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Abstract

Glaciers’ mass balance and melting patterns can be monitored through the study of their fa-
cies. Whilst using Synthetic aperture radar (SAR) remote sensing data facilitates glaciology
observations as it can be used under all weather conditions, the systemic backscatter inten-
sity decay due to incidence angle (IA) variation makes classification even more challenging on
such complex terrain. We investigate the classification accuracy of glacier facies using SAR
data through a supervised learning algorithm that incorporates class-dependent local inci-
dence angle correction. Focusing on the Holtedahlfonna and Kongsvegen glacier complexes in
northeast Svalbard, we pre-process SAR data from Sentinel-1 using the SNAP toolbox. We
then compare three Bayesian classifiers: one without any IA correction, one with a common
IA slope correction, and the third incorporating a class-dependent TA slope correction. Our
results show that per-class TA slope correction on training regions improves the models by
around 30% compared to the naive one and around 10% from the common IA slope correc-
tion. When tested on the glaciers, their firn line could be mapped from 2017 to 2023 and a
general retreat of 400-500 m is observed, changing to 3-4 km in some regions of Holtedalh-
fonna. However, when looking at regions of lower altitudes, regions with crevasses are largely
misclassified. To aid crevasse classification, we finish this study by providing some insights on
potential texture features, using either standard deviation or spatial Fourier transforms. In
all, this work explores the extent to which class-dependent IA corrections should be included
in SAR data analysis, contributing to enhanced glacier monitoring and climate research.
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Chapter 1

Introduction

This chapter presents the context, motivation, existing research, and research objectives.
Section 1-1 provides context and shows the research gaps. Then, Section 1-2 goes into a more
thorough literature review to present state-of-the-art methods. The research objectives are
detailed in section 1-3, and then the thesis structure is provided in section 1-4.

1-1 Motivation

The Intergovernmental Panel on Climate Change (IPCC) has been monitoring the state of
the world’s glaciers since 2014. It reports that in a span of 7 years, almost all worldwide
glaciers have shrunk and will continue to shrink as they are out of balance with current
climatic conditions. Unfortunately, the changes in glaciers due to climate change can
disrupt the global water cycle, affecting human resource economics (Vaughan et al., 2013).
Glaciers in the Arctic are particularly at risk as this region is warming nearly four times
as much as the rest of the world, and climate models are systemically underestimating
this amplification (Rantanen et al., 2022). Glaciers are an important proxy for climate
change; thus, understanding their evolution in time provides key insights into climate patterns.

While fieldwork on glaciers is resource-expensive, the development and use of remote sensing
have been of great value for monitoring those often inaccessible regions. For regions such as
Svalbard, situated above the Arctic Circle, optical imagery is obsolete during polar winters
and in cloudy weather. Using active microwave sensors solves this issue as they can penetrate
clouds, and there is no need for sunlight. In the 1980s, scientists showed the use of Synthetic
Aperture Radar (SAR) data for snow and glacier monitoring which sparked interest in the
scientific community to further organize large-scale missions to acquire SAR data and make
the data easily accessible (Rott and Matzler, 1987).

The European Space Agency (ESA) pioneered such missions with the European Remote-
Sensing Satellites (ERS) 1 and 2 in 1991 and 1995, which provided new methods for snow
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mapping (Rott and Nagler, 1994, Nagler and Rott, 2000). Closely following this, other
space agencies worldwide launched their missions, such as the Canadian Space Agency
with RADARSAT-1, the Japanese Space Agency with ALOS-1 in 2006, and the Indian
Space Agency launching RISAT in 2012. In 2014 and 2016, ESA subsequently started the
Copernicus Program, which included two satellites aiming to provide SAR imagery at a
high revisiting rate of 6 days with high resolution. Equipped with C-band SAR instruments,
Sentinel 1A and 1B provide openly accessible data to analyse maritime and land regions,
and their evolution in time.

The intensity of the backscatter received by the satellite varies according to surface and sub-
surface properties, including (non-exhaustively) surface roughness, snow grain size, dielectric
properties, and overall the amount of water and air the target contains (Fung, 1994). In this
way, glacier facies, characterised by separate physical properties, can be differentiated using
SAR data. Due to the geometry of the acquisition of SAR imagery, the backscatter intensities
depend on the incidence angle (IA) between the microwave signal and the norm of the surface
it reaches. As the IA becomes larger for a far-range target, the backscatter intensity is even
more compromised, which requires correction before any backscatter analysis can be done on
the image. The distortion is increasingly hindering the final analysis for an image containing
varying surface roughness. This thesis aims to implement a novel IA correction for glacier
classification to study how much it improves the accuracy of glacier facies detection.

1-2 State of the art

For SAR imagery in the C-band, up to a few meters of dry snow are considered transparent
(Adam et al., 1997), and SAR glacier zones can be correlated (though not directly mapped)
to glacier facies (Partington, 1998). Different methods have been developed to differentiate
SAR glacier zones from visual observations including k-means clustering (Konig et al., 2004,
Konig et al., 2004), supervised and unsupervised algorithms using K-Wishart distributions
(Doulgeris et al., 2008), contextual non-Gaussian clustering (Akbari et al., 2013), fully polari-
metric support vector machine (SVM) classifier (Callegari et al., 2016, Thakur et al., 2016),
and convolution neural networks (Baumhoer et al., 2019). Before analysing the backscatter
intensities, the data must be corrected for terrain, noise, and backscatter intensity decay due
to the incidence angle. Terrain and noise correction are done in standardized pre-processing
steps. However, the widely used method to correct IA across all zones within one SAR image
is using an averaged constant correction throughout (Rott and Davis, 1993). We refer to
this as a common IA slope correction. With a constant correction, this pre-processing step,
included in the radiometric terrain correction (RTC), will then over or under-compensate
certain zones within the image.

Huang et al. (2016) have integrated local IA correction for glacier classification in an
SVM algorithm by separately segmenting the image per local incidence value, followed
by training and predicting the SVM within those zones using only backscatter intensities.
Per-class TA slope correction was implemented for sea ice by replacing a constant mean
backscatter intensity vector from a Gaussian probability density function with a linearly
variable mean. This was successfully done with a supervised algorithm (Lohse et al., 2020)

July 29, 2024



1-3 Research objectives 3

and an unsupervised segmentation (Cristea et al., 2020). Contrary to the scientific literature
highlighting the variation of TA for sea-ice backscatter intensities (Mékynen and Karvonen,
2017), the per-class IA slope dependency for glacier zones has not been studied, nor has a
per-class TA slope correction per glacier class been implemented. This would also be the first
time a per-class IA slope correction is performed on land studies.

Glaciologists at the Norwegian Polar Institute (NPI) have annually monitored the evolution
and mass balance of Kongsvegen (KNG) and Holtedahlfonna (HDF) glacier complexes. Fol-
lowing Benson (1960) definition, a glacier sequentially presents different facies based on its
physical properties. Firn, superimposed ice, and glacier ice are such zones and have been
studied on our glaciers of interest using Ground Penetration Radar (GPR) (Melvold and Ha-
gen, 1998, Dunse et al., 2009, Langley et al., 2009). These two glacier complexes are closely
located to Ny-Alesund, a town on the West coast of Svalbard, which grew from a mining area
to a permanent research settlement in 1966. This easy access to KNG and HDF motivates
the extensive research conducted there and provides valuable ground truth data for glacier
monitoring using satellite imagery. On KNG, Konig et al. (2002) have used SAR satellite
imagery (ERS) to detect superimposed ice with a comparison with ice cores, and Langley
et al. (2008) showed that SAR satellite data (data from the Advanced Synthetic Aperture
Radar (ASAR) instrument) aligns well with GPR-derived glacier facies by visually inspecting
the backscatter image. KNG and HDF are two different glacier types with varied surface
complexity (low for KNG and high for HDF) - more on these two glaciers can be read in
section 2-3-3.

1-3 Research objectives

We specifically focus on using Sentinel-1 data, the most up-to-date and freely available SAR
satellite imagery.

Before using the per-class TA slope correction algorithm on our glacier data, we first need
to understand which data type is available and what should be used for optimal results.
Then, we aim to implement the correction with a linearly variable mean backscatter intensity
dependent on the per-class TA slope correction algorithm developed by Lohse et al. (2020)
called originally “GIA”. In this work, we want to emphasize the use of the linear assumption
so that we will call it throughout this report “GLIA”. This will be done on our training
regions and on HDF and KNG glacier complexes to assess the extent to which this correction
improves in general glacier classification and the limitations. Finally, it will be shown that
our classifier vastly mislabels the crevasse region of HDF, so we attempt to extend the
algorithm to include a texture feature by exploring features involving standard deviation and
spatial Fourier transforms.

In all, we can summarise our research objectives as below:

1. What data is necessary to implement the per-class TA slope correction algorithm for our
glaciers of interest?
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2. Implementation of the per-class IA slope correction in classification:

(a) How well does this new TA correction improve glacier classification compared to
state-of-the-art methods?

(b) From a glaciology perspective, how does the firn line of HDF and KNG evolve over
the years?

3. How to extend the GLIA algorithm to include a texture feature?

1-4 Thesis structure

In Chapter 2, the thesis explores the theoretical concepts necessary to understand the
project as a whole. In section 2-1, SAR remote sensing concepts are detailed, including the
type of data we can acquire with Sentinel-1 products, the acquisition geometry, and the
overall understanding of the backscatter intensity. Then, as we apply Bayesian classifiers,
the statistics involved are outlined in section 2-2. The final theoretical chapter includes a
definition of glaciers and glacier facies and how we can relate them to SAR imagery. This
chapter ends with a description of our two glacier complexes of interest (Holtedahlfonna and
Kongsvegen) in Section 2-3.

In Chapter 3, the methods and data used are specified. Following our three research
objectives, we have three sections: section 3-1 tackles the data selection methodology,
including the glacier boundaries, digital elevation model, and SAR products used; section 3-2
outlines the methods for pre-processing, common IA slope and per-class IA slope correction,
algorithm implementation and training data; section 3-3 provides the process for the texture
feature extension to improve classification accuracy.

Chapter 4 presents the results in a similar 3-step fashion for data selection in section 4-1,
classification in section 4-2 (on training data and then glaciers) and then including the
texture extension in section 4-3.

Discussions on the results and suggestions for future work can be found in chapter 5. A
summary of the project can be finally found in the conclusion in Chapter 6.

The appendices provide additional plots, data, and explanations of steps to support the
research findings. Specifically, Appendix A details HV results, the difference between
projected and non-projected IA, and the glacier outline comparison between what is publicly
available and what was internally provided. Appendix B contains additional figures for
Spatial Fourier transform patch and wavelet analysis. The final chapter C explains the
management of data throughout the project.
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Chapter 2

Theoretical background

2-1 SAR remote sensing concepts

This chapter presents in subsection 2-1-1 the type of SAR data and their applications are
explained in subsection 2-1-2 the basics of SAR imaging and its resolution parameters, with

the geometry of SAR acquisition and an explanation of the backscatter coefficient.

2-1-1 Sentinel-1 product availability

Satellite-based SAR, acquires valuable data for glacier monitoring as the microwave frequency
range (300 MHz to 30 GHz) penetrates through clouds and is thus minimally affected by
weather (Forster et al., 1996, Braun et al., 2000). The different wavelengths of SAR systems
are referred to as bands and follow the frequency and wavelength ranges as shown in Table

2-1.
Band | Frequency | Wavelength
Ka 27-40 GHz 1.1-0.8 cm
K 18-27 GHz 1.7-1.1 cm
Ku 12-18 GHz 2.4-1.7 cm
X 8-12 GHz 3.8-2.4 cm
C 4-8 GHz 7.5-3.8 cm
S 2-4 GHz 15-7.5 cm
L 1-2 GHz 30-15 cm
P 0.3-1 GHz 100-30 cm

Table 2-1: SAR bands with corresponding frequency and wavelength ranges.

The selection of the SAR band depends on the extent to which one wants the radar to interact

with the target and how deep it should penetrate.

For instance, if one wants subsurface

information that can penetrate through vegetation and soil, then the L or P-band with its
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6 Theoretical background

long wavelengths would be suited. On the other hand, if detailed surface information is
required for urban planning, then the X or K-band is adequate. The Sentinel-1 (S1) satellites
are two C-band satellites that emit energy at a carrier frequency of 5.4 GHz (Aulard-Macler,
2011). The acquisition modes include extra-wide swath (EW) (400 km for a resolution of 20
m * 40 m) and interferometric wide swath (IW) of higher resolution (250 km for 5 m * 20
m). IW products are primarily available on land, while EW covers maritime or polar regions.
This active imaging system transmits a beam on the surface and provides a 2D image of
the complex radar reflectivity of a scene. The waves transmitted and received are linearly
polarised, with horizontal (H) or vertical (V) polarization. This means the received signal
can be a combination of HH, HV, VH, or VV polarizations, where the first letter shows the
polarization of the emitted wave and the second of the received one. Typically, smoother
surfaces will minimally interact with the emitted beam, so the received one will have the
same polarization orientation. So, co-polarizations HH and VV will have higher intensities.
On the other hand, cross-polarizations (HV and VH) will have a higher magnitude of
backscattering coefficient for a stronger surface roughness as it mostly comes from volume
scattering or multiple reflections.

Finally, S1 SAR products are available in different levels of in-house pre-processing by ESA.
Single-look complex (SLC) products keep phase information and are widely used for inter-
ferometry analysis. In comparison, ground-range detected (GRD) products have been mul-
tilooked and only contain detected amplitudes. IW GRD products are images with 10 * 10
m pixels, while EW GRD products have 40 * 40 m pixels. We will use EW and IW GRD
products throughout this work.

2-1-2 Principles of SAR imaging

This subsection is mostly based on the theory of remote sensing presented in the ”Synthetic
Aperture Radar: Systems and Signal Processing” textbook by Curlander and McDonough
(1991).

Usually, the radar system is mounted on an aircraft or satellite, and the onboard antenna
emits and receives reflected microwave signals. As spatial resolution is proportional to the
ratio of the signal wavelength to the length of the sensor’s antenna, SAR systems simulate
a larger antenna (and thus a higher spatial resolution) by combining sequences of shorter
acquisitions. It assumes that as the system moves along the flight path, i.e., in the azimuthal
direction and the target is within the radar footprint during what is called the Synthetic
aperture length. Received pulses from targets on the ground, also called chirps, are then
summed, compressed, and finally processed using an inverse dispersive filter. The result
of this is a much narrower pulse. Higher resolution can be obtained by increasing the
bandwidth, i.e., the range of frequencies within the chirp, and reducing the antenna length
in the limit of system configurations.

SAR acquisition geometry For the case of the transmitter and receiver being at the same
position (i.e., a monostatic imaging system), Figure 2-1 represents schematically the geometry
of the side-looking SAR system.
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Radar Flight path
antenna

Altitudet

Slant range Azimuth

Ground range

Figure 2-1: Synthetic Aperture Radar imaging geometry where H is the elevation of the radar
antenna from the ground, € is the look angle, and [ is the width of the antenna
beam.
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8 Theoretical background

As the beam is directed at an angle to the surface, it measures the backscatter in the slant-
range; however, for interpretation purposes, it is projected to the horizontal distance of
Earth’s surface, which is the ground range. The radar footprint then commonly refers to the
ground-range illumination of the radar beam. At the end of pre-processing, SAR products
provide backscatter strengths for each pixel, where the size of each determines the range and
azimuth resolution of the radar system.

Altitude

Radar Flight path

antenna

Altitude?

Azimuth

— Ground
AR, range

Ground range
(a) lllustration of AR, and AR, respectively
defined as the ground and slant range res- (b) AR, Azimuth resolution and slant range
olutions. R.

Figure 2-2: Geometry illustrating SAR resolution between two targets (red and blue rectangles).
Based on Curlander and McDonough (1991).

Resolutions The resolution corresponds to the minimum distance that two points along a
specific line can be differentiated. Figure 2-2 illustrates the geometry to understand ground-
range, slant-range, and azimuth resolution. For a general SAR system, the resolution AR, in
ground range can be expressed as

C

AR, = ———
9 2B.sin®’

(2-1)
where c is the speed of light, B, is the chirp bandwidth and # the look angle.
The resolution along the azimuth is defined as being half the antenna size L, i.e

AR, = (2-2)

L
5
Sentinel-1 uses different acquisition modes, including strip mode (SM) and TOPSAR (acqui-
sition mode of IW and EW products). SM products have an azimuthal resolution following
equation 2-2, but due to TOPSAR’s sweeping pattern, which aims to create a wider swath
and have longer illumination times of a target, the resolution of IW and EW is less than that
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of strip mode (De Zan and Guarnieri, 2006). From Sentinel-1 documentation, the IW and
EW range*azimuth resolutions (in m) are 20 * 22 for IW and 93 * 87 for EW. The products
are oversampled as the pixel size is 10 m and 40 m for IW and EW, respectively.

Backscatter coefficient The calibrated backscatter intensity o, corresponding to the
squared-backscatter coefficient, measures how much power is scattered back per unit area on
the ground. Following the F. T. Ulaby et al. (1982) derivation, ¢ is obtained from the radar
equation by normalizing the received power to account for the radar system characteristics
and area covered by the beam. The backscatter intensity depends on frequency, polarization,
IA of the beam, and scattering mechanisms of the target (dielectric constant and geometry).
The higher the surface roughness or small [A, the higher the backscatter intensity. Figure 2-3
presents different mechanism types. The dominating scattering mechanisms can be explained
by the surface roughness at the wavelength scale, as well as the properties of the media itself.

w\’ 1
LY - - d
v_..’.g . b -”. Sa
AN A~ v
a b. c

Figure 2-3: Different small-scale scattering mechanisms (dotted arrows) from an incident beam
(full arrow). a) corresponds to surface scattering (for two different types of surface
roughness at wavelength scale), b) to double-bounce scattering, and c) to volume
scattering

IA effect As SAR collects data using a side-looking configuration, the IA between the
emitted beam and the surface normal increases with distance. Thus, the backscattered
energy decreases proportionally as the image is captured further from the sensor. This
intensity decay, also called IA effect, is more pronounced the wider the swaths and, without
correction, makes target differences harder to distinguish.

Empirically, it has been observed that the decay could be exponentially approximated, such
that the surface intensity observed at a given incidence angle 6; is

Iy, = Ipe %/, (2-3)
where Iy, is the surface intensity observed at incidence angle 6;, Iy is the intensity (brightness)

at incidence angle 0, 6; is the wave incident angle, and v is the constant associated with a
target class (Méakynen and Karvonen, 2017, F. Ulaby, 1980).

In the logarithmic domain, this expression becomes linear and can be written as
Igi [dB] =a + bb;, (2—4)
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where b = —1/v and a = log Iy (Makynen et al., 2002, Gill et al., 2015, Zakhvatkina et al.,
2017, Méakynen and Karvonen, 2017, Mahmud et al., 2018). Backscatter intensities in the
log-domain are commonly assumed as multivariate Gaussian distributions, characterized by
their mean and covariance. These two parameters are further dependent on IA as the decay
is minimal for a closer range (small TA), and thus, the mean intensity is higher than those of
the far range. On the other hand, for data acquired over a broad range of TA, the mean will
not be representative, and the variance will be high.

To mitigate this, a common correction across all classes can be applied, either using a
constant IA slope based on the IA from the beam or by assuming the simplification of an
ellipsoid earth. Generally, the latter method, which we refer to here as common IA slope
correction, is widely used for radiometric correction as part of the pre-processing of products.
This is done in a method called ”Radiometric Terrain Correction”, where both geometric
distortions (terrain correction) and radiometric correction (common IA slope correction)
are applied. However, while topography is accounted for, the common IA slope correction
with a constant rate of decibels per TA degree ([dB/1°]) for all classes would overcorrect or
undercorrect certain classes as the rate of decay depends mostly on roughness conditions and
hence glacier facies (Wagner et al., 1999). Some prior research has investigated the possibility
of manually correcting the IA based on the class; however, this method is time-consuming
(Mladenova et al., 2012, Lang et al., 2016).

Different methods were implemented to account for variations within IAs in a SAR image.
Karvonen et al. (2002) initiated an iterative per-class correction by normalising the backscat-
ter intensities with the class’s relevant slope while running the classification in parallel. Lohse
et al. (2020) created an automated per-class IA correction by directly calculating the proba-
bility density functions for a given data point with a linearly variable mean from given slopes.
At the same time, Cristea et al. (2020) developed an unsupervised approach, substituting a
constant mean of backscatter intensities with a linearly variable one.

2-2 Statistics for Bayesian classifiers

In this work, we adopt the classification approach developed by Lohse et al. (2020) and
Cristea et al. (2020). While one is a supervised classification and the other an unsupervised
segmentation, both are based on Bayesian classification. Hence, this section introduces the
concept of Bayesian classifiers and the mathematical formulations using SAR backscatter
data.

Bayesian classifier Following Bayes’ rule, where p(w;|x) is the posterior probability, p(x|w;)
the class conditional probability, and p(w;) the prior probability, we have

pxlwi)p(wi)

p(x) 25)

p(wilx) =

If we assume equal prior probabilities for each class, i.e. p(w;) = p(w;) for w; # wj, then
from equation 2-5, maximizing the posterior probability p(w;|x) is equivalent to maximizing
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the class conditional probability p(x|w;). This is the principle behind maximum likelihood
classification.

For classification purposes, the class conditional probability p(x|w;) represents the likelihood
of observing the feature vector x given that it belongs to class w;. This is also known as the
probability density function (PDF) for sample x given class w;. Class assignment in Bayesian
classification is then done by assigning to the data point the class with the highest posterior
probability such that the maximum likelihood decision rule is

x — w; if p(x|w;) > p(x|wi) VE # . (2-6)

Backscatter intensities in the log-domain can be approximated as multivariate Gaussian dis-
tributions. So for a class w; with mean vector u; and covariance matrix 33;, its PDF is

1 1 Ts—1
pi(x‘wi) = We 3 (x—pi) " 5 (x ‘ul). (2—7)
By determining from labeled data the mean and covariance corresponding to each class and
assuming the features of x (corresponding to the pixels of the SAR image in our case) are
normally distributed and independent given the class, the classifier can compute the PDF
of the sample for each class and assign the one with the largest PDF. The per-class TA
correction method will be explained in the Methods chapter in section 3-2-2.

2-3 Glaciology

This section summarizes the essential concepts of glaciology to use SAR data for glacier
zone classification. In subsection 2-3-1, the anatomy of a glacier is described, with the key
subsurface characteristics and ice differences provided. In subsection 2-3-2, we dive deeper
into how to interpret SAR data for glacier zonation. Finally, a description of the two glaciers
of interest is provided in subsection 2-3-3.

2-3-1 Anatomy of a glacier

While we can categorize these by the surface material’s temperature and physical character-
istics, the transformation of snow into ice is continuous with no clear distinction. It depends
on the type of glaciers, their topography, and the general environment influencing the melt
and refreezing cycles. For the study of HDF and KNG, firn, glacier ice, and superimposed
ice are the most relevant glacier facies and will be the ones studied throughout this work
(Personal communication, NPI).

We primarily base our understanding on the textbook by Cuffey and Paterson (2010) to
understand the differences between those zones. The glacier facies differentiated below
follow the definition set by Benson (1960) and are further developed and illustrated by
Paterson (1994). Figure 2-4 presents a revisited simplified structure of the first few
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meters of a glacier’s subsurface. We describe them below from the highest elevation, where
little or no melting occurs, to the lowest, where there is more melting than snow accumulation.

e Firn: Firn corresponds to wetted snow that has survived one summer without being
transformed to ice and snow on polar glaciers where no melting occurs. There is
typically an ambiguity in the distinction between firn and snow; however, in our project,
as we focus on SAR imagery in winter months, we will combine the two into one class
that we name “firn.” Firn can be found in the dry zone where no melting occurs, in the
percolation zone where there is intermittent melting and refreezing, and in the wet zone
where there is persistent liquid water present. Firn presents some ice structures (ice
glands, lenses, and general layers) due to the meltwater refreezing in the percolation
and wet zone. The lower boundary between the firn to ice transition is called the firn
or snow line and typically will not have strong annual variations. The firn line will take
at least multiple years of constant net negative mass balance to retreat (Konig et al.,
2002). On the other hand, several net positive mass balance years will lead the firn line
to advance in lower altitudes of the glacier. A retreat of the firn line means that more
bare ice is exposed, which in turn furthers the surface melt (Hall, 2004, Van den Broeke
et al., 2008). In this way, the firn line measures long-term trends in glacier mass balance.

e Superimposed ice (SI): When melting and refreezing due to temperature changes
across seasons, layers of ice are formed. This happens after the wet-snow zone at the
surface and right before it is buried under firn. The end of the SI zone is called the
equilibrium line, as the glacier loses as much mass as it gains along this line. Above it,
the glacier has a positive mass balance (accumulation zone) and under it a negative one
(called the ablation zone).

e Glacier Ice: Glacier ice is formed in a different mechanism than SI. As snow accu-
mulates and the overlying weight increases, the firn below becomes more compact, and
pores filled with air and water progressively close off. Glacier ice is at the end of the
gradual metamorphism of snow called firnification. Glacier ice still contains minimal
air bubbles and is much denser than firn. This is typically the surface of glaciers in the
ablation zone. At the end of summer, all snow and SI will have melted away in lower
altitudes, which means the glacier ice is at the surface.

2-3-2 Glacier zonation through SAR imagery

On top of varying across local TA, backscatter intensities and general penetration depth
depend on the water content and dielectric constant, density, structure of the media, and
target surface roughness. Therefore, we can use SAR data to identify the types of zones the
glacier presents.

The glacier facies identified earlier from Benson do not necessarily match the ones found
using SAR imagery as they provide zones based on fluctuations in the physical properties of
the snow, which could change in terms of days and weeks. In contrast, glacier facies are due
to mechanisms built over the years (Langley et al., 2008). Therefore, we make the distinction
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Figure 2-4: Simplified structure of a glacier's facies within the first meters of the subsurface.
These facies result from the transformation of snow to ice, which is influenced by
altitude (/temperature variations) and compaction levels. Diagram based on Cuffey
and Paterson (2010).
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between glacier facies, which are a glaciology interpretation of snow and ice transformation
following Benson’s definition, with radar glacier zones (also called “zones” throughout this
work) (Forster et al., 1996). Acknowledging that SAR classes do not correspond directly to
glacier facies, they can be mapped by knowing the glacier’s structure. In this way, as we
are guided by glaciologists at the NPI, glacier “zones”, “facies”, and SAR “classes” will be
words interchangeably used in the rest of this work.

Relatively dry snow zone : A dry-snow zone can be defined as a function of its volume
water content (VWC) or of the temperature at which the snowpack is - below 0°, the zone
remains dry. This zone is free of liquid water, and the only scattering contribution is due
to the snow grains. Snow grains are much smaller (millimeter scale) than the microwave
wavelength (centimeter scale for C-band), so the SAR signal of a C-band system will pass
through the snow crystals without major disruptions. For dry non-compact snow lying on
the glacier’s surface, it will be essentially transparent to SAR imagery.

Percolation zone In the percolation zone where meltwater is present and refreezes, the
dominant scattering is volume, which adds to the surface scattering from the ice structures
created by meltwater refreezing. So we can correspond a high backscatter intensity zone with
a compacted and wet firn zone.

Wet snow zone and ablation zone Backscatter intensities and penetration depths in wet
zones are lower due to strong attenuations from liquid water. Until 1995, it was thought
impossible to distinguish between glacier ice and SI until (Marshall et al., 1995) reported
using surface roughness with SAR data. Since then, Kénig et al., 2002 has shown that SAR
imagery can distinguish between SI and glacier ice because SI has a higher air bubble content
than homogeneous ice. It is noted that surface layers of SI tend to have smaller bubbles,
which have a lower backscatter intensity. This study found that SI thinner than 10 cm was
not detected using SAR imagery. However, 25 to 100 cm thick layers were detected, so the
thickness of the SI layer should be considered. The crystal size and orientation were reported
to differ from SI to glacier ice on a Canadian ice cap, which could also provide differences in
the SAR imagery; however, this was not tested or researched in Svalbard (Koerner, 1970).
Because SI presents more air bubbles, it will have higher backscatter intensities.

As explained later, we will only take data from winter months to train our algorithm, so we
assume that our glaciers are covered in snow. However, as this snow is dry and has limited
to no melting, the fresh snow covering the entire glacier will be transparent to SAR imagery,
thus only revealing snow that has undergone compaction and melting mechanisms from the
previous summer surface.

Applied to KNG & HDF Miiller (2011) studied microwave penetration in snow and ice with
KNG as one of the main case studies. It was found that from low to high altitudes of KNG,
C-band o9 gets stronger, which could be explained by varying scattering mechanisms along
the glacier’s slope. By investigating the distance to the dominating scattering source (called
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phase center), they found that with altitude gain along KNG, the dominating source goes
from surface to volume scattering, which explains the high backscatter intensity. No studies
have been conducted to compare HDF facies; hence, a ground truth was not found.

2-3-3 Glaciers of interest

We are interested in two glacier complexes on Svalbard’s northwestern coast. The HDF
(Holtedahlfonna) complex (HDF) comprises of three glaciers: Kronebreen/Holtedahlfonna,
Infantfonna, and Fatumbreen for a total area of 385 km?. The KNG (Kongsvegen system)
covers around 172.8 km? and includes Kongsvegen and Sidevegen glaciers (RGI, 2023). The
detailed breakdown of each glacier within the complexes can be found in Figure 2-5. The
two complexes join one another 5 km before the head of Kongsfjorden, and a large moraine
separates them.

Description of HDF: Kronebreen, which corresponds to the lower reach of the HDF complex
is a steady fast-flow tidewater glacier and one of the most persistent fast-flowing glaciers in
Svalbard (K&&ib et al., 2005, Nuth et al., 2012, Van Pelt and Kohler, 2015). Kronebreen
presents large crevasses at the surface as shown in the photography 2-7a. Holtedhalfonna sits
at a higher elevation and is the principal region where snow and ice accumulate. Infantfonna
is a small cirque and, just like Fatumbreen, feeds into the more extensive glacier system.

Description of KING: In our work, we include Sidevegen as part of Kongsvegen as they
share the same glacier tongue and valley. Kongsvegen is a surge-type glacier characterized
by cyclical periods of instability and rapid increase of ice flow. Known surges were in
1800, 1869, and the latest in 1948, and are currently at the end of their quiescent phase
(Liestol, 1988a, Woodward et al., 2002). As its bottom is partly to fully frozen, transport
of any surplus is not possible down the firn area (Liestgl, 1988b), which supports why
Melvold and Ove Hagen, 1998 has concluded that the glacier was heading up towards
a new surge as it is building up a reservoir area of ice. At the surface, the glacier is
characterized by its smoothness (slopes ranging from 0.5 to 2.5°) with limited crevasses
(J. O. Hagen et al., 1993). This glacier’s mass does not redistribute due to those limited
slopes, so any loss or gain within the accumulation and ablation zones (surface mass balance)
correspond directly to elevation changes (Melvold and Ove Hagen, 1998, J. Hagen et al., 1999).

In 1987, the NPI placed nine stakes along the center line of Kongsvegen to annually inves-
tigate its surface mass balance (J. Hagen et al., 1999). Their position can be visualised in
Figure 2-6. Photographs of the main glacier facies within Kongsvegen are presented in Figure
2-7, ordered from lowest to highest elevation (Personal communication with Jack Kohler).
Photograph 2-7b shows the glacier front of KNG covered by a thin layer of fresh snow. The
impact of the 1948 surge can be observed by the oblique lines in the glacier ice that cor-
respond to relics of crevasses. Patterns perpendicular to those old crevasses correspond to
current drainage channels. Photograph 2-7¢ corresponds to undulating glacier ice (sub 10 m
resolution) surface, which differs mainly from the flat surface found in superimposed ice as
seen at stake 6 in photograph 2-7d. This depicts the process of making superimposed ice, as
it is clear that meltwater is being refrozen. Finally, firn is observed at stake eight, which is
close to the highest elevation of Kongsvegen. Photograph 2-7e shows the relatively smooth
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745604N

Holtedahlfonna system (HDF) Kongsvegen system (KNG)
[] Total HDF [ Total KNG

I Kronebreen/Holtedahlfonna (295.5 km2) [l Kongsvegen (108.3 km2)
I Infantfonna (77.9 km2) I Sidevegen (64.5 km?2)

[0 Fatumbreen (11.6 km?2)

Figure 2-5: HDF and KNG glacier complexes. Each complex comprises multiple glaciers; the
areas found through QGIS are detailed in the figure. Base map from Norwegian
Polar Institute (2017).
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surface of firn covered with some fresh snow. Before 2018, Kongsvegen did not present any
crevassing; however, the acceleration of the surge from then onward was fast enough to have
them formed, as seen in the photography.
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Figure 2-6: Position of the nine stakes placed along the centerline of KNG for annual mass
balance monitoring. Source: Hawley et al. (2008).

Depths of glacier zones The depths to which one zone transitions to the other vary accord-
ing to the glacier and its topography. For KNG, a firn core has been collected at around 11 m
of depth at stake KNG8 (Hawley et al., 2008). Using GPR, Brandt et al. (2008) have shown
that the depths of SI vary significantly from 0 to 20 m and are shallower next to drainage
channels. Anything below firn and superimposed ice will be glacier ice, and this spans surface
level at the ablation zone to around 300 m, which is the total depth of the glacier. No depth
information was found from previous literature for HDF.
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(b) KNG-KRB front showing crevasse relic and
drainage channels

(d) Stake KNG6: Superimposed Ice (SI) being
(c) Stake KNGL: Glacier ice formed

(e) Stake KNG8: firn with newly formed
crevasses

Figure 2-7: Photographs at different elevations of the surface of KRB and KNG to visualize
glacier facies (Personal communication, Jack Kholer).
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Chapter 3

Data and method

3-1 Data selection

In this section, we present the data used throughout the project: subsection 3-1-1 details the
glacier boundaries, subsection 3-1-2 the Digital elevation model, and 3-1-3 the SAR products.

3-1-1 Glacier boundaries

The most recent and officially published glacier boundaries can be found in the Randolph
Glacier Inventory (RGI) 7.0 dataset compiled by the Global Land Ice Measurements from
Space (GLIMS) initiative (RGI, 2023). However, they only have outlines that have not been
updated since 2000. Hence, the glacier boundaries used in this work are a draft based on
the 2020 Sentinel 2 Mosaic, internally communicated by NPI. A comparison between the two
outlines can be further seen in Appendix A-3.

3-1-2 Digital Elevation Model

A Digital Elevation Model (DEM) must be used for terrain correction and calculating local
incidence angles.

To avoid capturing sub-pixel variation and outdated fine-scale glacier variations, the DEM
from the German Aerospace Center (DLR) was used (Wessel et al., 2018) as it is of lower res-
olution compared to an internally provided 20m resolution DEM by NPI. If a high-resolution
DEM is used, it would be necessary to smoothen it over several pixels to get a pixel-level
terrain slope required for the IA effect. TanDEM-X at 90m of resolution was used as it is
open access and of lower resolution (Rizzoli et al., 2017). The cells N79E012 and N78E012
were merged using QGIS to cover our glacier region. As per the TanDEM-X data guide, no
data values were set to -32767.
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3-1-3 SAR products

The objective is to understand the data availability of Sentinel-1 SAR products to choose
the optimal dataset for training purposes. Scenes of interest were counted by directly
searching the Copernicus database using its API. Downloads of the scenes were done using
Creodias, a cloud service for Copernicus, as the Copernicus interface was being updated,
which complicated direct downloads.

HDF and KNG glaciers are located close enough to always be within the same Sentinel-1
scene, so the analysis of scene count is equal and relevant for both glaciers. Initially, we
prioritized looking at IW data, which offers a higher resolution of backscatter intensities
(10*10 m) compared to EW (40*40 m). GRD products were used as they have already been
pre-processed in-house by ESA.

All product information covering our glaciers (total from 2014 to 2024) was found and put into
a dataframe in subsets to bypass the API maximum limit of 1000 products at a time. Then,
they were all concatenated into one main dataframe. The number of scenes was counted and
analyzed after creating the appropriate labels for the type of satellite used, the orbit direction,
the polarization channel, and the year they were acquired.

R - Resolution Class:
“F" (Full resolution)

“H" (High
“M" (Medium resolution)
“_" (Not applicable)

TTT - Product Type:
“RAW" / “SLC" / “GRD" / “OCN" / “ETA"

000000 - Absolute Orbit Number

F - Product Class:
“S" (SAR Standard)

“A" (Annotation)

“N" (Noise)

“C" (Calibration) Stop Date Time
“X" (ETAD)

MMM - Mission Identifier:
“S1A"
“s1B"
“s1c”

EEE - Product Format Extension:
“SAFE"

MMM_BB_TTTR_LFPP_YYYYMMDDTHHMMSS_YYYYMMDDTHHMMSS_000000_DDDDDD_CCCC.EEE

Start Date Time

PP - Polarisation:
“SH" (Single HH)
“SV" (Single VW)
“DH" (Dual HH/HV)

“DV" (Dual VWV/VH)

“HH" (Partial Dual, HH Only)**
“EW" “HV" (Partial Dual, HV Only)**
“Wvr L - Processing Level: “WV" (Partial Dual, VV Only)**
“EN" / “N1" / “N2" / “N3" / “N&4" / “N5" / “N6" ‘0" /1t AT “VH" (Partial Dual, VH Only)** ‘—————————— DDDDDD - Mission Data Take Id (Hex)

BB - Mode Beam Identifier:
“S1" / “S2" / “S3" | “S4" | “S5" / “S6"
W

CCCC - Product Unique Identifier

Figure 3-1: Naming conventions of S1 products useful to filter the scenes per satellite, mode of

acquisition, polarisation, time of acquisition, and orbit number. Source: Copernicus,
2024

To group the existing scenes, the naming convention of Sentinel-1 products was used to
categorize if the scene is from satellite A or B and the specific polarization channel, as they
can easily be extracted from the string in the name. Figure 3-1 shows the definition for each
string in the product’s name. Orbit direction is, however, only included in the metadata,
but it can be noticed that descending passes for this region only take place at 6 am (around
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0615) and ascending passes at 3 pm (generally 1545). Thus, they were labeled according to
the timestamp and included in the product’s name.

Relative orbits As we want to observe the per-class IA dependency from the backscatter
intensity, we also need to acquire data from a single polarization that contains different rela-
tive orbits and covers the same area of glacier zones at various IAs. The product name from
Sentinel-1 data provides the absolute orbit number, i.e., the unique count for each complete
orbit around the Earth. On the other hand, a relative orbit corresponds to the distinct path
the satellite covers, and products of the same relative orbit have similar A and look direc-
tions. In that way, different relative orbits provide a wider range of IA for the glaciers studied.
Indeed, different relative orbits imply wider fluctuations in TA, which is necessary to under-
stand the relationship between backscatter and IA. To then find the relative orbit of the
different scenes, we can calculate them from their absolute orbit number found in each prod-
uct’s file and use the following calculation (SentiWiki, 2024):

For Sentinel-1A: relative_orbit = mod (absolute orbit number — 73,175) +1  (3-1)
For Sentinel-1B: relative_orbit = mod (absolute orbit number — 27,175) +1  (3-2)

3-2 Classification method

This section provides the methodologies for classifying the training data and the glacier im-
ages. Subsection 3-2-1 presents which pre-processing steps on SAR products were applied;
subsection 3-2-2 details the method used to evaluate the backscatter dependency on TA and
thus apply common and per-class IA slope correction; subsection 3-2-3 describes the super-
vised learning algorithm and training data used.

3-2-1 Data pre-processing

The SAR products were batch pre-processed using ESA’s Sentinel Application Platform
(SNAP) tailored explicitly to Sentinel products and SAR processing using the standard flow
depicted in Figure 3-2. The pre-processing was applied to both backscatter intensities HH
and HV for all products. Range-Doppler Terrain correction was applied with a pixel spacing
differing on whether EW or IW was used (40m and 10m, respectively), and the subset of
TanDEM-X 90m covering the glaciers of interest was loaded for the correction and calcula-
tion of local TAs. No radiometric correction was implemented in the pre-processing stage to
understand better the impact of the different corrections on the final classifications.

The terrain correction operator in SNAP had further the choice to output the projected
or non-projected local IAs. The non-projected “local incidence angles” values are the IA
used throughout this project. For further reading on the differences between projected and
non-projected IAs, please refer to section A-2.
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Figure 3-2: Pre-processing graph for all the SAR IW and EW products used in this project.

3-2-2 Backscatter dependency on IA

Common IA slope correction Common IA slope correction is the most widely used ap-
proach, which involves applying a mean [A rate correction to the entire backscatter image for
IA angles either defined with ellipsoidal angles or local IA. The choice of angles depends on
the application and whether topography would be relevant to correct for (e.g., mountainous
regions) or not (e.g., sea-ice). While this is practical, it also implies that this correction will
over or under-compensate zones with more or less surface roughness within this backscatter
image.

Per-class IA slope correction To account for different class roughness and IA-slopes (and
so dependency on IA), Lohse et al. (2020) integrated IA as a class property. Using the fact
that a linear function can approximate the backscatter intensity in the log domain, the mean
for class i can be defined as

uz(@) =q;+b;- 6. (3—3)

Substituting this in equation 2-7, we get the following PDF accounting for per-class TA cor-
rection

1

pi(x|w;) = (2m)d/2|x;|1/2 ¢~ 3 (x—(ai+:-0))T T (x—(ai+b:-0)) (3-4)
™ i

Slopes and intercepts of each training data zone were found by taking the winter months,
HH+HYV polarization of some data points (4 to 7) of three years of EW data: 2015, 2021,
and 2023. Each year was fitted using linear regression, and then the slopes and intercepts for
all three years were averaged to get an IA slope associated with each class. The code for the
three classifiers can be found on Github here.

3-2-3 Algorithm implementation

The GLIA’s fitting phase uses the training regions to determine the class-specific slope and
intercept, b; and a; defined in 3-3. When designing the ”predict” phase of the algorithm, it
was found to be more computationally efficient first to remove the variable mean to calculate
a zero mean deviation, compared to directly computing equation 3-4. In other words, for
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class i, deviation d; from the mean for x, and for the class-dependent slope and intercept b;
and a; respectively, we have

di:X—ui:X—(ai+bi'@).

This could be done as a block array calculation. Then, the standard PDF of the multivariate
normal distribution of d is calculated, and the decision rule presented in equation 2-6 is
applied to assign a label to the pixel.

Training data The training data from which we calculate the TA slopes correspond to winter
EW products of 2015, 2020, and 2023 from January to April. The labeled pixels correspond to
the regions defined in Figure 3-3. All regions except firn have been outlined in the Kongsvegen
glacier complex as the different glacier zones are easier to differentiate than Holtedahlfonna.
Indeed, possibly due to lower elevations, the firn training region of KNG had too much
variation in the backscatter intensity, so we decided to use the TA slope from the HDF firn.
In the georeferenced coordinate system, these training regions are each 1 km*1 km. For EW
products, this corresponds to 25*25 pixels.

The classification accuracy was analysed through confusion matrices, which provide a per-
centage of correctly classified classes from the true labels to the predicted ones.

To monitor the firn line while preserving edges, the classified products were smoothed with
a median filter of 5*5 pixels. Then, the separation between the classes corresponding to
firn and superimposed ice facies was traced by visual inspection of the results in QGIS. To
quantitatively understand the extent to which there was a decrease or increase in pixels labeled
in the SAR class corresponding to firn, two outlines were traced in QGIS to cover the firn
region of Holtedahlfonna and Konsvegen. The tool “zonal histogram” was used to get the
proportion of labels of pixels in the regions, and the decrease percentage was calculated over
the years.

3-3 Texture feature

This section provides information on the methodology used to incorporate a texture feature
in the algorithm.

Crevasses are zones of stretching and compression that result in large fractures in glacier ice.
Due to these severe roughness and slope variations, the backscatter in the crevasse regions
has small geographical scale variations that do not correspond to the glacier ice signature
that would be found elsewhere. Since the mean backscatter intensity of the crevassed glacier
ice is similar to that of firn, additional information is needed to separate the two. Visually,
we can distinguish the two facies in the training images because of their different textural
signatures. Hence, adding some texture features to each pixel of the glacier image would
provide a simplistic way to consider it.

One of the most straightforward and computationally fastest ways to incorporate textural
information is to use the standard deviation of the backscatter intensity within a given
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Figure 3-3: Training regions’ locations on KNG and HDF.
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window. In order to include standard deviation in the GLIA algorithm, we compute the
standard deviation of HH and HV backscatter intensities across a window over the whole
image (Figure 3-4). The mean and standard deviation of the standard deviation of the
central pixel were calculated for window sizes on each glacier class training region for both
EW and IW. Both standard deviations are then added to the features of the central pixel.
In this way, now pixel images contain four channels:

pixel_channels = [HH, HV, std_HH, std_HV].

Window size 1
)

!

Figure 3-4: Visualisation of the standard deviation calculation. A window (here of size 1) travels
through the glacier image, calculating the standard deviation for the center pixel.
To get reliable results of standard deviation metrics (mean and std) for each training
region, this process is done multiple times over a larger grid and then averaged.

By plotting the HH_mean vs the HH_std for each class, we can observe whether the crevasse
training data points overlap significantly or not with other classes and then decide accordingly
on the optimal window size, i.e., the window size, which is the minimum in size to be accurate
while still allowing crevasse training points to be significantly different from other classes. This
was done for both EW and IW training regions for windows of sizes 3, 5, 7, 11, 15, and 21
(pixel count), as seen in Figure 4-11a and Figure 4-11b respectively. The standard deviations
were calculated for EW on a product of 16/01/2023 and for IW on a product taken on the
10/01/2023 product.

Once we can observe if adding the standard deviation (std) of the backscatter as an additional
feature improves the separability of classes, we check if this measure satisfies the linear as-
sumption with respect to the local TA to be able to include it in the GLIA algorithm directly.
For this, we take the 27 EW products of varying relative orbits in winter months to get a wide
local IA spread. Those products cover the years 2015, 2020, and 2023, as these are the only
years available in EW mode over this area. We run the optimal window size found previously
through the training regions and calculate the std of the mean HH backscatter intensity of
the center pixel. Then, the std of all pixels are averaged per training region to finally get per
scene a mean value of the std of the HH mean, named “mean_HH_mean_of_std”. By plotting
this mean value for different scenes of different years as a function of the mean IA, we can
observe whether the std metric fits the linear assumption necessary for the use of GLIA.
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Chapter 4

Results

4-1 Data selection

This section provides the results of the data search. Subsection 4-1-1 counts the amount of
available data per product type. Subsection 4-1-2 shows the backscatter variability over the
months to select a time window of product acquisition. Finally, subsection 4-1-3 shows the
data available in terms of relative orbits for both IW and EW, which motivates our final
selection of SAR product types.

4-1-1 Data availability

For GRD products, we can filter scenes by the satellite used (S1A, S1B), polarization channel
(single: HH, VV, dual: VV+VH, HH4+HV, and orbit direction (ascending or descending).
Any files available on Creodias finishing by *.COG’ were excluded from future analysis as
SNAP cannot pre-process them. For EW data, 1472 products are available from 2014 to
2024, covering our glaciers with a non-zero count for all years. 1452 are HH+HV; from that,
928 are from January to April. Those 928 products were distributed over 2015, 2020, 2023,
and 2024, but downloads using the Creodias platform for 2024 products were unsuccessful.
For IW data, we found 660 HH+HV products. IW products generally span from 2015 to
2024; however, HH+HV and winter products are only available from 2017 to 2024, excluding
2019. However, again, 2024 products were not available to download using Creodias.

4-1-2 Months

Due to snow melt and variation of liquid water content within the snowpack and on the ice
surface, the backscatter intensities will vary between seasons. To train our algorithm on the
most consistent dataset, we have analyzed to what extent the seasons affect the separability
of glacier regions when looking at the backscatter intensities vs. the local TAs. Our study
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focuses on the local TA from the glacier’s subsurface, meaning we want the most negligible
impact of surface changes.

NPI mentioned that from September onwards, we should expect the least melting and fresh
snow, and that is when they generally take their reference field measurements. Looking in
more depth at pre-processed backscatter intensities for one year (arbitrarily assumed to be
2021 here) in Figure 4-1, we can observe that the winter months from January to April offer
minor variability, so we decide to filter out any other months for our study (HV values have
the same trend and can be found in the appendix A-1).

Mean of HH of IW products across 2021

—-7.5

e e~ v

—10.0 1

S e N Sy

—15.0 1

Mean of HH

—17.5 1

—20.0 1

—8— Superimposed ice

—8— Glacier ice texture2

—8— Glacier ice texturel
Firn

—22.51

2 4 6 8 10 12
Month

Figure 4-1: Mean backscatter intensity for the HH channel for IW products spanning our glacier
complexes across 2021. All intensities are stable within 1 dB from January to April
when the least melt and refreezing occurs.

For this data, the HH and HV bands for the EW data of each training region are plotted
in Figure 4-2. The two different textures of glacier ice heavily overlap in both bands and in
general, the separation in both bands is roughly equivalent (removing the outliers).

4-1-3 Relative orbits

Unfortunately, only one relative orbit number is available for HH+HYV polarization for our IW
data covering our region of interest. This insufficient spread of IA prevents us from observing
the relationship between IA and backscatter values.

For this reason, we use EW data, which has a lower spatial resolution but more variability in
its relative orbit over our glaciers. As mentioned above, only the years 2015, 2020, and 2023
can be used for the HH+HYV winter products, and all have at least 11 different relative orbits.

Ideally, we would be able to train the classifier on EW data as it contains the different relative
orbits, but to test the classifier using IW data as it has higher resolution. For this, we would
need to ensure that IW corresponds to EW data, which we would theoretically expect as they
are calibrated to do so. Figure 4-3 plots the IW data over EW one. When plotting the HH
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Figure 4-2: Backscatter intensity spread of HH and HV bands of all training regions.

backscatter intensities per class, IW data falls in the same range as EW, which points to what
we expect. However, the similarity between the backscatter values of IW and EW should be
more rigorously checked in future research.

4-2 Classification

This section presents the results of classification on the impact of integrating local IA for sep-
arating the glacier zones (subsection 4-2-1), classification results on training data and training
accuracy calculations (subsection 4-2-2) and finally classification on our glacier complexes and
glaciological interpretation (subsection 4-2-3). In Figure A-4 in the Appendix, one can see an
example SAR scene where SAR zones can be distinguished by their backscatter intensities.

4-2-1 Backscatter dependency on IA

Looking back to the range of backscatter intensities in Figure 4-2, we can observe that some
backscatter values have non-unique associated zones, specifically a large overlap between
superimposed ice and glacier ice. If we add the other dimension of TA and fit a line as seen
in Figure 4-4, we can observe a linear relationship between the backscatter values and IA
spread. We also observe that 1) the linear relationship of each class is more separable than

July 29, 2024



30 Results

Comparing EW with IW fit
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Figure 4-3: Plotting the backscatter intensity of the HH band versus the mean local IA for both
EW and IW over the whole image. IW data does not have a large variation in mean
IA as there is only one relative orbit, but we can observe that IW data for each zone
fall into the corresponding EW fitted line.
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Figure 4-4: Comparison of HH backscatter distributions of each class (left) with their 2D sepa-
rability when plotted as a function of incidence angle (right).

without IA, where the Gaussian mixtures significantly overlap, and 2) the classes are not
strictly Gaussian, which will also affect classification accuracy. The steepness of the slope
is affected by two key factors: the dominant scattering mechanism and the presence of
small-scale surface roughness. The slope will be the least steep for a volumetric scattering
as the diffusive reflection will occur independently of the IA. This contrasts with surface
scattering, where a larger IA will imply a larger separation between the main reflection and
the received beam. For high surface scale roughness, there will also be a similar observation
that for smoother surfaces (low small-scale roughness), the reflection will be stronger further
than the received beam for a large TA (see in the theory section Figure 2-3 for visualizations).
The TA slopes are given as shown in Table 4-1.

Zone Slope [dB/°]
Firn -0.25
Glacier Ice texturel -0.20
Glacier Ice texture2 -0.19
Superimposed Ice -0.14

Table 4-1: Slope of HH band vs IA calculated from the different training regions and averaged.

Slopes and intercepts of each zone were found by taking the winter months, HH+HV
polarization of some data points (4 to 7) of three years of EW data: 2015, 2021, and 2023.
Each year was fitted using linear regression, and then the slopes and intercepts for all three
years were averaged. Figure 4-4 indicates that the average of each zone can be distinctly
identified and separated from the other zones through this linear model. There is, however,
a significant overlap when taking into account 2 or 3 standard deviations, which would mean
that the large variability within each zone will hinder the accuracy of a classifier.

Overall, our zones are more separable when looking at the backscatter values paired with TA
than when looking at backscatter values alone. This motivates adding IA per class dependency
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in supervised learning, as we would expect a higher accuracy compared to without.

Once the relevant data was selected, we trained and tested the three algorithms to understand
how much GLIA would improve the classification accuracy. This section presents these results.
In subsection 1, we compare the initial data used and classifiers on the training data and then
on the glaciers of interest. In subsection 2, we refine our results by adding the crevasse class,
which was previously not considered.

4-2-2 Classification of training regions

Figure 4-5 presents the confusion matrix of the three algorithms run on the training regions.
The matrices present the true labels in the i-th row and predicted labels in the jth column.
The values correspond to the number of predicted labels/true labels, and thus, the better the
accuracy, the closer to 1 the ratio becomes, and the more the matrix tends to be a unitary
one.

No IA slope correction Common |A slope correction Per-class IA slope correction
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Figure 4-5: Confusion matrices for training regions comparing Gaussian classifier (left), common
IA slope correction (center), and per-class |A slope correction (right). Sl abbreviates
the Superimposed Ice zone, and GI1 & GI2 correspond to the zones Glacier Ice with
texturel and Glacier Ice with texture2, respectively.

The matrices show a generalized improvement from the Gaussian classifier (average training
accuracy of 56%) to the one integrating common IA slope correction (74%) and the one in-
tegrating per-class IA slope correction (GLIA) (86%). In particular, the common IA slope
correction improves the separability between superimposed ice and glacier ice. The Gaussian
classifier seems more biased to classify superimposed ice as firn, while the misclassification
between those two classes is balanced in the common IA slope algorithm. GLIA can signif-
icantly reduce this misclassification thanks to the firn class having a steeper slope than the
other classes, as seen in Figure 4-4. With this algorithm, the two different glacier ice textures
are still misclassified as one another, which is expected from the scatter plot of backscatters,
as these classes significantly overlap (Figure 4-4) and do not have significant slope differences
(Figure 4-4).

4-2-3 Classification of glaciers
Figure 4-6 shows the SAR classification mapped to glacier zones on HDF and KNG.
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Classifier comparison - EW scene of 01/10/2023
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Figure 4-6: Comparison of Gaussian classification without any correction (left), common IA slope
correction (center), and per-class IA slope correction (right) for both EW (top) and
IW (bottom) products.
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From those results, the common IA slope correction and the per-class IA correction algorithms
provide a more realistic and accurate zonation of glacier facies, where the firn zone is present
at the highest altitudes, then superimposed ice, then glacier ice towards the lower ends of the
glacier complexes. Common TA slope and per-class TA corrections provide similar clustering
with more distinct zones for GLIA. In this study, there is no stronger advantage in using
GLIA for the glaciology interpretation of zones.

Between the EW and IW results of common IA slope and per-class IA slope correction, the
two different glacier ice textures are misclassified, as we should expect zonations like those
seen in EW. The difference could be explained because IW is higher resolution, so potentially,
the slopes identified early on EW data do not adequately match those found in IW as seen
in Figure 4-6b.

We have checked whether two SAR products close in time have similar classifications to
motivate reliable results for time series. Figure 4-7 compares one scene from the 4th of
February 2017 and one 12 days later. The short timespan between them makes it highly
unlikely that glacier classification results should differ, and indeed, we can observe matching
labeling of firn and superimposed ice. Intensity change in the HH band can be visually
observed, pointing to some physical change in the properties of the subsurface. Looking
at the weather data from Yr at Ny-alesund base station, between the 5th and the 12th of
February, there have been positive temperatures (0°-4°C) and a cumulative of 79.4 mm of
rain (yr'2017). It is, hence, possible that the glacier ice regions have also been affected by
rain on these hotter days.

Firn line monitoring 2017 to 2023 The firn line for years 2017, 2020, and 2023 were
mapped and visualised in Figure 4-8. For HDF in 2017 and 2020, feature 1 in the figure
corresponded to pixels classified with the zone corresponding to firn and directly connected
feature 2, creating a firn line that reached around 3 km lower than where the firn line
can be observed in 2023. Additionally, Feature 3 has basically disappeared, with only a
few sparse pixels classified as firn compared to a much denser cluster for 2017 and 2020.
For KNG, its firn line has retreated more homogeneously by around 500m along the per-
pendicular to the slope, with the largest retreat on its North side with around 2 km of retreat.

Regarding pixel label count, there is a 20 % decrease in firn labels for KNG and 25 % for HDF.
This accounts for all pixels labeled as firn within the defined region of interest as specified in
the methods section and hence also would consider misclassified pixels. However, while one
cannot take those values as an explicit quantitative measure of firn reduction, they highlight
a substantial decrease in both glacier regions.

Crevasse region An issue for both algorithms is that we do not expect firn at the south tip
of Holtedahlfonna (lower altitude), which could be explained by crevasses being there. We
further refined the data on which the algorithm was trained to improve the accuracy from
a glaciology perspective. To account for the mislabeling of the crevasse region, we added a
training class of the same size, 1 km * 1 km, as the others and included it. Figure 4-9 shows
that TA dependency of the HH bands for crevasse would be averaged as a flat slope (at 4+ 0.01
dB/°), which indicates volume scattering being dominant in such heavy large-scale roughness
surface. However, it will still be helpful as it differs from the negative slope found for both
firn and superimposed ice, so we can still expect an improvement in accuracy.
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Figure 4-7: Comparison between two SAR products close in time to show that the classification
is reliable over time. For the 12-day time difference, we do not expect the glacier
facies to drastically change position, and this is what we observe for firn (orange)
and superimposed ice (purple). The two glacier ice textures (green and blue) show
the most differences between the two product classifications. This correlates with
the two texture ice distributions greatly overlapping and some visual differences
observable in the backscatter intensities.
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Figure 4-8:

Firn line comparison from 2017 to 2023 for HDF (a.) and KNG (b.). A homogeneous
retreat of around 570m can be observed for KNG perpendicular to its slope. For
HDF, feature 1 is not classified as firn in 2023, and feature 2 & 3 are more sparse
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Figure 4-9: Separability of the four regions firn, Sl, glacier ice, and crevasse with (right) and
without (left) IA considerations. The crevasse distribution significantly overlaps with
the firn and Sl distributions, considering the backscatter intensities. However, its 1A
slope is positive, which makes it more separable when correcting for per-class IA.
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The training accuracies using the same three classifiers are calculated and shown in Figure
4-10a. From these results, the overall training accuracy diminishes due to the crevasse region
backscatter data overlapping with firn and superimposed ice, as seen in Figure 4-9.
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Figure 4-10: Confusion matrices over the training regions comparing training accuracy for a
differently fitted algorithm.

It is also evident from the previous subsection that the two textures of glacier ice need to
be more distinct in our backscatter data to provide separable classes. To keep the Gaussians
between zones with the least overlap in distributions, glacier ice of texture2 was removed as
it overlaps the most between glacier ice of texture 1 and superimposed ice. This outputs the
confusion matrix presented in Figure 4-10b.

As the backscatter data is not enough to characterize crevasse and separate it from the
other classes (specifically firn and superimposed ice), we investigate how we can extend our
algorithm to include a texture feature.

4-3 Texture feature

Finally, this section presents the results of incorporating the texture feature using standard
deviation into the classification algorithm. Subsection 4-3-1 presents the results from the
attempt to find the optimal window size to perform the standard deviation calculation; sub-
section 4-3-2 checks if this new feature fits the linearity assumption between the metric and
the IA spread, necessary to apply the GLIA algorithm; subsection 4-3-3 provides the classifi-
cation training results; and finally, subsection 4-3-4 shows the new classification on the glacier
complexes.
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4-3-1 Window size analysis

We can observe from the graphs of Figure 4-11 that in EW, there is no significant overlap
in general between classes and that increasing the window sizes effectively increases the
distance between the center of the clusters. On the other hand, in IW, there is a significant
overlap of distributions for firn and crevasse. The greater the window size, the greater the
standard deviation of the center of the crevasse cluster compared to the one of firn. Firn and
Superimposed ice clusters become tighter when adding this standard deviation dimension.
Even if the maximum window size is reached, the standard deviation feature does not
entirely separate firn and crevasse. However, it provides a better separation for crevasse and
superimposed ice. Compared to EW, a larger standard deviation can also be observed for
the IW mode. This can be explained by the products being acquired and pre-processed by
ESA with different amounts of multilooking. For the number of looks per range * azimuth,
IW has 5*1 looks and EW 6*2. As EW has more significant amounts of multilooking, the
averaging will lower the standard deviation compared to IW products.

Note also that the two products compared are from the same training region; however, they
were acquired at different times and days and would have two different radar IAs.

4-3-2 Linearity with local IA

Observing the slopes in Figure 4-12, the data for 2015 and 2020 fits the linear assumption.
The lack of lower TA values hinders the linear regression applied to find the line of 2023, and
thus, the lines seem to not follow the same trends as the 2015 and 2020 data. However, it
can be noticed that if we assume a similar intercept as the global average line for the 2023
fitted one, then the data points would fall within the plausible range of the globally averaged
line. The final TA slopes used to correct the data in the learning phase of the algorithm for
the std feature were taken to be the average slope between the 2015 and 2020 data.

4-3-3 Classification result on training data

We can observe from comparing Figure 4-13b, which includes the standard deviations fea-
tures, and Figure 4-10a, which only has the backscatters, that there is an increase in overall
accuracy by 10% for the classification of the crevasse training region. This is due to decreased
mislabelling of crevasses into firn and SI and less glacier ice being labeled as firn.

4-3-4 Classification results on glacier

Runtime in classifying EW products with the std feature is 2 min, and around 25 min for ITW
products. When applying the fitted algorithm on our glaciers, the firn region is mislabelled
with crevasses, even more so than without the standard deviation feature. This can be
understood by the distribution overlap between those two classes in backscatter and their
standard deviation.
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Figure 4-11: Window size comparison of the std calculation for EW and IW. The objective is to
find the minimum size window so that each class is the most separable.
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Calculation of the mean, standard deviation of the HH band backscatter intensity
averaged across training regions versus the local IA for years 2015 (red), 2020

(blue), and 2023 (green).
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Figure 4-13: Mapping the labeled crevasses on optical imagery when using standard deviation
as a pixel feature. Strong crevasses are correctly labeled but not those that have
more irregular patterns, as seen by the red ellipses corresponding to misclassified
regions.
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Furthermore, if we compare the crevasse position on optical imagery to the labeled one, as
seen in Figure 4-14, significant crevasses are mislabelled. After discussing with glaciologists,
this specific crevasse region, which is not labeled as such, is a region with crushed crevasses
and highly irregular patterns, possibly due to the glacier movement. This could explain why
the standard deviation texture feature measures a similar random spread to firn.

W Glacier Ice
= Superimposed Ice

B Crevasse
(b) Optical imagery of Sentinel-2 from
26th of August 2022. The red
(a) Classification result of 10th of Jan- zones correspond to pixels labeled as
uary 2023 crevasses.

Figure 4-14: Per-class IA slope correction classification result including standard deviation of HH
and HV as features

There is also a notable difference in class labeling in mid-altitudes of Holtedahlfonna between
glacier ice, firn, and superimposed ice.
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Chapter 5

Discussion & future work

This section discusses our work with a summary of the interpretations of our results, from the
data availability, to the classification of the glacier complexes. We then highlight potential
improvements and extensions to this research.

Data availability For Sentinel-1 SAR data covering the HDF and KNG glacier complexes,
there is a larger scene count for HH+HYV polarizations, and thus we decided to only take such
scenes for our classification. Scenes should be taken in winter months, from January to April,
as it presents less variability in backscatter intensities due to minimal melting, and thus water
inteference in SAR measurement. Whilst IW’s higher resolution is preferred, there was an
insufficent amount of data covering different relative orbits to allow us to calculate the per-
class slopes of backscatter intensities vs local incidence angle. Therefore, for these glaciers,
EW data was necessary for training purposes of the algorithm. This should not, however, be
a problem for glaciers in other regions where there is a more comprehensive IW data coverage.
Note also that for glaciers which are not in polar regions, the months which provide the most
stable backscatter intensities could vary. Whilst EW and IW data are calibrated and should
be directly comparable, it is left to confirm that EW slopes would correspond to IW ones,
assuming the same amount of surface roughness resolution.

General implementation of GLIA on glaciers GLIA assumes a linear relationship between
the backscatter intensities and the local incidence angles. This assumption holds true for
these glaciers for the four classes identified, namely firn, superimposed ice, glacier ice, and
crevasses. As a supervised algorithm, it requires the user to input the slopes per-class. For
glacier zones corresponding to different surface roughness, these slopes are expected to vary
between different glaciers, which makes direct transfer of the method trained classifier between
glaciers challenging. This can be seen for HDF and KNG which have different structures and
topography leading to different surface roughness. Aside from being misclassified with high
roughness areas, the firn class seems to be transferable from HDF to KNG and possibly other
glaciers as this zone sits in the highest elevations of the glacier (and thus more likely to have
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less melt), but also has a smoother surface. However, the firn class showed the steepest slope
out of all classes, which would mean that it has the most surface scattering. Miiller (2011)
has, however, pointed out that firn would have the highest backscatter intensity due to the
most volumetric scattering. This disagreement could be understood by the firn region in HDF
possibly containing some ice structures as it could be in a wet zone. If such ice structures
exist close to the surface, then surface scattering would take place and this would explain
such a steep slope. The GLIA algorithm allows for a clear separation between superimposed
ice and firn as they have have different IA slopes. This makes it a useful algorithm to monitor
the firn line over time. In general, GLIA requires prior analysis of the glacier’s zones and TA
slopes in order to be implemented. Misclassification of texture is observed for both common
IA slope and per-class TA slope correction as the distribution of the backscatter intensity of
crevasse regions significantly overlaps with firn and superimposed ice.

Classification of HDF and KNG These two glacier complexes show a relatively low variabil-
ity in IA slope vs backscatter intensity, therefore as expected the improvement from common
IA slope to per-class TA slope correction do not drastically change the zonation and gen-
eral glaciology interpretation gained from classification. GLIA improves the tightness of the
distributions and the zones are more defined. The initial classes chosen with two different
glacier ice texture and without crevassing were inadequate as the glacier textures were re-
solved differently from EW to IW, and whilst crevasses are technically glacier ice, they can
be considered an independent glacier zone due to the high surface roughness. This further
supports that GLIA classification should consider the zones of glaciers individually as topog-
raphy and generally glacier dynamics renders a firn or glacier ice of one zone to have different
physical properties and surface roughness compared to another glacier. Finally, SAR data
with GLIA classification has been used to monitor the evolution of the firn line over space and
time, from 2017 to 2023. Firn line requires many years of net negative mass balance to retreat
and this is observed on HDF and KNG. 2017 and 2020 data show similar firn line positions
for KNG and HDF. 2023 show significant retreats and the isolation and/or loss of further
firn zones in lower altitudes. As these are winter scenes, they represent the mass balance of
the glaciers from the end of the previous summer. This agrees with meteorology data that
summer 2020 and 2022 were particularly hot all over Svalbard (NMI and NRK, 2020, NMI,
2020, Copernicus, 2022 ), and shows quantitatively the effect of a recent rise of temperatures
on these glaciers.

Texture feature

The glacier tongue of HDF showed the most misclassification due to crevasses and, thus, strong
large-scale (meters to tens of meters) surface roughness. As both backscatter intensities and
local incidence angles are widely variable in this region, it was necessary to include some
texture feature to aid classification of this region. The standard deviation of the backscatter
intensities differ largely between crevasses and superimposed ice which helps the differenti-
ation, however integrating this new feature does not provide as much an improvement to
separate firn and crevasses as they provide similar variations in roughness in relation to the
resolution of the backscatter intensity data.

We further investigate here a texture feature that would include patterns by analyzing the
spatial Fourier transform and similarity with a given directed wavelet. If SAR data over the
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crevasse region has spatial patterns, then we should observe dominant spatial frequencies in
the transform. On the other hand, for a given period of pattern that we expect crevassing to
have, we should expect a convolution with the directed wavelet to yield higher magnitudes
(and thus similarities) than a more randomly distributed backscatter like what is expected
for the firn region.

Due to a lack of time this was not implemented in the GLIA algorithm, however it provides
insights for future research.

Spatial Fourier transform Initially, two larger crevasse and firn regions from Holtedahlfonna
of 420*240 pixels were delineated in the HH band on IW data of 16/01/2023 and on EW data
from 10/01/2023. Figure 5-1 shows clearly in IW mode the crevasses forming inclined linear
objects. We cannot observe in the EW mode, however the darker region present in the crevasse
image for both EW and IW corresponds to a crevasse region on Holtedalhfonna where the
crevasses were crushed due to glacier movement, and therefore they are more randomly spread
then compared to the ones at the bottom left of the image, which corresponds to the sea front
(personal communication, NPT).

It is clear from the EW data that linear crevasses are not observable. Within the large
regions, smaller patches were segmented of a size of 100*100 pixels with a step size of 50.
All 21 HH band patches can be observed in Appendix B Figure B-2 for crevasses. The 2D
spatial frequencies were calculated for all patches, shifted and the central frequency removed
(B-3,B-4).

We identified patches 7,8,14 and 15 as having strong crevasses in the HH band from the
crevasse region selected as seen in Figure 5-3. In the 2D Fourier image, these crevasse patches
present some elliptical shape that cannot be observed for firn data or weaker crevassing.
The 2D Fourier transform was averaged over Y and X separately for each patch, and their
difference calculated. We can observe from Figure 5-4a that these strong crevassing patches
have frequencies with high magnitudes around 0.015 cycles/meter when the FT is averaged
over the Y axis. This could be explained by crevasses in this case being slightly inclined in the
y-axis. A potential feature could then be the mean magnitude of low frequencies (say within 0
to 0.015 cycles/meter). To get results independent of the crevasse direction, we further looked
at the radial average (B-7 for whole crevasse patches and B-8 for firn ones). As seen in Figure
5-4b, dominant frequencies are not as easily identifiable as when averaging over the Y and X
axis. However, they still present a larger magnitude for crevasse patches than for firn ones
for low frequencies. This aligns with the visual observation of their FT that crevasses have
a specific direction (elliptical shape). Figure 5-2 presents that indeed the mean magnitude
of frequencies for crevasses is on average higher than that of firn for the majority of patches,
even those not visually showing strong crevassing. This shows the potential for a texture
feature based on a magnitude threshold of radial frequencies of spatial Fourier transforms.

Wavelet analysis As including a texture feature based on spatial fourier transforms to all
pixels is computationally expensive, we also looked into wavelet analysis. Through the previ-
ous spatial FT analysis of the crevasse region of interest, we can identify a dominant frequency
of around 0.015 Hz which corresponds to a period of around 70 m to train or input. This
period result aligns with the crevasse peak distance of around 80 m we can observe on the
backscatter intensities and measure through QGIS. From this, we can design a wavelet fil-
ter from a directed sinusoid and a gaussian envelope as plotted in Figure 5-5. For different
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Original Image - Crevasse IW, HH band

Original Image - Crevasse EW, HH band

Figure 5-1: Original HH band of the 420%240 pixels regions for firn (bottom row) and crevasse
(top row) taken from HDF for both EW (left column) and IW (right column).
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Figure 5-2: Plotting mean magnitude from 0 to 0.04 cycles/meter for crevasse and firn.
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Patch 7 Patch 8
3 "

Patch 15

Figure 5-3: Four patches of 100*100 pixels from the IW crevasse region that visually show strong
crevassing.

angles, we can convolve the wavelet filter with the regions of crevasses and firn to compare
the highest absolute values, i.e the areas which align the most with a directed sinusoid and
hence corresponding to a spatial pattern that would indicate crevassing. Figure 5-6 and 5-7
show examples of the convolution operation of the wavelet filter for different angles from 0°
to 180° for both crevasses and firn areas on IW data. The size of the filter was taken to be
twice the size of the period. We can observe that the highest absolute value of the image
is on average much higher than for firn for given angles, which would indicate another type
of feature possible to include in our algorithm to be able to differentiate between firn and
crevasse classes. Based on this, for future research to look into a threshold classification of
the maximum absolute value result from a wavelet filter.

GLCM Another way to include a texture feature could be by using the gray level co-
occurrence matrix (GLCM) proposed by Haralick et al. (1973). This model calculates a
range of correlated features from reference pixels and their neighbors - a clear explanation
can be found in Hall-Beyer (2000). It has been widely applied in remote sensing and for
glacier classification (Zhang et al., 2011, Wu et al., 2011, Sharma et al., 2024). It has further
been implemented by Lohse et al. (2021) in sea-ice classification using the GLIA algorithm
and this research would provide a starting point for glacier classification with per-class IA
slope correction. Optimal features and combination of features for GLCM will have to be
studied further to see which ones are the most relevant to improve crevasse detection.
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Chapter 6

Conclusion

In this work, we applied a novel classification approach for SAR imagery to accurately map
glacier surfaces, essential to monitor glaciers’ mass balance in a changing climate. We pre-
sented the first case study that used per-class incidence angle slope correction over land areas,
specifically glaciers, and directly incorporated SAR backscatter variation with local TA into
the classification process. Applying a per-class radiometric correction enabled SAR products
to be more precise and reliable regarding their backscatter intensities. While the algorithm
was applied to sea ice previously, it had not been applied in a context of more topograph-
ical variations. Our case studies presented here corresponded to two glaciers Northwest of
Svalbard: Holtedahlfonna and Kongsvegen glaciers. These two glacier complexes had been
extensively studied during fieldwork led by the Norwegian Polar Institute and thus had a
reliable ground truth for our satellite results.

The SAR images were taken from the Copernicus database and pre-processed (without ra-
diometric correction) using ESA’s SNAP toolbox.

Our first research objective was to understand the amount of SAR data available for classi-
fying our chosen glaciers and to apply this algorithm. We labeled scenes according to their
acquisition time, polarization, and relative orbit for this. Winter scenes from January to
April presented the most stable backscatter intensities due to the least melting-refreeze cy-
cle. While interferometric-wide (IW) SAR data was preferred for its high resolution, those
glaciers and the Svalbard region, in general, had a higher count of products and a wider
range of relative orbits for the extra-wide (EW), a lower resolution acquisition mode, possibly
because most science projects in this polar region covered maritime regions. As the per-class
IA slope correction required finding the slope of backscatter intensities vs local IA, we needed
data covering a large range of IA, and this was only possible for EW data. The amount of
SAR data available through Sentinel-1 satellites limited the study to being done fully in high
resolution and consistent in the data used.

The second research objective involved testing the novel algorithm on those glaciers and un-
derstanding the benefits and limitations. We tested three Bayesian classifiers: one without
radiometric correction, one using a common IA slope correction, and the final using the per-
class TA slope correction. Comparing the latter with the uncorrected case and a common IA
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slope correction, which was the most widely used method in remote sensing and glacier clas-
sification, it increased the classification performance over our training regions by around 30%
and 10%, respectively. Glacier ice had much lower backscatter intensities than superimposed
ice and firn, and firn had a more varying IA slope than the two other classes. This made the
three classes more separable when integrating per-class TA slope correction. When applying
to our data, the firn line could be distinctly detected for both glacier complexes and mapped
to observe its evolution from 2017 to 2023. A retreat of the firn line was observed, which
correlated with the meteorological data of summers in Svalbard which were particularly warm
in this timeframe.

Our third research question arose from the observation that lower altitudes of HDF, which
presented heavy crevassing, were largely misclassified. The high backscatter intensity distri-
bution of crevassing also heavily overlapped with the one of firn and superimposed ice. It
was likely that the calculated IA slope of crevassed areas was misleading due to the limited
data available; however, its approximately null slope showed the extent to which the vol-
ume scattering present in heavy crevassing was not affected by an IA decay. To integrate
a texture feature in the algorithm, we initially looked into a simplistic standard deviation
metric that marginally improved the zonation of crevasses. We then explored alternatives
with spatial Fourier transforms and wavelet analysis, which indicated other quantitative dif-
ferences between crevasses and firn. Another alternative could be the grey co-occurrence
matrix (GLCM); however, a deeper literature review for parameter optimization would be
necessary. These methods showed potential in detecting crevassing within the limits of the
SAR and DEM resolution, and we recommend future research to integrate a texture feature
in GLIA to increase its accuracy for glacier classification.
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Appendix A

Additional plots - Data selection
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Figure A-1: HV backscatter intensities across 1 year. HV values are more consistent from Jan-
uary to April just as observed for HH values.

A-2 Local Incidence angles (projected or not)

The difference between the two is illustrated with Figure A-2. The projected local IAs are
done so on the slant-range plane which means they would only include the range component of
the angle. On the other hand, the full angle representation calculated by ”non-projected local
IA” capture both range and azimuthal components which will better capture the assumed
symmetric decay of the diffuse scattering. The full angle behaviour is then the most relevant
for our use so the IAs calculated and used throughout the rest of this work correspond to the
non-projected values, simply called ”local incidence angles” in SNAP.

July 29, 2024



60

Additional plots - Data selection
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Figure A-2: Comparison between local 1A and projected local IA in geometry. The blue plane is
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the slant-range plane and is defined by the beam source from the satellite and the
nadir point. The grid corresponds to the ground range plane and the reflector is
depicted here as a brown sphere. (a) corresponds to a view in which the projected
local incidence angle is not visible. In (b), the norm to the slant-range (dotted green

line), the projected surface norm (red), and the projected local incidence angle are
visible.



A-3 Glacier outlines 61

A-3 Glacier outlines

We present here the comparison between the openly accessible glacier outlines found through
the GLIMS dataset and the one internally communicated by NPI. As defined in the GLIMS
user guide by Maussion et al. (2023), the region code 07 was downloaded as it corresponds to
Svalbard and Jan Meyen, and the glacier complex boundaries and centerlines were mapped
using QGIS (version 3.30.1).

Figure A-3: Comparing the GLIMS outline (red) from the year 2000 to recent optical imagery
from LANDSAT-8. There is a retreat of the glaciers where it reaches the sea to
around 3km on average. For the rest of the two glacier complex, the outlines
matches still the glacier of today. Base map from Norwegian Polar Institute, 2017.

fig:optical vs'outline

As the GLIMS database estimated those outlines for the year 2000, they were compared with
recent optical imagery to identify if the outlines are not too different from the present day.
We superposed using QGIS the GLIMS boundaries with a 2023 summer (25th of August)
scene of LANDSAT-8 and found that the outline matches the glacier in most areas except
where the glacier complex reaches the sea. Here we observe a retreat of the glaciers of 2.8 km
to 4 km. Towards the edges of Infantfonna and Fatumbreen, we also observe some melting
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62 Additional plots - Data selection

but reach a maximum of 1 km. The NPI is currently revising the boundaries without having
a confirmed outline for the glaciers. However, they internally gave us this draft based on a
2020 Sentinel 2 mosaic, which corresponds better to the LANDSAT imagery of 2023. These
are the glacier outlines we use for our study.

A-4 SAR results example scene
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Figure A-4: SAR results example scene with training regions position.
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Appendix B

Spatial Fourier transforms

Crevasse IW with patch centers. Window size: 100, Step size: 50

s
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Figure B-1: Crevasse region that was segmented into smaller patches. The red dots correspond
to the centers of the 21 patches.
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64 Spatial Fourier transforms

Figure B-3: Spatial Fourier transform images of the crevasse patches.
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Figure B-4: Spatial Fourier transform images of the firn patches.

Figure B-5: Spatial Fourier transform analysis of the firn patches, applying averages over the X
and Y axes.
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66 Spatial Fourier transforms

Figure B-6: Spatial Fourier transform analysis of the crevasse patches, applying averages over
the X and Y axes.

Figure B-7: Radial frequency of spatial Fourier transforms of crevasse patches
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Figure B-8:

Radial frequency of spatial Fourier transforms of firn patches
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Appendix C

Data management

This chapter explains where the data was acquired and how it was used. All software and
data used are free and of open access.

The availability of products was searched through the API of Copernicus. For the products of
interest, they were downloaded using the Creodias platform onto the UiT Earth Observation’s
group server. Pre-processing of those products were done using the SNAP toolbox.

The main classification code can be found on Github here. The folder “classifiers” contains
the three different Bayesian classifiers: one without correction, one with a common IA slope
correction and the one with per-class correction. The folder “data” contains the necessary
functions to load, pre-process and calculate statistics on the products. The folder "results”
saves the classifications on the training data and are named according to the classes chosen.
The file “main.py” is finally the main python file running the whole classification and requires
for input the directory containing the training regions, the product’s path we want to classify
and the classes chosen.
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