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ABSTRACT 

We report on advanced defect classification using TNO’s  RapidNano particle scanner. RapidNano was originally 
designed for defect detection on blank substrates. In detection-mode, the RapidNano signal from nine azimuth angles is 
added for sensitivity. In review-mode signals from individual angles are analyzed to derive additional defect properties. 
We define the Fourier coefficient parameter space that is useful to study the statistical variation in defect types on a 
sample. By selecting defects from each defect type for further review by SEM, information on all defects can be obtained 
efficiently.  
 
Keywords: Particle contamination, defect detection, defect review, advanced defect classification, redetection, 
semiconductor, latex sphere equivalent, dark field microscopy, scatterometry, ADC, SEM 
 

1. INTRODUCTION 
Particle defects are a significant contributor to yield loss in semiconductor manufacturing. To determine the origin of 
and, in the end to control particle defects, the presence, shape, size and composition of these particles must be 
characterized. Advanced Defect Classification (ADC) is an established technique to pursue defectivity control1. With 
shrinking device dimensions, increasingly smaller particles become the root cause for device failure by critical defects. 
This strongly raises the challenge for defect detection and review tools, as both more and smaller particles need to be 
found and analyzed. This paper extends our previous feasibility study2 of using optical metrology by sub-wavelength 
anisotropic scatterometry as a first step in ADC. By performing optical defect review during or right after optical 
inspection, information on present defects is available earlier in the review process. We have developed an algorithm to 
quantitatively classify defects based on this information. This initial classification can subsequently be used to select a 
sample of defects for review on slower high-resolution review tools, such as SEM, HIM and AFM, making the defect 
review process more efficient. 

Since defects occur at low densities, the first step in defect classification is detection and assignment of accurate 
coordinates to the defect. Optical metrology is the only technique with a high enough throughput for this step. TNO has 
developed the RapidNano 3 particle scanner for this purpose3. This scanner (RN3) is capable of detecting 42 nm PSL 
particles on highly polished substrates. This high sensitivity is achieved by reducing the background variance by 
illuminating the sample from multiple azimuth angles4. In detection mode (RN3.1), the signals from all azimuth angles 
are added and a defect is detected when this sum exceeds a certain threshold value. The multi-azimuth illumination can 
also be used for defect review. In this mode (RN3.9), the signal from the 9 azimuth angles is recorded individually. The 
differences in scattering intensity as a function of azimuth angle are analyzed to extract additional information on the 
defect. In detection mode, the defect location and estimated size are determined, while in review mode also aspect-ratio, 
skewness and orientation are reconstructed.  
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Figure 1: Optical signal strength (gv/J) as measured using RN3.9 for 9 angles distributed around 360 degrees scattering 
directions (top row) and SEM (center row) and AFM (bottom row) images, all from the same re-detected programmed 
defects. The design size of the square defects is CD = 100 nm, with aspect ratio AR = 1:1 (left column), 1:2 (center column) 
and 1:5 (right column). The defect volume is kept constant. 

 

3. SMART SAMPLING 
In review mode, the Rapid Nano yields 9 measurement values on a defect instead of 1. While this additional data is far 
from sufficient to determine the exact defect shape and material, it is a significant increase of information prior to high-
resolution review. The statistical variance of defect types present on a sample can be better assessed with this data. We 
present a parameter space, the Fourier coefficient representation, that is particularly useful to study this variance. When 
clusters of data-points are present in these coefficients, a much improved selection of defects can be made for further 
high-resolution review. This selection can be made to equally cover all defect types present on the sample. 
 

Fourier coefficient representation 

Optical defect review yields 9 scattering cross-sections, one for each illumination azimuth of the Rapid Nano particle 
scanner. By plotting these values in a polar plot qualitative properties of the defect can be visualized (Figure 1). e.g., 
elongated defects show an elongated polar plot, however with the long axis rotated by 90 degrees. The scattering of an 
elongated defect is strongest when the illumination is perpendicular to the long axis of the defect. 

We transform the 9 measurement values for a single defect to more practical values by taking the Fourier transform over 
the azimuth angle. This transform yields one real and 4 complex numbers (k = [0..4]):  
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=	∑ 	 ∙ 	 / ,        (1)  

 

where Sn are the 9 scattering cross-sections measured with the illumination azimuth at 40 degrees intervals. The 0th order 
coefficient A0 is equal to the average of the 9 scattering cross-sections. The magnitude of the 1st order coefficient A1 
describes the skewness of the polar plot, while the phase corresponds to the direction of the skewness. Similarly, the 
magnitude of A2 represents the aspect-ratio of the defect and its phase the orientation of the short axis. 

The Fourier coefficient parameter space is a more useful space to represent the optical metrology data than the original 9 
scattering cross-sections. Similar defects have similar magnitudes of the Fourier coefficients, but can have very different 
values for the direct measurement when the orientation of the defect is different. By having a representation in which 
similar defects are close, clusters in the defect data can be found. When the presence of such clusters is known, the high-
resolution review can be done more efficiently, e.g., a few defects of each cluster can be selected for review to obtain 
information on all defects in these clusters. 

As an example of this approach, we have performed optical review on a sample with programmed defects. This sample 
contains ellipses and rectangles of different sizes and aspect-ratios, see Table 1. From this design, it is clear that the 0th 
and 2nd order Fourier coefficients will be the most relevant. In a scatter plot with the magnitudes of these two parameters, 
15 clusters show up, corresponding to the 3 different aspect-ratios and 5 different sizes of the investigated programmed 
defects. The rectangular (red) and elliptically shaped (blue) defects can’t be separated by these two parameters. The 
center of all clusters was determined by a k-means algorithm and a Voronoi diagram was generated from these points as 
shown in Figure 2. 

 

 
Figure 2 Scatter plot of the 2nd order versus 0th order Fourier coefficient of the scatterometry data for the 3000 programmed 
defects as defined in Table 1. Each cluster of data points can be related to a class within the set of programmed defects, e.g. 
the 3 clusters at the far left correspond to the 60-nm defects with aspect ratios of 1, 2, and 5 from bottom to top. 
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An alternative way to use the Fourier coefficients is to look at the phase. Figure 3 shows a polar plot of the 0th order 
coefficient versus the phase of the 2nd order coefficient. The 5 different sizes are well distinguishable, as the 5 rings in 
the polar plot. For the defects that have a well-defined orientation, i.e., with aspect-ratio 1:2 or 1:5, the 9 orientations 
present on the sample show as clusters of data points. This orientation sensitivity may be useful to classify defects that 
occur in well-oriented pattern such as bridges or gaps in dense lines. 

We have shown two different ways to view the Fourier coefficients of the 9 azimuth scattering cross-sections of the 
programmed defects. These views focus on different aspects of the present defects. Each production process will have 
different associated defect types. By investigating various views of the optical metrology data, the presence of these 
different defect types can be detected. This information can be used to make the defect review process more efficient. 

 

 
Figure 3 Polar plot of the RN3.9 signal (gv/J)  versus the phase of the 2nd order coefficient A2 of the Fourier transformed 
scatterometry data for the 3000 programmed defects as defined in Table 1. Defects of similar size but with a different shape 
show up at approximately the same radius. Defects with a clear orientation show up at the corresponding angle.  
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4. CONCLUSIONS 
The Rapid Nano particle scanners’ unique multi-azimuth illumination can be used to collect additional data on defects, 
beyond a size and location estimate. This data can be analyzed to determine the variance in defect type on a sample and 
find groups of defects that are likely of a single type. With this initial grouping in potential defect types, a smarter defect 
sampling can be achieved, such that more information on all defects on the sample is obtained in less time. Hence, this 
method makes more effective use of expensive defect review equipment such as SEM, HIM or AFM. 

We have presented the Fourier coefficient representation of the multi-azimuth scattering cross-section data. It is 
particularly useful for analyzing the variance of defect types. The usefulness of this representation has been 
demonstrated on a programmed defect sample containing several defect types of different sizes, aspect-ratios and 
orientations. The complex character of the Fourier coefficients can be used for instance to focus on orientational effects 
or to completely discard them. 
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