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Abstract: We present a model predictive control framework for a class of nonlinear systems
affected by additive stochastic disturbances with (possibly) unbounded support. We consider
hard input constraints and chance state constraints and we employ the unscented transform
method to propagate the disturbances over the nonlinear dynamics in a computationally efficient
manner. The main contribution of our work is the establishment of sufficient conditions for
stability and recursive feasibility of the closed-loop system, based on the design of a terminal
cost and a terminal set. We focus here on a special class of nonlinear systems that exhibit
contractive properties in the dynamics. By assuming this property, we propose a novel approach
to efficiently compute the terminal conditions without the need of performing any linearization of
the dynamics. Finally, we provide an illustrative example to corroborate our theoretical findings.
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1. INTRODUCTION

Model Predictive Control (MPC, (Rawlings et al., 2017)) is
a well-established control paradigm for dynamical systems,
owing to its strong theoretical properties and its ability
of systematically handling state and input constraints.
However, many real-world applications are subject to
stochastic uncertainties that can affect the performance of
the system in terms of cost, safety, and reliability. Two
main approaches have been proposed in the literature
to deal with uncertainties. On one side, robust MPC
(Bemporad and Morari, 1999) addresses the worst-case
disturbances in a bounded uncertainty set. However, the
resulting policy is often tagged as too conservative (Köhler
et al., 2019). On the other side, stochastic MPC (SMPC,
(Mesbah, 2016)) provides constraints satisfaction with
a desired level of probability in favor of better closed-
loop performances, allowing to take into account possibly
unbounded disturbances.

While SMPC has been successfully applied in the context
of linear systems (see for example (Farina et al., 2013;
Hewing and Zeilinger, 2018), and (Farina et al., 2016) for
a complete review), stochastic model predictive control of
nonlinear systems (SNMPC) has received relatively little
attention in the literature. This is mainly due to (i) the
computational complexity associated with the propagation
of the uncertainty through the nonlinear dynamics; and
(ii) the difficulty in encoding tractable sufficient conditions
to ensure stability and recursive feasibility guarantees.
While the first problem has been extensively studied
in the literature with Gaussian mixture approximations
(Weissel et al., 2009), unscented transformation (Völz and
Graichen, 2015), and polynomial moments-based methods

(Paulson et al., 2015), the second problem has not found
yet a satisfactory solution in the literature.

The analysis of stability guarantees in SNMPC is typi-
cally addressed by assuming the existence of a Lyapunov
function that exhibits a decrease in expectation, usually
enforced by means of a terminal cost in the objective func-
tion of the MPC program. For example, (McAllister and
Rawlings, 2021) assume the existence of a Lyapunov func-
tion, without providing a way of computing it explicitly. In
other works, such as (Buehler et al., 2016; Paulson et al.,
2015), the computation of a suitable Lyapunov function
is tackled via linearization of the dynamics, allowing to
use the controller only where the linear approximation
holds, which typically translates in a restricted region of
attraction. Concerning recursive feasibility, in (McAllister
and Rawlings, 2021) the problem is addressed by assuming
the existence of a robust invariant terminal set, which,
however, requires the uncertainty to be bounded. Fur-
thermore, computing a terminal set with an invariance
property can be challenging for a system with nonlinear
dynamics (Lazar and Tetteroo, 2018; Yu et al., 2013). In
summary, deriving sufficient conditions to enforce stability
and recursive feasibility of SNMPC schemes is an open
problem, due to the complexity of explicitly designing a
terminal cost and a terminal set, and due to potentially
large disturbances that might steer the state of the system
arbitrarily far from a desired constraint set.

In this work, we consider a class of nonlinear systems that
exhibit contractive properties in the dynamics. Contrac-
tive systems appear in many applications, such as system
biology (Russo et al., 2011) and control of biochemical
reactors (Aminzare and Sontagy, 2014). Furthermore, con-
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Switzerland (e-mail: {mfochesato, linhuang}@ethz.ch)

Abstract: We present a model predictive control framework for a class of nonlinear systems
affected by additive stochastic disturbances with (possibly) unbounded support. We consider
hard input constraints and chance state constraints and we employ the unscented transform
method to propagate the disturbances over the nonlinear dynamics in a computationally efficient
manner. The main contribution of our work is the establishment of sufficient conditions for
stability and recursive feasibility of the closed-loop system, based on the design of a terminal
cost and a terminal set. We focus here on a special class of nonlinear systems that exhibit
contractive properties in the dynamics. By assuming this property, we propose a novel approach
to efficiently compute the terminal conditions without the need of performing any linearization of
the dynamics. Finally, we provide an illustrative example to corroborate our theoretical findings.

Keywords: Nonlinear model predictive control, stochastic systems, chance-constrained optimal
control

1. INTRODUCTION

Model Predictive Control (MPC, (Rawlings et al., 2017)) is
a well-established control paradigm for dynamical systems,
owing to its strong theoretical properties and its ability
of systematically handling state and input constraints.
However, many real-world applications are subject to
stochastic uncertainties that can affect the performance of
the system in terms of cost, safety, and reliability. Two
main approaches have been proposed in the literature
to deal with uncertainties. On one side, robust MPC
(Bemporad and Morari, 1999) addresses the worst-case
disturbances in a bounded uncertainty set. However, the
resulting policy is often tagged as too conservative (Köhler
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traction theory has important applications in stability
of nonlinear systems (Köhler et al., 2020). We assume
that the system is affected by additive stochastic distur-
bances with a possibly unbounded support, and that it
is subject to hard input constraints and probabilistic state
constraints. We provide an MPC framework equipped with
guarantees, both for stability, intended as a bound on the
expected value of the infinite-horizon closed-loop cost, and
recursive feasibility. For this class of nonlinear systems, we
propose a novel approach to efficiently compute the termi-
nal cost and the terminal set leading to the sought closed-
loop properties. Compared with the previously mentioned
works, the proposed algorithm ensures stability and recur-
sive feasibility globally without resorting to linearization.
We finally propose an illustrative example to show our
theoretical findings.

Notation. Let R≥0 denote the set of non-negative real
numbers. Given a square matrix A, ∥x∥2A denotes the
quadratic form defined as x⊤Ax, while ρ(A) is its spectral
radius and tr(A) its trace. We write A ≥ 0 to say that
the matrix A is positive semi-definite. Let x be a n-
dimensional random vector. We denote µ := E[x] ∈ Rn and
Σ := V[x] ∈ Rn×n, where E[ · ],V[ · ] denote the operators
associated to the expected value and the covariance. The
diagonal elements of Σ, namely the variance of each entry
of x, are denoted by σ2

i . The n-dimensional identity matrix
is denoted by In.

2. PRELIMINARIES

2.1 Problem Formulation

We consider a nonlinear discrete-time system affected by
additive stochastic disturbances:

x(k + 1) = f(x(k), u(k)) + w(k), (1)

where k is the discrete time index, f : Rn × Rm → Rn is
the system dynamics, x ∈ Rn, u ∈ Rm, and w ∈ Rn are
respectively the state, the control input, and the distur-
bances. The disturbances are assumed to be distributed
according to a zero-mean distribution with possible un-
bounded support. We denote as Σw its covariance matrix,
which is assumed to be element-wise bounded.

We assume that the system has an equilibrium in (x̄, ū) =
(0, 0), which is a non-restrictive assumption since there
always exists a linear transformation that maps a generic
equilibrium (x̄, ū) to (0, 0). The goal of the controller is to
stabilize the system around the origin by minimizing the
expected value of a quadratic cost function, while fulfilling
chance state constraints and hard input constraints of the
form, respectively:

P(xi(k) ≤ xub
i ) ≥ 1− εubi , i = 1, . . . , n (2)

P(xi(k) ≥ xlb
i ) ≥ 1− εlbi , i = 1, . . . , n (3)

ulb ≤ u(k) ≤ uub, (4)

for all k ∈ N. Here, xlb, xub ∈ Rn and ulb, uub ∈
Rm are upper and lower bounds for the state and the
input, while εubi , εlbi ∈ (0, 1) are risk-tolerance parameters.
Furthermore, we assume xlb

i ≤ 0 ≤ xub
i , i = 1, . . . , n, and

ulb
j ≤ 0 ≤ uub

j , j = 1, . . . ,m, i.e. (x̄, ū) = (0, 0) is a feasible
equilibrium point.

We consider the class of nonlinear systems that satisfy the
following assumption:

Assumption 1. The function f(·, ·) is Lipschitz continuous
in its first argument, namely, for any x1, x2, u:

∥f(x1, u)− f(x2, u)∥2 ≤ L∥x1 − x2∥2, (5)

for some L ∈ (0, 1). □

In other words, we require the system dynamics to be
contractive in the state, but we allow for an increase of
the norm of the state due to the input. Let i|k denote
the i-th predicted step at the (closed-loop) iteration k, for
i = 0, ..., N − 1, where N denotes the prediction horizon.
Then, given an initial value x(0|k), we aim to solve the
following finite-horizon stochastic optimal control problem
in a receding horizon manner:

min
x(i|k),x(N |k),

u(i|k),
i=0,...,N−1

E

[
N−1∑
i=0

(
∥x(i|k)∥2Q + ∥u(i|k)∥2R

)
]

+ E
[
∥x(N |k)∥2P

]
(6a)

s.t. x(0|k) = x(k) (6b)

x(i+ 1|k) = f(x(i|k), u(i|k)) + w(i|k) (6c)

P(xj(i|k) ≤ xub
j ) ≥ 1− εubj , j = 1, ..., n (6d)

P(xj(i|k) ≥ xlb
j ) ≥ 1− εlbj , j = 1, ..., n (6e)

ulb ≤ u(i|k) ≤ uub (6f)

x(N |k) ∈ Xf (6g)

i = 0, ..., N − 1.

Here, the cost function is quadratic, where we assume
Q,P ∈ Rn×n ≥ 0, and R ∈ Rm×m > 0, and Xf is a
terminal set. Problem (6) is computationally intractable
due to the chance constraints (6d), (6e), which require the
computation of multivariate integrals over the distribution
of the state, and due to the propagation of the disturbances
through the nonlinear dynamics. Hence, in the next section
we propose a tractable reformulation of (6).

3. TRACTABLE REFORMULATION

3.1 Uncertainty Propagation

Propagating random variables through nonlinear functions
is one of the main challenges in SNMPC. In this work
we employ the unscented transform (UT), which has been
originally introduced in the context of filtering (Julier and
Uhlmann, 1997), and successfully applied in stochastic
control problems (Völz and Graichen, 2015; Liu et al.,
2014).

The uncertainty propagation problem is as follows. Given
an n-dimensional (not necessarily Gaussian-distributed)
random variable x with mean µ and covariance Σ, we
wish to compute the statistical moments of the probability
distribution of y = f(x) ∈ Rm, where f denotes a generic
nonlinear function f : Rn → Rm. The UT method consists
in the following steps:

1) Given a freely chosen tuning parameter κ ∈ R,
compute 2n + 1 weights w(i), and 2n + 1 points
x(i) (called sigma points), whose sample mean and
covariance are respectively µ and Σ:
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traction theory has important applications in stability
of nonlinear systems (Köhler et al., 2020). We assume
that the system is affected by additive stochastic distur-
bances with a possibly unbounded support, and that it
is subject to hard input constraints and probabilistic state
constraints. We provide an MPC framework equipped with
guarantees, both for stability, intended as a bound on the
expected value of the infinite-horizon closed-loop cost, and
recursive feasibility. For this class of nonlinear systems, we
propose a novel approach to efficiently compute the termi-
nal cost and the terminal set leading to the sought closed-
loop properties. Compared with the previously mentioned
works, the proposed algorithm ensures stability and recur-
sive feasibility globally without resorting to linearization.
We finally propose an illustrative example to show our
theoretical findings.

Notation. Let R≥0 denote the set of non-negative real
numbers. Given a square matrix A, ∥x∥2A denotes the
quadratic form defined as x⊤Ax, while ρ(A) is its spectral
radius and tr(A) its trace. We write A ≥ 0 to say that
the matrix A is positive semi-definite. Let x be a n-
dimensional random vector. We denote µ := E[x] ∈ Rn and
Σ := V[x] ∈ Rn×n, where E[ · ],V[ · ] denote the operators
associated to the expected value and the covariance. The
diagonal elements of Σ, namely the variance of each entry
of x, are denoted by σ2

i . The n-dimensional identity matrix
is denoted by In.

2. PRELIMINARIES

2.1 Problem Formulation

We consider a nonlinear discrete-time system affected by
additive stochastic disturbances:

x(k + 1) = f(x(k), u(k)) + w(k), (1)

where k is the discrete time index, f : Rn × Rm → Rn is
the system dynamics, x ∈ Rn, u ∈ Rm, and w ∈ Rn are
respectively the state, the control input, and the distur-
bances. The disturbances are assumed to be distributed
according to a zero-mean distribution with possible un-
bounded support. We denote as Σw its covariance matrix,
which is assumed to be element-wise bounded.

We assume that the system has an equilibrium in (x̄, ū) =
(0, 0), which is a non-restrictive assumption since there
always exists a linear transformation that maps a generic
equilibrium (x̄, ū) to (0, 0). The goal of the controller is to
stabilize the system around the origin by minimizing the
expected value of a quadratic cost function, while fulfilling
chance state constraints and hard input constraints of the
form, respectively:

P(xi(k) ≤ xub
i ) ≥ 1− εubi , i = 1, . . . , n (2)

P(xi(k) ≥ xlb
i ) ≥ 1− εlbi , i = 1, . . . , n (3)

ulb ≤ u(k) ≤ uub, (4)

for all k ∈ N. Here, xlb, xub ∈ Rn and ulb, uub ∈
Rm are upper and lower bounds for the state and the
input, while εubi , εlbi ∈ (0, 1) are risk-tolerance parameters.
Furthermore, we assume xlb

i ≤ 0 ≤ xub
i , i = 1, . . . , n, and

ulb
j ≤ 0 ≤ uub

j , j = 1, . . . ,m, i.e. (x̄, ū) = (0, 0) is a feasible
equilibrium point.

We consider the class of nonlinear systems that satisfy the
following assumption:

Assumption 1. The function f(·, ·) is Lipschitz continuous
in its first argument, namely, for any x1, x2, u:

∥f(x1, u)− f(x2, u)∥2 ≤ L∥x1 − x2∥2, (5)

for some L ∈ (0, 1). □

In other words, we require the system dynamics to be
contractive in the state, but we allow for an increase of
the norm of the state due to the input. Let i|k denote
the i-th predicted step at the (closed-loop) iteration k, for
i = 0, ..., N − 1, where N denotes the prediction horizon.
Then, given an initial value x(0|k), we aim to solve the
following finite-horizon stochastic optimal control problem
in a receding horizon manner:

min
x(i|k),x(N |k),

u(i|k),
i=0,...,N−1

E

[
N−1∑
i=0

(
∥x(i|k)∥2Q + ∥u(i|k)∥2R

)
]

+ E
[
∥x(N |k)∥2P

]
(6a)

s.t. x(0|k) = x(k) (6b)

x(i+ 1|k) = f(x(i|k), u(i|k)) + w(i|k) (6c)

P(xj(i|k) ≤ xub
j ) ≥ 1− εubj , j = 1, ..., n (6d)

P(xj(i|k) ≥ xlb
j ) ≥ 1− εlbj , j = 1, ..., n (6e)

ulb ≤ u(i|k) ≤ uub (6f)

x(N |k) ∈ Xf (6g)

i = 0, ..., N − 1.

Here, the cost function is quadratic, where we assume
Q,P ∈ Rn×n ≥ 0, and R ∈ Rm×m > 0, and Xf is a
terminal set. Problem (6) is computationally intractable
due to the chance constraints (6d), (6e), which require the
computation of multivariate integrals over the distribution
of the state, and due to the propagation of the disturbances
through the nonlinear dynamics. Hence, in the next section
we propose a tractable reformulation of (6).

3. TRACTABLE REFORMULATION

3.1 Uncertainty Propagation

Propagating random variables through nonlinear functions
is one of the main challenges in SNMPC. In this work
we employ the unscented transform (UT), which has been
originally introduced in the context of filtering (Julier and
Uhlmann, 1997), and successfully applied in stochastic
control problems (Völz and Graichen, 2015; Liu et al.,
2014).

The uncertainty propagation problem is as follows. Given
an n-dimensional (not necessarily Gaussian-distributed)
random variable x with mean µ and covariance Σ, we
wish to compute the statistical moments of the probability
distribution of y = f(x) ∈ Rm, where f denotes a generic
nonlinear function f : Rn → Rm. The UT method consists
in the following steps:

1) Given a freely chosen tuning parameter κ ∈ R,
compute 2n + 1 weights w(i), and 2n + 1 points
x(i) (called sigma points), whose sample mean and
covariance are respectively µ and Σ:
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x(0) = µ w(0) =
κ

n+ κ

x(i) = µ+ (
√
(n+ κ)Σ)i w(i) =

1

2(n+ κ)

x(i+n) = µ− (
√
(n+ κ)Σ)i w(i+n) =

1

2(n+ κ)
,

for i = 1, ..., n, where (
√

(n+ κ)Σ)i denotes the i-

th column of the matrix
√

(n+ κ)Σ, and
√
Σ is the

Cholesky factor of the matrix Σ.
2) Evaluate y(i) = f(x(i)), i = 0, ..., 2n.
3) Then, the mean and the covariance of f(x) are

approximated as a weighted sum of the statistical
moments of the transformed points yi:

µy ≈
2n∑
i=0

w(i)y(i),

Σy ≈
2n∑
i=0

w(i)(y(i) − µy)(y
(i) − µy)

⊤.

Although the UT resembles Monte Carlo approximation
methods, an important difference is that we choose the
sigma points according to the specific criteria in step 1)
and not at random, which leads to a significantly lower
number of required samples.

(Julier and Uhlmann, 1997) shows that the UT approxima-
tion is accurate up to the second order of the Taylor expan-
sion, arguing that the parameter κ can be chosen to tune
the higher-order terms in the approximation, see (Julier
and Uhlmann, 1997) for more details. It is worthwhile to
remark that the computational cost of this method grows
linearly with n, and it is lower than other approaches
such as the generalized polynomial chaos expansion, whose
complexity grows polynomially in the number of terms
employed in the approximation (Paulson et al., 2015).
Hence, the UT is the chosen way to propagate the moments
of the state distribution throughout the prediction horizon.
By denoting µ(i|k) = E[x(i|k)], Σ(i|k) = V[x(i|k)], the
dynamics of the system are described by:

µ(i+ 1|k) = E[x(i+ 1|k)] = E[f(x(i|k), u(i|k))] (7)

Σ(i+ 1|k) = V[x(i+ 1|k)] = V[f(x(i|k), u(i|k))] + Σw,
(8)

for i = 0, . . . , N − 1, with x(0|k) assumed to be determin-
istic under the assumption of perfect state measurement.

3.2 Chance Constraints

Let us consider an individual chance constraint of the type
(6d), where we drop the indices for ease of notation. In the
following we replace it with distributionally robust chance
constraint of the form:

inf
x∼L(µ,σ)

P(x− xub ≤ 0) ≥ 1− εub, (9)

where x is a scalar random variable, and L(µ, σ) denotes
the family of all possible distributions with mean µ and
standard deviation σ. We observe that if (9) is satisfied,
then also (6d) is satisfied. The main advantage of consider-
ing (9) is that it does not require the exact computation of
the distribution of the state x, which might be complicated
due to the nonlinear dynamics. For any εub ∈ (0, 1), (9) can
be equivalently formulated as the following convex con-

straint, in terms of µ and σ, via the Chebyshev inequality
(Saw et al., 1984):√

1− εub

εub

√
V[x− xub] + E[x− xub] ≤ 0 (10)

⇔ µ ≤ xub −
√

1− εub

εub
σ. (11)

Hence, constraint (11) is a tractable reformulation of the
chance constraint (6d). We observe that Chebyshev in-
equality replaces a chance constraint in x with a convex
constraint in µ and σ, and it provides constraint satisfac-
tion at least with the desired probability independently
of the actual distribution of the state. As a direct con-
sequence, constraint (11) can be a conservative approxi-
mation of the original chance constraint (6d). Similarly,
constraints of the type of (6e) can be reformulated as

µ ≥ xlb +

√
1− εlb

εlb
σ. (12)

3.3 Cost Function

The cost can then be written in terms of µ(i|k),Σ(i|k) as

E

[
N−1∑
i=0

(
∥x(i|k)∥2Q + ∥u(i|k)∥2R

)
+ ∥x(N |k)∥2P

]

=
N−1∑
i=0

(
∥µ(i|k)∥2Q + ∥u(i|k)∥2R

)
+ ∥µ(N |k)∥2P

+

N−1∑
i=0

tr(QΣ(i|k)) + tr(PΣ(N |k)),

(13)

exploiting the standard probability argument
E[∥x(i|k)∥2Q] = ∥E[x(i|k)]∥2Q + tr(QV[x(i|k)]).

3.4 Initial Condition

At each closed-loop time step, we solve one instance of
the optimal control problem (6) by initializing it with the
most recent state measurement x(k). However, this might
lead to infeasibility issues as potentially unbounded noise
might drive the state of the system arbitrarily far from
the state constraint set. Therefore, similarly to (Farina
et al., 2013), we observe that the optimal solution (µ⋆(1|k−
1),Σ⋆(1|k − 1)), obtained at time step k − 1, results in
a feasible initialization at time step k, leading to the
following strategies for the initialization:

- S1: µ(0|k) = x(k), Σ(0|k) = 0,

- S2: µ(0|k) = µ⋆(1|k − 1), Σ(0|k) = Σ⋆(1|k − 1).

Hence, the variables (µ(0|k),Σ(0|k)) are also decision
variables of the problem according to the two following
alternative choices for the initial constraint:

(µ(0|k),Σ(0|k)) ∈ {(x(k), 0), (µ⋆(1|k − 1),Σ⋆(1|k − 1))}.
(14)

Thanks to this strategy, feasibility issues in the initial
constraint are eliminated, since (µ⋆(1|k − 1),Σ⋆(1|k − 1))
is feasible at time step k. Another viable initialization
scheme is provided in (Köhler and Zeilinger, 2022), consist-
ing in a convex combination of the two strategies to avoid
the need of solving two optimization problems whenever
S1 leads to infeasibility.

3.5 Optimization Problem

At each time-step k ∈ N we solve the following problem:

min
µ,Σ,u

(13) (15a)

s.t. (4), (7), (8), (11), (12), (14), (15b)

µ(N |k) ∈ Xf . (15c)

Let u⋆(i|k), i = 0, ..., N −1, be the optimal input sequence
to problem (15) at time-step k. Then, according to the
receding horizon implementation, we apply to the system
only the first element, i.e., u⋆(0|k), observe the transition
of the system to x(k + 1), and solve (15) again with
a different initialization. We highlight that the tractable
reformulation (15) holds for a generic nonlinear system
and does not rely on Assumption 1.

Remark 2. Due to the double alternatives for the initial
constraint, the applied input u is not, in general, a state
feedback, but it is a function of the augmented state
x̃(k) = (x(k), µ⋆(1|k − 1),Σ⋆(1|k − 1)), i.e., we introduce
feedback only when strategy S1 is selected, resulting in
closed-loop constraint satisfaction. When strategy S2 is
selected, chance constraints are satisfied with the desired
probability only in prediction. This drawback is present in
general in other schemes employing this backup strategy
for the initial constraint (Farina et al., 2013).

4. CLOSED-LOOP PROPERTIES

4.1 Preliminaries

We begin by establishing the following result:

Proposition 3. Under Assumption 1 it holds that
tr(V[x(k)]) ≤ Σ̄, ∀k ∈ N, where Σ̄ = 1

1−L2 tr(Σw). □

Proof. We begin by proving that tr(V[f(x(k), u(k))]) ≤
L2tr(V[x(k)]). Recalling that the covariance of a ran-

dom variable is translation-invariant, and defining f̃ =
f(x(k), u(k))− f(E[x(k)], u(k)), we have:

tr(V[f(x(k), u(k))]) = tr(V[f̃ ]) (16)

= E[f̃⊤f̃ ]− E[f̃ ]⊤ E[f̃ ] (17)

≤ E[f̃⊤f̃ ] = E[∥f(x(k), u(k))− f(E[x(k)], u(k))∥22] (18)

≤ L2tr(V[x(k)]). (19)

where in (17) we use that: tr(V[X]) = E[X⊤X] −
E[X]⊤ E[X] and in (19) we exploit Assumption 1 and
tr(V[X]) = E[∥X − E[X]∥22], for any random variable X.
By iteratively applying the dynamics of the covariance (8),
we obtain:

tr(V[x(k + 1)]) ≤ L2(k+1)tr(V[x(0)]) + tr(Σw)

k∑
j=0

L2j .

Since we assume initial feasibility, we have: V[x(0)] = 0.

The term
∑k

j=0 L
2j is a geometric series truncated after

k + 1 terms, and as L ∈ (0, 1), it is upper-bounded by
1

1−L2 . Hence, the following holds, for all k ∈ N:

tr(V[x(k + 1)]) ≤ 1

1− L2
tr(Σw) =: Σ̄. (20)

This concludes the proof. ■

Next, we introduce the following assumption that is in-
strumental for the construction of the terminal set:

Assumption 4. Let X̄ = {µ : xlb
i +

√
1−εlb

i

εlb
i

√
Σ̄ ≤ µi ≤

xub
i −

√
1−εub

i

εub
i

√
Σ̄, i = 1, ..., n}, where Σ̄ is the upper

bound given in Proposition 3. Then, we assume there
exists α ∈ R≥0 such that the terminal set defined as

Xf = {µ(N |k) ∈ X̄ : ∥µ(N |k)∥22 ≤ α + L2

1−L2 Σ̄, k ∈ N}
is nonempty. □

In addition, the following property is established.

Proposition 5. Let πf : Xf → Rm be a terminal controller.
If Assumption 1 holds, the terminal set Xf described in
Assumption 4 is invariant under the terminal controller
πf(x(N |k)) = 0. □

Proof. Under Assumption 1, we can make use of the
bound on the variance provided by Proposition 3. By
means of Jensen’s inequality, for any µ(N |k) ∈ Xf , it holds
that:

∥µ(N + 1|k)∥22 = ∥E[f(x(N |k), 0)− f(0, 0)]∥22 (21)

≤ E[∥f(x(N |k), 0)− f(0, 0)∥22] (22)

≤ L2 E[∥x(N |k)∥22] (23)

= L2
(
∥µ(N |k)∥22 + tr(Σ(N |k))

)
(24)

≤ L2α+

(
L2 L2

1− L2
+ L2

)
Σ̄ (25)

≤ α+
L2

1− L2
Σ̄, (26)

where in (25)-(26) we exploit that µ(N |k) ∈ Xf , the bound
tr(Σ(N |k)) ≤ Σ̄, and L < 1. ■

We have now all the ingredients to evaluate feasibility and
stability properties of the closed-loop system.

4.2 Recursive Feasibility

Theorem 6. Assume that at time-step k = 0 problem (15)
is feasible for a given initial condition x(0) (i.e., strategy
S1 is applied at k = 0). In addition, let Assumptions 1
and 4 hold. Then, the MPC optimization problem (15) is
recursively feasible. □

Proof. At a given time step k, let us consider the follow-
ing candidate solution, constructed by shifting the optimal
solution at time step k − 1 and completing it by means of
the terminal controller πf(x(N |k)) = 0:

{µ⋆(1|k), ..., µ⋆(N |k), µ(N + 1|k)}
{Σ⋆(1|k), ...,Σ⋆(N |k),Σ(N + 1|k)}
{u⋆(1|k), ..., u⋆(N |k), 0},

(27)

where µ(N + 1|k) and Σ(N + 1|k) are the mean and
the covariance of the last predicted state x(N + 1|k) =
f(x⋆(N |k), 0) + w(N |k), namely: µ(N + 1|k) := E[x(N +
1|k)], Σ(N + 1|k) := V[x(N + 1|k)].
We now prove that the candidate solution (27) is feasible
for the optimal control problem solved at time step k+ 1.
First of all, choosing πf(x(N |k)) = 0 results in a feasible
terminal controller, since by assumption 0 satisfies the
input constraints. In addition, (µ⋆(1|k),Σ⋆(1|k)) satisfies
the initial constraint, according to strategy S2. As (27)
is feasible at time step k, at time step k + 1 the first N
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3.5 Optimization Problem

At each time-step k ∈ N we solve the following problem:

min
µ,Σ,u

(13) (15a)

s.t. (4), (7), (8), (11), (12), (14), (15b)

µ(N |k) ∈ Xf . (15c)

Let u⋆(i|k), i = 0, ..., N −1, be the optimal input sequence
to problem (15) at time-step k. Then, according to the
receding horizon implementation, we apply to the system
only the first element, i.e., u⋆(0|k), observe the transition
of the system to x(k + 1), and solve (15) again with
a different initialization. We highlight that the tractable
reformulation (15) holds for a generic nonlinear system
and does not rely on Assumption 1.

Remark 2. Due to the double alternatives for the initial
constraint, the applied input u is not, in general, a state
feedback, but it is a function of the augmented state
x̃(k) = (x(k), µ⋆(1|k − 1),Σ⋆(1|k − 1)), i.e., we introduce
feedback only when strategy S1 is selected, resulting in
closed-loop constraint satisfaction. When strategy S2 is
selected, chance constraints are satisfied with the desired
probability only in prediction. This drawback is present in
general in other schemes employing this backup strategy
for the initial constraint (Farina et al., 2013).

4. CLOSED-LOOP PROPERTIES

4.1 Preliminaries

We begin by establishing the following result:

Proposition 3. Under Assumption 1 it holds that
tr(V[x(k)]) ≤ Σ̄, ∀k ∈ N, where Σ̄ = 1

1−L2 tr(Σw). □

Proof. We begin by proving that tr(V[f(x(k), u(k))]) ≤
L2tr(V[x(k)]). Recalling that the covariance of a ran-

dom variable is translation-invariant, and defining f̃ =
f(x(k), u(k))− f(E[x(k)], u(k)), we have:
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≤ E[f̃⊤f̃ ] = E[∥f(x(k), u(k))− f(E[x(k)], u(k))∥22] (18)

≤ L2tr(V[x(k)]). (19)

where in (17) we use that: tr(V[X]) = E[X⊤X] −
E[X]⊤ E[X] and in (19) we exploit Assumption 1 and
tr(V[X]) = E[∥X − E[X]∥22], for any random variable X.
By iteratively applying the dynamics of the covariance (8),
we obtain:

tr(V[x(k + 1)]) ≤ L2(k+1)tr(V[x(0)]) + tr(Σw)

k∑
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L2j .

Since we assume initial feasibility, we have: V[x(0)] = 0.

The term
∑k

j=0 L
2j is a geometric series truncated after

k + 1 terms, and as L ∈ (0, 1), it is upper-bounded by
1

1−L2 . Hence, the following holds, for all k ∈ N:

tr(V[x(k + 1)]) ≤ 1

1− L2
tr(Σw) =: Σ̄. (20)

This concludes the proof. ■

Next, we introduce the following assumption that is in-
strumental for the construction of the terminal set:
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i
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Σ̄ ≤ µi ≤

xub
i −
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1−εub

i

εub
i

√
Σ̄, i = 1, ..., n}, where Σ̄ is the upper

bound given in Proposition 3. Then, we assume there
exists α ∈ R≥0 such that the terminal set defined as

Xf = {µ(N |k) ∈ X̄ : ∥µ(N |k)∥22 ≤ α + L2

1−L2 Σ̄, k ∈ N}
is nonempty. □

In addition, the following property is established.

Proposition 5. Let πf : Xf → Rm be a terminal controller.
If Assumption 1 holds, the terminal set Xf described in
Assumption 4 is invariant under the terminal controller
πf(x(N |k)) = 0. □

Proof. Under Assumption 1, we can make use of the
bound on the variance provided by Proposition 3. By
means of Jensen’s inequality, for any µ(N |k) ∈ Xf , it holds
that:

∥µ(N + 1|k)∥22 = ∥E[f(x(N |k), 0)− f(0, 0)]∥22 (21)

≤ E[∥f(x(N |k), 0)− f(0, 0)∥22] (22)

≤ L2 E[∥x(N |k)∥22] (23)

= L2
(
∥µ(N |k)∥22 + tr(Σ(N |k))

)
(24)

≤ L2α+

(
L2 L2

1− L2
+ L2

)
Σ̄ (25)

≤ α+
L2

1− L2
Σ̄, (26)

where in (25)-(26) we exploit that µ(N |k) ∈ Xf , the bound
tr(Σ(N |k)) ≤ Σ̄, and L < 1. ■

We have now all the ingredients to evaluate feasibility and
stability properties of the closed-loop system.

4.2 Recursive Feasibility

Theorem 6. Assume that at time-step k = 0 problem (15)
is feasible for a given initial condition x(0) (i.e., strategy
S1 is applied at k = 0). In addition, let Assumptions 1
and 4 hold. Then, the MPC optimization problem (15) is
recursively feasible. □

Proof. At a given time step k, let us consider the follow-
ing candidate solution, constructed by shifting the optimal
solution at time step k − 1 and completing it by means of
the terminal controller πf(x(N |k)) = 0:

{µ⋆(1|k), ..., µ⋆(N |k), µ(N + 1|k)}
{Σ⋆(1|k), ...,Σ⋆(N |k),Σ(N + 1|k)}
{u⋆(1|k), ..., u⋆(N |k), 0},

(27)

where µ(N + 1|k) and Σ(N + 1|k) are the mean and
the covariance of the last predicted state x(N + 1|k) =
f(x⋆(N |k), 0) + w(N |k), namely: µ(N + 1|k) := E[x(N +
1|k)], Σ(N + 1|k) := V[x(N + 1|k)].
We now prove that the candidate solution (27) is feasible
for the optimal control problem solved at time step k+ 1.
First of all, choosing πf(x(N |k)) = 0 results in a feasible
terminal controller, since by assumption 0 satisfies the
input constraints. In addition, (µ⋆(1|k),Σ⋆(1|k)) satisfies
the initial constraint, according to strategy S2. As (27)
is feasible at time step k, at time step k + 1 the first N
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terms in (27) satisfy the chance constraints, as well as
the dynamics of the system. We prove now that the last
predicted state in (27) satisfies the chance constraint (11).
Since µ(N |k) ∈ Xf ⊆ X̄ , we know that, for j = 1, ..., n:

µj(N + 1|k) ≤ xub
j −

√
1− εubj
εubj

√
Σ̄. (28)

The trace of the covariance matrix of state x(N + 1|k) is
always bounded by Σ̄ thanks to Proposition 3. This implies
that also the single variances are bounded by Σ̄, namely
σ2
j (N + 1|k) ≤ Σ̄, leading to:

µj(N + 1|k) ≤ xub
j −

√
1− εubj
εubj

σj(N + 1|k), (29)

which proves that (µ(N + 1|k),Σ(N + 1|k)) satisfies the
chance constraint (11). A similar procedure can be derived
for chance constraint (12). ■

4.3 Stability

We require the following assumption:

Assumption 7. The cost matrices Q,P ∈ Rn×n satisfy:
P ≥ ρ(P )L2In +Q. □

Theorem 8. Assume that at time-step k = 0 problem (15)
is feasible for a given initial condition x(0) (i.e., strategy
S1 is applied at k = 0). In addition, let Assumptions 1, 7
hold. Then, the closed-loop system under u(k) = u⋆(0|k)
satisfies:

lim
T→∞

lavg(T ) ≤ tr(PΣw), (30)

where lavg(T ) =
1

T

∑T−1
k=0 E

[
∥x(k)∥2Q + ∥u(k)∥2R

]
. □

Proof. We prove now that, under Assumptions 1, 7,
the cost function of the closed-loop system exhibits a
Lyapunov-like decrease condition in the augmented state
x̃(k) = (x(k), µ⋆(1|k− 1),Σ⋆(1|k− 1)), which then implies
(30). Since the initial constraint is a decision variable
according to (14), it is sufficient to prove that the required
decrease condition holds for the initialization strategy S2,
since, whenever feasible, the cost associated to strategy
S1 will be lower. Hence, we will make use of the candidate
solution (27) in the following proof, which is a feasible,
albeit suboptimal, solution of the SNMPC problem. Let
J⋆(x̃(k)) be the cost function associated to the optimal
solution obtained at time step k. By denoting the candi-
date sequence (27) at time step k as x̃c(k), its associated
cost is:

J(x̃c(k)) =

N∑
i=1

(
∥µ⋆(i|k)∥2Q + ∥u⋆(i|k)∥2R

)

+ ∥µ(N + 1|k)∥2P

+

N∑
i=1

tr(QΣ⋆(i|k)) + tr(PΣ(N + 1|k)).

The corresponding cost decrease is:

J(x̃c(k + 1))− J⋆(x̃(k)) =

− ∥µ⋆(0|k)∥2Q − tr(QΣ⋆(0|k))− ∥u⋆(0|k)∥2R
+ ∥µ⋆(N |k)∥2Q + ∥µ(N + 1|k)∥2P − ∥µ⋆(N |k)∥2P
− tr((P −Q)Σ⋆(N |k)) + tr(PΣ(N + 1|k)).

(31)

Recalling that w is zero-mean, in (31) we have:

∥µ(N + 1|k)∥2P + tr(PΣ(N + 1|k))
= E[∥f(x⋆(N |k), 0) + w(N |k)∥2P ]
= E[∥f(x⋆(N |k), 0)∥2P + ∥w(N |k)∥2P ]
≤ ρ(P )L2 E[∥x⋆(N |k)∥22 + ∥w(N |k)∥2P ]
≤ ρ(P )L2 E[∥x⋆(N |k)∥22] + tr(PΣw).

In view of this, and recalling that the candidate sequence
can be suboptimal, it holds that:

J⋆(x̃(k + 1))− J⋆(x̃(k))

≤ J(x̃c(k + 1))− J⋆(x̃(k))

≤ −∥µ⋆(0|k)∥2Q − tr(QΣ⋆(0|k))− ∥u⋆(0|k)∥2R
+ ∥µ⋆(N |k)∥2Q + ρ(P )L2 E[∥x⋆(N |k)∥22] + tr(PΣw)

− ∥µ⋆(N |k)∥2P − tr((P −Q)Σ⋆(N |k))
= −∥µ⋆(0|k)∥2Q − tr(QΣ⋆(0|k))− ∥u⋆(0|k)∥2R + tr(PΣw)

+ E[∥x⋆(N |k)∥2Q]− E[∥x⋆(N |k)∥2P−ρ(P )L2In
].

Recalling that P − ρ(P )L2In ≥ Q due to Assumption 7,
and by the monotonicity of the expectation, we have:

J⋆(x̃(k + 1))− J⋆(x̃(k)) (32)

≤ −∥µ⋆(0|k)∥2Q − tr(QΣ⋆(0|k))− ∥u⋆(0|k)∥2R + tr(PΣw)

= −E[∥x⋆(0|k)∥2Q]− ∥u⋆(0|k)∥2R + tr(PΣw)

= −E[∥x(k)∥2Q + ∥u(k)∥2R] + tr(PΣw), (33)

where the last line follows since we assume perfect state
measurement. Given a closed-loop horizon of length T ,
summing (32) and (33) over k results in:

J⋆(x̃(T ))− J⋆(x̃(0)) (34)

=
T−1∑
k=0

(J⋆(x̃(k + 1))− J⋆(x̃(k))) (35)

≤ −
T−1∑
k=0

(
E[∥x(k)∥2Q + ∥u(k)∥2R]

)
+ T tr(PΣw), (36)

dividing (34), (36) by T and taking the limit for T to
infinity we get:

lim
T→∞

1

T

T−1∑
k=0

E
[
∥x(k)∥2Q + ∥u(k)∥2R

]
≤ tr(PΣw). (37)

This concludes the proof. ■

Remark 9. The quantity lavg is a typical tool to quantify
stability in SMPC (Hewing and Zeilinger, 2018; Chaouach
et al., 2022). If limT→∞ lavg(T ) is bounded, we know that

the quantity
∑T

k=0 E
[
∥x(k)∥2Q + ∥u(k)∥2R

]
grows at most

linearly in T . Hence, E
[
∥x(k)∥2Q + ∥u(k)∥2R

]
converges to

a finite value. This is an index of stability property of
the system. Furthermore, note that Theorem 8 establishes
that a contraction in the system dynamics translates into
a contraction of the cost function despite the presence of
unbounded noise.

5. NUMERICAL EXAMPLE

In this section, we carry out a numerical example, imple-
mented in MATLAB with CasADi (Andersson et al., 2019)
and IPOPT as solver (Biegler and Zavala, 2009), a primal-
dual interior point method. All the simulations have been
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Fig. 1. The closed-loop trajectories, tested on 500 samples,
converge to a neighbourhood of the origin.

performed on a Macbook Pro (Apple Silicon M1 pro, 32GB
RAM). We consider the following oscillator, adapted from
(Dashkovskiy, 2019):{
x1(k + 1) = 0.5x1(k) + 0.5x2(k) + w1(k)

x2(k + 1) = 0.5 sin(x1(k)) + 0.5x2(k) + u(k) + w2(k) .

(38)

We consider hard input constraints as −2 ≤ u(k) ≤ 2,
and chance constraints of the form P(x2(k) ≤ 0.5) ≥
1 − ε, with ε = 0.1. The disturbances w(k) ∈ R2 are
Gaussian-distributed, with mean [0 0]⊤ and covariance

matrix Σw =

[
0.0025 0.0005
0.0005 0.0025

]
. The nonlinearity is intro-

duced by the sin function, which is Lipschitz continuous
with Lipschitz constant 1. Assumption 1 is satisfied with
L = 0.5 ·

√
2 ≈ 0.707. From Proposition 3, we have

Σ̄ = 0.01, where Σ̄ is an upper bound on tr(V[x(k)]) and
thus on the single variances of the state components. The
set X̄ is accordingly designed as X̄ = {µ ∈ R2 : µ2 ≤ 0.2},
following Assumption 4. Hence, the terminal set Xf =
{µ(N |k) : ∥µ(N |k)∥2 ≤ 0.2} ⊆ X̄ is invariant according
to Proposition 5. Finally, we choose Q = 0.1I2, P =
I2, R = 0.1I2, which satisfy Assumption 7. We consider a
closed-loop simulation starting from the initial condition
(−3,−4), and we set N = 5. We employ the UT to update
the mean and the covariance of the state in the prediction
horizon as described in Section 3.1, setting κ = 1.

Figure 1 shows 500 closed-loop experiments. We notice
that the controller is able to stabilize the closed-loop
system to the equilibrium in (0, 0), despite mild oscilla-
tions due to the additive disturbances. In particular, the
theoretical bound (30) is reached after approximately 1500
time steps. Every time step in which x2(k) exceeds the
constraint bound, strategy S2 is chosen. As we pointed
out in Remark 2, when S2 is selected we have chance
constraints satisfaction only in prediction, which might
lead to an empirical violation rate larger than the desired
one. However, in this example we notice that the empirical
constraint violation amounts to a maximum value over
time of 2%, significantly smaller than the theoretical viola-
tion rate ε = 0.1. This reflects the conservatism introduced
by the Chebyshev inequality, which is a sufficient condition
for chance constraint satisfaction.

We also showcase the effectiveness of the UT to propa-
gate the stochastic disturbances through the dynamics of
system (38). Figure 2 shows the open-loop predicted state
trajectories resulting from the solution of three different
SMPC schemes, each of which employs a different propa-
gation method. In particular, we compare the computation
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Fig. 2. Comparison of the open-loop trajectories in a
prediction horizon of N = 10.

of the mean and the variance of the state x2 of system (38),
over a prediction horizon N = 10. To better visualize the
error propagation, the values of covariance matrix of the
additive disturbance are increased: Σ̃w = 4·Σw. The initial
condition is (−3,−4) and it is deterministic for all the
three methods. The first scheme is the proposed method
based on the UT. The second scheme (LIN) is based on the
linearization of the dynamics (38) around the equilibrium

(0, 0). This gives: A =

[
0.5 0.5
0.5 0.5

]
, B =

[
0
1

]
, and the mean

and the covariance of the state are updated according to:

µLIN(i+ 1) = AµLIN(i) +Bu(i),

ΣLIN(i+ 1) = AΣLIN(i)A⊤ + Σ̃w.

The third scheme performs a Monte Carlo (MC) approx-
imation of the mean and the covariance of the state with
M = 1000 samples for each time step; hence it is consid-
ered the ground-truth. For each i = 0, ..., N − 1, the MC
approximation consists in the following equations:

µMC(i) =
1

M

M∑
j=1

x(j)(i),

ΣMC(i) =
1

M

M∑
j=1

(x(j)(i)− µMC)(x
(j)(i)− µMC)

⊤,

where each x(j)(i) follows the dynamics (38), i = 0, ..., N−
1, j = 1, ...,M . Table 1 reports the time required by
the solver to compute the three predicted trajectories in
Figure 2, as well as the errors of mean and variance of the
state x2 of UT and LIN compared to MC. We observe
that the propagation error in the prediction horizon is
very small for the UT, and its accuracy is comparable
to an MC approximation, being at the same time much
more computationally efficient than MC. On the other
side, the scheme based on linearization leads to a larger
error in the propagation of the dynamics, and it becomes
accurate only close to the equilibrium. Similar results can
be derived for the state x1, which are omitted in the
interest of space. Since our numerical results show that the
UT is very accurate, the theoretical results for recursive
feasibility and stability, which assume exact propagation
of the disturbances, are practically not compromised.

6. CONCLUSION

This paper presents a provably-stable and recursively fea-
sible MPC framework for a class of stochastic nonlinear
systems subject to possibly unbounded additive distur-
bances. Assuming a contractive property in the system
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performed on a Macbook Pro (Apple Silicon M1 pro, 32GB
RAM). We consider the following oscillator, adapted from
(Dashkovskiy, 2019):{
x1(k + 1) = 0.5x1(k) + 0.5x2(k) + w1(k)

x2(k + 1) = 0.5 sin(x1(k)) + 0.5x2(k) + u(k) + w2(k) .

(38)

We consider hard input constraints as −2 ≤ u(k) ≤ 2,
and chance constraints of the form P(x2(k) ≤ 0.5) ≥
1 − ε, with ε = 0.1. The disturbances w(k) ∈ R2 are
Gaussian-distributed, with mean [0 0]⊤ and covariance

matrix Σw =

[
0.0025 0.0005
0.0005 0.0025

]
. The nonlinearity is intro-

duced by the sin function, which is Lipschitz continuous
with Lipschitz constant 1. Assumption 1 is satisfied with
L = 0.5 ·

√
2 ≈ 0.707. From Proposition 3, we have

Σ̄ = 0.01, where Σ̄ is an upper bound on tr(V[x(k)]) and
thus on the single variances of the state components. The
set X̄ is accordingly designed as X̄ = {µ ∈ R2 : µ2 ≤ 0.2},
following Assumption 4. Hence, the terminal set Xf =
{µ(N |k) : ∥µ(N |k)∥2 ≤ 0.2} ⊆ X̄ is invariant according
to Proposition 5. Finally, we choose Q = 0.1I2, P =
I2, R = 0.1I2, which satisfy Assumption 7. We consider a
closed-loop simulation starting from the initial condition
(−3,−4), and we set N = 5. We employ the UT to update
the mean and the covariance of the state in the prediction
horizon as described in Section 3.1, setting κ = 1.

Figure 1 shows 500 closed-loop experiments. We notice
that the controller is able to stabilize the closed-loop
system to the equilibrium in (0, 0), despite mild oscilla-
tions due to the additive disturbances. In particular, the
theoretical bound (30) is reached after approximately 1500
time steps. Every time step in which x2(k) exceeds the
constraint bound, strategy S2 is chosen. As we pointed
out in Remark 2, when S2 is selected we have chance
constraints satisfaction only in prediction, which might
lead to an empirical violation rate larger than the desired
one. However, in this example we notice that the empirical
constraint violation amounts to a maximum value over
time of 2%, significantly smaller than the theoretical viola-
tion rate ε = 0.1. This reflects the conservatism introduced
by the Chebyshev inequality, which is a sufficient condition
for chance constraint satisfaction.

We also showcase the effectiveness of the UT to propa-
gate the stochastic disturbances through the dynamics of
system (38). Figure 2 shows the open-loop predicted state
trajectories resulting from the solution of three different
SMPC schemes, each of which employs a different propa-
gation method. In particular, we compare the computation
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Fig. 2. Comparison of the open-loop trajectories in a
prediction horizon of N = 10.

of the mean and the variance of the state x2 of system (38),
over a prediction horizon N = 10. To better visualize the
error propagation, the values of covariance matrix of the
additive disturbance are increased: Σ̃w = 4·Σw. The initial
condition is (−3,−4) and it is deterministic for all the
three methods. The first scheme is the proposed method
based on the UT. The second scheme (LIN) is based on the
linearization of the dynamics (38) around the equilibrium

(0, 0). This gives: A =

[
0.5 0.5
0.5 0.5

]
, B =

[
0
1

]
, and the mean

and the covariance of the state are updated according to:

µLIN(i+ 1) = AµLIN(i) +Bu(i),

ΣLIN(i+ 1) = AΣLIN(i)A⊤ + Σ̃w.

The third scheme performs a Monte Carlo (MC) approx-
imation of the mean and the covariance of the state with
M = 1000 samples for each time step; hence it is consid-
ered the ground-truth. For each i = 0, ..., N − 1, the MC
approximation consists in the following equations:

µMC(i) =
1

M

M∑
j=1

x(j)(i),

ΣMC(i) =
1

M

M∑
j=1

(x(j)(i)− µMC)(x
(j)(i)− µMC)

⊤,

where each x(j)(i) follows the dynamics (38), i = 0, ..., N−
1, j = 1, ...,M . Table 1 reports the time required by
the solver to compute the three predicted trajectories in
Figure 2, as well as the errors of mean and variance of the
state x2 of UT and LIN compared to MC. We observe
that the propagation error in the prediction horizon is
very small for the UT, and its accuracy is comparable
to an MC approximation, being at the same time much
more computationally efficient than MC. On the other
side, the scheme based on linearization leads to a larger
error in the propagation of the dynamics, and it becomes
accurate only close to the equilibrium. Similar results can
be derived for the state x1, which are omitted in the
interest of space. Since our numerical results show that the
UT is very accurate, the theoretical results for recursive
feasibility and stability, which assume exact propagation
of the disturbances, are practically not compromised.

6. CONCLUSION

This paper presents a provably-stable and recursively fea-
sible MPC framework for a class of stochastic nonlinear
systems subject to possibly unbounded additive distur-
bances. Assuming a contractive property in the system
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UT LIN MC

Avg. solver time [sec.] 0.32 0.081 257.9

maxi=0,...,N |µ2(i)− µMC
2 (i)| 0.06 1.14 0

maxi=0,...,N |σ2(i)− σMC
2 (i)| 0.0029 0.015 0

Table 1. Solver time and approximation errors
for the schemes in Figure 2.

dynamics, we propose a computationally-efficient design
of the terminal cost and of the terminal set leading to the
sought closed-loop properties. Robustifying stability and
feasibility properties with respect to the approximation
error in the mean and the covariance matrix, as well as
the development of methods to ensure closed-loop chance
constraints are relevant future work. Furthermore, we are
also interested in broadening the class of nonlinear systems
for which we can guarantee closed-loop properties under
tractable design of the terminal set and the terminal cost.
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