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Abstract
In recent times, soft matter has gained significant interest among researchers in the fields of biome-
chanics and biomedicine, especially in areas like soft robotics and biopolymers, due to its remarkable
ability to undergo substantial deformations. Soft robotics often requires materials that can flexibly adapt
to or mimic the movements of living organisms, requiring properties of flexibility and easy deformability.
Biopolymers, naturally occurring in the human body, such as within brain tissue or blood clots, have
gained attention due to their tendency to exhibit extensive deformation even under minimal loads.
Consequently, there has been a growing emphasis on investigating stress-strain responses associ-
ated with these materials in recent years. This research particularly centers on a specific deformation
phenomenon known as the Poynting effect.

Within the scope of this thesis, we employ two distinct deformation gradient tensors to analyze stress-
strain responses under two separate boundary conditions: constant gap and constant normal stress
boundary conditions. We also introduce a methodology for predicting the sign of the Poynting effect un-
der conditions of small yet finite strain. Finally, we validate our analysis through simulation experiments.

The Poynting effect is related to the transverse stress or strain response when subjected to simple
shear, revealing that the application of simple shear strain does not solely result in simple shear stress.
This intriguing phenomenon captures our attention, primarily because it challenges intuitive expec-
tations. In our exploration of the Poynting effect in soft matter, we commence with Meng’s model, a
network-theory-based framework rooted in an energy density function derived from the force-extension
relationship of a single chain. Despite previous studies byMeng et al. on the Poynting effect, we identify
flaws in their derivation process. Consequently, we opt for an alternative approach, directly computing
the stress and strain responses of a cube subjected to shear forces.

To investigate the impact of compressibility, the original model undergoes a transformation into an
isochoric model, followed by the addition of an extra volumetric function to create an almost incom-
pressible model. Surprisingly, it is observed that the sign of the Poynting effect remains consistent for
both the two-variable deformation gradient tensor denoted as F1 and the four-variable tensor repre-
sented as F𝑔. The degree of compressibility has no distinguishable influence on determining this sign.
In contrast, for F𝑔, the magnitude of the stress response, under constant gap boundary conditions,
amplifies as the Poisson’s ratio approaches 0.5.

The prediction of the Poynting effect’s sign is grounded in the concept of Maxwell’s relation. In the
final stages of derivation, we arrive at an expression that solely relies on material parameters, devoid
of any strain variables. Remarkably, the obtained results exhibit substantial agreement with analytical
solutions, affirming the method’s efficacy in successfully predicting the sign of the Poynting effect.

Finally, we conducted a simulation study using Comsol. The results of this simulation indicate a
closer alignment with the four-variable tensor F𝑔, suggesting that the applied boundary conditions
more closely resemble those employed in the numerical solution. Additionally, it is noteworthy that
the specific geometries utilized in the study, cylinder and cube, did not exhibit any noticeable influence
on determining the sign of the Poynting effect, particularly within the context of the chosen model and
material parameters.
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Nomenclature
Greek Symbols

𝛼, 𝛽, 𝛿 Exponent of strain [-]

𝜒 Poynting coefficient [𝑁/𝑚2]

𝜖 Dilation in xy plane [-]

𝛾 Shear strain [-]

𝜅 Bulk modulus [𝑁/𝑚2]

𝜆 Pure shear in xy plane [-]

Λ1, Λ2, Λ3 Coefficients of 𝜎𝑥𝑦 [𝑁/𝑚2]

𝜆2, 𝜆3 Transverse deformation gradient [-]

Λ𝐿 First Lamé parameter [𝑁/𝑚2]

𝜆𝐿 Coefficient of 𝜎𝑧𝑧 [-]

𝜇 Shear modulus [𝑁/𝑚2]

𝜈 Poisson’s ratio [-]

𝜙0 Applied angle of rotation [degree]

𝜎𝑖𝑗 Cauchy stress [𝑁/𝑚2]

𝜏 Applied angle over gap [degree/𝑚]

𝜉 Transverse deformation gradient used in F𝑔 [-]

Roman Symbols

B Left Cauchy-Green tensor [-]

C Right Cauchy-Green tensor [-]

E Green-Lagrangian strain tensor [-]

F,F1,F𝑔 Deformation gradient tensor [-]

P First Poila-Kirchhoff stress tensor [𝑁/𝑚2]

S Second Poila-Kirchhoff stress tensor [𝑁/𝑚2]
̃𝐼1, ̃𝐼2 First and second isochoric strain invariant [-]

𝑐 Stiffness coefficient [-]

𝑒 Error [%]

𝐹𝑛𝑐 Strain energy density function of 𝑛 filaments [𝑁/𝑚2]

𝐻 Gap of the cylinder [m]

𝐼1, 𝐼2, 𝐼3 First, second, and third strain invariant [-]
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x Nomenclature

𝐽 Volume ratio [-]

𝑘𝐵 Boltzmann constant [𝐽/𝐾]

𝑅, Θ, 𝑍 Cylindrical reference configuration

𝑟, 𝜃, 𝑧 Cylindrical deformed configuration

𝑅0 Radius of cylinder [𝑚]

𝑇𝜉 , 𝑇𝜎𝑧𝑧 Torque [𝑁 ⋅ 𝑚]

𝑇𝑖𝑗 Reaction stress [𝑁/𝑚2]

𝑊 Strain energy density [𝑁/𝑚2]

𝑥 End-to-end ratio [-]



1
Introduction

Complex fluids and soft solids, often referred to as ”soft matter,” play crucial roles in numerous prac-
tical domains, including medicine, food, personal care products, and pharmaceuticals. They also find
innovative applications in fields like robotics and prosthetics. Notable examples encompass soft robots
with the remarkable abilities to jump, roll, and bend; soft robotic gloves designed to assist patients in
regaining hand functionality; and insect-inspired sensors capable of traversing water surfaces while
detecting parameters such as pH values. Consequently, our attention is drawn to the stress-strain
behaviors exhibited by soft matter, given their widespread relevance and transformative potential in
various applications.

Our primary objective in this study is to investigate the Poynting effect within the context of soft matter.
The Poynting effect involves the response of normal stress or strain in the transverse direction when
subjected to shearing forces. It derives its name from the physicist John Henry Poynting, who first
observed and described this phenomenon back in 1909. Despite several decades of observation and
research, it remains remarkable that simple shear does not exclusively result in shear stress, as the
Poynting effect also comes into play.

The significance of the Poynting effect in the field of soft matter is particularly noteworthy due to the
material’s inherent ability to deform, meaning it can undergo significant deformation even under the
influence of minor external forces. This unique characteristic of soft matter results in a pronounced
Poynting effect, underscoring its importance in this context.

In the subsequent sections of this chapter, we will provide an in-depth exploration of the Poynting
effect.

1.1. Poynting effect and Normal stress

Figure 1.1: An illustration of the Poynting effect in (left) a non-confined and (right) a confined setups. In a non-confined setup,
the load is fixed, while the material elongates or shortens upon shear. In a confined setup where the gap between the plates is
fixed, the material will exert tensile or compressive stress on the confined configuration in order to keep the height constant [45].
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The initial observation of the Poynting effect dates back to 1909 when J. H. Poynting conducted an ex-
periment [25]. In this experiment, a wire was subjected to torsion while simultaneously being extended
in the perpendicular direction. Poynting’s investigation yielded two key pieces of evidence, leading to
the conclusion that the application of shear forces could result in material deformation in the perpen-
dicular direction.

Firstly, it was established that the thermal effect was not the primary cause of the observed elongation,
as thermal expansion accounted for only a mere 1/100 of the observed extension. Secondly, a crucial
finding was the direct proportionality between the amount of lengthening and the square of the twist,
signifying a robust correlation between these two variables. As a result of these observations, this
phenomenon, where a material deforms in the transverse direction under shear, became known as the
”Poynting effect.”

Successive research efforts have revealed that this lengthening phenomenon is not uniform across
all materials. Instead, the effect can be further categorized into two distinct types: the positive Poynt-
ing effect and the negative Poynting effect.

To gain a deeper comprehension of the Poynting effect, let’s consider a straightforward scenario involv-
ing the shearing of a cylinder. When a cylinder undergoes shear, certain systems exhibit expansion, a
phenomenon referred to as the positive Poynting effect. Consequently, when a fixed load is applied to
the cylinder, it elongates in the transverse direction, as depicted in Figure (1.1) on the left side of the
pair marked with the fixed load. On the other hand, when the gap of the cylinder is maintained constant,
this expansion is halted. Eventually, the system exerts an outward force on the confining surfaces, as
illustrated in Figure (1.1) on the right side of the pair denoted by the fixed gap. Alternatively, one can
say that the system experiences a compressive force exerted by the container. Following sign conven-
tion as depicted in Figure (1.2), compressive normal stresses are considered negative. Therefore, a
positive Poynting effect corresponds to a negative normal stress under confinement.

Similarly, if the cylinder tends to contract under shear, then in a fixed load scenario, the system will
contract in the transverse direction. When the cylinder’s gap is held constant, the system exerts an
inward force on its container, namely, experiences tensile stress applied by the container. In most ma-
terials, elongation occurs during shear, demonstrating a positive Poynting effect. However, in the case
of soft materials like biopolymers or rubber-like substances, negative normal stress may also emerge.

Earlier investigations have uncovered that the sign of the Poynting effect is not exclusively dictated
by material properties alone; additional factors, including geometrical considerations, significantly in-
fluence this sign. This phenomenon becomes evident in devices like cone-plate and parallel-plate
rheometers, where opposing signs of Poynting effects can be observed.

Figure 1.2: The sign convention provides a set of rules that guide the determination of the sign of the applied stress, denoted as
𝜎, acting on a material.
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(a) (b)

Figure 1.3: The variables 𝜎 and 𝑇𝑦𝑦 correspond to −𝜎𝑧𝑧, as illustrated in Figure (1.2). (a) depicts a theoretical analysis of the
normal stress (●) and shear stress (○) responses concerning shear strain [27]. A positive normal stress indicates a positive
Poynting effect. (b) illustrates that the shear stress response is linear when the shear strain 𝛾 is small. Within the hyperelasticity
region, the response becomes nonlinear [39]. Notably, when subjected to shear, matrigel exhibits a negative Poynting effect.

As the Poynting effect revolves around the connection between shear strain and the resultant nor-
mal stresses, certain conclusions can be derived. For instance, the normal stress 𝜎𝑦𝑦 should exhibit
symmetry under simple shear, whether it is applied in the positive direction 𝛾 or the negative direction
−𝛾. This symmetry implies that the resulting normal stress should maintain the same sign regardless of
the direction of shear. The expression for the normal stress can be represented using Equation (1.1),
and this relationship is visually depicted in Figure (1.3a) through the use of black dots.

𝜎𝑦𝑦(𝛾) =
∞

∑
𝑛=1

𝛼𝑛𝛾2𝑛 , 𝑛 = 1, 2, 3, ... (1.1)

In the case of a small but finite shear strain, it is commonly assumed that the relationship between
shear strain 𝛾 and normal stress 𝜎𝑦𝑦 follows a quadratic pattern. Conversely, shear stress exhibits an-
tisymmetry when subjected to shearing, as illustrated in Figure (1.3a) using white dots. Importantly, the
sign of the shear strain should indeed impact the sign of the resultant shear stress. The mathematical
representation for shear stress is provided in Equation (1.2).

𝜎𝑥𝑦(𝛾) =
∞

∑
𝑛=1

𝛽𝑛𝛾2𝑛−1, 𝑛 = 1, 2, 3, ... (1.2)

In the case of a small but finite shear strain, it is a common practice to assume that the relationship be-
tween shear strain 𝛾 and shear stress 𝜎𝑥𝑦 is linear. Later observations and analyses have consistently
demonstrated that this assumption holds true, giving proof of its validity through numerical simulations
[26] and experimental investigations [39].

Despite the extensive study of the Poynting effect over the years, continuous research, both exper-
imental and numerical, continues to challenge and refine our previous understandings. In the following
sections, we will present some experimental findings from prior investigations and explore the potential
underlying causes of the Poynting effect and its associated signs.

1.1.1. Experimental research on Poynting effect
Early research into the Poynting effect dates back to 1950 when Rivlin conducted a series of experi-
ments on rubber, specifically involving pure shear. His work helped establish the validity of strain energy
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(a) (b)

Figure 1.4: The confined experimental setup for applying simple shear. (a) A cone-plate rheometer[2]. (b) The sample is clamped
between a pair of fixed and moving clamps[21].

functions [44]. Subsequently, experiments using pantographic metamaterial, inspired by Poynting’s
observations, were conducted. These experiments demonstrated that the positive sign of the Poynting
effect could change to negative as the twisting progressed. The deformation in these materials was
governed by two mechanisms: (1) the beams forming the lattice underwent bending, and (2) two or-
thogonal families of beams rotated relative to each other. It was observed that when the deformation
was primarily dominated by bending, the positive Poynting effect occurred [38].

In the case of semiflexible biopolymer gels, experimental results revealed a negative normal stress.
Importantly, the magnitude of this negative normal stress increased only within the range where the
systems stiffened under shear. When the shear modulus began to decrease, the magnitude of the
negative normal stress also diminished. Furthermore, it was concluded that in a randomly oriented
material, an equal number of filaments were elongated or compressed. However, due to the force-
extension relation showing that stretched filaments exerted more force than compressed ones, this led
to the emergence of negative normal stress [39].

Certain experimental studies have focused on brain cells, which are considered isotropic biological
materials [35, 40]. Porcine brain matter, for instance, can be approximated as a Mooney-Rivlin mate-
rial as long as the stretch remains below 60%. These studies have found that the Poynting effect is
consistently positive, both through experimental observations and numerical simulations.

1.2. Proposal
Inspired by elastomers and biopolymers, our primary objective is to develop a model capable of accu-
rately capturing the Poynting effect in isotropic, slightly compressible materials. In this research, we
will begin by providing an overview of what constitutes soft matter and reviewing existing constitutive
models for the strain energy of isotropic hyperelastic materials.

Given the suitability of Meng’s model, based on continuum theory, for studying the Poynting effect,
our analysis will primarily rely on this model. The model undergoes a transformation into an isochoric
form to make way for the incorporation of the volumetric function. Following the discretization of both
the isochoric and volumetric components, we will vary the Poisson’s ratio to investigate the influence of
compressibility on the Poynting effect. In Chapter 3, our analysis will utilize a two-variable simple shear
deformation gradient tensor, while in Chapter 4, a more general tensor encompassing four variables
will be employed to allow for the application of different boundary conditions.

Another crucial aspect of this thesis is the development of a method for predicting the sign of the
Poynting effect under conditions of small but finite shear strain. This method relies on the concept of
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Maxwell’s relations, a multivariable calculus invariance that involves second derivatives. Upon deriving
the relation, we will impose initial conditions based on various boundary conditions, ultimately resulting
in an expression solely comprising material parameters. In this thesis, we demonstrate that the sign of
the Poynting effect under small shear strain is predictably determined through the analysis of these ma-
terial parameters. Furthermore, we explore the impact of boundary conditions on the strain-stiffening
effect.

Following the numerical analysis, we will implement a simulation using the finite-element-based soft-
ware Comsol. This simulation will investigate the simple shear of a cylinder, partly serving as a vali-
dation of our analytical findings. We anticipate that our simulation will also shed light on whether in-
homogeneous deformation can influence the Poynting effect, particularly since the cylinder resembles
parallel-plate rheometers—a common tool for studying the rheology of soft matter.





2
Literature Review

2.1. What is the soft matter?
Complex fluids and soft solids, collectively referred to as ”soft matter,” are prevalent in a wide array
of practical applications, encompassing fields such as medicine, food production, personal care prod-
ucts, and pharmaceuticals. Soft matter comprises a diverse range of materials, falling into various
categories, including polymers, biological tissues, and granular materials. At times, it can also show as
a mixture of phases. In such cases, a solution qualifies as soft matter when the solute imparts structural
properties to the solvent.

Different types of soft matter exhibit both shared characteristics and distinct attributes. One of the
most prominent features common to soft matter is the lack of crystalline order. This characteristic
allows soft matter to exhibit behavior that lies intermediate between that of solids and fluids [49]. Ad-
ditionally, the characteristic length scale of the constitutive elements within soft matter typically falls
within the mesoscopic range. Consequently, soft matter materials tend to have a low elastic modulus,
meaning they display significant deformation in response to weak forces and exhibit nonlinear behavior.

Another notable trait of soft matter is its slow response. Soft matter typically forms extensive assem-
blies, and when subjected to deformation, the dynamics within these assemblies slow down signifi-
cantly, occurring on the order of 1 to 104 seconds. This response time is considerably longer when
compared to the rapid response of simple flows, which typically operates at the order of 10−9 seconds
[50].

In the context of this research, our focus will be directed towards two distinct classes of polymeric soft
matter: elastomers and biopolymers. The analysis is conducted under the quasi-static assumptions.
This section has also presented an overview of various representative types of soft matter, including
colloids, dispersions, and polymers.

2.1.1. Colloid
Colloid solutions represent a typical mixture type within the field of soft matter. These solutions consist
of colloids, which are either fluid or solid particles dispersed within a liquid medium. The particle sizes
in colloidal suspensions are relatively small, typically ranging from nanometers (nm) to micrometers
(μm). A familiar example of a colloid solution is milk. In such solutions, the particles do not settle at the
bottom due to the dominance of thermal fluctuations over gravity.

The dispersion of these small particles within the solvent, along with their Brownian motion, can have a
significant impact on the rheological properties of the system. This influence can show in phenomena
such as shear-thickening and viscoelastic behavior. In colloidal science, low-concentration colloidal
solutions are often referred to as ”sol,” while high-concentration solutions are termed ”gel” [50].

7
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(a) (b)

Figure 2.1: (a) Image of emulsions of silicone oil droplets with 0.5 wt % in water stabilized by SDS [1]. (b) Electron microscopy
image of a large-pore fibrin gel [57].

2.1.2. Dispersions
Dispersion, as shown in Figure (2.1a) is another prevalent category within the field of soft matter. It
refers to a mixture comprising two phases: one phase that is spatially discontinuous and another that
is continuous. The size of the particles involved in dispersions can vary widely, ranging from particles
as small as sand grains to significantly larger entities such as icebergs. Notably, in dispersions, the
particles are typically so large that thermal motion becomes negligible, and their movement is predom-
inantly governed by inter-particle forces.

A diverse array of materials falls under the umbrella of dispersions, including granular materials (solid
dispersed in a gas), suspensions (solid dispersed in a liquid), and foams (gas dispersed in a liquid).
Granular materials, in particular, are characterized by disorder, high dissipation, and a pronounced
nonlinear response to applied forces. The concept of jamming, where a granular system becomes
immobilized in an amorphous state under static conditions, holds particular fascination for numerous
researchers in this field [52].

2.1.3. Polymers
Polymers, ranging from natural to synthetic materials, constitute a significant category within the field
of soft matter. These materials consist of long, chain-like structures composed of repeating monomer
units. When polymers are stretched or straightened out, they have the potential to undergo crystalliza-
tion. However, an interesting characteristic of polymers is that they often do not fully crystallize due to
the substantial energy required for this process.

As a consequence, polymers tend to exhibit a wide range of structures that are better understood
and characterized through their rheological properties rather than their molecular organization [49].
This inherent structural diversity and the role of rheology are fundamental aspects of polymers in the
study of soft matter.

Natural polymers are ubiquitous, from silk to wood. Biological soft polymers are also abundant in
human bodies, such as tissues, DNA, and polymeric carbohydrates. Biopolymer gel, which consists of
semiflexible filament networks and liquid filling the interstitial space, specifically catches researchers’
eyes because these materials are well-known for their stress-stiffening behavior under small strains,
and also the compressibility that has been hypothesized to cause the negative Poynting effect [2].

Natural polymers are found abundantly in the natural world, ranging from materials like silk to wood.
Within the human body, biological soft polymers are also prevalent, found in various tissues, DNA,
and polymeric carbohydrates. Biopolymer gels, which comprise semiflexible filament networks within
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a liquid-filled interstitial space, have garnered significant attention from researchers. These materials
are renowned for their stress-stiffening behavior under small strains and their compressibility, which
has been hypothesized to give rise to the negative Poynting effect [2].

In contrast, synthetic polymers play a crucial role in modern industry, with a particular focus on rubber.
Rubber finds wide-ranging applications in products such as tires, absorbent materials for diapers, and
even soft contact lenses [51]. Phenomenological behaviors of rubber have been extensively studied
across a spectrum, from the dry state to the gel-like, swollen phase. A shared characteristic of rubber,
and elastomers in general, is their remarkable reversibility even when subjected to substantial defor-
mation and their ability to undergo large deformations in response to small external forces. One way to
view rubbers is as networks of crosslinked filaments, as shown in Figure (2.1b), with the material being
discretized as an assembly of small cells.

2.2. Hyperelasticity
Hyperelasticity is a term used to describe the nonlinear elastic behavior of materials like rubber when
subjected to deformation. Rubber, in particular, is known for its ability to undergo significant strain
in response to external forces, leading to a complex relationship between shear and strain. Also,
hyperelasticity does not imply plasticity, which means that the deformation exhibited by hyperelastic
materials is reversible. Therefore, there is no hysteresis loop observed in a loading-unloading cycle. In
such cycles, the stress follows the same curve during both the loading and unloading phases, reflecting
the material’s elastic and reversible response to deformation.

(a) (b)

Figure 2.2: The simulation of force response of rubber material shows the strain stiffening [8]. (a) The normal stress under simple
extension. (b) The shear stress under simple shear.

Strain-stiffening effect is one of the manifestations of hyperelasticity. It means the materials stiffen or
harden upon the large strain. A cause of strain-stiffening is that after the monomers of rubbers align
with the direction of external force, in order to further stretch the material, the external force should be
capable of pulling away the chemical bonds, and the energy required increases as the strain increases
[18]. The phenomenon is considered critical in the field of biomedical because the elasticity of the bio-
logical tissue could change due to diseases or age. For example, the thoracic artery of a 70-year-old
male stiffens five times more than that of a 21-year-old [16]. Upon stretching, isotactic rubbers crys-
tallize and go through strain-stiffening. The atactic rubber-like materials, referring to the materials that
have no regular configuration, stiffen because of the finite chain extensibility [18].

The deformation of hyperelastic materials is quantified using a deformation gradient tensor denoted
as F. This tensor is defined as the derivative of the deformed coordinates x with respect to the un-
deformed coordinates X [9]. In this context, x represents the deformed state, while X represents the
undeformed state.

Given a tensor F, we can determine the energy density function 𝑊, which characterizes the amount
of energy stored per unit volume in the material. Since rigid body motion does not store energy, the
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function 𝑊 solely depends on the deformation gradient tensor F. 𝑊 can be expressed as a function
of invariants, namely 𝐼1, 𝐼2, and 𝐼3, or principal strains, denoted as 𝜆1, 𝜆2, and 𝜆3. Strain invariants
are derived from the deformation gradient tensor and are typically preferred because they describe
deformation without being influenced by the choice of coordinate system.

To calculate these invariants, the Left Cauchy-Green deformation tensor, represented as B = F ⋅ F𝑇,
is introduced. The invariants 𝐼1, 𝐼2, and 𝐼3 are then defined, as described in Equation (2.1). 𝐼1 and 𝐼2
are particularly sensitive to shear deformation, while 𝐼3 characterizes the dilational deformation of the
material.

𝐼1 = 𝑡𝑟(B), 𝐼2 =
1
2(𝐼1

2 − 𝑡𝑟(B2)), 𝐼3 = 𝑑𝑒𝑡(B) = 𝐽2. (2.1)

Working with a strain energy function offers an advantage in that this single function encodes the stress
response that arises from arbitrary deformations. It allows us to establish a relationship between the
strain energy function 𝑊 and two definitions of stress tensors: the first Piola-Kirchhoff stress tensor
denoted as P and the second Piola-Kirchhoff stress tensor denoted as S. These tensors represent the
force per unit area acting on the deformed and undeformed states, respectively.

P = 𝜕𝑊/𝜕F,
S = 𝐽−1(𝜕𝑊/𝜕F)F𝑇

(2.2)

Furthermore, the relationship between the Cauchy stress tensor 𝜎0 can also be expressed as described
in Equation (2.3).

𝝈 = 1
𝐽 FSF

𝑇 (2.3)

2.2.1. Strain-energy functions for incompressible mateirals
The scientific literature encompasses a wide range of strain energy functions designed for hyperelastic
materials. Each function corresponds to a distinct model, and these models vary in their characteristics
and objectives. Some models provide a highly precise representation of a specific physical system,
resulting in intricate formulations with numerous fitting parameters. Conversely, other models prioritize
simplicity, emphasizing ease of analysis and qualitative insights over quantitative precision.

In this section, we offer an overview of various strain energy functions that bear relevance to the inves-
tigation of the Poynting effect. However, it is important to note that this thesis will ultimately concentrate
on a specific model system, which will be described in greater detail in the next section.

Many materials exhibit nearly incompressible behavior, meaning that they require significantly more
energy to induce volumetric strain compared to an equivalent shear strain. Therefore, many modeling
approaches adopt an assumption that treats the material as perfectly incompressible, which causes
volume changes impossible. This assumption results in setting parameters such as 𝐼3 and 𝐽 to equal
one, making the strain energy function solely dependent on 𝐼1 and 𝐼2.

This section will review several relevant incompressible models, as shown in Table (2.1), while the
following section will introduce models that account for compressibility.

The neo-Hookean model, shown in Equation (2.4), is not only a classical example of an incompress-
ible material but also an example of isotropic materials. These isotropic, incompressible, hyperelastic
materials are found in everyday life, such as natural rubber, synthetic elastomers, and biological tissue
[12].

𝑊 = 𝜇
2(𝐼1 − 3) (2.4)

One of the simplest forms of the strain energy function is the Gent model, which is expressed as shown
in Equation (2.5).

𝑊 = −𝜇
2 𝐽𝑚𝑙𝑛(1 −

𝐼1 − 3
𝐽𝑚

), (2.5)

where 𝐽𝑚 is the limiting value for 𝐼1 − 3. For incompressible materials, if the limiting value 𝐽𝑚 tends
towards infinity, the equation is further reduced to the neo-Hookean form [8].



2.2. Hyperelasticity 11

The Mooney-Rivlin model is another well-known model for incompressible isotropic materials, along-
side the neo-Hookean model. It is represented as a linear combination of the 𝐼1 and 𝐼2 terms.

𝑊 = 𝜇
2(𝐼1 − 3) +

𝜅
2(𝐼2 − 3) (2.6)

The importance of incorporating the second invariant 𝐼2 when predicting the strain stiffening effect has
been emphasized in references [16, 32]. Some models, such as the neo-Hookean model, exclusively
rely on the first invariant 𝐼1 and consequently may not fully capture certain features of real systems’
responses.

In reference [16], the Vito model, which includes the second invariant term, is shown to provide a
better fit to the deformation characteristics of real systems compared to the first-invariant-dependent
FD model. For instance, the Vito model exhibits improved agreement with the results of the simple
extension test conducted on the dog aorta.

Furthermore, the inclusion of 𝐼2 has been demonstrated to be crucial for accurately capturing the Poynt-
ing effect. The significance of 𝐼2 is also investigated by A. Anssari-Benam et al. using an elementary
approach to molecular theory [32]. Strain-energy functions that are additive in nature and incorporate
𝐼2 have been shown to better match the results of uniaxial tensile tests compared to the generalized
neo-Hookean model, as illustrated in Figure (2.3).

Figure 2.3: The comparison shown in the figure between experimental data (Treloar data) and two sets of numerical data
presents the reduced engineering stress 𝑀 plotted against extension 𝜆 during uniaxial deformation [32]. The Anssari-Benam
and Bucchi model, which relies solely on 𝐼1, fails to accurately capture the upturn observed in the experimental data. However,
by incorporating the term 𝐶2(𝐼2−3) into the model, a much better fit is achieved, aligning the numerical results more closely with
the experimental data.

Treloar and Jones’ classical experiment on natural rubber has inspired several papers to investigate
the fitting of hyperelastic models to the experimental data. R. W. Ogden et al. conducted a study on
fitting hyperelastic models, as described in reference [20]. They calculated the relative errors between
the fitted parameters and the experimental data for comparison.

In their analysis, the Pucci-Saccomandi model is shown to be a relatively poor fit for biaxial testing.
On the other hand, the Ogden model, which is an M-summation function containing M different shear
modulus terms and M terms to form a strain energy function, provides good fits for equi-biaxial tension.
However, it is observed that the relative error is significant for small strains, regardless of the type of
test conducted. Notably, the research demonstrates that increasing the value of M to 4 does not nec-
essarily reduce the error compared to the case with M equal to 3.



12 2. Literature Review

Table 2.1: Strain-energy functions𝑊 for incompressible materials.

Lopez-Pamies (2009)[19] 31−𝛼1
2𝛼1

𝜇1(𝐼𝛼11 − 3𝛼1) + 31−𝛼2
2𝛼2

𝜇2(𝐼𝛼21 − 3𝛼2)
Special Blatz-Ko (1962)[53] 𝐶(𝐼2 + 2𝐼3 − 5)
Fung-Demiray (1972)[16] 𝜇

2𝑏 (𝑒
𝑏(𝐼1−3) − 1)

Vito (1973)[16] 𝜇
2𝑏 (𝑒

𝑏(𝛼(𝐼1−3)+(1−𝛼)(𝐼2−3)) − 1)
Anssari-Benam(1) (2021)[32] 𝜇𝑁 [ 16𝑁 (𝐼1 − 3) − ln ( 𝐼1−3𝑁3−3𝑁 )] + 𝐶2(𝐼2 − 3)
Anssari-Benam(2) (2021)[32] 𝜇𝑁 [ 16𝑁 (𝐼1 − 3) − ln ( 𝐼1−3𝑁3−3𝑁 )] + 𝐶2 (√

𝐼2
3 − 1)

Anssari-Benam(3) (2021)[32] 𝜇𝑁 [ 16𝑁 (𝐼1 − 3) − ln ( 𝐼1−3𝑁3−3𝑁 )] + 𝐶2 (
𝐼2
3 )

Pucci-Saccomandi (2002)[20] −𝜇2 𝐽𝑚log (1 −
𝐼1−3
𝐽𝑚
) + 𝐶2log (

𝐼2
3 )

Ogden M-summation (2004) [20] ∑∞𝑖=1
𝜇𝑖
𝛼𝑖
(𝜆𝛼𝑖1 + 𝜆𝛼𝑖2 + 𝜆𝛼𝑖3 − 3)

Another 𝐼1-based model for rubber is proposed by O. Lopez-Pamies. This closed-form model is devel-
oped based on the generalized neo-Hookean model and is characterized by its simplicity. Researchers
fit the four-parameter model with experimental data and demonstrate that the model exhibits a high de-
gree of similarity to the Gent model for rubber under uniaxial tension, biaxial tension, and pure shear
[18]. It is worth noting that the Gent model also shows a more pronounced strain-hardening phe-
nomenon compared to the power-law model.

2.3. Hyperelasticity with Compressibility
Rubber-like materials are often treated as incompressible as long as the hydrostatic stress remains
relatively small. This assumption is based on the idea that these materials can maintain their volume
under large deformations. However, in reality, even rubber-like materials exhibit some degree of com-
pressibility. In hyperelasticity, this compressibility is accounted for in some models.

The simplest form of the neo-Hookean model, which considers compressibility, can be expressed as
shown in Equation (2.7), where Λ𝐿 represents the Lamé parameter.

𝑊 = 𝜇
2(𝐼1 − 3 − 2 ln 𝐽) +

Λ𝐿
2 (𝐽 − 1)

2 (2.7)

Compressibility in hyperelastic models is represented by terms involving the volume ratio denoted as
𝐽. If a material is considered incompressible, then 𝐽 equals 1, and the corresponding terms disappear
from the equations. In practice, incompressibility is an idealized assumption aimed at simplifying the
elastic response function [15]. The bulk modulus for rubber is not infinitely large; rather, it is larger than
the shear modulus. The compressibility of rubber has also been studied experimentally by Adams and
Gibson [10].

For strain-energy functions designed to describe compressible materials, as opposed to classical in-
compressible materials, these functions must still adhere to three classical initial conditions, as men-
tioned in [12]. These conditions are: (1) the strain energy is zero in the reference configuration; (2)
the stress is zero in the reference configuration; and (3) on restriction to infinitesimal deformations,
the shear and bulk moduli, 𝜇 and 𝜅, are positive, or equivalently, the strain-energy function is positive
definite.

Defining the strain energy as 𝑊 = 𝜓(𝜆1, 𝜆2, 𝜆3) + 𝐹(𝐽), where 𝑥𝑖 = 𝜆𝑖𝑋𝑖 (no summation) and there-
fore 𝐽 = 𝜆1𝜆2𝜆3, we can translate these conditions into equations as follows:

𝜓(1, 1, 1) + 𝐹(1) = 0, 𝜓,𝑖(1, 1, 1) + 𝐹′(1) = 0 (2.8)

3𝜅 = 2𝜓,𝑖𝑗(1, 1, 1) + 𝜓,𝑖𝑖(1, 1, 1) + 2𝐹′(1) + 3𝐹″(1), 2𝜇 = 𝜓,𝑖𝑖(1, 1, 1) − 𝜓,𝑖𝑗(1, 1, 1) − 𝐹′(1) (2.9)
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The material of interest in this study is nearly incompressible, which means that the determinant 𝐽 of
such materials is close to 1, or 𝐽 → 1. This suggests that for materials with slight compressibility, the
Poisson’s ratio 𝜈 should be close to 0.5 [13], or alternatively, the ratio 𝜂 = 𝜇/𝜅 should be much less
than 1 [12]. A characteristic of nearly incompressible materials is that they tend to soften in tension and
harden in compression. The assumption of slight compressibility is also adopted by commercial Finite
Element Method (FEM) software to prevent element locking [14].

Continuing from the conditions mentioned in equations (2.8) and (2.9), it is further assumed that the
strain-energy function 𝜓 depends on the shear modulus 𝜇, and the volumetric function 𝐹 depends on
the bulk modulus 𝜅. It is a requirement that the stress is zero in the reference configuration.

𝜅 = 𝐹″(1), 𝐹(1) = 𝐹′(1) = 0 (2.10)

The compatibility with the classical linear form of the strain-energy function on restriction to infinitesimal
deformations also needs to be ensured:

2𝜓,𝑖𝑗(1, 1, 1) + 𝜓,𝑖𝑖(1, 1, 1) = 0, 2𝜇 = 𝜓,𝑖𝑖(1, 1, 1) − 𝜓,𝑖𝑗(1, 1, 1),
𝜓,𝑖𝑗(1, 1, 1) = 𝜓,𝑖(1, 1, 1) = 0.

(2.11)

Table 2.2: Strain-energy functions𝑊 for compressible materials.

Christensen (1988)[12] 𝜇
2 (𝐼1 − 3𝐽

2/3) + 3𝜅
2 (

3
2 𝐽
2/3 − 𝑙𝑛(𝐽) − 3

2)
Levinson (1972)[12] 𝜇

6 (3𝐼1 − 4𝐽 − 2𝑙𝑛(𝐽) − 5) + 𝜅(𝐽 − 𝑙𝑛(𝐽) − 1)
Levinson-Burgess (1971)[12] 𝜇

6 (3𝐼1 − 𝐽
2 − 8𝐽 − 2) + 𝜅

2 (𝐽 − 1)
2

Ehlers-Eipper (1998)[12] 𝜇
2 (𝐼1𝐽

−2/3 − 3) + 𝜅
2 (𝑙𝑛𝐽)

2

Horgan-Murphy (2006)[12]
𝑐1 (𝜆𝑚1 + 𝜆𝑚2 + 𝜆𝑚3 +

4𝜖
1−2𝜖 𝐽

(2𝜖−1)𝑚
4𝜖 − 3−2𝜖

1−2𝜖) +

𝑐2 (𝜆−𝑚1 + 𝜆−𝑚2 + 𝜆−𝑚3 + 4𝜖
1−2𝜖 𝐽

− (2𝜖−1)𝑚4𝜖 − 3−2𝜖
1−2𝜖)

Horgan-Murphy (m=2) 𝜇𝑓
2 (𝐼1 − 3 −

2
𝛾 (𝐽

𝛾 − 1)) + 𝜇(1−𝑓)
2 (𝐼2𝐽−2 − 3 −

2
𝛾 (𝐽

𝛾 − 1))

Numerical research [12] has demonstrated significant deviations between theChristensenmodel, Levin-
son model, Levinson and Burgess model, and the Ehlers and Eipper model from experimental data.
Additionally, when the deformation tensor (2.12) is used to describe simple shear, and because 𝐽 = 1,
the deformation is isochoric, and the stress response for almost incompressible materials in this case
is independent of the volume ratio 𝐽.

F = [
1 𝛾 0
0 1 0
0 0 1

] (2.12)

2.3.1. Volumetric part of constitutive models
For simplicity in computation, it is often assumed that the strain energy function can be divided into
an isochoric part and a volumetric part. In this approach, the deviatoric functions introduced in section
2.2 can be combined with the volumetric function to describe deformation with dilation. To discretize
the function, it is often rewritten as equation (2.13). ̃𝐼1 and ̃𝐼2 denote the first and second invariants
of the isochoric-elastic right Cauchy–Green deformation tensor. By using isochoric strain invariants, �̃�
describes only the isochoric deformation of the system, and 𝐹(𝐽) describes only the volumetric defor-
mation, thus separating the two parts.

𝑊 = �̃� ( ̃𝐼1, ̃𝐼2) + 𝐹(𝐽),

̃𝐼1 =
𝐼1
𝐽2/3 ,

̃𝐼2 =
𝐼2
𝐽4/3

(2.13)
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Several proposals for models describing the volumetric part 𝐹(𝐽) have been made over the years, as
shown in Table (2.3). When the volume change is small, namely, when 𝐼3 ≤ 1 or 1 ≤ 𝐼3 ≤ 1.0003,
researchers have found that the formulation of the energy density function in equation (2.13) provides
a good fit to the tension-volume change data of rubber [33]. In [15], the function𝑊 is further assumed to
be independent of 𝐼2. In this simplified model, the effect of limiting chain extensibility is found to stiffen
the material relative to the neo-Hookean compressible case. A proposal made by Anssari-Benam
and Horgan not only complies with the requirement that 𝑊𝑉𝑜𝑙 should approach infinity when 𝐽 → ∞ or
𝐽 → 0, but it is also capable of predicting a wide range of deformation behaviors for a wide range of
elastomers. It can also be derived from experimental data. By utilizing the relation between hydrostatic
pressure and the volume change 𝐽 obtained from experiments on porcine liver tissues, which are slightly
compressible, an impression for the volumetric function is derived [56].

Table 2.3: Volumetric part of strain-energy functions𝑊𝑣𝑜𝑙.

Blatz-Ko (1962) [55] 𝐽 − ln (𝐽) − 1
Valanis-Landel (1967) [55] 𝜅

2 (ln𝐽)
2

Simo-Taylor (1982) [55] 𝜅 [ (𝐽 − 1)2 − (ln𝐽)2]
Bischoff et al. (2001) [55] 𝜅

𝛽2 (𝑐𝑜𝑠ℎ(𝛽𝐽 − 𝛽) − 1)
Wang et al. (2020) [56] 𝜅

2
𝐽𝛼+1[(𝛼+1)ln𝐽−1]+1

(𝛼+1)2 − 𝜅
2
𝐽−𝛼+1[(𝛼−1)ln𝐽+1]−1

(𝛼−1)2
Anssari-Benam and Hor-
gan (2022) [55]

𝜅
4 (𝐽

2 − 1 − 2ln𝐽)

2.3.2. Deformation tensor for Compressible Material
Applying the deformation tensor in (2.12), the stress response is independent of the volumetric function
𝐹(𝐽) since the volume ratio equals one. However, despite its apparent reasonability, this model does
not match the experimental data. Therefore, alternative models have been studied. M. Destrade et al.
argue that the isochoric approximation of simple shear is too restrictive and that an infinitesimal volume
change should always be included [23]. To account for this infinitesimal volume change, the following
approach is adopted:

𝑥1 = (1 + 𝜖1)𝑋1 + 𝛾(1 + 𝜖2)𝑋2, 𝑥2 = (1 + 𝜖2)𝑋2, 𝑥3 = (1 + 𝜖3)𝑋3 (2.14)

The deformation gradient tensor can be derived using equation (2.14) and then applied to the energy
density function 𝑊 to calculate the stress responses. It has been found that while the shear stress is
still independent of Poisson’s ratio 𝜈, the normal stress responses upon shearing become sensitive to
the choice of 𝜈. Instead of simply setting the ratio to 1/2, the research suggests that since no material is
perfectly incompressible, even a change of the third decimal of Poisson’s ratio, ranging between 0.495
to 0.5, can result in a significant change in response, such as the reverse Poynting effect.

The Poynting effect, which indicates normal stress induced by simple shear, has been noted by sev-
eral researchers, including M. Destrade et al., who stated that simple shear would not result in simple
shear stress [23]. To express a more general deformation for simple shear, the research suggests that
the principal elements in the deformation gradient tensor should not equal one, thereby increasing the
degree of freedom in the analysis.

2.3.3. Compressibility in biological matters
Research on biopolymers has highlighted that the presence of compressibility is a prerequisite for
materials to exhibit contraction under shear forces, a point we will delve into further in subsequent
discussions [1]. In the context of cone-plate geometry, it becomes evident that when dealing with
materials that are both incompressible and elastic, two key observations emerge: (1) the thrust applied
to the rheometer head is directly proportional to the first normal stress difference, and (2) the first normal
stress difference consistently holds a positive value. This implies that the Poynting effect is consistently
positive in such scenarios. This insight naturally leads to the conclusion that for an elastic system to
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display a negative Poynting effect, it must possess compressibility. The experiments conducted by
Bonn et al indirectly confirm this understanding. To illustrate, compressibility can be achieved through
a high water content. When water cannot readily exit the material in a short time frame, it renders
the material incompressible. Conversely, when the material undergoes slow deformation, it becomes
compressible as water can be gradually squeezed out. In our research, we focus exclusively on elastic
models, assuming quasi-static deformation.

2.4. What influences the Poynting effect?
2.4.1. Nonlinearity and Poynting effect
Hyperelasticity, which characterizes the nonlinear response of soft matter, has a subtle but important
role in understanding the Poynting effect, even though it has not been explicitly discussed in previous
chapters.

The connection between the Poynting effect and nonlinearity can be inferred from the behavior of
constitutive models. As previously discussed in subsection 2.2.1, the second invariant, denoted as
𝐼2, is crucial for capturing the strain-stiffening effect, a typical nonlinear characteristic of biopolymers.
Therefore, it is not surprising that models like the FD model, which lacks the 𝐼2 term, fail to represent
the Poynting effect, while models like the Vito model can account for compressive traction [16]. As a
result, the inclusion of the second invariant term 𝐼2 is essential for exponential models to accurately
depict the Poynting effect in isotropic rubber-like and soft biomaterials.

Regarding the sign of the Poynting effect, geometric nonlinearities are identified as one of the factors
contributing to the negative Poynting effect in filamentous biopolymers. While buckling is a significant
contributor, arising from the asymmetric force-distance curve, it is not the sole cause of negative normal
stress. Filament network theory, to be discussed in section 2.4.4, introduces various length scales for
categorizing material deformation. For instance, 𝑙𝑝 represents the persistence length, representing the
stiffness or rigidity of a polymer chain, while 𝐿𝑐 denotes the contour length of the chain.

The research findings suggest that, within the context of a quadratic spring model featuring a quadratic
term in the force-extension relationship, the interaction between geometric and elastic nonlinearities is
balanced when the persistence length (𝑙𝑝) is approximately equal to the contour length (𝐿𝑐). However,
when 𝐿𝑐 is much smaller than 𝑙𝑝, elastic nonlinearity becomes the primary factor governing normal
stress. Additionally, the study observes a transition in the elastic response as shear strain increases
from infinitesimal to large values, shifting from a quadratic behavior to a linear one.

2.4.2. Effect of Compressiblity
In the context of incompressible materials, where the volume remains constant, positive normal stress
often exerts on the materials, or expansion in the transverse direction. However, for nearly incompress-
ible materials, it is possible for the volume to contract, resulting in inward contraction. Achieving com-
pressibility in materials, particularly in biopolymers, can occur through various means. For instance,
semiflexible polymer hydrogels can exhibit compressibility because the water within the hydrogel can
be squeezed out over time [2]. This compressibility can be characterized by the ”characteristic relax-
ation time,” meaning that if the system has sufficient time to react (i.e., squeeze out the water), it can
undergo contraction. It is worth noting that this model generally applies to two-phase materials, but
similar phenomena can also be observed in single-component materials.

Another experiment provides a direct comparison between foam and adhesive oil-in-water emulsions
under shear, illustrating that compressibility can lead to opposite signs of the Poynting effect [1]. Foam,
which exhibits a positive Poynting effect, tends to expand or push outwards on the rheometer under
shear. In contrast, emulsions may display a negative Poynting effect, indicating that they can contract
under shear. The compressibility of emulsions is achieved through a porous network structure, and it
depends on the concentration of the surfactant. This type of geometry allows the solute to be squeezed
out of the material, similar to the water in biopolymer gels. When the surfactant concentration is low,
the biopolymer gel resembles a foam-like structure with little structural change. Incompressibility leads
the system to exhibit repulsion and a positive Poynting effect. Conversely, emulsions with high sur-
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factant concentration form large aggregates and gel-like structures, potentially resulting in a negative
Poynting effect. Importantly, the compressibility is determined prior to shear, and thus, the sign of the
Poynting effect is predefined. Experimental data further validate the quadratic relationship between
normal stress and shear strain.

A key conclusion drawn from this is that to exhibit a negative Poynting effect, the shear modulus of
a material should stiffen in response to stretching. Using a specific strain tensor, this relationship is
derived analytically and found to align with experimental data. In this context, a Poynting coefficient 𝜒
is introduced, where 𝐹𝑦 represents the thrust in the perpendicular direction, and 𝜉𝑦 denotes the dimen-
sionless dilation in the gradient direction. For materials like sticky adhesives, which form networks and
remain unchanged unless subjected to a tensile force exceeding a certain threshold, placing such a
network under tension increases its shear modulus, resulting in a positive derivative ( 𝜕𝐺𝜕𝜉𝑦 ) and, conse-
quently, a negative Poynting effect.

𝜒 = [(
𝜕2𝐹𝑦
𝜕𝛾2 )𝜉𝑦]0 = −[(

𝜕𝐺
𝜕𝜉𝑦

)]0 (2.15)

Poisson’s ratio offers a convenient means of quantifying a material’s compressibility. The relation be-
tween the bulk modulus, shear modulus, and Poisson’s ratio is defined as follows

𝜈 = 3𝜅 − 2𝜇
2(3𝜅 + 𝜇) (2.16)

(a) (b)

Figure 2.4: (a) The sensitivity of the dimensionless transverse normal stress, expressed as 𝑇𝑦𝑦/𝜇 = −𝜎𝑦𝑦/𝜇, is demonstrated
across different positions along the horizontal centerline of the block for various values of 𝜈 = 0.5, 0.499, 0.495, 0.49, 0.48, 0.47.
The closer 𝜈 is to 0.5, the easier the normal stress −𝜎𝑦𝑦 becomes positive, resulting in a positive Poynting effect [23]. (b) The
nondimensional transverse normal stress 𝜎𝑦𝑦/𝜇 under the assumption of (solid, bald line) plane stress, assuming that the stress
on slanted faces 𝜎𝑧𝑧 equals zero; (solid line) zero normal traction, assuming that the normal stress on slanted faces is equals
zero; and slight compressibility (dashed line) [14].

The degree of compressibility in a material is closely tied to its Poisson’s ratio, denoted as 𝜈. In the limit
where the bulk modulus 𝜅 significantly outweighs the shear modulus 𝜇, namely, 𝜅/𝜇 → ∞, a material
can be considered incompressible. As a result, for compressible materials, their Poisson’s ratio 𝜈 is
typically less than 0.5. Research has highlighted the considerable sensitivity of the Poynting effect
to the specific value of Poisson’s ratio 𝜈. In one study [23], it is demonstrated that by making minor
adjustments to the third decimal place of 𝜈 within the range of [0.495, 0.5], the sign of the Poynting
effect can be altered, as depicted in Figure (2.4a). Therefore, the choice of 𝜈 should be made with
precision. The study challenges the common statement that ”slight compressibility does not warrant
special attention for plane stress,” which is sometimes provided by commercial software like Abaqus.
Based on these findings, D. Wang and M.S. Wu propose a generalized simple shear displacement
formulation, introducing linear and nonlinear deformations, which leads to a curved lateral profile of the
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deformed block and the emergence of second-order in-plane shear 𝑇𝑥𝑦 [36]. Their research indicates
that the closer 𝜈 is to 0.5 and the larger the shear modulus 𝜇, the more likely it is for the Poynting effect
to be positive. Additionally, it is worth noting that different assumptions about boundary conditions can
yield distinct normal stress outcomes, as illustrated in Figure (2.4b).

2.4.3. Rubber and isotropic networks
The model extensively explored in Chapters 3 and 4 is commonly referred to as a ”micromechanical
model.” In this subsection, we will introduce micromechanical models and provide an overview of their
key characteristics.

To grasp the typical derivation of a micromechanical model, it is essential to consider its theoretical
foundation - network theory. Rubbers and elastomers fall into the category of polymeric networks,
which are materials composed of numerous smaller components. These smaller components are junc-
tions or strands, indicating that monomers are linked either directly or indirectly. This concept allows
us to break down these materials into small crosslinked filaments.

Due to this discretization, models based on network theory are often referred to as micromechani-
cal models. These models aim to construct a strain energy function by starting with a description of the
forces between individual polymer chains and then averaging these interactions over the entire network
volume. The force-deformation relationship of a single monomer is usually determined experimentally
or theoretically. For instance, Equation (2.17) describes the strain energy of a single semiflexible fil-
ament. In this equation, symbols like 𝑘𝐵 and 𝑇 represent the Boltzmann constant and temperature,
respectively, while 𝑥 and 𝑐 refer to the end-to-end factor, which signifies the ratio of the distance be-
tween two ends of the polymer chain 𝜉𝑐 to the total length of the chain 𝐿𝐶, and the dimensionless
stiffness parameter, which reflects the competition between bending and thermal energy. However,
effectively describing the motion of these polymer networks remains a challenge.

(a) (b)

Figure 2.5: Illustrations of (a) affine network, (b) phantom network [51]. The deformation of the affine network is defined based
on the displacement of two ends. The deformation of the phantom network takes the entropy into account and is defined based
on the displacement of the junctions. 𝑅 denotes the displacement between 2 junctions, while Δ𝑅 denotes the fluctuation of the
displacement.

Two key assumptions underlie the construction of these networks: the affine network and the phantom
network. The affine network, depicted in Figure (2.5a), posits that junction points deform uniformly
with macroscopic deformation, meaning that the deformation is based on the positions of the two ends
of the monomers. Due to this assumption, this model is primarily suitable for small deformations. In
contrast, the phantom network suggests that chains can move freely through one another because the
network’s motion is determined by the displacements of the junctions, as seen in Figure (2.5b). These
different assumptions result in the phantom network being consistently softer than the affine network.
One specific type of network that interests researchers is the semiflexible filament network, which is
prevalent in biopolymers.

First, the definition of ”affinity” should be stated. Affinity refers to the condition wherein, within a specified
volume, the average displacements of crosslinks in a network are perfectly aligned with the deformation
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gradient. In simpler terms, it implies that on average, every part of the material undergoes the same de-
formation. However, individual crosslinks within the material may still deviate or exhibit variations from
this average behavior, and these deviations are referred to as fluctuations, leading to what is termed
as ”non-affinity.” In cases where these fluctuations are entirely absent, the deformation is referred to as
affine. It is crucial to understand that a continuum model, which encompasses all hyperelastic strain
energy functions, can only describe affine deformations; it lacks the capability to predict or account for
the magnitude or extent of non-affine fluctuations.

For an affine network composed of polymeric materials, a positive normal stress will only occur when
stress softening also takes place. Stress softening means that the material becomes weaker or less
resistant to deformation. However, it is important to note that stress softening alone does not guaran-
tee a positive normal stress. Both stress hardening and stress softening can induce negative normal
stress under certain conditions.

In the case of a non-affine system, which can be achieved by applying a random, two-dimensional
arrangement of polymer network (referred to as a Mikado network), research findings indicate that
it can never yield the same results as an affine system, even when the non-affine system is made in-
finitely stiff [27]. This emphasizes the fundamental differences and limitations associated with modeling
non-affine deformations in contrast to the more straightforward descriptions provided by affine models.

𝑤chain = 𝑘𝐵𝑇𝜋2𝑐(1 − 𝑥2) +
𝑘𝐵𝑇

𝜋𝑐(1 − 𝑥2) , 𝑥 = 𝜉𝑐/𝐿𝑐 (2.17)

Given that microstructures in these materials are crosslinked to form complicated networks, several
assumptions have been put made to describe this crosslinking process, as illustrated in Figure (2.6).
These assumptions include the 1-chain model, which employs spherical coordinates and positions one
side of the chain at the center. Moreover, a variety of constitutive models build upon the 3-chain and 8-
chain models. Table (2.4) provides an overview of micromechanical models developed over the years,
where the symbol 𝑛 represents the density of filaments.

One of the early 8-chain models was proposed by Arruda and Boyce, initially as an incompressible
model designed for elastomers. Later, they extended this model to handle compressible materials by
introducing the volumetric term 𝐽. In 2001, they once again expanded the incompressible model to
accommodate compressible materials by incorporating various volumetric terms.

Figure 2.6: The deformation with respect to (left) 1-chain, (middle) 3-chain, and (right) 8-chain models [26]. 𝜉𝑐 denotes the
end-to-end length of the filament.

F. Meng et al. have proposed a continuum theory for equilibrium elasticity for a semiflexible filament
network. Each individual filament within the network can be characterized by its persistent length (𝑙𝑝),
contour length (𝐿𝑐), and the dimensionless stiffness parameter (𝑐 = 𝑙𝑝/(2𝐿𝑐)). When 𝑐 is much larger
than the critical stiffness parameter (𝑐∗), the filament behaves similarly to a stiff rod, while it becomes
highly flexible when 𝑐 is much smaller than 𝑐∗. The assumption in this model is that the network of
filaments is affine, meaning that the deformation aligns with the mesh cell.

To explore the Poynting effect under these conditions, the study investigates the normal strain in a
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Table 2.4: Micromechanics-based strain-energy functions.

Blundell-Terentjev (2009) [26] 1-chain 𝑘𝐵𝑇𝜋2𝑐(1 − 𝑥2) +
𝑘𝐵𝑇

𝜋𝑐(1−𝑥2) , 𝑥 = 𝜉𝑐/𝐿𝑐
Xu–Safran (2015) [58] 3-chain 1

3𝑛Σ
3
𝑖=1𝑤chain(𝜆𝑖) +

1
2 �̃�(𝜆1 + 𝜆2 + 𝜆3 − 3)

2

Meng-Terentjev (2016) [26] 3-chain 𝜇
3 (

𝜋2𝑐
2 (3 − 𝑥20𝐼1) +

2(3−2𝐼1𝑥20+𝐼2𝑥40)
𝜋𝑐(1−𝐼1𝑥20+𝐼2𝑥40−𝐽2𝑥60)

)

Arruda-Boyce (1993) [60] 8-chain 𝜇√𝑛 (𝛽chain√
𝐼1
3 + √𝑛ln (

𝛽chain
sinh𝛽chain

)),

𝛽chain = 𝐿−1 (√
𝐼1
3𝑛) , 𝐿(𝛽) = coth(𝛽) − 1

𝛽

Arruda-Boyce (2001) [60] 8-chain 𝜇√𝑛 (𝛽chain√
𝐼1
3 + √𝑛ln (

𝛽chain
sinh𝛽chain

)) + 𝜅
2 (𝐽 − 1)

2,

𝛽chain = 𝐿−1 (√
𝐼1
3𝑛) , 𝐿(𝛽) = coth(𝛽) − 1

𝛽

Arruda-Boyce (2001) [60] 8-chain
𝜇√𝑛 [𝛽chain√

𝐼1
3 + √𝑛ln (

𝛽chain
sinh(𝛽chain)

) 𝛽03 𝑙𝑛(
1
𝐽 )] +

𝜅
𝛼2 (cosh[𝛼(𝐽 − 1)] − 1), 𝛽chain = 𝐿−1 (√

1
𝑛)

cylinder-shaped sample subjected to oscillating shear deformation. Although the study does not cal-
culate the normal stress, it does examine the conditions necessary for the negative Poynting effect to
occur. The tension is defined using 𝑥 = 𝜉𝑐/𝐿𝑐, where 𝜉𝑐 represents the end-to-end length of the fila-
ment. When 𝑐 < 𝑐∗, the flexible network is mainly influenced by entropic energy, resulting in a positive
Poynting effect except under high tension. On the other hand, when the mesh size is comparable to
the contour length, the energy required for contraction outweighs that needed for expansion, leading
to a negative Poynting effect.

This thesis will use the micromechanical model to analyze the Poynting effect because of the following
advantages. First, it is based on a quantitative description of the behavior of individual polymer chains,
thereby establishing a link between microscopic characteristics and macroscopic response. Second,
With suitable selections of parameters ”c” and ”x,” it can depict both flexible polymeric systems, such as
elastomers, and stiff polymers, such as biopolymer networks. Lastly, it has been validated against ex-
perimental data, reproducing the shear stress-shear strain behavior observed in experimental systems.
These three points make it a strong candidate for quantitative modeling of the Poynting effect.

(a) (b)

Figure 2.7: (a) The force-extension curve of a rhombus isotropic filament network. (b) Illustration of the deformed network.[39]

Moreover, as previously mentioned, the asymmetric force-deformation curve also plays a crucial role in
influencing the Poynting effect, as shown in Figure (2.7a). Research has indicated that compressible,
isotropic, and homogeneous semiflexible networks exhibit a sharp slope upon extension and a relatively
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flat slope upon compression. When a material is subjected to shearing forces under constant gap
boundary conditions, as shown in Figure(2.7b), the elongation of certain filaments within the material
induces greater compressive forces than the tensile forces generated by contracting filaments, leading
to the emergence of a negative Poynting effect.



3
Meng’s model

3.1. A revisit to Meng’s model
Meng’s model is a classic example of a micromechanical model grounded in network theory. This
theory posits that macroscopic networks are constructed from linked filaments. The force-extension
relationship for a single filament is relatively straightforward to derive and depends on two key factors:
the stiffness of the filament denoted as 𝑐 and its end-to-end ratio represented by 𝑥. The dimensionless
stiffness parameter 𝑐 quantifies the balance between bending and thermal energy and is expressed
as the ratio of the persistent length of the filament, 𝑙𝑝, to twice its contour length, 2𝐿𝑐. The end-to-
end ratio 𝑥 is defined as the ratio of the end-to-end length, 𝜂, to the contour length of the filament, 𝐿𝑐.
Filaments are categorized as semiflexible when their persistent length 𝑙𝑝 is on a similar scale to their
contour length 𝐿𝑐. The force-extension relationship for a single filament under these conditions can be
described as follows:

𝐹 = 𝑘𝐵𝑇𝜋2𝑐(1 − 𝑥2) +
𝑘𝐵𝑇

𝜋𝑐(1 − 𝑥2) . (3.1)

The next step in the modeling process involves using this relationship to derive the free energy density.
This is achieved through the following steps: First, a single-chain model is developed to account for
the effects of filament orientation. Denoting the orientation as (𝜃, 𝜙), the single-chain model calculates
the average orientation of a deformed filament, leading to the formulation shown in Equation (3.2).

𝐹1c = 𝑛∫
𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙

4𝜋 𝐹(𝜆𝜂), (3.2)

where 𝑛 denotes the density of the filaments and 𝜆 denotes the expression√𝑠𝑖𝑛2𝜃(𝑐𝑜𝑠2𝜙𝜆21 + 𝑠𝑖𝑛2𝜙𝜆22) + 𝑐𝑜𝑠2𝜃.
Nevertheless, the single-chain model is not well-suited for modeling filament networks. Instead, re-
searchers have introduced two alternative models: the eight-chain model and the three-chain model.
The eight-chain model, developed by Palmer and Boyce [67], assumes that the deformation of each
filament is identical. This assumption allows the strain energy density of the eight-chain model, denoted
as 𝐹8𝑐 in Equation (3.3), to be expressed as a function dependent solely on the invariant 𝐼1.

𝐹8𝑐 = 𝑛𝐹 (√
𝐼1
3 𝜂) (3.3)

However, it is worth noting that the eight-chain model has limitations when it comes to analyzing the
Poynting effect. Since it depends only on the invariant 𝐼1, it cannot generate normal stress upon shear-
ing, as argued in [26]. Therefore, an alternative three-chain model, known as Meng’s model, has been
developed.

Meng’s model assumes that the lattice points represent the crosslinking sites and the filaments are

21
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aligned with the principle directions of the deformation tensor. With these assumptions, the deforma-
tion of each filament 𝑖 is expressed as 𝜆𝑖𝜂 and the strain energy density is expressed as a summation
of the force-extension relation in each direction.

𝐹3𝑐 =
𝑛
3 ∑
𝑖=3
𝐹(𝜆𝑖𝜂) (3.4)

Substituting equation 3.1 into 3.4, the model is then expressed explicitly as Equation (3.5)

𝐹3𝑐 =
𝑛
3 ∑
𝑖=3
𝑘𝐵𝑇𝜋2𝑐(1 − 𝜆2𝑖 𝑥2) +

𝑘𝐵𝑇
𝜋𝑐(1 − 𝜆2𝑖 𝑥2) (3.5)

The strain energy function is expressed in strain components. As mentioned in the previous chapter,
the strain invariants formulation may lead to a simpler form. Moreover, the invariants-based function is
independent of the axis of geometry, which makes it suitable for analyzing the deformation. The first
part of the function in the bracket of equation (3.4) can be rewritten as

∑
𝑖=3
𝑘𝐵𝑇𝜋2𝑐(1 − 𝜆2𝑖 𝑥2)

=𝑘𝐵𝑇𝜋2𝑐(3 − (𝜆21 + 𝜆22 + 𝜆23)𝑥2)
=𝑘𝐵𝑇𝜋2𝑐(3 − 𝐼1𝑥2).

(3.6)

The second part of the function is formulated into:

∑
𝑖=3

𝑘𝐵𝑇
𝜋𝑐(1 − 𝜆2𝑖 𝑥2)

=𝑘𝐵𝑇𝜋𝑐 (
1

1 − 𝜆21𝑥2
+ 1
1 − 𝜆22𝑥2

+ 1
1 − 𝜆23𝑥2

)

=𝑘𝐵𝑇𝜋𝑐 (
3 − 2𝐼1𝑥2 + 𝐼2𝑥4

1 − 𝐼1𝑥2 + 𝐼2𝑥4 − 𝐽2𝑥6
) .

(3.7)

After replacing 𝑛𝑘𝐵𝑇 as 𝜇 and substituting equation 3.6 and 3.7 into 3.5, the strain-invariant based
3-chain model is then derived.

𝐹3𝑐 =
𝜇
3 (𝜋

2𝑐(3 − 𝐼1𝑥2) +
1
𝜋𝑐 (

3 − 2𝐼1𝑥2 + 𝐼2𝑥4
1 − 𝐼1𝑥2 + 𝐼2𝑥4 − 𝐽2𝑥6

)) (3.8)

3.2. Poynting effect analysis with Meng’s model
When Meng’s model was initially introduced in [26], researchers also explored its implications on the
Poynting effect. The analysis process for this effect was later detailed in [29]. To begin, the research
formulated the simple shear strain tensor as an incompressible tensor, as illustrated in equation (3.9).
In this formulation, the shear strain is not solely reliant on 𝛾 (the applied shear strain); instead, it also
relies on the deformation along the transverse direction of the shearing plane. Therefore, if 𝜆3 exceeds
1, it indicates a positive Poynting effect within the system. Conversely, if 𝜆3 is less than 1, it implies a
negative Poynting effect.

F = [
1/√𝜆3 0 0
0 1/√𝜆3 𝛾/√𝜆3
0 0 𝜆3

] (3.9)

The sign of the Poynting effect is determined by the following process. First, the total free energy of
the system is calculated by integrating the energy density over the radius 𝑅 from 0 to 𝑅0. Next, the
derivative of the total free energy with respect to 𝜆3 is taken, allowing for the identification of extrema
and their corresponding 𝜆3 values. The free energy is assumed to be a convex function, and therefore
𝜆3,𝑚𝑖𝑛 corresponds to the point of minimum free energy, which can be interpreted as the equilibrium
state for the system at a given stiffness 𝑐, end-to-end ratio 𝑥, and 𝛾. The results are depicted in Figure
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(3.1).

It is worth noting that there is a region where the filament network is characterized as unstable. The
network is stable if the marginal rigidity condition 𝐺0 ≥ 0. 𝐺0 represents the linear shear modulus,
which can be observed in the linear regime 𝜎 = 𝐺0𝛾 of the stress-strain diagram. The stable criterion
is expressed as Equation 3.10, which will be proven in the next section when the stress-strain relation
is derived.

𝑐 ≤ 1
𝜋3/2

√1 + 𝑥2
(1 − 𝑥2)3/2 .

(3.10)

However, when attempting to repeat the same results, it became evident that the assumption equating
local extrema with local minima is not universally valid for all combinations of (𝑐, 𝑥). With the given
deformation tensor (3.9), the corresponding expressions for the invariants are as follows: 𝐼1 = 𝜆23 +
(2 + 𝛾2)/𝜆3, 𝐼2 = 2𝜆3 + (1 + 𝛾2)/𝜆23, and 𝐽 = 1. Upon substituting these values into equation (3.8),
we arrive at the strain energy density for this tensor. The three-chain model can be reformulated as
follows:

𝐹3𝑐 =
𝜇
3 (𝜋

2𝑐(3 − (𝜆23 +
2 + 𝛾2
𝜆3

)𝑥2) + 1
𝜋𝑐 (

3 − 2(𝜆23 +
2+𝛾2
𝜆3
)𝑥2 + (2𝜆3 +

1+𝛾2
𝜆23
)𝑥4

1 − (𝜆23 +
2+𝛾2
𝜆3
)𝑥2 + (2𝜆3 +

1+𝛾2
𝜆23
)𝑥4 − 𝑥6

)) (3.11)

Furthermore, we assume that the shear strain 𝛾 varies linearly with respect to the radius 𝑟. Therefore,
with 𝛾0 representing the shear strain at the outermost surface 𝑅0, the shear strain 𝛾(𝑟) can be expressed
as 𝛾(𝑟) = 𝛾0𝑟/𝑅0. We can then proceed to integrate the energy density with respect to the radius. To
simplify the function, we express the total free energy with respect to 𝛾0 using the following relation:

∫
𝑅0

0
𝑑𝑟𝐹3𝑐(𝜆, 𝑟) = ∫

𝛾0

0

𝑅0
𝛾0
𝑑𝛾𝐹3𝑐(𝜆, 𝛾). (3.12)

After the integration, the total free energy 𝐸 is expressed as equation (3.13).

𝐸 = 𝑅0𝜇
3𝛾0

(𝑒1 + 𝑒2) ,

𝑒1 = 𝜋2𝑐 (3 − 𝑥2𝜆23 −
2𝑥2
𝜆3
) 𝛾0 −

𝜋2𝑐𝑥2𝛾30
3𝜆3

,

𝑒2 =
𝛾0
𝜋𝑐 +

𝑥2𝛾0
𝜋𝑐𝜆3𝐵

+ (
𝑥6 + 2 − 𝑥2𝜆23 −

2𝑥2
𝜆

𝜋𝑐√𝐴𝐵
− 𝑥2
𝜋𝑐𝜆3

√ 𝐴
𝐵3) × {

𝑎𝑟𝑐𝑡𝑎𝑛ℎ(√𝐵
𝐴𝛾0), if |√𝐵

𝐴𝛾0| < 1

𝑎𝑟𝑐𝑐𝑜𝑡ℎ(√𝐵
𝐴𝛾0), if |√𝐵

𝐴𝛾0| > 1
,

𝐴 = 1 − 𝜆23𝑥2 −
2𝑥2
𝜆3

+ 2𝜆3𝑥4 +
𝑥4
𝜆23
− 𝑥6, 𝐵 = 𝑥2

𝜆 − 𝑥
4

𝜆2 .
(3.13)

We observe that the choice of parameters can lead to changes in the constitutive equation, and as
a result, the total energy may not always behave as a convex function with respect to 𝜆3. In certain
cases, the curve becomes concave, and the point where the first derivative of the function equals zero
corresponds to the maximum total free energy. This behavior is illustrated in Figure (3.7), where five
different parameter combinations are selected. When (𝑐, 𝑥) is set to (0.1, 0.1) and (0.1, 0.5), the func-
tion is convex, and the assumption holds. However, for the datasets (0.1, 0.8), (0.5, 0.8), and (0.8, 0.8),
the curves are concave. This phenomenon is related to the conditional equation √𝐵

𝐴𝛾0, which depends
only on the end-to-end ratio 𝑥. To estimate the value of 𝑥 that leads to the violation of the assumption,
assuming 𝜆 = 1 and using the condition |√𝐵

𝐴𝛾0| > 1, we find that when 𝑥 > 0.78, the local maxima of
the system become the maximum rather than the minimum. This implies that the region of the positive
Poynting effect falls within the bounds of the assumption. However, for certain cases of the negative
Poynting effect, it violates the assumption.
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The results are not entirely satisfactory, and we aim to implement an alternative method for calculating
the Poynting effect that can be applied to a broader range of datasets.

Figure 3.1: Poynting effect is analyzed in [26, 27] using the principle of minimum energy. The red part, blue part, and orange
part correspond to the positive Poynting effect, the negative Poynting effect, and unstable network, respectively.

Figure 3.2: Attempt to regenerate the same results shows that the principle of minimum energy fails because, for some material
parameters, where the slope equals zero corresponds to the largest total energy.

3.3. Alternative method: Stress-strain relation
With the energy density function, the stress-strain relation of the model can be derived. With the stress-
strain relation, we could directly compute the resulting normal stress upon shearing, therefore determin-
ing the Poynting effect. First, an important assumption is that the undeformed materials are assumed to
be isotropic to simplify the formulation. To ensure the assumption holds, it would be better to construct
the left Cauchy-Green deformation tensor B by the relation B = F ⋅ F𝑇 since the formulation will be
automatically isotropic. Also, it is worth noting that within this research, we focus on the Cauchy stress
tensor �.

Two methods are available for deriving the stress-strain relation, and they both yield the same result.
The first method directly utilizes the deformation gradient F.

𝜎𝑖𝑗 =
1
𝐽 𝐹𝑖𝑘

𝜕𝑊
𝜕𝐹𝑘𝑗

(3.14)

This approach is particularly useful when dealing with simple strain-based models. However, many
models are invariant-based, and it would be convenient to directly apply the model to the stress-strain
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relation without the need to derive the relation each time a new function is applied. The advantage of
using an invariant-based formulation will become evident when applying the volumetric strain energy
function to Meng’s model.

Starting from equation (3.14), we can establish the equivalence of 𝜕𝑊/𝜕𝐹𝑖𝑗 by utilizing the invariants
𝐼1, 𝐼2, and 𝐽.

𝜕𝑊
𝜕𝐹𝑖𝑗

= 𝜕𝑊
𝜕𝐼1

𝜕𝐼1
𝜕𝐹𝑖𝑗

+ 𝜕𝑊𝜕𝐼2
𝜕𝐼2
𝜕𝐹𝑖𝑗

+ 𝜕𝑊𝜕𝐽
𝜕𝐽
𝜕𝐹𝑖𝑗

(3.15)

The expression of 𝜕𝑊/𝜕𝐼1, 𝜕𝑊/𝜕𝐼2, and 𝜕𝑊/𝜕𝐽 can be easily derived with the given function.

𝜕𝐼1
𝜕𝐹𝑖𝑗

= 𝜕 tr(B)
𝜕𝐹𝑖𝑗

= 2𝐹𝑖𝑗
𝜕 tr(F)
𝜕𝐹𝑖𝑗

= 2𝐹𝑖𝑗 . (3.16)

𝜕𝐼2
𝜕𝐹𝑖𝑗

= 𝜕 0.5(𝐼21 − B ⋅ ⋅B)
𝜕𝐹𝑖𝑗

= 1
22𝐼1

𝜕𝐼1
𝜕𝐹𝑖𝑗

+ 124𝐵𝑖𝑘𝐹𝑘𝑗

= 2𝐼1𝐹𝑖𝑗 + 2𝐵𝑖𝑘𝐹𝑘𝑗 .
(3.17)

𝜕𝐽
𝜕𝐹𝑖𝑗

= 𝜕det(F)
𝜕𝐹𝑖𝑗

= adj(F)𝑇 = (det(F)F−1)𝑇 = 𝐽𝐹−1𝑗𝑖 . (3.18)

Substituting equation (3.16), (3.17), and (3.18) into equation (3.14), we obtain the following relation.

𝜎𝑖𝑗 =
2
𝐽 [(

𝜕𝑊
𝜕𝐼1

+ 𝐼1
𝜕𝑊
𝜕𝐼2

)𝐵𝑖𝑗 −
𝜕𝑊
𝜕𝐼2

𝐵𝑖𝑘𝐵𝑘𝑗] +
𝜕𝑊
𝜕𝐽 𝛿𝑖𝑗 (3.19)

Alternatively, the relation can also be derived based on different sets of invariants ̃𝐼1, ̃𝐼2, and 𝐽.

𝜎𝑖𝑗 =
2
𝐽 [

1
𝐽2/3 (

𝜕�̃�
𝜕 ̃𝐼1

+ ̃𝐼1
𝜕�̃�
𝜕 ̃𝐼2

)𝐵𝑖𝑗 − ( ̃𝐼1
𝜕�̃�
𝜕 ̃𝐼1

+ 2 ̃𝐼2
𝜕�̃�
𝜕 ̃𝐼2

)
𝛿𝑖𝑗
3 − 1

𝐽4/3
𝜕�̃�
𝜕 ̃𝐼2

𝐵𝑖𝑘𝐵𝑘𝑗] +
𝜕�̃�
𝜕𝐽 𝛿𝑖𝑗 (3.20)

An important premise of the relations above requires that the materials show some extent of compress-
ibility, thus requiring a compressible strain tensor with 𝐽 ≠ 1. The reason behind this phenomenon
results from the fact that for perfectly incompressible materials, their shape will not be changed by
applying any external pressure., which leads to a situation where the stress-strain relation is only able
to show the deviatoric stress ̃𝜎𝑖𝑗 = 𝜎𝑖𝑗 − 𝜎𝑘𝑘𝛿𝑖𝑗/3 = 𝜎𝑖𝑗 + 𝑝𝛿𝑖𝑗. 𝑝 represents the hydrostatic pressure
applied to the materials. The stress-strain relation becomes a two-invariant model and it is expressed
as Equation (3.21).

𝜎𝑖𝑗 = 2 [(
𝜕𝑊
𝜕𝐼1

+ 𝐼1
𝜕𝑊
𝜕𝐼2

)𝐵𝑖𝑗 − (𝐼1
𝜕𝑊
𝜕𝐼1

+ 2𝐼2
𝜕𝑊
𝜕𝐼2

)
𝛿𝑖𝑗
3 − 𝜕𝑊𝜕𝐼2

𝐵𝑖𝑘𝐵𝑘𝑗] + 𝑝𝛿𝑖𝑗 (3.21)

Figure 3.3: An illustration of the simple shear of a compressible cube. The compressibility is achieved by assigning a strain
tensor with a determinant not equal to one.

The strain tensor used in [26] is designed for incompressible materials, which means that when ap-
plying it to the stress-strain relation, we need to apply Equation (3.21). However, since most of the
biomaterials show some extent of compressibility, we want to use an alternative method to study the
Poynting effect. The new strain gradient includes the compressibility is illustrated by Figure(3.3) and
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is shown in equation (3.22). For the upcoming sections, instead of using the cylinder geometry as in
Meng’s paper, we will apply simple shear to a cube. In this alternative strain tensor, the shear strain is
solely determined by 𝛾, and only the principal strain in the transverse direction, 𝜆2, does not equal one.
The volume change is also solely dependent on 𝜆2.

[
1 𝛾 0
0 𝜆2 0
0 0 1

] (3.22)

(a) (b)

Figure 3.4: Poynting effect under (a) the constant normal stress boundary conditions, where the dark blue region corresponds
to negative Poynting effect; (b) the constant normal gap boundary conditions, which also results in negative Poynting effect for
all stable networks. The unstable region is left blank.

(a) (b)

Figure 3.5: (a) Adimensional stress response curves under constant height boundary conditions; (b) Strain response curves
under constant normal stress boundary conditions.

The analysis of the Poynting effect involves applying shear strain 𝛾 within the range of 0 to 0.0005. In
this research, we specifically focus on infinitesimal strain and its corresponding stress response. Addi-
tionally, the sign of the Poynting effect is determined based on the thrust rather than the Cauchy stress.
The relationship between the thrust in the transverse direction, denoted as 𝑇, and the corresponding
Cauchy stress 𝜎𝑦𝑦 is given by 𝑇 = −𝜎𝑦𝑦. If the thrust is positive, then the sign of the Poynting effect is
also positive, and vice versa.

Using the stress-strain relation provides the advantage of applying different boundary conditions to
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study the model with ease. As mentioned earlier, the Poynting effect can be observed under two typi-
cal boundary conditions. One involves keeping the gap of thematerial constant, while the other involves
keeping the normal stress applied to the material constant, allowing its gap to change. Figures (3.10a)
and (3.10b) illustrate that the results obtained differ significantly from those obtained by Meng. Under
both boundary conditions, the model exhibits a negative Poynting effect.

(a) (b)

(c) (d)

(e)

Figure 3.6: The sign of Poynting effect with the addition of volumetric energy density functions.

Moreover, we could also investigate the magnitude of the resulting stress or strain response. We
choose 5 datasets to represent the results. From the figure(3.10a) and (3.10b), it could be noticed that
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the dataset corresponds to the largest magnitude of the stress response, which is (c=0.1, x=0.8), is
not the same with the one shows the largest strain response. This observation provides evidence that
boundary conditions can indeed influence the behavior of the Poynting effect.

3.4. Addition of volumetric energy function
In this chapter, we explore the effects of adding an extra volumetric term to Meng’s model in order to
model an almost incompressible material. The need for this addition arises from the fact that Meng’s
model, in its original form, lacks dependence on the bulk modulus 𝜅, making it unsuitable for studying
the behavior of almost incompressible materials where the ratio 𝜇/𝜅 >> 1 is significant.

One advantage of using invariant-based models is their flexibility in transforming into a form with sep-
arate deviatoric and volumetric components. The addition of the volumetric term follows a specific
procedure. Initially, Meng’s model, which is originally a function of invariants 𝐼1, 𝐼2, and 𝐼3, is trans-
formed into a form �̃�( ̃𝐼1, ̃𝐼2, 𝐽 = 1) + 𝐹(𝐽), where �̃� represents the isochoric part and 𝐹(𝐽) represents
the volumetric part. Then, we introduce the bulk modulus 𝜅 to the model, setting its magnitude to be a
hundred times larger than that of the shear modulus 𝜇. Consequently, the bulk modulus 𝜅 is associated
with the volumetric part, while the shear modulus 𝜇 is associated with the isochoric part.

Table 3.1: Volumetric part of strain-energy functions𝑊𝑣𝑜𝑙.

𝐹1 𝜅
2 (𝐽 − 1)

2

𝐹2 𝜅
4 (𝐽

2 − 1 − 2ln𝐽)
𝐹3 𝜅 ((𝐽1)2 − ln𝐽2)
𝐹4 𝜅

2 (1 − 𝐽
∗)(𝐽 − 2 + 𝐽∗ + (1−𝐽∗)2

𝐽−𝐽∗ )
𝐹5 𝜅

2 ln𝐽
2

The selected volumetric strain energy functions are presented in table (3.1). The outcomes are depicted
in figure (3.6). The range of shear strain 𝛾 applied to the models remains the same as before. The first
energy function, 𝐹1, is chosen because it is a commonly used formulation in previous research, such
as [33]. The second function, 𝐹2, is a relatively new function proposed by Anssari-Benam and Horgan
in 2022 [55]. This function is characterized by two factors: it approaches infinity when the volume ratio
approaches either infinity or zero, and it is widely used in finite element analysis. The fifth function, 𝐹5,
was first proposed by Valanis-Landel in 1967 and is known for its simplicity. It is a phenomenological
function inspired by natural rubbers. The third function, 𝐹3, is a general form that combines aspects of
functions 𝐹1 and 𝐹5, overcoming instability issues encountered with 𝐹1 and 𝐹5. Finally, the function 𝐹4,
introduced by A. E. Ehret in 2017, is designed to describe the mechanisms of poroelastic soft matter.
𝐽∗ represents the limit of volume reduction due to growing resistance to compression.

The analysis of the Poynting effect is conducted solely under constant normal stress boundary condi-
tions. The case where the gap is held constant is not separately investigated for each model because,
in this case, the determinant of the strain tensor becomes 𝐽 = 1, rendering the volumetric strain energy
function irrelevant. From the results shown above, it is evident that introducing the volumetric part to
Meng’s model alters the Poynting effect. For example, the most noticeable change is the appearance
of a light yellow region, corresponding to a positive Poynting effect.

More specifically, models 1, 2, 4, and 5 exhibit similar stress responses, indicating that these models
express comparable stress responses under small shear strain. This similarity is further demonstrated
in the next subsection. It is also worth noting that the sign of the Poynting effect is very much in line with
the one obtained from Meng’s original analysis. The difference is that, by employing the stress-strain
relation, the result is more straightforward and convincing.

These results also suggest that the semiflexible filament network, which represents many biomate-
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rials, can be effectively modeled using compressible or almost incompressible assumptions. However,
it would be advantageous to have a method for predicting the sign of the Poynting effect without di-
rectly applying shear strain and investigating the resulting response. Therefore, a useful method will
be developed in the following subsections.

Figure 3.7: The sign of Poynting effect under constant height B.C. with volumetric function 𝐹1 shows identical distribution as
Figure(3.6.a).

3.5. Taylor’s expansion
Based on the previous study, we can assume that the stress or strain response is monotonic for small
but finite shear strains, which is also the range of shear strains that we are interested in. Therefore, it
is reasonable to apply a Taylor expansion to simplify the stress-strain relation for further analysis. The
original stress-strain relation using strain tensor (3.22) is expressed in equation (3.23). This equation
is relatively complex, as it involves both 𝛾 and 𝜆2 in both the denominator and numerator.

−𝜎𝑦𝑦 = 2𝑥𝜇
1 − 2𝑥2(𝛾2 + (−1 + 𝜆2)2) − 𝜆2 − 2𝑥6(−1 + 𝜆2)𝜆2(2 + 𝛾2 + 𝜆2 + 𝜆22) + 𝑥8𝜆2(−1 − 𝛾2 + 𝜆32)+

3𝑐𝜋(−1 + 𝑥2)2(1 + 𝑥4𝜆22 − 𝑥2(1 + 𝛾2 + 𝜆22))2

+ 𝑐
2𝜋3(−1 + 𝑥2)2(−1 + 𝜆2)(1 + 𝑥4𝜆22 − 𝑥2(1 + 𝛾2 + 𝜆22))2 + 𝑥4(1 + 𝛾4 − 6𝜆2 + 4𝜆22 + 𝜆42 + 𝛾2(2 − 𝜆2 + 2𝜆22))

3𝑐𝜋(−1 + 𝑥2)2(1 + 𝑥4𝜆22 − 𝑥2(1 + 𝛾2 + 𝜆22))2
(3.23)

Then, the Taylor expansion is applied to the model. It is expanded at the initial conditions, which we
assume an undeformed geometry to be 𝛾 = 0 and 𝜆2 = 1.

−𝜎𝑦𝑦 =
2𝑥2(1 − 𝑐2𝜋3 + 3𝑥2 + 3𝑐2𝜋3𝑥2 − 3𝑐2𝜋3𝑥4 + 𝑐2𝜋3𝑥6)𝜇

3𝑐𝜋(−1 + 𝑥2)3 (−1 + 𝜆2)

− 𝛾2 ( 2𝑥
4(2 + 𝑥2)𝜇

3𝑐𝜋(−1 + 𝑥2)4 −
2𝑥4(2 + 11𝑥2 + 3𝑥4)𝜇

3𝑐𝜋(−1 + 𝑥2)5 (−1 + 𝜆2))
(3.24)

After the expansion, the stress-strain relation can be categorized into three parts, dependent on (𝜆2−1),
𝛾2, and (𝜆2 − 1)𝛾2, respectively. Given our focus on relatively small scales, we argue that the third
term can be safely ignored. This is because, from the numerical study in the previous section, it was
found that the absolute value of (𝜆2 − 1) typically falls on the order of magnitude of 10−6, making the
third term too small to have a noticeable impact.

Moving on to models with volumetric parts, as the volumetric part is added to the model linearly, the
corresponding stress response of the volumetric function can also be seen as a linear addition. There-
fore, we apply Taylor expansion to the functions used in the previous subsection. It becomes evident
that for functions 𝐹1, 𝐹2, 𝐹3, and 𝐹5, the expressions after expansion are the same. This reaffirms the
results obtained in the previous subsection and confirms that these models exhibit the same behavior
at small strains.
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Table 3.2: Volumetric part of strain-energy functions and their Taylor expansion forms.

Original function Taylor expansion
𝐹1 𝜅

2 (𝐽 − 1)
2 𝜅(−1 + 𝜆2)

𝐹2 𝜅
4 (𝐽

2 − 1 − 2ln𝐽) 𝜅(−1 + 𝜆2)
𝐹3 𝜅 ((𝐽 − 1)2 − ln𝐽2) 0
𝐹4 𝜅

2 (1−𝐽
∗)(𝐽−2+𝐽∗+ (1−𝐽

∗)2
𝐽−𝐽∗ ) 𝜅(−1 + 𝜆2)

𝐹5 𝜅
2 ln𝐽

2 𝜅(−1 + 𝜆2)

Due to the same expression, we will select 𝐹1 as a representative to compute the Taylor expansion.
The original stress-strain relation is given by Equation (3.25).

−𝜎𝑦𝑦 = −(−1 + 𝜆2)𝜅 −
(4𝑥4𝜆4/32 (1 + 𝛾2 − 𝜆22)(4𝜆4/32 + 2𝑥6𝜆4/32 − 2𝑥2𝜆2/32 (2 + 𝛾2 + 𝜆22))𝜇)

(18𝑐𝜋(𝑥2 − 𝜆2/32 )2𝜆7/32 (𝜆2/32 + 𝑥4𝜆4/32 − 𝑥2(1 + 𝛾2 + 𝜆22))2)

− −𝑥
2𝜆2/32 (2 + 𝛾2 − 2𝜆22)(4𝜆8/32 + 8𝑥6𝜆8/32 − 4𝑥4𝜆4/32 (1 + 𝛾2 + 2𝜆22))𝜇
(18𝑐𝜋(𝑥2 − 𝜆2/32 )2𝜆7/32 (𝜆2/32 + 𝑥4𝜆4/32 − 𝑥2(1 + 𝛾2 + 𝜆22))2)

− −𝑥
2𝜆2/32 (2 + 𝛾2 − 2𝜆22)(−4𝑐2𝜋3(𝑥2 − 𝜆2/32 )2(𝜆2/32 + 𝑥4𝜆4/32 − 𝑥2(1 + 𝛾2 + 𝜆22))2)𝜇

(18𝑐𝜋(𝑥2 − 𝜆2/32 )2𝜆7/32 (𝜆2/32 + 𝑥4𝜆4/32 − 𝑥2(1 + 𝛾2 + 𝜆22))2)
(3.25)

The Taylor expansion is applied to the model as the process used above. This time, only two terms,
𝛾2 and 𝜆2, are shown.

−𝜎𝑦𝑦 = −(−1 + 𝜆2) (𝜅 −
8(𝑥2𝜇 − 𝑐2𝜋3𝑥2𝜇 + 𝑥4𝜇 + 3𝑐2𝜋3𝑥4𝜇 − 3𝑐2𝜋3𝑥6𝜇 + 𝑐2𝜋3𝑥8𝜇)

9𝑐𝜋(−1 + 𝑥2)3 )

− 𝛾2(2(−𝑥
2𝜇 + 𝑐2𝜋3𝑥2𝜇 + 2𝑥4𝜇 − 4𝑐2𝜋3𝑥4𝜇 + 2𝑥6𝜇 + 6𝑐2𝜋3𝑥6𝜇 − 4𝑐2𝜋3𝑥8𝜇 + 𝑐2𝜋3𝑥10𝜇)

9𝑐𝜋(−1 + 𝑥2)4 )
(3.26)

We could also apply it to the shear stress response. The original equation is given as (3.27).

𝜎𝑥𝑦 = −
((2𝑥2𝛾(−𝜆4/32 + 𝑥4𝜆22 + 𝑐2𝜋3(𝜆2/32 + 𝑥4𝜆4/32 − 𝑥2(1 + 𝛾2 + 𝜆22))2)𝜇)

(3𝑐𝜋𝜆2/32 (𝜆2/32 + 𝑥4𝜆4/32 − 𝑥2(1 + 𝛾2 + 𝜆22))2))
. (3.27)

The Taylor expansion form would be:

𝜎𝑥𝑦 = −𝛾
2𝑥2(−1 + 𝑥4 + 𝑐2𝜋3(1 − 2𝑥2 + 𝑥4)2)𝜇

3𝑐𝜋(1 − 2𝑥2 + 𝑥4)2

+ 𝛾(−1 + 𝜆2)
4𝑥2(−1 + 𝑐2𝜋3 + 2𝑥2 − 4𝑐2𝜋3𝑥2 + 2𝑥4 + 6𝑐2𝜋3𝑥4 − 4𝑐2𝜋3𝑥6 + 𝑐2𝜋3𝑥8)𝜇

9𝑐𝜋(−1 + 𝑥2)4

+ 𝛾3 (− 4𝑥4(1 + 𝑥2)𝜇
3𝑐𝜋(−1 + 𝑥2)5 +

8𝑥4(−2 + 3𝑥2 + 4𝑥4)(−1 + 𝜆2)𝜇
9𝑐𝜋(−1 + 𝑥2)6 ) .

(3.28)
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(a) (b)

Figure 3.8: Strain responses of Meng’s model with the volumetric part under constant normal stress B.C. is shown in (a). The
error plot (b) between the original form and the Taylor expansion form of the model shows a good approximation is reached, with
error typically ranging around 10−14.

(a) (b)

Figure 3.9: Stress responses of Meng’s model with the volumetric part under constant height B.C. is shown in (a). The error plot
(b) between the original form and the Taylor expansion form of the model shows a larger error because the response is solely
determined by 𝛾2 term. However, the error is still acceptable, which is around 10−6.

We selected five datasets to examine the similarity between the original model and the Taylor-expanded
one. The findings indicate that, under constant normal stress boundary conditions, the Taylor expan-
sion serves as a strong approximation to the original models. It effectively conveys the Poynting effect’s
sign for each dataset and closely matches the magnitude of the strain response in both cases, with er-
rors typically on the order of 10−14.

The stress response, while correctly reflecting the Poynting effect using the Taylor expansion, exhibits
a slightly larger magnitude difference compared to the constant normal stress boundary conditions,
although it remains within acceptable bounds, with errors around the order of 10−6. Overall, the Taylor
expansion proves to be a robust representation of the original model at small, yet non-negligible strains.

After applying the Taylor expansion, the expressions become simplified and offer enhanced potential
for further analysis. For a given dataset represented as (c, x) and material properties (𝜇, 𝜅), Equation
(3.26) becomes linearly dependent on 𝜆2 and quadratically dependent on 𝛾. This allows for the as-
signment of two parameters: the first parameter, 𝜆𝐿, is dependent on 𝜆2, while the second parameter,
known as the Poynting parameter or 𝜒, is dependent on 𝛾2, as defined in Equation (3.29).
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When applying a constant gap boundary condition, the stress response relies solely on 𝛾, and thus
the sign of the Poynting effect is determined by 𝜒. Notably, 𝜒 is doubled when subtracted from the
stress-strain relation, as there is an additional factor of 2 introduced during the derivation of 𝜒. This
accounts for why the Poynting parameter 𝜒 is doubled when subtracted from the second term of the
stress-strain relation.

On the other hand, with a constant normal stress boundary condition, the Poynting effect is influenced
by both parameters, as elaborated in the next section. Equation (3.30) provides the explicit expres-
sions for 𝜒 and 𝜆𝐿, considering Meng’s model with an additional volumetric component. Furthermore,
in equation (3.29), we can examine the definition of the parameter related to the Taylor expansion of
the shear stress response (3.28). The coefficients for the 𝛾, 𝛾𝜆2, and 𝛾3 terms in equation (3.28) are
denoted as Λ0, Λ1, and Λ3.

𝜒 = −(
𝜕2𝜎𝑦𝑦
𝜕𝛾2 )

𝛾=0,𝜆2=1
, 𝜆𝐿 = −(

𝜕𝜎𝑦𝑦
𝜕𝜆2

)
𝛾=0,𝜆2=1

Λ0 = (
𝜕𝜎𝑥𝑦
𝜕𝛾 )

𝛾=0,𝜆2=1
, Λ1 = (

𝜕
𝜕𝜆2

(
𝜕𝜎𝑥𝑦
𝜕𝛾 ))

𝛾=0,𝜆2=1
, Λ3 =

1
6 (

𝜕3𝜎𝑥𝑦
𝜕𝛾3 )𝛾=0,𝜆2=1

.
(3.29)

𝜆𝐿 = −(𝜅 −
8(𝑥2𝜇 − 𝑐2𝜋3𝑥2𝜇 + 𝑥4𝜇 + 3𝑐2𝜋3𝑥4𝜇 − 3𝑐2𝜋3𝑥6𝜇 + 𝑐2𝜋3𝑥8𝜇)

9𝑐𝜋(−1 + 𝑥2)3 ) ,

𝜒 = −4−𝑥
2𝜇 + 𝑐2𝜋3𝑥2𝜇 + 2𝑥4𝜇 − 4𝑐2𝜋3𝑥4𝜇 + 2𝑥6𝜇 + 6𝑐2𝜋3𝑥6𝜇 − 4𝑐2𝜋3𝑥8𝜇 + 𝑐2𝜋3𝑥10𝜇

9𝑐𝜋(−1 + 𝑥2)4 .
(3.30)

3.6. Predict the sign - Maxwell’s relation
In this section, we will explore a method for predicting the direction of the Poynting effect without the
need for shear analysis or calculating the precise model response. This concept holds particular appeal
because, in such cases, the Poynting effect’s sign can be determined solely by the material parame-
ters. One key assumption underlying this approach is that the Poynting effect retains its sign for small,
yet finite strains.

To begin, we will introduce an arbitrary energy function denoted as 𝑊, making the derived general
relationships applicable to any hyperelastic system. Subsequently, we will apply these relationships
to Meng’s model to investigate how they predict the direction of the Poynting effect within this specific
model.

Our proposedmethod draws inspiration fromMaxwell’s relations, which are a set of equations grounded
in the principles of multivariable calculus and the invariance of second derivatives. The fundamental
symmetry of second derivatives dictates that for a function expressed as 𝑓(𝑥𝑖 , 𝑥𝑗), the order of dif-
ferentiation can be exchanged, provided that the function possesses differentiable partial derivatives.
Additionally, it is crucial that 𝑥𝑖 and 𝑥𝑗 remain independent for the relation to hold true.

( 𝜕
𝜕𝑥𝑗

( 𝜕𝑓𝜕𝑥𝑖
)
𝑥𝑗
)
𝑥𝑖

= ( 𝜕
𝜕𝑥𝑖

( 𝜕𝑓𝜕𝑥𝑗
)
𝑥𝑖
)
𝑥𝑗

. (3.31)

Building upon the previous subsections, we have established that the energy density function, denoted
as𝑊, depends solely on two variables: 𝛾 and 𝜆2, given the material parameters. These two variables,
𝛾 and 𝜆2, are assumed to be independent, thereby ensuring the validity of the symmetry of second
derivatives.

To derive Maxwell’s relations for the Poynting effect, instead of relying on a specific function, it proves
more effective to work with an arbitrary function that yields an expression applicable to all homogeneous
hyperelastic models in a general sense. Therefore, we designate a representative energy function as
𝑊(𝛾, 𝜆2).
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Based on this assumption, the differential change in 𝑊, 𝑑𝑊 can be expressed through the relation
described in equation (3.32). Here, 𝑆 represents the second Piola-Kirchhoff stress tensor, while 𝑑𝐸
represents an infinitesimal alteration in the Lagrange strain tensor. The Lagrange strain tensor is de-
fined as presented in equation (3.33), and the strain gradient remains consistent with the formulation
provided in equation (3.22).

𝑑𝑊 = Tr(S ⋅ 𝑑E). (3.32)

E = 1
2(F

𝑇F− I)

= 1
2 [
0 𝛾 0
𝛾 −1 + 𝛾2 + 𝜆22 0
0 0 0

] .
(3.33)

Then, the total derivative is applied to compute 𝑑E.

𝑑E = ( 𝜕E𝜕𝜆2
)
𝛾
𝑑𝜆2 + (

𝜕E
𝜕𝛾 )𝜆2

𝑑𝛾,

where ( 𝜕E𝜕𝜆2
)
𝛾
= [
0 0 0
0 𝜆2 0
0 0 0

] ,

(𝜕E𝜕𝛾 )𝜆2
= [

0 1/2 0
1/2 𝛾 0
0 0 0

]

(3.34)

The Cauchy stress tensor 𝝈 is assumed to be nonzero only on the diagonal elements and 𝜎𝑥𝑦, 𝜎𝑦𝑥.

𝝈 = [
𝜎𝑥𝑥 𝜎𝑥𝑦 0
𝜎𝑦𝑥 𝜎𝑦𝑦 0
0 0 𝜎𝑧𝑧

] . (3.35)

Equation (3.32) shows that a second Piola-Kirchoff stress tensor is required to compute 𝑑𝑊. However,
we do not directly assign an arbitrary S because it is more favorable for us to take a step further to
express the second Piola-Kirchoff stress tensor by the Cauchy stress tensor. If we further utilize the
fact that 𝜎𝑥𝑦 = 𝜎𝑦𝑥, then

S = 𝐽F−1𝝈F−𝑇

=
⎡
⎢
⎢
⎣

𝜆2𝜎𝑥𝑥 − 2𝛾𝜎𝑥𝑦 +
𝛾2
𝜆2
𝜎𝑦𝑦 𝜎𝑥𝑦 −

𝛾
𝜆2
𝜎𝑦𝑦 0

𝜎𝑥𝑦 −
𝛾
𝜆2
𝜎𝑦𝑦

1
𝜆2
𝜎𝑦𝑦 0

0 0 𝜆2𝜎𝑧𝑧

⎤
⎥
⎥
⎦
.

(3.36)

Finally, 𝑑𝑊 is obtained.
𝑑𝑊 = 𝜎𝑥𝑦𝑑𝛾 + 𝜎𝑦𝑦𝑑𝜆2. (3.37)

Then, we apply the symmetry of second derivatives on 𝑑𝑊. It shows that after the second derivative,
the expression is still dependent on the shear strain 𝛾. In order to cancel it,

( 𝜕𝜕𝛾 (
𝜕𝑊
𝜕𝜆2

)
𝛾
)
𝜆2

= ( 𝜕
𝜕𝜆2

(𝜕𝑊𝜕𝛾 )𝜆2
)
𝛾
,

⇒ (
𝜕𝜎𝑦𝑦
𝜕𝛾 )

𝜆2
= (

𝜕𝜎𝑥𝑦
𝜕𝜆2

)
𝛾
.

(3.38)

The expression already showed a good preliminary result. However, it does not fulfill our goal to predict
the Poynting effect by the material parameters, as we defined in equation (3.29).

All these parameters can only be determined under the initial conditions. If we apply the initial condi-
tions, both sides of Equation (3.38) will yield zero. Consequently, to derive an expression involving the
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parameters defined in Equation (3.29), we need to take an additional step. After applying the rule of
symmetry of second derivatives, we proceed by taking the derivative of the equation with respect to 𝛾
and imposing the initial conditions. The result is presented in Equation (3.39). This relationship clearly
indicates that the coefficient 𝜒 is solely reliant on the shear modulus 𝜇, as the shear stress 𝜎𝑥𝑦 remains
independent of the bulk modulus.

𝜕
𝜕𝛾 ((

𝜕𝜎𝑦𝑦
𝜕𝛾 )

𝜆2
= (

𝜕𝜎𝑥𝑦
𝜕𝜆2

)
𝛾
)
𝛾=0,𝜆2=1

,

⇒ − 𝜒 = Λ1.
(3.39)

Once a satisfactory result is achieved, it is essential to validate the findings through a parameter study.
Initially, we visualize the signs of 𝜒 and 𝜆𝐿 is determined by Equation (3.30) in Figures (3.10a) and
(3.10b). A direct comparison with Figure (3.6) reaffirms that under the constant gap boundary condition,
𝜒 is the decisive parameter dictating the direction of the Poynting effect. Subsequently, we subtract Λ1
from Equation (3.28), and it becomes evident that the two expressions match precisely when multiplied
by −1.

Λ1 =
4𝑥2(−1 + 𝑐2𝜋3 + 2𝑥2 − 4𝑐2𝜋3𝑥2 + 2𝑥4 + 6𝑐2𝜋3𝑥4 − 4𝑐2𝜋3𝑥6 + 𝑐2𝜋3𝑥8)𝜇

9𝑐𝜋(−1 + 𝑥2)4 . (3.40)

(a) (b)

Figure 3.10: Prediction of the sign of Poynting effect using (a) 𝜒 and (b) 𝜆𝐿, where the yellow region represents positive value,
and the dark blue region represents negative value. Under constant height B.C., the sign of the Poynting effect is determined
solely by 𝜒. However, under constant normal stress B.C., it is determined by both 𝜒 and 𝜆𝐿.

3.7. Strain stiffening and boundary condition
The Poynting effect exhibits a strong connection to the strain-stiffening phenomenon. In this section,
we aim to establish a relationship between these two effects and explore the role played by boundary
conditions.

We argue that the 𝛾3 term in Equation (3.28) serves as the most representative parameter for the
strain-stiffening effect. In the previous section, we have already established that under constant gap
boundary conditions, the parameter governing the 𝛾3 term can be described as Λ2. However, under
constant normal stress boundary conditions, we cannot simply take derivatives with respect to 𝛾. To
derive (𝜕3𝜎𝑥𝑦/𝜕𝛾3)𝜎𝑦𝑦, we follow the following process.

We begin by calculating the first derivative with respect to 𝛾. Since the normal stress 𝜎𝑦𝑦 is also a
function of (𝛾, 𝜆2), we express the shear stress response in the following form of refeqn:rewrite shear
stress).

𝜎𝑥𝑦 = 𝜎𝑥𝑦(𝛾, 𝜆2(𝛾, 𝜎𝑦𝑦). (3.41)
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Again, by applying the rule of total derivation, the expression of 𝑑𝜎𝑥𝑦 could be found.

𝑑𝜎𝑥𝑦 = (
𝜕𝜎𝑥𝑦
𝜕𝛾 )

𝜆2
𝑑𝛾 + (

𝜕𝜎𝑥𝑦
𝜕𝜆2

)
𝛾
𝑑𝜆2,

= (
𝜕𝜎𝑥𝑦
𝜕𝛾 )

𝜆2
𝑑𝛾 + (

𝜕𝜎𝑥𝑦
𝜕𝜆2

)
𝛾
((𝜕𝜆2𝜕𝛾 )𝜎𝑦𝑦

𝑑𝛾 + ( 𝜕𝜆2𝜕𝜎𝑦𝑦
)
𝛾
𝑑𝜎𝑦𝑦) .

(3.42)

Since the normal stress 𝜎𝑦𝑦 is constant, therefore 𝑑𝜎𝑦𝑦 = 0. The first derivative could be written as:

(
𝜕𝜎𝑥𝑦
𝜕𝛾 )

𝜎𝑦𝑦
= ( 𝜕𝜕𝛾 ((

𝜕𝜎𝑥𝑦
𝜕𝛾 )

𝜆2
𝑑𝛾 + (

𝜕𝜎𝑥𝑦
𝜕𝜆2

)
𝛾
(𝜕𝜆2𝜕𝛾 )𝜎𝑦𝑦

𝑑𝛾))
𝜎𝑦𝑦

,

= (
𝜕𝜎𝑥𝑦
𝜕𝛾 )

𝜆2
+ (

𝜕𝜎𝑥𝑦
𝜕𝜆2

)
𝛾
(𝜕𝜆2𝜕𝛾 )𝜎𝑦𝑦

.

(3.43)

The expression seems simple. However, there is still a term that holds normal stress constant. For
the simplicity of further calculation, we would like the normal stress to be in the bracket of derivative.
Therefore, using -1 rule, we could transform the equation into the following form:

(𝜕𝜆2𝜕𝛾 )𝜎𝑦𝑦
( 𝜕𝛾
𝜕𝜎𝑦𝑦

)
𝜆2
(
𝜕𝜎𝑦𝑦
𝜕𝜆2

)
𝛾
= −1. (3.44)

(
𝜕𝜎𝑥𝑦
𝜕𝛾 )

𝜎𝑦𝑦
= (

𝜕𝜎𝑥𝑦
𝜕𝛾 )

𝜆2
− (

𝜕𝜎𝑥𝑦
𝜕𝜆2

)
𝛾
(
𝜕𝜎𝑦𝑦
𝜕𝛾 )

𝜆2
( 𝜕𝜆2𝜕𝜎𝑦𝑦

)
𝛾

(3.45)

Using the same procedure, the second and the third derivative could also be derived.

(
𝜕2𝜎𝑥𝑦
𝜕𝛾2 )𝜎𝑦𝑦

= 𝜕
𝜕𝛾 ((

𝜕𝜎𝑥𝑦
𝜕𝛾 )

𝜆2
− (

𝜕𝜎𝑥𝑦
𝜕𝜆2

)
𝛾
(
𝜕𝜎𝑦𝑦
𝜕𝛾 )

𝜆2
( 𝜕𝜆2𝜕𝜎𝑦𝑦

)
𝛾
)
𝜎𝑦𝑦

= (
𝜕2𝜎𝑥𝑦
𝜕𝛾2 )𝜆2

− 2 𝜕
𝜕𝜆2

((
𝜕𝜎𝑥𝑦
𝜕𝛾 )

𝜆2
)
𝛾
(
𝜕𝜎𝑦𝑦
𝜕𝛾 )

𝜆2
( 𝜕𝜆2𝜕𝜎𝑦𝑦

)
𝛾
− (

𝜕𝜎𝑥𝑦
𝜕𝜆2

)
𝛾
(
𝜕2𝜎𝑦𝑦
𝜕𝛾2 )

𝜆2
( 𝜕𝜆2𝜕𝜎𝑦𝑦

)
𝛾

− (
𝜕𝜎𝑥𝑦
𝜕𝜆2

)
𝛾
(
𝜕𝜎𝑦𝑦
𝜕𝛾 )

𝜆2
( 𝜕𝜕𝛾 (

𝜕𝜆2
𝜕𝜎𝑦𝑦

)
𝛾
)
𝜆2

+ (
𝜕2𝜎𝑥𝑦
𝜕𝜆22

)
𝛾
(
𝜕𝜎𝑦𝑦
𝜕𝛾 )

2

𝜆2
( 𝜕𝜆2𝜕𝜎𝑦𝑦

)
2

𝛾

+ (
𝜕𝜎𝑥𝑦
𝜕𝜆2

)
𝛾
(
𝜕𝜎𝑦𝑦
𝜕𝛾 )

2

𝜆2

𝜕
𝜕𝜆2

(( 𝜕𝜆2𝜕𝜎𝑦𝑦
)
𝛾
)
𝛾
( 𝜕𝜆2𝜕𝜎𝑦𝑦

)
𝛾
+ (

𝜕𝜎𝑥𝑦
𝜕𝜆2

)
𝛾
(
𝜕𝜎𝑦𝑦
𝜕𝛾 )

𝜆2
( 𝜕𝜆2𝜕𝜎𝑦𝑦

)
2

𝛾
( 𝜕
𝜕𝜆2

(
𝜕𝜎𝑦𝑦
𝜕𝛾 )

𝜆2
)
𝛾

(3.46)
Our primary interest lies in anticipating the difference in the strain-stiffening effect resulting from distinct
boundary conditions. One approach to achieve this is by looking at Equation (3.47), which characterizes
the constant normal stress boundary condition, with (𝜕3𝜎𝑥𝑦/𝜕𝛾3)𝜆2 , representing the third derivative of
shear stress response under constant gap boundary conditions.

To obtain the difference between these two expressions, we note that from Equation (3.47), it is evi-
dent that (𝜕3𝜎𝑥𝑦/𝜕𝛾3)𝜆2 corresponds exactly to the first term of the equation. Therefore, the remaining
components of the equation represent the distinction introduced by the two different boundary condi-
tions. However, the resulting expression is rather intricate and not suitable for straightforward analysis.
Therefore, similar to our approach in the previous section, we apply the initial conditions to the expres-
sion, resulting in a simplified expression composed of the parameters defined in Equation (3.30).
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Through the formulation in Equation (3.26) and (3.28), we derive additional initial conditions, as indi-
cated in (3.48). The attempt yields remarkable success, simplifying the difference between the expres-
sions for the two boundary conditions. This difference can now be expressed in terms of the previously
defined parameters, as presented in Equation (3.50). The result shows that the difference of the strain-
stiffening effect under initial conditions is proportional to Λ1 and 𝜒, and inversely proportional to 𝜆𝐿. It
implies that the difference is mainly determined by the 𝛾2 and (𝜆2 − 1) terms in normal stress 𝜎𝑦𝑦 and
also the 𝛾(𝜆2 − 1) term in shear stress 𝜎𝑥𝑦.

(
𝜕3𝜎𝑥𝑦
𝜕𝛾3 )𝜎𝑦𝑦

=(
𝜕3𝜎𝑥𝑦
𝜕𝛾3 )𝜆2

+ (
𝜕𝜎𝑦𝑦
𝜕𝜆2

)
−5

𝛾
((
𝜕𝜎𝑦𝑦
𝜕𝜆2

)
3

𝛾
(3(

𝜕2𝜎𝑦𝑦
𝜕𝜆22

)
2

𝛾
(
𝜕𝜎𝑥𝑦
𝜕𝜆2

)
𝛾
− 3(

𝜕𝜎𝑦𝑦
𝜕𝜆2

)
𝛾
(
𝜕2𝜎𝑦𝑦
𝜕𝜆22

)
𝛾
(
𝜕2𝜎𝑥𝑦
𝜕𝜆22

)
𝛾

+ (
𝜕𝜎𝑦𝑦
𝜕𝜆2

)
𝛾
(−(

𝜕𝜎𝑥𝑦
𝜕𝜆2

)
𝛾
(
𝜕3𝜎𝑦𝑦
𝜕𝜆32

)
𝛾
+ (

𝜕𝜎𝑦𝑦
𝜕𝜆2

)
𝛾
(
𝜕3𝜎𝑥𝑦
𝜕𝜆32

)
𝛾
))

+ 3(
𝜕𝜎𝑦𝑦
𝜕𝜆2

)
2

𝛾
(
𝜕𝜎𝑦𝑦
𝜕𝜆2

)
𝛾
((
𝜕2𝜎𝑦𝑦
𝜕𝜆22

)
𝛾
(−3( 𝜕𝜕𝛾 (

𝜕𝜎𝑦𝑦
𝜕𝜆2

)
𝛾
)
𝜆2

(
𝜕𝜎𝑥𝑦
𝜕𝜆2

)
𝛾
+ (

𝜕𝜎𝑦𝑦
𝜕𝜆2

)
𝛾
( 𝜕𝜕𝛾 (

𝜕𝜎𝑥𝑦
𝜕𝜆2

)
𝛾
)
𝜆2

)

+(
𝜕𝜎𝑦𝑦
𝜕𝜆2

)
𝛾
(2(

𝜕2𝜎𝑥𝑦
𝜕𝜆22

)
𝛾
( 𝜕𝜕𝛾 (

𝜕𝜎𝑦𝑦
𝜕𝜆2

)
𝛾
)
𝜆2

+ (
𝜕𝜎𝑥𝑦
𝜕𝜆2

)
𝛾
( 𝜕𝜕𝛾 (

𝜕2𝜎𝑦𝑦
𝜕𝜆22

)
𝛾
)
𝜆2

− (
𝜕𝜎𝑦𝑦
𝜕𝜆2

)
𝛾
( 𝜕𝜕𝛾 (

𝜕2𝜎𝑥𝑦
𝜕𝜆22

)
𝛾
)
𝜆2

))

+ (
𝜕𝜎𝑦𝑦
𝜕𝜆2

)
3

𝛾
(3(

𝜕𝜎𝑦𝑦
𝜕𝜆2

)
𝛾
(
𝜕2𝜎𝑦𝑦
𝜕𝛾2 )

𝜆2
( 𝜕𝜕𝛾 (

𝜕𝜎𝑥𝑦
𝜕𝜆2

)
𝛾
)
𝜆2

+ (
𝜕𝜎𝑥𝑦
𝜕𝜆2

)
𝛾
(−3(

𝜕2𝜎𝑦𝑦
𝜕𝛾2 )

𝜆2
( 𝜕𝜕𝛾 (

𝜕𝜎𝑦𝑦
𝜕𝜆2

)
𝛾
)
𝜆2

+(
𝜕𝜎𝑦𝑦
𝜕𝜆2

)
𝛾
(
𝜕3𝜎𝑦𝑦
𝜕𝛾3 )

𝜆2
)) + 3(

𝜕𝜎𝑦𝑦
𝜕𝛾 )

𝜆2
(
𝜕𝜎𝑦𝑦
𝜕𝜆2

)
2

𝛾
((
𝜕2𝜎𝑦𝑦
𝜕𝜆22

)
𝛾
(
𝜕𝜎𝑥𝑦
𝜕𝜆2

)
𝛾
(
𝜕2𝜎𝑦𝑦
𝜕𝛾2 )

𝜆2

+2(
𝜕𝜎𝑥𝑦
𝜕𝜆2

)
𝛾
( 𝜕𝜕𝛾 (

𝜕𝜎𝑦𝑦
𝜕𝜆2

)
𝛾
)
2

𝜆2

− (
𝜕𝜎𝑦𝑦
𝜕𝜆2

)
𝛾
((
𝜕2𝜎𝑥𝑦
𝜕𝜆22

)
𝛾
(
𝜕2𝜎𝑦𝑦
𝜕𝛾2 )

𝜆2
+ (

𝜕𝜎𝑥𝑦
𝜕𝜆2

)
𝛾
( 𝜕
𝜕𝜆2

(
𝜕2𝜎𝑦𝑦
𝜕𝛾2 )

𝜆2
)
𝛾

+2( 𝜕𝜕𝛾 (
𝜕𝜎𝑦𝑦
𝜕𝜆2

)
𝛾
)
𝜆2

( 𝜕𝜕𝛾 (
𝜕𝜎𝑥𝑦
𝜕𝜆2

)
𝛾
)
𝜆2

) + (
𝜕𝜎𝑦𝑦
𝜕𝜆2

)
2

𝛾
( 𝜕
𝜕𝜆2

(
𝜕2𝜎𝑥𝑦
𝜕𝛾2 )𝜆2

)
𝛾
)) .

(3.47)

𝛾 = 0, 𝜆2 = 1 ∶ (
𝜕𝜎𝑥𝑦
𝜕𝜆2

)
𝛾
= 0, (

𝜕𝜎𝑦𝑦
𝜕𝛾 )

𝜆2
= 0 (3.48)

[(
𝜕3𝜎𝑥𝑦
𝜕𝛾3 )𝜎𝑦𝑦

− (
𝜕3𝜎𝑥𝑦
𝜕𝛾3 )𝜆2

]
𝛾=0,𝜆2=1

=
⎡
⎢
⎢
⎢
⎣

−3 (𝜕
2𝜎𝑦𝑦
𝜕𝛾2 )𝜆2

( 𝜕
𝜕𝜆2

(𝜕𝜎𝑥𝑦𝜕𝛾 )𝜆2
)
𝛾

(𝜕𝜎𝑦𝑦𝜕𝜆2
)
𝛾

⎤
⎥
⎥
⎥
⎦𝛾=0,𝜆2=1

,

= −3Λ1𝜒𝜆𝐿

(3.49)

However, the derivation does not stop here. From equation (3.39), we notice that the parameter Λ1 can
actually be substituted by the Poynting parameter 𝜒 with the relation Λ1 = −𝜒.

[(
𝜕3𝜎𝑥𝑦
𝜕𝛾3 )𝜎𝑦𝑦

− (
𝜕3𝜎𝑥𝑦
𝜕𝛾3 )𝜆2

]
𝛾=0,𝜆2=1

= −3Λ1𝜒𝜆𝐿
= 3𝜒2
𝜆𝐿
. (3.50)

After the substitution, it becomes evident that the difference between the two boundary conditions can
be entirely characterized by the normal stress response 𝜎𝑦𝑦. Furthermore, an intriguing conclusion
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can be drawn from the expression: the sign of the Poynting effect does not influence the determination
of the difference in the strain-stiffening effect. Instead, whether the constant normal stress boundary
conditions or the constant height boundary conditions contribute to a greater stiffening effect is solely
governed by the sign of 𝜆𝐿, which corresponds to the 𝜆2 − 1 term. The magnitude of the difference is
proportional to the square of 𝜒 and inversely proportional to 𝜆𝐿.

To further analyze the influence of the material parameters 𝜅/𝜇 and how compressibility affects the
difference in the strain-stiffening effect, a numerical study is conducted. Figure (3.10b) suggests that
the value of Equation (3.50) would always be negative. Thus, the absolute value of the difference is
plotted with respect to the 𝜅/𝜇 ratio.

Upon examining Figure (3.11), it is observed that changes in the parameter set (𝑐, 𝑥) generate different
results. The figure is presented in logarithmic scales on both the x- and y-axes. When (𝑐 = 0.1, 𝑥 = 0.1),
the curve forms a straight line, indicating that the magnitude of the difference decreases exponentially
with a constant exponent. On the other hand, when (𝑐 = 0.1, 𝑥 = 0.8), the curve is flat for a small 𝜅/𝜇
ratio. Then the slope gradually becomes stiffer so that at large 𝜅/𝜇 ratio, the slope is similar to the one
when (𝑐 = 0.1, 𝑥 = 0.1). The slope at large ratio is contributed by the 𝜆𝐿, which is the only variable
that is dependent on 𝜅 in the expression. For large 𝜅, 𝜆𝐿 can be approximated as −𝜅/𝜇. Because for
a certain set of (c, x), 𝜒 is a constant multiplies 𝜇, the magnitude of the difference is proportional to
1/(𝜅/𝜇) at large 𝜅/𝜇 ratios.

𝜅
𝜇 >> 1 ∶ |3𝜒

2

𝜆𝐿
| ∼ 1

( 𝜅𝜇)
. (3.51)

Figure 3.11: The strain stiffening effect performs differently under two boundary conditions. The difference could be characterized

by [( 𝜕
3𝜎𝑥𝑦
𝜕𝛾3 )𝜎𝑦𝑦

− ( 𝜕
3𝜎𝑥𝑦
𝜕𝛾3 )𝜆2

]
𝛾=0,𝜆2=1

, which is dependent on the compressibility 𝜅/𝜇. The plot shows that different material sets

may perform differently to the effect of compressibility. However, the slope always reaches 1/(𝜅/𝜇) at a large ratio.





4
Introduce a general tensor

4.1. The formulation of a general deformation gradient tensor
In the last chapter, we adopted an innovativemethodology to investigate the Poynting effect. This explo-
ration encompassed an examination of the impact stemming from the inclusion of volumetric functions
and the application of Taylor expansion techniques. Furthermore, we utilized this approach to examine
the strain-stiffening effect under two common boundary conditions: constant normal stress and con-
stant gap boundary conditions. Nevertheless, it is essential to note that the strain tensor employed
in Chapter 3 only accommodates shear and a single dilation, presuming no deformation along the x-
and z-directions. This presumption, though, is somewhat unwarranted since it does not account for the
normal stresses in the x- and z-directions.

To provide a more comprehensive perspective on stress-strain responses, particularly in all three prin-
cipal directions, we introduce a more general tensor, as represented in (4.1). This revision demands
significant alterations. Firstly, the plane of deformation has shifted, with shear strain now being applied
along the y-z plane, leading to an analysis of the Poynting effect in the z-direction. The definition of
deformation has also undergone substantial changes. Along the principal x and y axes, deformation is
characterized by 𝜖/𝜆 and 𝜖𝜆, respectively. Here, 𝜖 signifies the dilation of the x-y plane, while 𝜆 can be
regarded as pure shear within the x-y plane. Notably, the element 𝐹𝑦𝑧 within the deformation gradient
tensor appears complicated due to its formulation, which includes weighted factors, namely 𝛼, 𝛽, and
𝛿, influencing the shear strain.

F = [
𝜖/𝜆 0 0
0 𝜖𝜆 𝛾𝜉𝛼𝜖𝛽𝜆𝛿
0 0 𝜉

] (4.1)

While this element may initially appear complicated, we will simplify it using the Green-Lagrange tensor
E, ultimately representing the element 𝑒𝑦𝑧 as just 𝛾. Furthermore, given that the tensor includes seven
variables, we require a minimum of six relationships to solve the equations. This is especially relevant
since the shear strain 𝛾 typically serves as a controlled variable, to which we can assign a specific
value. Therefore, our initial step involves deriving the Green-Lagrangian strain tensor to determine
the values of the weighted factors. The Green-Lagrangian strain tensor E for the general tensor is
presented below.

E = 1
2 (F

𝑇F− I)

= 1
2 [
−1 + 𝜖2

𝜆2 0 0
0 −1 + 𝜖2𝜆2 𝛾𝜉𝛼𝜖1+𝛽𝜆1+𝛿
0 𝛾𝜉𝛼𝜖1+𝛽𝜆1+𝛿 −1 + 𝜉2 + 𝛾2𝜉2𝛼𝜖2𝛽𝜆2𝛿

]
(4.2)

The Green-Lagrangian strain tensor quantifies how much the deformation tensor differs from the iden-
tity matrix I, which represents the undeformed state. As previously mentioned, since the term 𝑒𝑦𝑧
corresponds to the actual shear strain, we aim to relate 𝛾 with 𝑒𝑦𝑧. Therefore, while alternative choices

39
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for the weighted factors remain valid, we adopt the following relationships for our analysis.

𝛾𝜉𝛼𝜖1+𝛽𝜆1+𝛿 = 𝛾

⇒{
𝛼 = 0
𝛽 = −1
𝛿 = −1

.
(4.3)

We have three unknowns to resolve: 𝜉, 𝜖, and 𝜆. These can be determined by imposing sufficient
boundary conditions. Building upon the concept introduced in the previous chapter, we apply two dis-
tinct sets of boundary conditions. For each set, we define boundary conditions along the x, y, and z
axes, respectively. The conditions specified for the x and y directions remain consistent across both
cases, with variations appearing exclusively along the z-axis.

In the x and y directions, the boundary conditions assume that there is no normal stress, regardless
of how the material undergoes deformation. This assumption is grounded in the experimental setup,
where the inclined face of the material subjected to shear is typically unconstrained. As a result, in-
stead of generating stress, the response in these two directions is expected to present as deformations.

On the other hand, the z-axis is typically confined by plates, leading to a boundary condition character-
ized by a constant gap. This condition may also induce a constant normal stress boundary condition if
the external load is fixed. The formulations of these boundary conditions are presented in the following
equation:

𝑥 ∶ 𝜎𝑥𝑥 = 0
𝑦 ∶ 𝜎𝑦𝑦 = 0

𝑧 ∶ {const. normal stress 𝜎𝑧𝑧 = 0, 𝜉 ≠ 0
const. gap 𝜎𝑧𝑧 ≠ 0, 𝜉 = 0

.
(4.4)

With the questions of interest now fully defined, we are prepared to solve for all the unknowns. Meng’s
model, including the volumetric part, is now represented as (4.5).

𝑊 = 1
2𝜅 (−1 + 𝜖

2𝜉)2 + 13𝜇(𝑐𝜋
2(3 −

𝑥2 (𝜖2 ( 1𝜆2 + 𝜆
2) + 𝜉2 + 𝛾2

𝜖2𝜆2 )

(𝜖2𝜉)2
)

+ −3𝜖2𝜆4 (𝜖2𝜉)4/3 + 2𝑥2𝜆2 (𝜖2𝜉)2/3 (𝛾2 + 𝜖4 (1 + 𝜆4) + 𝜖2𝜆2𝜉2) − 𝑥4𝜖2 (𝛾2 + 𝜖4𝜆4 + 𝜖2𝜆2 (1 + 𝜆4) 𝜉2)
𝑐𝜋 ((𝑥6 − 1) 𝜖14/3𝜆4𝜉4/3 + 𝑥2𝜆2 (𝜖2𝜉)2/3 (𝛾2 + 𝜖4 (1 + 𝜆4) + 𝜖2𝜆2𝜉2) − 𝑥4𝜖2 (𝛾2 + 𝜖4𝜆4 + 𝜖2𝜆2𝜉2 (1 + 𝜆4)))

)

(4.5)

4.2. Stress-strain response
Following the procedure used in the last chapter, we commence by working from equation (3.20) to
derive the stress responses in all three normal directions, as well as the shear stress on the y-z plane.
Due to the complexity of the expressions involved, we will refrain from presenting the exact stress
expressions in this chapter. Instead, we opt for a Taylor expansion of the stress expressions concerning
four variables: 𝛾, 𝜖, 𝜆, and 𝜉. Each of these variables is expanded around their initial points, which are
set as 0, 1, 1, and 1, respectively.

𝜎𝑧𝑧 =(−1 + 𝜖) (2𝜅 +
8(𝑥2 − 𝑐2𝜋3𝑥2 + 𝑥4 + 3𝑐2𝜋3𝑥4 − 3𝑐2𝜋3𝑥6 + 𝑐2𝜋3𝑥8)𝜇

9𝑐𝜋(−1 + 𝑥2)3 )

+ 𝛾2 (2(𝑥
2 + 𝑐2𝜋3𝑥2 + 2𝑥4 − 4𝑐2𝜋3𝑥4 + 2𝑥6 + 6𝑐2𝜋3𝑥6 − 4𝑐2𝜋3𝑥8 + 𝑐2𝜋3𝑥10)𝜇

9𝑐𝜋(−1 + 𝑥2)4 )

+ (−1 + 𝜉) (𝜅 − 8(𝑥
2 − 𝑐2𝜋3𝑥2 + 𝑥4 + 3𝑐2𝜋3𝑥4 − 3𝑐2𝜋3𝑥6 + 𝑐2𝜋3𝑥8)𝜇

9𝑐𝜋(−1 + 𝑥2)3 )

(4.6)
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After Taylor’s expansion is applied, we proceed to simplify the expressions by neglecting higher-order
terms. In the case of variables 𝜖 − 1, 𝜆 − 1, and 𝜉 − 1, only the first-order terms remain in the normal
stress expressions. On the other hand, these variables can be combined with a 𝛾 term in the shear
stress response since we assume that 𝛾 is significantly larger than the deformations in the principal
directions. The quadratic and cubic terms of 𝛾 are left in the normal stress and shear stress responses
because they are the main contributors to the strain-stiffening effect. The Taylor expression form of the
stress responses are shown from equation (4.6) to (4.9).

𝜎𝑦𝑦 =− (−1 + 𝜆)
4(𝑥2 − 𝑐2𝜋3𝑥2 + 𝑥4 + 3𝑐2𝜋3𝑥4 − 3𝑐2𝜋3𝑥6 + 𝑐2𝜋3𝑥8)𝜇

3𝑐𝜋(−1 + 𝑥2)3

+ (−1 + 𝜖)9 (18𝜅 − 4𝑥4(2 + 𝑥2)𝜇
𝑐𝜋(−1 + 𝑥2)4 +

𝑥2(4 − 12𝑥4 + 8𝑥6 − 4𝑐2𝜋3(−1 + 3𝑥2 − 3𝑥4 + 𝑥6)2)𝜇
𝑐𝜋(−1 + 𝑥2)6 )

− 𝛾2 (2(−2𝑥
2 + 2𝑐2𝜋3𝑥2 − 2𝑥4 − 8𝑐2𝜋3𝑥4 + 𝑥6 + 12𝑐2𝜋3𝑥6 − 8𝑐2𝜋3𝑥8 + 2𝑐2𝜋3𝑥10)𝜇

9𝑐𝜋(−1 + 𝑥2)4 )

+ (−1 + 𝜉) (−9𝑐𝜋𝜅(1 − 𝑥
6) + 27𝑐𝜋𝜅(𝑥2 − 𝑥4) + 4𝑥2𝜇 − 4𝑐2𝜋3𝜇(𝑥2 − 𝑥8) + 4𝑥4𝜇 + 12𝑐2𝜋3𝜇(𝑥4 − 𝑥6)

9𝑐𝜋(−1 + 𝑥2)3 ) .
(4.7)

𝜎𝑥𝑥 =(−1 + 𝜆)
4(𝑥2 − 𝑐2𝜋3𝑥2 + 𝑥4 + 3𝑐2𝜋3𝑥4 − 3𝑐2𝜋3𝑥6 + 𝑐2𝜋3𝑥8)𝜇

3𝑐𝜋(−1 + 𝑥2)3

+ (−1 + 𝜖) (2𝜅 − 4𝑥4(2 + 𝑥2)𝜇
9𝑐𝜋(−1 + 𝑥2)4 +

𝑥2(4 − 12𝑥4 + 8𝑥6 − 4𝑐2𝜋3(−1 + 3𝑥2 − 3𝑥4 + 𝑥6)2)𝜇
9𝑐𝜋(−1 + 𝑥2)6 )

+ 𝛾2 (2(−𝑥
2 + 𝑐2𝜋3𝑥2 − 4𝑥4 − 4𝑐2𝜋3𝑥4 − 𝑥6 + 6𝑐2𝜋3𝑥6 − 4𝑐2𝜋3𝑥8 + 𝑐2𝜋3𝑥10)𝜇

9𝑐𝜋(−1 + 𝑥2)4 )

+ (−1 + 𝜉) (𝜅 + 4𝑥4(2 + 𝑥2)𝜇
9𝑐𝜋(−1 + 𝑥2)4 +

4𝑥2(−1 + 𝑐2𝜋3 − 2𝑥2 − 4𝑐2𝜋3𝑥2 + 6𝑐2𝜋3𝑥4 − 4𝑐2𝜋3𝑥6 + 𝑐2𝜋3𝑥8)𝜇
9𝑐𝜋(−1 + 𝑥2)4 ) .

(4.8)

𝜎𝑦𝑧 =𝛾3 (−
4𝑥4(−1 + 𝑥4)𝜇
3𝑐𝜋(−1 + 𝑥2)6 +

4𝑥4(−3 + 6𝑥2 + 7𝑥4)(−1 + 𝜆)𝜇
3𝑐𝜋(−1 + 𝑥2)6 )

+ 𝛾 (−2𝑥
2(1 − 𝑐2𝜋3 + 𝑥2 + 3𝑐2𝜋3𝑥2 − 3𝑐2𝜋3𝑥4 + 𝑐2𝜋3𝑥6)𝜇

3𝑐𝜋(−1 + 𝑥2)3

+ (−1 + 𝜆)2𝑥
2(−1 + 𝑐2𝜋3 + 4𝑥2 − 4𝑐2𝜋3𝑥2 + 3𝑥4 + 6𝑐2𝜋3𝑥4 − 4𝑐2𝜋3𝑥6 + 𝑐2𝜋3𝑥8)𝜇

3𝑐𝜋(−1 + 𝑥2)4

+ (−1 + 𝜖)2𝑥
2(−13 + 13𝑐2𝜋3 − 4𝑥2 − 52𝑐2𝜋3𝑥2 + 11𝑥4 + 78𝑐2𝜋3𝑥4 − 52𝑐2𝜋3𝑥6 + 13𝑐2𝜋3𝑥8)𝜇

9𝑐𝜋(−1 + 𝑥2)4

+(−1 + 𝜉)4𝑥
2(−1 + 𝑐2𝜋3 + 2𝑥2 − 4𝑐2𝜋3𝑥2 + 2𝑥4 + 6𝑐2𝜋3𝑥4 − 4𝑐2𝜋3𝑥6 + 𝑐2𝜋3𝑥8)𝜇

9𝑐𝜋(−1 + 𝑥2)4 )
(4.9)

In equation (4.6), it becomes evident that the transverse normal stress 𝜎𝑧𝑧 is solely dependent on 𝛾, 𝜖,
and 𝜉. This suggests that the shear on the x-y plane exerts no influence on the Poynting effect. On the
other hand, the normal stresses in the other two directions, 𝜎𝑥𝑥 and 𝜎𝑦𝑦, are both correlated with all
four variables. It is worth emphasizing that the 𝛾2 terms in the normal stresses are unrelated to the bulk
modulus. This implies that, for this specific formulation and strain energy function, the strain-stiffening
effect is primarily unaffected by the choice of bulk modulus. This observation extends to the cubic 𝛾
term in the shear stress as well. In fact, we notice that the shear stress response remains entirely
independent of the bulk modulus.

4.3. Derivation of the Poynting parameter
In the last chapter, we introduced a method to predict the sign of the Poynting effect. This method,
under the assumption that stress and strain responses in the normal direction are monotonic at small



42 4. Introduce a general tensor

deformations, demonstrated a strong alignment with the obtained results. Thus, in this chapter, we
follow the same procedure to derive the expression for the Poynting parameter. We will then utilize this
parameter to predict the sign of the Poynting effect. The following section will present a comparison
between these predictions and the analytical solutions.

To start, we need the expression for the differential of the Green-Lagrangian strain tensor, denoted
as 𝑑E. Calculating the total derivative involves four variables, hence requiring the use of four matrices,
as illustrated in equation (4.10).

𝑑E = (𝜕E𝜕𝜆 )(𝛾,𝜖,𝜉)
𝑑𝜆 + (𝜕E𝜕𝛾 )(𝜆,𝜖,𝜉)

𝑑𝛾 + (𝜕E𝜕𝜖 )(𝛾,𝜆,𝜉)
𝑑𝜖 + (𝜕E𝜕𝜉 )(𝛾,𝜆,𝜖)

𝑑𝜉,

where (𝜕E𝜕𝜆 )(𝛾,𝜖,𝜉)
= [
− 𝜖2
𝜆3 0 0
0 𝜖2𝜆 0
0 0 − 𝛾2

𝜖2𝜆3

] , (𝜕E𝜕𝛾 )(𝜆,𝜖,𝜉)
= [
0 0 0
0 0 1

2
0 1

2
𝛾

𝜖2𝜆2

] ,

(𝜕E𝜕𝜖 )(𝛾,𝜆,𝜉)
= [

𝜖
𝜆2 0 0
0 𝜖𝜆2 0
0 0 − 𝛾2

𝜖3𝜆2

] , (𝜕E𝜕𝜉 )(𝛾,𝜆,𝜖)
= [
0 0 0
0 0 0
0 0 𝜉

]

(4.10)

Continuing with the same approach, we derive the expression for the second Piola-Kirchhoff stress,
denoted as S, and apply the same Cauchy stress tensor, as given in equation (3.35). We arrive at the
expression for 𝑑𝑊, as presented in equation (4.11).

𝑑𝑊 = 𝜖
2𝜆𝜉 (−𝜖𝜉 (2𝜉(𝜎𝑥𝑥 − 𝜎𝑦𝑦) +

4𝛾𝜎𝑦𝑧
𝜖𝜆 )𝑑𝜆 + 𝜆 (𝜉 (2𝜉(𝜎𝑥𝑥 + 𝜎𝑦𝑦) −

4𝛾𝜎𝑦𝑧
𝜖𝜆 )𝑑𝜖 + 𝜖 (

2𝜉𝜎𝑦𝑧
𝜖𝜆 𝑑𝛾 + 2𝜉𝜎𝑧𝑧𝑑𝜉)))

(4.11)
The general tensor utilizes four unknowns, allowing us to formulate six Maxwell’s relations. However,
upon examining the equations, it becomes obvious that the normal stress in the z-direction, denoted
as 𝜎𝑧𝑧, is solely associated with the variable 𝑑𝜉. Therefore, there are only three relations directly con-
nected to 𝜎𝑧𝑧, as illustrated in equations (4.12) through (4.14).

Maxwell’s relation (1)

( 𝜕𝜕𝛾 (
𝜕𝑊
𝜕𝜉 )) = (

𝜕
𝜕𝜉 (

𝜕𝑊
𝜕𝛾 ))

⇒𝜖2 𝜕𝜎𝑧𝑧𝜕𝛾 = 𝜖
𝜆
𝜕𝜎𝑦𝑧
𝜕𝜉

(4.12)

Maxwell’s relation (2)

( 𝜕𝜕𝜆 (
𝜕𝑊
𝜕𝜉 )) = (

𝜕
𝜕𝜉 (

𝜕𝑊
𝜕𝜆 ))

⇒𝜖2 𝜕𝜎𝑧𝑧𝜕𝜆 = − 𝜖𝜆2 (𝜖𝜆 (𝜎𝑥𝑥 − 𝜎𝑦𝑦 + 𝜉
𝜕𝜎𝑥𝑥
𝜕𝜉 − 𝜉

𝜕𝜎𝑦𝑦
𝜕𝜉 ) + 2𝛾

𝜕𝜎𝑦𝑧
𝜕𝜉 )

(4.13)

Maxwell’s relation (3)

( 𝜕𝜕𝜖 (
𝜕𝑊
𝜕𝜉 )) = (

𝜕
𝜕𝜉 (

𝜕𝑊
𝜕𝜖 ))

⇒𝜖 (2𝜎𝑧𝑧 + 𝜖
𝜕𝜎𝑧𝑧
𝜕𝜖 ) = 𝜖 (𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜉 (

𝜕𝜎𝑥𝑥
𝜕𝜉 +

𝜕𝜎𝑦𝑦
𝜕𝜉 )) − 2𝛾𝜆

𝜕𝜎𝑦𝑧
𝜕𝜉

(4.14)

Again, we intend to follow the same procedure used in the previous chapter. Our objective is to derive
the expression for the term (𝜕2𝜎𝑧𝑧/𝜕𝛾2)(𝛾,𝜖,𝜆) under the initial conditions. We will only need to take one
additional derivative with respect to 𝛾 and incorporate it into the equation to obtain the desired result.
Reviewing the equations provided, it becomes evident that only the first Maxwell relation, as denoted
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in (4.12), is capable of meeting this requirement.

First, we take derivative of the equation with respect to 𝛾.

( 𝜕
2

𝜕𝛾2 (
𝜕𝑊
𝜕𝜉 )) = (

𝜕
𝜕𝛾 (

𝜕
𝜕𝜉 (

𝜕𝑊
𝜕𝛾 )))

⇒𝜖2 𝜕
2𝜎𝑧𝑧
𝜕𝛾2 = 𝜖

𝜆 (
𝜕
𝜕𝛾 (

𝜕𝜎𝑦𝑧
𝜕𝜉 )) ,

Apply initial consitions: ⇒− 𝜒 = ( 𝜕𝜕𝛾 (
𝜕𝜎𝑦𝑧
𝜕𝜉 ))

(4.15)

A surprising result is shown here. The ability to predict the sign of the Poynting effect is entirely de-
pendent on the 𝛾𝜉 term within the shear stress response, regardless of the chosen strain tensor. We
derive this expression from equation (4.9), yielding the following result:

𝜒 = −4𝑥
2(−1 + 𝑐2𝜋3 + 2𝑥2 − 4𝑐2𝜋3𝑥2 + 2𝑥4 + 6𝑐2𝜋3𝑥4 − 4𝑐2𝜋3𝑥6 + 𝑐2𝜋3𝑥8)𝜇

9𝑐𝜋(−1 + 𝑥2)4 (4.16)

In the previous chapter, we discussed how the Poynting coefficient 𝜒 alone was sufficient to predict the
sign of the Poynting effect under constant gap boundary conditions. This simplicity arose because 𝜆2
was set to one, leaving only one term in the normal stress expression. The coefficient could also be
extended to predict the sign under constant normal stress boundary conditions. This was due to the
combined influence of the sign of 𝜒 and 𝜆𝐿 on the normal strain response, with 𝜆𝐿 consistently being
negative. As a result, the sign of the normal strain 𝜆2 − 1, expressed as −𝜒/𝜆𝐿, always matched the
sign of 𝜒.

In this chapter, however, the tensor involves more unknowns, and the expression for normal stress
is considerably more complex. Therefore, we follow the same fundamental concept but derive an ex-
pression to predict the sign of the Poynting effect for constant normal stress boundary conditions.

It is important to note that the Poynting effect is closely tied to the Poynting parameter 𝜒, which means
that our derivation will consist of the term (𝜕2𝜎𝑧𝑧/𝜕𝛾2). The key difference in this derivation, compared
to the previous chapter, lies in the formulation of the transverse deformation gradient element 𝜉 as
a function of the unknowns 𝛾, 𝜖, 𝜆, and the normal stress 𝜎𝑧𝑧. This formulation allows us to derive
Maxwell’s relations while accounting for the normal stress 𝜎𝑧𝑧.

The derivation will start from equation (4.11) in the previous subsection. The first Maxwell’s relation
is derived based on the new formulation of 𝜉.

( 𝜕𝜕𝜉 (
𝜕𝑊
𝜕𝛾 )) = (

𝜕
𝜕𝛾 (

𝜕𝑊
𝜕𝜉 ))

⇒0 = 𝜖2 (𝜕𝜎𝑧𝑧𝜕𝜉
𝜕𝜉
𝜕𝛾 +

𝜕𝜎𝑧𝑧
𝜕𝛾 ) .

(4.17)

Then, we take a derivative of the equation with respect to 𝛾 and obtain equation (4.18).

( 𝜕𝜕𝛾 (
𝜕
𝜕𝜉 (

𝜕𝑊
𝜕𝛾 ))) = (

𝜕2
𝜕𝛾2 (

𝜕𝑊
𝜕𝜉 ))

⇒0 = 𝜕𝜉
𝜕𝛾 (

𝜕
𝜕𝛾 (

𝜕𝜎𝑧𝑧
𝜕𝜉 )) +

𝜕𝜉
𝜕𝛾 (

𝜕2𝜎𝑧𝑧
𝜕𝜉2

𝜕𝜉
𝜕𝛾 + (

𝜕
𝜕𝜉 (

𝜕𝜎𝑧𝑧
𝜕𝛾 ))) +

𝜕𝜎𝑧𝑧
𝜕𝜉

𝜕2𝜉
𝜕𝛾2 +

𝜕2𝜎𝑧𝑧
𝜕𝛾2 .

(4.18)

During the derivation, we observe that the derived relation is solely associated with the expression
of the normal stress 𝜎𝑧𝑧. Therefore, we proceed by applying the initial condition to equation (4.18).
Given the Taylor expansion of 𝜎𝑧𝑧, as expressed in equation (4.6), it becomes evident that the terms
(𝜕2𝜎𝑧𝑧/𝜕𝛾𝜕𝜉) and (𝜕2𝜎𝑧𝑧/𝜕𝜉2) will result in zero under the initial conditions.

Initial conditions: 0 = 𝜕𝜎𝑧𝑧
𝜕𝜉

𝜕2𝜉
𝜕𝛾2 +

𝜕2𝜎𝑧𝑧
𝜕𝛾2 . (4.19)
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From the expression above, we identify that the term 𝜕2𝜉/𝜕𝛾2 could be used to predict the sign of the
Poynting effect.

Initial conditions:
𝜕2𝜉
𝜕𝛾2 = −

𝜕2𝜎𝑧𝑧
𝜕𝛾2
𝜕𝜎𝑧𝑧
𝜕𝜉

= − 𝜒𝜆𝐿
.

(4.20)

Again, referring to equation (4.6), we can re-express the expression in terms of thematerial parameters,
as demonstrated in equation (4.21). Given that the parameter 𝜆𝐿 depends on the bulk modulus 𝜅, we
anticipate that the sign of the Poynting effect may also be influenced by the magnitude of 𝜅.

(𝜕
2𝜉
𝜕𝛾2)0

= 4𝑥2(−1 + 𝑐2𝜋3 + 2𝑥2 − 4𝑐2𝜋3𝑥2 + 2𝑥4 + 6𝑐2𝜋3𝑥4 − 4𝑐2𝜋3𝑥6 + 𝑐2𝜋3𝑥8)𝜇
𝜅(9𝑐𝜋(−1 + 𝑥2)4) − 8(𝑥2 − 𝑐2𝜋3𝑥2 + 𝑥4 + 3𝑐2𝜋3𝑥4 − 3𝑐2𝜋3𝑥6 + 𝑐2𝜋3𝑥8)𝜇(9𝑐𝜋(−1 + 𝑥2))

(4.21)
A parameter study is also presented below for the sake of comparison in the upcoming section. We
have plotted both the Poynting parameter 𝜒 and the equivalent parameter −𝜒/𝜆𝐿 concerning various
stiffness parameters 𝑐 and the end-to-end ratio 𝑥. These plots are displayed in figures (4.1a) and (4.1b),
respectively.

The study reveals that the prediction regarding the sign of the Poynting effect holds true universally
for both boundary conditions. This means that if the Poynting effect is negative for a given parameter
set under constant normal stress boundary conditions, it should also exhibit a negative Poynting effect
under constant gap boundary conditions. Also, it implies that the Poisson’s ratio has no influence on
the sign of the Poynting effect under either boundary condition.

(a) (b)

Figure 4.1: (a) The sign of 𝜒, which predicts the sign of the Poyntign effect under constant gap B.C.; (b) The sign of −𝜒/𝜆𝐿,
which predicts the sign under constant normal stress B.C..

4.4. Results
In this section, we present the results of the numerical study for both boundary conditions. The stress
and strain responses have been calculated using the Taylor expansion form of the stress expressions.
The numerical values are obtained using the built-in function 𝑠𝑜𝑙𝑣𝑒 in Matlab.

4.4.1. Constant Gap
First, let’s consider the sign of the Poynting effect under constant gap boundary conditions, examining
the influence of Poisson’s ratio. We have explored two scenarios for the bulk modulus: one where it
has the same magnitude as the shear modulus, denoted as 𝜅/𝜇 = 1 (as seen in Figure(4.2a)), and
another where the bulk modulus is a thousand times larger than the shear modulus, represented as
𝜅/𝜇 = 1000 (as shown in Figure(4.2b)).
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(a) (b)

Figure 4.2: The sign of the Poynting effect shows the identical distribution, where yellow region represents positive Poynting
effect and dark blue represents negative Poynting effect, for moduli ratio 𝜅/𝜇 equals (a) 1, (b) 1000.

(a) (b)

Figure 4.3: (a) The sign of 𝜖 − 1 shows the dilational factor on 𝑥 and 𝑦 direction. For the positive Poynting effect, the factor is
negative (dark blue region), and vice versa. (b) shows the sign of 𝜆 − 1, implying that the distortional factor is always negative.

(a) (b)

Figure 4.4: The dilation plots compute the volume ratio change 𝐽 − 1 and they show expansion, 𝐽 > 1, (yellow) under negative
Poynting effect and contraction, 𝐽 < 1, (blue) under positive Poynting effect when 𝜅/𝜇 equals (a) 1 and (b) 1000.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Five material sets are chosen to study the response under 𝜅/𝜇 = 1000. The adimensional normal stress-strain curve
is shown in (a). 𝜖, 𝜆, and dilation curves with respect to applied shear strain 𝛾 are shown in (b), (c), and (d). The deformation
gradient element 𝐹𝑥𝑥 and 𝐹𝑦𝑦 are shown in (e) and (f).

In equation (4.21), it is apparent that the Poynting effect depends on the bulk modulus. However, the
computational results indicate that the bulk modulus does not play a role in determining the sign of the
Poynting effect. This phenomenon arises from the fact that the bulk modulus cannot alter the sign of
the denominator in equation (4.21).

The use of the general tensor enables us to account for deformations in the x and y directions. Since
the distribution of the sign of 𝜖 − 1 and 𝜆 − 1 remains consistent for all Poisson’s ratios, we will present
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just one case, 𝜅/𝜇 = 1000, to represent the results. The distribution of the sign of the variable 𝜖 − 1
is illustrated in Figure(4.3a), and it exhibits an opposite sign compared to the Poynting effect. Since 𝜖
refers to the dilational factor in the x and y directions, this result aligns with the assumption that when
the system exhibits a positive Poynting effect, it has a tendency to contract in the other two directions.

On the other hand, the distribution of 𝜆 − 1 is consistently negative for all parameter sets and for
all choices of bulk modulus, as shown in Figure(4.3b). Given that 𝜆 signifies shear on the xy plane,
this result implies that regardless of the sign of the Poynting effect, the system tends to stretch in the
x direction and contract in the y direction. It is important to note that even though we have knowledge
of the distribution of 𝜖 − 1 and 𝜆 − 1, the actual deformation gradient factors 𝐹𝑥𝑥 and 𝐹𝑦𝑦 still require
further calculation, as will be shown later.

Figure(4.4) presents the dilation of the system under shear. This behavior, whether the system con-
tracts or expands as a whole, is not influenced by the bulk moduli either. Moreover, it exhibits an
opposing trend in relation to the sign of the Poynting effect. Specifically, when a positive Poynting
effect occurs, indicating that the system tends to expand in the transverse direction, the volume of the
system actually decreases.

Finally, we have chosen five sets of material parameters to study the change in magnitude of the sys-
tem under increasing shear strain. We specifically focus on the deformation gradient elements 𝐹𝑥𝑥 and
𝐹𝑦𝑦. Figure(4.5e) and (4.5f) demonstrate that regardless of how the material parameters change, the
system consistently undergoes expansion in the x direction and contraction in the y direction. These
results indicate that when shear is applied to the yz plane, the system experiences shear on the xy
plane.

4.4.2. Constant Normal Stress
In this subsection, we investigate the system’s response under constant normal stress boundary con-
ditions. As we demonstrated in the previous subsection, the bulk-to-shear ratio does not impact the
sign of the Poynting effect. Additionally, we observe that the sign of the Poynting effect is not linked to
this ratio, in alignment with the expression of 𝜒 outlined in equation (4.16). Therefore, we present just
one figure as a representation of our findings.

(a) (b)

Figure 4.6: The sign of the Poynting effect under constant normal stress boundary conditions is depicted in (a), while the change
in dilation 𝐽 − 1 is shown in (b). In (a), the yellow region and dark blue region represent positive and negative Poynting effects,
respectively. In (b), the light blue region and dark blue region correspond to 𝐽 − 1 changing sign under different 𝛾 and 𝐽 − 1
monotonically decreasing below zero, respectively. It is noteworthy that this distribution remains consistent regardless of the
value of the compressibility parameter 𝜅/𝜇.

The normal stress response−𝜎𝑧𝑧 showcases the same distribution as the Poynting parameter, affirming
its effectiveness in predicting the sign of the Poynting effect. Moreover, the distributions under both
boundary conditions are identical, indicating that the sign of the Poynting effect solely hinges on the
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material parameters and remains independent of the boundary conditions. The distributions of 𝜖 − 1
and 𝜆 − 1 also mirror those presented in the previous section.

(a) (b)

Figure 4.7: The sign of 𝜖−1 and 𝜆−1 under constant normal stress B.C is . is shown in (a) and (b), respectively. The distributions
do not change with the compressibility 𝜅/𝜇 and they are identical to the one under constant gap B.C..

However, the dilation of the object exhibits a complex pattern in Figure(4.6b). The light blue region
corresponds to situations where, with the increase of shear strain, the change in volume ratio 𝐽 − 1
crosses zero. This means that it is not monotonically increasing or decreasing, as can be observed
in the zoom-in section of Figure(4.8d). Conversely, the dark blue region denotes regions where the
volume ratio monotonically decreases. The cause of this phenomenon will be explained later when we
plot the strain response curve. The distribution of the volume ratio indicates that it can no longer be
predicted solely from the sign of the Poynting effect. It is worth noting that the noise-like distribution in
the light blue region may also be a result of our calculation. The range of applied shear strain is from
0 to 0.0005, with a constant gap of 0.00002. Thus, it is possible that the change in sign of 𝐽 − 1 is not
captured in this region.

We use the same sets of material parameters as in the previous subsection to investigate the ac-
tual curves. Figure (4.8c) plots 𝜆 − 1, which is identical to the curve under constant gap boundary
conditions. This consistency arises from the fact that the expression of 𝜆 solely depends on 𝛾. The
derivation for this will be presented in the following subsection. Comparing Figure(4.8f) with the defor-
mation gradient 𝐹𝑦𝑦 shown in Figure(4.5f), we observe that when the same shear strain is applied, the
deformation gradient in the y direction decreases. On the other hand, the values of the deformation
gradient in the x axis 𝐹𝑥𝑥 slightly increase. This implies that when the degree of freedom in the z axis is
not constrained, the normal displacement in the y axis does not exhibit the same tendency to contract;
instead, 𝐹𝑧𝑧 varies to compensate for the strain response.

Regarding the complex volume change pattern, it is evident that it is influenced by the boundary con-
dition. Since the z-direction is not restrained, the volume change is influenced jointly by 𝜉 and 𝜖. Since
𝜉 − 1 and 𝜖 − 1 always have opposite signs, the volumetric change 𝜖2𝜉 − 1 becomes more complex
under smaller shear strains.

4.4.3. Comparison between two tensors
After studying the results obtained using the general tensor, we perform a comparison between the
two tensors to assess how the change of boundary conditions affects the output. Given that the sign
of the Poynting effect from both tensors exhibits an identical distribution, it might be expected that the
differences between them may not be significant.

However, Figure(4.9) shows that the stress response behaves differently under constant gap boundary
conditions. First, we let F1 denote the tensor used in equation (3.22) in Chapter 3 and F𝑔 represent
the general tensor introduced in this chapter. Because of the constant gap B.C., 𝜆2 in equation (3.22)
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Five sets of material parameters have been selected to examine the response under 𝜅/𝜇 = 1000. The strain
response curves are illustrated in (a). In (b), (c), and (d), you can observe the curves for 𝜖, 𝜆, and dilation concerning the applied
shear strain 𝛾, respectively. The deformation gradient elements 𝐹𝑥𝑥 and 𝐹𝑦𝑦 are displayed in (e) and (f).

and 𝜉 in equation (4.1) are assigned as one. 𝜆 and 𝜖 in equation (4.1) is solved by boundary conditions
mentioned in (4.4).

All the results using F1 collapse on the same curve, which results from the fact that when the transverse
normal strain 𝜆2 is set as a constant, the stress response is independent of the bulk moduli. On the
other hand, the (𝜖−1) term depends on the bulk moduli in equation (4.6), and therefore the results vary
with respect to the choice of 𝜅. For this specific set of material variables, the curve of F1 corresponds
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to the case where the ratio is close to 𝜅/𝜇 = 100 using general tensor F𝑔. It is worth noting that for all
cases, it shows a good agreement to the slope of -2, indicating that the 𝛾2 term is always dominant in
the stress response when the shear strain is small enough.

Figure 4.9: The dashed line represents the stress-strain curve of tensor F1, which is independent of compressibility. Using the
general tensor F𝑔 shows that when the material is more compressible, namely, smaller 𝜅/𝜇 ratio, the resulting normal stress is
smaller as well.

Figure 4.10: The normal strain response curves are shown in (a). The compressibility plays a role only when F1 is used. Using
F𝑔, the strain responses show no difference.

The comparison between the two tensors under constant normal stress boundary conditions yields a
more surprising result. Figure (4.10) demonstrates that the change in Poisson’s ratio does not affect
the sign and magnitude of the normal strain response, indicating that it has no influence on the Poynting
effect. This is in clear contrast to the phenomenon observed under constant gap boundary conditions.
The reason why the strain response collapses onto the same curve will be explained in section (4.4.5).

In summary, the difference between the two tensors exhibits a completely different trend, which results
from the different assumptions about boundary conditions. For F1, the stress in the x and y directions
is not assumed to be zero because it is not presumed to be free. On the other hand, the general tensor
captures a more practical situation because, in real-world scenarios, when simple shear is applied to a
material, the x and y directions are often left unconstrained. These differences result in the compress-
ibility having no effect on the Poynting effect for F1 under constant gap boundary conditions and for
F𝑔 under constant normal stress boundary conditions. These results are not intuitive and prompt us to
conduct a simulation study to validate the findings, which will be presented in the next chapter.
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4.4.4. The effect of compressibility - Constant gap

(a) (b)

(c) (d)

Figure 4.11: (a) The normal stress-strain curves show that the slope is 2, inferring that the 𝛾2 term dominates the stress re-
sponses. In the dilation plot (b), it is noticeable that the compressibility has a great influence. When material is more compress-
ible, 𝐹𝑥𝑥 and 𝐹𝑦𝑦 both decrease, referring to a smaller expansion and a larger contraction on 𝑥 and 𝑦 direction, respectively.

In this subsection, we investigate the impact of compressibility while assuming constant gap boundary
conditions. Initially, we vary the bulk modulus across a range from 1 to one thousand, applying a com-
mon ratio of 10. This variation in bulk modulus corresponds to distinct Poisson’s ratios of 𝜈 = 0.125,
0.4516, 0.4950, and 0.4995. We select material parameters (𝑐, 𝑥) = (0.5, 0.9) for this analysis, as they
exhibit a more pronounced response to the influence of compressibility.

We start with an examination of the stress response in the z-axis, denoted as −𝜎𝑧𝑧, as illustrated
in Figure (4.11b). Our results consistently align with the expectation that an increase in bulk modulus
leads to a reduction in the magnitude of dilation.

Figure (4.11a) presents the non-dimensionalized normal stress response. It becomes evident that
as the bulk modulus increases, the negative Poynting effect becomes more pronounced.

Turning our attention to Figure (4.11c) and (4.11d), we explore the effects of compressibility on the
deformation gradient in the x and y directions. The response of 𝐹𝑥𝑥 reveals that an increase in bulk
modulus encourages expansion along the x-direction. Simultaneously, it suppresses contraction along
the y-direction.
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4.4.5. The effect of compressibility - constant normal stress

(a) (b)

(c) (d)

Figure 4.12: (a) The normal strain response curves show that the larger the ratio 𝜅/𝜇, the larger the deformation gradient in the
𝑧 direction. Also, when the material is more compressible, 𝐹𝑥𝑥 decreases, while 𝐹𝑦𝑦 stays on the same curve, implying that only
the expansion in the 𝑥 direction would be affected by the compressibility.

In this subsection, our focus shifts to investigating the impact of compressibility when the normal stress
𝜎𝑧𝑧 is maintained at a constant level. We continue to employ the same bulk modulus as in the previous
subsection.

Figure (4.12a) presents a rather unexpected outcome. It appears that the elongation in the z-direction
remains consistent across various Poisson’s ratios. This suggests that, in this specific scenario, com-
pressibility does not play a significant role in determining the sign and magnitude of the Poynting effect.
Instead, these aspects appear to be primarily influenced by the material parameters 𝑐 and 𝑥.

This finding can be explained through analytical means. Firstly, by utilizing 𝜎𝑥𝑥 and 𝜎𝑦𝑦, we can express
𝜖 and 𝜆 in terms of the other two variables, 𝜉 and 𝛾.

𝜆 = −4 + 4𝑥4 + 𝛾2 + 2𝑥2𝛾2 − 𝑐2𝜋3(−1 + 𝑥2)4(−4 + 𝛾2)
4(−1 + 𝑥2)(1 + 𝑥2 + 𝑐2𝜋3(−1 + 𝑥2)3) ,

𝜖 = −𝑐2𝜋3𝑥2(−1 + 𝑥2)4𝜇(𝛾2 − 4𝜉) + 9𝑐𝜋(−1 + 𝑥2)4𝜅(−3 + 𝜉) + 𝑥2𝜇((1 − 2𝑥2 − 2𝑥4)𝛾2 + 4(−1 + 𝑥4)𝜉)
2(−1 + 𝑥2)(−9𝑐𝜋(−1 + 𝑥2)3𝜅 + 2𝑐2𝜋3𝑥2(−1 + 𝑥2)3𝜇 + 2𝑥2(1 + 𝑥2)𝜇) .

(4.22)
The resulting normal stress 𝜎𝑧𝑧 can be represented in an alternative form, as shown in equation (4.23).
It becomes evident that when the normal stress is maintained at a constant value, specifically when it
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is set to zero, the influence of compressibility becomes negligible.

𝜎𝑧𝑧 = −
3𝑥2𝜅𝜇(−6 − 𝛾2 + 2𝑥2𝛾2 + 𝑐2𝜋3(−1 + 𝑥2)4(6 + 𝛾2 − 6𝜉) + 2𝑥4(3 + 𝛾2 − 3𝜉) + 6𝜉)

(−1 + 𝑥2)(−9𝑐𝜋(−1 + 𝑥2)3𝜅 + 2𝑐2𝜋3𝑥2(−1 + 𝑥2)3𝜇 + 2𝑥2(1 + 𝑥2)𝜇) . (4.23)

Figure (4.12b) depicts the volume change relative to the original volume, expressed as 𝜖2𝜉 − 1. This
measurement characterizes the system’s dilation, which changes sign as shear strain increases. Dila-
tional changes under constant normal stress boundary conditions are more intricate compared to those
under constant gap boundary conditions. This complexity arises because dilation is influenced by two
factors: 𝜖 and 𝜉. These two factors engage in a dynamic interplay, resulting in fluctuations in the curve
when shear strain is smaller than 10−4.

However, beyond 𝛾 = 10−4, the effect of the z-direction deformation gradient 𝜉 gradually becomes
more dominant. As a consequence, the volume exhibits a clear decreasing trend under larger shear
strains.

On the other hand, the deformation gradients in the x and y directions remain unaffected by compress-
ibility, further supporting the notion that compressibility’s impact is negligible in this specific scenario.

4.5. Strain stiffening and boundary condition
Continuing with the derivation presented in section (3.7), our objective is to assess how the boundary
conditions impact the behavior of strain-stiffening, but this time using the general tensor. In order
to describe the scenario where we maintain the normal stress 𝜎𝑧𝑧 constant, we express the normal
deformation gradient 𝜉 as shown in equation (4.24).

𝜉 = 𝜉(𝛾, 𝜖, 𝜆, 𝜎𝑧𝑧). (4.24)

In this chapter, the derivation is similar to the one used in the previous chapter. The first derivative of
the shear stress 𝜎𝑦𝑧 with respect to shear strain 𝛾 under constant normal stress is expressed as shown
in equation (4.25).

(
𝜕𝜎𝑦𝑧
𝜕𝛾 )

𝜎𝑧𝑧
= (

𝜕𝜎𝑦𝑧
𝜕𝛾 )

𝜉,𝜖,𝜆
+ (

𝜕𝜎𝑦𝑧
𝜕𝜉 )𝛾

(𝜕𝜉𝜕𝛾)𝜎𝑧𝑧
(4.25)

By applying the same method, we are able to obtain the second and the third derivative of the shear
stress, as shown in equation (4.26) and (4.27).

(
𝜕2𝜎𝑦𝑧
𝜕𝛾2 )𝜎𝑧𝑧

= ( 𝜕𝜕𝛾 (
𝜕𝜎𝑦𝑧
𝜕𝜉 )𝛾

)
𝜉
(𝜕𝜉𝜕𝛾)𝜎𝑧𝑧

+ (𝜕𝜉𝜕𝛾)𝜎𝑧𝑧
((
𝜕2𝜎𝑦𝑧
𝜕𝛾2 )𝜉

(𝜕𝜉𝜕𝛾)𝜎𝑧𝑧
+ 𝜕
𝜕𝜉 (

𝜕𝜎𝑦𝑧
𝜕𝛾 )) + (

𝜕2𝜎𝑦𝑧
𝜕𝛾2 )𝜉

+
𝜕𝜎𝑦𝑧
𝜕𝜉

𝜕2𝜉
𝜕𝛾2

(4.26)

(
𝜕3𝜎𝑦𝑧
𝜕𝛾3 )𝜎𝑧𝑧

= (
𝜕3𝜎𝑦𝑧
𝜕𝛾3 )𝜉

+
𝜕3𝜎𝑦𝑧
𝜕𝜉3 (𝜕𝜉𝜕𝛾)

3
+ 3(𝜕𝜉𝜕𝛾)

2 𝜕
𝜕𝛾
𝜕2𝜎𝑦𝑧
𝜕𝜉2 + 3 𝜕𝜕𝜉

𝜕𝜎𝑦𝑧
𝜕𝛾

𝜕2𝜉
𝜕𝛾2

+ 3𝜕𝜉𝜕𝛾 (
𝜕2𝜉
𝜕𝛾2

𝜕2𝜎𝑦𝑧
𝜕𝜉2 + 𝜕

𝜕𝜉
𝜕2𝜎𝑦𝑧
𝜕𝛾2 ) +

𝜕𝜎𝑦𝑧
𝜕𝜉

𝜕3𝜉
𝜕𝛾3

(4.27)

Then, the difference in the strain hardening under two boundary conditions could be written as:

(
𝜕3𝜎𝑦𝑧
𝜕𝛾3 )𝜎𝑧𝑧

− (
𝜕3𝜎𝑦𝑧
𝜕𝛾3 )𝜉

=
𝜕3𝜎𝑦𝑧
𝜕𝜉3 (𝜕𝜉𝜕𝛾)

3
+ 3(𝜕𝜉𝜕𝛾)

2 𝜕
𝜕𝛾
𝜕2𝜎𝑦𝑧
𝜕𝜉2 + 3 𝜕𝜕𝜉

𝜕𝜎𝑦𝑧
𝜕𝛾

𝜕2𝜉
𝜕𝛾2

+ 3𝜕𝜉𝜕𝛾 (
𝜕2𝜉
𝜕𝛾2

𝜕2𝜎𝑦𝑧
𝜕𝜉2 + 𝜕

𝜕𝜉
𝜕2𝜎𝑦𝑧
𝜕𝛾2 ) +

𝜕𝜎𝑦𝑧
𝜕𝜉

𝜕3𝜉
𝜕𝛾3

(4.28)

By applying the initial conditions, we can determine the difference in the strain-stiffening effect under
the two boundary conditions, as expressed in equation (4.29). Interestingly, the expression is exactly
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the same as the one we found in Chapter 3. Furthermore, Figure(4.13) illustrates that the response
with respect to the bulk-to-shear ratio is nearly identical.

[(
𝜕3𝜎𝑥𝑦
𝜕𝛾3 )𝜎𝑦𝑦

− (
𝜕3𝜎𝑥𝑦
𝜕𝛾3 )𝜉

]
𝛾=0,𝜉=1,𝜖=1,𝜆=1

= −3Λ1𝜒𝜆𝐿
= 3𝜒2
𝜆𝐿
. (4.29)

Figure 4.13: The strain stiffening effect performs differently under two boundary conditions. The difference is dependent on the
compressibility 𝜅/𝜇. The plot shows that different material sets may perform differently to the effect of compressibility. However,
the slope always reaches 1/(𝜅/𝜇) at a large ratio.



5
Simulation

In this chapter, our goal is to validate the results obtained in the previous chapters using the commer-
cial software COMSOL. COMSOL is a Finite-element based software known for its capability to solve
solid mechanics problems. We selected it due to its flexibility and user-friendly interface. The term
”flexibility” in this context refers to the ease of implementing user-defined functions, which is one of our
main objectives because we need to define a hyperelastic materials model in the software.

Our main focus is on the Poynting effect and how it varies with different Poisson’s ratios. Specifi-
cally, for the constant gap boundary condition, we aim to determine whether an increase in Poisson’s
ratio corresponds to an increase in the magnitude of the normal stress 𝜎𝑧𝑧. On the other hand, for the
constant normal stress boundary condition, we expect that an increase in Poisson’s ratio will have no
effect on the Poynting effect.

5.1. Simple shear in cylinder
In this chapter, our simulation will involve the application of simple shear to a cylindrical object. There-
fore, in this section, we revisit the concept of simple shear applied to a cylinder. The use of a cylindrical
geometry is common when analyzing the Poynting effect because soft matter is often placed inside
a rheometer during experiments. The strain tensor for simple shear in a cylindrical geometry can be
expressed as shown in equation (5.1).

There are two main reasons why we chose the cylindrical geometry for our simulation model. First,
it is a relatively simple geometry, making it easier for us to compare with the analytical solution. Sec-
ond, soft matter often exhibits viscoelastic or thixotropic characteristics, and the parallel plate geometry
is typically used to control oscillatory shear and measure time-dependent behaviors. Therefore, even
though we are not specifically studying viscoelasticity and thixotropy in this research, we chose the
cylindrical geometry to make it adaptable for potential future studies. However, it’s important to note
that the coordinate system becomes cylindrical, corresponding to the variables 𝑟, 𝜃, and 𝑧.𝜃, and 𝑧.

F = [
𝜖/𝜆 0 0
0 𝜖𝜆 𝛾/(𝜖𝜆)
0 0 𝜉

] (5.1)

55
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Figure 5.1: The illustration depicts the process of applying simple shear to a cylinder. The bottom of the cylinder is fixed, while
the upper plane is rotated by an angle of rotation 𝜙0. It is assumed that this angle decreases linearly as you move towards
the bottom of the cylinder along the z-axis. Additionally, the angle remains constant on each cross-section of the cylinder. The
resulting shear strain acts on the 𝜃 − 𝑧 plane of the cylinder.

To provide a clearer visualization of the cylinder’s deformation, we have illustrated the simple shear
of the cylinder in Figure (5.1). In this illustration, the cylinder has a radius denoted by 𝑅 and a gap
denoted by 𝐻. The angle of rotation at the upper plane is represented by 𝜙0. From the figure, several
key characteristics can be observed: (1) The angle of rotation 𝜙 decreases linearly with the distance
from the upper plane along the z-axis. (2) On each cross-section at a fixed z-coordinate, the angle of
rotation remains constant. (3) The displacement along the 𝜃-direction is related to the radial coordinate,
given by 𝑢𝜃 = 𝑟𝜙. Here 𝜙 denotes the angle of rotation on each cross-section at fixed z, which should
not be confused with 𝜃 denoting the coordinate of a point. Due to these characteristics, the shear
strain 𝛾 can be expressed as shown in equation (5.2). This equation highlights that the shear strain 𝛾
is independent of the z-coordinate and solely depends on the radial coordinate.

𝛾(𝑟) = 𝑟𝜙0
𝐻 (5.2)

Due to the characteristic of the shear strain distribution in the cylinder, it is necessary to perform ad-
ditional calculations to compare theoretical results with the cylindrical simulation. In our theoretical
analysis, we assume that the entire geometry undergoes identical deformation, making a single cell
representative. However, in this chapter, we realize that the assigned 𝛾0 is only accurate for 𝑟 = 𝑅0.

As we have established in previous chapters, the normal stress response is mainly determined by
the 𝛾2 term. Utilizing the linear relationship between 𝛾 and 𝑟 as described in equation (5.2), we can
derive an approximation (5.3) to calculate the stress at 𝑟 < 𝑅0. This approximation takes into account
the local variation of 𝛾 within the cylinder.

𝜎𝑧𝑧(𝑟) =
𝑟2
𝑅20
𝜎𝑧𝑧,𝑅 (5.3)

As a result of this approach, we can approximate the averaged normal stress 𝜎𝑧𝑧 as shown in equation
(5.4). In this equation, 𝜎𝑧𝑧,𝑅 represents the normal stress at 𝑟 = 𝑅0, which is a constant for a given 𝛾0.
This calculation implies that for a given 𝛾0, we can predict the average normal stress to be half of the
results obtained by directly solving the equations with 𝛾 = 𝛾0. This approximation helps us account for
the local variation of shear strain within the cylinder.

𝜎𝑧𝑧 =
1
𝜋𝑅20

∫
𝑅0

0

𝑟2
𝑅20
𝜎𝑧𝑧,𝑅2𝜋𝑟𝑑𝑟

= 𝜎𝑧𝑧,𝑅
2 .

(5.4)
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In this scenario where the normal stress is held constant while the cylinder is free to elongate along the
z-axis, reconciling the conditions becomes more complex due to the cylindrical geometry. The shear
strain 𝛾 varies with the radial coordinates, implying that the z-displacement 𝑤 should also vary with
the radial coordinate. However, the upper plane of the cylinder is assumed to deform as a rigid body,
which suggests that the displacement should be constant regardless of radial displacement.

To address these conflicting conditions simultaneously, we introduce two key assumptions: (1) The
constant normal stress boundary conditions are satisfied only in an average sense, meaning an alter-
native condition 𝜎𝑧𝑧 = 0 is applied. (2) The transverse displacement gradient 𝜉 is a constant, denoted
as 𝜉𝑐, at any point within the cylinder.

By using equation (4.23), we can establish the relationship between 𝜉𝑐 and the original value 𝜉0. The
equation takes the following form:

𝜎𝑧𝑧 = 𝐶1𝛾2 + 𝐶2(𝜉 − 1). (5.5)

And the original solution is

𝜉0 − 1 =
−𝐶1
𝐶2
𝛾20 . (5.6)

Then we calculate the solution for the cylinder. Equation (5.5) is integrated with respect to 𝛾 over 0 to
𝛾0 and the integration should result in zero. 𝜉 is replaced by a constant 𝜉𝑐.

𝜎𝑧𝑧 =
1
𝜋𝑅20

∫
𝑅0

0
(𝐶1𝛾2 + 𝐶2(𝜉𝑐 − 1))2𝜋𝑟𝑑𝑟 = 0,

⇒∫
𝛾0

0
(𝐶1𝛾2 + 𝐶2(𝜉𝑐 − 1))𝛾𝑑𝛾 = 0,

⇒𝜉𝑐 − 1 =
−𝐶1
2𝐶2

𝛾20 .

(5.7)

Therefore, we could predict that the elongation of the cylinder is half of the value of the one if the object
has a universal deformation gradient.

𝜉𝑐 − 1 =
𝜉0 − 1
2 (5.8)

Given the cylindrical geometry, the original analytical results require further treatment. We begin with
the constant gap boundary condition and make several assumptions for the analysis. Firstly, we con-
sider the local volume ratio as a function solely of the radial coordinate, with no dependence on the
transverse coordinate. Additionally, we assume that the average volume ratio can be determined by
averaging over the entire volume.

To initiate the derivation, we utilize the expression for 𝜖 as shown in equation (4.22). By applying
the boundary condition 𝜉 = 1, this expression can be further simplified as shown in equation (5.9).

𝜖 − 1 = 𝐶3𝛾2. (5.9)

The volume ratio under constant gap boundary condition is known to be calculated by 𝜖2 and therefore
the average of the volume ratio could be formulated as:

𝐽 = 1
𝜋𝑅20𝐻

∫
𝑅0

0
(𝐶3𝛾2 + 1)22𝜋𝑟𝐻𝑑𝑟 (5.10)

Using the relation (5.2), the expression of the average volume ratio becomes

𝐽 = 1 + 𝐶
2
3
3 𝛾

4
0 + 𝐶3𝛾0. (5.11)

Assuming that the original analytical solution has the relation 𝜖0 − 1 = 𝐶3𝛾20 , the average volume ratio
of the cylinder could relate to the original analytical solution by equation (5.12). Note that since 𝜖0 is
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dependent on the compressibility, therefore the average volume ratio is also expected to be affected
by the change of Poisson’s ratio.

𝐽 − 1 = 1
3(𝜖0 − 1)

2 + (𝜖0 − 1). (5.12)

Then, we derive the volume ratio under the constant normal stress relation. The volume ratio becomes
more complicated when 𝜉 is involved. First, we start with equation (4.22), only this time the z deforma-
tion gradient 𝜉 is not one, instead, it is a constant 𝜉𝑐. The expression for 𝜖 is written as equation (5.13).
The expression of the local volume ratio is known as 𝜖2𝜉 in this case. The expression for the average
volume ratio could thus be written as equation (5.14).

𝜖 − 1 = 𝐶3𝛾2 + 𝐶4𝜉𝑐 . (5.13)

𝐽 = 1
𝜋𝑅20𝐻

∫
𝑅0

0
𝜉𝑐(𝐶3𝛾2 + 𝐶4(𝜉𝑐 − 1) + 1)22𝜋𝑟𝐻𝑑𝑟 (5.14)

Using the equation (5.2) again, we obtain the following relation.

𝐽 = 𝜉𝑐 (
𝐶23
3 𝛾

4
0 + 𝐶24 (𝜉𝑐 − 1)

2 + 1 + 𝐶3𝐶4𝛾20 (𝜉𝑐 − 1) + 𝐶3𝛾20 + 2𝐶4 (𝜉𝑐 − 1)) . (5.15)

The expression is quite complex, and we have not found a straightforward way to relate it directly to the
original solution 𝜖0. However, we can still transform 𝜉𝑐 back to 𝜉0 using the relation shown in equation
(5.8).

𝐽 − 1 = (𝜉0 + 12 )(𝐶
2
3
3 𝛾

4
0 + 𝐶24 (

𝜉0 − 1
2 )

2
+ 𝐶3𝐶4𝛾20 (

𝜉0 − 1
2 ) + 𝐶3𝛾20 + 2𝐶4 (

𝜉0 − 1
2 )) + (𝜉0 − 12 ) .

(5.16)
These derivations would be used for comparison with the simulation results.

5.2. Settings
In this section, we begin setting up the finite element model (FEM) with a cylindrical geometry that has
a high gap-to-radius ratio (𝐻/𝑅), a configuration that has been used in previous studies [68]. The cylin-
der’s centerline aligns with the z-axis, and the chosen ratio for this research is set to 12, with a radius
of 0.01 meters. To achieve a highly refined mesh, we utilize a predefined unstructured quadrilateral
mesh type available in the general physics menu. The meshing process initiates from one side of the
cylinder, and the ”swept” function is applied to extend the mesh from the source face to cover the entire
domain. The geometry and mesh are depicted in Figure (5.2).

In the numerical model setup, we also focus on the effect of compressibility on the Poynting effect.
To achieve this, we utilize a blank material that allows us to specify the bulk and shear modulus of
an arbitrary material. We then replace the linear elastic material model with a hyperelastic material
model to incorporate the strain-stiffening effect. The near-incompressible mode allows us to divide the
material strain energy function into isochoric and volumetric parts. We represent the isochoric strain
invariants ̃𝐼1 and ̃𝐼2 as the variables solid.I1CIel and solid.I2CIel. Additionally, the elastic volumetric
deformation 𝐽 in the volumetric energy function is expressed as solid.Jel. We assign an arbitrary value
as the material density.

Regarding restraints in the model, a rigid connector is applied to the bottom plane of the cylinder,
and prescribed displacements are assumed, effectively fixing this plane with (𝑢, 𝑣, 𝑤) = (0, 0, 0), where
𝑢, 𝑣, and 𝑤 denote the displacements in the x, y, and z-directions, respectively. It is important to note
that the connector is set to a rigid type, functioning as a virtual rigid object to prevent internal defor-
mations. The boundary conditions on the bottom plane remain unchanged regardless of the chosen
boundary conditions.

For the upper plane, the setup differs based on whether the constant gap or constant normal stress
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boundary conditions are applied. In both cases, a rigid connector of a rigid connection type is used.
The prescribed angle of rotation 𝜙0 is assigned, with the center of rotation set as the center of the upper
plane. 𝜙0 represents the largest shear strain on the cylinder’s ring at 𝑟 = 𝑅0. We apply a range of small
but finite shear strains, typically ranging from 10−5 to 5 × 10−4.

For the constant gap boundary condition, the prescribed displacements of the center of rotation in
the x and y-directions (𝑢, 𝑣) are set to zero, and the z-direction displacement 𝑤 is also set to zero to
prevent the upper plane from moving.

In the case of the constant normal stress boundary condition, we cancel the prescribed z-direction
displacement to allow the cylinder to elongate along the z-axis. This setup enables the model to satisfy
several assumptions: first, it ensures that the cross-sections move rigidly along the z-axis, and second,
the radius remains a straight line after deformation.

Figure 5.2: An illustration of the cylindrical geometry is shown here. In this research, the gap-to-radius ratio is set to 12. Rigid
connectors are applied to both ends of the cylinder, with one end fixed and the other end assigned a prescribed angle of rotation.

5.3. Constant Gap Boundary Conditions
Under the normal gap boundary conditions, the displacement on the upper plane 𝑤(𝑥, 𝑦, 𝑧 = 𝐻) is set
to zero. For this simulation, two sets of material parameters are chosen to investigate the presence of
positive and negative Poynting effects, as well as the influence of compressibility. We mostly focus on
the normal stress response along the z-axis, 𝜎𝑧𝑧, and the average volume change, 𝐽 − 1.

To calculate the average normal stress 𝜎𝑧𝑧, the average of the normal stress on the upper plane is
taken and then normalized by the shear modulus 𝜇 for non-dimensionalization. The average volume
change 𝐽 − 1 is determined by taking the volume average over the entire domain. For comparison,
the analytical solutions for the average normal stress −𝜎𝑧𝑧 and the average volume change 𝐽 − 1 are
computed using equations (5.4) and (5.12).

In Figure (5.3a) and its zoomed-in version (5.3b), it is evident that when the material parameters are
set to (𝑐 = 0.1, 𝑥 = 0.5), both the analytical solution (solid lines) and the FEM results (dotted lines)
exhibit a positive Poynting effect. The two results closely match, making it challenging to distinguish
between them. The stress response follows a linear trend in the log-log diagram, indicating that the 𝛾2
term plays a significant role in the normal stress response in the FEM.

Upon closer examination, it becomes apparent that the general tensor F𝑔 aligns better with the simu-
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(a) (b)

(c)

Figure 5.3: For material variables (𝑐 = 0.1, 𝑥 = 0.5), the normal stress response under constant gap boundary condition curves
in (a) shows positive Poynting effect. The FEM solutions and the analytical solution are plotted by dotted lines and solid lines,
respectively. A zoom-in figure in (b) shows that the FEM and analytical solution shows the same trend that a larger Poisson’s
ratio corresponds to a larger stress. The error between the FEM and the analytical solution is shown in (c).

(a) (b)

Figure 5.4: For material variables (𝑐 = 0.1, 𝑥 = 0.5), (a) the FEM solution and the analytical solution show a good agreement on
the change of average volume ratio 𝐽 − 1. The error of each case is shown in (b).

lation results, showing that as the material becomes more compressible, the magnitude of the normal
stress decreases accordingly. The trend of normal stress under the influence of compressibility differs
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between the general tensor F𝑔 and the simple tensor F1. In the previous chapter, it was established
that the magnitude of the stress is dependent on the Poisson’s ratio when the general tensor F𝑔 is
applied, but not when using the simple tensor F1, even though the sign of the Poynting effect remains
the same for both tensors.

Lastly, we examine the error between the simulation and the analytical solution with the general tensor
F𝑔. This error is computed as 𝑒 = 1 − FEM/Analytical. In Figure (5.3c), it is evident that the error
is generally below 10%, and it decreases significantly with an increase in the bulk-to-shear modulus
ratio, which corresponds to a higher Poisson’s ratio. This phenomenon may be due to the fact that,
in the FEM model, the nearly incompressible mode is chosen. In Comsol, even when selecting the
nearly incompressible mode, it is necessary to specify the values for the bulk and shear modulus and
incorporate them into the user-defined material model. Therefore, higher Poisson’s ratios are more
suitable for this model, leading to better consistency with the analytical solution.

Figure (5.5a) to (5.5c) show the results when using material parameters (𝑐 = 0.1, 𝑥 = 0.8), which
results in a negative Poynting effect. The FEM and analytical solution using F𝑔 also exhibit the same
trend under the influence of compressibility, with a larger bulk-to-shear modulus ratio corresponding
to a larger magnitude of normal stress. The error plots in Figure (5.5c) also demonstrate that higher
Poisson’s ratios result in smaller errors.

(a) (b)

(c)

Figure 5.5: For material variables (𝑐 = 0.1, 𝑥 = 0.8), the normal stress response curves in (a) shows negative Poynting effect.
The FEM solutions and the analytical solution are plotted by dotted lines and solid lines, respectively. A zoom-in figure in (b)
shows that the FEM and analytical solution shows the same trend that a larger Poisson’s ratio corresponds to a larger stress
response. The error between the FEM and the analytical solution is shown in (c).
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(a) (b)

Figure 5.6: For material variables (𝑐 = 0.1, 𝑥 = 0.8),(a) the FEM solution and the analytical solution show a good agreement on
the change of average volume ratio 𝐽 − 1. The error of each case is shown in (b).

The change in volume ratio 𝐽 − 1 is shown in Figures (5.4a) and (5.6a). These results align with the
analytical solution, demonstrating that the positive Poynting effect is accompanied by a decrease in vol-
ume, while the negative Poynting effect is associated with an increase in volume. The curves exhibit a
straight-line behavior that monotonically increases or decreases in the log-log plots, consistent with the
derivation in equation (5.12), which relates the volume change to the shear strain through a power-law
relationship. Furthermore, the increase in Poisson’s ratio reduces the magnitude of the volume change
in both cases.

The error plots in Figures (5.4b) and (5.6b) also provide interesting insights. The errors generally
remain below 10%, which is regarded acceptable given that 𝐽 − 1 is generally small. It is noteworthy
that in both scenarios, the case with the highest Poisson’s ratio (black lines) exhibits large errors at low
shear strains 𝛾, followed by a significant decrease in errors as 𝛾 increases. One possible explanation
for this behavior is that the analytical solution yields extremely small values of 𝐽 − 1, making small
differences result in large relative errors at low shear strains.

5.4. Constant Normal stress Boundary Conditions
Under constant normal stress boundary conditions, we investigate the elongation of the cylinder and
the volume ratio using the same material parameter sets as chosen in the previous section, allowing
us to explore both positive and negative Poynting effects.

While the assumption that 𝜉 is uniform throughout the entire geometry suggests that calculating the
average of 𝜉 at the upper plane of the cylinder would be intuitive, Figure (5.7) illustrates that the distri-
bution of (𝜉−1) displays significant local variations near the boundaries. This figure compiles data from
the center of each cross-section along the z-axis. Notably, at both ends of the cylinder, the magnitude
of (𝜉 − 1) decreases sharply. Contrarily, in the middle of the cylinder, (𝜉 − 1) forms a flat, straight line,
providing a more accurate representation of the cylinder’s elongation.

To account for these local effects, we choose to analyze the displacement of the upper plane instead.
The upper plane moves as a rigid body, and its displacement is equivalent to the summation of local
deformations along the z-axis. By doing so, we aim to mitigate the local effects near both ends of the
cylinder. Consequently, the simulation results are calculated as the average displacement of the upper
plane over the gap of the cylinder, represented as avg(w)/H. The averaged volume ratio is once again
determined through the volumetric average across the entire domain.

For the sake of comparison, we compute the analytical solution for the average displacement 𝜉 − 1
and the average volume change 𝐽 − 1 using equations (5.8) and (5.16).
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Figure 5.7: The distribution of the z-direction deformation gradient is plotted against the z-coordinate and it presents a strong
boundary effect at two ends of the cylinder. The middle part of the cylinder shows a stable flat curve instead, which is more
representative when calculating the elongation of the cylinder.

Figure (5.8a) illustrates the positive Poynting effect using material parameters (𝑐 = 0.1, 𝑥 = 0.5). The
FEM results (dotted lines) show that the change in deformation gradient (𝜉 − 1) varies with the choice
of Poisson’s ratio, which differs from the analytical solution obtained in previous chapter (solid line).
A closer examination in Figure (5.8b) suggests that the analytical solution closely matches the case
where 𝜅/𝜇 = 1. All the (𝜉 − 1) results display a linear curve in the log-log plot, indicating significant
influence from the 𝛾2 term, in agreement with the derivation in Equation (5.7). The error plot reveals
that, even though the FEM outputs exhibit dependence on Poisson’s ratio, the error typically remains
below 5%. While the fact that the FEM outputs show compressibility dependence may raise questions
about the validity of tensor F𝑔, it would be premature to conclude that tensor F1 captures this charac-
teristic while F𝑔 does not.

Figure (5.10a) depicts the negative Poynting effect when material parameters (𝑐 = 0.1, 𝑥 = 0.8) are
applied. The FEM results also display a quadratic characteristic, with the only difference being they are
negative. A closer examination shows that the analytical solution almost overlaps with the FEM result
where 𝜅/𝜇 = 1000. The error plot also indicates a good correspondence between the two curves.
Except for the case of low Poisson’s ratio (red line), the errors are also below 5%.

Whether F1 captures the dependence on compressibility of the FEM model needs to be determined
based on the overall trend. When F1 is applied, it reveals that increasing incompressibility corresponds
to a smaller change in deformation gradient 𝜉 in Figure (4.10). However, the FEM model does not
align with this trend in Figure (5.8b). In this case, the most compressible scenario (red dotted line)
exhibits the largest deformation, while the second most compressible case (blue dotted line) displays
the smallest deformation. On the other hand, in Figure (5.10b), the largest change in 𝜉 corresponds to
the third most compressible case (green dotted line), while the smallest change in (𝜉 −1) corresponds
to the most compressible scenario (red dotted line).

Upon analyzing these two figures, it becomes evident that tensor F1 does not capture the dependence
on compressibility. Furthermore, it is argued that the errors actually stem from geometric factors. One
contributing factor is the random distribution of the magnitude of (𝜉 − 1) concerning compressibility.
There is no noticeable trend that would allow us to conclude how compressibility influences the Poynt-
ing effect performance in the FEM model.

Finally, we examine the volume ratio of the cylinder. In both cases, the FEM model indicates that
the model expands. However, the comparison between the FEM model and the analytical model is not
informative due to significant deviations between them.
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(a) (b)

(c)

Figure 5.8: For material variables (𝑐 = 0.1, 𝑥 = 0.5), the normal strain response curves show positive Poynting effect in (a). The
analytical solutions show no dependence on compressibility. However, the FEM solution shows a variation in strain responses,
as shown in the zoom-in figure (b). The errors in (c) are typically below 5%.

Figure 5.9: For material variables (𝑐 = 0.1, 𝑥 = 0.5), the change of volume ratio 𝐽 − 1 shows expansion of the system. The
compressibility plays a role in the volume change, where an increase in Poinsson’s ratio results in a smaller volume change.
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(a) (b)

(c)

Figure 5.10: For material variables (𝑐 = 0.1, 𝑥 = 0.8), the normal strain response curves show a negative Poynting effect in (a).
Even though for the case of 𝜅/𝜇 = 1, the deviation from the analytical solution is large, as shown in (b). However, for the rest of
the cases, the errors in (c) are typically below 5%.

Figure 5.11: For material variables (𝑐 = 0.1, 𝑥 = 0.8),

5.5. Moment response
In the preceding sections, we have examined the difference between the normal stress and strain
responses in numerical and analytical solutions. Using the same method, the shear stress response
could also be derived. Nevertheless, rather than focusing on comparing shear stress responses, our
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primary interest lies in understanding the associated moment applied to the cylinder.

(a) (b)

(c) (d)

Figure 5.12: The moment required with respect to applied shear strain under constant gap boundary condition is plotted for
material sets (a) (𝑐 = 0.1, 𝑥 = 0.5) and (b) (𝑐 = 0.1, 𝑥 = 0.8). The solid lines and dotted lines represent the analytical solution
and the numerical solution, respectively. The corresponding error plots are shown by (c), and (d).

𝑇𝜉=𝑐𝑜𝑛𝑠𝑡. =
2𝜋𝑅3
𝛾3𝑜

∫
𝛾𝑜

0
𝛾2𝜎𝑦𝑧,𝜉=𝑐𝑜𝑛𝑠𝑡.𝑑𝛾 (5.17)

The approximation of the required moment input follows a similar integration process as in the previ-
ous sections. To make the analysis more manageable, we express 𝜖 − 1 and 𝜆 − 1 as functions of
𝛾 and 𝜉, effectively reducing the shear stress dependency to these two variables. Depending on the
specific boundary conditions, we either set 𝜉 to a constant value, resulting in the expression denoted
as 𝜎𝑦𝑧,𝜉=𝑐𝑜𝑛𝑠𝑡. under the constant gap boundary condition, or 𝜎𝑦𝑧,𝜎𝑧𝑧=𝑐𝑜𝑛𝑠𝑡. under the constant normal
stress boundary condition. The formulation for 𝜎𝑦𝑧,𝜉=𝑐𝑜𝑛𝑠𝑡. is provided in Equation (5.17).

The numerical result is obtained by performing volumetric integration on 𝑟𝜎𝜃𝑧 and subsequently dividing
it by the gap of the cylinder. A comparison between Figure (5.12a) and Figure (5.12c) demonstrates a
close alignment between the numerical and analytical solutions. In particular, the moment is a function
of Poisson’s ratio, resulting in distinct lines corresponding to varying bulk-to-shear ratios. However, the
differences are minimal, giving the appearance of the curves collapsing into a single line. The error
plot clearly illustrates that as shear strain increases, the solutions diverge from each other to a greater
extent. Additionally, an increase in Poisson’s ratio leads to a reduction in error. Nevertheless, within
the range of shear strain under consideration, the error remains typically small, as evident in Figures
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(5.12b) and (5.12d).

𝑇𝜎𝑧𝑧=𝑐𝑜𝑛𝑠𝑡. =
2𝜋𝑅3
𝛾3𝑜

∫
𝛾𝑜

0
𝛾2𝜎𝑦𝑧,𝜎𝑧𝑧=𝑐𝑜𝑛𝑠𝑡.𝑑𝛾 (5.18)

(a) (b)

(c) (d)

Figure 5.13: The moment required with respect to applied shear strain under constant normal stress boundary condition is plotted
for material sets (a) (𝑐 = 0.1, 𝑥 = 0.5) and (b) (𝑐 = 0.1, 𝑥 = 0.8). The solid lines and dotted lines represent the analytical solution
and the numerical solution, respectively. The corresponding error plots are shown by (c), and (d).

A similar analysis can be conducted for the case under the constant normal stress boundary condi-
tion. In Figure (5.13a) and Figure (5.13c), the moment appears to be identical to the one under the
constant gap boundary condition. However, these two cases are actually distinct due to differences in
their mathematical expressions. Fortunately, the error between the analytical and numerical solutions
remains small.

Once the required moment is computed under both boundary conditions, we compare the difference
between them to understand how the strain-stiffening effect is affected by the boundary conditions.
This difference is calculated as (𝑇𝜉 −𝑇𝜎𝑧𝑧)/𝛾3𝑜 , where 𝑇𝜉 and 𝑇𝜎𝑧𝑧 represent the moment under the con-
stant gap and constant normal stress boundary conditions, respectively. We divide this difference by
𝛾3𝑜 because we expect that the strain-stiffening effect is primarily contributed by the cubic term of the
shear strain.

Figures (5.14a) and (5.14b) illustrate the difference in the strain-stiffening effect between the two bound-
ary conditions for materials with parameters (𝑐 = 0.1, 𝑥 = 0.5) and (𝑐 = 0.1, 𝑥 = 0.8). The dotted lines
represent the difference obtained through numerical methods, while the solid lines represent the dif-
ference obtained through analytical approximations. The solid lines are horizontal in both figures, in
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line with our prediction. However, some lines are absent because the difference becomes negative.
In comparison to the numerical data, the difference is positive, at least when the strain is sufficiently
small. It is also worth noting that the curves in the numerical data for the small strain range initially take
the form of a linear curve with a negative slope. This slope is found to be -2, suggesting that at small
strains, the difference in the moment is primarily influenced by the linear relationship with 𝛾𝑜.

(a) (b)

Figure 5.14: The difference of strain-stiffening effect between two boundary conditions is plotted with the material sets (a)
𝑐 = 0.1,𝑥 = 0.5 and (b) 𝑐 = 0.1,𝑥 = 0.8. The solid lines represent the solution from analytical approximation and the dotted lines
refer to the numerical solution. Some of the solid lines are absent because the corresponding values become negative.

5.6. Discussion
In this section, our objective is to explore the distinctions between the Comsol model and the analytical
approximation. Additionally, we seek to assess the plausibility of the boundary conditions applied in
deriving the approximation. Prior sections have highlighted the limited capacity of the analytical approx-
imation to closely match the numerical data. This difference can be attributed partially to the boundary
conditions specified earlier for analytical calculations and, in part, to certain limitations inherent to the
Comsol simulation. In the last subsection (5.6.3), we will talk about the reason behind the choice of the
particular approximation used in the preceding sections.

5.6.1. The plausibility of the boundary conditions
In the previous sections, we applied identical assumptions regarding boundary conditions as presented
in Chapters 3 and 4. However, some distinctions between this chapter and previous chapters have likely
caught your attention. In Chapters 3 and 4, when deriving the analytical solution, we assumed a cubic
geometry. In contrast, Chapter 5 implements a simulation involving a cylindrical shape. The difference
between these two geometries is primarily related to their homogeneity and the specific boundary con-
ditions imposed.

It is obvious that for the cubic geometry, deformation remains homogeneous throughout the whole
domain. This is not the case for the cylinder, where deformation varies based on the radial coordinate.
To comprehensively explore and visualize the distribution of stress and strain responses within the
cylinder, the following paragraphs utilize numerical solution data to address the distinctions between
the model and our initial assumptions.

Firstly, we investigate the applied boundary conditions. Figure (5.15a) illustrates the radial distribu-
tion of the strain 𝛾𝜃𝑧 at the middle height of the cylinder. This data is obtained under conditions where
normal stress is maintained as constant, with the material parameters set to 𝑐 = 0.1 and 𝑥 = 0.5. The
distribution appears linear, with strain dropping to zero at the center of th cross-section and peaking at
the outer edge, consistent with our original assumptions.

Figure (5.15b) shows the distribution of the normal stress 𝜎𝑟𝑟 in relation to the radial position, while
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maintaining the same boundary conditions and material parameters as in Figure (5.15a). The stress
distribution clearly indicates non-zero values and exhibits radial dependency. On the edge of the cross-
section, the stress reaches zero and gradually decreases as the radial position approaches the center.
This contrast with our assumption of zero plane stresses across the entire section is readily obvious.

(a)

(b)

Figure 5.15: An illustration of the distribution of the (a) shear strain 𝜖𝜃𝑧, and (b) the radial normal stress 𝜎𝑟𝑟 with respect to the
radial position. The zero of the x-axis corresponds to the center of the cross-section.

We also speculate the distribution of the stress 𝜎𝜃𝜃 to show that the assumptions of plane stress need
further consideration. Figure (5.16a) presents an isotherm diagram of 𝜎𝜃𝜃 instead of a curve. This
choice arises from our realization that assigning a specific value or function to the normal stress in the
𝜃 direction for solving the unknown variables in the deformation gradient tensor is not straightforward.
Our aim here is to demonstrate that the value of 𝜎𝜃𝜃 is indeed non-zero.

In Figure (5.16b), we observe the distribution of 𝜎𝑧𝑧. Both figures indicate singularities at the cen-
ters of the cross-sections.

We take this opportunity to discuss how Comsol achieved the constant normal stress boundary con-
dition. As Figure (5.16b) shows, there is a sign change in the normal stress somewhere between the
center and the edge, suggesting that the constant normal stress is achieved in an average sense. To
investigate the validity of this condition, we compute the average normal stress under the constant nor-
mal stress boundary condition and compare it to the value obtained under the constant gap boundary
condition. The distribution is depicted in Figure (5.17), with the blue curve representing the constant
gap situation and the red curve representing the constant normal stress situation. Although 𝜎𝑧𝑧 un-
der the constant normal stress condition is not zero and exhibits a similar trend to the one under the
constant gap condition, the magnitude of stress under the constant normal stress condition is nearly a
hundred times smaller. Therefore, we can conclude that Comsol successfully established the constant
normal stress boundary condition.
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(a) (b)

Figure 5.16: Using the same material set, the normal stress (a) 𝜎𝜃𝜃 and (b) 𝜎𝑧𝑧 both show a singularity point at the center. The
distribution of 𝜎𝜃𝜃 implies that it should be assumed as zero.

Figure 5.17: For material variables (𝑐 = 0.1, 𝑥 = 0.8), we compare the average transverse normal stress 𝜎𝑧𝑧/𝜇 under the
constant gap (blue curve) and constant normal stress (red curve) boundary conditions. It is shown that the magnitude of the
red line is almost a hundred times smaller than the blue line for a given shear strain, implying that the constant normal stress
boundary condition is reached.

There is one more important point that requires clarification. In section (5.1), when we derived the
approximation, we established the deformation gradient tensor in such a way that the deformation of
the cylinder depends solely on the radial position. This implies that radial deformation should not be a
function of the z position, and the geometry should remain cylindrical after deformation. However, due
to the modeling choices we have made, the upper and bottom surfaces of the cylinder are held fixed.
This constraint suppresses the radial deformation on these two surfaces, causing radial deformation to
become dependent on both the 𝑟 and 𝑧 coordinates.

The reason for not creating a model that aligns with this assumption is that it is not practically feasible to
do so. Although it has been claimed as possible in a previous paper [68], our attempts to replicate their
setup did not yield the expected results. Therefore, both surfaces are maintained as fixed boundaries
in our model, as this at least provides some similarity with the experimental observations.
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5.6.2. Analogy of the cylinder and cube
In this subsection, we will provide a brief overview of the implementation of a deformation gradient ten-
sor based on a cylindrical approach. We will also outline the challenges encountered while attempting
to solve the problem using this approach. Subsequently, we will introduce an alternative method for
deriving a different approximation of the analytical solution, grounded in cube deformation.

We start with the deformation of the cylinder that has been used in previous papers, such as [69],
as shown in equation (5.19). 𝑟,𝜃, and 𝑧 represents the deformed cylindrical frame; and 𝑅, Θ, and 𝑍
denote the reference frame. The deformation equations show that the radial deformation is solely de-
pendent on the reference radial position, the deformation in 𝜃 direction is governed by the shear, and
the deformed 𝑧 has a linear relation with the reference position 𝑍 by a factor 𝜉.

𝑟 = 𝑟(𝑅),
𝜃 = Θ + 𝜙(𝑧),
𝑧 = 𝜉𝑍

(5.19)

𝜙(𝑍) could be approximated as a linear function with respect to the Z coordinate, which we assumed as
𝜙(𝑍) = 𝜏𝑍, where 𝜏 denotes the applied rotation angle 𝜙0 over the height of the cylinder 𝐻. Following
the concept that the element of the Green-Cauchy tensor 𝑒𝜃𝑧 is only dependent on the shear strain
𝛾 = 𝑟𝜏, an extra 𝑅/𝑟 is multiplied to 𝑟𝜏. Therefore, the deformation gradient tensor could be derived.

F = [
𝑟′(𝑅) 0 0
0 𝑟

𝑅 𝑟𝜏𝑅𝑟
0 0 𝜉

] (5.20)

By applying this tensor, we assume four unknowns, which are 𝑟(𝑅), 𝑟′(𝑅), 𝜏, and 𝜉. With the deforma-
tion gradient tensor, the expressions for stresses could be derived as 𝜎𝑟𝑟, 𝜎𝜃𝜃, and 𝜎𝑧𝑧, which results
in extra three unknowns.

Then, we write down the boundary conditions

(1) 𝜎𝑟𝑟(𝑟 = 𝑅) = 0,

(2) { 𝜎𝑧𝑧 = 0
𝜉 = 1

(5.21)

Given the aforementioned boundary conditions, it is evident that one additional boundary condition is
required. The limitation arises from the inability to predefine 𝜎𝜃𝜃; instead, we must first determine the
unknowns within the tensor and then utilize the solution to calculate the value of 𝜎𝜃𝜃.

In Chapter 4, we encountered a similar problem with seven unknowns: 𝛾, 𝜖, 𝜆, 𝜉, 𝜎11, 𝜎22, and 𝜎33.
However, through the control of 𝛾 and the imposition of boundary conditions on 𝜎11 and 𝜎22, along with
an additional constraint related to either constant normal stress or a constant gap, we were able to
apply predetermined stress values in the stress-strain equations, effectively reducing the number of
unknowns to three and allowing for analytical solutions.

In contrast, in the current situation, we have seven unknowns, yet only two boundary conditions can
be applied, indicating the need for an additional assumption or relationship.

Given the complexity of the problem, our initial approach involves approximating it using cube defor-
mation. Through observation, we have noted that the deformation of the cylinder under small torsion
can be expressed using Cartesian coordinates, as illustrated in Figure (5.18).
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Figure 5.18: For material variables (𝑐 = 0.1, 𝑥 = 0.8),

To derive the deformation tensor, we first outline our assumed deformation. Based on the figure, it is
evident that the deformation in the 𝑦 direction is solely influenced by the shear strain. Consequently,
we can establish that 𝐹𝑦𝑦 remains equal to one, while 𝐹𝑦𝑧 is defined as 𝛾 = 𝑅𝜏. This assumption can
be translated into a relationship, specifically 𝜆 = 1/𝜖.

Furthermore, the cylinder has the capability to either elongate or contract along the z-axis, and its
cross-section can dilate or contract in an axisymmetric manner. Therefore, we assume that the el-
ements 𝐹𝑥𝑥 and 𝐹𝑧𝑧 take on the values of 𝜖2 and 𝜉 respectively. This results in the formation of the
corresponding tensor, as expressed in equation (5.22).

F = [
𝜖2 0 0
0 1 𝛾
0 0 𝜉

] (5.22)

Similar to the steps used in previous chapters to derive the stress responses, we obtain another set of
expressions of the stresses. The Taylor expansion of the stresses is shown in equation (5.23).

𝜎𝑥𝑥 =
2𝑥2(−1 − 4𝑥2 − 𝑥4 + 𝑐2𝜋3(−1 + 𝑥2)4)𝛾2𝜇

9𝑐𝜋(−1 + 𝑥2)4 + (−1 + 𝜖)(2𝜅 − 16𝑥
2(1 + 𝑥2 + 𝑐2𝜋3(−1 + 𝑥2)3)𝜇

9𝑐𝜋(−1 + 𝑥2)3 )

+ (𝜅 + 4𝑥
2(1 + 𝑥2 + 𝑐2𝜋3(−1 + 𝑥2)3)𝜇

9𝑐𝜋(−1 + 𝑥2)3 )(−1 + 𝜉),

𝜎𝑦𝑦 =
−2𝑥2(−2 − 2𝑥2 + 𝑥4 + 2𝑐2𝜋3(−1 + 𝑥2)4)𝛾2𝜇

9𝑐𝜋(−1 + 𝑥2)4 + (−1 + 𝜖)9 (18𝜅 + 8𝑥
2(1 + 𝑥2 + 𝑐2𝜋3(−1 + 𝑥2)3)𝜇

𝑐𝜋(−1 + 𝑥2)3 )

+ 19(9𝜅 +
(4𝑥2(1 + 𝑥2 + 𝑐2𝜋3(−1 + 𝑥2)3)𝜇)

(𝑐𝜋(−1 + 𝑥2)3) )(−1 + 𝜉),

𝜎𝑧𝑧 =
2𝑥2(−4 + 12𝑥4 − 8𝑥6 + 4𝑐2𝜋3(−1 + 𝑥2)6 + 8𝑥2(2 − 3𝑥2 + 𝑥6))𝛾2𝜇

9𝑐𝜋(2 − 6𝑥2 + 6𝑥4 − 2𝑥6)2

+ (−1 + 𝜖)(2𝜅 + 8𝑥
2(1 + 𝑥2 + 𝑐2𝜋3(−1 + 𝑥2)3)𝜇

9𝑐𝜋(−1 + 𝑥2)3 ) + (𝜅 − 8𝑥
2(1 + 𝑥2 + 𝑐2𝑝𝑖3(−1 + 𝑥2)3)𝜇

9𝑐𝜋(−1 + 𝑥2)3 )(−1 + 𝜉),

𝜎𝑦𝑧 =
−2𝑥2(1 + 𝑥2 + 𝑐2𝜋3(−1 + 𝑥2)3)𝛾𝜇

3𝑐𝜋(−1 + 𝑥2)3 − 4𝑥
4(1 + 𝑥2)𝛾3𝜇

3𝑐𝜋(−1 + 𝑥2)5 +
4𝑥2(−5 − 8𝑥2 + 𝑥4 + 5𝑐2𝜋3(−1 + 𝑥2)4)𝛾(−1 + 𝜖)𝜇

9𝑐𝜋(−1 + 𝑥2)4

+ 4𝑥
2(−1 + 2𝑥2 + 2𝑥4 + 𝑐2𝜋3(−1 + 𝑥2)4)𝛾𝜇(−1 + 𝜉)

9𝑐𝜋(−1 + 𝑥2)4 .
(5.23)

The boundary conditions for solving the problem are given as follows.
(1) 𝜎𝑥𝑥 = 0,

(2) { 𝜎𝑧𝑧 = 0
𝜉 = 1

(5.24)
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The solution for the unknowns has been obtained, allowing us to derive the average normal stress
𝜎𝑧𝑧/𝜇 and the elongation in the z-axis 𝜉 using integration methods. For brevity, the explicit expressions
of 𝜎𝑧𝑧/𝜇 and 𝜉 are not presented here as they involve rather complicated mathematical forms.

A comparative analysis between the analytical approximation and the numerical solution is depicted in
Figure (5.19). In this figure, the dotted lines represent the results obtained through simulation, while
the solid lines correspond to the approximation employed in this subsection. Figure (5.19a) illustrates
the elongation under the constant normal stress boundary condition, and Figure (5.19b) illustrates the
response of the average normal stress, denoted as −𝜎𝑧𝑧/𝜇.

It is worth noting that solid lines other than the red ones are absent in the figures. This is because the
values of these curves become negative, indicating that an increase in the Poisson’s ratio contributes
to a tendency toward a negative Poynting effect. This outcome notably diverges from the observation
made in the simulation results.

(a) (b)

Figure 5.19: For material variables (𝑐 = 0.1, 𝑥 = 0.8),(a) the FEM solution and the analytical solution show a good agreement
on the change of average volume ratio 𝐽 − 1. The error of each case is shown in (b).

5.6.3. Solving by cylindrical deformation gradient tensor
In the preceding subsection, we introduced a general assumption for the cylindrical deformation gradi-
ent tensor, as denoted in equation (5.20). It was also highlighted that the boundary conditions provided
in equation (5.21) are insufficient to fully solve the problem.

A proposed solution, commonly mentioned in previous research papers to address this issue, involves
the concept of stress equilibrium. Given that the stresses 𝜎𝑟𝜃 and 𝜎𝑟𝑧 are both zero, the equilibrium of
stress in the r-direction yields the relationship expressed in equation (5.25). Ideally, this relationship
offers a means to effectively solve the problem.

𝑑𝜎𝑟𝑟
𝑑𝑟 + 𝜎𝑟𝑟 − 𝜎𝜃𝜃𝑟 . (5.25)

Nonetheless, when we derive the stress expressions using the deformation gradient tensor (5.20) and
insert them into relation (5.25), it leads to a nonlinear, homogeneous, second-order ordinary differential
equation. This equation takes the form displayed in equation (5.26), where the coefficients 𝐴𝑛 are
placeholders for various parameters.

𝐴1𝑅2𝑟𝑟″ = 𝐴2𝑅𝑟𝑟′ + 𝐴3𝑅2𝑟′2 + 𝐴4𝑟2 + 𝐴5𝑅4𝑟′ + 𝐴6𝑅3𝑟. (5.26)

Due to the inherent nonlinearity of the equation, finding a straightforward solution has proven to be
challenging. Moreover, our search for previous papers did not yield any instances where the equation
was solved directly. Instead, most researchers have resorted to alternative methods aimed at simpli-
fying or approximating the solution.
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For instance, in reference [70], deformation is approximated by linearly combining extension and tor-
sion, which is a relatively intricate method. For the rest of this subsection, we will adopt another sim-
plification used in [68].

Another assumption has been made in [68]. In this research, the deformation in the radial direction
is assumed as 𝑟 = 𝜖𝑐𝑅, where 𝜖𝑐 = 𝐹𝑟𝑟 is a constant. It suggests that the radial deformation gradient
is universal inside the cylinder. The shear in the 𝑟𝜃 plane is zero because of the axisymmetric nature
of the cylinder under torsion, which corresponds to 𝜆 = 1. The deformation gradient could therefore be
written as equation 5.27 and the number of unknowns reduces to three.

F = [
𝜖𝑐 0 0
0 𝜖𝑐 𝛾/𝜖𝑐
0 0 𝜉

] (5.27)

In the following paragraphs, we will analyze the response of this tensor and conduct a comparative
analysis with simulation results. By applying the deformation gradient tensor, we derive a new set of
stress expressions and their corresponding Taylor expansions. Rather than presenting the complete
set of expressions here, readers can refer to the Taylor expansions derived in equations (4.6) to (4.9)
and set 𝜆 = 1 for the specific stress expressions. As a result, we omit the detailed stress expressions
in this section.

With the assumption of 𝜆 = 1, we proceed to derive the analytical solution for the average stress
𝜎𝑧𝑧 and the elongation 𝜉𝑐 using the following methodology. Initially, we apply the first boundary con-
dition specified in equation (5.21) to establish an expression for 𝜖𝑐 − 1 in terms of 𝛾 and 𝜉. As this
boundary condition exclusively applies to the side surface, this expression for 𝜖𝑐 − 1 also becomes a
function of the shear strain at the surface, denoted as 𝛾𝑜.

𝜖𝑐 − 1 =
9𝑐𝜋(−1 + 𝑥2)4𝜅(−3 + 𝜉) + 2𝑐2𝜋3𝑥2(−1 + 𝑥2)4𝜇(𝛾2𝑜 + 2𝜉) − 2𝑥2𝜇((1 + 4𝑥2 + 𝑥4)𝛾2𝑜 − 2(−1 + 𝑥4)𝜉)

2(−1 + 𝑥2)(−9𝑐𝜋(−1 + 𝑥2)3𝜅 + 2𝑐2𝜋3𝑥2(−1 + 𝑥2)3𝜇 + 2𝑥2(1 + 𝑥2)𝜇) − 1
(5.28)

The expression of 𝜖𝑐 − 1 is then applied to 𝜎𝑧𝑧 so that it also becomes a function of 𝛾, 𝛾𝑜 and 𝜉. Then,
by employing the relevant second boundary condition and integrating the expression over the range
from 𝛾 = 0 to 𝛾 = 𝛾𝑜, we are able to derive expressions for 𝜎𝑧𝑧 and 𝜉𝑐. These expressions are notably
complex, and for the sake of brevity, we have omitted them in this context.

(a) (b)

Figure 5.20: For material variables (𝑐 = 0.1, 𝑥 = 0.8),(a) the FEM solution and the analytical solution show a good agreement
on the change of average volume ratio 𝐽 − 1. The error of each case is shown in (b).

The comparative analysis between the analytical approximation and the numerical solution is presented
in Figure (5.20). It’s worth noting that the solid lines corresponding to higher Poisson’s ratios are absent
from the figures, as their values become negative. This observation indicates that the approximation
does not yield a satisfactory result in these cases.
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5.6.4. The choice of the analytical approximation
Previous attempts to approximate the numerical results have yielded unsatisfactory outcomes, par-
ticularly due to the fact that, in the numerical investigation, the Poisson’s ratio (i.e., compressibility)
does not impact the sign of the Poynting effect. We chose not to pursue the approximation method
implemented in reference [70], which combines extension and torsion to approximate simple shear,
recognizing that it still constitutes an approximation and, particularly, a complicated one. Our primary
goal is to establish a straightforward means of predicting the sign of the Poynting effect, rather than
striving for a more accurate approximation of the numerical results.

The final choice we adopted, as previously introduced in subsection (5.1) and applied for compara-
tive studies, is based on its similarity to the tensor in Equation (5.20), where the elements 𝐹𝑟𝑟 and
𝐹𝜃𝜃 are treated as distinct variables. We believe that the degree of freedom we introduced in this
approach significantly influenced the final results. Therefore, even if the boundary condition in the 𝑟
direction cannot be perfectly replicated, we can still obtain results that exhibit a high degree of similarity.

A final point of discussion focuses on why both cylindrical and cubic geometries exhibit identical signs
of the Poynting effect within the context of our chosen model and material sets. Our comparative study
has indicated that the analytical approximation aligns well with the numerical solutions, suggesting that
the sign of the Poynting effect in the cylinder is indeed primarily contingent on the material parameters
(c, x). Therefore, this consistency in sign is maintained under both boundary conditions.

In essence, the similarity in sign between the cylindrical and cubic geometries marks the significance
of the underlying material properties in determining the sign of the Poynting effect. These findings em-
phasize that, for the specific model and material parameters considered, the geometrical differences
between cylindrical and cubic setups do not introduce any change in the sign of the Poynting effect.
Instead, the material parameters remain the key factor in shaping this phenomenon.





6
Conclusion

In Chapter 3 and Chapter 4, we have proven that the choice of the tensor is a crucial part of studying
the stress-strain response under two main boundary conditions set: constant height boundary condi-
tion and constant normal stress boundary condition. We investigated two different deformation gradient
tensors. The tensor F1 is a tensor used by the past papers that only included two variables, which are
shear strain 𝛾 and the transverse deformation gradient 𝜆2. The other tensor is a more general tensor F𝑔
that includes two more variables: 𝜖 and 𝜆, which correspond to the dilation and shear on the xy-plane.
The strain energy function proposed by Meng is then applied to the tensors. After transforming Meng’s
model into an isochoric function and adding an extra volumetric part, the expression of the stress com-
ponents could be explicitly calculated with different Poisson’s ratios. It is worth noting that, since we
only focus on the small but finite strains in this research, therefore, the Taylor expansion of the expres-
sions of stress components is derived since it is easier for us to obtain numerical solutions. For tensor
F1, the control variable is 𝛾, and therefore only one boundary condition is required to compute another
variable 𝜆2. Namely, we cannot say anything about the normal stresses in the other two directions. On
the other hand, the introduction of two other variables enables us to define the boundary conditions in
the other two directions using tensor F𝑔. The normal stress in the other two directions is assumed to
be traction free, therefore 𝜎𝑥𝑥 = 0 and 𝜎𝑦𝑦 = 0 are applied. The difference in the boundary conditions
results in a huge deviation of the final results.

Under constant height boundary conditions, where the transverse deformation gradient 𝜆2 or 𝜉 are
held as one, the normal stress response in the z-direction 𝜎𝑧𝑧 always shows the same sign of the
Poynting effect. However, the magnitude of the normal stress shows distinct characteristics. The mag-
nitude of the normal stress does not vary with Poisson’s ratio when F1 is applied. On the other hand,
the general tensor F𝑔 shows that the magnitude of the normal stress increases with the Poisson’s ratio
reaching 0.5. The change of volume ratio 𝐽−1 is also different for each tensor. Since for F1, the volume
ratio 𝐽 always equals one under this boundary condition, therefore, the system becomes isochoric. The
general tensor F𝑔, on the other hand, shows that the system always performs the opposite sign as the
Poynting effect. For example, the positive Poynting effect always corresponds to the shrinking of the
system. Also, since we introduce two more variables in F𝑔, we also found that the dilation factor 𝜖 − 1
on the xy-plane always shows opposite sign as well, inferring that the positive Poynting effect causes
𝜖 to show the tendency to shrink on the xy-plane. The other parameter 𝜆 − 1 is always negative dis-
regarding the sign of the Poynting effect, inferring that under the constant height boundary condition,
the shear factor 𝑙𝑎𝑚𝑏𝑑𝑎 on the xy-plane shows the tendency to elongate in the x-direction and shrink
in the y-direction. These two factors together result in an elongation in the x-direction and a shrink in
the y-direction, indifferent to the sign of the Poynting effect.

Under the constant normal stress boundary condition, the sign of the Poynting effect under both bound-
ary conditions is also identical. The normal stress in the transverse direction is set as zero, which stems
from the fact that at the initial state, the transverse normal stress should be stress-free if no prestress is
applied. The transverse deformation gradient 𝜆2 in F1 and 𝜉 in F𝑔 will vary with the shear strain. For F1,
the transverse deformation gradient 𝜆2 could be obtained simply by solving 𝜎𝑦𝑦 = 0. With the increase
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of Poisson’s ratio, 𝜆2 decreases for a given 𝛾. On the other hand, 𝜉 in F𝑔 does not vary with the Pois-
son’s ratio. The volume change 𝐽−1 of the tensor F1 equals 𝜆2−1 since the other two principle strains
equal one, therefore the sign of 𝐽−1 is identical to 𝜆2−1, thus it is dependent on the Poisson’s ratio. For
F𝑔, however, the sign of 𝐽−1 is hard to predict. The volume ratio 𝐽 = 𝜖2𝜉 is in a tug-of-war between two
strain variables, therefore, there is no monotonic feature. Instead, the ratio fluctuates beyond and be-
low 𝐽 = 1 under small shear strain. Within the xy-plane, it is found that 𝜆, which represents the shear in
xy-plane, is identical under both boundary conditions. Therefore, it also contributes to the tendency to
expand in the x-direction and contract in the y-direction. On the other hand, 𝜖−1, representing the dila-
tional change in xy-plane, always shows the opposite sign with 𝜉−1. Combining these two factors, the
system shows expansion in the x-direction, namely, 𝐹𝑥𝑥 > 1, and contraction in the y-direction, 𝐹𝑦𝑦 < 1.

In this thesis, we have successfully constructed a method to predict the sign of the Poynting effect
under small but finite strain by simply analyzing the chosen material parameters, without actually cal-
culating the stress-strain responses. The method is primarily based on Maxwell’s relation, which has
been derived for both of the tensors. It is worth noting that, because of the range of shear strain that
we are interested in, the Taylor expansions of the stresses are used. It is found that under the con-
stant height boundary condition, the sign of both tensors could be determined solely by the sign of the
Poynting coefficient 𝜒, which is the coefficient of the 𝛾2 term of the transverse normal stress. More-
over, the expression for 𝜒 is identical for both tensors. Under the constant normal stress boundary
condition, the sign could be predicted cooperatively by the sign of the Poynting effect 𝜒 and 𝜆𝐿, which
represents the coefficient of the 𝜉 or 𝜆2 term in the transverse normal stress. The expression of the
prediction could be written as −𝜒/𝜆𝐿. In both cases, 𝜆𝐿 is always negative and thus cancels out the
effect of the minus sign. Therefore, the distribution of the sign of the predictor is identical to the one of 𝜒.

The difference between the strain-stiffening effect in the shear stress under each boundary condition
shows that the extent of the difference could be represented by an expression 3𝜒2/𝜆𝐿. It infers that the
Poynting coefficient 𝜒 does not contribute to the sign of the expression since it is a square term. Also,
taking into account that the coefficient 𝜆𝐿 is always negative because of the chosen model, we con-
clude that the strain-hardening effect is always more pronounced under the constant height boundary
condition than under the constant normal stress boundary condition.

Lastly, we have implemented a simulation in Comsol. The simulation shows good alignment with the
analytical prediction of the sign of the Poynting effect. One interesting result is that even though the ge-
ometry changes, the sign still remains identical. We believe the reason behind this phenomenon is that,
under simple shear deformation, the sign is solely dependent on the material set, the end-to-end ratio,
and the stiffness parameter. Therefore, the geometry only affects the magnitude of the responses, but
not the sign of the Poynting effect.
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Recommendations

Viscoelasticity

In this investigation, we present evidence indicating that compressibility does not influence the sign of
the Poynting effect. This discovery contradicts experimental observations, where compressible mate-
rials tend to exhibit a greater potential of displaying a negative Poynting effect, whereas the majority of
incompressible materials exhibit a positive Poynting effect. Our analytical solution has effectively pre-
dicted the Poynting effect’s direction, a validation further supported by a numerical model using Comsol.
This leads us to speculate that viscoelasticity may underlie the observed sign change. As discussed in
Chapter 2, soft matter materials may exhibit viscoelastic properties, resulting in time-dependent defor-
mation. This concept aligns with the findings presented in the paper referenced as [71], which explores
how the Poynting effect’s sign evolves over time. Notably, in the paper [1] that inspires this research,
the experimental data was collected after subjecting the material to a certain shear strain for 10 sec-
onds. Although we initially assumed quasi-static deformation, it is plausible that it is time-dependent,
thereby affecting the Poynting effect’s sign.

Effect of porosity

Expanding upon the aforementioned point, there exists another intriguing possibility worth exploring.
In our analysis of the Poynting coefficient, denoted as 𝜒 and elaborated upon in Chapter 4, a crucial
observation emerges: its expression remains unaffected by Poisson’s ratio. This implies that 𝜒 solely
depends on the shear modulus 𝜇, regardless of the bulk modulus 𝜅. Furthermore, it is noteworthy that
𝜒 is directly proportional to the magnitude of 𝜇, meaning that altering the shear modulus’s magnitude
does not alter the sign of 𝜒. This characteristic appears to be a universal phenomenon, regardless of
the specific volumetric energy density function employed.

The underlying reason for this phenomenon can be traced to the derivation of the 𝛾2 term within 𝜒,
which exhibits independence from the choice of volumetric energy density function. Instead, it relies
solely on the isochoric part of the energy density function. Given our successful validation of 𝜒 through
numerical solutions, we propose that any mechanism by which compressibility influences the Poynting
effect’s sign must inherently involve the bulk modulus 𝜅 within the Poynting coefficient.

One potential approach involves incorporating the effect of porosity within the isochoric component.
Porosity inherently engages both the shear and bulk moduli, as evidenced in paper [72], where the orig-
inal shear and bulk moduli are transformed into their effective counterparts. Nevertheless, replacing
the shear modulus with its effective counterpart does not resolve the issue, as 𝜒 remains proportional
to the shear modulus, thus the sign remains unchanged. The proposed solution involves introducing
an independent term that consists of the isochoric invariants, ̃𝐼1 or ̃𝐼2, while exclusively involving the
bulk modulus. By incorporating this new term, we aim to enable a competitive interplay between the
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individual 𝜇 and 𝜅 components within 𝜒, with the hope of inducing a change in sign as the Poisson’s
ratio varies.

While adding an extra term seems to be straightforward, a more rigorous derivation of how this func-
tion should be incorporated needs further investigation. As a result, this research acknowledges the
potential for such a modification without presenting a definitive solution at this stage.

The setting of the numerical model

In Chapter 5, we discussed our attempt to replicate the findings from [68] using the Comsol model. Un-
fortunately, this endeavor did not yield results consistent with the referenced study. Consequently, it
became evident that the geometry of the cylinder in our model underwent significant alterations follow-
ing deformation. Although our Chapter 5 model was designed to closely mimic the experimental setup,
it is advisable for future researchers to explore alternative approaches. This could involve utilizing dif-
ferent finite element analysis (FEM) software or adjusting the model settings to achieve a deformation
gradient tensor that aligns with the initial assumption. It is important to highlight that the ideal setup may
not be possible to implement with the latest version of Comsol, as per our experience when reaching
out to customer support for assistance.

By verifying and ensuring the validity of this assumption, we anticipate that the strain response 𝜉 in
its cylindrical form will no longer exhibit a dependency on the z-position. This attempt can enhance
the accuracy and reliability of the modeling process, ultimately leading to a better representation of the
experimental outcomes.

Approximation

The approximation applied in Chapter 5 has demonstrated its utility in determining the sign of the Poynt-
ing effect, and to a certain extent, estimating both themagnitude of the Poynting effect and the alteration
in volume ratio. However, it is worth noting that this approximation, while effective, may not represent
the optimal approach available.

Our study did not comprehensively explore all the existing literature on methods to approximate the
deformation of a cylinder under torsion. There are alternative proposals within this field that need fur-
ther investigation. These alternative methods hold the potential to refine our understanding and provide
more precise approximations for modeling the deformation process, ultimately enhancing the accuracy
of our predictions and analyses. Future research endeavors should consider exploring these promising
alternatives to advance the field’s knowledge and capabilities.

Strain-stiffening effect

In Chapter 5, we presented evidence suggesting that the approximation method could successfully
predict the phenomenon of strain stiffening. However, an important observation emerged regarding
the difference in the strain stiffening effect under two distinct boundary conditions. This difference be-
tween the boundary conditions did not align with our initial expectations, as it revealed that the strain
stiffening effect is primarily dictated by the shear strain 𝛾 in a linear fashion under small 𝛾, rather than
the anticipated cubic relationship.

This outcome implies the need for a more in-depth investigation into our initial assumptions and ex-
pectations regarding strain stiffening. It indicates that our understanding of the underlying mechanisms
may be incomplete or, not entirely accurate. Therefore, further research to examine the nuances of
strain-stiffening effect is recommended.
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