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A B S T R A C T

Whereas development of mathematical models describing the endocrine system as a whole remains a challenging problem, visible progress has been demonstrated in
modeling its subsystems, or axes. Models of hormonal axes portray only the most essential interactions between the hormones and can be described by low-order
systems of differential equations. This paper analyzes the properties of a novel model of a hypothalamic-pituitary axis, portraying the interactions in a chain of a
release hormone (secreted by the hypothalamus), a tropic hormone (produced by the pituitary gland) and an effector hormone (secreted by a target gland). This
model, unlike previously published ones, captures two prominent features of neurohormonal regulation systems, namely, the pulsatile (episodic) production of the
release hormone and a complex non-cyclic feedback mechanism that maintains the involved hormone concentrations within certain biological limits. At the same
time, the discussed model is analytically tractable; in particular, the existence of a so-called 1-cycle featured by a single pulse over one period is proven
mathematically.

1. Introduction

Hormones are chemical blood-borne substances produced in an
organism by glands that regulate vital functions such as metabolism,
reproduction, and growth. The endocrine system of an organism is the
collection of glands communicating through hormone molecules as
messengers, see e.g. [1]. The interacting glands can be considered as a
dynamical system with numerous feed-forward and feedback control
mechanisms, corresponding to stimulatory and inhibitory couplings
between the hormones. The operation of endocrine glands is orche-
strated by the brain, in particular the hypothalamus and the pituitary
gland (hypophysis). The former produces concentration pulses of so-
called release hormones (releasing factors) that communicate control
information to the glands through pulse amplitude and frequency, see
e.g. [2]. The neuroendocrine control loop incorporating the hypotha-
lamus and the involved endocrine glands gives thus an example of
impulsive (pulse-modulated) control system [3] and constitutes a special
case of hybrid system [4], involving both continuous-time and discrete-
time dynamics.

1.1. Endocrine axes

Given the complexity and multiscale nature of the underlying bio-
logical structure, to devise a mathematical model that describes the

operation of the endocrine system in the extensive detail is a challen-
ging problem. Tractable mathematical models are usually obtained by
decoupling the endocrine system into subsystems, called axes, cap-
turing only essential characteristics and interactions [5].

One of the most studied endocrine axes is the one that regulates the
production of testosterone (Te) in the male, where the Gonadotropin-
Releasing Hormone (GnRH) and the Luteinizing Hormone (LH) play
crucial roles. This axis is called the GnRH-LH-Te (or the Hypothalamo-
Pituitary-Reproductive) axis. GnRH, produced in the hypothalamus,
stimulates the pituitary gland that responds by the secretion of LH that,
in turn, stimulates the production of Te in the testes. This cascade of
stimulation from GnRH to Te is then closed by two negative feedback
loops from Te to GnRH and LH [5,6]. The feedback from Te to LH is a
somewhat intricate matter. It is fundamentally enabled by the presence
of Te receptors in the pituitary but its strength apparently differs be-
tween species [7].

The mathematical construction used to portray the mechanism of Te
regulation serves as a benchmark in modeling of endocrine regulation,
because much of the structure is widely applicable to some other neu-
roendocrine regulatory circuits controlled by the hypothalamus and the
pituitary gland [8,9]. The structure and function of the pulsatile feed-
back mechanism from Te to GnRH is similar to the function of some
other releasing hormones, such as in the endocrine axes of cortisol,
growth, adrenal and parathyroid hormones [10,11]. The schematic
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diagram of these mechanisms, including two1 negative feedback loops,
is shown in Fig. 1.

Cortisol (C) is a hormone involved in the response to stress and
inflammation as well as in metabolism. Similar to the case of Te reg-
ulation, the C regulation loop essentially comprises two more hor-
mones [14–17]. Corticotropin-releasing hormone (CRH) is secreted in
the hypothalamus in pulses and stimulates the release of adrenocorti-
cotropic hormone (ACTH) from the pituitary gland to the bloodstream.
Further, ACTH stimulates the secretion of C from the adrenal glands.
Neither the amplitude nor the frequency of the CRH pulses are constant:
the amplitude increases under stress, and the frequency varies from one
to three CRH release episodes per hour. There are two feedback loops in
the axis. C inhibits the secretion of CRH in the hypothalamus, both
pulse mass and timing, through a negative “outer” impulsive feedback;
C also inhibits the ACTH secretion through a continuous local feed-
back [18].

Another clinically important and often studied example of pulsatile
endocrine axis is presented by the regulation of growth hormone (GH)
that is secreted in the pituitary in response to pulses of growth hor-
mone-releasing hormone (GHRH) produced in the hypothalamus. The
third hormone in the chain is growth hormone-inhibiting hormone
(GHIH), also known as somatostatin, which is secreted at several lo-
cations in the digestive system. The secretion of GHIH is stimulated by
GH and inhibits the secretion of GHRH, thus closing the negative reg-
ulation loop. GHIH also inhibits GH secretion in a dose-dependent
manner through a local feedback [19].

1.2. Mathematical modeling

For some endocrine regulation circuits, e.g. the GnRH-LH-Te axis in
the male, very detailed and realistic models have been con-
structed [5,8], taking into account nonlinear interactions between the
hormones, the hybrid dynamics of the system, and uncertainty of the
model parameters captured by stochastic processes. The high com-
plexity of these models makes their thorough analysis challenging; even
the proof of solution existence requires non-trivial mathematical
tools [8]. At the same time, visible progress has been made in analysis
of simplified models that can be divided into several major classes.

The first mathematical models postulated to describe the hormonal
regulation, namely, secretion of thyroid hormones [20] and Te reg-
ulation in the male [21], constitute special cases of the so-called
Goodwin’s oscillator, which has been proposed in [22] to describe en-
zymatic control processes in cells. Goodwin’s model portrays sustained
oscillations in a cyclic feedback system of three chemicals (Fig. 2) that
in e.g., [21] stand for the GnRH, LH and Te hormones. Chemical A
stimulates the production of B, which in turn stimulates the production
of chemical C, which represses the activity of A thus closing the ne-
gative feedback loop. The cascade of corresponding biochemical in-
teractions is described by a third-order system of differential equations.
In the simplest and most studied situation [21,22], the kinetics of each
reaction are described by a linear equation, and the only nonlinear term
in the system represents the negative feedback from C to A. Models of
endocrine regulation that are squarely based on Goodwin’s model in-
herit its principal limitations. First, oscillatory behavior is observed
only for special choices of the model parameters. For instance, if the
negative feedback is parameterized by the Hill nonlinearity, it has been
observed that periodic solutions exist only for the Hill constants greater
than2 8, which are usually considered as biologically infeasible [25,26].

Second, Goodwin’s model does not capture the full feedback me-
chanism of a hormonal axis, since it neglects the “local” feedback from
the target gland to the pituitary and cannot explain pulsatile secretion
of the releasing hormone.

The mentioned limitations have given rise to two classes of models
extending conventional Goodwin’s oscillator. Models of the first
type [12,13,27–32] abandon the restrictive cyclic structure of Good-
win’s oscillator and consider more complex interactions between the
hormones that obey nonlinear ordinary or delay-differential equations.
Their continuous dynamics, inherited from the Goodwin oscillator,
enable one to use well-developed techniques of ordinary differential
equations, from the local stability analysis and Hopf bifurcations to
recent extensions of Poincaré-Bendixson theorems [33].

The second class of models, developed in [10,34–39] for Te reg-
ulation in the male, preserve the cyclic structure of Goodwin’s system
(Fig. 2) and focus on the pulsatile mechanism of the release hormone’s
secretion, whose existence is established by numerous experimental
studies [5,40,41]. To cope with the hybrid (impulsive) dynamics of
such models, special techniques have been developed from theory of
impulsive control systems [3]. Unlike the Goodwin’s oscillator with a
continuous nonlinearity, the hybrid model of [35] has no equilibria and
is proved to have periodic trajectories. In particular, a unique solution
with one pulse over the period (1-cycle) exists [35]; periodic solutions
with m≥2 pulses per period (m-cycles) may also exist [39].

Both Te and C impulsive regulation loops are subject to circadian
rhythm. The mechanisms of entrainment of the endogenous hormone
concentration oscillations to an exogenous periodic force, e.g. the cir-
cadian rhythm, are studied in [42], with respect to the impulsive
Goodwin’s oscillator, and in [43], where they are compared to those in

Fig. 1. A hypothalamus-pituitary endocrine axis.

Fig. 2. The scheme of Goodwin’s oscillator as a cyclic feedback system.

1 Although the third “short” feedback from pituitary to hypothalamus also
exists [9], its effect is much weaker than the influences of the “long” feedbacks
and is often neglected to reduce the models’ complexity [12,13].

2 For Hill constants less than 8, the equilibrium of the model is known to be
locally stable [21], whereas global stability, suggested by extensive computer
simulations, has been proved only in special situations [23,24].
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the classical continuous one.

1.3. The model under consideration

Recapitulating the overview of mathematically tractable models
that portray dynamics of the hypothalamus-pituitary axes, one notices
that the effects of multiple feedback loops and discontinuous feedback
mechanisms have been studied separately. The examples of pulsatile
neuroendocrine regulation loops in Section 1.1 motivate to introduce
study a generic third-order system with a local feedback from the target
gland to pituitary and the outer (intrinsic) pulse-modulated loop from
the gland to hypothalamus. To study the mathematical properties of
such a system is the main objective of this paper. A natural question
arises on whether such a system enjoys the properties that are estab-
lished for the impulsive Goodwin’s oscillator without local feedback,
e.g. the existence of cycles.

The local feedback, whose function is supported by sufficient ex-
perimental evidence [5,8,9,12,29,40], can be reasonably assumed to be
continuous, as it does not pass through hypothalamus that applies
pulsatile neurally implemented regulation. There is, however, no con-
sensus on the mathematical description of the respective feedback
control law. Whereas one could in principle suppose that this feedback
mechanism is nonlinear and can be described by a Hill-type or other
decreasing nonlinear function, this paper considers a model, where the
negative local feedback is represented by an affine function (first-order
polynomial). Similar to the impulsive Goodwin oscillator [35], the
dynamics of such a system between two consecutive pulses are affine,
and this property is beneficial in two aspects. First, it allows to extend
the theory developed in [35] to the case of non-cyclic endocrine reg-
ulatory circuit with two feedbacks. Second, it enables the use of effi-
cient identification methods [10,37] that are still more developed for
systems whose dynamics depend linearly on unknown parameters (re-
gressor form). From experimental data, the feedback typically cannot
be observed in its full domain of definition [44]; beyond the saturation
intervals of extreme hormone concentration, the Hill-type nonlinearity
can be well approximated by an affine function.

Unlike the Hill-type nonlinearity, strictly decreasing polynomial
functions cannot remain positive on the positive semi-axis. In contrast
to both the original Goodwin’s oscillator and its impulsive counterpart,
the model considered in this paper does not enjoy the global positivity
property (the positive orthant is not forward invariant). Whereas a
positive value of each state variable corresponds to the actual serum
concentrations of the respective hormones, a negative value may be
interpreted as the amount of hormone that the system is lacking for
normal functioning. The biologically available pool of a hormone in a
gland is limited at any moment and can be less than an instantaneous
demand for it. In the long run, lack of releasable hormone is known to
lead to endocrine diseases such as type II diabetes and adrenal deple-
tion. From a biological viewpoint, negative solutions can thus be fea-
sible, standing however for pathological behaviors of the system.

Due to the fact that endocrine regulation processes exhibit self-
sustained oscillations, the main concern in securing model feasibility is
the existence of periodic solutions in the system. The key finding in [35]
dealing with the impulsive Goodwin’s oscillator is the existence and
uniqueness of a special periodic solution (“1-cycle”), having only one
pulse over the (minimal) period. In general, the system may have other
periodic solutions; the clinical data suggest the existence of cycles with
multiple pulses over the period.

For the cyclic model presented in [35], the existence and uniqueness
of 1-cycle solution along with its local stability are given. In this work,
similar results are obtained with respect to a system with an additional
feedback. Note that the positivity of 1-cycle solutions of the cyclic
model in [35] holds automatically, while it is not true for the extended
system. So another contribution of this paper is the disclosure of suf-
ficient conditions for positivity of the 1-cycle solution.

The rest of the paper is organized as follows. In Section 2, the

impulsive Goodwin’ oscillator proposed in [35,45–47] is recapitulated
and an extension to it is introduced, which is the main contribution of
this work. The mathematical properties of this model are discussed in
Section 3. In Section 4, these results are illustrated by numerical si-
mulations. In Section 5, conclusions are drawn.

2. Impulsive Goodwin’s oscillator and its extension

In this section, the model of impulsive (or hybrid) Goodwin’s os-
cillator, proposed in [35,45–48] to portray the pulsatile feedback me-
chanism of the testosterone regulation in the male, is extended to in-
clude a local continuous feedback. This extension is supported by
biological facts and is also shown to impact the assumptions that are
critical for the use of the readily available model analysis. For the
reader’s convenience, the original model’s properties are summarized in
the next section.

2.1. The impulsive Goodwin’s oscillator

The model in [35] describes the dynamics of three variables R(t), L
(t), T(t), standing, respectively, for the serum concentrations of the
release, tropic and effector hormones. In the case of Te regulation, these
hormones are GnRH, LH and Te. Similar to the classical (continuous)
Goodwin oscillator [22], the feedforward couplings in Fig. 1 are de-
scribed by a chain of linear first-order blocks as follows

=
=

>

L t g R t b L t
T t g L t b T t
b b g g

( ) ( ) ( ),
( ) ( ) ( ),
, , , 0.

1 2

2 3

2 3 1 2 (1)

The release hormone R initiates the chain by stimulating the production
of the tropic hormone L, which in turn drives the production of the
effector hormone T. The model from Churilov et al. [35] ignores the
presence of the local feedback from T to L, whereas the “long” pulsatile
feedback mechanism obeys the equations3

=
= + = …

+
+

R t b R t t t t
R t R t n

( ) ( ), ( , ]
( ) ( ) , 0, 1, .

n n

n n n

1 1

(2)

The instantaneous jumps in the hormone concentration are caused by
short release hormone pulses. The pulses are fired by a pulse-modula-
tion mechanism, implementing the “long” feedback from the effector to
the release hormone (Fig. 1). The sequences of pulse instants tn and
amplitudes λn depend on a specific solution of the model given by (1)
and (2). An important assumption, based on experimental evi-
dence [49], is that, in this feedback mechanism4, the amplitude λn and
the inter-pulse interval +t t( )n n1 depend only on the state of the system
at time tn, but not on the previous trajectory. More precisely,

= = + =+T t t t T t t( ( )), ( ( )), 0,n n n n n1 0 (3)

where the functions Φ, Ψ are strictly positive and bounded

< < < < < <
: [ , ], : [ , ],

0 , 0 .
1 2 1 2

1 2 1 2 (4)

The assumption =t 00 does not reduce generality and means that the
system operation starts with the first pulse.

The amplitude modulation characteristic Ψ is supposed to be non-
increasing, while the frequency modulation characteristic Φ is assumed
to be non-decreasing. In testosterone regulation mechanism, an increase
of Te level decreases the frequency of GnRH pulses and reduces their

3 Given a function f : [0, ) , we use +f t( ) to denote the right limit
+f t slim ( )

s 0
. Henceforth all piecewise-continuous functions, without loss of

generality, are supposed to be left continuous, so = >f t f t s t( ) lim ( ) 0
s 0

.
4 Such a feedback mechanism is referred to as a pulse amplitude-frequency

modulator of the first kind [3] or an impulsive self-triggered control [50].
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amplitudes [6], thus also suppressing the bursts of LH. This agrees with
the inverse relation between the frequency of GnRH pulses and am-
plitudes of (major) LH pulses, documented in the literature [51].

2.2. The main properties of the impulsive Goodwin’s oscillator

Introducing the continuous state vector =x t R t L t T t( ) [ ( ), ( ), ( )]
and the matrices

= = =A
b

g b
g b

B C
0 0

0
0

,
1
0
0

, [0, 0, 1],
1

1 2

2 3 (5)

model (1)–(3) can be rewritten as follows

= =
= +

+
+

x t Ax t y t Cx t t t t
x t x t B

( ) ( ), ( ) ( ), ( , ],
( ) ( ) ,

n n

n n n

1

(6)

= = + =+y t t t y t t( ( )), ( ( )), 0.n n n n n1 0 (7)

The equations of (6) can be also written as follows

= +

= +
=

<

+

x t e x e B

x t x t B t t
t t

( ) (0) ,

( ) ( ) 0, { }
, .

tA

n t t

t t A
n

k k

n n

:

( )

1

n

n

(8)

or, using the formalism of Dirac δ-functions

= + =
=

x t Ax t B t t t t( ) ( ) ( ), ( ) ( ).
n

n n
0 (9)

Eq. (9)resembles the well-known Goodwin’s oscillator [22,32] with
the only principal difference that the static nonlinear feedback of the
latter is replaced by a nonlinear pulse modulator of (7). The
system (1)–(3) or, equivalently, (6) and (7) is henceforth referred to as
the impulsive (or hybrid) Goodwin oscillator. Due to the persistent pulses,
this system has no equilibria and always has periodic solutions (pos-
sibly, unstable) [35].

Since A is Hurwitz and Metzler,5 the matrix etA has nonnegative
entries and exponentially decays as t→∞. Moreover, it can be shown
that the vector etAB is strictly positive for any t≥0. Using (4),(7) and
(8), it is shown [35] that

< < =
+ +

V x t x t H i0 lim ( ) lim̄ ( ) 1, 2, 3,i
t

i
t

i i (10)

where the constants Vi, Hi can be found explicitly and depend on the
bounds Φi, Ψi in (4) and constants bi, gi as follows

= = =

= = =

V
e

V
g V
b

V
g g V
b b

H
e

H
g H
b

H
g g H
b b

1
, ,

1
, , .

b

b

1
1

2
1 1

2
3

1 2 1

2 3

1
2

2
1 1

2
3

1 2 1

2 3

1 2

1 2 (11)

Note that in view of (8) the system is positive: if the components of x
(0) are non-negative, the same holds for x(t), t≥0. Inequalities (10)
show that the feedback mechanism adjusts the hormone levels around a
normal physiological pattern that belongs to an attractor, not necessa-
rily a periodic one, Zhusubaliyev et al. [36]. It is also obvious from (10)
that each trajectory is uniformly positive (after a transient period) and
bounded.

As known from Churilov et al. [35], the system always has 1-cycle,
i.e. a special periodic solution, such that the (minimal) period contains
only a single pulse. This result is based on the fact that the sequence

=X x t( )n n obeys the recursion

= = ++X Q X Q x e x Cx B( ), ( ): ( ( ) ),n n
A Cx

1
( ) (12)

and the complete inter-sample behavior of the (hybrid) solutions can be
reconstructed from it.

Theorem 1 ([35]). For any non-increasing function Ψ and non-decreasing
function Φ that are C1-smooth and satisfy (4), the mapping Q has a unique
fixed point x0> 0 corresponding to the unique 1-cycle solution to impulsive
system (6) and (7).

It can be shown [35] that (12) is, for the case of 1-cycle, equivalent
to the transcendental equation for =y Cx0 0

= >( )y C I e e y B y( ) , 0,A y A y0 ( ) 1 ( ) 0 00 0
(13)

whose right-hand side appears to be a non-increasing function of y0 [35].
The inverse matrix exists since A is a Hurwitz matrix and Φ( · ) is uni-
formly positive.

Notice also that the biology of the system precludes identical half-
life times in an endocrine axis, i.e. =b i, 1, 2, 3i are all distinct. In this
generic situation, the latter equation can be further simplified as fol-
lows

=

= =

=

=

y g g y
e

b b
i

( )
1

,

1 , 1, 2, 3.

i

i
b y

i
j
j i

j i

0
1 2

0

1

3

( )

1

3

i 0

(14)

In general, the 1-cycle solution can be unstable; its orbital stability is
determined by the eigenvalues of the Jacobian Q′(x0) (“multipliers”): if
these eigenvalues 1,2,3 lie in the open unit circle |λj|< 1, the 1-
cycle is orbitally stable [35]. Finally, the hybrid Goodwin oscillator can
have other periodic solutions that correspond to the fixed points of Q
with period m≥2, i.e.

= … =

= …

Q x Q Q Q x x

Q x x j m

( ) ( ) ,

( ) 1, , 1,

m

m
j

( )
0

times

0 0

( )
0 0

where ∘ denotes composition of functions, i.e. =Q Q x Q Q x( ) ( ( )). Such
solutions are referred to as m-cycles [52] and characterized by m pulses
fired during the (minimal) period.

2.3. Model extension with local feedback

This paper primarily addresses an extension of the impulsive
Goodwin’s oscillator that takes into account the local feedback from the
effector hormone T to the tropic hormone L. As has been discussed in
Introduction, there is no consensus in the literature on what function
should be used to describe this feedback. It is henceforth assumed that
the feedback can be represented by the affine function µ kT, where μ,
k≥0, so that the linear equations in (1) are replaced by

= +
=

L t g R t b L t kT t µ
T t g L t b T t

( ) ( ) ( ) ( ) ,
( ) ( ) ( ),

1 2

2 3 (15)

where the pulsatile mechanism of release hormone secretion is given
by (2) and (3). All other parameters describing the production and
clearing rates of the hormones are supposed to satisfy the same as-
sumptions as in Section 2.1.

Obviously, Eq. (1) is a special case of (15) with = =k µ 0. The
constant k≥0 in (15) stands for the control gain, regulating the de-
pendence between the level of the effector hormone (e.g. testosterone)
and the secretion of the tropic hormone in the pituitary gland. The
constant μ may be considered as a characteristic of the hormone’s basal
level,6 i.e. the result of the hormone secretion outside the feedback

5 A real square matrix is called Hurwitz if all its eigenvalues λj have negative
real parts <Re 0j and Metzler if all its off-diagonal elements are nonnegative.

6 In the case of Te regulation [35], a basal level also appears in the con-
centration of Te. This, however, does not need a model modification since a
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loop. Note here that removing μ simplifies the model, but then, for
b2> b3, the system may not have positive solutions. With μ≠0, the
dynamics of (1) are nonlinear (affine), which is a price to pay for
preserving the model positivity in spite of the local feedback. Naturally,
linearity can be recovered by considering μ as an additional state
variable with the trivial dynamics =µ 0. However, it is more con-
venient to preserve the chain structure and consider μ as a constant
input.

With the matrices in (5) and introducing

= =D A A kD
0
1
0

, [0 0 1],k
(16)

system (15),(2),(3) is rewritten in a matrix form as

= + =
= +

+
+

x t A x t Dµ y t Cx t t t t
x t x t B

( ) ( ) , ( ) ( ), ( , ],
( ) ( ) ,

k n n

n n n

1

(17)

= = + =+y t t t y t t( ( )), ( ( )), 0.n n n n n1 0 (18)

Similar to (8), one notices that

= + +

= +
=

<

+

( )x t e x A e I Dµ e B

x t x t B t t
t t

( ) (0)
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tA
k
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n

k k
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1
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( )

1

k k

n

n k

(19)

The matrix Ak with the characteristic polynomial

+
+

+
= + + + +

b
g b k

g b
b b b kg

0 0

0
( )[( )( ) ].

1

1 2

2 3

1 2 3 2

is Hurwitz for any k≥0. The principal difference with the impulsive
Goodwin’s oscillator from Section 2.1 is that Ak is no longer Metzler,
which means that the positive octant >x x i{ : 0 }i

3 is not a for-
ward invariant set. Since the mechanism of the release hormone se-
cretion in (2) and (3) is the same as in the impulsive Goodwin oscil-
lator, inequalities (10) remain valid for =i 1 with V1, H1 from (11)
(recall that =x R1 ). The remaining two variables x2, x3 can become
negative, being however bounded in view of (19).

As has been discussed in Introduction, negative solutions can be
considered as biologically meaningful, standing however for undesir-
able system behaviors. A natural question thus arises on whether the
extended impulsive Goodwin model (17) and (18) enjoys the main
property of model (6) and (7) and possesses positive periodic solutions.
The domain in the space of the parameters where this can be guaran-
teed will be specified in the next section. For the corresponding set of
the parameters, the extended model reduces in fact to a system of the
same type as (6),(7), thus enabling the use of the well-developed theory
for the impulsive Goodwin’s oscillator.

3. Mathematical results

In this section, the main mathematical result of the paper is proved,
extending the key properties of the impulsive Goodwin’s oscillator from
Section 2 to a more general system that is given by (17) and (18). Two
key assumptions adopted to obtain this result are, first, a small gain of
the local feedback k and, second, a sufficiently large μ (ensuring the
solution’s ultimate7 positivity)

< =k k b b
g

0 *: ( )
4

,2 3
2

2 (20)

> +

=

µ g V
g g H V

b
b b b b kg

g

max
( )

, 0 ,

:
( ) ( ) 4

2
.

1 1
1 2 1 1

3

2 3 2 3
2

2

2 (21)

Here V1, H1 are defined in (11). Under assumption (20), ρ≤0 if and
only if b3≥ b2; in such a situation, condition (21) holds for any μ≥0.
Obviously, (20) and (21) hold when = =k µ 0. In the latter case, the
system boils down to the impulsive Goodwin’s oscillator, i.e. (6) and
(7).

Theorem 2. Let the functions Φ and Ψ be non-decreasing and non-
increasing, respectively. If condition (20) holds, then system (17)and (18)
has a unique 1-cycle solution that, in general, does not need to be strictly
positive. If, additionally, the condition (21) is valid, then all solutions of
system (17)and (18) are uniformly ultimately positive and bounded

< < =
+ +

V x t x t H i0 lim ( ) lim̄ ( ) , 1, 2, 3,i
t

i
t

i i (22)

where V H,i i depend on the bounds Φi, Ψi and the coefficients bi, gi, k, μ. In
particular, the unique 1-cycle and all other periodic solutions are strictly
positive.

Notice that (21) may also hold for μ<0. Although negative value of
μ does not have a clear biological interpretation (see the discussion
below), the ultimate positivity of solutions can be guaranteed. Note
that, unlike in the impulsive Goodwin’s oscillator ( = =k µ 0), solutions
that start in the positive octant x>0 may leave it (some hormone’s
level can be insufficient for normal functioning of the system on some
time intervals); inequalities (22) entail however that the levels of hor-
mones return to the normal (non-negative) physiological pattern after
some transient period. The proof of Theorem 2 is based on an affine
transformation of the coordinates that reduces system (17) and (18) to
the impulsive Goodwin’s oscillator (6) and (7). This transformation is
introduced in the next subsection. An alternative direct proof for the
special case =µ 0 and b3> b2 was given in the conference paper [53].

3.1. The state transformation of the system

Consider the following transformation

= = + + = +z R z L T z T, , ,1 2 3 (23)

where ρ is defined in (21) and α, β are two parameters to be specified.
The linear part of the system given by (15) is transformed into

= +
+ + + + +
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2 . Choosing α, β in a way that
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Eq. (15) reduce to their counterparts (1), where (R, L, T) is replaced by
(z1, z2, z3) and b2, b3 are replaced by

= > = + >b b g b b g˜ 0, ˜ 0.2 2 2 3 3 2 (25)

It is easily noticed that the signs of α, β coincide with the sign of μ. The
vector =z t z t z t z t( ) ( ( ), ( ), ( ))1 2 3 obeys the equations

= = +
= = + =

+
+

+

z t Az t t t t z t z t B
Cz t t t Cz t t

( ) ˜ ( ), ( , ], ( ) ( ) ,
˜ ( ( )), ˜ ( ( )), 0,

n n n n n

n n n n n

1

1 0 (26)

(footnote continued)
constant bias in T can be readily incorporated in the modulation functions Φ, Ψ.

7 A condition on the solution x(t) is said to hold ultimately if it holds for
sufficiently large t≥0. In particular, an ultimately positive solution is a solu-
tion that becomes positive as t→∞ (yet may be negative for small t>0).
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where B, C are the same as in (5) and

= = =A
b

g b
g b

y y y y˜
0 0
˜ 0

0 ˜
, ˜ ( ) ( ), ˜ ( ) ( ).

1

1 2

2 3

Obviously, the nonlinearities ˜ , ˜ satisfy the inequalities (4) with
the same bounds Φi, Ψi. In view of (25), system (26) is nothing else than
a special case of the impulsive Goodwin’s oscillator expressed by (6)
and (7). Hence, any solution x(t) of (17) and (18) corresponds to a
solution of (26) and vice versa. The findings of this subsection are
summarized in the following lemma.

Lemma 1. Assume that the “small gain” condition expressed by (20) holds.
Then mapping (23) establishes one-to-one correspondence between the
solutions of system (17)and (18) and the solutions of (26).

Lemma 1allows to prove the first part of Theorem 2 since the
mappings (z1, z2, z3)↦(R, L, T) and (R, L, T)↦(z1, z2, z3) are both affine,
transforming thus periodic solutions into periodic solutions and m-cy-
cles into m-cycles for any m≥1. To compute the (unique) 1-cycle ex-
plicitly, one can use Eq. (13) (replacing A with Ã) that, for distinct
b b b, ˜ , ˜ ,1 2 3 reduces to (14). In general, neither the state transformation in
(23) nor its inverse preserve positivity of solutions. Hence the 1-cycle
and other positive trajectories of (26) can be mapped into solutions that
leave the positive octant. To exclude these “pathological” trajectories,
additional restrictions on the parameters are needed, e.g. (21).

3.2. Proof of Theorem 2

The first statement follows immediately from Lemma 1 and
Theorem 1. There is one-to-one correspondence between 1-cycles of the
extended system (17) and (18) and the impulsive Goodwin’s oscil-
lator (26), and the latter system has a unique 1-cycle in view of
Theorem 1. To prove the second statement, recall that the solutions
of (26) satisfy inequalities (10) and (11), where b2, b3 have to be re-
placed by b b˜ , ˜2 3.

To prove the second statement, recall that the solutions of (26) sa-
tisfy inequalities (10), where Vi, Hi can be found from (11), replacing b2,
b3 by b b˜ , ˜2 3 respectively:
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Note that = +b b b b kg˜ ˜2 3 2 3 2 due to (21) and (25). Since α, β depend only
on the system parameters, all solutions are uniformly ultimately
bounded in the sense of (22), whereV H,i i depend on the coefficients bi,
gi, k, μ and the bounds Φi, Ψi. Obviously, =V V1 1 and =H H1 1 since

=x z1 1. Recalling that = =T x z ,3 3 one proves (22) for =i 3, where
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Notice now that = = +L x z z ( ),2 2 3 where
= +µb b b kg/( )3 2 3 2 . In the case where b2≤ b3, one has ( ) 0,

entailing (22) for =i 2 with
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In the case where b2> b3 and ρ>0, (22) holds for =i 2 with
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In view of (21), one has >V 0,2 which completes the proof.

Remark 1. It is obvious from the proof that condition (21) cannot be
fully discarded without losing the positivity property, e.g. for <µ g H1 1
and b2≤ b3 one has <H H, 0,2 3 that is, all solutions of the system
become negative. A numerical simulation, presented in Section 4
(Example 3) demonstrates that (20) cannot be dropped either: the
system may even have periodic orbits that leave the positive octant.

3.3. Discussion

It is instructive to seek a control-engineering interpretation of the
endocrine regulation model considered above. For the sake of simpli-
city, it is confined to testosterone regulation. The impulsive endocrine
feedback can be assumed to pursue two goals. First, the loop has to be
brought to a certain oscillation pattern, since both the frequency and
amplitude of the GnRH pulse train communicate biologically significant
information [2,54]. Second, the concentrations of the involved hor-
mones have to be kept within biologically feasible bounds. Both goals
are clearly fulfilled in the model at hand.

One can also assume that the local feedback from Te to LH facil-
itates the filtering of the pulsatile secretion of GnRH and, consequently,
limits the variation of Te. This is also confirmed by numerical simula-
tion, reported in Section 4 (Example 2). The gain of the local feedback
has thus to be limited, cf (20), to allow for sufficient variation of the
hormone amplitudes. As mentioned Section 2.1, both the frequency and
amplitude of the GnRH pulses convey biologically significant informa-
tion and the impulsive mode of the endocrine secretion is essential for
the endocrine function.

As has been already discussed, the parameter μ in (17) can be in-
terpreted in terms of the hormones’ basal levels (for this reason, it is
natural to assume that μ≥0). The basal level of LH, here related to the
value of μ, is known to be involved in sexual maturation [55] and
clinically used as a puberty marker. Without GnRH stimulation, i.e. for
R(t)≡ 0, system (15) has equilibrium at =L T L T( , ) ( , ),b b whose co-
ordinates

=
+

=
+

L b µ
b b kg

T
g µ

b b kg
, ,b b

3

3 2 2

2

3 2 2

constitute the basal levels of LH and Te in the model. These basal levels
decrease when the local feedback gain k increases. Therefore, to
maintain biologically reasonable basal levels, the gain has to be suffi-
ciently small, cf. (20) and μ sufficiently large and positive. The choice

=µ 0 corresponds to negligible basal levels of the two hormones and
renders the continuous part of the model at hand linear, in contrast to
affine.

The matter of estimating the parameters (system identification) of
the impulsive Goodwin’s oscillator from experimental Te and LH data
without exogenous excitation is covered in [10,37]. To account for the
hybrid nature of the system, the identification is performed in two
steps. First, the timing and magnitude of the GnRH pulses is evaluated
from the LH data by sparse estimation relying on the technique pro-
posed in [56]. Second, linear identification is performed to estimate the
parameters of the continuous part of the model with the GnRH impulses
evaluated in the first step as input and the Te concentration as the
output. Despite some inherent limitations, this approach apparently
produces good data fit. Yet, the approach of [10,37] cannot be directly
applied to the model studied in the present paper since the local feed-
back in (15) is intrinsic and not identifiable from an input-output ex-
periment. In order to recover identifiability, exogenous excitation of the
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second hormone (LH) is necessary, as well known in classical closed-
loop identification theory [57]. Although feasible, this is outside the
scope of the present paper.

4. Numerical examples

In this section, some numerical simulations illustrating the behavior
of the model at hand are presented.

Example 1. To start with, a set of parameters, partly borrowed from the
model of Hypothalamic-Pituitary-Adrenal (HPA) axis in [29] is
considered. The state variables L, R, T stand, respectively, for the
concentrations of CRH, ACTH and cortisol (C) whose clearing rates are

=b 0.023,1 =b 0.042 and =b 0.00833 . The secretion rates of ACTH and C
are set as =g 0.0321 and =g 0.0013,2 whereas the nonlinear secretion
rate of CRH Ψ( · ) and the frequency modulation functions Φ( · ) are
chosen to be

= +
+

= +
+

y y
y

y
y

( )
1

, ( ) 1
1

,1 2
3

3 3 4 3 (27)

with = 60,1 = 40,2 = 93 and = 0.0454 . Obviously, these
nonlinearities satisfy (4) with = = +,1 1 2 1 2 and

= = +,1 3 4 3 4. It can be shown that conditions (20) and (21)
hold when k<0.1932 and μ>0.1747. The behavior of the system for

=k 0.1 and =µ 0.11 and the initial condition ==R L T( , , ) (1, 4.5, 1)t 0 is
shown in Fig. 3. One may see that the solution converges to a positive 1-
cycle, and the patterns of oscillations are similar to those reported
in [29].

Example 2. Next simulation illustrates the influence of gain k on the
system’s behavior. Fig. 4 illustrates the behavior of the system from
Example 1 for three different gains: =k 0 (minimal possible value,
ensuring that the feedback is negative), =k 0.1932 (the maximal value
for which positivity is guaranteed by Theorem 2) and intermediate
value =k 0.05. One can see that an increase in k visibly damps the
oscillation amplitude and also influences the oscillation period.

Example 3. The last example shows that condition (20) cannot be
discarded without losing the ultimate positivity property, moreover, for
large k the system may have acquire partly negative periodic orbits. The
behavior of system (17) and (18) with parameters =b 0.25,1 =b 0.15,2

=b 0.20,3 =g 0.52 is simulated with the nonlinearities Φ, Ψ being the
same as in Example 1. The local feedback parameters are chosen as

=µ 0, satisfying thus (21) (note that ρ<0) and = > =k k0.1 * 0.0013.
Fig. 5 shows that the unique 1-cycle solution periodically leaves the
positive octant, and hence Theorem 2 does not hold.

5. Conclusions

In this paper, a novel model of hypothalamic-pituitary hormonal
axis is proposed. It is based on the previously studied model of the
impulsive Goodwin’s oscillator and captures the structure of the pulse-
modulated neuroendocrine regulation mechanism. This mechanism
comprising the pulsatile “outer” feedback from a target gland to the
hypothalamus and continuous “local” feedback from the gland to the
pituitary. The description of the local feedback remains an open pro-
blem; to simplify analysis of the model and make it more tractable this

Fig. 3. A solution of the system (17) and (18) under the assumptions of
Theorem 2: convergence to the positive 1-cycle.

Fig. 4. The effect of local feedback gain k on the solution.

Fig. 5. A partly negative periodic orbit, arising due to violation of (20).
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feedback is chosen to be affine. It is demonstrated that the presence of
this additional feedback, under natural assumptions, preserves the key
property of the impulsive Goodwin’s oscillator, namely, the existence of
periodic solutions, in particular, the unique 1-cycle solution featured by
one pulse of the release hormone over the least period. The presence of
an affine negative feedback gives rise, however, to the problem of so-
lution positivity; in general, the positive orthant fails to be an invariant
set. At the same time, natural conditions provide positivity of each
periodic trajectory and ultimate positivity of the remaining solutions.
The mathematical results are illustrated by numerical simulations.
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