
Fencing off unwanted behavior:
Improving and evaluating the Fency

static analysis tool

Master’s Thesis

Pieter van den Ham

Fencing off unwanted behavior:
Improving and evaluating the Fency

static analysis tool

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Pieter van den Ham
born in Beverwijk, the Netherlands

Programming Languages Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

© 2022 Pieter van den Ham.

Cover picture: A visualization of a Memory Pair Graph.

Fencing off unwanted behavior:
Improving and evaluating the Fency

static analysis tool

Author: Pieter van den Ham
Student id: 5173477

Abstract

Computer architectures with weak memory models, such as ARMv8 and ARMv7,
allow memory accesses to be reordered in many situations. Therefore, weak memory
models may cause a program to exhibit more behavior than a strong memory model,
such as x86. Fency is a static analysis tool that inserts memory fences to ensure that a
program exhibits the same behavior when run on a weaker memory model. However,
Fency lacks important features such as function call support, does not use LLVM’s alias
analysis algorithms, and inserts too many fences when targeting ARMv8.

We expand Fencywith a newdependency tracking analysis, integrate it with LLVM’s
alias analysis infrastructure, and improve its usability. We show that while the new alias
analysis fixes a vital soundness issue, it does not reduce the number of fences Fency
inserts. Additionally, our evaluation of the dependency tracking analysis shows that it
can eliminate some redundant fences. Finally, we run Fency on larger C/C++ programs,
which we made possible by reimplementing Fency as a module pass.

Thesis Committee:

Chair: Prof. dr. K. G. Langendoen, Faculty EEMCS, TU Delft
Committee Member: Dr. S. S. Chakraborty, Faculty EEMCS, TU Delft
Committee Member: D. G. Sprokholt MSc, Faculty EEMCS, TU Delft

p.e.vandenham@student.tudelft.nl

Preface

This master’s thesis marks the end of over a year of research. It has been quite a journey —
onewith longwinding roads, hairpin turns, dead-ends, and a steep incline. Even thoughmy
interest in compilers helped me overcome some of the more minor hurdles, completing this
journey would have been impossible without the support of my supervisors, my girlfriend,
my friends, and my family.

First and foremost, I want to thank my supervisors, Soham Chakraborty and Dennis
Sprokholt, for devoting their time to teaching me an incredibly complex topic. They were
always available for questions, gave excellent suggestions, and helped me shape the direc-
tion of my thesis. They have shown an incredible amount of patience, understanding, and
empathy. I could not have gotten better supervision during this journey. For this, I am for-
ever grateful.

I want to thank Jens andChris for proofreadingmy thesis. Their suggestions ensured that
my ramblings turned into something somewhat comprehensible. Additionally, the many
(beach) volleyball sessions with Jens definitely helped with decompressing after staring at
assembly code all day. Thank you.

I want to thank my girlfriend, parents, brother, and sister for supporting me in this effort
despite not understanding what I was precisely working on due to my failure to explain
it adequately. It is because of their encouragement and motivational speeches that I have
finished the thesis by now.

Finally, I want to thank you, the reader, for reading this thesis. I hope you will find its
content valuable and educational.

Pieter van den Ham
Delft, the Netherlands

November 30, 2022

ii

Contents

Preface ii

Contents iii

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Weak memory models . 1
1.2 M-K robustness . 3
1.3 Fency v1: issues and limitations . 4
1.4 Research question . 6
1.5 Contributions . 6

2 Background 8
2.1 Axiomatic memory models . 8
2.2 M-K Robustness . 14
2.3 Fency . 16

3 Fency v2 21
3.1 Adding instruction dependency analysis . 21
3.2 Improving Fency’s alias analysis . 26
3.3 Supporting function calls . 29

4 Evaluation 31
4.1 Comparing Fency v2 with Fency v1 . 31
4.2 Evaluating the impact of DOB analysis on Fency’s fence placement 34
4.3 Running Fency v2 on C/C++11 programs . 36

5 Related work 38
5.1 Robustness checking and fence insertion tools 38
5.2 Other weak memory model tools . 39
5.3 Fence insertion . 40

6 Conclusion 41
6.1 Future work . 41

Bibliography 43

iii

Contents

A Definitions of the Robustness conditions in Fency 46

B Comparing Fency v1 and Fency v2: full results 48

iv

List of Figures

1.1 A simple concurrent program with shared variables 1
1.2 Three possible executions of the simple concurrent programand their correspond-

ing outcomes . 1
1.3 Execution order with happens-before cycle for r1 = 0 ^ r2 = 0 2
1.4 Two concurrent programs. (a) without Load-Store fences, (b) with Load-Store

fences. 3
1.5 A schematic overview of how Fency enforces x86-ARMv8 robustness. ARMv8

allows more behavior, and thus more potential outcomes. Fency restricts the be-
havior to match the behavior of x86. 4

2.1 Store buffering litmus test (left) and one possible execution (right) 8
2.2 An illustration of the rf, co and fr relations . 10
2.3 Domain and codomain of a binary relation. 10
2.4 This execution is forbidden by the coherence axiom. 11
2.5 This execution is forbidden by the atomicity axiom. 11
2.6 One execution of the load buffering litmus test (left) and the corresponding exe-

cution graph (right) . 12
2.7 One execution of the Independent Reads of Independent Writes (IRIW) litmus

test (top) and the corresponding execution graph (bottom) 14
2.8 All epo edges that are sufficiently ordered according to the SC-x86 robustness con-

dition . 15
2.9 An execution graph for the store buffering litmus test (left), its corresponding

(epo; eco)+ cycle (middle), and the strengthened epo edges (right) 15

B.1 A comparison between Fency v1 and Fency v2 for SC-x86 49
B.2 A comparison between Fency v1 and Fency v2 for SC-ARMv8 50
B.3 A comparison between Fency v1 and Fency v2 for x86-ARMv8 51
B.4 A comparison between Fency v1 and Fency v2 for SC-ARMv7 52
B.5 A comparison between Fency v1 and Fency v2 for x86-ARMv7 53
B.6 A comparison between Fency v1 and Fency v2 for ARMv8-ARMv7 54

v

List of Tables

4.1 The aggregated results across all programs of the difference between Fency v1
and v2. NRP: Number of non-robust pairs. “F”: Number of fences inserted. Each
cell contains the minimum and maximum value. 32

4.2 Highlighted results for SC-x86 . 32
4.3 Highlighted results for SC-ARMv8 . 33
4.4 Highlighted results for SC-ARMv7 . 33
4.5 Highlighted results for x86-ARMv7 . 34
4.6 Results of running Fency with and without DOB analysis. “NRP”: number of

non-robust pairs found. “F”: number of fences inserted. “W”: with DOB-analysis
enabled. “WO”: without DOB-analysis. 35

4.7 Results of running Fency on a subset of the CDS Checker benchmarks 37

vi

Chapter 1

Introduction

Computer architectureswithweak memory models are becoming increasingly prevalent. Weak
memory models allow optimizations that reduce the latency of memory accesses [1]. Well-
known computer architectures that employ a weak memory model are ARMv8 (AArch64)
[2], ARMv7 [3], and Power [4].

The x86 architecture has a strongermemorymodel thanARMv8 [5]. Consequently, a pro-
gram initially written for x86 can unexpectedly exhibit more behavior when run on ARMv8.
This behavior, when unaccounted for, can lead to subtle bugs that may manifest only under
specific circumstances.

1.1 Weak memory models
Traditionally, the behavior of concurrent programs is explained by modeling the execution
as a sequence of interleaving threads. However, computer architectures with weak memory
models exhibit behavior that cannot be explained by simple thread interleaving.

Consider the program in Figure 1.1. This program uses two threads T1 and T2 to write a
value to shared variablesX and Y , after which each thread attempts to read the other thread’s
shared variable. Thus, T1 reads Y into local register r1 and T2 reads X into local register r2.
All shared variables and registers are zero-initialized.

(a) Pseudocode

T1 T2

X Ð 1 Y Ð 1
r1 Ð Y r2 Ð X

(b) Equivalent x86 assembly code

T1 T2

mov [X], 1 mov [Y], 1
mov r1, [Y] mov r2, [X]

Figure 1.1: A simple concurrent program with shared variables

The author of this program might reasonably expect three possible outcomes when run-
ning it. Figure 1.2 shows three possible executions of this example program, resulting in
three distinct outcomes.

(a) Interleaved

X Ð 1
Y Ð 1
r1 Ð Y
r2 Ð X

Results in: r1 = 1 ^ r2 = 1

(b) T2 runs before T1

Y Ð 1
r2 Ð X
X Ð 1
r1 Ð Y

Results in: r1 = 1 ^ r2 = 0

(c) T1 runs before T2

X Ð 1
r1 Ð Y
Y Ð 1
r2 Ð X

Results in: r1 = 0 ^ r2 = 1

Figure 1.2: Three possible executions of the simple concurrent programand their correspond-
ing outcomes

1

1.1. Weak memory models

• r1 = 1 ^ r2 = 1 (Figure 1.2a). This is the outcome we can expect whenever the instruc-
tions of each thread are interleaved.

• r1 = 1^ r2 = 0 (Figure 1.2b). This happens whenever T2 runs to completion before T1.

• r1 = 0 ^ r2 = 1 (Figure 1.2c). This happens whenever T1 runs to completion before T2.

Most importantly, the author of this program may assume r1 = 0 ^ r2 = 0 to be an
impossible outcome. This is a reasonable assumption because this outcome would imply a
happens-before cycle. The author expects X Ð 1 to happen before r1 Ð Y . Since r1 = 0,
r1 Ð Y must have happened before Y Ð 1. However, r2 = 0 at the end of the execution, so
r2 Ð X must have happened before X Ð 1. This is impossible because Y Ð 1 must have
happened before r2 Ð X , which creates a cycle. Figure 1.3 visualizes this cycle.

T1 T2

X Ð 1 Y Ð 1
r1 Ð Y r2 Ð X

Figure 1.3: Execution order with happens-before cycle for r1 = 0 ^ r2 = 0

In reality, there are multiple reasons why outcome r1 = 0 ^ r2 = 0 can happen when a
modern processor runs the program. Two examples are:

• Store buffering and load buffering. An architecture might store writes to a CPU-local
buffer before flushing the entire buffer to RAM. A CPU with store buffers is more per-
formant since writing values to a store buffer is orders of magnitude faster thanwriting
values to RAM immediately. If a processor has this feature and T1 and T2 are scheduled
to run on different CPU cores, write instructions X Ð 1 and Y Ð 1 might end up in a
store buffer which prevent T2 and T1 from reading the updated values. Load buffering
is analogous to store buffering. A CPU that has load-buffering reads from a CPU-local
buffer before accessing RAM.

• Instruction reordering. An architecturemight allow the CPU to execute multiple read-
/write instructions in parallel, execute some instructions speculatively or even swap
instructions altogether to avoid stalling the instruction pipeline while waiting for data
to return from RAM. If the processor that we run our example program on allows out-
of-order execution, it might decide to execute r1 Ð Y and r2 Ð X before X Ð 1 and
Y Ð 1.

A computer architecture may implement one or more of these kinds of optimizations,
making it increasingly harder to reason about concurrentmemory accesses. Therefore, many
hardware designers publish a memory model.

Definition: Amemorymodel (also called a consistencymodel) is a set of guarantees that
a platform provides programmers when working with memory shared between different
threads or processor cores. A memory model defines when twomemory accesses may be
reordered. When two memory accesses are reordered, they appear to have been executed
in a different order than originally defined by the program (the second memory access
“overtakes” the first memory access).

We consider four types of reordering: Store-Store, Store-Load, Load-Store, and Load-
Load. A memory model may allow none, some, or all of these types of reordering. For
example, a load access can overtake an earlier store access in a memory model that allows
Store-Load reordering.

Memory accesses are never allowed to overtake fence instructions. Thus, a program-

2

1.2. M-K robustness

mer or compiler can prevent instruction reordering by inserting a fence between the two
memory accesses. A fence can order one or more of the types of reordering.

Sequential Consistency. One example of a strong memory model is Sequential Con-
sistency (SC). SC never allows any instruction reordering, and it enforces a total order on
the executed instructions. Intuitively, this means a program run on the SC memory model
appears as if it had been run on a single CPU.

x86-TSO. The memorymodel that Intel has implemented for its x86 processors, x86-TSO,
is aweakermemorymodel than SC: x86-TSO allows Store-Load reordering in some instances.
This means that an earlier store can be reorderedwith a later load if the load does not depend
on the store [6].

To improve the performance of the x86 architecture, x86-TSO is a slightly weakened ver-
sion of SC. Even though x86-TSO is weaker than SC, it is still considered a strong memory
model.

ARMv8. ARMv8 is the first weak memory model that we will consider. The ARMv8
architecture allows all four types of memory reordering [2].

ARMv7. ARMv7 is an even weaker architecture than ARMv8. For example, besides
allowing all four types of reordering, it also allows different cores to observe the same writes
in a different order.

1.2 M-K robustness
x86-TSO does not allow Load-Store reordering, but ARMv8 does. This difference in mem-
ory models can result in surprising behavior. Consider the simple concurrent program in
Figure 1.4a.

T1 T2

r1 Ð X r2 Ð Y
Y Ð 1 X Ð 1

(a)

T1 T2

r1 Ð X r2 Ð Y
FLS FLS

Y Ð 1 X Ð 1

(b)

Figure 1.4: Two concurrent programs. (a) without Load-Store fences, (b) with Load-Store
fences.

Two threads, T1 and T2, attempt to read from and subsequently write to two shared vari-
ables X and Y .

Assuming that both X and Y are initialized to 0, after running the program on an x86
system, r1 and r2 can equal 0 or 1, but they can never both equal 1. However, if we run this
program on ARMv8 then, due to ARMv8’s Load-Store reordering, r1 = 1 ^ r2 = 1 is a
possible outcome: the program exhibits more behavior (i.e., more possible outcomes) when
run on ARMv8.

To ensure that the programdoes not exhibitmore behavior onARMv8,wehave to prevent
the Load-Store reordering from happening. The load-store fences ensure r1 = 1 ^ r2 = 1
cannot happen on ARMv8.

Several existing techniques can help identify these subtle differences in programbehavior.
Chakraborty[5] published one such technique: M-K robustness analysis.

Definition: Aprogram isM-K robustwhen running it onweakermemorymodel K yields
the same output as running it on stronger memory model M. The program in Figure 1.4a
is not x86-ARMv8 robust since running it on ARMv8 can result in different output than

3

1.3. Fency v1: issues and limitations

ARMv8

x86 Fency
ARMv8
with
fences

Program domain
(possible outcomes)

Program domain
(after fence insertion)

Figure 1.5: A schematic overview of how Fency enforces x86-ARMv8 robustness. ARMv8
allows more behavior, and thus more potential outcomes. Fency restricts the behavior to
match the behavior of x86.

running it on x86. The program in Figure 1.4b is x86-ARMv8 robust since it will always
yield the same output on both architectures.

Chakraborty built a prototype that implements M-K robustness analysis. This prototype
was dubbed Fency, a static analysis tool built on top of the LLVM compiler framework that
usesM-K robustness analysis to find subtle differences in program behavior. It automatically
inserts the appropriate fences, so the program behaves as if running on memory model M.
See Figure 1.5 for a schematic overview of how Fency impacts the potential outcomes of a
program after inserting fences.

From now on, we will refer to the prototype that Chakraborty built as “Fency v1”.

1.3 Fency v1: issues and limitations
1.3.1 Architectural limitations
In the LLVM framework, there are two types of compiler passes:

• Function passes, which operate on a single function at a time

• Module passes, which operate on an entire module. A module is analogous to a trans-
lation unit in C or C++ [7]. It may contain the definition of one or more functions, and
it may include the declaration of functions defined in other translation units.

Fency v1 is implemented as a function pass. This results in two significant limitations.

The main function always has to be defined last

Fency v1 needs to access the analysis results of earlier functions. However, this is not possible
when using a function pass since a function pass generally should not and cannot access
information about other functions. As a band-aid fix for this issue, Fency v1 uses global state
to access the analysis results of previously defined functions, which implicitly causes it to
rely on the function definition order.

Fency v1 does not implement the fence insertion algorithm as described in [5]

In LLVM, it is only possible to insert instructions into the function on which the function
pass is currently operating. Fency v1 only needs to insert fences between memory access
pairs that are part of a cycle in the Memory Pair Graph [5]. However, because Fency v1 has

4

1.3. Fency v1: issues and limitations

to wait until it encounters the main function before it can the Memory Pair Graph, it cannot
do so. Instead, Fency v1 currently inserts fences between all non-robust pairs, regardless of
whether they are part of a cycle. As a result, Fency v1 may insert more fences in some cases.

To fix these two issues, Fency v1 needs to be reimplemented as a module pass.

1.3.2 Dependency analysis
In some cases, the memory barriers that Fency v1 inserts are redundant because of certain
ordering guarantees by the architecture. Consider the followingARMv8 assembly code snip-
pet:

1 ldr w8, [x8] ; load data from location [x8] into register w8
2 dmb ishld ; fence
3 str w8, [x9] ; store data from register w8 into location [x9]

In this short example, the second store instruction depends on the data loaded by the
first load instruction (via the w8 register). This is significant because the ARMv8 architec-
ture never reorders two instructions with a data dependency [2]. Unfortunately, Fency v1
lacks this knowledge about dependencies, and thus it still inserts a fence between these two
instructions. There are approximately 8 similar situations where dependency analysis could
lead to fewer fences.

1.3.3 Alias analysis
How many fences Fency v1 inserts largely depends on the accuracy of the instruction alias
analysis implementation. An instruction alias analysis algorithmattempts to determinewhether
two instructions access the same memory location. The accuracy of this algorithm directly
impacts the underlying data structure that Fency v1 uses for itsM-K robustness analysis. The
alias analysis implementation is also essential in ensuring that Fency v1 is sound.

A sound alias analysis implementation is conservative: it must default to the most con-
servative result when it does not knowwhether an instruction points to a particular memory
location. For example, when checking whether two instructions potentially access the same
location, an alias analysis algorithm must default to “yes” if it cannot prove that the two
instructions never alias. This may be the case in the following C++ snippet:

1 void threadA(void *arg) {
2 std::atomic<int> *x = static_cast<std::atomic<int>*>(arg);
3 x->store(42);
4 }

In this case, alias analysis may not be able to determine where the arg variable originates
from. Therefore, when asked whether x->store(42) may access the same memory loca-
tion as another memory access, the alias analysis algorithm must conservatively decide that
this may be the case.

Similarly, when asked whether two instructions always access the same location, a sound
alias analysis algorithm must report “no” if the instructions only sometimes access the same
location.

Unfortunately, Fency’s current alias analysis implementation is unsound: it is not conser-
vative when it cannot find the exact memory location that an instruction accesses. Besides
fixing this soundness issue, a more accurate alias analysis implementation might decrease
the size of Fency’s underlying data structure and thereby improve its runtime.

1.3.4 Function call support
As Fency v1 is still a prototype implementation, it lacks support for function calls. Conse-
quently, every function call must be inlined in the source code. Not only is it impossible

5

1.4. Research question

to inline every function call for some programs, such as recursive programs, but it is also a
significant barrier when attempting to use Fency v1 on larger programs.

Consider the following C++ snippet:
1 std::atomic<int> X;
2 std::atomic<int> Y;
3
4 void threadA(void *arg) {
5 int r = f();
6 g(r);
7 }
8
9 int f() {

10 return X.load();
11 }
12
13 void g(int a) {
14 Y.store(a);
15 }

Currently, Fency v1 will ignore the function calls to f and g, even though those functions
contain memory accesses to shared variables. Fency v1 must include the called functions in
its control flow graph to properly support function calls.

Including multiple functions in the control flow graph leads to an issue, however: Fency
v1will need to support inter-procedural reachability analysis since it needs to checkwhether
two instructions can reach each other.

1.4 Research question
We will attempt to answer the following research question:

How does dependency-ordered before (DOB) analysis and alias analysis affect Fency’s
ability to insert fences?

1.5 Contributions
To answer the research question, we will reimplement Fency. This new version, Fency v2,
fixes the issues and limitations described earlier, implements a new DOB analysis pass and
implements a new alias analysis algorithm. To summarize, this thesis makes the following
contributions:

• We fix some limitations by reimplementing Fency as a module pass

• We reduce the number of inserted fences for ARMv8 by implementing dependency-
ordered-before analysis

• We improve Fency’s correctness and runtime by replacing the old alias analysis imple-
mentation with a more accurate implementation

– The new implementation fixes an important soundness issue in Fency v1
– The new implementation reduces the size of the underlying data structure for

some programs

• We improve Fency’s usability by implementing function call support

6

1.5. Contributions

– This enables us to run Fency on larger C and C++ programs (the CDS Checker
benchmarks [8])

Chapter 2 provides some background knowledge on memory models, M-K robustness
analysis, the LLVM compiler framework, and Fency’s inner workings. Chapter 3 describes
the improvements that have been made to Fency. Chapter 4 evaluates these improvements,
Chapter 5 discusses related work and Chapter 6 contains a conclusion and final remarks.

7

Chapter 2

Background

Section 2.1 introduces the theory that underpins the Fency static analysis tool: axiomatic
memory models. Section 2.2 then formalizes M-K robustness. Finally, Section 2.3 discusses
how M-K robustness is implemented in Fency.

2.1 Axiomatic memory models
The concurrency semantics of x86 and ARM are formalized by axiomatic memory models[9, 10,
11, 12, 13, 14].

We can build an execution graph from the program in Figure 2.1a and the outcome r1 = 0^

r2 = 0 by noticing that the reads must have obtained their values from the initializing writes
(all shared variables are implicitly initialized to zero). The nodes in this graph represent a
particular memory event, such as a Read or aWrite. The edges define some relation between
the memory events. Note how the graph contains a cycle: W(X, 1) po

Ñ R(Y, 0) fr
Ñ W(Y, 1) po

Ñ

R(X, 0) fr
Ñ W(X, 1) As we will see later, SC does not allow any cycles in its executions; thus

this particular execution is not allowed by SC.

2.1.1 Motivation
A formal specification for a hardware memory model allows engineers to verify whether
a particular execution of a program is possible on physical hardware. Before these formal
models were developed, hardware designers often published informal models of their ar-
chitectures. For example, Intel originally used litmus tests, such as the one in Figure 2.1a,
to describe to x86 memory model. However, specifying an architecture in litmus tests was

(a) Pseudocode

T1 T2

X Ð 1 Y Ð 1
r1 Ð Y r2 Ð X

Outcome: r1 = 0 ^ r2 = 0

(b) Execution graph

[W(X, 0), W(Y, 0)]

W(X, 1) W(Y, 1)

R(Y, 0) R(X, 0)

po po

po po

rf rf

fr fr

Figure 2.1: Store buffering litmus test (left) and one possible execution (right)

8

2.1. Axiomatic memory models

found to be a non-optimal solution since the litmus tests are sometimes incomplete, ambigu-
ous, or even inaccurate [6, 15].

2.1.2 Definitions
Events

Memory events capture the memory operations that happen during a particular execution.
Each event has a label, such as R for read events and W for write events. Some events are
parameterized with an associated memory location and a value.

For example, R(X, 0) denotes a read event where the value 0 was read from location X.
W(X, 1) denotes a write event where the value 1 was written to location X. Ffull describes a
full fence.

Relations

A relation captures certain information between events. Edges in the execution graph repre-
sent relations.

For example, the po relation captures the syntactic order of two memory events. In other
words, W po

Ñ R captures the order in which the two events were defined in the original
program source.

To describe an axiomatic model, we use several properties that we can derive from a
binary relation. Let R Ď E ˆ E describe a binary relation R:

• dom(R) refers to its domain and codom(R) refers to its range. In other words, dom(R) Ď

E is the “left-hand side” or the origin of the arrow, and codom(R) Ď E is the “right-hand
side” or the target of the arrow.

• R´1 is the inverse closure of R, i.e. the set of all pairs (E2,E1) such that (E1,E2) is an
element of R.

• R? is the reflexive closure of R. Formally, R? = R Y (e, e) : e P [E].

• R+ is the transitive closure of R. To create a transitive relation from R, wemust add (a, c)
to R if R contains (a,b) and (b, c), where a,b, c P [E].

• R˚ is the reflexive-transitive closure of R. The reflexive-transitive closure must satisfy
R Ď R˚ where R˚ is both reflexive and transitive.

• Rℓ captures the subset of R related pairs that access the samememory location. In other
words, ifW(X, 1) R

Ñ R(X, 0), then (W(X, 1),R(X, 0)) P Rℓ, because they both access the
same location X.

• R‰ℓ is the subset of R where each pair accesses different memory locations.

• imm(R) defines the immediate R relation.

• [E] is the identity relation on set E.

• R;P is the composition of relations R and relation P. For example, composite relation
[W]; poℓ; [W] captures all same-location po-related write events.

We define two more relations aside from po:

• rf (read-from) relates a write event to a read event. It describes how the read event
obtained its value. In Figure 2.1b, W(X, 0)

rf
Ñ R(X, 0) describes how this particular

read event obtained its value.

9

2.1. Axiomatic memory models

W(X, 1)

W(X, 2)

W(X, 3)

W(X, 3)

R(X, 1)

co

co

co

rf

fr

Figure 2.2: An illustration of the rf, co
and fr relations

R(X, 0)

W(X, 1)

dom(rmw)

codom(rmw)
rmw

Figure 2.3: Domain and codomain of a
binary relation.

• co (coherence-order) relates two same-locationwrite events, such asW(X, 1)
co
Ñ W(X, 2).

From these two relations we can derive several other commonly-used relations:

• fr (from-read) relates a read event R(X, i) to a same-location write event Wafter(X, j)

if W(X, i)
rf
Ñ R(X, i) and W(X, i)

co
Ñ Wafter(X, j). In this case, Wafter hit the memory

after the write from which R obtained its value. Formally, fr fi rf´1; co. Figure 2.2
illustrates the rf, fr and co relations.

• rmw (read-modify-write1) relates a read event to a po-immediate same-location write
event: rmw fi imm(po) X ([R] ˆ [W])ℓ.

It is helpful to differentiate normal loads and stores from rmw loads and stores. Therefore,
we define the set of loads and the set of stores as:

Ld fi Rzdom(rmw) St fi Wzcodom(rmw)

Note: dom(rmw) and codom(rmw) refer to the set of rmw related reads and writes respec-
tively (see Figure 2.3).

A read-modify-update operation can fail. A failed RMW generates an Ld event.
We also differentiate between external (inter-thread) and internal (intra-thread) rela-

tions for rf, fr and co:

rfe firfzpo coe ficozpo fre fifrzpo
rfi firf X po coi fico X po fri fifr X po

We can now define eco (extended-coherence-order) as eco fi (rfe Y coe Y fre)+. This
relation captures all same-location inter-thread communication.

Axioms

An axiomatic model defines one or more axioms that an execution graph must satisfy to be
valid. All the models that Fency uses include at least the coherence and atomicity axioms.

Coherence. The coherence axiom asserts that there exists an order inwhich all write events
happened (i.e., it enforces a total order). This axiom prevents causal loops, such as the cycle
in Figure 2.4.

acyclic(poℓ Y rf Y co Y fr) (coherence)

1An RMW (also referred to as atomic compare-and-swap) operation atomically compares a value to an ex-
pected value and writes a new value if they match. An RMW operation will fail if the read value does not match
the expected value.

10

2.1. Axiomatic memory models

W(X, 1)

W(X, 2)

W(X, 3)

co

co
co

Figure 2.4: This execution is forbidden
by the coherence axiom.

R(X, 1)

W(X, 3)

W(X, 2)rmw

fre

coe

Figure 2.5: This execution is forbidden
by the atomicity axiom.

Atomicity. The atomicity axiom asserts that rmw operations are atomic. An execution
would violate atomicity if there is an intermediate write between the rmw related read and
write events. Figure 2.5 shows an execution that is forbidden by the atomicity axiom.

rmw X (fre; coe) = H (atomicity)

2.1.3 An axiomatic model for Sequential Consistency
The axiomatic model for sequential consistency consists of two axioms:

acyclic(po Y rf Y co Y fr) (sc)

rmw X (fre; coe) = H (atomicity)

Since poℓ Ď po, the SC axiom also encompasses the coherence axiom.

Example

Consider again the store buffering litmus test from Figure 2.1b. We can now see that, because
the axiomatic model for Sequential Consistency does not allow (rf Y fr Y po) cycles, this
execution is not allowed.

2.1.4 An axiomatic model for x86-TSO
Relations

For the x86-TSO model we define three additional relations:

• xppo – x86 never reorders two write-write, read-write or read-read events. xppo incor-
porates this into ourmodel by relating twowrite events, two read events or a read event
to a write event, where both events are also related by po. xppo does not relate a write
to a po-subsequent read event since x86 does allow reordering write-reads.

xppo fi ((W ˆ W) Y (R ˆ W) Y (R ˆ R)) X po

• implied – implied encodes that both a rmw and an F act as a full fence in the x86 archi-
tecture. dom(rmw) and codom(rmw) refer to the read and respectively the write event
related by a rmw.

implied fi po; [dom(rmw) Y F] Y [codom(rmw) Y F]; po

• xhb – xhb combines the relations that order two memory accesses in x86.

xhb fi xppo Y implied Y rfe Y fr Y co

11

2.1. Axiomatic memory models

(a) Pseudocode

T1 T2

r1 Ð X r2 Ð Y
Y Ð 1 X Ð 1

Outcome: r1 = 1 ^ r2 = 1

(b) Execution graph

[W(X, 0), W(Y, 0)]

R(X, 1) R(Y, 1)

W(Y, 1) W(X, 1)

po po

po porf rf

Figure 2.6: One execution of the load buffering litmus test (left) and the corresponding exe-
cution graph (right)

Axioms

We can now define the x86-TSO model as follows:

acyclic(poℓ Y rf Y fr Y co) (sc-per-loc)

rmw X (fre; coe) = H (atomicity)

acyclic(xhb) (GHB)

Example

Consider the load-buffering litmus test in Figure 2.6a.
Note how R(X, 1)

po
Ñ W(Y, 1)

rf
Ñ R(Y, 1) po

Ñ W(X, 1)
rf
Ñ R(X, 1) creates a cycle. Because

R po
Ñ W Ď xppo (read accesses are never reordered with subsequent write accesses in x86),

we can conclude that this execution is not allowed by x86-TSO due to the GHB axiom.

2.1.5 An axiomatic model for ARMv8
Events

In addition to a Read, Write and Fence event, we define the following events for the ARMv8
model:

• Store-release events L(x, v) Ď W to model store-release instructions such as stlr

• Load-acquire events A(x, v) Ď R to model load-acquire instructions such as ldar

• AcquirePC events Q(x, v) Ď R to model ARM’s ldapr instruction

• Store barrier events FST for dmb st instructions

• Load barrier events FLD for dmb ld instructions

Relations

In theARMv8model, we introduce the notion of dependencies betweenmemory access events.

• data Ď R ˆ W relates a read event to a write event if there is a data dependency from
the read operation to the write operation.

12

2.1. Axiomatic memory models

• addr Ď R ˆ (R Y W) relates a read event to a read or write event if there is an address
dependency from the read operation to the subsequent read or write operation.

• ctrl Ď R ˆ E relates a read operation to a subsequent memory access event if there is a
control dependency from the read operation to the subsequent memory access event

aob (atomic-orderded-by) captures how a rmw orders two memory accesses. Two ac-
cesses are also ordered when an acquire or acquirePC operation reads its value from the
write operation of the rmw.

aob fi rmw Y [codom(rmw)]; rfi; [A Y Q]

dob (dependency-ordered-before) captures the various ways in which a dependency be-
tween two instructions causes them to be ordered.

dob fiaddr Y data Y ctrl; [W]

Y (ctrl Y (addr; po)); [ISB]; po; [R]
Y addr; po; [W] Y (ctrl Y data); coi
Y (addr Y data); rfi

bob (barrier-ordered-by) relation captures how a fence orders two instructions.

bob fipo; [F]; po
Y [L]; po; [A]

Y [R]; po; [FLD]; po
Y [A Y Q]; po
Y [W]; po; [FST]; po; [W]

Y po; [L]
Y po; [L]; coi

Finally, obs Ď eco (observed-by) captures inter-thread communication.
These relations are aggregated in the ordered-before ob fi (obsYdobYaobYbob)+ relation.

Constraints

The ARMv8 model has the following constraints:

acyclic(poℓ Y rf Y fr Y co) (sc-per-loc)

rmw X (fre; coe) = H (atomicity)

irreflexive(ob) (ordered-before)

Example

Consider the execution of a litmus test in Figure 2.7. In this execution, there is a cycle
W(X[1], 1)

rf
Ñ R(X[1], 1)

addr
Ñ R(Y [1], 0)

fr
Ñ W(Y [1], 1)

rf
Ñ R(Y [1], 1)

addr
Ñ R(X[1], 0)

fr
Ñ

W(X[1], 1). This cycle violates the (ordered-before) constraint of the axiomatic model - and
thus this execution is not allowed in ARMv8.

13

2.2. M-K Robustness

(a) Pseudocode

T1 T2 T3 T4

X[1] = 1 a = X[1] c = Y [1] Y [1] = 1
b = Y [a] d = X[c]

Outcome: a = c = 1 ^ b = d = 0

(b) Execution graph

[W(X[1], 0), W(Y[1], 0)]

W(X[1], 1) R(X[1], 1)

R(Y[1], 0)

R(Y[1], 1)

R(X[1], 0)

W(Y[1], 1)

po po po po

addr addr

rf rfrf rf

frfr

Figure 2.7: One execution of the Independent Reads of Independent Writes (IRIW) litmus
test (top) and the corresponding execution graph (bottom)

2.1.6 An axiomatic model for ARMv7
The axiomatic model that Fency uses for ARMv7 can be found in Chakraborty’s paper [5]. In
ARMv7, memory accesses consist of an init and commit step [12, 5] Even though the ARMv7
axiomaticmodel does define dependencies, they are not sufficient to enforceM-K robustness.

2.2 M-K Robustness
This section is based off of research performed by Chakraborty [5]. We will explore how
M-K robustness ensures that a program behaves as if it were run on stronger memory model
M when run on weaker memory model K.

Robustness cycles

Whenever a program violates M-K robustness then one of its execution graphs will contain
a cycle. This cycle must contain a po edge. If it would not have a po edge, it would mean
that the cycle consists of rfe, fre and coe edges. However, this is impossible since such a cycle
would violate coherence (Equation coherence). All models that we are considering satisfy
the coherence axiom. Therefore, a cycle that violates M-K robustness always contains po
edges.

Wedenote the po edges that can participate in a robustness cycle as epo (external program-
order). Intuitively, epo edges relate two po-related events that “participate in external com-
munication”.

epo fi po X (codom(eco) ˆ dom(eco)) (external program-order)

14

2.2. M-K Robustness

M-K robustness is violated when there is a cycle of (epo; eco)+ edges, where one or more
epo edges are not M-K robust. An M-K robustness condition determines when an epo edge is
M-K robust.

SC-x86 robustness

A program that is SC-x86 robust exhibits SC behavior even when executed on the x86 archi-
tecture. To check whether a program is SC-x86 robust, we need to find all (epo; eco)+ cycles
(if any) and look at its epo edges.

For SC-x86 robustness, an epo edge is considered robust when it satisfies the SC-x86 ro-
bustness condition. The SC-x86 robustness condition is defined as [5]:

xppo Y poℓ Y implied; po? (SC-x86 robustness)

Figure 2.8 illustrates all the possible robust epo edges that can be derived from the condi-
tion above. If an epo edge matches one of the pictured cases, then the epo edge is considered
SC-x86 robust.

(xppo)
W

W

epo

R

W

epo

R

R

epo

(poℓ)
W(X)

R(X)

epo

(implied; po?)
E

R

W

E

rmw

po

po

epo

R

W

E

rmw

epo

F

E

epo

E

F

epo

E

F

E

po

po
epo

Figure 2.8: All epo edges that are sufficiently ordered according to the SC-x86 robustness
condition

Conversely, if the epo edge is not robust, we need to “strengthen” it by inserting a fence.
Consider the execution graph of the store buffering litmus test in Figure 2.9.

[W(X, 0), W(Y, 0)]

W(X, 1) W(Y, 1)

R(Y, 0) R(X, 0)

po po

po po

rf rf

fre fre

[W(X, 0), W(Y, 0)]

W(X, 1) W(Y, 1)

R(Y, 0) R(X, 0)

po po

epo epoeco eco

[W(X, 0), W(Y, 0)]

W(X, 1) W(Y, 1)

R(Y, 0) R(X, 0)

F F

po po

po po

po poepo epoeco eco

Figure 2.9: An execution graph for the store buffering litmus test (left), its corresponding
(epo; eco)+ cycle (middle), and the strengthened epo edges (right)

The graph on the left depicts the original execution graph. Whenwe replace the fre edges
with eco edges, we can see an (epo; eco)+ cycle emerge. This cycle contains two epo edges:

• W(X, 1)
epo
Ñ R(Y, 0)

• W(Y, 1)
epo
Ñ R(X, 0)

15

2.3. Fency

Neither of these epo edges matches the robustness condition (poℓ does not apply because
they are not same-location write-read pairs). Therefore, this program is not SC-x86 robust.

Figure 2.9 (right) depicts how inserting a fence strengthens the epo edge. By inserting
the fence between thewrite-read pairs, the epo edges satisfy implied; po?. The program is now
SC-x86 robust.

SC-ARMv8 robustness

The SC-ARMv8 robustness condition can be defined as [5]:

poℓ Y (aob Y dob Y bob)+ (SC-ARMv8 robustness)

Similarly towhenwe had to ensure SC-x86 robustness earlier, we have to insert two fences
into the store buffering program in Figure 2.9 to strengthen its epo edges. With the fences
inserted, the epo edges now satisfy bob (barrier-ordered-by); thus, the resulting program is
also SC-ARMv8 robust.

x86-ARMv8 robustness

The x86-ARMv8 robustness condition is very similar to the SC-ARMv8 robustness condition.
However, x86 allows write-read reordering [6]. Therefore, write-read pairs are x86-ARMv8
robust, even though they are not SC-ARMv8 robust.

This results in the following robustness condition for x86-ARMv8 [5]:

poℓ Y (aob Y dob Y bob)+ Y wr (x86-ARMv8 robustness)

In this equation, wr is a special write-read relation, defined as:

wr fi ([W]; po‰ℓ; [R])z(po; rmw; po)

wr captures po‰ℓ-related write-read pairs and eliminates any write-reads pairs that are
also rmw-related.

If we consider the store buffering litmus test in Figure 2.9, we can see that the epo edges
satisfy wr. Therefore, the execution is already x86-ARMv8 robust, andwe do not have to insert
any fences.

However, the execution of the load buffering litmus test in Figure 2.6 is not x86-ARMv8
robust: none of the epo edges match the x86-ARMv8 robustness condition and are thus not
x86-ARMv8 robust. To make the load buffering litmus test x86-ARMv8 robust, we have to
strengthen the epo edges by inserting two fences.

M-ARMv7 robustness

Fency supports SC-ARMv7, x86-ARMv7, and ARMv8-ARMv7 robustness. The robustness
condition of these robustness configurations, along with some examples, can be found in [5].

2.3 Fency
To integrate M-K robustness checking into a static analysis tool, we have to perform four
distinct steps [5].

The first step is collecting and constructing all concurrent control flow graphs. There are
multiple approaches that we can take to do this. Fency uses a simple, naive approach where
it analyzes the main function body for thread entry points.

The second step is constructing the memory pair graph (MPG). To reduce its size, Fency
omits pairs from the MPG that do not have a conflicting access.

16

2.3. Fency

The third step is finding non-robust memory access pairs. For every pair that is part of a
cycle in the memory pair graph, Fency checks whether the pair is ordered according to the
robustness condition of the desired M-K robustness.

The final step is enforcing the desired M-K robustness. For every unordered pair that
Fency found, it tries to construct an appropriate fence to order the pair.

The following sections will describe this process in more detail.

2.3.1 Helper functions

1 infix fn mustAlias(i: MemoryAccess, j: MemoryAccess) -> bool;

mustAlias is an infix helper function that returns whether two memory accesses always
access the same memory location. If i and j only sometimes access the same location, or if
Fency cannot know which locations will be accessed, this function will return false.

1 infix fn mayAlias(i: MemoryAccess, j: MemoryAccess) -> bool;

mayAlias is an infix function that checks whether two memory accesses potentially access
the same location. If two memory accesses only sometimes access the same variable, this
functionmust return true. Similarly, if Fency cannot knowwhich locations will be accessed,
this function must return false.

1 infix fn canPotentiallyReachWithoutPassingThrough(
2 i: MemoryAccess,
3 j: MemoryAccess,
4 Fences: List<MemoryAccess>
5) -> bool;

This function tries to find a path from i to j without passing through any of the memory
accesses in Fences. This function is conservative: if it cannot prove the absence of a path, it
will return true.

1 infix fn canPotentiallyReach(i: MemoryAccess, j: MemoryAccess) -> bool:
2 return canPotentiallyReachWithoutPassingThrough(i, j, [])

canPotentiallyReach checks whether there potentially is a control flow path from mem-
ory access i to j. This function defers to canPotentiallyReachWithoutPassingTh-
rough for the actual analysis.

1 infix fn alwaysPassesThroughAnyOf((i, j): (MemoryAccess, MemoryAccess),
2 Fences: List<MemoryAccess>) -> bool:
3 return !canPotentiallyReachWithoutPassingThrough(i, j, Fences)

alwaysPassesThroughAnyOf checks whether there is a fence in between a pair of mem-
ory accesses. This function must also be conservative. If Fency cannot prove whether a fence
does or does not separate the pair, this function must return false. This function is im-
plemented by checking whether there is a path from i to j that does not pass through any
fences. If this is the case, then alwaysPassesThroughAnyOfmust return false.

1 infix fn neverPassesThroughAnyOf((i, j): (MemoryAccess, MemoryAccess),
2 Fences: List<MemoryAccess>) -> bool;
3 for Fence in Fences:
4 if (i canPotentiallyReach Fence) && (Fence canPotentiallyReach j):

17

2.3. Fency

5 return false
6
7 return true

neverPassesThroughAnyOf attempts to prove that there are no code paths where a fence
separates i and j.

2.3.2 Collecting and constructing all concurrent Control Flow Graphs
Before we can apply robustness analysis, we first need to identify all concurrently running
functions. Fency identifies these functions by scanning the LLVM IR module for calls to
pthread_create. The third argument to pthread_create specifies the thread entry point.

After identifying a thread entry point, we can recursively construct concurrent Control
Flow Graphs (CFG).

Each control flow graph contains zero or more memory access instructions. By checking
whether one memory access can reach another, we can find all potential epo edges (memory
access pairs).

The following pseudocode function describes how Fency collects all potential epo edges:
1 fn findMemoryAccessPairs(CFG) -> Set<(MemoryAccess, MemoryAccess)>:
2 MemoryAccessPairs = Set()
3
4 for MemoryAccess1 in CFG:
5 for MemoryAccess2 in CFG:
6 if MemoryAccess1 == MemoryAccess2:
7 continue
8
9 if MemoryAccess1 canPotentiallyReach MemoryAccess2:

10 MemoryAccessPairs += (MemoryAccess1, MemoryAccess2)
11
12 return MemoryAccessPairs

It includes any memory access pair that can potentially reach one another. Since canPoten-
tiallyReach gives us a conservative over-approximation, we are sure to include all epo
edges that might violate M-K robustness.

2.3.3 Constructing the Memory Pair Graph
During this step, Fency attempts to capture all potential eco edges. The Memory Pair Graph
(MPG) is a graph where each node is a memory access pair, and each edge is a potential eco
edge.

1 fn constructMPG(CFGs) -> MemoryPairGraph:
2 Nodes: Set<(MemoryAccess, MemoryAccess)> = Set()
3 for CFG in CFGs:
4 for Pair in findMemoryAccessPairs(CFG):
5 if hasConflictingAccess(CFGs, Pair):
6 Nodes += Pair
7
8 Edges = {}
9 for Pair1@(A, B) in Nodes:

10 for Pair2@(C, D) in Nodes:
11 if Pair1.CFG != Pair2.CFG && B mayAlias C:
12 Edges[Pair1] += Pair2
13
14 return MemoryPairGraph(Nodes, Edges)

18

2.3. Fency

We can safely ignore memory accesses that do not conflict with other memory accesses
because these accesses do not create eco relations. A read conflicts with a same-location
write, and a write conflicts with a same-location read. As with canPotentiallyReach,
it is crucial for hasConflictingAccess to be conservative - i.e., assume that a memory
access has a conflicting access unless proven otherwise.

2.3.4 Finding non-robust memory access pairs
After constructing the Memory Pair Graph, Fency attempts to find all non-robust pairs that
violate M-K robustness.

1 fn findNonRobustPairs(MPG: MemoryPairGraph,
2 Robust: ((MemoryAccess, MemoryAccess)) -> bool)
3 -> List<(MemoryAccess, MemoryAccess)>:
4 NonRobustPairs = Set()
5 for Pair in MPG:
6 if onCycle(Pair) and !Robust(Pair):
7 NonRobustPairs += Pair
8
9 return NonRobustPairs

onCycle checks whether a pair is part of a (epo; eco)+ cycle. The Robust parameter is a
function that decides whether a pair is M-K robust. The implementation of this robustness
condition will be explained further in the next section.

2.3.5 Implementing the Robustness condition
The Robustness condition defines when an unordered memory access pair violates M-K ro-
bustness. Conceptually, the Robustness condition can be defined as:

1 fn isRobust(M: MemoryModel, K: MemoryModel,
2 Pair: (MemoryAccess, MemoryAccess)):
3 return isOrdered(K, Pair) || !isOrdered(M, Pair))

Intuitively, this means that a memory access pair is M-K robust if either:

• The pair is already ordered by weaker memory model K

• The pair is also unordered in stronger memory model M

For example, a write-read pair is x86-ARMv8 robust because, while this particular pair
is unordered in ARMv8, it is also unordered in x86.

The SC-x86 Robustness condition can be expressed as follows:
1 fn x86::isSCRobust((i, j): (MemoryAccess, MemoryAccess)) -> bool:
2 Fences = CFG.findAll(X86::MFENCE)
3
4 return isRead(i) || isWrite(j)
5 || (i mustAlias j)
6 || ((i, j) alwaysPassesThroughAnyOf Fences)

In x86, all access pairs except write-read pairs are ordered. Write-read pairs that access
the same memory or are fenced off are also ordered.

Note how the pseudocode is almost a direct translation of the robustness condition given
in Section 2.2.

The other five robustness conditions for the remaining M-K robustness analyses can be
found in Appendix A.

19

2.3. Fency

2.3.6 Enforcing M-K robustness
Now that we have identified all non-robust memory access pairs, we now know where we
need to insert fences to restore M-K robustness.

1 fn restoreMKRobustness(NonRobustPairs: Set<MemoryAccessPair>,
2 Robust: ((MemoryAccess, MemoryAccess)) -> bool):
3 for Pair in NonRobustPairs:
4 if !Robust(Pair):
5 Fence = createAppropriateFence(K, Pair)
6 Fence.insertBetween(Pair)

This simple algorithm ensures that all non-robust pairs are adequately ordered by a fence.
We repeat the Robust condition here to check that the pair is still non-robust (it may have
been ordered by a fence inserted in a previous iteration).

createAppropriateFence depends on the target architecture. It is roughly defined
as:

1 fn createAppropriateFence(K: Arch, (i, j): MemoryAccessPair) -> Fence:
2 match (K) {
3 x86 => return X86::MFENCE,
4 ARMv7 => return ARMv7::DMB,
5 ARMv8 => {
6 if isWrite(i) && isRead(j):
7 return ARMv8::DMB_ISH
8 if isWrite(i) && isWrite(j):
9 return ARMv8::DMB_ISHST

10 else:
11 return ARMv8::DMB_ISHLD
12 }
13 }

For x86 andARMv7,we always insertMFENCE andDMB barriers, respectively. ForARMv8,
we can check the type ofmemory accessesweneed to order to determine themost lightweight
fence possible. To order two writes, we only need a store fence (dmb ishst). We return a
load fence to order two reads or a read-write (dmb ishld). For a write-read, we need a full
fence (dmb ish).

This algorithm does not attempt to optimize fence placement: the actual implementation
Fency uses always places a fence just before the second memory access of a pair, which will
undoubtedly result in sub-optimal fence placement. It is possible to implement an algorithm
that attempts to find a better position for the fences, as has been done by, for example, Boua-
jjani et al. in [16].

20

Chapter 3

Fency v2

We made numerous improvements to the original implementation of Fency.
The first improvement focuses specifically on the ARMv8 platform. Fency did not track

instruction dependencies yet. By implementing a compiler pass that tracks these depen-
dencies, we can prevent some unnecessary fences whenever we are targeting the ARMv8
platform.

Another improvement thatwe implemented in Fency 2.0 is alias analysis. LLVMprovides
existing alias analysis algorithms that we can leverage to prove that instructions never alias.

The third improvement is that we implemented function call support. This impacted
two areas within Fency: building the control flow graph and the reachability analysis. The
control flow graph has to be extended recursively with any functions that are called from the
thread entry point. Whenever two instructions reside in different functions, we use LLVM’s
call graph to check whether one function can be reached from another.

The final improvement extends Fency’s usability. In the first version of Fency, all func-
tions had to be defined before the main function. By switching to a ModulePass instead of a
FunctionPass we could rid Fency of this restriction.

3.1 Adding instruction dependency analysis
Before we look at how dependency tracking was implemented in Fency, we will look at a
small example where Fency inserted unnecessary fences.

Recall that the dob relation is defined as:

dob fiaddr Y data Y ctrl; [W]

Y (ctrl Y (addr; po)); [ISB]; po; [R]
Y addr; po; [W] Y (ctrl Y data); coi
Y (addr Y data); rfi

Two terms in this definition are problematic when implementing static analysis: rfi and
coi. These relations are established at runtime and cannot possibly be known without exe-
cuting a program.

Therefore, instead of (addrYdata); rfiwewill use (addrYdata); lrs). lrs (local-read-successor)
was coined by Alglave et al. in [14]. It fully replaces rfi in their axiomatic model because it
fits better with their “per-thread reasoning”. We will look at lrs more closely later in this
section.

Unfortunately, there is no similar solution for coi. Since coi is not statically analyzable, we
leave it out of the dependency tracking implementation.

We will now look at the different terms of the dob relation.

21

3.1. Adding instruction dependency analysis

data – data dependencies

Data dependencies, denoted by the data relation, are inter-instruction dependencies where
the second instruction of two po-related instructions depends on data computed by the first
instruction. The dependee is always a store instruction, while the dependent is always a load
instruction.

A simple example of a data dependency is a load instruction immediately followed by
a store instruction that stores the loaded value back into memory. We will use a similar
notation to what LLVM uses for its MIR (Machine IR). While Fency runs, MIR is still in static
single-assignment form (SSA). The registers in the following examples are virtual registers.

In this simple example, there is a data dependency from the load to the store instruction.

1 $r2 = ldr [$r1]
2 str $r2, [$r3]

Data dependencies are carried through any intermediate instructions, except for other
memory operations [12], as is the case in the following ARMv8 assembly snippet:

1 $r2 = ldr [$r1]
2 $r3 = eor $r2, $r2
3 $r4 = add $r2, $r3
4 str $r4, [$r5]

If we annotate this snippet with po edges and a data edge, this snippet will look like this:

$r2 = ldr [$r1]

$r3 = eor $r2, $r2

$r4 = add $r2, $r3

str $r3, [$r4]

po

po

po

data

Even though the final store instructiondoes not directlydependon the earlier load, ARMv8
still considers the store to be dependent on the load.

Therefore, to support situations where a store operation indirectly depends on a load,
we have to search through the def-use chain. Registers occurring on the left-hand side of the
equals-sign are register definitions. Registers on the right-hand side of an assignment are
register uses.

$r2 = ldr [$r1]
$r3 = eor $r2 , $r2
$r4 = and $r2 , $r3

str $r4 , [$r5]

Definitions Uses

LLVM keeps track of all register definitions and uses. The result is a graph-like structure.

22

3.1. Adding instruction dependency analysis

$r2 = ldr [$r1]

$r3 = eor $r2, $r2

$r4 = add $r2, $r3

str $r4, [$r5]

Each edge in this def-use chain originates at a register definition and points to a use of
the defined register.

To find a data dependency, we have to traverse the def-use chain backwards, starting from
the data operand of the store instruction ($r4).

Note that a single store instruction can depend on multiple load instructions, as in the
following example.

1 $r2 = ldr [$r1]
2 $r4 = ldr [$r3]
3 $r5 = add $r2, $r4
4 str $r5, [$r6]

In this example, the store instruction depends on both load instructions. However, the
two load instructions do not depend on one another - they can still be reordered.

Collecting all data dependencies requires us to collect all store instructions first. Then,
for each store instruction, we find all load instructions that the data operand depends on.

addr – address dependencies

Address dependencies, which we capture in the addr relation, are similar to data dependen-
cies. There are two main differences:

1. Data dependencies only exist between a Load and a Store. Address dependencies can
be formed between a Load and a Store or two Load instructions.

2. Instead of looking at the data operand of a load or store instruction, we look at the
address operand.

Consider the following two snippets:

1 $r2 = ldr [$r1]
2 $r4 = ldr [$r2]

1 $r2 = ldr [$r1]
2 str $r4, [$r2]

In both cases, there is an address dependency from the first load to the second memory
access.

Like data dependencies, address dependencies are carried through other instructions,
except for other loads and stores [12].

23

3.1. Adding instruction dependency analysis

(a) $r2 = ldr [$r1]

(b) $r4 = ldr [$r2]

(c) $r6 = ldr [$r4]

po

po

addr

addr

Load (c) depends on load (b), which in turn depends on load (a). Note that there is no
addr relation from (a) to (c) because address dependencies do not carry through other loads
and stores.

Collecting all address dependencies is done similarly to collecting the data dependencies,
the difference being that, instead of only considering store instructions, we now also need to
consider load instructions.

ctrl; [W] – control dependencies into a store instruction

The ARMv8 architecture also orders load and store instructions that are ctrl-related.
A control dependency between a load instruction and a store instruction arises when

the result of the load instruction is depended on by a conditional branch instruction that
po-precedes the store instruction [12], as is the case in the following snippet:

1 $r2 = ldr [$r1]
2 cmp $r2, #0

; compare $r2 with value 0
3 beq L0

; branch to L0 if $r2 == 0
4 str $r3, [$r4]
5 L0:

(a) $r2 = ldr [$r1]

(b) cmp $r2 , #0

(c) beq L0

(d) str $r3, [$r4]

po

po

po

ctrl

In this example, there is a ctrl relation between load instruction (a) and store instruction
(d) because the load instruction is used to compute branch (c), which po-precedes (d).

Collecting all control dependencies is more involved than collecting address or data de-
pendencies. First, wemust collect all conditional branch instructions. Then, we should check
whether those conditional branch instructions depend on any loads. If a conditional branch
depends on a load instruction, we check whether there are any store instructions that po-
succeeds the load instruction. Finally, we must ensure that the store instruction is in a differ-
ent basic block than the load instruction.

ctrl; [ISB]; po; [R] – ISB as a control fence

The Instruction Synchronization Barrier (ISB) is able to order two load instructions when it
itself is in ctrl relation with an earlier load [5, 2].

24

3.1. Adding instruction dependency analysis

1 $r2 = ldr [$r1]
2 cmp $r2, #0
3 beq L0
4 isb
5 $r4 = ldr [$r3]
6 L0:

(a) $r2 = ldr [$r1]

(b) cmp $r2 , #0

(c) beq L0

(d) isb

(e) $r4 = ldr [$r3]

po

po

po

po

ctrl
ctrl; [ISB]; po; [R]

In this case, load instruction (a) is in ctrl; [ISB]; po; [R] relation with load instruction (e).
This relation sufficiently orders the two load instructions.

Collecting these dependencies is done similarly to regular ctrl dependencies. As an extra
step, we must check whether a load instruction is in po relation with the ISB instruction.

addr; po; [ISB]; po; [R] – Address dependency with ISB

ISB instructions can also order two read instructions when the first read instruction is addr-
related to anothermemory access, which comes po-before the ISB. The ISB has to be po related
to the second read instruction.

1 $r2 = ldr [$r1]
2 str $r3, [$r2]
3 isb
4 $r5 = ldr [$r4]

(a) $r2 = ldr [$r1]

(b) str $r3, [$r2]

(c) isb

(d) $r5 = ldr [$r4]

po

po

po

addr

addr; po; [ISB]; po; [R]

The ISB instruction (c) ensures that load instruction (d) is not reordered with load in-
struction (a). Note that instruction (b) can be either a load instruction or a store instruction;
the only requirement is that it has an address dependency on (a).

This composite relation requires us to collect all addr-related dependencies first. We can
then filter the ISB instructions that are in po-relation with the codomain of addr. Similarly,
we then filter the load instructions that are po-related to the filtered ISB instructions.

addr; po; [W] – Address dependency that orders a subsequent write

The ARMv8 architecture orders a Read-Write (RW) pair where the read is addr-related to a
memory access that po-precedes a the write instruction [5, 12].

25

3.2. Improving Fency’s alias analysis

1 $r2 = ldr [$r1]
2 str $r3, [$r2]
3 str $r5, [$r4]

(a) $r2 = ldr [$r1]

(b) str $r3, [$r2]

(c) str $r5, [$r4]

po

po

addr

addr; po; [W]

The addr; po; [W] relation ensures that write instruction (c) cannot be reorderedwith load
instruction (a).

This relation also depends on the addr-related dependencies. After finding these depen-
dencies, we can check whether any store instruction is po-related to the codomain of an ad-
dress dependency.

(addr Y data); lrs – address or data dependency with local-read-successor

In [14] Alglave et al. removed rfi from their ARMv8 axiomatic model and replaced it with
lrs. They define lrs as

lrs fi [W]; poℓz(poℓ; [W]; poℓ); [R]

The set minus operation in the middle ensures that there is no intervening write between
the poℓ-related read and write.

Alglave et al. acknowledge that their definition of lrs is a subset of rfi, but they prove
that it does not make their axiomatic model inconsistent with the ARMv8 hardware. We can,
therefore, safely adopt their notion of lrs. Since lrs is determined solely from poℓ, it is more
appropriate to use in a static analysis tool than rfi. At the same time, its dependency on poℓ
brings its own challenges.

poℓ requires Fency to be able to prove that two memory accesses always access the same
memory location (i.e., they must always alias).

The relation (addrYdata); lrs orders two load instructions when the first load instructions
is addr or data related to a store and this store is lrs-related to the second load instruction.

1 $r2 = ldr [$r1]
2 str $r2, [$r3]
3 $r4 = ldr [$r3]

(a) $r2 = ldr [$r1]

(b) str $r2 , [$r3]

(c) $r5 = ldr [$r4]

po

po

data

data; lrs

In this example, the data; lrs relation ensures that load instruction (a) cannot be reordered
with load instruction (c). Note that this relation can only be established if we can prove that
$r3 and $r4 always point to the same memory location.

3.2 Improving Fency’s alias analysis
In 2.3.1, we defined two functions that Fency uses to check whether two instructions access
the same memory location. Fency uses potentiallyAccessesSameMemoryAs to con-
struct the memory pair graph, and it uses alwaysAccessesSameMemoryAs to implement
the M-K Robustness conditions.

26

3.2. Improving Fency’s alias analysis

3.2.1 Potential same-location accesses
To check whether two instructions potentially access the same memory location, we can
leverage LLVM’s existing alias analysis infrastructure. More specifically, Fency uses the
MachineInstr::mayAlias API, which contains a comprehensive (but conservative) al-
gorithm to check whether two machine instructions may access the same memory location.
Under the hood, MachineInstr::mayAlias delegates most of its alias analysis to Alias-
Analysis::alias().

Target-specific alias analyis

Sometimes, a target can immediately tell uswhether twomemory locations can never overlap.
For example, in ARMv8, memory accesses are “trivially disjoint” if the base address is equal,
but the offset of the lower memory access plus the width of the access does not overlap with
the offset of the higher memory access. Themost simple case is with disjoint array accesses:

1 int SharedX[2];
2
3 void main() {
4 int x1 = SharedX[0];
5 int x2 = SharedX[1];
6 }

The base address is the same in both memory accesses, but the offset for x1, which is 0, plus
the width, which is 4 bytes, is equal to the offset for x2 (4 bytes), meaning that these accesses
are trivially disjoint.

This target-specific information is provided to us via the TargetInstrInfo class.

Machine instruction memory locations

A machine instruction may affect zero or more memory locations. This results in quadratic
complexity when checkingwhether twomachine instructions overlap since we need to check
any combination of all affected memory locations.

1 fn mayAlias(A: MachineInstr, B: MachineInstr) -> bool:
2 for MemoryOperandA in A.memory_operands():
3 for MemoryOperandB in B.memory_operands():
4 if (!AliasAnalysis::noAlias(MemoryOperandA, MemoryOperandB)):
5 return true
6 return false

Themachine instructions we are primarily interested in for our analysis affect 2 or 3mem-
ory locations. However, ARM’s ldm instruction can affect many more memory locations at
the same time. To reduce the impact of this quadratic behavior, LLVM imposes a limit on
howmanymemory operands it will check, conservatively defaulting to truewhen this limit
is exceeded.

LLVM’s alias analysis infrastructure

MachineInstr::mayAliasdelegates the actual alias analysis toAliasAnalysis::noAlias().
This API is part of the alias analysis subsystem. LLVM exposes multiple alias analysis im-
plementations. The basic alias analysis implementation is always available. This aggressive,
function-local analysis can deduce a lot of information:

• Whether two variables point to distinct allocations

• An allocation never aliases the null pointer

27

3.2. Improving Fency’s alias analysis

• Struct fields can never alias

• Different array indices cannot alias

• It knows about common C functions - many of them never access memory

• It knows when pointers always point to constants

• Function-local stack allocations cannot alias if they don not escape from the current
function

3.2.2 Proving that memory accesses always access the same location
Unfortunately, LLVM does not provide us with MachineInstr::mustAlias(). To im-
plement Fency’s alwaysAccessesSameLocation we need to directly use the lower-level
AliasAnalysis::alias() interface.

alwaysAccessesSameLocationAs is often used by theRobustness conditions to check
whether two memory accesses are M-K robust. For example, in x86, a pair consisting of a
write and a subsequent read is generally not robust unless they access the same location.

Therefore, we implement alwaysAccessesSameLocationAs as follows:
1 infix fn alwaysAccessesSameLocationAs(A: MachineInstr,
2 B: MachineInstr) -> bool:
3 for MemoryOperandA in A.memory_operands():
4 for MemoryOperandB in B.memory_operands():
5 if (AliasAnalysis::mustAlias(MemoryOperandA, MemoryOperandB)):
6 return true
7
8 return false

If any memory operand pair of the two instructions always alias, we return true.

3.2.3 Soundness
It is important thatpotentiallyAccessesSameMemoryAs andalwaysAccessesSameMem-
oryAs are conservative when necessary to preserve Fency’s soundness. If Fency would not
be sound, it would insert too few fences, which would cause it to output a program that is
not actually M-K robust.

The previous version of Fency, referred to as simply ”v1”, was unsound because it would
ignore memory accesses that were not accessing a global variable.

For example, it would incorrectly report this variation of the load buffering program from
the introduction to be x86-ARMv8 robust.

1 std::atomic<int> SharedX;
2 std::atomic<int> SharedY;
3
4 void* threadA(void *arg) {
5 std::atomic<int> *PtrToSharedX = static_cast<std::atomic<int>*>(arg);
6 int localX = PtrToSharedX->load(std::memory_order_relaxed);
7 SharedY.store(1, std::memory_order_relaxed);
8
9 return nullptr;

10 }
11
12 void* threadB(void *arg) {
13 std::atomic<int> *PtrToSharedY = static_cast<std::atomic<int>*>(arg);
14 int localY = PtrToSharedY->load(std::memory_order_relaxed);
15 SharedX.store(1, std::memory_order_relaxed);

28

3.3. Supporting function calls

16
17 return nullptr;
18 }

Instead of sharing data between threads with a global atomic variable, we pass a pointer
to the atomic variable as an argument to the thread. Because the atomic loads do not access
the global variables directly, v1will ignore them. V2 ismuchmore conservative: even though
LLVM cannot determine which memory location is accessed with the atomic load, it will
assume theworst-case scenario andmark the atomic load as conflictingwith the atomicwrite
in the other thread. This results in Fency conservatively and correctly inserting two fences
to order the read-write pairs.

3.3 Supporting function calls
Any sufficiently complex program will distribute its logic across multiple functions. If we
want to use Fency to analyze these more complex, realistic programs, we need to correctly
implement inter-procedural analysis for canPotentiallyReach and canAlwaysReach.

3.3.1 The call graph
LLVM builds a call graph for each IR module. The call graph is a directed graph, possibly
cyclic, which stores information about which function can potentially call some other func-
tion.

Every function is represented as a node in the graph. Edges between nodes indicate that
one function may call another function. The call graph represents a conservative superset of
caller-callee relationships.

3.3.2 Checking whether an access potentially reaches another access
canPotentiallyReach is a conservative reachability analysis function that Fency uses to
collect all potential memory access pairs. To preserve Fency’s soundness, canPotential-
lyReachmust be conservative when it is unable to provewhether twomemory accesses can
never reach one another.

When Fency has to check whether two memory accesses from different functions (but
within the same control flow graph) can potentially reach one another, it does a depth-first
search in the call graph.

1 fn hasCallGraphPath(From: MemoryAccess, To: MemoryAccess) -> bool:
2 Start = CallGraph.find(From.function())
3 End = CallGraph.find(To.function())
4
5 for Node in depth_first_iterator(Start):
6 if Node == End:
7 return true;
8
9 return false

The call graph also contains a special “external” node. An external node represents all calls
to functions defined outside of the current IR module. Any edges to this node indicate that
a function directly or indirectly calls an external function. Any edges from the external node
to a function indicate that this function might be called from an external source, for example,
if the function contains an indirect (polymorphic) function call.

For now, Fency does not support call graphs with external nodes and ignores them.

29

3.3. Supporting function calls

3.3.3 Checking whether an access always reaches another access
Fency is currently unable to analyze whether a memory access can always reach another
memory access in a different function. It uses dominator trees for its function-local analysis.
Unfortunately, inter-procedural dominator trees are not available in LLVM.

30

Chapter 4

Evaluation

In this chapter, we attempt to evaluate the improvements described inChapter 3. This chapter
has been split into three sections. In Section 4.1, we will compare the new Fency version
(“v2”), with the new alias analysis implementation, to the original prototype (“v1”). Wewill
separately evaluate the new dependency ordered-before analysis in Section 4.2. Finally, in
Section 4.3, wewill run Fency v2 on several C11 benchmark programs, which is now possible
due to function call support.

4.1 Comparing Fency v2 with Fency v1
Fency v2 is an entirely new implementation. To evaluate the effectiveness of this new imple-
mentation, we will compare Fency v1 with Fency v2.

4.1.1 Method
To compare Fency v2 with Fency v1 and evaluate its performance, we will run both versions
on 33 programs. Fency v1 was previously evaluated on this set of programs in [5].

All programs consist of 70-450 lines of LLVM IR. The concurrent control flow graphs in
these programs do not consist of multiple functions (i.e., there are no function calls). This
makes them analyzable by Fency v1, which does not support function calls.

For each of the six supported M-K robustness analyses, SC-x86, SC-ARMv8, x86-ARMv8,
SC-ARMv7, x86-ARMv7, and ARMv8-ARMv7, we collected:

• The size of the MPG (number of nodes and edges), which gives an indication of the
program size

• The number of detected non-robust pairs. Fewer is better.

• The number of inserted fences. Fewer is better.

• Whether Fency v1 or v2 consider the entire program M-K robust

• The time it took for the analysis

The following sections will show and discuss the results for each supported M-K robust-
ness configuration.

4.1.2 Results
The full results are available in Appendix B. In the discussion, we will highlight several of
the most interesting results from the set.

31

4.1. Comparing Fency v2 with Fency v1

NRP F Time (ms)
M-K
SC-x86 -4/0 -2/0 0/2553
SC-ARMv8 -2/18 -6/4 0/342
x86-ARMv8 -1/18 -5/4 0/357
SC-ARMv7 -2/16 -1/0 -5448/44
x86-ARMv7 0/16 -1/0 -5426/43
ARMv8-ARMv7 0/16 -1/0 -5291/53

Table 4.1: The aggregated results across all programs of the difference between Fency v1 and
v2. NRP: Number of non-robust pairs. “F”: Number of fences inserted. Each cell contains
the minimum and maximum value.

Table 4.1 contains the aggregated results across all programs. Each cell contains the
minimum and maximum value across all 33 programs. For example, the best result for SC-
ARMv8 is -6 fences, while in the worst case Fency v2 inserts +4 more fences than Fency v1.

4.1.3 Discussion
We will now discuss the results for each M-K robustness configuration.

SC-x86
Program Nodes Edges NRP Fences
cilk-sc 96/104/+8 3109/4169/+1060 0/0/0 0/0/0
lamport-ra 9/13/+4 72/156/+84 0/0/0 0/0/0
peterson-ra-b 245/245/0 15468/15468/0 9/45/+36 6/4/-2
ticketlock 50/50/0 882/990/+108 0/4/+4 0/2/+2
ticketlock4 100/100/0 3564/5940/+2376 0/8/+8 0/4/+4

Table 4.2: Highlighted results for SC-x86

cilk-sc. Fency v2 creates a Memory Pair Graph with 8 more nodes and 1060 more edges
than Fency v1. Fency v2 creates a larger MPG because Fency v2 includes a memory access
to the thread-local variable that Fency v2 ignores. This one memory access reaches 8 other
accesses, resulting in an extra 8 memory access pairs. The original 96 memory access pairs
have to create 8 more edges to the new pairs, resulting in 96 ˆ 8 = 768 more edges. The new
pairs have 36 outgoing edges each (on average), which results in an additional 8 ˚ 36 = 292
more edges. The new edges do not influence the number of inserted fences because the new
pairs are all SC-x86 robust.

lamport-ra. Fency v2 adds 4 nodes to the MPG for this program. These 4 nodes all
reference the thread argument and thus result in 84 additional edges. Similarly to cilk-sc,
these edges do not result in additional fences because all pairs are SC-x86 robust.

peterson-ra-b. Fency v1 and v2 create the same MPG. Interestingly, Fency v2 is able
to prove the robustness of more pairs. This may be due to a bug in Fency v1’s instruction
reachability analysis. All four pairs are Write-Read pairs separated by an RMW. An RMW
acts like a fence on x86 [5]. Because these four pairs are robust, Fency v2 inserts 2 fewer
fences.

32

4.1. Comparing Fency v2 with Fency v1

SC-ARMv8
Program Nodes Edges NRP Fences
cilk-sc 232/244/+12 19375/42425/+23050 73/76/+3 8/9/+1
lamport-sc 9/13/+4 72/156/+84 0/2/+2 0/1/+1
lb-2 0/2/+2 0/2/+2 0/2/+2 0/2/+2
rcu-offline 193/235/+42 6290/30011/+23721 43/55/+12 14/8/-6
spinlock 74/90/+16 3618/7538/+3920 8/12/+4 4/6/+2

Table 4.3: Highlighted results for SC-ARMv8

cilk-sc. Fency v2 creates more nodes because of the accessed thread argument. However,
even though this results in significantly more edges, only three nodes are non-robust pairs
on a cycle. The only difference in fence placement between Fency v1 and v2 is a dmbld fence
to order instructions involving the thread argument.

lamport-sc. Fency v2 inserts one additional fence to order two instructions involving the
thread argument.

lb-2. This program is a variation of the load-buffering litmus test. Instead of using shared
variables to communicate between threads, the threads communicate using the thread argu-
ment, which contains a pointer to an atomic int. Because Fency v2 cannot know whether
the pointer points to the same object, it conservatively inserts two fences. The load-buffering
litmus test indeed needs two fences; thus, Fency v2 is correct.

rcu-offline. Fency v2 inserts six fences less than Fency v1. The fences that were omitted
mainly attempted to order two instructions in a loop. However, these instructions always
access the same memory location according to Fency v2’s alias analysis. Therefore, we can
safely omit these fences.

spinlock Fency v2 inserts more fences than v1 in this program because it orders instruc-
tions accessing the thread argument.

x86-ARMv8

Fency v1 and v2 perform similarly for x86-ARMv8. The programs where their outputs differ
are the same programs where the output for SC-ARMv8 differs. This difference is primarily
because of Fency v2’s conservative approach regarding thread arguments.

SC-ARMv7
Program Nodes Edges NRP Fences
peterson-ra-b 162/162/0 6592/17710/+11118 4/2/-2 2/1/-1
rcu-offline 217/235/+18 7093/30011/+22918 15/29/+14 11/10/-1

Table 4.4: Highlighted results for SC-ARMv7

peterson-ra-b. Fency v2 inserts one less fence compared to Fency v1. Fency v2 is able to
prove that a particular store-store pair always passes through a DMB fence. It is unclear why
Fency v1 does not come to the same conclusion. This might be related to what happened for
peterson-ra-b for SC-x86.

rcu-offline. Fency v2 inserts one fence less compared to v1. In this case, Fencymust prove
that a store instruction always accesses the same memory location. Fency v2 concludes this
is the case, while Fency v1 conservatively inserts a fence. It is unclear whether the fence is
necessary: the program contains many of hard-to-trace memory accesses, making it complex
to answer this query conclusively.

33

4.2. Evaluating the impact of DOB analysis on Fency’s fence placement

x86-ARMv7
Program Nodes Edges NRP Fences
dekker-sc 102/102/0 3752/3762/0 28/28/0 4/3/-1

Table 4.5: Highlighted results for x86-ARMv7

The results for x86-ARMv7 are largely similar to SC-ARMv7.
dekker-sc. Fency v2 inserts one less fence because the non-robust pair is not part of a

cycle.

ARMv8-ARMv7

With the exception of dekker-sc, Fency v1 and Fency v2 output the same amount of fences
for ARMv8-ARMv7.

4.2 Evaluating the impact of DOB analysis on Fency’s fence
placement

To properly evaluate whether the ARMv8, instruction dependency analysis (DOB analysis)
causes Fency to insert fewer fences overall when targeting ARMv8wewill compare Fency v2
with instruction dependency analysis to Fency v2 without instruction dependency analysis.

4.2.1 Method
Both the SC-ARMv8 robustness condition and the x86-ARMv8 robustness condition use the
dob relation. However, since the only difference between the two is the wr relation, we will
only analyze SC-ARMv8 robustness with and without DOB analysis.

EnablingDOB analysis should result in fewer non-robust pairs, whichmay result in fewer
fences. Not all programs benefit equally from this analysis: programs with many dependen-
cies between non-robust pairs will benefit the most.

4.2.2 Results
Table 4.6 contains the results of running Fency v2 with and without DOB analysis.

• The first column contains the program name.

• The second column, “Dep”, shows the number of instruction dependencies found in
the entire program.

• The third column, “NRP”, shows how many non-robust pairs were found without
(WO) and with (W) DOB analysis enabled. The difference ∆ is calculated as (W -
WO). Fewer is better.

• The fourth column, “F”, contains the number of fences that Fency inserted without
(WO) and with (W) DOB analysis enabled. Fewer is better.

34

4.2. Evaluating the impact of DOB analysis on Fency’s fence placement

Table 4.6: Results of running Fency with and without DOB analysis. “NRP”: number of non-
robust pairs found. “F”: number of fences inserted. “W”: withDOB-analysis enabled. “WO”:
without DOB-analysis.

Program Dep. NRP (WO/W/∆) F (WO/W/∆)
barrier 2 4/4/0 2/2/0
cilk-sc 60 83/76/-7 9/9/0
cilk-tso 60 47/45/-2 8/8/0
cldequeue-ra 16 4/4/0 3/3/0
cldequeue-ra-noloop 14 1/1/0 1/1/0
cldequeue-sc 16 18/17/-1 7/7/0
cldequeue-sc-noloop 14 10/9/-1 4/4/0
cldequeue-tso 16 13/13/0 6/6/0
dekker-sc 11 46/43/-3 7/7/0
dekker-tso 11 14/11/-3 4/3/-1
iriw 0 5/5/0 4/4/0
lamport-ra 8 0/0/0 0/0/0
lamport-sc 6 3/2/-1 1/1/0
lamport-tso 6 0/0/0 0/0/0
lb 2 2/2/0 2/2/0
lb-2 2 2/2/0 2/2/0
mp 2 2/2/0 2/2/0
mutex 2 0/0/0 0/0/0
nbw 9 32/32/0 9/9/0
peterson-ra 8 20/14/-6 8/8/0
peterson-ra-b 19 6/6/0 4/4/0
peterson-ra-d 10 22/22/0 10/10/0
peterson-sc 8 38/32/-6 10/10/0
peterson-tso 5 10/7/-3 6/4/-2
rcu 30 62/62/0 11/11/0
rcu-offline 101 70/55/-15 10/8/-2
sb 0 0/0/0 0/0/0
seqlock 8 4/4/0 3/3/0
spinlock 20 16/12/-4 6/6/0
spinlock4 41 32/24/-8 12/12/0
ticketlock 13 8/8/0 2/2/0
ticketlock4 25 16/16/0 4/4/0
usb 0 10/10/0 4/4/0

35

4.3. Running Fency v2 on C/C++11 programs

4.2.3 Discussion
The majority of the programs we tested were unaffected by the DOB analysis. One possible
explanation is the lack of instruction dependencies in each program.

Only a few programs, cilk-sc, cilk-tso, rcu, and rcu-offline, see a reduction in both the
number of non-robust pairs and the number of required fences. Incidentally, these programs
also contain the highest number of instruction dependencies.

Consider this assembly snippet from rcu-offline:
1 ldr w15, [x10, :lo12:m]
2 dmb ishld
3 cmp w15, #0
4 csel x15, x12, x11, eq ; implicitly depends on cmp
5 ldar w15, [x15]

The second load instruction (ldar) has an (implicit) address dependency on the first
load instruction, ldr. The registers through which the address dependency is carried are
marked red. The csel instruction implicitly depends on the cmp instruction, which in turn
depends on the ldr.

This dependency eliminates the need for the dmb ishld fence. With DOB analysis en-
abled, Fency will indeed correctly omit the fence.

4.3 Running Fency v2 on C/C++11 programs
Ideally, we would like to run Fency on a large, concurrent program such as Chromium, Fire-
fox or Redis. However, Fency does not support programs that consist ofmultiple compilation
units.

It might still be interesting to see whether Fency’s newly gained function call support
enables it to run on larger programs, even though these programs are restricted to a single
compilation unit. To evaluate the function call support, we will run Fency v2 on the CDS
Checker benchmarks [8]. These benchmarks are written in C/C++11. They implement sev-
eral data structures and algorithms, such as a concurrent hashtable, hashmap, and Dekker’s
algorithm.

4.3.1 Method
We run Fency’s SC-x86 robustness analysis on the CDS Checker benchmarks [8]. It is, unfor-
tunately, not possible for Fency to analyze multiple LLVM modules, so we are restricted to
programs that consist of a single compilation module. We can run Fency on the following
benchmarks:

• barrier (174 LoC): A simple implementation of a spinning barrier.

• cliffc-hashtable (1800 LoC): A simplified version of Cliff Click’s concurrent hashmap
implementation [17].

• concurrent-hashmap (800 LoC): Another concurrent hashmap implementation.

• dekker-fences (180 LoC): Dekker’s well-known mutual exclusion algorithm. This pro-
gram is similar to Fency’s dekker-sc.

• linuxrwlocks (130 LoC): An example implementation of the Linux RW locks.

• mcs-lock (350 LoC): An MCS lock implementation.

36

4.3. Running Fency v2 on C/C++11 programs

Table 4.7: Results of running Fency on a subset of the CDS Checker benchmarks

Program RWs Nodes Edges Fences NRP Time (ms)
barrier 18 66 2254 1 2 58
cliffc-hashtable 460 - - - - 8977
concurrent-hashmap 124 2744 5895548 2 60 76740
dekker-fences 22 132 5942 2 4 52
linuxrwlocks 28 222 38790 0 0 88
mcs-lock 62 938 420578 8 27 10873
mpmc-queue 30 158 18142 0 0 319
seqlock 14 38 1300 0 0 13

• mpmc-queue (320 LoC): An implementation of a multi-producer, multi-consumer
queue.

• seqlock (170 LoC): A sequence lock implementation.

4.3.2 Results
The results of running Fency on the above programs can be viewed in Table 4.7. The table
includes the following:

• RWs: The number of reads and writes in the program. This gives an approximation of
the program size.

• Nodes & Edges: the number of nodes and edges in the MPG.

• NRP: The number of non-robust pairs Fency found.

• Time: The time it took in ms for Fency to analyze the complete program and insert the
appropriate fences.

The number of MPG nodes required for the cliffc-hashtable program exceeded the con-
figured limit (10,000 nodes).

Fency concludes linuxrwlocks, mpmc-queue, and seqlock to be SC-x86 robust. The anal-
ysis takes between 14 milliseconds up to 76 seconds.

4.3.3 Discussion
The time it takes for Fency to analyze a program is strongly related to the size of the program.
For example, it only takes a couple ofmilliseconds to verify the seqlock programwith 14 read
andwrite operations. It takes Fency over 70 seconds to analyze the concurrent-hashmapwith
3068 MPG nodes. This can be explained by the time complexity of the robustness checking
algorithm, which is O(n6) for a program consisting of n accesses[5]. The theoretical maxi-
mumnumber of nodes in theMPG is n2, and themaximumnumber of edges is n4. Therefore,
the number of nodes for cliffc-hashtable can well exceed 200,000 nodes and 44,000,000,000
edges. The robustness checking algorithm becomes intractable as program size increases.

37

Chapter 5

Related work

Much work has been done on weak memory models, robustness checking and fence inser-
tion. Comparable tools focus on SC-K robustness, while Fency expands this existing work
by implementing M-K robustness for SC, x86, ARMv8 and ARMv7. This section discusses
other, comparable tools and highlights the differences between them and Fency.

We will also dicuss other relevant work on (weak) memory models and fence insertion.

5.1 Robustness checking and fence insertion tools
Fency is not the first robustness checking tool. Numerous other tools came before it. We will
discuss the most relevant tools in this section.

Generally, we can classify the robustness checking tools by:

• Exploration technique - how they explore possible executions of a program. Some tools,
including Fency, overapproximate the possible executions traces to capture all potential
executions at once, while other tools may use model checkers to explore the state space.
Model checkers, such as SPIN [18], explore all possible execution traces one-by-one by
simulating the concurrent program.

• Type of model - how they determine whether an execution is valid. Fency uses an
axiomatic model to verify whether an execution is M-K robust. Another common ap-
proach is to check an execution using an operational model. Operational models are
abstractions of actual machines [19]. For example, an operational model might imple-
ment a store buffer to simulate x86-TSO.

5.1.1 Trencher
Trencher [16] is a program that checks whether a program is SC-x86 robust. Its input format
is a text file that describes a program as a state machine. It uses the SPINmodel checker [18]
to enumerate all possible executions, and attempts to find executions that cannot happen
under SC, which they call “attacks”. It uses an operational model to simulate store buffers.
When it determines that an execution trace is possible in TSO but not in SC, it tries to find
the execution cycle that causes this difference in behavior. It tries to find an optimal set of
fences by encoding the fences as a 0/1-integer linear programming (ILP) problem. Given a
cost function C, it tries to compute a fence set F that minimizes the following equation:

ÿ

fPF

C(f)

For example, with a cost function C(f) = 1, it will minimize the size of the fence set.
Finally, Trencher outputs state transitions that need to be strengthened by fences.

38

5.2. Other weak memory model tools

5.1.2 Offence
Offence[10] is a robustness checker and fence insertion tool that supports SC-x86, SC-Power
and SC-ARMv7 robustness. It takes small assembly snippets annotated with memory loca-
tions as its input. Offence then checks these snippets for robustness against weak memory
models, which they call “stability”. Unlike Trencher, which uses a model checker, Offence
overapproximates execution traces. Also unlike Trencher, Offence uses an axiomatic model
to check whether an execution trace is allowed in SC. Offence tries to maximize the number
of pairs that are ordered by a single fence.

5.1.3 Musketeer
Musketeer[11] is a robustness checker and fence insertion tool. It supports SC-x86, SC-Power
and SC-ARMv7. Given a C program compiled with goto-cc1, it is able to compute the fences
required to make it robust.

Like Fency and Offence, it overapproximates execution traces and uses an axiomatic
model. While constructing the CFG, which they call the abstract event graph, they inline all
function calls (this prevents Musketeer from supporting recursion). Unlike Fency and Of-
fence, Musketeer uses integer linear programming to insert fences. Instead of simply using
C(f) = 1 as their cost function, they assign costs to fences based on whether they are full
fences, lightweight fences, control fences or dependencies.

After computing the optimal fence set (w.r.t. the overapproximated execution traces), it
inserts these fences into the C source code using inline assembly statements. Interestingly,
Musketeer is also supports inserting fake dependencies instead of fences.

Consider the following ARM snippet:
1 ldr w15, [x]
2 str w16, [y]

To order this pair, we can either insert a store fence between the memory accesses, or we
can create a fake dependency.

1 ldr w15, [x]
2 eors w15, w15, w15
3 str w16, [y, w15]

Musketeer inserts an XOR instruction that always evaluates to 0. It then uses the result
of this XOR instruction as an offset for the store instruction. This results in the processor
thinking that the store instruction depends on the previous load instruction.

Musketeer has been successfully run on larger programs, such as memcached.

5.2 Other weak memory model tools
Robustness checkers are not the only tools that attempt to analyze weak memory behavior.
In this section, we will highlight several tools that take a slightly different approach, analyze
other aspects of weak memory models, or help support weak memory research.

5.2.1 VSync
The VSync tool [20] has a slightly different goal compared to Fency, Trencher andMusketeer.
Instead of inserting fences, VSync tries to maximally relax existing fences in a program. For
example, if VSync tries to determine when a full fence can be relaxed to just a load fence.

VSync broadly implements the following algorithm:
1goto-cc is part of the CProver framework, which is a suite of formal verification tools for C. See https:

//www.cprover.org/goto-cc/

39

https://www.cprover.org/goto-cc/
https://www.cprover.org/goto-cc/

5.3. Fence insertion

1. Start with a program where every fence is a full fence

2. Relax one of the fences in the program: replace this fence with a lighter fence.

3. Check whether the program is still correct using a (proprietary) model checker

4. If it is correct: go back to step 2 and try to relax another fence.

5. If the program is not correct anymore: restore the original fence.

6. If we maximally relaxed all fences, we are done.

7. If there are still fences that we can try to relax, go back to step 2.

This algorithm ensures that VSync always finds maximally relaxed fences.
VSync allows users to plug in their own memory model, such as x86-TSO [6], ARMv8

[2], ARMv7 [3], Power [4], or the Linux Kernel Memory Model [21].
The authors note that checking whether a program is correct given a particular barrier

combination can cost a significant amount of time, because the model checker needs to ex-
plore all possible execution paths. To speed up finding the correct barrier combination, they
speculatively accept certain barrier combinations after a configurable timeout. Only once a
maximally relaxed barrier combination is found do they run the model checker without a
timeout.

Their model checker uses stateless model checking (SMC), a state-of-the-art technique for
verifying weak memory models. While SMC is able to enumerate all possible executions of
a program, it also requires that programs have a finite state space. Therefore, SMC is not
able to handle programs that continuously poll a shared variable in a loop. However, VSync
implements a technique, Await Model Checking (AMC), which, under certain assumptions,
can efficiently detect and return early from these types of executions.

It takes VSync only 0.12 seconds to find the most optimal barrier combination for a tick-
etlock implementation, approximately 11 minutes for the Linux qspinlock implementation
and almost 200 hours for the mutex used in musl libc.

5.2.2 herd, mole and diy
The herd tool [12] simulates axiomatic models. These axiomatic models have to be defined
using a the “cat” language, which is domain-specific language for defining these axiomatic
models. Currently, herd supports ARMv8, C11, LKMM and x86. The axiomatic models for
these memory models are available online2.

The mole tool [12] detects weak memory patterns in software published as Debian pack-
ages. It, however, does not enforce robustness.

The diy tool [14] generates litmus tests that reproduce an SC violation. It highlights
discrepancies between SC and a weak memory model.

5.3 Fence insertion
There is interesting research available that aims to optimize fence insertion. Morisset and
Zappa Nardelli [22] researched how to optimize fence placement for existing fences. Not
only does their algorithm capture trivial optimizations such as eliminating two fences with-
outmemory accesses in between, it is also able to optimize fences acrossmultiple basic blocks.
They implemented their optimization as an LLVM compiler pass and saw performance in-
crease by up to 10%. Their algorithm can potentially be used by Fency to optimize its fence
placement.

2The sources for the axiomaticmodels are available at https://github.com/herd/herdtools7/tree/
master/catalogue

40

https://github.com/herd/herdtools7/tree/master/catalogue
https://github.com/herd/herdtools7/tree/master/catalogue

Chapter 6

Conclusion

Fency is a fence insertion tool that enforces M-K robustness on LLVM-based languages. The
initial prototype was implemented as a function pass, which limited its usability and made
it impossible to implement the fence insertion algorithm as described in [5]. Additionally, it
had an ad-hoc alias analysis implementation that did not use LLVM’s built-in alias analysis
algorithms. Finally, it inserted toomany fences in cases where ARMv8 dependencies already
ordered instructions.

To guide our research effort, we defined the following research question:

How does dependency-ordered before (dob) analysis and alias analysis affect Fency’s
ability to insert fences?

We then fixed Fency’s shortcomings by reimplementing Fency as a module pass, inte-
grating it with LLVM’s alias analysis infrastructure, and adding a new dependency tracking
analysis. After completing these improvements, we attempted to answer the research ques-
tion by comparing Fency v1 with our new version, Fency v2.

We found that the alias analysis had a negligible effect on the number of fences that Fency
inserts.

Our reimplementation does fix a soundness issue that was present in Fency v1. Fency v1
is unsound because it ignores memory accesses when LLVMdoes not annotate themwith an
affected global memory location. However, this memory access might still access a shared
variable despite LLVM being unable to determine the exact memory location that it accesses.
Fency v2 fixes this issue by conservatively assuming that a memory access can access any
memory location when more specific information is unavailable.

More importantly, because it is built on top of LLVM’s alias analysis component, any
improvement to LLVM’s alias analysis implementation will positively affect Fency. Fency
will be able to take advantage of a more accurate alias analysis implementation immediately,
should it become available.

The DOB analysis did not impact many programs. It largely depended on the number of
dependencies in a program.

Restructuring Fency as a module pass paved the way for numerous other improvements.
As a result, Fency v2 now supports function calls. We ran Fency on several C/C++programs
to demonstrate this new capability. We noted thatwhile Fency can theoretically analyze large
programs, the robustness checking algorithm will quickly become intractable.

6.1 Future work
Future work could focus on four key areas:

41

6.1. Future work

• Reducing theMPG. The size of theMPG severely limits Fency’s ability to analyze larger
programs. Future research may focus on eliminating redundant nodes from the MPG
or represent the MPG differently without sacrificing Fency’s soundness.

• More efficient fence placement. Fency’s fence insertion algorithm, while correct, is very
inefficient. One potential improvement is implementing an approach such as in [16].
Here, Boujjani et al. implement a fence insertion algorithm using linear programming.
This may help Fency eliminate some fences or optimize the placement of the fences.

• Analyzability of the generated MPG. Currently, Fency can output the MPG as a JSON-
encoded text file. This makes it time-consuming to analyze its output. Data visualiza-
tion techniques could help create an intuitive visualization of the MPG, which would
help to debug programs tremendously.

• Implementing support for analyzing larger programs consisting of multiple compila-
tion units. Currently, Fency only supports analyzing a single LLVM module at a time.
Extending this support to multiple compilation units should be possible but may re-
quire Fency to be rewritten as a standalone binary.

42

Bibliography

[1] A. Bouajjani, R. Meyer, and E. Möhlmann, “Deciding robustness against total store
ordering,” in Automata, Languages and Programming, L. Aceto, M. Henzinger, and
J. Sgall, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 428–440, ISBN:
978-3-642-22012-8.

[2] Arm architecture reference manual for a-profile architecture, Arm Limited, 2022.
[3] Arm architecture reference manual, armv7-a and armv7-r edition, Arm Limited, 2022.
[4] Power isa version 2.06 revision b, IBM, 2010.
[5] S. Chakraborty, “Robustness between weak memory models,” in 2021 Formal Methods

in Computer Aided Design (FMCAD), IEEE, 2021, pp. 173–182.
[6] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen, “X86-tso: A rigorous

and usable programmer’s model for x86 multiprocessors,” Commun. ACM, vol. 53,
no. 7, pp. 89–97, 2010, ISSN: 0001-0782. DOI: 10.1145/1785414.1785443.

[7] “Llvm modules.” (2022), [Online]. Available:
https://llvm.org/doxygen/group__LLVMCCoreModule.html (visited on
11/10/2022).

[8] B. Norris and B. Demsky, “Cdschecker: Checking concurrent data structures written
with c/c++ atomics,” SIGPLAN Not., vol. 48, no. 10, pp. 131–150, Oct. 2013, ISSN:
0362-1340. DOI: 10.1145/2544173.2509514.

[9] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell, “Fences in weak memory models,” in
Computer Aided Verification, T. Touili, B. Cook, and P. Jackson, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 258–272, ISBN: 978-3-642-14295-6.

[10] J. Alglave and L. Maranget, “Stability in weak memory models,” in Computer Aided
Verification, G. Gopalakrishnan and S. Qadeer, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 50–66, ISBN: 978-3-642-22110-1.

[11] J. Alglave, D. Kroening, V. Nimal, and D. Poetzl, “Don’t sit on the fence: A static
analysis approach to automatic fence insertion,” in Computer Aided Verification,
A. Biere and R. Bloem, Eds., Cham: Springer International Publishing, 2014,
pp. 508–524, ISBN: 978-3-319-08867-9.

[12] J. Alglave, L. Maranget, and M. Tautschnig, “Herding cats: Modelling, simulation,
testing, and data mining for weak memory,” ACM Trans. Program. Lang. Syst., vol. 36,
no. 2, 2014, ISSN: 0164-0925. DOI: 10.1145/2627752.

[13] J. Alglave, L. Maranget, P. E. McKenney, A. Parri, and A. Stern, “Frightening small
children and disconcerting grown-ups: Concurrency in the linux kernel,” SIGPLAN
Not., vol. 53, no. 2, pp. 405–418, 2018, ISSN: 0362-1340. DOI:
10.1145/3296957.3177156.

43

https://doi.org/10.1145/1785414.1785443
https://llvm.org/doxygen/group__LLVMCCoreModule.html
https://doi.org/10.1145/2544173.2509514
https://doi.org/10.1145/2627752
https://doi.org/10.1145/3296957.3177156

Bibliography

[14] J. Alglave, W. Deacon, R. Grisenthwaite, A. Hacquard, and L. Maranget, “Armed cats:
Formal concurrency modelling at arm,” ACM Trans. Program. Lang. Syst., vol. 43,
no. 2, 2021, ISSN: 0164-0925. DOI: 10.1145/3458926.

[15] S. Owens, S. Sarkar, and P. Sewell, “A better x86 memory model: X86-tso,” in
Proceedings of the 22nd International Conference on Theorem Proving in Higher Order
Logics, ser. TPHOLs ’09, Munich, Germany: Springer-Verlag, 2009, pp. 391–407, ISBN:
9783642033582. DOI: 10.1007/978-3-642-03359-9_27.

[16] A. Bouajjani, E. Derevenetc, and R. Meyer, “Checking and enforcing robustness
against tso,” in Programming Languages and Systems, M. Felleisen and P. Gardner, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 533–553, ISBN:
978-3-642-37036-6.

[17] “Cliff click’s concurrent hashmap.” (2022), [Online]. Available:
https://github.com/boundary/high-scale-
lib/blob/3654434eda00b68d37d22dcd70e4f65db9432d06/src/main/
java/org/cliffc/high_scale_lib/NonBlockingHashMap.java (visited
on 10/10/2022).

[18] G. Holzmann, The SPIN Model Checker: Primer and Reference Manual, 1st.
Addison-Wesley Professional, 2011, ISBN: 0321773713.

[19] J. Alglave, “A shared memory poetics,” Ph.D. dissertation, l’Université Paris 7 -
Denis Diderot, 2010.

[20] J. Oberhauser, R. L. d. L. Chehab, D. Behrens, M. Fu, A. Paolillo, L. Oberhauser,
K. Bhat, Y. Wen, H. Chen, J. Kim, and V. Vafeiadis, “Vsync: Push-button verification
and optimization for synchronization primitives on weak memory models,” in
Proceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS 2021, Virtual, USA:
Association for Computing Machinery, 2021, pp. 530–545, ISBN: 9781450383172. DOI:
10.1145/3445814.3446748.

[21] “Linux kernel memory model.” (2018), [Online]. Available: https://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2018/p0124r6.html (visited on
10/10/2022).

[22] R. Morisset and F. Zappa Nardelli, “Partially redundant fence elimination for x86,
arm, and power processors,” in Proceedings of the 26th International Conference on
Compiler Construction, ser. CC 2017, Austin, TX, USA: Association for Computing
Machinery, 2017, pp. 1–10, ISBN: 9781450352338. DOI: 10.1145/3033019.3033021.

44

https://doi.org/10.1145/3458926
https://doi.org/10.1007/978-3-642-03359-9_27
https://github.com/boundary/high-scale-lib/blob/3654434eda00b68d37d22dcd70e4f65db9432d06/src/main/java/org/cliffc/high_scale_lib/NonBlockingHashMap.java
https://github.com/boundary/high-scale-lib/blob/3654434eda00b68d37d22dcd70e4f65db9432d06/src/main/java/org/cliffc/high_scale_lib/NonBlockingHashMap.java
https://github.com/boundary/high-scale-lib/blob/3654434eda00b68d37d22dcd70e4f65db9432d06/src/main/java/org/cliffc/high_scale_lib/NonBlockingHashMap.java
https://doi.org/10.1145/3445814.3446748
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0124r6.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0124r6.html
https://doi.org/10.1145/3033019.3033021

Acronyms

CFG Control Flow Graph. 39

DOB Dependency Ordered-Before. 6, 34, 36

GHB Global happens-before. 12

ILP Integer Linear Programming. 38

MPG Memory Pair Graph. 16, 31, 32, 37, 42

NRP Non-Robust Pair. vi, 32, 33, 34, 37

SC Sequential Consistency. 3

TSO Total Store Order. 3

45

Appendix A

Definitions of the Robustness
conditions in Fency

Helper functions

1 fn isWriteReadPair((i, j): (MemoryAccess, MemoryAccess)) -> bool;
2 RMWs = CFG.findAll(RMW)
3
4 return isWrite(i) && isRead(j) && && !isSC(i) && !isLL(j)
5 && !(i alwaysAccessesSameMemoryAs j)
6 && ((i, j) neverPassesThroughAnyOf RMWs)

isWriteReadPair checks whether a pair of memory accesses access a different location
without any intermediate RMW.

SC-x86

1 fn x86::isSCOrdered((i, j): (MemoryAccess, MemoryAccess)) -> bool:
2 Fences = CFG.findAll(X86::MFENCE)
3
4 return isRead(i) || isWrite(j)
5 || (i alwaysAccessesSameMemoryAs j)
6 || ((i, j) alwaysPassesThroughAnyOf Fences)

SC-ARMv8

1 fn ARMv8::isSCOrdered((i, j): (MemoryAccess, MemoryAccess)) -> bool:
2 if i alwaysAccessesSameMemoryAs j:
3 return true
4
5 B = CFG.findAll(ARMv8::DMB_ISH)
6 | CFG.findAll(AcquireReadsFrom(i))
7
8 if (i, j) alwaysPassesThroughAnyOf B:
9 return true

10
11 if isStoreRelease(i) && isAcquireLoad(j))
12 || isAcquireLoad(i) || isAcquirePC(i)
13 || isStoreRelease(j):
14 return true
15
16 LoadFences = CFG.findAll(ARMv8::DMB_ISHLD)

46

17 if isRead(i) && isRead(j)
18 && ((i, j) alwaysPassesThroughAnyOf (B | LoadFences)):
19 return true
20
21 SameLocationStoreReleases = CFG.findAll(SameLocationStoreRelease(J))
22 RWFences = B | LoadFences | SameLocationStoreReleases
23 if isRead(i) && isWrite(j)
24 && ((i, j) alwaysPassesThroughAnyOf RWFences):
25 return true
26
27 StoreFences = CFG.findAll(ARMv8::DMB_ISHST)
28 WWFences = B | StoreFences | SameLocationStoreReleases
29 if isWrite(i) && isWrite(j)
30 && ((i, j) alwaysPassesThroughAnyOf WWFences):
31 return true
32
33 return false

x86-ARMv8

1 fn ARMv8::isX86Ordered((i, j): (MemoryAccess, MemoryAccess)) -> bool:
2 return isWriteReadPair(i, j) || ARMv8::isSCOrdered((i, j))

SC-ARMv7

1 fn ARMv7::isSCOrdered((i, j): (MemoryAccess, MemoryAccess)) -> bool:
2 Fences = CFG.findAll(ARMv7::DMB)
3
4 return (i alwaysAccessesSameMemoryAs j)
5 || ((i, j) alwaysPassesThroughAnyOf Fences)

x86-ARMv7

1 fn ARMv7::isX86Ordered((i, j): (MemoryAccess, MemoryAccess)) -> bool:
2 return ARMv7::isSCOrdered((i, j)) || isWriteReadPair(Pair)

ARMv8-ARMv7

1 fn ARMv7::isARMv8Ordered((i, j): (MemoryAccess, MemoryAccess)) -> bool:
2 return ARMv7::isSCOrdered((i, j)) || isWrite(i)

47

Appendix B

Comparing Fency v1 and Fency v2: full
results

The full results for the comparison between Fency v1 and Fency v2. The “MPG Nodes” and
“MPG Edges” columns contain the number of nodes and edges in the memory pair graph
as “v1/v2/difference”. The “NRP”, “F”, and “R” columns contain the number of
Non-Robust Pairs, Fences, and whether Fency considers the program M-K robust.

48

Program MPG Nodes MPG Edges NRP F R Time (ms)

barrier 8/8/0 28/28/0 4/4/0 2/2/0 N/N 0/0/0
cilk-sc 96/104/8 3109/4169/1060 0/0/0 0/0/0 Y/Y 6/68/62
cilk-tso 96/104/8 3109/4169/1060 0/0/0 0/0/0 Y/Y 6/65/59
cldequeue-ra 35/35/0 598/598/0 0/0/0 0/0/0 Y/Y 1/6/5
cldequeue-ra-noloop 16/16/0 122/122/0 0/0/0 0/0/0 Y/Y 0/2/2
cldequeue-sc 35/35/0 598/598/0 3/3/0 2/2/0 N/N 1/5/4
cldequeue-sc-noloop 16/16/0 122/122/0 2/2/0 1/1/0 N/N 0/2/2
cldequeue-tso 35/35/0 598/598/0 1/1/0 1/1/0 N/N 1/5/4
dekker-sc 102/102/0 3762/3762/0 18/18/0 6/6/0 N/N 5/31/26
dekker-tso 102/102/0 3762/3762/0 0/0/0 0/0/0 Y/Y 6/31/25
iriw 9/9/0 27/27/0 0/0/0 0/0/0 Y/Y 0/1/1
lamport-ra 9/13/4 72/156/84 0/0/0 0/0/0 Y/Y 0/1/1
lamport-sc 9/13/4 72/156/84 0/0/0 0/0/0 Y/Y 0/1/1
lamport-tso 9/13/4 72/156/84 0/0/0 0/0/0 Y/Y 0/1/1
lb 2/2/0 2/2/0 0/0/0 0/0/0 Y/Y 0/0/0
lb-2 0/2/2 0/2/2 0/0/0 0/0/0 Y/Y 0/0/0
mp 2/2/0 2/2/0 0/0/0 0/0/0 Y/Y 0/0/0
mutex 0/0/0 0/0/0 0/0/0 0/0/0 Y/Y 0/2/2
nbw 50/50/0 884/884/0 0/0/0 0/0/0 Y/Y 2/10/8
peterson-ra 48/48/0 518/518/0 0/0/0 0/0/0 Y/Y 2/8/6
peterson-ra-b 245/245/0 15468/15468/0 9/5/-4 6/4/-2 N/N 25/197/172
peterson-ra-d 48/48/0 518/518/0 2/2/0 2/2/0 N/N 2/10/8
peterson-sc 48/48/0 518/518/0 10/10/0 2/2/0 N/N 2/8/6
peterson-tso 26/26/0 224/224/0 0/0/0 0/0/0 Y/Y 0/3/3
rcu 178/207/29 11767/15907/4140 45/45/0 4/4/0 N/N 39/903/864
rcu-offline 329/355/26 36937/44833/7896 8/8/0 3/3/0 N/N 230/2783/2553
sb 0/0/0 0/0/0 0/0/0 0/0/0 Y/Y 0/0/0
seqlock 12/15/3 74/136/62 0/0/0 0/0/0 Y/Y 0/2/2
spinlock 36/48/12 724/1552/828 0/0/0 0/0/0 Y/Y 2/15/13
spinlock4 72/96/24 2936/6272/3336 0/0/0 0/0/0 Y/Y 4/56/52
ticketlock 50/60/10 882/1652/770 0/0/0 0/0/0 Y/Y 2/20/18
ticketlock4 100/120/20 3564/6664/3100 0/0/0 0/0/0 Y/Y 6/73/67
usb 6/6/0 10/10/0 2/2/0 2/2/0 N/N 0/0/0

Figure B.1: A comparison between Fency v1 and Fency v2 for SC-x86

49

Program MPG Nodes MPG Edges NRP F R Time (ms)

barrier 8/8/0 28/28/0 4/4/0 2/2/0 N/N 0/0/0
cilk-sc 232/244/12 19375/42425/23050 73/76/3 8/9/1 N/N 28/201/173
cilk-tso 232/244/12 19375/42425/23050 45/45/0 7/8/1 N/N 28/198/170
cldequeue-ra 50/50/0 1243/1927/684 4/4/0 3/3/0 N/N 2/7/5
cldequeue-ra-noloop 30/30/0 458/774/316 1/1/0 1/1/0 N/N 1/3/2
cldequeue-sc 50/50/0 1243/1927/684 18/17/-1 7/7/0 N/N 2/7/5
cldequeue-sc-noloop 30/30/0 458/774/316 10/9/-1 4/4/0 N/N 1/3/2
cldequeue-tso 50/50/0 1243/1927/684 13/13/0 6/6/0 N/N 2/7/5
dekker-sc 102/102/0 3762/3762/0 41/43/2 7/7/0 N/N 6/39/33
dekker-tso 102/102/0 3762/3762/0 11/11/0 3/3/0 N/N 6/37/31
iriw 9/9/0 27/27/0 5/5/0 4/4/0 N/N 0/1/1
lamport-ra 9/13/4 72/156/84 0/0/0 0/0/0 Y/Y 0/2/2
lamport-sc 9/13/4 72/156/84 0/2/2 0/1/1 Y/N 0/2/2
lamport-tso 9/13/4 72/156/84 0/0/0 0/0/0 Y/Y 0/2/2
lb 2/2/0 2/2/0 2/2/0 2/2/0 N/N 0/0/0
lb-2 0/2/2 0/2/2 0/2/2 0/2/2 Y/N 0/0/0
mp 2/2/0 2/2/0 2/2/0 2/2/0 N/N 0/0/0
mutex 2/4/2 2/12/10 0/0/0 0/0/0 Y/Y 0/1/1
nbw 86/86/0 3022/6118/3096 30/32/2 9/9/0 N/N 9/20/11
peterson-ra 48/48/0 518/518/0 14/14/0 8/8/0 N/N 2/11/9
peterson-ra-b 128/128/0 4060/9652/5592 8/6/-2 6/4/-2 N/N 8/46/38
peterson-ra-d 68/68/0 1236/2864/1628 18/22/4 10/10/0 N/N 3/16/13
peterson-sc 48/48/0 518/518/0 32/32/0 10/10/0 N/N 2/11/9
peterson-tso 26/26/0 224/224/0 7/7/0 4/4/0 N/N 0/3/3
rcu 58/79/21 679/2251/1572 44/62/18 10/11/1 N/N 2/67/65
rcu-offline 193/235/42 6290/30011/23721 43/55/12 14/8/-6 N/N 428/770/342
sb 0/0/0 0/0/0 0/0/0 0/0/0 Y/Y 0/0/0
seqlock 25/30/5 408/808/400 4/4/0 2/3/1 N/N 1/3/2
spinlock 74/90/16 3618/7538/3920 8/12/4 4/6/2 N/N 4/28/24
spinlock4 148/180/32 14572/30316/15744 16/24/8 8/12/4 N/N 13/101/88
ticketlock 72/84/12 1704/5644/3940 4/8/4 2/2/0 N/N 4/25/21
ticketlock4 144/168/24 6864/22712/15848 8/16/8 4/4/0 N/N 11/89/78
usb 18/18/0 82/290/208 10/10/0 4/4/0 N/N 0/1/1

Figure B.2: A comparison between Fency v1 and Fency v2 for SC-ARMv8

50

Program MPG Nodes MPG Edges NRP F R Time (ms)

barrier 8/8/0 28/28/0 0/0/0 0/0/0 Y/Y 0/0/0
cilk-sc 232/244/12 19375/42425/23050 68/73/5 8/9/1 N/N 28/203/175
cilk-tso 232/244/12 19375/42425/23050 44/44/0 7/8/1 N/N 28/198/170
cldequeue-ra 50/50/0 1243/1927/684 4/4/0 3/3/0 N/N 2/7/5
cldequeue-ra-noloop 30/30/0 458/774/316 1/1/0 1/1/0 N/N 1/3/2
cldequeue-sc 50/50/0 1243/1927/684 16/15/-1 8/8/0 N/N 2/7/5
cldequeue-sc-noloop 30/30/0 458/774/316 9/8/-1 5/5/0 N/N 1/3/2
cldequeue-tso 50/50/0 1243/1927/684 12/12/0 6/6/0 N/N 2/7/5
dekker-sc 102/102/0 3762/3762/0 23/25/2 3/3/0 N/N 5/37/32
dekker-tso 102/102/0 3762/3762/0 11/11/0 3/3/0 N/N 6/37/31
iriw 9/9/0 27/27/0 5/5/0 4/4/0 N/N 0/1/1
lamport-ra 9/13/4 72/156/84 0/0/0 0/0/0 Y/Y 0/2/2
lamport-sc 9/13/4 72/156/84 0/2/2 0/1/1 Y/N 0/2/2
lamport-tso 9/13/4 72/156/84 0/0/0 0/0/0 Y/Y 0/2/2
lb 2/2/0 2/2/0 2/2/0 2/2/0 N/N 0/0/0
lb-2 0/2/2 0/2/2 0/2/2 0/2/2 Y/N 0/0/0
mp 2/2/0 2/2/0 2/2/0 2/2/0 N/N 0/0/0
mutex 2/4/2 2/12/10 0/0/0 0/0/0 Y/Y 0/1/1
nbw 86/86/0 3022/6118/3096 27/29/2 9/9/0 N/N 9/20/11
peterson-ra 48/48/0 518/518/0 14/14/0 8/8/0 N/N 2/11/9
peterson-ra-b 128/128/0 4060/9652/5592 6/6/0 4/4/0 N/N 8/47/39
peterson-ra-d 68/68/0 1236/2864/1628 12/22/10 10/10/0 N/N 3/16/13
peterson-sc 48/48/0 518/518/0 22/22/0 10/10/0 N/N 2/10/8
peterson-tso 26/26/0 224/224/0 7/7/0 4/4/0 N/N 1/3/2
rcu 58/79/21 679/2251/1572 35/53/18 8/9/1 N/N 2/68/66
rcu-offline 193/235/42 6290/30011/23721 36/49/13 14/9/-5 N/N 420/777/357
sb 0/0/0 0/0/0 0/0/0 0/0/0 Y/Y 0/0/0
seqlock 25/30/5 408/808/400 4/4/0 2/3/1 N/N 1/3/2
spinlock 74/90/16 3618/7538/3920 8/12/4 4/6/2 N/N 4/29/25
spinlock4 148/180/32 14572/30316/15744 16/24/8 8/12/4 N/N 13/99/86
ticketlock 72/84/12 1704/5644/3940 4/8/4 2/2/0 N/N 4/25/21
ticketlock4 144/168/24 6864/22712/15848 8/16/8 4/4/0 N/N 12/90/78
usb 18/18/0 82/290/208 8/10/2 4/4/0 N/N 0/1/1

Figure B.3: A comparison between Fency v1 and Fency v2 for x86-ARMv8

51

Program MPG Nodes MPG Edges NRP F R Time (ms)

barrier 8/8/0 28/28/0 4/4/0 2/2/0 N/N 0/0/0
cilk-sc 244/244/0 20229/42425/22196 27/29/2 7/7/0 N/N 3506/170/-3336
cilk-tso 244/244/0 20229/42425/22196 19/21/2 6/6/0 N/N 3443/172/-3271
cldequeue-ra 65/65/0 2212/3505/1293 5/5/0 3/3/0 N/N 4/8/4
cldequeue-ra-noloop 40/40/0 858/1428/570 3/3/0 2/2/0 N/N 2/4/2
cldequeue-sc 65/65/0 2212/3505/1293 20/20/0 7/7/0 N/N 4/8/4
cldequeue-sc-noloop 40/40/0 858/1428/570 11/11/0 5/5/0 N/N 2/4/2
cldequeue-tso 65/65/0 2212/3505/1293 15/15/0 6/6/0 N/N 4/8/4
dekker-sc 102/102/0 3762/3762/0 46/46/0 8/8/0 N/N 6/34/28
dekker-tso 102/102/0 3762/3762/0 14/14/0 4/4/0 N/N 5/33/28
iriw 9/9/0 27/27/0 5/5/0 4/4/0 N/N 0/1/1
lamport-ra 13/13/0 108/156/48 0/0/0 0/0/0 Y/Y 0/1/1
lamport-sc 13/13/0 108/156/48 0/3/3 1/1/0 Y/N 0/2/2
lamport-tso 13/13/0 108/156/48 0/0/0 0/0/0 Y/Y 0/1/1
lb 2/2/0 2/2/0 2/2/0 2/2/0 N/N 0/0/0
lb-2 0/2/2 0/2/2 0/2/2 2/2/0 Y/N 0/0/0
mp 2/2/0 2/2/0 2/2/0 2/2/0 N/N 0/0/0
mutex 2/4/2 2/12/10 0/0/0 0/0/0 Y/Y 0/1/1
nbw 86/86/0 3022/6118/3096 17/17/0 8/8/0 N/N 8/15/7
peterson-ra 48/48/0 518/518/0 20/20/0 6/6/0 N/N 2/10/8
peterson-ra-b 162/162/0 6592/17710/11118 4/2/-2 2/1/-1 N/N 13/56/43
peterson-ra-d 84/84/0 2054/4868/2814 14/14/0 8/8/0 N/N 4/18/14
peterson-sc 48/48/0 518/518/0 38/38/0 8/8/0 N/N 2/10/8
peterson-tso 26/26/0 224/224/0 10/10/0 6/6/0 N/N 0/3/3
rcu 72/79/7 845/2251/1406 31/47/16 10/10/0 N/N 10/54/44
rcu-offline 217/235/18 7093/30011/22918 15/29/14 11/10/-1 N/N 1017/697/-320
sb 0/0/0 0/0/0 0/0/0 0/0/0 Y/Y 0/0/0
seqlock 30/30/0 493/808/315 2/2/0 2/2/0 N/N 2/3/1
spinlock 90/90/0 4458/7538/3080 0/0/0 0/0/0 Y/Y 198/25/-173
spinlock4 180/180/0 17932/30316/12384 0/0/0 0/0/0 Y/Y 5536/88/-5448
ticketlock 84/84/0 1992/5644/3652 0/0/0 0/0/0 Y/Y 36/22/-14
ticketlock4 168/168/0 8016/22712/14696 0/0/0 0/0/0 Y/Y 846/79/-767
usb 18/18/0 82/290/208 10/10/0 4/4/0 N/N 0/1/1

Figure B.4: A comparison between Fency v1 and Fency v2 for SC-ARMv7

52

Program MPG Nodes MPG Edges NRP F R Time (ms)

barrier 8/8/0 28/28/0 0/0/0 0/0/0 Y/Y 0/1/1
cilk-sc 244/244/0 20229/42425/22196 24/26/2 7/7/0 N/N 3446/171/-3275
cilk-tso 244/244/0 20229/42425/22196 18/20/2 6/6/0 N/N 3443/170/-3273
cldequeue-ra 65/65/0 2212/3505/1293 5/5/0 3/3/0 N/N 4/9/5
cldequeue-ra-noloop 40/40/0 858/1428/570 3/3/0 2/2/0 N/N 2/5/3
cldequeue-sc 65/65/0 2212/3505/1293 18/18/0 7/7/0 N/N 4/8/4
cldequeue-sc-noloop 40/40/0 858/1428/570 10/10/0 5/5/0 N/N 2/4/2
cldequeue-tso 65/65/0 2212/3505/1293 14/14/0 6/6/0 N/N 4/8/4
dekker-sc 102/102/0 3762/3762/0 28/28/0 4/3/-1 N/N 5/34/29
dekker-tso 102/102/0 3762/3762/0 14/14/0 4/4/0 N/N 5/34/29
iriw 9/9/0 27/27/0 5/5/0 4/4/0 N/N 0/1/1
lamport-ra 13/13/0 108/156/48 0/0/0 0/0/0 Y/Y 0/2/2
lamport-sc 13/13/0 108/156/48 0/3/3 1/1/0 Y/N 0/2/2
lamport-tso 13/13/0 108/156/48 0/0/0 0/0/0 Y/Y 0/2/2
lb 2/2/0 2/2/0 2/2/0 2/2/0 N/N 0/0/0
lb-2 0/2/2 0/2/2 0/2/2 2/2/0 Y/N 0/0/0
mp 2/2/0 2/2/0 2/2/0 2/2/0 N/N 0/0/0
mutex 2/4/2 2/12/10 0/0/0 0/0/0 Y/Y 0/1/1
nbw 86/86/0 3022/6118/3096 17/17/0 8/8/0 N/N 9/15/6
peterson-ra 48/48/0 518/518/0 20/20/0 6/6/0 N/N 2/10/8
peterson-ra-b 162/162/0 6592/17710/11118 2/2/0 2/1/-1 N/N 13/55/42
peterson-ra-d 84/84/0 2054/4868/2814 14/14/0 8/8/0 N/N 4/18/14
peterson-sc 48/48/0 518/518/0 28/28/0 8/8/0 N/N 2/10/8
peterson-tso 26/26/0 224/224/0 10/10/0 6/6/0 N/N 0/3/3
rcu 72/79/7 845/2251/1406 25/41/16 10/10/0 N/N 10/53/43
rcu-offline 217/235/18 7093/30011/22918 13/26/13 9/8/-1 N/N 1009/702/-307
sb 0/0/0 0/0/0 0/0/0 0/0/0 Y/Y 0/0/0
seqlock 30/30/0 493/808/315 2/2/0 2/2/0 N/N 2/3/1
spinlock 90/90/0 4458/7538/3080 0/0/0 0/0/0 Y/Y 199/25/-174
spinlock4 180/180/0 17932/30316/12384 0/0/0 0/0/0 Y/Y 5513/87/-5426
ticketlock 84/84/0 1992/5644/3652 0/0/0 0/0/0 Y/Y 37/22/-15
ticketlock4 168/168/0 8016/22712/14696 0/0/0 0/0/0 Y/Y 867/80/-787
usb 18/18/0 82/290/208 8/10/2 4/4/0 N/N 0/1/1

Figure B.5: A comparison between Fency v1 and Fency v2 for x86-ARMv7

53

Program MPG Nodes MPG Edges NRP F R Time (ms)

barrier 8/8/0 28/28/0 0/0/0 0/0/0 Y/Y 0/0/0
cilk-sc 244/244/0 20229/42425/22196 20/22/2 7/7/0 N/N 3546/169/-3377
cilk-tso 244/244/0 20229/42425/22196 14/16/2 6/6/0 N/N 3472/171/-3301
cldequeue-ra 65/65/0 2212/3505/1293 4/4/0 3/3/0 N/N 4/8/4
cldequeue-ra-noloop 40/40/0 858/1428/570 2/2/0 2/2/0 N/N 2/4/2
cldequeue-sc 65/65/0 2212/3505/1293 15/15/0 7/7/0 N/N 4/8/4
cldequeue-sc-noloop 40/40/0 858/1428/570 8/8/0 5/5/0 N/N 2/4/2
cldequeue-tso 65/65/0 2212/3505/1293 12/12/0 6/6/0 N/N 4/8/4
dekker-sc 102/102/0 3762/3762/0 28/28/0 4/3/-1 N/N 6/34/28
dekker-tso 102/102/0 3762/3762/0 14/14/0 4/4/0 N/N 5/33/28
iriw 9/9/0 27/27/0 5/5/0 4/4/0 N/N 0/1/1
lamport-ra 13/13/0 108/156/48 0/0/0 0/0/0 Y/Y 0/1/1
lamport-sc 13/13/0 108/156/48 0/3/3 1/1/0 Y/N 0/2/2
lamport-tso 13/13/0 108/156/48 0/0/0 0/0/0 Y/Y 0/1/1
lb 2/2/0 2/2/0 2/2/0 2/2/0 N/N 0/0/0
lb-2 0/2/2 0/2/2 0/2/2 2/2/0 Y/N 0/0/0
mp 2/2/0 2/2/0 1/1/0 1/1/0 N/N 0/0/0
mutex 2/4/2 2/12/10 0/0/0 0/0/0 Y/Y 0/1/1
nbw 86/86/0 3022/6118/3096 15/15/0 7/7/0 N/N 9/16/7
peterson-ra 48/48/0 518/518/0 18/18/0 6/6/0 N/N 2/10/8
peterson-ra-b 162/162/0 6592/17710/11118 0/0/0 0/0/0 Y/Y 13/66/53
peterson-ra-d 84/84/0 2054/4868/2814 10/10/0 6/6/0 N/N 4/19/15
peterson-sc 48/48/0 518/518/0 18/18/0 6/6/0 N/N 2/9/7
peterson-tso 26/26/0 224/224/0 8/8/0 4/4/0 N/N 0/3/3
rcu 72/79/7 845/2251/1406 4/20/16 4/4/0 N/N 10/53/43
rcu-offline 217/235/18 7093/30011/22918 9/23/14 6/6/0 N/N 1009/698/-311
sb 0/0/0 0/0/0 0/0/0 0/0/0 Y/Y 0/0/0
seqlock 30/30/0 493/808/315 2/2/0 2/2/0 N/N 2/3/1
spinlock 90/90/0 4458/7538/3080 0/0/0 0/0/0 Y/Y 200/25/-175
spinlock4 180/180/0 17932/30316/12384 0/0/0 0/0/0 Y/Y 5378/87/-5291
ticketlock 84/84/0 1992/5644/3652 0/0/0 0/0/0 Y/Y 37/22/-15
ticketlock4 168/168/0 8016/22712/14696 0/0/0 0/0/0 Y/Y 866/79/-787
usb 18/18/0 82/290/208 2/2/0 2/2/0 N/N 0/1/1

Figure B.6: A comparison between Fency v1 and Fency v2 for ARMv8-ARMv7

54

	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Weak memory models
	M-K robustness
	Fency v1: issues and limitations
	Research question
	Contributions

	Background
	Axiomatic memory models
	M-K Robustness
	Fency

	Fency v2
	Adding instruction dependency analysis
	Improving Fency's alias analysis
	Supporting function calls

	Evaluation
	Comparing Fency v2 with Fency v1
	Evaluating the impact of DOB analysis on Fency's fence placement
	Running Fency v2 on C/C++11 programs

	Related work
	Robustness checking and fence insertion tools
	Other weak memory model tools
	Fence insertion

	Conclusion
	Future work

	Bibliography
	Definitions of the Robustness conditions in Fency
	Comparing Fency v1 and Fency v2: full results

