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Summary

Purpose: This paper explores the potential of machine learning (ML) algorithms to mitigate uncertainty in

early environmental assessments (ex-ante LCA), which are hindered by prospective nature and limited quanti-

tative data availability.

Methods: A systematic literature review with keyword searches on Scopus identified three ML categorization

groups in ex-ante LCA: streamlined LCA, ex-ante LCA parameter projection, and ancillary models and data.

Two following case studies addressed literature gaps in price forecasting for economic allocation and recycling

rate projections.

Results: In streamlined LCA, 16 studies linked molecular and technical parameters to project production-

related emissions of organic chemicals, applied product clustering of product groups, and generated spatially

explicit impact category results. The application of ex-ante LCA parameter projection, as evidenced by 14 publi-

cations, involves the use ofML to project life cycle inventory (LCI) data, project characterization factors, and in-

tegrate natural parameterswith LCI data in a comprehensivemodeling approach. In nine other papers the appli-

cations to ex-ante LCA remained undefined but potentially applicable. For both case studies, best results were

obtained with a Recurrent Neural Networks (RNN) algorithm with long-short-term-memory (LSTM). Com-

modity price forecasting in the first case study achieved a projection accuracy of 0.96 (MSE), 0.98 (RSME), and

10.17% (MAPE) for copper and 88.86 (MSE), 9.43 (RMSE), and 21.23% (MAPE) for molybdenum. Probabil-

ity modelling is identified as a modeling approach which incorporates uncertainty. The recycling rate forecast

case study identified plastic recycling and glass recycling rates as the best suiting covariates and demonstrated

multivariate modeling possibilities with 0.22 (MSE), 0.48 (RSME), and 0.38% (MAPE) in a model with 68

covariates.

Discussion: A limited yet growing body of literature indicates that ML applications in ex-ante LCA represent

an emerging field of science. While streamlined LCA shows promise, it faces constraints related to data preci-

sion and a static nature. In the ex-ante LCA parameter projection categorization, the sub-group of similarity

clustering of LCI processes suffers from data uncertainty in LCI databases, making the approach more suitable

for updates of existing technologies than for emerging ones. On the other hand, LCI generation through ex-

ternal parameters represents a highly technology-specific case, showing significant promise. The projection of

characterization factors and the sub-group of integrated modeling are identified as promising, but the limited

number of scientific studies hinders the generalizability of these findings. Case studies on price forecasting

and recycling rate projection demonstrate ML’s applicability in economic allocation and waste treatment pro-

jections. Overall, the results suggest that ML holds potential for reducing uncertainty in ex-ante LCA, laying

the groundwork for focused research and contributing to a nuanced understanding of uncertainty reduction in

this domain.

Recommendations: The paper emphasizes the need for targeted research in the goal and scope phase and

in End-of-Life (EoL) treatment forecasts, e.g. via the use of time-series multivariate modeling. Furthermore, it

encourages further exploration of streamlined LCA into applications with a high degree of technical predictors,

along with the extended projection of characterization factors and integrated modeling. Additionally, the use

of probabilistic modeling as a tool to incorporate uncertainty into the modeling is recommended, aiming to

enhance the applicability and transparency of ML applications for reducing uncertainties in ex-ante LCA.
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1
Introduction

Emerging sustainable technologies are frequently hailed as solutions to global environmental challenges, dis-

placing incumbent and environmentally detrimental technologies [1]–[3]. Today, an increasing number of new

technologies claimenvironmental sustainability throughout their entire life cycle [4]. However, these assertions

frequently involve significant deception and misleading statements concerning the sustainability of emerging

products and services [5]. Thus, precise environmental assessment methods for new technologies are essential

to substantiate these assertions [6].

A method to accurately quantify the environmental impacts of products and services is Life Cycle Assessment

(LCA), covering the entire life cycle of a technology, from manufacturing through the use phase to end-of-life

(EoL) treatment (Section A.1). The original purpose of the LCA method, however, was to evaluate the envi-

ronmental impacts of technologies that had adequate information available regarding material and energy in-

puts and outputs, both for the foreground and the background systems[7], [8]. Hence, forward-looking LCAs,

which quantify the environmental impacts of new technologies before theirmarket introduction, have gained in-

creased attention in the LCA community in recent years [6]. To remain consistent with the terminology in scien-

tific literature, all forward-looking LCAs are referred to as ex-ante LCAs, while conventional ISO 14040/14044-

compliant LCAs are labeled as ex-post LCAs [9].

Conducting ex-ante LCAs during the design phase enables cost-effective design changes and offers the poten-

tial to avert later-stage environmental burdens while simultaneously reducing potential costs, preventing re-

grettable investments or substitutions, and proactively preparing for adoptions in environmental legislation

[9]. Nevertheless, this phase is constrained by limited information concerning the technology’s functionality,

as well as sparse data on the material and energy demands [10]. Accurate environmental assessments, on the

other hand, hinge on access to clearly defined functionality and technology-specific energy and material de-

mands, information that becomes available only during full-scale production [9]. This presents an information

conundrum as the environmental impacts of a technology are challenging to predict before extensive develop-

ment and widespread use — a challenge often termed the Collingridge Dilemma [11].

Ex-ante LCA is not primarily designed to provide the most accurate forecasts of uncertain parameters. Hence,

the assessment does not aim to predict the future; rather, it assesses the range of possibilities to help decrease fu-

ture environmental emissions. Therefore, ex-ante LCA has the ability to support the research and development

(R&D) of novel technologies through early environmental assessments and with the identification of specific

environmentally harmful characteristics of technologies [9], [12], [13].

In the context of themultitude of approaches dealing with the environmental impacts of emerging technologies

1
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and speculations about their future, this paper adopts the definition of ex-ante LCA as defined by Giesen et al.

(2020):

"The term ex-ante LCA refers to performing an environmental life cycle assessment of a new tech-

nology before it is commercially implemented in order to guide R&D decisions to make this new

technology environmentally competitive as compared to the incumbent technology mix."[14, p.2]

The inherent uncertainty in ex-ante LCA primarily stems from the undefined functionality of the technology,

the limited availability of representative data, as well as uncertainty in future environmental impact assessment

methods [9]. This, of course, adds another dimension of uncertainty to the already existing parameter, scenario,

andmodel uncertainties in ex-post LCAs [15]. In ex-ante LCA literature, researchers have come up with various

ways of how to address these elements of uncertainty best in ex-ante LCA (Table 1.1).

Table 1.1: Elements of uncertainty in ex-ante LCA and the resulting challenges.

Ex-ante LCA phase Elements of uncertainty which pose challenges in ex-ante LCA

Goal and scope Functional unit, functional performance, system boundaries

Life cycle inventory

analysis
Up-scaling, future technological development, undefined

end-of-life treatment, life cycle inventory data estimation

Life cycle impact

assessment
Future changes in impact categories

Interpretation Accuracy of projected environmental impact not verifiable

To address the challenge of undefined functionality of novel technologies, as illustrated in Table 1.1, Arvidsson

et al. (2017) proposed modeling technological alternatives that seem plausible at the time of conducting the ex-

ante LCA study. This involves considering the current state of development and exploring alternatives believed

to have high potential for the future [6].

Once the functionality is defined, the ex-ante LCA practitioner must navigate the diverse potential technologi-

cal configurations related to manufacturing, the use phase, and end-of-life. Blanco et al. (2020) address this

by introducing the concept of technological pathways. These pathways depict potential trajectories for the tech-

nology once the lab-scale stage is completed. Subsequently, an integrated probabilistic LCA method is applied,

utilizing a single product system and assigning a likelihood to each technological pathway to incorporate uncer-

tainty into the modeling. [16]

Moreover, parameter uncertainty associated with the up-scaling from lab processes to industrial production

presents another challenge in the LCI phase. The use of expert elicitation, process engineering principles, and

manual calculation are suggested to overcome this aspect of uncertainty. [6], [17], [18]

Furthermore, it is recommended to employ both local and global uncertainty and sensitivity analyses to quantify

data uncertainty, identifying critical input parameters, identify variability in the data and to determine which

technological pathways should be considered for future selection. [9], [16], [18], [19].

To anticipate future environmental impacts, Cucurachi et al. (2023) recommend the use of characterization

factor projection through data science techniques such as machine learning (ML) [20]. Examples of such tech-

niques are found in the literature [21]–[23].

While ML techniques have been widely used in ex-post LCAs to reduce uncertainty and project useful param-

eters [24], there is little scientific literature regarding potential applications of ML in ex-ante LCA. Several

authors point out the particular usefulness of ML algorithms, especially regarding their projective abilities but

also to estimate inventory data, enable fast modelling approaches and assist with modelling optimization. [20],
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[24]–[26] Within the diverse landscape of approaches addressing the capabilities of ML, this paper adopts the

subsequent definition of ML:

"Programming computers to optimize a performance criterion using example data or past experi-

ence". [27, p. 25]

Machine learning, in this context, refers to the concept of instructing computers to perform tasks that go beyond

basic numerical calculations. This is achieved by exposing them to repeated instances of past examples, allow-

ing them to learn and discern patterns and structures of the underlying data. Learning refers to the iterative

adjustment of internal model parameters through a process known as training, enabling the system to make

projections based on the learned data patterns. ML algorithms are highly versatile across different domains,

which is evident through existing application to various tasks such as time-series analysis, image and speed

recognition, classification, clustering or pattern recognizing. ML algorithms are broadly categorized as unsu-

pervised (extracting patterns from unlabeled data), supervised (mapping input to outputs using labeled data),

and reinforcement learning (training agents to optimize decisions through trial and error, receiving feedback

in the form of rewards or penalties). Unsupervised learning includes tasks like clustering and dimensionality

reduction, while supervised learning is applied to tasks such as classification and regression, and reinforcement

learning is utilized, for instance, in training autonomous systems like robots or game-playing agents. Consid-

ering the data-intensive characteristics of both ex-post LCA and ex-ante LCA, there is considerable promise for

improving methods related to data generation, modeling speed, and the mitigation of uncertainties. Addition-

ally, ex-ante LCA stands to gain significantly from parameter forecasting through techniques like time-series

analysis, clustering, and the broader capacity to identify data patterns. This, in turn, could facilitate the utiliza-

tion of untapped sources such as patterns, trends in existing statistics, or sensor data. [25], [28], [29]

The examples ofML applications found in ex-ante LCA literature, include streamlined LCA viaML [13], [18] and

characterization factor projection [16], [21], [22], [30], [31]. There is an absence of research dedicated to ML-

based algorithms for ex-ante LCA parameter forecasting. Moreover, no overview of ML applications specific to

addressing challenges within the various ex-ante LCA phases, as defined in Table 1.1, was identified. While ML

has been widely applied to ex-post LCA [24], there is no clear application of ML for ex-ante LCA, particularly

not to address the challenges arising from the elements of uncertainty. This includes a lack of literature review

papers as well as clearly identified literature gaps.

This paper investigates the potential of ML-based algorithms to reduce uncertainty in ex-ante LCA through a

systematic literature review and two case studies. The case studies aim to identify use cases of ML-based time-

series forecasting using publicly available statistics to forecast future commodity prices and recycling rates. The

following research questions are targeted to answer the knowledge gap of ML applications in ex-ante LCA.

Research question: How can machine learning algorithms be used to reduce uncertainty

within ex-ante life cycle assessment?

Furthermore, the following sub-research questions are formulated:

1. Sub-research question: What target variables, predictors, training data-sets, and model perfor-

mance metrics have been found in scientific machine learning literature in connection to ex-ante life

cycle assessment?

2. Sub-research question: What types of time-series machine learning algorithms can be utilized for

parameter projection in ex-ante life cycle assessment?

3. Sub-research question: What further research is needed to integrate machine learning algorithms

into ex-ante life cycle assessment?
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Methods

2.1. Types of ML in ex-ante LCA
This paper employs Heijungs and Suh’s LCA matrix notation to convert life cycle assessments into computer-

processable equations and establish a connection between LCA and ML. Subsequently, Equation 2.1 offers a

concise definition of LCA matrix theory, which also complements Section 3.1 by directly illustrating the ML

impacted parameters of ex-ante LCA. [32]

h = Q ⋅B ⋅A−1 ⋅ f (2.1)

where:

h = impact vector (indicator results)

Q = characterization matrix

B = intervention matrix (environmental interventions of unit processes)

A = technology matrix (flows within the economic systems)

f = final demand vector

Three distinct categorizations were created by the authors which outline the main applications found in liter-

ature of ML to ex-ante LCA: streamlined LCA, ex-ante LCA parameter projection, and ancillary models and

data. This categorization was selected in accordance with the identified challenges of ex-ante LCA (Table 1.1)

as well as the form of MLmodelling. This constitutes a crucial advancement in pinpointingML applications for

uncertainty reduction in ex-ante LCA, necessitating the creation of a categorization due to the absence of such

classification in the reviewed scientific literature. The approaches have been summarized in Table 2.1.

Table 2.1: Categorization of machine learning applications in literature to reduce uncertainty in ex-ante LCA.

Categorization and level of

ML integration
Ex-ante LCA problem

Machine learning

application in literature

Impact on

Equation 2.1

Streamlined LCA.

Surrogate LCA modelling.

Unknown impact category

results.

Link between descriptors

and impact category

results.

Vector h.

4
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Categorization and level of

ML integration
Ex-ante LCA problem

Machine learning

application in literature

Impact on

Equation 2.1

Ex-ante LCA

parameter projection.

Enhancing ex-ante LCA.

All ex-ante LCA specific

uncertainty challenges as

defined in table 1.1.

Forecast of parameters

required to conduct an

ex-ante LCA .

Matrices A,B

and Q.

Ancillary models and data

Indirectly enhancing

ex-ante LCA.

General uncertainty in

ex-ante LCA.

Forecast of indirect or

unspecified parameters

potentially useful to

conduct an ex-ante LCA.

Indirect or

unspecified

influence on

matrices A,

B and Q.

*”Unspecified” denotes the absence of explicit mention or acknowledgment of a potential association with either ex-ante

or ex-post LCA

2.1.1. Streamlined LCA
The first categorization referred to ML models that linked molecular and technical parameters (descriptors)

to impact category results (target-variable). This section represents a form of surrogate modeling that does

not include the ex-ante or ex-post LCA framework. Existing scientific literature identified descriptors such as

molecular structures, thermodynamic process parameters, atomic weight, the number of particular atoms, and

other technical variables. The algorithms were trained to predict midpoint and endpoint impact category re-

sults based on these descriptors and the impact category results of a substance or a product, predominantly

organic chemicals in this case. Environmental impacts of emerging technologies become quantifiable using

the available molecular or technical descriptors during the R&D phase. The fundamental idea behind stream-

lined LCA modeling is that the molecular composition of a chemical contains valuable data on the energy and

resource demands of its manufacturing process, which could then directly predict the impact vector h without

considering Equation 2.1. In this work, this idea was defined as streamlined LCAs, following the definition of

Heijungs and Dekker [33].

2.1.2. Ex-ante LCA parameter projection
The second categorization explores the utilization of ML models for projecting, forecasting, and generating es-

sential parameters needed for conducting ex-ante LCA. To identify the specific LCA parameters, LCA matrices

are employed (Equation 2.1). This categorization differs from the streamlined LCAmodeling categorization, as

it integrates ML algorithms to enhance and refine the LCAmodel rather than replacing the existing framework.

Consequently, it represents a potential incorporation of ML modeling within the LCA model itself. Projections

within this categorization may encompass LCI data, environmental flows, characterization factors, or impact

category results, thereby predicting the A, B, and Q matrices. While this categorization is established to ex-

plore the potential enhancements of ex-ante LCA through ML, it’s important to note that not all mentioned

studies explicitly conduct an ex-ante LCA. Additionally, it must be acknowledged that not all literature sources

clearly differentiate between ex-ante LCA and ex-post LCA, leading to the inclusion of all studies with potential

applications to ex-ante LCA.

2.1.3. Ancillary models and data
The third categorization encompasses ML modeling approaches consisting of models derived from keyword

searches that could not be assigned to the previous categories. This resulted from either a lack of reference to
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ex-post or ex-ante LCA or because the generated data only influenced the LCA matrix indirectly. For instance,

there were models projecting LCI data but without explicit mentions of potential applications in ex-ante or

ex-post LCA. Some studies only addressed generated parameters indirectly impacting the LCA matrices, such

as forecasting emissions from deforestation, which could influence the impact assessment method for carbon

uptake.

2.2. Systematic literature review
To comprehensively evaluate the potential applications of ML within the ex-ante LCA framework, a systematic

literature review following the PRISMAmethod [34] was conducted. The PRISMA (Preferred Reporting Items

for Systematic Reviews and Meta-Analyses) method is a comprehensive guideline for conducting systematic

literature reviews and meta-analyses. It involves clearly defining research questions along with exclusion and

inclusion criteria, thorough keyword database searches, rigorous screening of retrieved studies, data synthesis,

and transparent presentation of results.

Figure 2.1: Flowchart detailing the systematic literature review process

Keyword searches were performed on Scopus for the categorization groups of streamlined LCA and ex-ante LCA

parameter projection, followed by a thorough examination of abstracts of the identified papers. To augment

the conventional method of literature review, the web-based application Litmaps [35] was utilized to identify
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additional publications. Litmaps considers factors such as publication years, citations, which authorswere cited

based on the input list of references, and title similarity. This method allows for the identification of papers

that may fall outside of the initial keyword scope, such as key word dependence, and aids in the discovery of

relevant scientific literature. All publications deemed pertinent to help answer the research questions were

grouped into the categorizations: streamlined LCA, LCA parameter projection, and ancillary models and data.

A visual representation of the approach can be found in Figure 2.1. All searches were conducted on the 15th of

June, 2023.

Inclusion criteria involved the actual implementation of ML algorithms and their potential utility in ex-ante

LCA. Studies were excluded if ML was only discussed theoretically without the application of an algorithm or if

the study was a review. A clear distinction from ex-post LCA was maintained, resulting in the exclusion of any

ML techniques only applicable to ex-post LCA. The author focused on the abstract, keywords, and, if necessary,

the methodology section of each paper to identify weather a study was included. Only studies in the English

language were selected in this research. The review aimed to identify the applied training set, predictors, target

variables, model performance measured with a metric, and the type of algorithm. Additionally, the type of

assessed technology, the industry area, as well as the affected LCAmatrices, were identified and sorted into the

predefined categorization groups. The review followed the structure of Kleinekorte et al., 2020 [36].

Key words used for streamlined LCA
TOPIC: ex-ante LCAANDmachine learningORTOPIC: prospective LCAANDmachine learningORTOPIC:

anticipatory LCA AND machine learning OR TOPIC: ex-ante life cycle assessment AND machine learning

OR TOPIC: prospective life cycle assessment ANDmachine learning OR TOPIC: anticipatory life cycle as-

sessmentANDmachine learningAND descriptorsORmolecularOR processOR thermodynamicOR stream-

lining.

Key words used for LCA parameter projection
TOPIC: ex-ante life cycle assessment AND machine learning OR TOPIC: prospective LCA AND machine

learningORTOPIC: anticipatory LCAANDmachine learningORTOPIC ex-ante life cycle assessmentAND

machine learning OR TOPIC: prospective life cycle assessment AND machine learning OR TOPIC: antici-

patory life cycle assessment ANDmachine learning AND TOPIC: life cycle phase OR inventory OR impact

AND prediction OR spacial OR archetypes OR impact AND category AND TITLE-ABS-KEY: predictive

OR predictOR prospectiveOR screeningOR rapidOR scenarioOR streamliningOR spatially.

2.3. Case study
To address the identified research gaps, both from the ex-ante literature presented in Chapter 1 and from the

systematic literature review in Section 3.1, two case studies have been conducted. Both applications focus on

time-series forecasting. To simultaneously test univariate andmultivariate forecasting, each case study applies

a different version of ML-based time-series forecasts. Each case study uses available public statistics and has a

clear link to scientific literature that hasmentioned the possibility of suchmodeling. The goal is to demonstrate

how available statistics can be applied to enhance ML forecasting in ex-ante LCA to reduce uncertainty.

2.3.1. Price forecasts for economic allocation in ex-ante LCA
In LCA, allocation is a method used to distribute environmental burdens of multi-functional products or ser-

vices, considering properties likemass, economic value, or the number of subsequent uses. Economic allocation

uses price value at a specific time to allocate the environmental burden. Allocation factors are calculated based

on the share in proceeds (total economic unit productionmultiplied by economic value), representing a relative

share in monetary units [37]. Primarily the technology matrix A is affected by this modelling approach.
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Although the ISO 14044 standard discourages economic allocation [38] due to price variability and the low cor-

relation between prices and physical flows [39], LCA literature discusses its potential utility. Prices are viewed

as ameans to encapsulate complex attributes of products or services [39] and to reflect socio-economic demand,

which underlies the existence of multi-functional processes [40]. Although mass balance criteria in alignment

with LCA principles might appear more logical for allocation [41], the consistency of price shares for different

products or services over time poses a challenge to this approach [37]. Furthermore, the general uncertainties

associated with price fluctuations are comparable to those in mass-based allocation and system expansion, as

mass quantities can also fluctuate over time (e.g., milk production) [37]. Consequently, economic allocation is

considered a valid method, but its suitability depends on the specific circumstances of the assessment [39].

Economic allocation in ex-ante LCA modeling is challenging due to unknown future prices. Unlike ex-post

LCA, which uses historical or current prices to determine economic value, ex-ante LCA requires forecasting of

future prices. In literature, price forecasting based on historical data has been applied in order to address price

instabilities of metal commodities [42]–[44]. This case study explores ML-based time-series price forecasts for

economic allocation, as discussed by Blanco et al. [16].

The following case study, based on Nuss and Eckelman (2014) [45], conducted an LCA of all metals in the

periodic table. Metals were assessed with a functional unit of 1 kg and a cradle-to-grave system boundary.

Economic allocations were based on price averages from 2006 through 2010, sourced from the United States

Geological Survey. Impact categories covered climate change (IPCC 2007GWP 100a v1.02) and the Cumulative

Energy Demand (CED v1.08), among others. This case study specifically focused on economic allocation for the

co-production of copper and molybdenum, which can be observed in Figure 2.2.

Figure 2.2: Multi-functional process of copper concentrate and molybdenum concentrate production used by Nuss and Eckelman
(2014); Only the goods with an economic value > 1 are shown with a mass value in kg [45]

Figure 2.2 demonstrates how two economic goods were produced, while the waste flows (tailings), environmen-

tal outflows of the foreground system, and the environmental impacts of the background system remain to be

allocated. Nuss and Eckelman (2014) allocated the environmental burden with 94% to copper concentrate and

6% to molybdenum concentrate, based on their average economic values between 2006 and 2010 [45]. This

assumption was made despite the fact that the mass extraction ratio from the ore resulted in 1 kg of copper

and 0.00411 kg of molybdenum; hence, price-based economic allocation comes with significantly different en-

vironmental burden allocation compared to mass allocation. This demonstrated how two economic goods were

produced, while the waste flows (tailings), environmental outflows of the foreground system, and the environ-
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mental impacts of the background system had to be allocated. Nuss and Eckelman (2014) allocated the envi-

ronmental burden with 94% to copper concentrate and 6% tomolybdenum concentrate, based on their average

economic values between 2006 and 2010 [45]. This assumption wasmade despite the fact that the mass extrac-

tion ratio from the ore resulted in 1 kg of copper concentrate and 0.00411 kg of molybdenum concentate; hence,

price-based economic allocation comes with significantly different environmental burden allocation compared

to mass allocation. As a simplification, this paper employs the term copper instead of copper concentrate from

this point onward.

To discern underlying patterns in commodity price data, four distinct ML models were employed to predict

the prices of both metals. These models were chosen for their diverse mathematical characteristics, allowing

them to capture different data-sets. A comprehensive justification is available in Section 2.3.4, along with the

mathematical definitions and flow charts of each algorithm in Appendix C.

• RandomWalk model with a drift (No library as the algorithm was created from scratch);

• ARIMA model from Statsmodels [46];

• N-BEATS from the Darts library [47];

• Block RNN model with LSTM from the Darts library. [47].

All models utilized the copper and molybdenum price data from the International Monetary Fund (IMF) span-

ning from 1992 to 2023 [48]. Index data was utilized and subsequently converted to $/kg due to its extended

time horizon. Prices were forecasted using an 80/20 train-test split. Mean squared error (MSE) was selected

as the primary model performance metric, as the generic loss function of the supervised MLmodels (N-BEATS

and BlockRNNwith LSTM) is defined with torch.nn.MSELoss(). Therefore, themodel learns based on theMSE

metric. The sensitivity of the MSEmetric to errors and its compatibility with gradient-based optimization tech-

niques minimize projection discrepancies. To provide a comprehensive evaluation, Mean Absolute Percentage

Error (MAPE) and Root Mean Squared Error (RMSE) are also reported as additional model performance met-

rics. A full definition of all applied model performance metrics can be found in Appendix B.

2.3.2. Probability forecasting
In examining the deterministic forecast outlined in Section 3.2.1, this section explores the potential use of prob-

ability forecasting for copper prices employing the BlockRNN algorithm with LSTM. Probability modeling, an

additional feature within the Darts library, presents an alternative approach to deterministic single-point mod-

eling [49]. The probabilistic forecast line signifies the median within the chosen interquartile range, calculated

with a default number of 100 forecasts per point. The modeler can select the interquartile range, providing a

corridor of likelihood based on Monte-Carlo sampling of the underlying data. This tool addresses uncertainty

by considering possibilities of model forecasts, as opposed to determining a deterministic number throughML-

based forecasts. This probabilistic approach was applied to the same case study in Section 3.2.1, however only

considering copper. The mathematical definition,a flowchart of the model and further references are available

in Section B.5.

2.3.3. Waste treatment forecast
Modeling EoL scenarios in ex-ante LCA presents challenges due to the unavailability of waste treatment data,

recycling and landfilling processes, and other EoLmethods. Ex-ante LCA practitioners rely on expert elicitation

to grapple with uncertain technology development, unknown material values, limited recycling options, and

product separability issues. This case study exploresmultivariate time-series forecasting while solely relying on

waste treatment data fromEurostat. The study addresses the necessity of EoLmodeling, as defined inCucurachi

et al., 2023 [20].
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The study by Welz et al. (2011) served as a realistic ex-ante LCA scenario to this paper. A change in European

legislation forced the incumbent lighting technology of tungsten lamps out of the market, while the perceived

emerging technology was defined as the advancement of conventional fluorescent lamps. The study calculated

the environmental impacts of both technologies, using assumptions and expert elicitation, to account for the

environmental impacts of the EoL phase [50]. This scenario was taken as a practical application of ML based

multivariate modelling and a potential integration of ML into ex-ante LCA to forecast recycling rates of the

emerging technology of compact fluorescent lamps. Due to the emerging nature of new technologies, no waste

treatment data including a potential recycling rate was reported. Hence, this study assumed that waste treat-

ment of compact fluorescent lamps is comparable to the waste treatment of conventional fluorescent lamps,

due to a similarity in materials [50].

In the initial step, extensive waste treatment statistics from European countries were researched. The largest

data-set found, sourced from Eurostat, contained 38,450 data points on the waste treatment of fluorescent

lamps (referred to as gas discharge lamps in the Eurostat data-set) [51]. It covers various years, European

regions, and quantities of material treated in defined waste treatment types such as recycling, incineration, or

landfill. The data spans from 2005 to 2018, covering fluorescent lamps in every EUmember state, as well as Ice-

land, Liechtenstein, Norway, and the United Kingdom. Due to a change in the definition of waste categories in

2018, the follow-up data-set was not considered. Further details about the data-set are available in Appendix A.

[51].

Since Welz et al. (2011) assumed EoL treatment in Switzerland and the data-set lacked fluorescent lamp data

for this region, theNetherlands (NL)were selected as a substitute. Each individual data-set was expanded using

cubic spline interpolation to create a larger data-set, justifiable by the transformation from yearly to monthly

data. The BlockRNN with LSTM algorithm was chosen due to the adaptive nature of the data specific model

and its ability to forecast target variables based on large multivariate inputs. For further justifications on the

model choice, please see Section 2.3.4. The train-test split was set at 80/20, and the generic model version was

employed. A random search was conducted to identify suitable hyperparameters. In order to identify suitable

covariates for a largermultivariatemodel, two types of covariates were applied. The covariates selectedwere the

recycling rates of two other fluorescent lamps, chosen for their highest correlation with the target series, which

is the recycling rate of fluorescent lamps in the Netherlands. As an alternative, two recycling rates representing

the primarymaterials, specifically the plastic and glass recycling rates in the Netherlands, were also considered.

The covariates that exhibited the best projection were subsequently incorporated into a comprehensive model

encompassing all recycling rates across European countries for the selected variables.

2.3.4. Machine learning algorithms
The applied algorithms for univariate and multivariate modeling to predict commodity prices and future recy-

cling rates were chosen from a selection of algorithms applied in literature and of other state-of-the-art forecast-

ing algorithms for time-series forecasting. Each model has different implications due to the underlying model

architecture, as seen in Table 2.2 and in Appendix C, where all applied models are defined. The mathemati-

cal definitions of each model include flowcharts which provide a breakdown of the essential steps of the ML

algorithm. Hyper-parameter tuning was conducted with a random search, while no comparison of model loss

functions and principal component analysis were conducted for each model. Hence, individual model projec-

tions for of the applied algorithms (except for the RandomWalk with Drift) could potentially be improved with

better fitting hyperparameters. To prevent potential confusion andmaintain alignment withML literature, this

paper adopts the term turning point instead of structural break, a term used in econometrics and statistics to

denote a similar concept. [52])
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Table 2.2: Strengths and weaknesses of machine learning algorithms applied in this case study

Algorithm
Type of

Model
Strengths Weaknesses Source

Random

Walk with

Drift

univariate

time-series

Model

- Representation

of a long-term trend.

- Improvement of

stationarity of time-series.

- Sensitive to specification of the

drift term.

- Not able to capture turning

points.

- Limited to capturing linear

trends.

[42]–

[44]

ARIMA

univariate

time-series

Model

- Highly effective for linear

and stationary time-series data.

- Automated differencing.

- No seasonality detection.

- No external explanatory

variables included.

- For larger data-sets very

computationally intensive.

- No long-term trend detection.

[53,

p.45-

113]

N-BEATS

Supervised

Machine

Learning

Model;

univariate

and

multivariate

- Highly effective due to data-set

adaptable modular model

architecture.

- Flexibility in sequence length.

- Interpretative stacks via

decomposition (for models

with limited number of stacks).

- Enables probability modeling.

- Hyper-parameter sensitivity.

- Prone to overfitting.

- With large data-sets very

computationally intensive.

- Always learns seasonality and

the trend.

[54],

[55]

BlockRNN

with LSTM

Supervised

Machine

Learning

Model;

univariate

and

multivariate

- Highly effective for time

series through long and short

term dependency detection.

- Memory cells allow to

remember or forget observations.

- Flexibility in sequence length.

- Enables probability modeling.

- Hyperparameter sensitivity.

- Prone to overfitting.

- With large data-sets very

computationally intensive.

- Interpretation problems

due to black box nature.

[49],

[56]



3
Results

3.1. Systematic literature review
In the following section, the results of a systematic literature review are presented, which was conducted in

accordance with PRISMA principles as defined in Section 2.2. All literature have been grouped into three cat-

egorizations: streamlined LCA, ex-ante LCA parameter projection and ancillary models and data. The full

methodology can be found in Section 2.1. Many studies reported on the global warming potential (GWP), how-

ever, in most cases, the impact category result climate change was meant. Therefore, this study referred to

impact category results as global warming (GW) instead of GWP following the proposed methodology in Hui-

jbregts et al., (2017) [57].

3.1.1. Streamlined LCA
Streamlined LCA employs molecular or technical descriptors to project impact category results (target vari-

ables), with detailed modeling categorizations outlined in Section 2.1. In total, 16 papers were identified as

representative of streamlined LCA. Publications varied in their applications, leading to the creation of three

subgroups: the first focused on projecting the life cycle impacts of chemicals based on molecular and technical

properties, the second on projecting the life cycle impacts of products through product clustering, and the third

on projecting spatially explicit impact category results based on natural parameters. Streamlined LCA model

were the dominant approach in reviewed ML publications for ex-ante LCA. ML models were primarily used

for projecting production-related environmental emissions of organic chemicals, employing common predictor

variables like molecular structure, weight, pressure, temperature, boiling point, and enthalpy of vaporization.

The ReCiPe midpoint indicators were frequently used as target variables, though CED and endpoint indicator

Ecoindicator-99 were also common. The applied impact categories varied widely and did not adhere to stan-

dardized LCA methodology, particularly in LCIA calculations. The most prevalent algorithms in this catego-

rization were ANNs, ranging from simple architectures to deep learning practices with multiple hidden layers.

Other prevalent algorithms were gradient boosting, boosted regression trees, and multiple-linear regression

models.

Applications extended to solvents [58], bio-fuels [28], and organic chemicals with unspecified purposes [28],

[59]–[65]. Another notable use case of ML as the environmental assessment method for emerging technolo-

gies was the study by Zhu et al. (2020), which identified eco-friendly pharmaceutical alternatives to replace the

incumbent drug [66]. Streamlined LCA was also applied in chemical manufacturing optimization [67], [68],

as well as to forecast spatially and temporally explicit environmental effects of agriculture [69]–[71]. Another

12
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field of application was identified in Park et al. (2001), who directly targeted product design, grouping prod-

ucts by environmental characteristics andmapping impact category result drivers through attribute correlation,

enabling emissions estimation for new technologies [72].

Several referenced publications ([58], [62], [63], [68]) built on Wernet et al.’s (2008) extensive ANN-based

algorithm, which projected environmental impacts (impact category results of GW, biological and chemical

oxygen demand, total organic carbon, Ecoindicator 99) based on 10 molecular descriptors. The algorithm is

freely available on the ETH Zurich’s web-page [73]. An extension of this work can be found in Song et al.’s

(2017) study and the related project of the Chemical Life Cycle Collaborative at the University of Santa Barbara

[74].

Table 3.1: Systematic literature review - streamlined LCA: ANN = Artificial neural network, AVE = Average classification
error, BOD5 = biochemical oxygen demand, CED = cumulative energy demand, COD = chemical oxygen demand, EI99 Total =
Ecoindicator99 total, EI99 HH = Ecoindicator99 human health, EI99 EQ = Ecoindicator99 ecosystem quality, EI99 Res =

Ecoindicator99 resource extraction, EIC = Endpoint impact category, EU = Eutrophication, GPR = Gaussian Process Regression, GBRT
= Gradient boosting regression tree, GW = Global warming, LR = Linear regression, LCIA = Life cycle impact assessment, MLR =
Multi-linear regression, MdRAE = Median relative absolute error, MRE = mean relative error, MSE = mean square error, MIC =
midpoint impact category, nRMSE = normalized root mean square error, RF = Random forest, PLS = Partial least squares, SVM =

Support vector machines, R2 = coefficient of determination, RAE = relative average error, TOC = total organic carbon

Training set Predictors Target variables
Model

performance

Type of

algorithm
Source

Project life cycle impacts of chemicals based on molecular and technical properties

88 molecular

structures and

thermodynamic

properties

17 molecular

and 15

thermodynamic

descriptors

CED, GW, COD,

BOD5, TOC,

EI99 Total, EI99

HH, EI 99 EQ,

EI99 Res

RAE = 20-40%

MLR with

automated

mixed-integer

programming

[59]

58 unit

processes

resulting in 91

combinations of

production, 23

LCA metrics

23 molecular

and 7 process

descriptors

18 ReCiPe MICs,

4 ReCiPe EICs

and CED

R2 = 0.6-0.8 for

most metrics
ANN [28]

58 unit

processes

resulting in 91

combinations of

production, 23

LCA metrics

23 molecular

and 7 process

descriptors

18 ReCiPe MICs,

4 ReCiPe EICs

and CED

AVE = 13-40% Decision trees [67]

63 chemicals,

LCIA data of 63

chemicals

178 molecular

and 7 process

descriptors

17 ReCiPe MICs

R2 = 0.4 for

16/17 impact

categories

ANN [68]

338 chemicals,

392 cradle to

gate LCI

data-sets

10 molecular

descriptors

GW, BOD5,COD,

TOC, EI99 Total,

EI99 HH, EI99

EQ, EI99 Res

MdRAE =

41-69%
ANN [61]
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Table 3.1: Systematic literature review - streamlined LCA: ANN = Artificial neural network, AVE = Average classification
error, BOD5 = biochemical oxygen demand, CED = cumulative energy demand, COD = chemical oxygen demand, EI99 Total =
Ecoindicator99 total, EI99 HH = Ecoindicator99 human health, EI99 EQ = Ecoindicator99 ecosystem quality, EI99 Res =

Ecoindicator99 resource extraction, EIC = Endpoint impact category, EU = Eutrophication, GPR = Gaussian Process Regression, GBRT
= Gradient boosting regression tree, GW = Global warming, LR = Linear regression, LCIA = Life cycle impact assessment, MLR =
Multi-linear regression, MdRAE = Median relative absolute error, MRE = mean relative error, MSE = mean square error, MIC =
midpoint impact category, nRMSE = normalized root mean square error, RF = Random forest, PLS = Partial least squares, SVM =

Support vector machines, R2 = coefficient of determination, RAE = relative average error, TOC = total organic carbon

Training set Predictors Target variables
Model

performance

Type of

algorithm
Source

103 chemicals

and 103 LCI

data

2-17 molecular

descriptors

GW, biological

and chemical

oxygen demand,

total organic

carbon, EI99

Total, EI99 HH,

EI99 EQ, EI99

Res

MRE = 5.8-21% ANN [60]

3 models of 166

chemicals, 166

unit processes

(LCI)

3839, 58 or 60

molecular

descriptors

CED, GW,

Acidification,

EI99 HH, EI99

EQ, EI99 Res

MRE = 30-60%

and R2 =

0.45-0.87

ANN [62]

73 solvents,

cradle-to-grave

LCIA results of

73 solvents

8 molecular and

11 process

descriptors

17 ReCiPe MICs

Training set:

R2= 0.57,

nRMSE= 12%

ANN [58]

220 chemicals

with 218

descriptors

(molecular,

physical and

process), 220

LCIA results

SMILES-code of

the product,

reaction

equation,

optional

reaction

temperature and

pressure

17 ReCiPe MICs Not given ANN [63]

304 processes,

166 chemicals

with 33

molecular

descriptors and

24 process

descriptors

molecular

structure of

main product

and the gross

reaction

GWMIC based

on ReCiPe
R2 = 0.61

GPR and

encoder-

decoder

network

[64]
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Table 3.1: Systematic literature review - streamlined LCA: ANN = Artificial neural network, AVE = Average classification
error, BOD5 = biochemical oxygen demand, CED = cumulative energy demand, COD = chemical oxygen demand, EI99 Total =
Ecoindicator99 total, EI99 HH = Ecoindicator99 human health, EI99 EQ = Ecoindicator99 ecosystem quality, EI99 Res =

Ecoindicator99 resource extraction, EIC = Endpoint impact category, EU = Eutrophication, GPR = Gaussian Process Regression, GBRT
= Gradient boosting regression tree, GW = Global warming, LR = Linear regression, LCIA = Life cycle impact assessment, MLR =
Multi-linear regression, MdRAE = Median relative absolute error, MRE = mean relative error, MSE = mean square error, MIC =
midpoint impact category, nRMSE = normalized root mean square error, RF = Random forest, PLS = Partial least squares, SVM =

Support vector machines, R2 = coefficient of determination, RAE = relative average error, TOC = total organic carbon

Training set Predictors Target variables
Model

performance

Type of

algorithm
Source

187 chemicals,

187 LCI data

531 molecular

descriptors

4 ReCiPe MICs:

GW, particulate

matter

formation,

human toxicity,

metal depletion

R2 = 0.73-0.86
RF, XGBoost,

SVM and ANN
[65]

70% of 224

non-ionic

organic

chemicals, 125

molecular

descriptors per

data point, 224

LCIA results

from Ecoinvent

125 molecular

descriptors

EI99 Total, EI99

HH, EI99 EQ,

EI99 Res, 17

ReCiPe MICs

and 3 ReCiPe

EICs

R2=0.6328-

0.6454
ANN [66]

Project life cycle impacts of products via product clustering

Defined

attributes of 30

products, 30

LCIA results

Defned product

attributes

according to

ones group

impact drivers

Undefined LCIA

results

RAE(ANN)=

0.11-1202 %,

MLR not given

ANN, MLR [72]

Project spatially explicit impact category results based on natural parameters

On-farm LCIA

emission from

2000-2008 of

874 to 974

counties, climate

and weather

variables

31 predictor

variables
GW and EU R2 = 0.78-0.82 XGBoost [69]

Up to 6000 data

points of natural

parameters of 12

counties

Up to 32 natural

parameters of

rationalized

county data

GW and EU

CV=0.35-0.87,

MSE=0.27-22,

R2=0.11-0.75

LR, SVR, ANN,

XGBoost
[71]
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Table 3.1: Systematic literature review - streamlined LCA: ANN = Artificial neural network, AVE = Average classification
error, BOD5 = biochemical oxygen demand, CED = cumulative energy demand, COD = chemical oxygen demand, EI99 Total =
Ecoindicator99 total, EI99 HH = Ecoindicator99 human health, EI99 EQ = Ecoindicator99 ecosystem quality, EI99 Res =

Ecoindicator99 resource extraction, EIC = Endpoint impact category, EU = Eutrophication, GPR = Gaussian Process Regression, GBRT
= Gradient boosting regression tree, GW = Global warming, LR = Linear regression, LCIA = Life cycle impact assessment, MLR =
Multi-linear regression, MdRAE = Median relative absolute error, MRE = mean relative error, MSE = mean square error, MIC =
midpoint impact category, nRMSE = normalized root mean square error, RF = Random forest, PLS = Partial least squares, SVM =

Support vector machines, R2 = coefficient of determination, RAE = relative average error, TOC = total organic carbon

Training set Predictors Target variables
Model

performance

Type of

algorithm
Source

6000 data

points of 32

natural

parameters and

process

parameters of

each county

32 natural

parameters of

regionalized

county data

GW and EU

R2(GBRT)=

0.78-0.87,

MSE(GBRT)=

0.27-10,

R2(SVM)=

0.63-0.8,

MSE(SVM)=

0.38-17

SVM, GBRT [70]

Most studies used molecular descriptors, sometimes in combination with process descriptors. Training sets

usually represented the predictors as input variables; however, Kleinekorte et al., (2019) [68] and Kleinekorte

et al., (2023) [64] introduced an integrated algorithm that automatically derived the required molecular and

thermodynamic parameters from a chemical formula. High dependence on chemical knowledge, chemical engi-

neering, and thermodynamics was observed. Training sizes varied significantly, and there was no consistency

in training data; some used LCI data, while others used impact category results. The affected LCA equation

parameter was the impact vector h in all studies, the study by Park et al. (2001) additionally affected the A

matrix.

The accuracy of projections in streamlined LCA varied significantly both within and across studies. Overall,

publications demonstrated medium to high accuracy on the most reported model performance metric (R2 =

0.4-0.87 except one study), and other reported metrics (mean relative error (MRE) = 20-69% except one study,

average classification error =13-40%, MRE=5.8%-21%). Reporting of accuracy lacked consistency, with differ-

ent model performance metrics used, complicating model comparisons. Furthermore, comparison across stud-

ies was not directly possible because of the highly data and application field-specific sensitivity of the model

performance metrics. The evaluation of training data quality and uncertainty was rarely conducted. Moreover,

limited efforts weremade to provide reasoning for the driving factors behind calculated target variables, mainly

impact category results; in no case was a hot-spot analysis conducted. Notably, the streamlined LCA method

did not adhere to ISO 14040/14044 standards and instead represented a form of surrogate modeling with an

artificial link between technical parameters and LCIA results. While not all studies focused on the early-on envi-

ronmental assessment of novel technologies, all studies described in the categorization ex-ante LCA parameter

projection were identified as applicable to reduce uncertainty in ex-ante LCA-related challenges (Table 1.1) and

to influence design choices early in the technology diffusion curve via the use of ML. Limitations and impli-

cations of the method for uncertainty reduction in ex-ante LCA and early environmental assessments will be

discussed in Chapter 4.

3.1.2. Ex-ante LCA parameter projection
In total 14 papers were found in the categorization of ex-ante LCA parameter projection, divided into four sub-

groups of application: Similarity clustering of LCI processes and flows, LCI data projection based on external
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parameters, characterization factor projection, and integrated LCA modeling. The most dominant approach

within this section was the projection of LCI data, both based on LCI databases and external data. The predic-

tor variables varied across all studies, making it impossible to summarize them collectively. Target variables

represented potential future LCI data for ex-ante LCA, thereby influencing the technology A matrix and occa-

sionally affecting theBmatrix. In other publications, characterization factorswere defined as the target variable,

influencing the characterizationmatrix Q. The last subgroup defined potential life cycle impact category results,

along with potential future LCI data, as the target variable, thereby affecting both the impact vector h and the

technology matrix A simultaneously. Algorithm type varied by application, and no dominant algorithm was

found.

The similarity clustering of LCI processes and flows subgroup utilized the Ecoinvent LCI database to analyze cor-

relations among different unit processes. They appliedmulti-linear regression andmixed-integer programming

to identify proxy values, serving as substitutes for existing LCI data. In this context, ML was not employed for

forecasting but rather for clustering results. These publications are classified in the LCA parameter projection

category because the estimated proxies can also be used to project missing LCI data, leveraging the similarity

of environmental impact drivers across correlated unit processes.

Table 3.2: Systematic literature review - Ex-ante LCA parameter projection: CED = cumulative energy demand, CML-IA =
Centrum voor Milieuwetenschappen impact assessment, GW = global warming, EI = Ecoindicator, MLR = multi-linear-regression, LR
= Linear regression, GBRT = Gradient boosting regression tree, RF = random forrest, ANN = artificial neural network, PLS = partial
least squares, SVM = support vector machines, kNN = k-nearest neighbour, MILP = mixed-integer linear programming, GBM =

gradient boosting machine, TOL = Thrid order lasso, MPE = mean percentage error, R2 = coefficient of determination, AVE = average
classification error, MdRAE = median relative absolute error, MRE = mean relative error, RAE = relative average error, MSE = mean
square error, LLR = local linear regression, GPR = Gaussian Process Regression, ANFIS = adaptive neuro fuzzy inference system

Training set Predictors
Target

variables

LCA

matri-

ces

Model

performance

Type of

algo-

rithm

Source

Similarity clustering of LCI processes and flows

80% of 4087

product each with

32 LCIA results

(CML-IA, CED,

EI99), grouped in

similar

functionality

not given

Artificial LCI

data or proxys

based on

correlations of

unit proceses

A

R2 >50% of

60% of all

processes

least-

square

LR

[75]

80% of 4087

products, 17 LCIA

results (CED,

EI99), grouped in

similar

functionality

Correlated unit

processes in

Ecoinvent

Proxy values to

project LCIA

results based

on other

Ecoinvent

processes

A
MRE =

<15-<20%

MLR

and

MILP

[76]

7029 intermediate

and elementary

flows, 2546

processes, 11,332

unit processes

not given

Similarity of

pairs of

processes for

potential

substitution

A
MPE = 1,5,10

and 20%
[77]
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Table 3.2: Systematic literature review - Ex-ante LCA parameter projection: CED = cumulative energy demand, CML-IA =
Centrum voor Milieuwetenschappen impact assessment, GW = global warming, EI = Ecoindicator, MLR = multi-linear-regression, LR
= Linear regression, GBRT = Gradient boosting regression tree, RF = random forrest, ANN = artificial neural network, PLS = partial
least squares, SVM = support vector machines, kNN = k-nearest neighbour, MILP = mixed-integer linear programming, GBM =

gradient boosting machine, TOL = Thrid order lasso, MPE = mean percentage error, R2 = coefficient of determination, AVE = average
classification error, MdRAE = median relative absolute error, MRE = mean relative error, RAE = relative average error, MSE = mean
square error, LLR = local linear regression, GPR = Gaussian Process Regression, ANFIS = adaptive neuro fuzzy inference system

Training set Predictors
Target

variables

LCA

matri-

ces

Model

performance

Type of

algo-

rithm

Source

7029 intermediate

and elementary

flows, 2546

processes, 11,332

unit processes

from Ecoinvent

not given

Similarity of

each pair of

processes to

potentially use

existing data as

a substitute

A

R2(XGBoost)

=0.27-0.75,

R2(RF)=

0.22-0.54,

MPE(XGBoost)

=15.24-74.79,

MPE(RF)

=46.91-78.91

XGBoost,

RF
[78]

LCI data projection based on external parameters

70% of 444 power

plant data proxies,

CO2 intensities of

plant

fuel type plant,

age, capacity, GDP

per capita, steam

pressure

CO2 intensity

of power plant
B

R2(lLR)

=0.61,

R2(MLR) =

0.49

LLR

and

MLR

[79]

8 variables of 168

data samples,

total yield of each

of the processes

pyrolysis time,

pyrolysis

total activated

coal yield based

on biomass

input

A,B R2 = 0.971 ANN [80]

80% of 114

data-set

containing 17

technical

parameters and 4

emission data

points

17 technical and 4

emission data

points

Emissions of a

dual fuel

engine

B
R2 =

0.0986-0.735
MLR [81]

75% of 52 plant

species and their

respected fertilizer

usage

52 data points for

nitrogen fertilizer

usage (temporal,

spatial, time)

Fertilizer usage

of other plants

that are not

reported

A not given GPR [82]

Characterization factor projection

3073 chemicals,

13 USEtox output

factors

9 molecular

descriptors

13 USEtox

output factors
Q R2=0.46-0.96 ANN [21]
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Table 3.2: Systematic literature review - Ex-ante LCA parameter projection: CED = cumulative energy demand, CML-IA =
Centrum voor Milieuwetenschappen impact assessment, GW = global warming, EI = Ecoindicator, MLR = multi-linear-regression, LR
= Linear regression, GBRT = Gradient boosting regression tree, RF = random forrest, ANN = artificial neural network, PLS = partial
least squares, SVM = support vector machines, kNN = k-nearest neighbour, MILP = mixed-integer linear programming, GBM =

gradient boosting machine, TOL = Thrid order lasso, MPE = mean percentage error, R2 = coefficient of determination, AVE = average
classification error, MdRAE = median relative absolute error, MRE = mean relative error, RAE = relative average error, MSE = mean
square error, LLR = local linear regression, GPR = Gaussian Process Regression, ANFIS = adaptive neuro fuzzy inference system

Training set Predictors
Target

variables

LCA

matri-

ces

Model

performance

Type of

algo-

rithm

Source

274 components,

274 USEtox

impact results

274 molecular

descriptors from

TyPol

USEtox charac-

terization

factor(ET) and

characteriza-

tion factor(HT)

Q

MAE=0.6-1.3,

global median

log = 0.75

PLS, RF,

SVM
[23]

70% of 2307

organic chemicals

with 13

characteristics,

2307 HC50%

values

14 natural

parameters from

CompTox

HC 50 values of

chemicals
Q

Average

RMSE=0.761,

Average

R2=0.63

kNN,

SVM,

ANN,

RF, Ad-

aBoost,

GBM

[22]

Integrated LCAmodeling

70% of 240

data-sets each

containing 8 or

more agricultural

parameters.

Human labour,

Machinery, diesel

fuels, fertilizers,

biocides, water,

electricity, cutting

plant

10 LCIA results

and 1 CED

factor

A and

im-

pact

vector

h

R2(ANN)=

0.923-0.986,

R2(ANFIS)=

0.912-0.999

ANNs,

ANFIS
[83]

16 economic

parameter, 16

process

parameters, 16

GWP emission

data for 16

different products

Economic demand

and quantity of

process

parameters

profit GWP

flexibility index

A and

im-

pact

vector

h

R2(ANN)=

0.997,

R2(SVR)

=0.937,

R2(TOL)=0.787

ANN,

SVR

and

TOL

[84]

70% of 240

data-sets each

containing 8

agricultural

parameters

nitrogen,phosphate,

potassium,energy

eq.of human labor,

machinery, diesel

fuel,nitrogen,seed

data, herbicide,

insecticide,

fungicide,

electricity

paddy yield and

10 LCIA

categories

A and

im-

pact

vector

h

R2(ANN)=

0.524-0.999,

R2(ANFIS)=

0.944-0.997

feed-

forward

back

propa-

gation,

ANN,

ANFIS

[85]

Moderate accuracy was achieved in the two subgroups of LCI data estimation (R2 = 0.22-0.75, except for one
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study with exceptionally high accuracy of R2=0.971). Characterization factor projection yielded favorable re-

sults with R2=0.46-0.96; however, the highest accuracy was attained in the integrated LCAmodeling subgroup

(R2=0.524-0.999), with the majority of studies achieving results above R2 = 0.9. The most commonly used

model performance metric by far was R2. Nevertheless, individual studies also employed different model per-

formance metrics (MPE, RMSE, MRE), making comparisons challenging due to their unique nature. This find-

ing complicates the comparison ofmodels with different purposes and training data within the group of ex-ante

LCA parameter projection, as well as comparisons to othermodels in streamlined LCA and ancillarymodels and

data. Training data was not thoroughly evaluated, and there was no discussion of why ML models behave the

way they do; furthermore, no hot-spot analysis was conducted. All studies employed supervised ML, with no

predominant algorithms. Moreover, the results could often be applied without implementing ML algorithms,

increasing accessibility to the LCA community. For example, this couldmanifest in the form of generated future

LCI data within LCI databases or projected characterization factors within LCA software. The publications pre-

sented in this section represent diverse ML applications for integration into ex-ante LCA, specifically targeting

uncertainty within ex-ante LCA.

3.1.3. Ancillary models and data
The publications found in this section represent ML approaches that did not fit into the previous two sections.

No connection to ex-ante LCA or ex-post LCA was explicitly mentioned, or LCA matrices were only indirectly

affected by the ML-based projections. Nevertheless, the ML applications in the following publications are be-

lieved to potentially reduce uncertainty in ex-ante LCA. In total, nine publications were identified. Due to the

wide-ranging applications, no subgroups were defined. Furthermore, no common predictor variables, target

variables, common algorithms, model performance metrics, or other factors of accuracy were identified.

Alabi et al. (2022) and Cornago et al. (2020) employed multivariate forecasting and deep learning ANNs to

project short-term electricity mixes, offering potential applications for forecasting energy inputs in LCA back-

ground processes [86], [87]. Ascher et al. (2022) and Goel et al. (2020) explored ML’s usage in projecting

optimal gasification andmanufacturing optimization parameters, with implications for up-scaling processes in

ex-ante LCA [88], [89]. These approaches fall under the sub-group of LCI data projection based on external

parameters in the ex-ante LCA parameter projection categorization, influencing matrices A and potentially B.

The studies, lacking a direct reference to ex-ante LCA, were placed accordingly to this section.

ML models, termed projective maintenance, have been applied to project the lifespan and durability of indi-

vidual technologies, aiming to enhance the life cycle of products, machines, or infrastructure by minimizing

avoidable breakage through targeted maintenance. Supervised ML algorithms, including those used in studies

([90]–[93]), accurately forecast the technical lifespan of products. This modeling approach has the potential to

benefit various phases of ex-ante LCA, specifically in identifying material and energy demands such as in the

use-phase of the technology, impacting matrices A and potentially B.

The last group of ML applications in ancillary models and data covered the field of potentially predictive fore-

casts of parameters relevant for the LCIA phase, in particular the environmental flow estimation. Natural pa-

rameterswere used to forecast the accumulation of organic contaminants on plant roots. Also, carbon emissions

of human activities were forecasted with random forest and neural network models. These forecasted values

represent environmental emissions that indirectly influence the B matrix [94], [95].

Overall, the section provides an overview of untapped potential ofML in ex-ante LCA by only describing studies

identified in the keyword searches of the Section 3.1.1 and Section 3.1.2, but claims to give a complete overview.
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3.1.4. Machine learning solutions to ex-ante LCA challenges
Table 3.3 summarizesML solutions for a potential integration into ex-ante LCA found in the literature. The field

of streamlined LCAs are not included but will be part of the discussion of ML applications in the Chapter 4.

Table 3.3: Machine learning applications in literature addressing an ex-ante LCA uncertainty challenge.

Ex-ante LCA phase
Uncertainty challenge in

ex-ante LCA

Machine learning application in

literature
Source

Goal and scope
functional unit,

functional performance,

system boundaries

No literature found -

Kinetic process simulation [80]

Optimal process simulation

[28]

[67]

[84]
Foreground up-scaling

Industrial process clustering
[72]

[96]

Similarity approach of LCI

database

[78]

[76]

[75]

[77]
Future technological

development LCI data generation with

external parameters

[81]

[79]

[96]

Life cycle inventory analysis

Integrated LCA modeling

[85]

[83]

[84]

End-of-Life treatment No literature found -

Similarity approach of LCI database

[75]

[76]

[77]

[78]

Life cycle inventory

data estimation LCI data generation with

external parameters

[81]

[79]

[96]

Life cycle impact

assessment
Future changes in impact

categories

Projection of characterization

factors

[21]

[22]

[23]

Regionalize normalization

factors
[97]

Interpretation
Questionable LCA

interpretation Uncertainty analysis [82]

Research addressing ex-ante LCA challenges is limited, with no studies in the goal and scope phase. Most lit-
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erature centers on LCI data generation and up-scaling methods. While there are no direct studies on expert

elicitation, some research on optimal process design [28], [67], [84] and industrial process clustering [72], [96]

can provide technology-specific knowledge as an adjunct to expert elicitation. Additionally, Donati et al. (2023)

introduced the idea of LCI data generation from Computer-Aided technologies (CAx) via ML and discussed the

possibility of EoL treatment through recyclingmachine yield estimation [26]. However, as the study did not ap-

ply the algorithms, it was not part of the systematic literature review. In the LCIA phase, only three publications

addressed future environmental impact changes via characterization factor forecasting. In the interpretation

phase, two papers employedML for normalization factors and uncertainty analysis, some of which were geared

towards ex-post LCA. Notably, the applied algorithms, along with their predictors and target variables, were

frequently provided in appendices and supplementary materials. No systematic literature review on ML tech-

niques in ex-ante LCA was identified, even though Kleinkorte et al. (2020) conducted a literature review on

streamlined LCA [36].

The following case studies aim to address the knowledge gap inML application summarized in this section to re-

duce uncertainty in ex-ante LCA by investigating possibilities in non-existent ex-ante LCA parameter forecasts

via time-series ML forecasts.

3.2. Case study
This case study examines the viability of utilizing price forecasts viaML based univariate time-series forecast as

a parameter in economic allocation for ex-ante LCA. Additionally, it demonstrates the possibility of ML based

univariate time-series forecasts, as a tool to reduce ex-ante LCA parameter uncertainty. In a second step a

novel approach is taken to address the knowledge gap concerning EoL treatment forecasts. The first-of-its-kind

ML model in an ex-ante LCA environment endeavors to forecast waste treatments in a general context using

available waste statistics from Eurostat. For a detailed understanding of the methodology employed, refer to

Section 2.3.

3.2.1. Price forecasts for economic allocation in ex-ante LCA
For identifying the best-performing univariate forecasting algorithm for copper andmolybdenumprice forecast-

ing, algorithms were trained on several IMF commodity data for copper and molybdenum. A Random Walk

model with a drift, an ARIMA model from Statsmodels, a N-BEATS model from the Darts library, and a Block-

RNN algorithm with LSTM from the Darts library have been applied. The diagrams showing the percentual

deviation of the test period forecast and the actual data in Figure 3.1, Figure 3.2, Figure 3.3, and Figure 3.5

compare the test period forecast to the actual data, illustrating the percentage deviation between them. This

visualization represents the Mean Absolute Percentage Error (MAPE), defined in Appendix B in Equation B.17.

Random walk with Drift
The random walk model with a drift captures the underlying trend. For copper, the forecasted trend visually

matches the test data (subplot a, Figure 3.1). However, this visual match is not present in the case of molyb-

denum due to a turning point in the molybdenum data. A random walk cannot project such turning points,

resulting in a higher percentual deviation between the test forecast and the actual data compared to the other

models formolybdenum (subplot b, Figure 3.1). Due to themodel’s architecture (Section B.2), no hyperparame-

ter tuningwas necessary. Also, a randomwalkwith drift cannot account for seasonality or residuals (differences

between observed and projected values of data), as seen in Figure C.3 and Figure C.4.
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(a) Actual and forecasted copper prices (b) Actual and forecasted molybdenum prices

(c) Percentual deviations of test period forecast and actual data - copper
(d) Percentual deviations of test period forecast and actual data -

molybdenum

Figure 3.1: Projections for monthly copper and molybdenum prices utilizing a random walk with drift depicted in subplots (a, b), the
percentual deviations of forecasted values during the test period when compared to the actual values depicted in subplots(c,d).

The randomwalk with drift’s capability to capture underlying trends makes it an effective benchmark indicator

model, especially for identifying long-term trends in price fluctuations. However, due to the high volatility

in molybdenum and copper price data, the forecast can sometimes be misleading, as evidenced in the case of

molybdenum where a turning point in the test phase affected the test period forecast accuracy.

ARIMA
As observed in Figure 3.2, themodel fails to capture underlying patterns of the data, yielding only the trend due

to an explicit command to force the trend as a constant. Hence, the projected values have high similarity with

the values projected in Figure 3.1. This underfitting is consistent across various combinations of the first two

lags, which exhibit partial autocorrelation unrelated to random noise.



3.2. Case study 24

(a) Actual and forecasted copper prices (b) Actual and forecasted molybdenum prices

(c) Percentual deviations of test period forecast and actual data - copper
(d) Percentual deviations of test period forecast and actual data -

molybdenum

Figure 3.2: Projections for monthly copper and molybdenum prices utilizing a ARIMA model with drift depicted in subplots (a, b), the
percentual deviations of forecasted values during the test period when compared to the actual values depicted in subplots(c,d).

Hyperparameter tuning was conducted using an automated ARIMA search. The best hyperparameter for cop-

per were identified to be p=2, d=1, q=2, and for molybdenum, p=1, d=1, and q=0. The identified hyperparame-

ters were used both for the test period forecast and the out-of-sample forecast. For all partially autocorrelated

values (Figure C.1 and Figure C.2), the model is underfitted, failing to capture the residuals (Figure C.1 and

Figure C.2). The seasonality is excluded by default, because ARIMA is not able to capture seasonal behaviour.

When fitting the model with lags exceeding two, projections emerge, but they rely solely on random noise be-

cause the underlying parameters lack partial autocorrelation with the original data-set.
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N-BEATS
The N-BEATS model visually projected copper prices during the test period, but it exhibited notable visual

disparities from the test data for molybdenum, as illustrated in Figure 3.3.

(a) Actual and forecasted copper prices (b) Actual and forecasted molybdenum prices

(c) Percentual deviations of test period forecast and actual data - copper
(d) Percentual deviations of test period forecast and actual data -

molybdenum

Figure 3.3: Projections for monthly copper and molybdenum prices utilizing a N-BEATS model depicted in subplots (a, b), the
percentual deviations of forecasted values during the test period when compared to the actual values depicted in subplots(c,d).

Notably, N-BEATS is known to be susceptible to overfitting and the complex generic model architecture with

30 stacks, 1 block, and 5 layers (see Section B.3). Overfitting in ML occurs when a model learns the noise

or specific details of the training data to the extent that it limits its ability to forecast future parameters. To

address overfitting, the input chunk (the number of time steps fed to the forecasting module) was reduced to 1,

enabling the model to project one value at a time. This enhances the interpretability while decreasing its ability
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to capture long-term trends. A random search for hyperparameter tuning was conducted, resulting in an input

chunk of 37 and 87 epochs for copper. An epoch in ML, including BlockRNN or N-BEATS algorithms, refers

to a single iteration through the entire training data-set, during which the model’s parameters are updated

based on the computed loss. For molybdenum, the input chunk was set to 112, and the number of epochs to

89. The hyperparameters were used both in the test and out-of-sample forecast. As seen in the decomposition

plot in Figure C.7, the model effectively captured the trend, underlying seasonality, and residuals for copper.

However, as seen in the decomposition plot in Figure C.8, themodel struggled to capture the trend and residuals

for molybdenum, although the seasonality is in the same order of magnitude. This explains the disparity in

projection accuracy between copper and molybdenum, as shown in Figure 3.3. Molybdenum data exhibits

more abrupt fluctuations than copper, making it challenging for the algorithm to consistently forecast future

prices. As a result, the N-BEATS forecast is a suitable choice for copper but less effective for molybdenum.

BlockRNN with LSTM
The forecast during the test period produced favorable results visually and in terms of percentage difference

from the test data, as illustrated in Figure 3.4.

(a) Actual and forecasted copper prices (b) Actual and forecasted molybdenum prices

Figure 3.4: Projections for monthly copper and molybdenum prices utilizing a BlockRNN model with LSTM depicted in subplots (a, b)

The BlockRNN is less prone to overfitting compared to N-BEATS, therefore the output chunk was not set to 1,

which would have resulted in underfitting the model. To determine the optimal output chunk, a random search

was conducted, incriminating the output chunk by 1 each time. The best model projection was achieved with

an output chunk of 8 for both copper and molybdenum. Then a random search to identify suitable hyperpa-

rameters was conducted and compared to the decomposition plot to assess whether the model captured the

underlying data patterns. In the decomposition plot for copper (see Figure C.9), the model effectively captured

the trend, seasonality, and residuals. However, for molybdenum data (Figure C.10), while the trend was well

captured, the seasonal behavior varied in magnitude, and the residuals were not effectively captured. Increas-

ing the number of blocks in the model could potentially improve the latter issue, but due to the scope of this

work, no further hyperparameter tuning was conducted.
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(a) Percentual deviations of test period forecast and actual data - copper
(b) Percentual deviations of test period forecast and actual data -

molybdenum

Figure 3.5: The percentual deviations of forecasted values during the test period when compared to the actual values depicted in
subplots(a,b).

Ex-ante LCA integration
Table 3.4 below provides a summary of the selected model performance metrics. Given that the model was

trained with the loss function torch.nn.MSELoss(), particular emphasis is placed on MSE. Reporting RMSE,

the square root of MSE, is illustrative because it maintains the scale of the original variable, making the model

performance metric more comparable to the actual data. The MAPE model performance metric signifies the

average of the percentage deviations, as illustrated in Figure 3.1, Figure 3.2, Figure 3.3, and Figure 3.5.

Table 3.4: Comparison of model performance metrics of all univariate forecasting algorithms from case study price forecasts for
economic allocation in ex-ante LCA.

Model MSE RMSE MAPE

Copper

Random walk with Drift 2.89 1.70 15.47

ARIMA 3.05 1.90 17.24

N-BEATS 1.95 1.40 14.82

BlockRNN with LSTM 0.96 0.98 10.17

Molybdenum

Random walk with Drift 416.76 20.41 40.23

ARIMA 412.91 20.32 39.70

N-BEATS 414.61 20.36 41.50

BlockRNN with LSTM 88.86 9.43 21.23

Examining the price forecasts for copper and molybdenum, it becomes evident that the BlockRNN with LSTM

outperforms other models in terms of all of the chosen model performance metrics (Table 3.4). Consequently,

the results of the BlockRNN algorithm with LSTM are selected for economic allocation based on average future
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prices.

The economic value was calculated by multiplying average historic and average projected prices by their re-

spective quantities, referred to as ’proceeds’ in LCA literature [37]. The total proceeds were then obtained by

summing the proceeds for copper andmolybdenum. Allocation factors were calculated by dividing eachmetal’s

proceeds by the total proceeds. This allocation methodology is based on Guinée et al.’s work in 2004 [37]. In

a subsequent step, the calculated allocation factors were used to determine the environmental burden of each

metal by multiplying them with the total available impact category results (CED and climate change). The re-

sults for the allocation based on the average historic price and based on the projected price, in comparison with

the allocation conducted by Nuss and Eckelman (2014), can be observed in Figure 3.6.

Table 3.5: Comparison of the economic allocation based on Nuss and Eckelman (2014), based on the historic prices from 1992-2023 and
based on the projected prices determined by the BlockRNN with LSTM forecasting algorithm.

Metal

concentrate

Amount

[kg]

Nuss and

Eckelman

price per kg

concentrate

[$/kg]

Nuss and

Eckelman

allocation

factor

[%]

Average

historic

price

1992-2023

per kg

[$/kg]

Economic

allocation

factor

historic

prices

[%]

Average

projected

price

per kg

[$/kg]

Economic

allocation

factor

projected

prices

[%]

Copper 1 1.92 94% 4.79 98.10% 6.21 97.27%

Molybdenum 0.000411 27.21 6% 22.63 1.90% 42.48 2.73%

Figure 3.6: Influence of economic allocation strategies on cumulative energy demand and climate change impact categories for copper
and molybdenum concentrate. Results are based on the prices proposed by Nuss and Eckelman (2014), the average prices spanning

1992-2023, and the forecasted average prices from the BlockRNN with LSTM algorithm.

The projected allocation factors fall between the historical and Nuss and Eckelman’s (2014) allocation factors.

In Figure 3.6, the impact of these three time horizons on the allocation factors and resulting impact categories

for climate change and CED becomes evident, for both historic and projected prices. While the changes for

copper concentrate may appear minor with 3.48% increase in CED and greenhouse gas emissions, the results

for molybdenum imply a 54.5% reduction in CED and in the climate change impact category compared to the

results calculated by Nuss and Eckelman (2014).
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Probability forecasting
Up to this point, the projections have followed a deterministic approach, providing deterministic single-point

forecasts for both the test period and out-of-sample projections. However, these projections, derived from

the observed patterns of the BlockRNN with LSTM algorithm, lack consideration for the inherent uncertainty

surrounding future values. This section addresses this limitation by introducing a probabilistic modeling ap-

proach, aiming to incorporate uncertainty into the forecasting process. In contrast to the deterministic results

presented in Section 3.2.1, the probabilistic forecasting method employed here involves generating 100 points

for each forecasting step. The complete methodology is detailed in Section Probability Forecasting Methodol-

ogy and further elaborated in the Model Behavior section in the Appendix (Section 2.3.2, Appendix C). Subplot

a in Figure 3.7 illustrates each forecasted point using the inherent likelihood function within Darts. Meanwhile,

subplot b presents a 95% interquartile range, encapsulating values derived from a Gaussian distribution, with

the median depicted in green and red. This probabilistic modeling approach aims to provide ex-ante LCA prac-

titioners with a more comprehensive range of potential outcomes, acknowledging the inherent uncertainty in

future projections.

(a) Forecasted points in probabilistic forecasting (b) Probabilistic forecasting with projection interval

Figure 3.7: Probabilistic copper price forecasting using the BlockRNN algorithm with LSTM and a Gaussian likelihood function

Theprobabilistic test period forecast and the out-of-sample forecast, represented in green and red in subplot b of

Figure 3.7, diverges notably from the deterministic BlockRNNwith LSTM price forecast for copper, depicted in

violet. The corridor provides the ex-ante LCA practitioner with the flexibility to consider a spectrum of potential

future prices, derived from various Monte Carlo forecasts. However, it is evident from the distinct shapes in

Figure 3.8 that the majority of price forecast points clusters around the projected median and that there is

minimal variation in the different interquartile ranges. This indicates that the majority of forecasted points is

projected to be around the range of $7.05-7.15 per kg for the test period. In contrast, the out-of-sample forecast

exhibits a slightly higher range of $7.05-7.47 per kg. This observation implies that the average ($6.21 per kg)

of the deterministic forecast and used to determine the economic allocation factor in Table 3.5 represents only

one potential future price.
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Figure 3.8: Copper price distributions of the original data and the interquartile ranges 95%, 90% and 80%; Probabilistic forecasted
using a BlockRNN with LSTM and a Gaussian likelihood function.

Using the depicted interquartile ranges of 95%, 90% and 80%as an example, probabilistic allocation factors can

be calculated, representing a range of potential prices instead of a single deterministic value . While Figure 3.7

and Figure 3.8 only show probabilistic price forecasts for copper, in Table 3.6 probabilistic allocation factors

are also calculated for molybdenum. This process involves utilizing the price minima and maxima of each

interquartile range and applying the same calculation method as observed in Section 3.2.1.

Table 3.6: Probabilistic allocation factors of the 95%, the 90% and the 80% interquartile range

Interquartile range

Price range

copper

[$/kg]

Price range

molybdenum

[$/kg]

Probabilistic

allocation

factor range

copper [%]

Probabilistic

allocation

factor range

molybdenum [%]

95% 3.70-10.68 4.54-49.72 98.1-99.5 0.5-1.9

90% 4.66-10.02 8.07-44.24 98.2-99.3 0.7-1.8

80% 5.16-8.99 10.12-38.97 98.2-99.2 0.8-1.8

This simultaneously enables the ex-ante LCA practitioner to consider ranges of potential futures while also

assigning an uncertainty range to the projected prices. In the case of the 95% interquartile range, this quantifies

to 1.377%. Utilizing the calculated probabilistic allocation factors in probabilistic ex-ante LCA modeling aligns

with the ”Strategy 4: Defining and modeling technological pathways” published by Cucurachi et al., 2023 [20].

Consequently, employing ML-based univariate forecasts facilitates the quantification of inherent uncertainties

in the modeling approach, empowering practitioners to address uncertainties associated with the projection of

future data.

Furthermore, the choice of the price horizon clearly demonstrates the uncertainty of impact category results in

ex-post LCAs when relying on economic allocation. However, despite the encountered uncertainty both in the

forecast of the prices and in methodology of economic allocation, which will be discussed in the results section,

this case study illustrates how to use ML-based forecasts of univariate price time-series as a tool in ex-ante

LCA. Consequently, economic allocation becomes a newly available tool for ex-ante LCA practitioners. Further

investigation into other fields and concepts of ML based forecasts are presented in the following section.
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3.2.2. Waste treatment forecast
The primary goal of this second case study is to address the identified gap in the literature concerning End-of-

Life modeling in ex-ante LCA by employing multivariate forecasts, as detailed in Section 2.3.3. Unlike in the

previous section (Section 3.2.1), where forecasts were derived from the behavior of a single univariate time-

series, this approach entails the examination of external variables (covariates). It focuses on a distinct case

study, separate from the preceding one, while consistently utilizing the BlockRNN algorithm with LSTM for all

examples. To address the lack of prospective EoLmodels in the literature, as indicated in Table 3.3, this ex-ante

LCA scenario is based on the publication of Welz et al. (2011). In their study, the EoL scenario and the corre-

sponding recycling rate for compact fluorescent lamps are solely reliant on expert elicitation. Consequently,

this section forecasts recycling rates for a comparable existing technology, conventional fluorescent lamps, as

a proxy for the future. This study uses the Netherlands as a proxy country. This approach is adopted due to

the material similarities between the two technologies, providing insights into the anticipated future recycling

rates of compact fluorescent lamps.

Selection of covariates
As a preliminary step, suitable covariates had to be identified. Consequently, the recycling rate of fluorescent

lamps in theNetherlands (target variable) was chosen, alongwith the same recycling rates for fluorescent lamps

in two other European countries (Luxembourg and Germany). The latter were defined as a potential candidate

for a larger multivariate model. These two countries were selected based on having the highest correlation with

the target variable.

Figure 3.9: multivariate forecast of the recycling rate of fluorescent lamps in the Netherlands (target-variable) using a BlockRNN
algorithm with LSTM. Germany’s and Luxembourg’s recycling rate of fluorescent lamps as covariates

The specific hyperparameters for the model (input chunk length = 59, output chunk length = 46, epochs = 129)

were determined through a random search. The implementation of these hyperparameters in the BlockRNN

algorithmwith LSTMyielded projections of the same order ofmagnitude as the actual data. However, there was
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little notable overlap between the projections and the actual data, as depicted in Figure 3.9. While the algorithm

successfully captured the underlying trend, discrepancies in residuals were observed between the actual data

and the projections during the test period, as illustrated in FigureC.11. Themodel exhibitedminimal seasonality

capture, but given the low general seasonality in the data, this did not significantly impact the quality of future

projections.

Secondly, instead of relying on the recycling rates of fluorescent lamps in other European countries, here the

recycling rates for the primary materials of fluorescent lamps, glass and plastic, were used as a potential al-

ternative covariate. The Netherlands was selected for its geographical association in this context. To identify

suitable hyperparameters, another random search was conducted (input chunk = 27, output chunk = 10, num-

ber of epochs = 144). The projected data in the test phase showed significantly fewer visual deviations compared

to the forecast using the recycling rates of fluorescent lamps in other European countries (Figure 3.10). Further-

more, the model exhibited notable improvements in capturing the trend, seasonality, and residuals in the right

order of magnitude as well as in shape as observed in Figure C.12. Despite the reduced similarity in test period

forecast data compared to the actual data-set, the results suggest that, while the recycling rates of Germany

and Luxembourg exhibit higher correlations with the actual data-set, the projection using main materials as

covariates demonstrates more useful data patterns, including seasonal behavior and turning points. However,

it is crucial to note that this finding is highly specific to the data at hand and, therefore, not easily generalizable.

Both models exhibit increased fluctuations in the out-of-sample period, suggesting advanced hyperparameter

tuning for projection optimization.

Figure 3.10: multivariate forecast of the recycling rate of fluorescent lamps in the Netherlands (target-variable) using a BlockRNN
algorithm with LSTM. Glass and plastic recycling rates of the Netherlands as covariates.

Table 3.7 highlights that utilizing main materials as covariates yields significantly improved results across all

model performance metrics. The forecast incorporating main materials exhibits smaller deviations from the

curve, leading to substantially lower values for MSE, RMSE, and MAPE. However, it’s worth noting that the

projected average recycling rates differ by only 0.89%. Considering the notably improved forecasting projection

in the second example utilizing main material recycling rates as covariates, these rates are opted for projecting

the future recycling rate of fluorescent lamps in theNetherlandswithin a broadermultivariatemodeling context.
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The subsequent step involves integrating all accessible data-sets of glass and plastic recycling rates from all

European countries, as provided in the selected Eurostat waste statistic.

Table 3.7: Comparison of model performance metrics of two multivariate forecast.

covariates
Number of

covariates
MSE RMSE MAPE

Projected

average recycling

rate

EU countries

fluorescent lamp

recycling

2 1.72 1.31 1.34% 92.38%

Glass and plastic

recycling (NL)
2 0.46 0.068 0.60% 93.27%

Multivariate modelling with main materials
In this multivariate model the recycling rates of plastic and glass of all European countries with reported values

above 0 were selected and used to forecast the recycling rate of fluorescent lamps in the Netherlands. In total

68 data-sets were used. Hyperparameters were identified with several random searches (final result: input

chunk length = 18, output chunk length = 8 and number of epochs=103). When running the model with the

hyperparameters, it produces a visual match of the train period forecast with little deviation from the actual

data (Figure 3.11). Furthermore, the capturing of the trend, the seasonality as well as the residual identification

improved significantly in this larger multivariate model (Figure C.13) , compared to the two covariate main ma-

terial recycling rate model. Model performance metrics also significantly improved (MSE=0.22, RMSE=0.48

and MAPE=0.38%) and the average future recycling rate was calculated with 89.0%. The forecasted recycling

rate is 3.8% lower compared to the observations in Figure 3.9 and Figure 3.10. All model performance metrics

as well as the visual comparison of test period forecast with actual data and the comparison of the decomposi-

tion plots indicate that the large multivariate model outperforms the forecast of the smaller test model. This

finding indicates that a larger quantity of variates and data points can lead to better results, if the covariates

are carefully selected beforehand. Model forecasting projection could potentially be further improved if better

suiting hyperparameters are identified. Multivariate modelling is arbitrarily scale-able, in this case. also other

covariates such as the fluorescent lamp recycling rates of all European countries or macro-economic indicators

such as GDP and population size could be used to model to forecast future recycling rates.

Ex-ante LCA integration
The authors of Welz et al. (2011) were compelled to assume that 100% of fluorescent lamps would be recycled

at the end of their life due to a lack of available recycling rates. However, this assumption is a significant source

of uncertainty, as the authors failed to provide evidence supporting why such a high recycling rate would be

achieved. Consequently, in the final results, the EoL phase reduced the overall impact category results, due to

material gains from recycling compact fluorescent lamps for use in other fields. To highlight the significance

of the EoL phase, a alternative scenario involving complete incineration was computed. Since incineration is

determined to contribute more to environmental harmful emissions, the EoL phase in this case increases the

overall environmental impact measured with the end-point indicator Eco-indicator. The provided forecasts, if

utilized, could have allowed the authors to incorporate the forecasted recycling rate — either as an average or

as a specific value for a given year. The average forecasted recycling rate was computed at 89.0%, leaving the

remaining 11% for incineration, the second EoL treatment option proposed byWelz et al. (2011). This approach

would have bolstered the initial assumption, shifting from selecting an EoL treatment option of an emerging

technology to assuming that historic trends can indicate future results. This finding underscores the value of
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employing multivariate forecasts based on available waste statistics to enhance the precision of ex-ante LCA.

By incorporating more information derived from these forecasts, ex-ante LCA practitioners can reduce their

reliance on expert elicitation, thereby improving the reliability of their assessments.

Figure 3.11: Multivariate forecast of the recycling rate of fluorescent lamps in the Netherlands (target-variable) using a BlockRNN
algorithm with LSTM. 68 European country specific recycling rates of glass and plastic as covariates.



4
Discussion, outlook, and conclusion

Connecting the fields of ML and ex-ante LCA is challenging and requires further interdisciplinary research.

Through the assessment of various applications ofML in ex-ante LCA, this paper demonstrates that amultitude

of uses for ML to address uncertainty in early-stage environmental assessments exist. Notably, the majority

of related publications are concentrated in the period from 2018 to the present, which constitute 70% of all

documented works (see Figure 4.1). This finding suggests that the field of ML application in ex-ante LCA is

still in the early stages of development, thus elucidating why specific research endeavors aimed at reducing

uncertainty in ex-ante LCA have yet to be clearly defined.

Figure 4.1: Number of publications identified in the systematic literature review.

In this paper, the author seeks to identify existing gaps in order to accelerate targeted research. A first of its

kind systematic literature review is conducted to identify these existing gaps, revealing insights into ongoing

research while highlighting significant deficiencies, such as the neglect ofML applications in the entire goal and

scope phase aswell as in the EoL phase of ex-ante LCA. Subsequently, case studies are presented to demonstrate

the practical application of ML techniques in reducing uncertainty for ex-LCA practitioners. The case studies

focus on economic allocation through metal price forecasting and recycling rate forecasting as an explicit tool

35
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within ex-ante LCA. While evidence of price forecasting has been found, the integration of price forecasts into

economic allocation in ex-ante LCA is new. Furthermore, the recycling rate forecasts not only represent the

first ML application to obtain future waste treatment but also the initial general attempt to forecast recycling

rates based on patterns in public statistics. By shedding light on both the advancements and gaps in the field,

this paper contributes to a more nuanced understanding of uncertainty reduction in ex-ante LCA via the use of

ML and provides a foundation for future targeted research.

4.1. Systematic literature review discussion
The systematic literature review identified three main groups of ML applications in ex-ante LCA: streamlined

LCA, ex-ante LCA parameter projection, and ancillary models and data. Streamlined LCA serves as a surrogate

environmental assessment model linking predictors (e.g., molecular structures or technical parameters) with

environmental impacts, particularly in the form of impact category results. Within streamlined LCAMLmodels

have been used to project the life-cycle emissions of various organic chemicals, in forecasting spatially explicit

impact category results and in using product clustering techniques to project environmental impacts for similar

products. The models generally exhibited medium to high accuracy (with R2 ranging from 0.4 to 0.87, MRE

from 5.8% to 21%, relative average error from 20% to 69% and average classification error from 13% to 40%),

indicating medium to strong predictive performance. Furthermore are a subset of models designed to directly

influence early-on design choices and assess production related emissions of early-on technologies, with special

focus on the development of new organic chemicals [58], [62], [64]–[66], [68].

Hence, streamlined LCA represents a well functioning model approach to assess the production emissions of

new chemical products during the design stage. Other approaches were sparsely found in the literature but as

technical parameters were used as projections, which are also available in other fields than the chemical indus-

try, the author does not see a reason of why streamlined LCA should not be expanded to other industries and

products with sufficient technical information of the production, e.g. polymer production, material sciences,

metallurgy as well as cement production. However, the dependence of streamlined LCA on precise LCI data

presents challenges, given that LCI databases utilized for training of ML algorithms frequently exhibit uncer-

tainties and gaps in emissions data. [98], [99], with variations in accuracy compared to other databases [100].

Furthermore, the static nature of streamlined LCA becomes a limitation, as its model projection accuracy de-

pends on up-to-date training data, making it challenging to incorporate changes in environmental emissions

due to efficiency improvements or alterations in production systems over time. Another concern is the future

environmental impact assessment, as the model does not quantify environmental impacts based on a scientific

impact assessment method but incorporates this into the link of predictors and target variables. Therefore,

a change in characterization factors due to updated impact assessment methods (e.g., characterization factor

updates by the IPCC climate model) would not be accounted for.

The black-box characteristics of ML algorithms, which lack transparency regarding the reasons behind learned

patterns, creates challenges when substituting ML for ex-post LCA or ex-ante LCA. Identifying the fundamen-

tal drivers of environmental impacts of technologies in a particular phase, such as through hot-spot analysis,

becomes particularly challenging in this context. This also became evident in the literature review as non of

the presented papers conducted a hot-spot-analysis. While streamlined LCA offers advantages such as speed,

product specific adaptability and medium to high model performance, its applicability is not universal for all

technologies, requiring detailed technical or chemical knowledge upfront, which does not exists formany emerg-

ing technologies. Therefore, it can be inferred that streamlined LCAwill not supplant ex-post and ex-ante LCAs

but can serve as an additional supportive tool for evaluating emerging environmental technologies.

The second group ofML applications in ex-ante LCA represents the group of ex-ante LCAparameter projections.
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This categorization encompasses various ML applications for forecasting or obtaining required parameters, in-

cluding LCI data generation, characterization factor projection, and projecting environmental impacts based

on production-specific inputs. Unlike the streamlined models, this section reflects efforts to incorporate ML

into ex-ante LCA. Instead of replacing ex-ante LCA by a form of surrogate modelling, it aims to integrate ML

into the ex-ante LCA process.

Moderate model performance was observed in LCI data estimation (R2 = 0.22-0.75, except for one study with

R2=0.971). The similarity-based forecasts of LCI data, relying on LCI databases, akin to the section on stream-

lined LCAs, suffer from uncertainties in the underlying LCI data. This underscores the challenges of similarity

approaches, which, by generalizing existing data, become even more susceptible to these uncertainties. More-

over, relying solely on existing technologies may be suitable for advancing current technologies; however, it

inadequately captures the potential of new innovations, limiting the effectiveness of this approach in represent-

ing emerging technologies. However, the approach is more generally applicable to ex-ante LCA, as the training

data is not product-specific but represent the entire LCI database; hence, unknown unit process inventory data

of emerging technologies can be obtained due to affiliation with a functional group. Hence, the models are

feasible for the application of existing technologies or their latest iterations. However, entirely novel emerging

technologies, which potentially represent a whole new clustering group, are not easily quantifiable with this

approach.

Another approach of generating LCI data for ex-ante LCA was found in the subgroup of external LCI data gen-

eration, where technology specific parameters were used to generate use-full LCI parameters like mass flow

estimations or environmental flows of a particular unit process. Given that this necessitates a profound under-

standing of technology and proficient skills in ML-based modeling, it signifies a less broadly applicable use of

ML in ex-ante LCA. In this section a medium to high level of model performance metrics was found (R2=0.49-

0.971 with one study performing significantly worse). There were an inadequate number of studies found to

generalize any findings. However, if ample data is available andML-basedmodeling skills exist, the author sees

a high feasibility of this approach and, therefore, a way to use ML in ex-ante LCA.

Another subgroup in the categorization of ex-ante LCA parameter projection represents the projection of char-

acterization factors to adjust for future environmental impacts. ML-based forecasts of characterization factors

were identified, trained with toxicity databases and natural parameters. Here varying accuracy frommedium to

high forecast accuracy was found (R2=0.46-0.96). The three identified studies [21]–[23] in the systematic liter-

ature review as well as the work of Enberg [31] represented the only availability to use ML to account for future

environmental changes, and hence the only identified approach in the LCIA phase. The outcomes of this ML

approach can be archived in LCA software or databases, making the results of ML applications accessible to a

wider audience. While all studies demonstrate promising results, suggesting a viable application within ex-ante

LCA, it is crucial to note that, due to the limited number of studies, these findings are not be fully generalizable.

The final subgroup of the study focuses on projecting future LCI data and environmental impacts utilizing

process-specific information. In this subgroup, ML was applied to forecast impact category results tailored

to specific sites, as well as potentially valuable LCI data such as production capacity, fertilizer usage, and yields

in agricultural production. This subgroup represents a combination of streamlined LCA and ex-ante LCA pa-

rameter projection, as it considers site-specific environmental emissionswhile simultaneously projecting future

LCI data and impact category results. Notably, the models demonstrated improved performance metrics, with

R2 values ranging from 0.524 to 0.999, however, most studies reported R2 values above 0.9.These metrics

represent the optimal performance observed among all identified subgroups throughout the entire systematic

literature review, indicating a promising approach for further exploration in future research. The integration of

site-specific parameters and the projection of impact vector h encounters similar limitations as observed in the

streamlined LCA categorization and the sub-group of ex-ante LCA data generation. However, given the limited
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number of studies, it is premature to conclusively determine whether this approach enables the reduction of

uncertainty in ex-ante LCA.

The presented algorithms in ex-ante LCA parameter projection offer opportunities for integrating ML algo-

rithms into ex-ante LCA. Notably, these models can be utilized to generate future LCI parameters, supporting

the endeavor to create future LCI databases, as highlighted in the study by Baustert et al. [101]. This applica-

bility extends to ML-based forecasts of parameters, indirectly influencing LCA matrices, as evidenced in the

categorization group of ancillary models and data. However, this subgroup lacked identified uses of ML in

ex-ante LCA, as well as model performance metrics. Furthermore, the findings in the categorization suggests

additional potential applications of ML in ex-ante LCA, such as employing natural parameters to forecast en-

vironmental changes and influencing impact assessment methods. Additionally, there is potential for the use

of ML in characterization factor estimation and predictive maintenance tools, aiding in the estimation of mass

and energy requirements for a technology during its use phase.

Conclusively, a limitation of the systematic literature review is the absence of a standardized term for ex-ante

LCA. Variants such as anticipatory, prospective, or predictive are used interchangeably, leading to a lack of

consistency. Despite utilizing the Litmaps web tool to address this issue, it’s important to note that the system-

atic literature review does not claim complete coverage of the field. The identified knowledge gap however, as

shown in Section 3.1.4, coupled with the results of the case study, provides a clear indication of tasks for future

research.

4.2. Case study discussion
To address the literature gap and furthermore to investigate how ML can be useful to reduce uncertainty in

ex-ante LCA, a case study focusing on price forecasts to be used in economic allocation and on recycling rate

forecasting was conducted.

Regarding commodity price forecast modeling, the obtained model performances (MSE=0.96 for copper and

88.86 for molybdenum) exhibit a mean average percentual deviation of the forecast compared to the test data

(MAPE = 10.17% for copper and 21.23% for molybdenum). These results are comparable to similar commodity

price forecasts in the literature [102]. However, it is noteworthy that other publications have demonstrated

improved model projection in this domain [103], [104]. Due to identifying hyperparameter for the BlockRNN

with LSTMmodel via the random search, potential hyperparameter tuning could result in better model perfor-

mance metrics. This results in the finding that a general applicability of price based forecasts via univariate ML

based forecasts is feasible. This also endorses literature findings on commodity price forecasts [42]–[44]. The

justification for its application in economic allocation lies in the relatively consistent comparison of prices over

time [37]. Therefore, if price forecasting is generally deemed feasible, its utilization in economic allocation be-

comes a viable option for ex-ante LCA. The extent of this integration is constrained primarily by the accuracy of

price forecasts, especially when compared to the broader uncertainty inherent in economic allocation in ex-post

LCA. It is crucial to note that the findings in this study are not sufficient to determine general applicability of

price forecasts in economic allocation of ex-ante LCA studies, this requires further investigation and validation

through future research.

The results furthermore showed the importance of the choice of a time horizon in economic allocation, which

resulted in significant reduced environmental impacts for molybdenum (-54.5% reduction in the impact cat-

egory indicators) while for copper the results of the economic allocation only resulted in a slight increase in

environmental impacts (+3.48%). The price forecast for the two metals differed significantly, as indicated in

the aforementioned model performance metrics, even though the same forecasting algorithm, BLockRNNwith

LSTM, was used. This can be explained by the increased number of abrupt fluctuation in themolybdenum data,

indicating that model projection is depended on the fluctuations of the underlying data-set. The projection of
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future prices was in this case solely based on historic developments, which represents a limitation as in reality

prices depend on other micro and macro economic factors. Another limitation which is important to mention

represents the hyperparameter tuning only with a random search, potentially indicating model performance

metrics and hence model forecasting accuracy could be increased much further.

Another way of modelling ex-ante LCA specific parameters was investigated via forecasting the recycling rates

of compact fluorescent lamps, using available information published in Eurostat waste statistics. As waste

statistics are annually reported by each EU member-state, the resulting recycling rate only represent short

country specific time-series (12-18 data points per country). A different modelling approach was therefore

needed, which extracts information not from the length of one individual time-series but from the quantity of

the available countries. Due to the testing of covariates with only two covariates, the Eurostat time-series had

to interpolated to create a longer time-series. The presentedmodel in Section 3.2.2 forecasted the recycling rate

of fluorescent lamps in the Netherlands using a total of 68 time-series as a underlying covariates. Model perfor-

mancemetrics resulted inMSE=0.22, RMSE=0.48,MAPE=0.38%, which indicates similarmodel performance

compared to literature [105] or slightly worse model performance metrics [106].

Nevertheless, a direct evaluation of the model’s performance was unattainable as the presented model repre-

sents the inaugural attempt at forecasting recycling rates using ML. This modelling approach enables ex-ante

LCA practitioners to estimate future waste treatment rates based on historic development and therefore breaks

with the reliance from sole expert elicitation of EoL treatment estimations by providing the ex-ante LCA practi-

tioner with another form of data estimation. In the case of sole assumptions of future treatment, as in the cast

ofWelz et al. (2011), it also strengthens the assumption as with a reliance on a forecast of recycling rates, the as-

sumption is shifted to a continuation of historic development of recycling rates. This quantifiable assumption

represents a potential improvement of uncertainty, especially if expert elicitation is not available. However,

a complete substitution of expert elicitation by this modelling approach appears improbable, given that this

methodology relies solely on historical data, does not consider future legislation or newly emerging technolo-

gies and the forecast of the model could be further improved. Another limitation of the model represents the

use of cubic spine interpolation, which enabled the use of longer time-series. Future research is needed to de-

termine weather short time-series modeling using the original data would come to similar results. To address

this and include potential socio-economic factors multivariate modeling is inherently scalable, allowing for the

inclusion of long time-series of macro-economic factors like population or gross domestic product data, as well

as future scenarios such as the Shared Socioeconomic Pathways by the Intergovernmental Panel on Climate

Change.

To tackle the uncertainty in projections, Monte Carlo-based forecasts were employed for copper price commod-

ity forecasts. The analysis revealed that the majority of price forecasts centered around a projected median of

approximately $7.10 per kg for the test period and $7.25 per kg for the out-of-sample forecast. As depicted in

Section 3.2.1, a deterministic price forecast represented only one potential outcome. By utilizing probability

forecasts, various price ranges based on different interquartile ranges could be obtained, offering ex-ante LCA

practitioners a spectrum of possibilities rather than a single figure. These ranges denote the price range the

model can project within a defined interquartile range with model-specific hyperparameters, providing flexibil-

ity in considering multiple price forecasts.

Subsequently, these price ranges were transformed into probabilistic allocation factors for further use in prob-

abilistic ex-ante LCA models (for a 95% interquartile range: 98.1-99.5% environmental burden to copper and

0.5-1.9% environmental burden to molybdenum). Probabilistic ex-ante LCAs are designed to incorporate the

uncertainty of projections into the ex-ante LCAmodel [16]. The utilization of price ranges aligns better with fluc-
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tuating prices compared to deterministic single-point forecasts. These findings demonstrate that probabilistic

time-series forecasts canmeet the requirements of incorporating uncertainty into themodel. Additionally, they

offer ex-ante LCA practitioners a quantifiable range of potential estimates for different data points and models.

The study by Nuss and Eckelman (2014), which served as the foundation for the price forecasts for economic al-

location in ex-ante LCA, quantified the uncertainty of impact category results for global warming using aMonte

Carlo analysis with a 95% interquartile range ([45, figure 2]). The estimated uncertainty values for the metals

germanium, silver, indium, titanium, and bismuth were shown, averaging to a fluctuation range of 58% (values

extracted from a diagram). This indicates significant uncertainty in the impact category results of the under-

lying ex-post LCA study. However, ML forecasts, with an estimated fluctuation rate of 1.4% using probability

modeling, operate within a comparable or even lower uncertainty range than LCA studies. Therefore, ML may

have the potential to further reduce uncertainty compared to conventional methods, however this finding is

hard to verify as general uncertainty in ex-post and ex-ante LCA is very hard to quantify. In the second study,

the absence of uncertainty quantification prevented any additional comparisons from being made.

Reducing uncertainty in for ex-ante LCA has the potential to significantly bolster both managerial decision-

making and applied research. This reduction in uncertainty not only narrows the gap between ex-ante LCA

and actual application but also offers a dual advantage: it minimizes environmental impacts linked to emerg-

ing technologies and ensures alignment with increasingly stringent environmental regulations. Moreover, it

equips companies to avert regrettable investments and costly substitutions in the event of adopted environmen-

tal legislation or changes in consumer behavior. For policymakers, applicable ex-ante LCA facilitates informed

decision-making in the realm of public policy, such as regulating new technologies. The application of ex-ante

LCA with reduced uncertainty serves to fortify corporate resilience while facilitating well-informed decision-

making processes. In essence, the synergy between reduced uncertainty and applied ex-ante LCA enhances

organizational resilience, positioning it to navigate future challenges and make informed choices that align

with environmental goals. In essence, the synergy of reduced uncertainty and applied ex-ante LCA strengthens

organizational readiness, positioning it to navigate future challenges and make informed choices in line with

environmental goals.

4.3. Future research
Due to the emerging nature of both fields of ex-ante LCA and ML, as well as their potential integration with

each other, many knowledge gaps still need to be addressed. This paper identified the need for future research

particularly in the ex-ante LCA phase of goal and scope, where no ML applications were found. Furthermore,

only three scientific papers addressed the projection of characterization factors in the LCIA phase, also only

three studies assessed ML possibilities in the interpretation phase. Hence, ML applications in reducing uncer-

tainty in these phases need to be identified through further research. Also, the need of projecting future waste

treatment was identified and then addressed in the recycling rate forecast case study (Section 3.2.2). Hence,

research is needed using multivariate forecasts of waste treatment rates, such as incineration and disposal but

also using and non interpolated data and other waste treatment data-sets covering different technologies to be

able to verify and scrutinize the findings from this study. This could aid in determiningwhetherwaste treatment

forecasts, as introduced in this paper, are a viable approach to forecast LCI parameters and to reduce parameter

uncertainty in ex-ante LCA. If found to be feasible this finding would contribute to a redesign to enhance the

recyclability of a emerging technology and to project future costs associated with the expected waste treatment

of the technology.

As the feasibility of price forecasting of commodities has been proven in several studies [42]–[44], [102]–[104],

no study was found that focused on the potential ex-ante LCA integration. The author hopes that increased

interdisciplinary collaboration between ex-ante LCA practitioners and ML researchers can facilitate more ap-
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plications of ML in ex-ante LCA.

Further research is therefore needed to address potential integration of price forecasting including potential

probabilistic modelling as introduced in this thesis. The hypothesis suggesting that ML canmitigate parameter

uncertainties in ex-ante LCA necessitates additional research, as this research primarily focuses on exploring

methodologies to assess their efficacy in reducinguncertainties through targetedprojections. The validity of this

statement under scientific falsifiability and scrutiny remains uncertain at this point. Yet, addressing addressing

further uncertainty problems would necessitate ex-ante LCA practitioners acquiring in-depth knowledge of ML

or an increased awareness among computer scientists. One potential solution involves generating future life

cycle inventory (LCI) data or projecting characterization factors, incorporating them into LCI databases, or

integrating them into LCA software programs. Such an approach could enhance the practical use of ex-ante

LCA beyond academic settings, consequently contributing to the reduction of future emissions from emerging

technologies.

For the identified categories in the literature, it was found that streamlined LCA models have only been built

for organic chemicals for applications in the chemical industry as well as for agricultural applications. More

research is needed in other areas of application, where technical parameters concerning the production as well

as other life-cycle areas are well-known in the production phase. Examples of that could be polymer production,

protein based streamlined LCAs, metallurgy or cement production. Other research opportunities are the use

of language processing tools to scan technical norms, standards, regulations and other untapped sources for

ex-ante LCI data generation; ML models specifically trained with chemical process simulators for up-scaling

based on kinetic based process simulations; regional depended mid- and end-point characterization factors;

and automated flow chart generation based on the defined LCI data both for ex-post and ex-ante LCA. Never-

theless, all ML applications encounter the challenge of the black-box nature, meaning that the reasons why a

model has learned a specific pattern remain unknown even after successfully projecting the target variable. This

characteristic conflicts with the transparency requirements in both ex-ante and ex-post LCA. While reducing

future uncertainty and improving projections are of paramount importance, transparency in presenting results

and understanding the reasons behind projected values remains a crucial aspect for ongoing research.

4.4. Conclusion
In conclusion, this paper addresses the overarching research question: ’How can machine learning algorithms

be used to reduce uncertainty within ex-ante life cycle assessment?’

The systematic literature review reveals thatML applications in ex-ante LCA primarily fall into three categories:

streamlined LCA, ex-ante LCA parameter projection, and ancillary models and data. Although streamlined

LCA holds potential, it encounters limitations associated with the precision of data and its static characteristics.

However, the surrogate nature of streamlined LCA does not enable its potential application as an integrated

tool within ex-ante LCA but rather represents an additional promising quantification tool to assess the envi-

ronmental impact of emerging technologies. Potential applications of ML to reduce uncertainty within ex-ante

LCA have been summarized in the categorizations of ex-ante LCA parameter projection and ancillary models

and data. The most promising applications represent the subgroup of similarity clustering of LCI processes

and flows, as well as the LCI data projection based on external parameters, as most studies in this area showed

medium to high projection accuracy as well as general customizability to individual emerging technologies.

However, the subgroup of similarity clustering only represents a feasible application for advancing current

technologies rather than novel emerging technologies. The application of ML focusing on the projections of

characterization factors, the projection of simultaneous LCI data generation and impact category results, as

well as the projection of LCA matrix influencing parameters, but the limited number of studies does not allow

for a generalized statement. This shows that the research still represents an emerging field of science.
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All presented literature also summarizes the target variables, predictors, training data-sets, and model perfor-

mancemetrics found in scientificML literature related to ex-ante LCA (see Section 3.1.1 andTable Section 3.1.2),

addressing the first sub-research question.

Further applications are also found considering time-series forecasts for commodity prices and for future recy-

cling rates. Here, BlockRNNwith LSTM showed the best model performances inmodel performancemetrics as

well as in capturing underlying trends, seasonality, as well as residuals. This answers the second sub-research

question; however, this does not conclude the applied algorithms are best suited for every time-series appli-

cation but rather contributes to exploring the field of time-series forecasts as a tool to reduce uncertainty in

ex-ante LCA.

Both applications of the case study are identified as feasible, considering their inherent uncertainty compared

to ex-ante and ex-post uncertainty, sometimes because there is little to compare to. Furthermore, the modeling

approach of probabilistic time-series forecasts is found in this particular case to improve results, as ranges

representing the room of possibilities account for a wider spectrum of future possibilities and also enable the

quantification of model uncertainty. The latter fits into probabilistic modeling approaches. However, more

research is needed to verify the findings of these time-series applications.

Conclusively, this study identifies the necessity for further research, as outlined in the last sub-research ques-

tion, to delve deeper into the utilization of ML algorithms in ex-ante LCA and to build upon the existing promis-

ing applications for uncertainty reduction. The findings underscore the significance of targeted research during

the goal and scope phase, as well as in the EoL phase for projecting future waste treatment. One potential av-

enue involves employing multivariate time-series modeling with available waste statistics; however, additional

research is required to validate its general feasibility and explore potential limitations. Further investigations

should also include an expanded exploration of streamlined LCA in contexts with extensive technical predictors.

High potential is also observed in the extension of characterization factor projections and integrated modeling.

Moreover, this paper recommends incorporating probabilistic modeling as a tool to infuse uncertainty into the

modeling process, with the aim of enhancing the applicability and transparency of ML applications in reducing

uncertainties in ex-ante LCA. The reduction of uncertainty is imperative to make ex-ante LCA widely applica-

ble in both corporate and governmental fields, facilitating well-informed decisions aligned with environmental

goals and bridging the gap between theoretical application and practical implementation.
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A
Supplementary information on method

and datasets

A.1. Life Cycle Assessment
LCA is a standardized method outlined in ISO 14040 and ISO 14044 [38], [107].

Figure A.1: 4 Phases of ex-post LCA from ISO 14040:2009-11 [107]

This method offers a comprehensive environmental evaluation of a product or service, potentially covering its

entire life cycle, includingmanufacturing, product use, and EoL. Its primary objective is to enhance the environ-

mental performance of a product and provide valuable information to decision-makers in both corporate and

governmental settings. ISO 14040 defines four distinct phases of LCA, beginning with the goal and scope phase,

52
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which involves defining the functional unit (FU) and establishing the system boundaries. The FU serves as a ref-

erence unit of assessment, to which all environmental emissions during the life cycle are related. Secondly, the

life cycle inventory analysis (LCI) phase involves collecting data for the foreground production system, defining

background processes, and allocatingmulti-functional processes. This phase is followed by the third phase, the

life cycle impact assessment (LCIA). Here, the collected inventory data is linked to environmental impacts by

assigning the environmental flows to distinct impact categories. Impact categories assess environmental areas

of concern, such as climate change, or damage areas, e.g., ecosystem health or human health. The fourth and

final phase of LCA is the interpretation phase, which aims to assess the findings of the previous three phases,

combining them to draw concrete conclusions and recommendations for improving the environmental perfor-

mance of the assessed product. [7], [8], [38], [107]

To clarify the methodology, consider a simplified example of a plastic water bottle LCA. Begin by establishing

the functional unit as 1L of a plastic water bottle and delineate system boundaries to encompass the entire

life cycle, including resource extraction to waste treatment, with explicit cut-offs for excluded mass or energy

flows. In the subsequent step, identify and define processes within the foreground system (e.g., plastic bottle

production, water extraction) and investigate related mass and energy flows. Practitioners often employ LCI

databases, containing geographic-specific data on products, materials, and energy processes, to streamline this

process. At the conclusion of the LCI phase, generate a flow chart, unit process data reporting, and an inven-

tory table outlining physical interactions between the product system and the environment. For a plastic bottle,

data on plastic granulate from an LCI database is utilized, specifying granulate quantity, electricity and heat

requirements, local emissions, and waste flows. The inventory table serves as input for the third phase, LCIA.

Sum all environmental emissions for the unit andmultiply by characterization factors to derive indicator results

(e.g., climate change impact). For a plastic bottle, this involves summing all greenhouse gas emissions through-

out the life cycle and applying respective global warming potentials to each influencing substance. In the final

phase, objectively discuss results, address uncertainty and sensitivity, and provide policy recommendations,

e.g. change the electricity supply or use recycled plastic instead of virgin material.

A.2. Waste electrical and electronic equipment (WEEE) by waste man-
agement operations

The dataset is structured that there is always a general category such as recovery (RCV) and subcategories

such as Recycling and preparation for recovery (RCY PRP RE). The related column Recycling and preparing

for reuse (RCY PRP RE) represents the quantity of materials treated in a recycling or reuse facility, which is

also reported together with other recovery options such as incineration with energy recovery etc. in the broad

category recovery (RCV). The legal definitions of the categories can be found in Directive 2002/96/EC [108]

and in 75/442/EEC [109].

Therefore, the column “RCY PRP RE” (Recycling and preparing for reuse) was used as the total quantity of flu-

orescent lamps treated in a recycling/reuse facility. To calculate a percentage of materials treated in a recycling

facility/ reuse facility, the column RCY PRP RE was divided by the column COL, which represents the total

collected quantity of fluorescent lamps in this particular year. The dataset can be found here [51] along with

more information about the dataset.

A.3. GitHub Repository
Link to theGitHub repository: https://github.com/nilsisboom/MasterThesis.git In the repository, aREAD-
MEFILE.

https://github.com/nilsisboom/MasterThesis.git
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Table A.1: GitHUB Repository description

File Description

LCA Allocation ARIMA

copper.py

The model applies the ARIMA model to identify patterns in the price data.

The model is trained with a 80/20 train/test split and forecasts 76 data points

into the future. Each datapoint represents an average price of one month.

LCA Allocation ARIMA

molybdenum.py
Same but for molybdenum

LCA Allocation LSTM

BlockRNN_Copper.py

The model applies the BlockRNN model with LSTM specification to identify

patterns in the price data. The model is trained with a 80/20 train/test split

and forecasts 76 data points into the future. Each datapoint represents an

average price of one month.

LCA Allocation LSTM

BlockRNN

Molybdenum.py

Same but for molybdenum

LCA Allocation LSTM

probabilistic.py

The file represents a copy of the LCA Allocation LSTM BlockRNN Copper.py

file, hence the same input variables and the same libraries are expected.

However, in this code slight modifications have been adopted. The in the

Darts library implemented likelihood function is activated. Enabling the user

to conduct probabilistic forecast instead of the deterministic versions found

in LCA Allocation LSTM BlockRNN Copper.py. Expected outputs: A graph

showing the actual data and the forecasted data via probabilistic modelling in

the test and out-of-sample period, A graph showing all individual forecasted

points with the probabilistic modellings strategy, Also various quartiels are

extracted.

LCA Allocation NBEATS

Copper.py

The model applies the NBEATS model to identify patterns in the price data.

The model is trained with a 80/20 train/test split and forecasts 76 data points

into the future. Each datapoint represents an average price of one month.

LCA Allocation

NBEATS_Molybdenum.py
Same but for molybdenum

LCA Random walk with

Drift.py

The model applies Random walk with a drift to identify patterns in the price

data. The model is trained with a 80/20 train/test split and forecasts 76 data

points into the future. Each datapoint represents an average price of one

month. This file simultaneously generates results for copper and

molybdenum.
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BlockRNN - 2 covariates

EU countries.py

The model applies the BlockRNNmodel with LSTM to identify patterns in the

waste treatment statistics. The model is trained with a 80/20 train/test split

and forecasts 36 data points into the future. Each datapoint represents an

average month of the waste treatment. The first part of the code reads in the

data sources and sorts it accordingly, then a cubic spine interpolation for each

of the applied data sets is conducted. This represents the enlargement of the

data from annual reported data to monthly data. Then the data is converted

into a timeseries.Timeseries format. Scaling is no necessary as the data is

already between 0 and 1. Then the BlockRNN algorithm with LSTM is run.

Data is automatically capped if greater than 1. Then the results are plotted.

BlockRNN - 2 covariates

glass and plastic recycling
Same but for glass and plastic recycling rates.

BlockRNN - all covariates

materials.py

Same but with 68 co-variates representing all european country recycling

rates of glass and plastic.



B
Mathematical definition of the applied

machine learning models

B.1. ARIMA
The ARIMA model stands for Autoregressive, Integrated Moving Average model. So, the model combines an

autoregressive part (relationship between past values and present values), andmoving average part (past errors

of previous forecasts as an model indication) and an integrative part (automated differencing of values).

B.1.1. Auto regressive Model
The auto-regressive model tests lagged variables to the current one and uses the highest correlation of lagged

and present value for the next projection. The model is defined as follows:

Xt =
p

∑
i=1

φiXt-i + εt (B.1)

Here Xt represents the current value, φi represents a coefficient for this specific lag and εt represents the error

of previous forecasts. As a first step, all φs for the corresponding past values until p are calculated with the

Yule-walker-method. Then the error is estimated with equation Equation B.2.

εt = Xt −
p

∑
i=1

φiXt-i (B.2)

For the first value, epsilon is estimated to be neglectable. Now, the procure is repeated in an interactive process

until the end of the series.
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Figure B.1: Flowchart Autoregressive model
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B.1.2. Moving average
The Moving Average (MA) model represents a linear combination of past error terms which can be described

as follows:

Xt = μ+ εt + θ1εt-1 + ... + θqεt-q (B.3)

Xt are the current values, μ is the average of the series, ε is the error of the model, and θ are the multiplication

coefficients. So, the model builds a relationship between the current value and recent error terms.

For first value, the error ε is assumed to be 0 or negligible. Then the numerical argmin function is used to

estimate the first theta. Once this is successful, the new value can be estimated with Equation B.3. Now, the

average error of the last forecast is estimated, and a new theta is calculated by numerically calculating the best

parameter in a likelihood function for a improved theta. Now, the iterative process starts, with calculating the

next forecasted value.

B.1.3. Combination of AR and MA
In the ARIMA model, the AR model and the MA model are used in a combined manner. The differencing is

done automatically and indicated with an I in the model name. The model definition is as follows:

Xt = c+ εt +
p

∑
i=1

φiXt-i +
q

∑
i=1

θiεt-i + δt (B.4)

As ARIMA is a combination from the AR and the MA model, the parameters are also the same ones as found

in Equation B.1 and Equation B.3. The variable c is an added constant of the model to improve accuracy, the

term δt represents the differencing option. In the model ”p” is the order of the autoregressive component, ”d”

represents the order of differencing and ”q” is defined as the order of the moving average component.

All information was obtained from Advanced Forecasting in python [53, p.45-113].



B.1. ARIMA 59

Figure B.2: Flowchart moving average model
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B.2. Random walk with drift
A random walk begins at some initial position or value, in this case the end of the test period for a projection

during the test phase or the end of the data set for out-of-sample-forecasts. As a first step the Drift term is

defined, in this case the change in prices over the test period for the forecast in the test period and the in the

case of the out-of-sample forecast the change of the last point compared to the first point. The Drift is defined

as follows:

μ = Xt − X0
T

(B.5)

Where Xt is the price at the end of the training data period/data set period, X0 is the price at the beginning of

the data set, and T is the length of the training data/the whole data series in time units. The forecast is then

generated by using Equation B.6:

Xt+1 = Xt + μ (B.6)

All information was obtained from Dooley and Lenihan, 2005 [42], Brown and Hardy, 2019 [43] and Reeve

and Vigfusson, 2011 [44].
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Figure B.3: Flowchart random walk with drift

B.3. N-BEATS
The Neural Basis Expansion Analysis for Time Series (N-BEATS) is a deep learning model that uses past vari-

ables, developments etc. to forecast data. Tomost efficiently project, themodel combinedmultiple sub-models.

These sub-models are organized in so called ”stacks”, which each stack containing of several ”blocks.” Stacks

focus on different aspects of the data, and blocks make forecasts. For example each stack tests different types

of forecasts, with a generic parts and auto-regressive parts. This way, it can identify various patterns that have

influenced the the timeseries in the past. Let S be the number of stacks, and B be the number of blocks in each

stack.

In N-BEATS, each block within one stack contains a fully connected layer. Just as conventional ANNs, it learns
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to assign weights to each layer as data is processed at each time step (Equation B.7):

os,b,t = Ws,b ⋅ xt + bs,b (B.7)

With os,b,t being the output of the fully connected layer within block b of stack s at time step t, Ws,b being the

weight of the matrix, xt being the current variable and bs,b being the bias term for the fully connected layer.

Each layer is only responsible for a part of the input. This is called Multi-Headed-Framework and allows fur-

ther identifications of various potential influential parameters. The output of each block contains of a gating

mechanism, which identifies the usefulness for the overall predictability of the block output by using a sigmoid

activation function. The final output of the block is then summed:

Ys,b,t =
H

∑
h=1

y(h)
s,b,t (B.8)

With Ys,b,t representing the final output for a specific time step t in a block b within stack s of the N-BEATS

model. The∑H
h=1 symbolizes a summation over all the individual heads within a block. Each y

(h)
s,b,t is the output

of a specific head h at time step t within the block b from stack s.

Each stack is now compiled in the same manner:

Ys =
B

∑
b=1

Ys,b (B.9)

The parameter Ys,b represents the output of a specific stack s within the N-BEATS model.

Finally, all output of all stacks are summed (Equation B.10). With this step the model is run through and the

next value is read in for further training of the model or a forecasted value is generated.

Y =
S

∑
s=1

Ys (B.10)

The parameter Ys represents the output of one specific stack s in the N-BEATS model. It is the result of all the

blocks from one stack. Y represents the overall forecast/ output of the N-BEATS model.

All information was obtained from Oreshkin et al., 2019 [54] and the documentation of the Darts library [55].
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Figure B.4: Flowchart N-BEATS model
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B.4. Block RNN - LSTM
Recurrent neural networks (RNN) with Long-Short-Term-Memory (LSTM) are timeseries optimized artificial

neural networks.

B.4.1. Neural networks
Neural networks are inspired by the human brain and operates with a network of so-called neurons, which

represent a specific node to process input. The nodes between the input and the output neuron are called the

hidden neurons, where each group of neurons is called a layer. Each neuron now multiplies the input by a

number, called weight (w) and adds a bias (b). The following equation is an example for one input neuron.

Z = X ∗W1 + b1 (B.11)

Where Z is the output of the multiplication of the input times the weight and with the added bias, X represents

the input data,W1 represents the first weight and b1 represents the first bias term. In case there ismore than one

input and or one output neuron, the respectedweights of each node are simply the sum of all connected neurons

with their weight and biases. Equation Equation B.12 represents the example with multiple input neurons.

Z =
n

∑
i=1

(X ∗Wi) + b1 (B.12)

Where Z is the output of the multiplication of the input times the weight and with the added bias, X represents

the input data,Wi represents the i-th weight and b1 represents the first bias term.

The result of this calculation is thenpassed to the activation functionwhich transforms the data to a y-coordinate

of this specific function. Typical activation functions representReLu, sigmoid activation or soft plus. The output

of this function is then again multiplied by a weight and a bias similar to the example in Equation B.11 and

Equation B.12. The total output of the network is then again multiplied by a bias. The algorithm learns now by

comparing the output to the actual input and calculates based on this difference new weights and biases with a

method called back-propagation. These weights and biases are adopted each time a new input is read in. And

as each weight and bias is changed with increasing input, the model is able to represent complex patterns and

relationships in the data.

B.4.2. Recurrent neural networks
RNNs use the ideas as introduced in the subsection Neural networks, however they add a recurrent idea to the

neural network where the input of the last data point in combination with an independent weight is added to

the input of the current point. Equation Equation B.13 shows the multiplication with 2 input values.

Z = (X2 ∗W1) + (y1 ∗W2) + b1 (B.13)

Here the parameters Z, W1 and b1 are the same as defined in Equation B.11,X2 represents the second input

value and y1 represents the output of the activation function of the first input value. In this particular case a

ReLu function was used. When all the values of a time series are read in, Z is used as an input to the activation

function and then multiplied by weight and bias again. In the case of multiple neurons for each layer the sum

is taken in the end and a final bias is added, just as in the neural network.

B.4.3. Long-short-term-memory
RNNwith Long-Short-Term-Memory (LSTM) represent an advancement of RNNs and despite the algorithm is

build on the theory of RNNs, the architecture has fundamentally changed. The first gate of is called the forget
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gate. Here, first an input is read in and just as described by Equation B.13 is multiplied by the weight, added to

the previous input which is alsomultiplied by aweight. Finally, there is a bias added. The difference however, to

RNNnetworks is that the short and the long termmemory are two separate strings, therefore themultiplication

of previous input represent the short term memory stung.

Z = (X2 ∗W1) + (s1 ∗W2) + b1 (B.14)

Here the parameters Z,W1 and b1 are the same as defined in Equation B.11,X2 represents the second input value

and s1 represents the short term memory string. Z is now being read into a sigmoid activation function. This

output y is now multiplied by the long term string.

l1 = l0 ∗ y1 (B.15)

The second gate, the iput gate, also reads in the first value as well as the short term memory and multiplies

each by weights and adds a bias. The input is then inserted into a tanh activation function, which in contrast to

the sigmoid activation function, returns a y-coordinate between -1 and 1. Simultaneously, the same calculation

from the forget gate with the input data and the short term memory (Equation B.14) is calculated. The output

of the tanh activation function and the output from Equation B.14 are multiplied and the result is added to the

long term storage.

The third gate of the LSTM, the output gate, is designed to update the short term memory. Equation B.14 is

repeated and then multiplied with the result of the output of the tanh activation function, which was feed by

the updated long-term-storage of the input gate. The result is the new short-term-storage.

For a time series, all values of the series are passed sequentially through the LSTM gates. All three gates com-

bined are now called one block. As the LSTM algorithm has as many blocks as it has numbers in the sequence,

the method is called BlockRNN LSTM.

The learning takes placewith amethod called stochastic gradient decent which uses randomly collected samples

(batches) of the original dataset, which are passed through the LSTM algorithm by a determined number of

times. This determined number is set by the modeller and is called an epoch. After the train period is finished,

all weights and biases are not modified anymore and reused in every block.

All information was obtained from Kim et al., 2022 [56] and the Darts library documentation [49].
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Figure B.5: Flowchart BlockRNN with LSTMmodel
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B.5. Probability modelling
The following example shows how the algorithm operates when probability forecasting is activated. In this

example the BlockRNN with LSTM model is chosen, however also other pytorch based algorithms have the

ability of probability forecasting. The forecasting concept is based on DeepAR probabilistic forecasting. More

information can be obtained from Salinas et al., 2017. [110]

Figure B.6: Probability modelling with N-BEATS
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B.6. Model quality metrics and loss functions
MSE is defined as:

MSE = 1
n

n

∑
i=1

(yi − ŷi)2 (B.16)

Where:

n is the number of data points,
yi is the actual (observed) value for data point i,
ŷi is the predicted value for data point i.

MAPE is defined as:

MAPE = 1
n

n

∑
i=1

∣yi − ŷi
yi

∣ × 100% (B.17)

Where:

n is the number of data points,
yi is the actual (observed) value for data point i,
ŷi is the predicted value for data point i.

RMSE is defined as:

RMSE =
√√√
⎷
1
n

n

∑
i=1

(yi − ŷi)2 (B.18)

Where:

n is the number of data points,
yi is the actual (observed) value for data point i,
ŷi is the predicted value for data point i.



C
Model behaviour

C.1. ACF and PACF
The graphs below illustrate the autocorrelations and partial autocorrelations of the copper and molybdenum

IMF price data. The shaded area represents white noise, and only the data points outside this shaded region

indicate autocorrelations and partial autocorrelations that surpass the level of random white noise.

Figure C.1: Autocorrelation and Partial-Autocorrelation for copper
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Figure C.2: Autocorrelation and Partial-Autocorrelation for molybdenum

C.2. Univariate modelling
C.2.1. Decomposition plots - Random walk with Drift
The decomposition plots depict the decomposed forecast alongside the trend, seasonality, and residuals. The

closer the forecasted data (in blue) aligns with the actual data (in orange), the more accurately the model has

projected the actual data during the testing period. These plots serve the purpose of enhancing the model’s

interpretability, enabling the observation of which underlying aspects of the data were not accurately captured.

This makes it straightforward to identify instances of both overfitting and underfitting, facilitating targeted

adjustments to the model where necessary.
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Figure C.3: Decomposition of the test period forecast of copper prices compared with actual data using a random walk with drift.

Figure C.4: Decomposition of the test period forecast of copper prices compared with actual data using a random walk with drift.

C.2.2. Decomposition plots - ARIMA

Figure C.5: Decomposition of the test period forecast of copper prices compared with actual data using a ARIMA model.
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Figure C.6: Decomposition of the test period forecast of molybdenum prices compared with actual data using a ARIMA model.

C.2.3. Decomposition plots - N-BEATS

Figure C.7: Decomposition of the test period forecast of copper prices compared with actual data using a N-BEATS model.

Figure C.8: Decomposition of the test period forecast of molybdenum prices compared with actual data using a N-BEATS model.
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C.2.4. Decomposition plots - BlockRNN with LSTM

Figure C.9: Decomposition of the test period forecast of copper prices compared with actual data using a BlockRNN with LSTMmodel.

Figure C.10: Decomposition of the test period forecast of molybdenum prices compared with actual data using a BlockRNN with LSTM
model.

C.3. Multivariate modelling
The decomposition plots depict the decomposed forecast alongside the trend, seasonality, and residuals. The

closer the forecasted data (in blue) aligns with the actual data (in orange), the more accurately the model has

projected the actual data during the testing period. These plots serve the purpose of enhancing the model’s

interpretability, enabling the observation of which underlying aspects of the data were not accurately captured.

This makes it straightforward to identify instances of both overfitting and underfitting, facilitating targeted

adjustments to the model where necessary.

C.3.1. Decomposition plots - BlockRNN with LSTM - Two co-variates: EU countries flu-
orescent lamp recycling rates.

The decomposition plots depict the decomposed forecast alongside the trend, seasonality, and residuals. The

closer the forecasted data (in blue) aligns with the actual data (in orange), the more accurately the model has

projected the actual data during the testing period. These plots serve the purpose of enhancing the model’s
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interpretability, enabling the observation of which underlying aspects of the data were not accurately captured.

This makes it straightforward to identify instances of both overfitting and underfitting, facilitating targeted

adjustments to the model where necessary.

Figure C.11: Decomposition of the test period multi-variate forecast of the fluorescent lamp recycling rate compared with actual data
using a BlockRNN with LSTMmodel. Co-variate: Luxembourg’s and Germany’s recycling rate of fluorescent lamps.

C.3.2. Decomposition plots - BlockRNN with LSTM - Two co-variates: Main materials

Figure C.12: Decomposition of the test period multi-variate forecast of the fluorescent lamp recycling rate compared with actual data
using a BlockRNN with LSTMmodel. Co-variate: Main fluorescent lamp material recycling rates (glass and plastic).
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C.3.3. Decomposition plots - BlockRNN with LSTM - 68 co-variates: All recycling rates
of glass and plastic of all European counties.

Figure C.13: Decomposition of the test period multi-variate forecast of the fluorescent lamp recycling rate compared with actual data
using a BlockRNN with LSTMmodel. Co-variate: 68 co-variates: All recycling rates of glass and plastic of all European counties.
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