecast. Each user computes its strategy x∗,k
i {k}

to minimize his cost for the remaining time periods,

Fig. 1. Shrinking-horizon approach.

{k, . . . , H}. The proposed real-time approach is formalized
in Algorithm 2.

Algorithm 2 Shrinking-horizon pFB Algorithm

1: Initialization: Set Θ1 = R4HN

2: for k = 1, . . . , H do

3: Θ̄k =
⋂k

h=1 Θh

4: X̄ k = X ∩ Θ̄k

5: Consider the new game Gk = (X̄ k,F )
6: Update wind power forecast ωH

7: Compute GNE of Gk, x
∗,k, via Algorithm 1

8: Apply x∗,k{k} and discard x∗,k{k + 1, . . . , H}
9: Θk+1 = {y ∈ R4HN | y{k} = x∗,k{k}}

10: end for

Algorithm 2 can be seen as a repeated Nash game: at each
stage k, a new GNE x∗,k is computed with the most up-
to-date wind information and incorporating future actions.
After that, users apply strategy x∗,k{k} while discarding
the rest. Next, the new global feasible set X̄ k is updated
by considering the strategies that have been applied and
should be taken into consideration for future strategies.

5. NUMERICAL SIMULATIONS

In this section, we present numerical results to test the
performance of the algorithm. A smart grid with N = 100
demand-side users is considered, with a time horizon of
H = 24 hours. Each demand-side user has a random
energy consumption curve, i.e., ei(h) for h = 1, . . . , H
according to an average household demand profile in The
Netherlands [EDSN, the Dutch Energy Data Hub 2014],

with an average daily consumption of
∑H

h=1 ei(h) = 12
kWh. Each user i ∈ G with power generation capabilities
has a linear production cost as in [Atzeni et al. 2013a],
[Walt 2004] i.e., Wi(x) = ηi x for some ηi > 0.

For simplicity, we assume that all active users are subject
to the same production and storage constraints (4), (7),
(13) as in [Atzeni et al. 2013a],[Stephens et al. 2015], with
ηi = 0.039 e/KWh. Moreover, we set gmax

i = 0.4 kW
and ψmax

i = H · 0.8 gmax
i , ∀i ∈ G. For users with storage

capabilities, we set the parameters of the storage devices
(Lithium-ion batteries) as in [Atzeni et al. 2013a], [Wang
et al. 2018]: αi = 0.91/24 which represents leakage rate

of 0.9 over the full day, β
(+)
i = 0.9, β

(−)
i = 1.1, ζi = 4
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kW, smax
i = ζi

8 , qi(0) = ζi
4 . We consider a wind turbine

with a rated power of 35 kW and a rotor diameter of
14 m. Moreover, we arbitrarily set the global constraint
constant at each time slot h, i.e., Lmin(h) = 35 kWh
and Lmax(h) = 55 kWh for all h ∈ {1, . . . , H}. The
pricing scheme its divided in day-time hours, i.e., from
8:00 to 00:00 and night-time, i.e., from 00:00 to 8:00. The
grid coefficients are defined as in [Mohsenian-Rad et al.
2010],[Atzeni et al. 2013a], i.e., Kday = 1.5Knight and
so that to obtain an initial mean price of 0.17 e/KWh
[Eurostat 2017].

5.1 DSM via day-ahead pFB

In the first experiment, we consider a smart grid with
30% active users equally divided in users with only dis-
patchable energy generators, with only storage capabilities
and users with both generation and storage devices. First,
we compare the final scheduling strategies obtained by
Algorithm 1 versus a DSM scheme based on the proximal
decomposition algorithm (PDA), which does not consider
the coupling constraints on the aggregate load in (16),
[Atzeni et al. 2013a, Alg. 1]. Fig. 2 shows the aggregate
load during the day corresponding to the following cases:
(1) no demand-side management algorithm applied (blue
bars), namely, all the users are passive users with energy
consumptions randomly generated according to an average
household energy consumption in the Netherlands [EDSN,
the Dutch Energy Data Hub 2014], (2) PDA is applied (red
bars) and (3) Algorithm 1 is used (yellow bars). The main
outcome is that the storage devices are charged during
the night hours, i.e., when the energy is cheaper, and
discharged at peak hours. Similarly, the energy generated
is dispatched mostly during the day when the price of
energy is the more expensive. We note that the profile
generated by Algorithm 1 is the only that satisfies the
constraint on the aggregate load in (16), thus ensuring
secure grid operation.

5.2 DSM via Shrinking-horizon pFB

After the day-ahead DSM, we implement the real-time
adjustments via Algorithm 2. We consider the same pa-
rameters as above for 10 different random scenarios on the
consumption curves for reproducibility purposes. We com-
pare the scheduling strategies obtained by Algorithm 1,
i.e., x∗

a and by Algorithm 2, i.e., x∗
s with the ideal scenario,

i.e., x∗
o, namely the strategy profile obtained by Algorithm

1 (day-ahead DSM) when the prosumers have a perfect,
predictive knowledge of the future wind generation. The
difference on the aggregate total cost and total savings for
Algorithm 1 and Algorithm 2 with respect to the best-
case scenario is shown in Fig. 4. By implementing the
day-ahead DSM, the final aggregate cost reduces by an
average of 48% compared to the case when no DSM is
implemented. Furthermore, by applying Algorithm 2, the
total aggregate cost can be further reduced of about 5%.

Finally, we study how the percentage of active users in the
grid influences the efficacy of the proposed Algorithm 2
in terms of aggregate load and savings. Fig. 3 illustrates
the aggregate load when there are 15%, 30%, 60% of active
users and the total savings on the price of energy. As
N grows, the increment on the overall production and

storage, allows the load curve to progressively flatten and
has its higher peaks when the energy is cheaper, thus
increasing the savings.

6. CONCLUSION

We presented a DSM problem for smart grid users with
dispathchable energy generation and storage devices where
the energy price varies with the overall aggregate load
and the wind power generation. Based on game theory, we
have developed a real-time DSM method that exploits the
latest forecast of the wind power generation in a shrinking-
horizon fashion. Numerical results conducted in a real-date
scenario show that the proposed real-time DSM algorithm
reduces the individual economic expenses, while satisfying
the constraints set on the aggregative load.

REFERENCES

Atzeni, I., Ordóñez, L.G., Scutari, G., Palomar, D.P., and
Fonollosa, J.R. (2013a). Demand-side management via
distributed energy generation and storage optimization.
IEEE Transactions on Smart Grid, 4(2), 866–876.
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Fig. 2. Comparison on the aggregate load between a static DSM algorithm (PDA) and Algorithm 1.
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