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Abstract—U.S. congressional hearing transcripts offer a valu$
able window into national policy discourse, but they are prohib$
itively large for manual analysis. This study explores the use of
large language models (LLMs) for multi$speaker, multi$target
stance detection, a task that involves identifying each speaker’s
position on multiple topics within a single hearing. To this end,
a novel annotation framework is introduced to produce stance
labels for a small corpus of hearings from the House Oversight
and Government Reform Committee. The study then evaluates
the classification performance of zero$ and few$shot prompting
and investigates how chain$of$thought reasoning influences the
results. The evaluation is conducted using OpenAI’s GPT$4o and
o3 models. Initial experimental results indicate that combining
chain$of$thought with few$shot prompting yields the highest
performance, suggesting a promising direction for automating
stance analysis using LLMs in complex political discourse.

Index Terms—Stance detection, congressional hearings, large
language models

I. Introduction

What do 6,000 hours¹ of congressional deliberation reveal
about America’s policy priorities–and who’s advocating for
what? Across the 117th Congress (2021-2022), just under
2,000 hearing transcripts² were released, documenting exten-
sive discussions on issues ranging from healthcare and
education to technology and national security [2]. These tran-
scripts represent a rich resource for understanding political
discourse in the United States. However, the sheer volume of
material makes manual analysis impractical, creating a need
for automated methods.

In an effort to address this need, this paper explores how
Large Language Models (LLMs) can be used for multi-target
stance detection in U.S. congressional hearing transcripts.
Compared to other domains, annotated datasets for congres-
sional hearings are limited and often difficult to produce [3],
[4]. This challenge positions LLMs as the optimal architec-
tural choice for this task, as they have demonstrated impressive
capabilities in zero-shot and few-shot settings, where minimal
or even no task-specific training examples are needed [3],
[5], [6].

Multi-target stance detection is defined by Küçük and Can
[7] as a classification problem in which, for a single author’s
text and a set of related targets, each target is assigned a label–
support, oppose, or neutral–while recognizing that the stance
chosen for one target may influence the stances assigned to
the others. In the context of hearings, an author is a speaker
(e.g., a Committee member or witness), the text is a collection
of their utterances, and the targets are topics identified within
each transcript.

Hearings are inherently multi-speaker, however, motivating
an extension of that definition that considers every speaker
as an author and treats all speakers’ utterances, i.e. the
entire transcript, as the text. Consequently, the task becomes
assigning a stance label to each speaker-topic pair while

¹For this calculation, I assume that the approximately 2,000 hearings
that took place in 2021-2022 have an average duration of 3 hours [1].

²These approximately 2,000 hearing transcripts span House, Senate,
and joint congressional sessions.

acknowledging that one speaker’s expressed position may
inform the inferred stances of others.

Given this adapted formulation of the multi-target stance
detection problem, the research question that the paper aims to
answer is: how do different LLM prompting strategies compare
in their ability to perform multi-target stance detection across
multiple speakers towards specific topics in U.S. congressional
hearing transcripts? This overarching question is addressed
through the following subquestions:

• How do zero-shot and few-shot prompting strategies
compare in terms of performance?

• How does chain-of-thought prompting influence per-
formance when paired with zero-shot and few-shot
approaches?

To answer these questions, the paper makes two main contri-
butions. First, it introduces a new framework for annotating
topic-based stances across speakers in congressional hearings.
This provides the foundation for evaluating classification
performance. Second, it presents an empirical comparison of
zero- and few-shot prompting, with and without chain-of-
thought reasoning, for the task of multi-speaker, multi-target
stance detection.

The remainder of the paper is structured as follows. Sec-
tion II reviews related work on stance detection in the domain
of political discourse. Section  III describes the framework
employed in the study and the experimental setup. Section IV
presents and discusses the key findings. Section V outlines
the limitations of the study. Section VI suggests directions for
future research. Section VII summarizes the contributions of
the paper. Lastly, Section VIII addresses the ethical consider-
ations of the study.

II. Related Work

Automatic stance detection has been widely studied in the
field of Natural Language Processing (NLP) [8]. Most litera-
ture focuses on arguments sourced from online debate forums
and social media, most notably X (formerly Twitter) [7], [9].
Furthermore, most models used for this task are designed to
determine a single user’s stance towards a given topic [10]. In
comparison, there is little research on stance detection using
larger texts [3].

Initial work by Thomas et al. [11] attempts to detect
stance in U.S. congressional floor debates by focusing on
single-target, single-speaker scenarios. Each speech segment
is treated as expressing either support or opposition to the bill
under consideration.

More recently, a policy-focused approach was introduced
by Abercrombie and Batista-Navarro [12], who performed
stance detection across multiple speakers for UK parliamen-
tary debates. However, each debate still revolves around a
single policy. Thus, speakers are labelled with at most one
stance per debate. A similar approach was used in [3], where
the domain is Australian parliamentary debates.

A comprehensive survey by Abercrombie and Batista-
Navarro [13] found that much of the existing work on
stance detection in political settings focuses on parliamentary
debates. In comparison, the domain of congressional hearings



remains largely unexplored within the stance detection liter-
ature, particularly in multi-topic, multi-speaker settings.

Consequently, annotated datasets for this NLP task in the
domain of congressional hearings are scarce. For instance,
recent literature introduced the CoCoHD dataset [14], which
comprises over 32,000 U.S. congressional hearing transcripts.
However, the labelled portion covers just 1,000 sentences
and focuses exclusively on a single topic. Additionally, these
annotations are made at the sentence level, without broader
speaker- or topic-level aggregation. These limitations motivate
the development of a new annotation framework suitable for
the task of multi-speaker, multi-target stance detection.

III. Methods

This section is split into five subsections. The first describes
the structure of hearings and the preprocessing steps. The
second outlines the manual annotation process used to identify
salient topics and produce speaker-topic stance matrices used
as ground truth. The third presents the inter-annotator agree-
ment analysis and adjudication process. The fourth details the
prompting strategies and models used to generate predicted
labels. Finally, the fifth subsection explains the scoring metrics
and aggregation steps employed to evaluate the performance
of each model-prompt combination.
A. Data and Preprocessing

Hearings follow a highly structured format that unfolds in a
consistent and predictable manner, illustrated in Fig. 1. First,
the Chair and Ranking Member give opening statements,
followed by prepared statements from the invited witnesses.
Then follows a question-and-answer segment, where each
committee member, including the Chair and Ranking Member,
is allocated five minutes to question the witnesses or make re-
marks. Once a committee member’s time is up, they typically
do not speak again during the hearing, except for the Chair
and Ranking Member, who also deliver closing statements.
Witnesses respond only when addressed, and their input is
confined to the context of the questions they receive.
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Fig. 1: Typical structure of U.S. congressional hearings. Colored bars rep-
resent speaker turns across three phases: opening statements by the Chair
and Ranking Member (R.M.), witness testimony (W1–W3), a Q&A where
committee members (M1–M5) question the witnesses, and finally closing
statements. Witness and committee member counts vary by hearing.

The study uses a curated corpus of 10 hearing transcripts from
the House Oversight and Government Reform Committee³ of
the 118th Congress (2023–2025). This particular committee
was chosen because its hearings routinely cover high-profile,
often contentious issues while generally avoiding deeply
specialized jargon, making them both engaging and straight-
forward to annotate without extensive domain expertise.

First, each transcript is preprocessed to remove metadata
such as the title, table of contents, and other non-dialogue
elements, retaining only the spoken exchanges between par-
ticipants. Then, since each speaker’s name precedes their
utterances, the cleaned transcript can be segmented into dis-
crete speaker turns. Table I provides a minimal example of
this segmented representation.

TABLE I
Hearing Transcript Segmented Representation Example

# Speaker Segment

1 Ms. Brown Over the last three and a half years into the pandemic …

2 Mr. Smith Thank you for your question, Ms. Brown. I’m glad …

3 Ms. Brown I appreciate that, Mr. Smith. But how do you know …

⋮ ⋮ ⋮

By splitting transcripts into discrete speaker turns, each
hearing can be treated as a dataset of utterances, aiding the
manual annotation process described in Section III-B.
B. Manual Annotation Process

The manual annotation process is twofold. First, two non-
expert annotators jointly compile a list of salient topics for a
given hearing; then, they independently label each speaker’s
stance towards those topics based on their utterances.

1) Topic Identification: A topic refers to any word or short
phrase, either stated directly or implied, to which a speaker’s
claim is directed [15]. Since stance detection applies only in
the presence of an assertion, topics are limited to the issues
about which such assertions are made. Based on this notion, a
simple heuristic is proposed to aid the manual identification of
topics: a candidate topic should plausibly elicit the evaluative
question, “Is speaker X expressing support for, or opposition
to, topic Y?” If this question cannot be meaningfully applied
in context–such as in cases where a statement merely conveys
a fact–then the candidate should likely not be considered a
valid topic for the detection task.

Let us consider an example from a hearing on government
measures to combat the COVID-19 pandemic. The candidate
topic “pandemic” is not suitable for stance detection, as it
describes a factual situation rather than an issue on which one
can take a position. By contrast, “vaccine mandates” qualifies
as a valid topic because speakers may express support for, or
opposition to, vaccination policies.

Congressional hearings typically begin with the Chair and
Ranking Member, each delivering opening statements that

³Information about the House Oversight and Government Reform
Committee is available at congress.gov/committee/house-oversight-and-
government-reform/hsgo00

https://www.congress.gov/committee/house-oversight-and-government-reform/hsgo00
https://www.congress.gov/committee/house-oversight-and-government-reform/hsgo00


frame the issues under discussion. The study assumes–as
is generally observed–that no other participant introduces
new themes. Therefore, topics are drawn exclusively from
the Chair’s and Ranking Member’s opening statements. This
approach is further motivated by the inherently subjective
nature of stance detection, which relies on the presence of
clearly defined topics [15]. Especially in the context of con-
gressional hearings, it is imperative that the identified topics
are both well-scoped and broadly relevant, such that speakers
throughout the hearing are more likely to have expressed a
stance towards them.

Furthermore, since this study focuses on multi-target stance
detection, the identification process must yield at least one
valid topic per hearing, but preferably two or more, to reflect
the intended complexity of the task.

In practice, for each hearing in the corpus, the annotators
read the Chair’s and Ranking Member’s opening statements
in full and collaboratively compiled a list of candidate topics,
i.e. phrases or terms that appeared to structure the argumen-
tation. For each candidate, the aforementioned heuristic was
applied to determine whether it could elicit a stance. Topics
that met this criterion were shortlisted. In cases where the
annotators disagreed on the inclusion of a candidate topic,
the decision was resolved through discussion. The final list
typically consisted of two to six topics per hearing, depending
on the breadth and focus of the statements. These selected
topics form the basis for the subsequent stance annotation
process, where each speaker’s stance is assigned with respect
to each identified topic.

2) Annotating Stance: The proposed method of assigning
stances leverages the structured nature of congressional hear-
ings and builds upon the segmented transcript representation
described in Section III-A. For a given hearing, each annotator
reads every segment and assigns a stance to that segment’s
speaker towards every identified topic: +1 for support, −1
for opposition, or 0 for neutrality. A neutral stance indicates
either the absence of any opinion towards the topic, or that the
topic is not discussed, explicitly or implicitly. Table II shows
the segmented representation example from Table I, updated
to include stance labels towards topics.

TABLE II
Hearing Transcript Segmented Representation Example with Stance

Labels Towards Topics

# Speaker Segment IRA CHIPS Act ⋯

1 Ms. Brown Over the last … −1 0 ⋯

2 Mr. Smith Thank you for … +1 +1 ⋯

3 Ms. Brown I appreciate … −1 0 ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋱

Annotating each segment individually offers two main advan-
tages over assigning stances based on a full reading of the
transcript. First, it allows annotators to focus on one utterance
at a time, thereby reducing cognitive load. Second, it makes
the source of each stance decision traceable, as it becomes
clear which specific segments contribute to the final label.

At this point in the annotation process, each speaker typi-
cally receives multiple stance labels per topic across different
segments. These need to be aggregated to obtain an overall
stance for each speaker towards each topic.

Unlike debates, committee members generally enter a
hearing with firm positions on the relevant issues. Even after
listening to witness testimony, their positions tend to remain
the same. Therefore, it is possible to aggregate their stances
across all segments using summation, without concern for
overlooking changes in viewpoint, where opposing stance
values (e.g., +1 and −1) would cancel each other out,
resulting in ambiguous labels. If the total is positive, then the
overall stance is +1 (support); if negative, the stance is −1
(opposition); and if zero, the stance is 0 (neutral). Table III
illustrates this speaker-topic matrix.

TABLE III
Speaker-topic Matrix of Stances

Speaker Topic 1 Topic 2 Topic 3 ⋯

Ms. <Surname> +1 −1 −1 ⋯

Mr. <Surname> 0 −1 −1 ⋯

Dr. <Surname> 0 +1 +1 ⋯

⋮ ⋮ ⋮ ⋮ ⋱

Majority voting was also considered as an alternative aggre-
gation strategy, but most speaker-topic pairs receive a neutral
stance (0), which would bias the outcome towards neutrality
even when a clear stance is present. For example, the Chair
often receives more neutral labels than any other category.
This is not due to an absence of opinion, but because much
of their speech consists of procedural remarks, such as intro-
ducing witnesses, transitioning between speakers, or handling
administrative matters like allowing materials to be entered
into the record. Summation, by contrast, allows non-neutral
segments to accumulate and reflect the speaker’s overall
position.
C. Inter-annotator Agreement

The dataset was independently annotated by two annotators,
each assigning stance labels at the segment level using the
same set of identified topics and labelling guidelines. As a
result, two speaker-topic matrices were produced for every
hearing in the corpus. The reliability of these annotations is
assessed using Cohen’s 𝜅, which yielded a score of 0.71,
representing “substantial” agreement [16].

For each hearing, disagreements were identified by com-
paring the two stance matrices cell by cell: for each speaker-
topic pair where the assigned stances differed, the cell was
marked with an “X”. These flagged entries were then reviewed
collaboratively by the annotators, who revisited the relevant
transcript segments and discussed their interpretations until a
consensus label was reached. No third-party adjudicator was
used.

Following this process, a single unified speaker-topic matrix
was created for each transcript in the corpus. These matrices
serve as the ground truth used for evaluation.



D. Experimental Setup

The aim of this study is to compare the performance of zero-
shot and few-shot prompting strategies for multi-target stance
detection across multiple speakers towards specific topics in
U.S. congressional hearing transcripts, and to evaluate the
effect of chain-of-thought prompting when applied to each of
these approaches. Each prompting paradigm and the models
used to perform this task are detailed as follows. All prompts
were iteratively refined using two hearings not included in the
evaluation set.

1) Zero-shot: Zero-shot prompting is a technique where an
LLM is given a task without any prior examples or specific
training for that task. The model relies solely on its pre-
existing knowledge and general understanding of language
to generate a response. This paradigm represents the most
challenging setting, as it may pose significant difficulty even
for humans [17].

The zero-shot prompt employed in this study first estab-
lishes the model’s role as an impartial congressional hearing
annotator and then defines its task: to determine the stance of
various speakers towards a predefined list of topics. It includes
an explanation for each stance label (support, oppose, and
neutral) and specifies the output format. Finally, the entire
cleaned hearing transcript is appended at the end of the
prompt. Fig. 2 depicts the components of this prompt.
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Role Task Output Format

Topics Speakers Transcript

Zero-shot
prompt

Fig. 2: Components of the zero-shot prompt. The blue section is constant
across all hearings, while the red section contains hearing-specific elements.

2) Few-shot: Few-shot prompting builds on the foundation
of the zero-shot method by including a small number of
examples within the input to leverage the in-context learning
capabilities of LLMs [18]. Therefore, in addition to the core
instructions included in the zero-shot prompt, the few-shot
prompt contains five manually annotated examples, preceding
the hearing transcript. Three examples demonstrate subtle
expressions of stance, while the remaining two are instances
where a speaker appeared to be taking a stance but was in fact
neutral. This few-shot approach aims to guide the model to
avoid common pitfalls in interpretation and enhance its ability
to discern complex or ambiguous cases. Fig. 3 illustrates the
components that this prompt comprises.
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Topics Speakers Transcript

Few-shot
prompt

Fig.  3: Components of the few-shot prompt. Similarly to the zero-shot
prompt, the blue section remains the same across all hearings and includes
examples of the detection task, while the elements of the red section change
for each hearing.

3) Chain-of-thought: Chain-of-thought (CoT) prompting is a
technique that breaks down complex questions or tasks into
smaller, logical steps, encouraging a language model to reason
through the problem-solving process like a human [19]. This
approach can be applied in tandem with both zero-shot and
few-shot methodologies. When combined with CoT prompt-
ing, zero-shot has been found to significantly outperform
zero-shot approaches without CoT in symbolic reasoning tasks
[20].

In this study, CoT was applied to both zero- and few-
shot prompts, resulting in CoT-zero-shot and CoT-few-shot
variants. These new prompts guide the LLM through the
stance detection problem by providing logical step-by-step
instructions. Additionally, the model is required to justify the
labels it assigns by referencing specific parts of the transcript.
This second layer of “thought” aims to allow the LLM to
verify its own classification decisions, potentially improving
the accuracy and robustness of the output.

4) Model Choice: Two models were chosen to carry out
the stance detection task: OpenAI’s GPT-4o and o3.

GPT-4o is 50% cheaper than previous GPT-4 versions
while matching or exceeding them in reasoning and language
tasks, making it both efficient and economical for large-scale
processing [21]. Furthermore, it has a context window of
128,000 tokens, meaning prompts can accommodate an entire
congressional hearing transcript without truncation.

The second model used in the study, OpenAI’s o3, is
one of the company’s most advanced reasoning models [22].
Compared to GPT-4o, it has an even larger context window
of 200,000 tokens.

Reasoning models, like o3, are trained to adopt an “inter-
nal chain of thought” during inference, devoting additional
internal deliberation to tasks requiring step-by-step logical
reasoning [23]. Benchmarks reveal that o3 makes 20% fewer
major errors than o1, o3′s previous version, on complex real-
world tasks [22]. Furthermore, o1 itself significantly outper-
forms GPT-4o on demanding reasoning tasks [24]. Therefore,
o3 is more powerful than GPT-4o. Given this inherent differ-
ence in capacity, comparing the results of the two models will
demonstrate whether greater model capability yields improved
stance detection performance.
E. Evaluation

The study evaluates four prompting strategies, namely zero-
shot, few-shot, CoT-zero-shot, and CoT-few-shot, on two
LLMs (GPT-4o and o3). For each model-prompt pairing,
every hearing transcript in the curated corpus is processed to
produce a speaker-topic stance matrix of predicted labels.

For each matrix, per-topic performance is quantified using
macro-averaged accuracy, recall, precision, and F1-score.
These metrics are then averaged across all topics to yield
a single set of scores for each hearing. Finally, scores are
averaged over all transcripts to obtain overall accuracy, recall,
precision and F1-score for each of the eight model-prompt
combinations.

Uniform averaging across topics is a deliberate choice. Nat-
urally, some topics may be discussed extensively while others
are mentioned only briefly. Weighting topics by frequency was



considered but ultimately rejected, as it would undervalue the
model’s ability to correctly identify neutral stances for less-
discussed topics. By treating each topic equally, the evaluation
better reflects the model’s ability to handle infrequently men-
tioned topics, which often result in a majority of neutral stance
labels. Correctly identifying these cases is just as important
as detecting strong opinions, as it demonstrates the model’s
ability to withhold judgement when no stance is expressed.

IV. Results and Discussion

This section presents the results of the evaluation conducted
on the curated hearing corpus. It first compares the perfor-
mance of zero-shot prompting with that of few-shot. Then,
it discusses the influence of chain-of-thought on the results.
Finally, the section offers an error analysis of model outputs.
A. Presentation of Results

Table  IV summarizes the results of the evaluation on the
test set across four classification metrics: accuracy, precision,
recall and F1-score. The reported scores represent the overall
performance for each of the eight model-prompt combinations
introduced in Section III-D for the multi-target stance detec-
tion task.

TABLE IV
Experimental Results

Model Prompt F1$score Accuracy Precision Recall

zero-shot 63.7 68.7 66.1 67.6

few-shot 58.4 64.2 59.9 64.0

CoT-zero-shot 68.9 70.8 71.7 72.6

GPT-4o

CoT-few-shot 66.6 71.4 70.8 68.3

zero-shot 72.3 74.9 73.2 76.9

few-shot 75.6 77.1 77.7 78.8

CoT-zero-shot 73.1 74.9 76.9 76.1

o3

CoT-few-shot 75.8 77.9 79.9 78.1

Note—All values are reported as percentages (%), rounded to one decimal
place.

The highest F1-score in the study is achieved with o3 using
the CoT-few-shot prompt (75.8%), which is nearly identical to
its plain few-shot baseline (75.6%). This model-prompt com-
bination outperforms GPT-4o’s best result (CoT-zero-shot at
68.9% F1-score) by 10%. Moreover, o3 outperforms GPT-4o
under every prompting configuration. The advantage ranges
from 6% in CoT-zero-shot to nearly 30% in plain few-shot.
B. Zero-shot vs Few-shot

When paired with GPT-4o, zero-shot outperforms few-shot
across all evaluation metrics. F1-score increases by 8.3%, ac-
curacy by 2.9%, precision by 6.1%, and recall by 2.5%. These
results suggest that providing exemplars does not aid GPT-4o
in this context; on the contrary, performance degrades.

Committee members may express their opinions in various
ways. Some express their views outright, while others embed
them subtly in the premise of their questions to the witnesses.

Any fixed set of exemplars is almost certain to under-repre-
sent some of these linguistic cues. Therefore, if the few-shot
examples do not span the full spectrum of overt and covert
stance indicators, they will inadvertently bias the model’s
predictions.

By contrast, o3 benefits from few-shot prompting. F1-score
improves by 4.6%, accuracy by 2.9%, precision by 6.1%,
and recall by 2.5%. These gains suggest that o3 does not
overly focus on the provided examples. Rather, it is able to
incorporate them into its reasoning process, thereby enhancing
its ability to detect both subtle and explicit stances.

Thus, the two models exhibit opposite trends: few-shot
prompting hinders GPT-4o but consistently improves o3. This
divergence indicates that, in the context of congressional
hearings, the effectiveness of few-shot prompting is model-
dependent, rather than universally beneficial.
C. Impact of Chain-of-Thought

Adding chain-of-thought reasoning generally improves per-
formance across both zero-shot and few-shot settings. For
GPT-4o, CoT leads to gains across all metrics, with both
CoT-zero-shot and CoT-few-shot outperforming their non-CoT
counterparts. Unsurprisingly, o3′s performance improvements
are modest by comparison. This implies that the model is able
to realize many of the benefits that CoT offers without the
need for explicit reasoning steps.

1) CoT-zero-shot vs zero-shot: In the case of GPT-4o,
incorporating CoT leads to consistent improvements across all
evaluation metrics. Compared to zero-shot, F1-score increases
by 8.2%, accuracy by 3.1%, precision by 8.5%, and recall
by 7.4%. It appears that the model makes fewer spurious
predictions when asked to base its decisions on evidence in
the transcript.

In contrast, o3 shows a mixed response. While CoT
increases F1-score by 1.1% and precision by 5.0%, accuracy
remains unchanged, and recall decreases by 1.0%. These
results indicate that CoT boosts the model’s ability to avoid
false positives, but makes it more prone to missing valid
stance expressions.

2) CoT-few-shot vs few-shot: The trend is similar in the few-
shot setting. Again, GPT-4o benefits from the addition of CoT
across the board with F1-score rising by 14.0%, accuracy by
11.2%, precision by 18.2%, and recall by 6.7%. These gains
imply that CoT is able to counteract some of the excessive
reliance on the examples that few-shot alone can introduce.
Thus, the model manages to generalize more effectively.

For o3, CoT-few-shot yields a mere 0.3% gain in F1-score,
a 1.0% improvement in accuracy, and a 2.8% increase in
precision. However, recall drops by 0.9%. As in the zero-shot
setting, applying CoT makes the model more conservative,
hindering its ability to identify some obvious stances. More-
over, the marginal overall performance improvement further
demonstrates that the benefits of CoT are already internalized
by this model.

3) CoT-zero-shot vs CoT-few-shot: The performance trends
observed when comparing the zero- and few-shot prompts
reemerge when CoT is introduced. GPT-4o performs slightly
worse with CoT-few-shot than with CoT-zero-shot, while o3



benefits from the addition of examples to the CoT-zero-shot
prompt.

Using CoT-zero-shot, GPT-4o achieves a 2.3% higher F1-
score and a 4.3% higher recall than with CoT-few-shot,
although the latter shows a minor edge in accuracy (+0.6%).
Even when the model is asked to reason through the task,
examples hinder the its ability to generalize.

Conversely, o3 with CoT-few-shot performs better in all but
one metric. Compared to CoT-zero-shot, F1-score increases
by 3.7%, accuracy by 4.0%, and precision by 3.9%. Recall,
however, drops by 2.6%. While the model’s predictions appear
to be more accurate with the aid of examples, the decline in
recall indicates that it may also overlook subtler expressions
of stance. Nonetheless, the overall improvement across the
other metrics means that the combination of exemplars and
CoT remains advantageous for this model.
D. Error Analysis

A qualitative review of model outputs reveals three key
limitations. First, due to the vast length of transcripts4, both
GPT-4o and o3 are observed to overlook brief expressions of
stance on less-prominent topics, defaulting instead to neutral.

Second, subtle argumentation tactics are often misinter-
preted by both models. For instance, committee members
sometimes bring up facts as implicit endorsements or cri-
tiques. The models tend to treat these utterances as mere
reporting rather than position statements. The human annota-
tors found these types of implicit stances ambiguous as well.

Lastly, both models rely heavily on explicit mentions of
topics. When a speaker referred to a topic indirectly, the
models often disregarded the reference and marked it as irrel-
evant. This issue is especially pronounced for vaguer topics.
This target type inherently provides little context. Therefore,
without an explicit cue, the models have to guess relevance,
causing them to ignore subtle allusions.

V. Limitations

This section addresses three main limitations of the study:
(i) the significance of the findings, (ii) the quality of the
annotations, and (iii) the extent to which the experiment is
reproducible.
A. Significance of Results

The primary limitation of this study is its very small dataset,
which contains just 10 hearings. Thus, any statistical test
is necessarily under-powered and should be interpreted with
caution. Nonetheless, significance testing was conducted sepa-
rately for accuracy, precision, recall, and F1-score to assess the
reliability of observed performance differences. A bootstrap
approach with 5,000 resamples of paired differences was used.
For each contrast, one-tailed p-values were estimated for the
hypothesis that the mean difference was greater than zero.

Table V reports these bootstrap-derived 𝑝-values for each
model independently. In the case of GPT-4o, only adding
chain-of-thought reasoning to the few-shot prompt led to

4The average length of the transcripts in the corpus is around 30,000
tokens.

substantial and statistically significant gains in F1-score (𝑝 =
0.0238), accuracy (𝑝 = 0.0214), and precision (𝑝 = 0.0000).
While the improvement in recall was positive, it was not sig-
nificant. For o3, none of the tested contrasts reached statistical
significance.

TABLE V
Bootstrap-derived One-tailed 𝑝-values for the Effect of Different

Prompting Strategies on Model Performance

Model Contrast F1$score Accuracy Precision Recall

FS > ZS 0.9022 0.9084 0.9868 0.8206

CZS > ZS 0.1150 0.1754 0.1316 0.1412

GPT-4o

CFS > FS 0.0238* 0.0214* 0.0000** 0.1700

FS > ZS 0.0730 0.0802 0.0628 0.1912

CZS > ZS 0.3744 0.4988 0.1580 0.6530

o3

CFS > FS 0.4470 0.2532 0.0632 0.7212
* 𝑝 < 0.05 ** 𝑝 < 0.01
Note—ZS stands for zero-shot, FS for few-shot, CZS for CoT-zero-shot, and
CFS for CoT-few-shot. Effect sizes (mean Δ) for these contrasts ranged
from −0.0526 to +0.0915 for F1-score, −0.0444 to +0.1008 for accuracy,
−0.0618 to +0.1274 for precision, and −0.0361 to +0.0498 for recall.

The bootstrap test was repeated by pooling data from both
models to determine whether the observed trends held overall.
The results are shown in Table  VI. Here, again, CoT-few-
shot compared to few-shot produced statistically significant
improvements in F1-score (p = 0.0322), accuracy (p =
0.0154), and precision (p = 0.0004), while recall remained
non-significant.

TABLE VI
Pooled Bootstrap-derived One-tailed 𝑝-values for the Effect of

Different Prompting Strategies Across GPT-4o and o3

Contrast F1$score Accuracy Precision Recall

FS > ZS 0.6002 0.6688 0.5772 0.5998

CZS > ZS 0.1122 0.2464 0.0612 0.2364

CFS > FS 0.0322* 0.0154* 0.0004** 0.2498
* 𝑝 < 0.05 ** 𝑝 < 0.01
Note—ZS stands for zero-shot, FS for few-shot, CZS for CoT-zero-shot, and
CFS for CoT-few-shot. Effect sizes (mean Δ) for these contrasts ranged
from −0.0075 to +0.0392 for F1-score, −0.0092 to +0.0463 for accuracy,
−0.0053 to +0.0651 for precision, and −0.0073 to +0.0192 for recall.

Although these results support the qualitative trend that chain-
of-thought improves performance in the few-shot setting, they
fall short of confirming broader effects with statistical confi-
dence. A substantially larger dataset is needed to draw robust,
generalizable conclusions.
B. Dataset Quality

Due to the inherent subjectivity of stance detection, another
limitation of the study concerns the quality of the dataset.
As shown in Section III-C, the inter-annotator agreement was
substantial. However, the annotations were produced by only
two annotators. A larger number of annotators would likely
increase the reliability of the ground truth.



Furthermore, the use of topics as stance targets introduces
additional ambiguity. Intrinsically, topics are often vague and,
thus, open to interpretation. Greater annotator diversity could
help average out individual biases and yield more reliable
annotations.

Increasing the number of human annotators, however, pre-
sents a significant practical challenge. The annotation process
was found to be time-consuming: each hearing took approx-
imately 2 hours to annotate, meaning a total of 4 hours per
hearing when both annotators are considered. For the 10 hear-
ings in the test set, this amounted to 40 hours of annotation
effort. Scaling up the dataset–by increasing both the number
of samples and the number of annotators–would therefore
require a substantial investment of time and cognitive effort.

Despite these challenges, larger datasets with broader an-
notator coverage are crucial for this type of NLP task. Its
subjective nature demands high-quality annotations at scale
in order to produce reliable evaluation data.
C. Experiment Reproducibility

Regarding the reproducibility of the experiment, a significant
limitation is the topic selection step in the manual annotation
process. In this study, topics were manually extracted from the
transcripts, following predefined guidelines on how many to
select, where to locate them, and how to phrase them. While
these guidelines were designed to improve consistency, the
process still involves subjective judgment.

As a result, it is possible that others attempting to reproduce
the experiment may not identify exactly the same topics. Even
if the same concepts are captured, differences in wording
could influence the stance annotations and, by extension, affect
the results of the evaluation.

Another limitation concerns the range of models evaluated.
This paper focuses only on two large language models, both of
which are proprietary and pre-trained by OpenAI on undis-
closed data. As such, it is difficult to assess how much of
the observed performance is due to the prompting strategies
versus the training data or model architecture. Evaluating a
broader set of models–particularly open-source alternatives–
would not only offer a more comprehensive view of LLM
performance on this task but also improve transparency and
reproducibility.

VI. Future Work

Recent literature in the domain of social-media indicates that
topic-based stance detection rarely exceeds an F1-score of
approximately 76%, even with large annotated datasets and
model fine-tuning [25]. The same ceiling appears to have been
reached in the present study on congressional hearings (75.8%
F1). This suggests that the limitation is methodological rather
than domain-specific.

By contrast, treating Frames of Communication (FoCs) as
stance targets supplies the model with the explicit reasons
underlying an opinion [26]. When FoCs were used on the
CoVaxFrames Twitter corpus, direct FoC prediction followed
by simple rule-based aggregation lifted performance on topic-
level evaluations by almost 12 F1 points [25]. Annotation

reliability also improved, with inter-annotator agreement
reaching 98% when mapping FoCs to topics.

Crucially, Weinzierl and Harabagiu [27] show that FoCs
can be discovered and articulated automatically using LLMs.
Compared to manual topic selection, automated FoC iden-
tification may offer greater consistency and improve repro-
ducibility across studies.

These findings motivate an FoC-focused research trajectory
for the domain of U.S. congressional hearings and potentially
other forms of political discourse.

VII. Conclusion

This paper presents a novel framework for annotating topic-
based stances in U.S. congressional hearings and demonstrates
the potential of large language models to perform multi-target
stance detection across multiple speakers in this domain.
Experimental results using a small, manually annotated corpus
suggest that adding chain-of-thought to few-shot prompting
yields the best classification performance. However, a larger
dataset is needed to validate these findings. Future work
should also explore the use of Frames of Communication
as stance targets, given their potential to improve both repro-
ducibility and classification performance.

VIII. Ethical Considerations

The research described in this paper was conducted in accor-
dance with the Netherlands Code of Conduct for Research
Integrity [28].

All hearing transcripts analyzed in this study are publicly
available records from the U.S. Congress, freely accessible via
congress.gov. Furthermore, the data consist entirely of verba-
tim dialogue from official proceedings, therefore no private
or sensitive personal information was collected or processed.

To facilitate full reproducibility, all materials including the
preprocessing scripts and evaluation code are available under
an open-source license on GitHub5.
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