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Abstract

With the market becoming increasingly competitive, there is a pressure to
deliver systems with more functionality and at the same cost, which thus
leads to more complexity in terms of number of components. Moreover,
the society is becoming increasingly dependent on these systems for its crit-
ical functions. This coupled with shrinking time-to-market and reducing
life-cycle, creates a need to find ways to ensure reliability of these complex
systems both efficiently and quickly. Due to large size and complexity of
modern day systems, fault-finding problem is a non-trivial one. Tradition-
ally, Model-Based Diagnosis (MBD) is used to locate faults in the hardware.
A prerequisite for MBD is the accurate model of the components. However,
modeling of such complex components requires huge effort, time and exper-
tise. Earlier, a spectrum-based hardware solution named BACINOL was
proposed to diagnose the hardware system without the aid of a component
model. But BACINOL suffers from low diagnosis quality due to large size
of ambiguity sets in the final diagnosis. In this thesis, we introduce a new
spectrum-based hardware diagnosis technique ANTARES. It attempts to
break these ambiguity sets by providing a better estimate of system’s False
Negative Rate (FNR) information to the diagnosis method. A series of ex-
periments are performed on the ISCAS benchmark circuits to compare the
performance of ANTARES with BACINOL and MBD. Results clearly show
that ANTARES has better diagnosis quality as compared to BACINOL but
has lower performance than MBD.
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Chapter 1

Introduction

In the modern world, technological systems and devices such as television,
mobile phones and satellites are becoming ubiquitous. Each of these systems
provides a wide range of functionality while constituting a varying numbers
of components. Every component has a different level of complexity and
a fault in one of them might lead to system failure. As the dependency
of society on these systems increases, their reliability becomes increasingly
critical. Failure of the system can prove to be expensive for every second
that it is not functional. For example, a fault in an analog to digital con-
verter (ADC) can cause a failure in the lithographic tool that is used in the
production of integrated circuits, potentially resulting in a huge production
loss. Therefore, it is important to locate and fix faults in such kinds of sys-
tems as soon as possible. Due to the large complexity of any modern day
system, it is impossible to perform manual fault diagnosis. Automated or
computer-aided diagnosis techniques are emerging as an important solution
to localize faults that are the root causes of system failures. For the last
several years, diagnosticians have been trying to find highly accurate, low-
cost and fully-automated solutions to diagnose faults in systems. The two
predominant approaches for automated diagnosis are model-based diagnosis
and spectrum-based fault localization.

1.1 Automated Fault Diagnosis

Model-based diagnosis (MBD) uses a descriptive model of the internal struc-
ture and behavior of the system to perform diagnosis. A model of the system
is defined as a detailed behavior of components (behavioral model) and a de-
scription of how those components are connected to each other (structural
model). The system behavior is measured in terms of observations. The
basic principle of MBD can be understood as the analysis of inconsistency
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between the expected value and the observed value of the system output.
Deriving explanations for the inconsistencies is defined as diagnosis.

MBD has shown very good performance in locating faults in hardware at the
expense of a huge cost. The cost can be divided into two parts: modeling cost
and solution cost. Solution cost includes algorithmic cost and identification
cost (time taken by diagnostician to find the fault). Traditionally, reduction
of solution cost has been the main topic of interest among the diagnosis
community.

A recent case study in the Dutch industry suggests that modeling cost is the
bottleneck for the acceptance of MBD in the industry. At ASML, a LYDIA-
based diagnostic engine was installed on over 3,000 service laptops world-
wide, and has been successfully used for many years. It has been shown that
the solution cost of MBD can be reduced from days to minutes by investing
25 man-days in the modeling process (approximately 2,000 LOC, comprising
sensor modeling, electric circuits and some simple mechanics) [18]. Despite
such a reduction in the solution cost, management discontinued the project
once it became clear that only 80% of the model (LYDIA code) could be
obtained automatically from the source code (graphical schematics data for
electrical, VHDL for the logic circuits). MBD was rejected because of the
fact that if a hardware component is upgraded or changed, the modeling
process will have to be repeated leading to a huge manual effort as modeling
is not completely automated.

On the other hand, the software engineering community also has problems
with such detailed modeling. Due to the large size of software, modeling
cannot be done efficiently. Therefore, a spectrum-based fault localization
(SFL) approach has been used for software diagnosis. In SFL, the dynamic
program execution profile of tests (program spectra) is combined with test
outcomes (pass/fail) to compute the diagnosis. SFL does not require detailed
modeling of the program block (statements); rather it uses a very generic
model to perform diagnosis.

Because MBD has high modeling cost unlike SFL, it becomes interesting
to adopt SFL for hardware diagnosis. BACINOL, an SFL approach for
hardware diagnosis has been proposed recently. Exploiting only a structural
model of the system to diagnose the fault. However, it suffers from low
diagnosis quality as compared to MBD because SFL uses a very generic
model of the components.

1.2 Problem Statement

From the previous section, it is clear that constructing models of hardware
components for MBD is not preferable. Therefore, BACINOL was proposed
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to perform hardware diagnosis without using the behavioral model of compo-
nents. BACINOL uses a very generic model of the components and therefore
has very low diagnosis accuracy as compared to MBD. This is caused by the
fact that BACINOL generates a ranking-list (components ordered by prob-
ability of being at fault) where many components can have the same rank
(probability); this set of components is defined as an ambiguity set. The
large size of the ambiguity set lowers the diagnosis quality of BACINOL.

If we can break the ambiguity set present in the diagnosis produced by BA-
CINOL, diagnosis quality of BACINOL can be increased. Ambiguity sets
can be broken by more accurate Bayesian probability computation under-
lying SFL. In this thesis, we study the impact of exploiting False Negative
Rate (FNR) information of a single or multiple fault candidates to improve
that Bayesian probability computation. This FNR information can be ob-
tained by computing Error Propagation Probability (EPP) behavior of the
system. Our problem statement can now be defined to:

How can EPP of a system for single and multiple faults be computed using
only the structural model of the system? How feasible is it to combine the
FNR information derived from system’s EPP with the existing spectrum-
based hardware diagnosis (BACINOL)? And, in particular, what is the im-
pact of including FNR information on the diagnosis quality?

1.3 Thesis Contribution

To solve the problem statement mentioned in the previous section, this thesis
makes following contributions:

• In this thesis, we propose a new spectrum-based hardware diagnosis
technique, ANTARES (Automatic diagNosis of sofTware/hardwARE
Systems), which computes a diagnosis based on the known structural
model of a system without using the behavioral model of the compo-
nents involved and uses the system’s FNR (externally computed) to
enhance diagnosis quality.

• We propose three different EPP models to automatically estimate the
FNR parameter (g) of every components in the hardware. The EPP is
a critical feature of ANTARES that significantly increases the perfor-
mance of SFL based hardware technique by eliminating the ambiguity
sets in the final diagnosis.

• Traditionally, OR model has been used in SFL-based methods to com-
pute the multiple-fault g values, which is theoretically not a very ac-
curate model. We propose two models to estimate the multiple-fault
g values: MIN model and Level-based model.
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• A statistical approach is used to compute the quality of diagnosis tech-
niques. We derive the diagnostic quality computation models that con-
sider the presence of ambiguity sets in ranking list using this statistical
approach.

• A series of experiments have been performed to assess the diagno-
sis quality of ANTARES with different EPP models. Performance of
ANTARES is also compared to that of BACINOL, as well as to GDE,
a state-of-the art MBD engine. All the experiments have been carried
out on ISCAS/74XXX benchmark circuits.

Experimental results clearly indicate that the external g information given to
ANTARES enhances the performance of ANTARES as compared to BACI-
NOL. The most accurate FNR estimation gives the maximum improvement
in the diagnosis quality.

1.4 Thesis Outline

Rest of the thesis is organized as follows. Chapter 2 introduces the main
concepts and notations used in fault diagnosis. Chapter 3 introduces the
statistical models to compute the diagnosis quality; these models are then
used to address the problem of the ambiguity sets and a solution is also
proposed at the end the chapter. In Chapter 4, we derive three EPP models
by considering the FNR of single and multiple fault candidates. At the end
of the chapter accuracy results of derived EPP models are shown. In Chapter
5, we present the ANTARES approach to diagnose hardware. The derived
EPP models are used to enhance the diagnosis quality. Chapter 6 presents
experimental results, along with discussions on the observations made on
the results. Finally, Chapter 7 concludes the thesis with an overview of the
results of ANTARES and addresses further research opportunities.
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Chapter 2

Fault Diagnosis

This chapter gives an introduction to the terminology developed and used in
the field of Fault Diagnosis. In this chapter, we present the assumptions un-
derlying approaches to diagnostic problem solving, the theory behind Model
Based Diagnosis (MBD) [19], and the details of Spectrum-based Fault Lo-
calization (SFL) technique [1]. Theoretical concepts and tools used in MBD
and SFL are explained. Finally, we present a previous attempt to use SFL
for hardware (BACINOL) [20].

2.1 Terminology

A system is composed of interacting components which are connected to
each other in a certain manner. A system is said to fail when the observed
behavior of the system is different from its expected behavior. This deviation
in the behavior of system is defined as an error.

For example, if we turn the ignition key of car and nothing happens, this
means that there is some fault in the system (car) due to which it has failed.
This failure in the system is caused by the components at fault, which in
this case can be the starting engine, the battery or any other component in
that car, any of which might be working incorrectly. Therefore, a fault can
be defined as an unintended difference between the implemented component
and its intended design.

For a system to work flawlessly, fault diagnosis software can be implemented
to continuously monitor the system such as a car, a robot, a satellite, a nu-
clear plant. This monitoring software finds the root cause of the system
malfunction. Primary objective of fault diagnosis is to determine the loca-
tion and the occurrence time of faults based on accessible data and knowl-
edge about the behavior of the system. Input and output data are classified
as the accessible data for any system; these accessible data are defined as
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observations. Behavior of the system gives the information about correct
output of the system. Therefore, it is important to know the behavior of
the system to determine whether the system exhibits any error or not.

To understand the diagnosis problem more closely, consider a system shown
in Figure 2.1. Component c1, . . . , c5 are possible fault locations. Error can
be observed at output nodes e and f. Inputs (a,b,c) and outputs (e,f) are
the observations for the system. Different input vectors are given to the
system and output vectors obtained are compared with the correct output
(estimated from the behavior of the system). Any difference in the actual
output and the correct output indicates an error. This error in turn indicates
fault in the system.

Figure 2.1: A general system consisting of five components

Figure 2.2: Conceptual view of system

Generally, we consider that a system consists of n components, where behav-
ior is presented by system function f [21]. It applies that system functions
according to y = f(x, h), where x and y represent the system input and
output, respectively, and where h = (h1, ....., hn) indicates the health state
of the n components (see Figure 2.2). h is defined as the health state of a
component. h = 1 indicates a healthy component (not faulty) while h = 0
indicates one which is faulty. From this proposition we can define the out-
put of the system to be a function of input and health state of each of its
components. Hence mathematically, diagnosis can be understood as solving
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the inverse problem h = f−1(x, y), i.e., find the combinations of component
health states that explains the observed output for a given input.

Having discussed the basics of diagnosis, we now explain the various meth-
ods which are used to diagnose a system. Two classical methodologies are
used to diagnose the faults in hardware and software. First method is Model-
based Diagnosis. This diagnosis technique is originally developed for hard-
ware. Second method is Spectrum-based Fault Localization technique. This
method is fundamentally developed to detect faults in software. The follow-
ing section describes the concepts behind Model-based Diagnosis.

2.2 Model Based Diagnosis

Model-based Diagnosis (MBD) refers to reasoning from first principles,that
declaratively describes a system’s structural and behavioral properties [19].
In simple words, MBD uses a system’s structural and behavioral model, to-
gether with observations to locate faulty components. The structural model
gives information about a component’s connectivity. In recent years, MBD
has proven successful in the field of fault localization in hardware.

MBD focuses on the logical relations between the components of a complex
system. Therefore, the function of each component and the interconnec-
tions between components are all presented as a logical system called the
System Description (SD). The expected behavior of the system is then a
logical consequence of its SD. Thus the existence of faulty components leads
to an inconsistency between the observed behavior of the system and SD.
Therefore, the determination of faulty components (diagnosis) is reduced to
finding those components whose abnormality can explain all the inconsis-
tencies.

A classical example of MBD approach is the General Diagnostic Engine
(GDE) proposed in [10]. The following section explains this methodology in
more detail:

2.2.1 MBD methodology

Given a model of a system and some inputs, MBD predicts the expected
values and compares them with the real (measured) values to identify faulty
components. Following are the key terms originating from MBD:

• A symptom is any difference between a predicted value and a measured
value.

• A conflict is a set of assumptions (components that may be faulty)
that supports a system, and thus leads to an inconsistency.
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• A candidate is a hypothesis for how the actual system differs from the
model of that system.

To understand the basic principles of MBD, consider the three inverter cir-
cuit shown in Figure 2.3. The circuit has one input (x) and two outputs
(y1, y2). The system contains 3 inverters as components. Each of which has
an input a and output b (see Figure 2.4). The healthy, nominal behavior of
an inverter is that the output is equal to the inverted input (Equation 2.1).

Figure 2.3: Three inverter circuit Figure 2.4: Inverter

h⇒ (b⇔ ¬a) (2.1)

A model for the complete circuit can be developed by composition of single
model. For three inverter circuit, following model equations can be derived
by composition. These equations are defined as

h1 ⇒ (w ⇔ ¬x)
h2 ⇒ (y1 ⇔ ¬w)
h3 ⇒ (y2 ⇔ ¬w)

Based on the observations, GDE generates a Dependency List (DL) [12] of
the components that support the observed value. Suppose our observation
is (x, y1, y2) = (1, 0, 1). Output y1 = 0 shows the system failure. Analyzing
these system description equations with the given observation results in the
following propositions:

h1 ⇒ ¬w
h2 ⇒ w

h3 ⇒ ¬w

which equals:
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(¬h1 ∨ ¬w) ∧ (¬h2 ∨ w) ∧ (¬h3 ∨ ¬w)

Resolution yields the following conjunction of conflicts,

(¬h1 ∨ ¬h2) ∧ (¬h2 ∨ ¬h3) (2.2)

Generation of above conflicts can be understood by the following proposi-
tions:

• Output y1 = 0 produces a conflict. The path from primary input (x)
to primary output (y1) consists of components c1 and c2 are involved,
hence dependency list DL1 =< c1, c2 >.

• A conflict also arises when components with same SD produces differ-
ent output. In the given circuit inverters c2 and c3 inspite of having the
same input W produce different output, 0 and 1 respectively. Hence
dependency list DL2 =< c2, c3 >.

Conflicts generated by GDE (Equation 2.2) can be processed by BARINEL
to get the multiple-fault diagnosis. BARINEL [1] is a spectrum-based ap-
proach to generate the diagnosis. That accepts conflicts as a spectrum ma-
trix; therefore it is necessary to express these conflicts in the form of spec-
trum matrix. Spectrum matrix (A, e) representation is an SFL [1] way to
represent the conflicts. Circuit spectra A has N rows and M columns, where
N is the number of dependency lists and M is the number of components
in the system. The (i, j)th element of the matrix is denoted by aij , we have
aij = 1, if component cj belongs to dependency list DLi. Pass (’+’)/fail(’-’)
information for each of the dependency lists is stored in the error vector e.
Since GDE only generates the conflicts (failed cases), all the entries in e are
’-’. For the 3 inverter circuit example shown in Figure 2.3, conflicts are as
presented in Table 2.1:

c1 c2 c3 e
1 0 1 -
0 1 1 -

Table 2.1: Matrix representation of MBD conflicts

We have encoded dependency list into spectrum matrix, and from now on
we will use this spectrum matrix (A, e) to perform the rest of the diagnosis
steps.
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2.2.2 Candidate Generation

Components in the dependency lists (conflict sets) are combined to obtain
diagnosis candidates by computing Minimal Hitting Sets (MHS), i.e., mini-
mal diagnosis candidates that cover all dependency lists. Following section
describes MHS algorithm

Minimal Hitting Set

Normally speaking, it is a problem of selecting a minimal set that has a
non-empty intersection with each set. This is a formulation of the minimal
hitting set problem, which, in general, is NP-hard. MHS problem can be
defined as:

Definition 1. Let S be a collection of N non-empty sets S = s1, s2, ......, sN .
Each set si ∈ S is a finite set of components element, where each of the M
elements is represented by a number j ∈ 1, ....,M . A minimal hitting set of
S is a set d such that:

∀siεS, si ∩ d 6= φ ∧ @d′ ⊂: si ∩ d′ 6= φ

In words, each member of S has at least one component of d as a member,
and no proper subset of d is a hitting set.

The set S is encoded into spectrum matrix. Element si ∈ S will be generated
by each conflict row of the spectrum matrix. In a conflict row, if a component
is member of set si then element aij is equal to 1. Consider the spectrum
matrix shown in Table 2.1. For the first conflict row, s1 =< c1, c2 > and
for the second row s2 =< c2, c3 >. This gives us the MHS for set S as
d =< {c2}, {c1, c3} >. So we have two MHS d1 =< c2 > and d2 =< c1, c3 >

For this example, diagnosis candidate could be calculated easily because
of the small size of the problem. However, for larger systems calculation
of diagnosis candidates is not trivial because of exponential complexity of
MHS algorithm. Abreu develops a low cost, statistic based technique, named
STACCATO [3] to obtain MHS.

STACCATO

The key idea behind STACCATO is the fact, that the components that are
members of more sets as compared to other components may be an indication
that there is a MHS containing such component. The trivial case is those
components that are involved in all the sets, which constitute a minimal
hitting set of cardinality equal to 1. From the last section, s1 =< c1, c2 >
and s2 =< c2, c3 >, < c2 > is member of both the sets. Hence c2 will be
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a member of the MHS with cardinality equal to 1. For each candidate, a
probability is estimated by using information produced by spectrum (A, e).
These probabilities are used to ensure that all significant probability mass is
captured by generated candidates; this reduces the computation complexity
significantly.

Bayesian approach [6] is applied to deduce the multiple-fault diagnosis D.
The D is an ordered set of all minimal diagnosis candidates, ordered by
decreasing posterior probability. Following section illustrates this Bayesian
approach.

2.2.3 Candidate Ranking

BARINEL estimates Pr(dk) for each of the diagnosis candidate dk and ranks
those candidates according to the probabilities. Pr(dk) is the probability
that candidate dk is responsible for the faulty behavior of the system. For
each candidate, this probability depends on the extent to which it explains
the observed behavior. Bayes’ rule can be used to estimate the posterior
probability that dk is the true diagnosis given observation obsi.

Pr(dk | obsi) =
Pr(obsi | dk)
Pr(obsi)

.P r(dk | obsi−1)

The denominator Pr(obsi) is a normalizing term that is identical for all
dks and does not require any direct computation. Pr(dk | obsi−1) is the
prior probability of dk. In the absence of any observations, Pr(dk | obsi−1)
defaults to Pr(dk) = p|dk|(1−p)M−|dk|, where p denotes the prior probability
that the component cj is at fault. By default we set pj = p.Pr(obsi | dk),
which is defined as:

Pr(obsi | dk) =


0 if obsi ∧ dk |=⊥
1 if dk → obsi

ε otherwise

The above clauses can be understood as following. If the diagnosis candidate
dk cannot explain the observed output at all, then that candidate has no
role behind the erroneous output, hence posterior probability is 0. If only
dk can uniquely explain the observation then posterior probability will be
1. Many ε policies have been proposed to estimate Pr(obsi | dk) [15]. In
BARINEL, Abreu adopts the following ε policy [7]:

ε =

{
g(dk) if ei = +
1− g(dk) if ei = −

(2.3)
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In the Equation 2.3 term g(dk) is used rather than the individual component
False Negative Rate (FNR) parameter gc. FNR expresses the probability
that a test that covers faulted component c does not capture an error at
the output of the system. g(dk) is defined as an FNR parameter for the
candidate dk. g(dk) is used to represent the probability that system will
correctly although components involved in dk are faulty. g(dk) is estimated
according to following model:

g(dk) =
∏
cεdk

gc (2.4)

Equation 2.4 is defined as OR model [5], which derives from the fact that
probability that error is not observed at the output is product of the prob-
ability that each of involved faulty component exhibits correct behavior.
The OR model determines the ’g’ value corresponding to the multiple-fault
candidate g(dk) from single-fault ’g’ values.

Spectrum matrix shown in Table 2.1 is processed by BARINEL and produces
following ranking list shown in Table 2.2:

Candidate (dk) Probability (Pr(dk))
c2 0.99
c1,c3 0.01

Table 2.2: Ranking generated by BARINEL for MBD conflicts

BARINEL generates a diagnostic report D =< d1, . . . , d|D| > . Each of the
candidates in the diagnostic report consists of one or more components and
one component can be part of multiple candidates. Such kind of diagnosis
is converted in 1-dimensional diagnostic report R =< c1, . . . , c|M | >. This
report is an ordered set of all the components, where components are ranked
in increasing order of their fault probability. For 1-D ranking, instead of
using Pr(dk), we use Pr(cj) as posterior probability. Pr(cj) is defined
as the probability that component cj is at fault. Table 2.3 shows the 1D
mapping of ranking list shown in Table 2.2.

Candidate (cj) Probability (Pr(cj))
c2 0.99
c1 0.21
c3 0.21

Table 2.3: 1-dimensional ranking for MBD conflicts
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2.3 Spectrum Based Fault Localization

SFL is one of the most promising approaches towards fault localization in
software. It has received a lot of attention for large software due to its sim-
plicity and effectiveness [1]. Two essential kinds of information are collected
for SFL, namely program spectrum and error vector (Spectrum matrix dis-
cussed in Section 2.2.1).

In MBD (Section 2.2.1) we construct circuit spectrum by data flow from
primary input to primary output and logical reasoning as well. In SFL, a
program spectrum is a collection of data that provides a specific view on
the dynamic behavior of the software [1]. Generally speaking, it records
the run-time profiles about various program blocks for a specific input. In
MBD, these blocks are hardware components but in SFL we need to define
the scope of every block. The blocks could be statements, branches, paths
or basic blocks, etc. Consider the program P shown in Figure 2.5. Program
is divided into four different blocks. Program spectrum shows for each of
the input which entity was involved and which entity was not.

Figure 2.5: Faulty C Function

Apart from the program spectrum, the output associated with each input
vector is also essential to SFL. It records whether a test case has failed or
passed. Together with the information about involvement of blocks, the
testing results give debuggers hints about the blocks which are more likely
related to failure, and hence have higher possibility to contain the faults.
This pass/fail information is defined as an error vector.

Given a program P with M blocks and executed by N input vectors, Fig-
ure 2.6 shows the essential information required by SFL.
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Figure 2.6: Spectrum matrix repre-
sentation

Figure 2.7: Spectrum matrix for
faulty C program

If we recall the spectrum description presented in Section 2.2.1, matrix A
represents the spectra and e records all the testing results associated with in-
dividual test cases. Similarly for SFL, the element aij in matrix A represents
the coverage information of block bj , by the test case ti, with 1 indicating
block bj is executed, and 0 otherwise. e is a single columns matrix, if a
test case ti gives an error, the entry for element ei is ′−′ (failed run), and
′+′ (passed run) otherwise. In MBD we only have failed runs (conflicts),
therefore all the entries in error vectors e are ′−′. But SFL considers failed
and passed runs both, hence error vector is a mix of ′+′ and ′−′.

Figure 2.7 shows the spectrum matrix for the faulty C program presented
in Figure 2.5. Program has 4 blocks and 6 different input vectors are given
to construct 6× 4 matrix.

For an input, if any program part is involved and output of the program is
observed as an error, then that program part would be doubtful. Several
different similarity coefficients [4] are proposed to quantify the probability
that block bj is faulty. Existing evaluation formulas include Jaccard [13],
Ochiai [14], Tarantula [1], etc. Although similarity coefficient based ap-
proach is simple, diagnosis computed in this way is not optimal, in terms of
accuracy. Therefore, Abreu proposed a solution, which combines spectrum-
based diagnosis with model-based diagnosis. A Bayesian approach is used
to diagnose multiple-fault candidates. In the next section, we describe the
methodology that applies MBD principles on SFL.

2.4 Candidate Generation

Model-based reasoning can be used to generate possible fault candidates dk.
MBD approaches require modeling of every component and observation.
Therefore, application of MBD on SFL requires some kind of modeling in-
formation of components. SFL generates a spectrum of program that does
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c1 c2 c3 e
1 0 1 -
0 1 1 -
1 0 0 -
0 1 0 -
1 1 0 +

Table 2.4: (A,e) Spectrum matrix

not give detailed information about the behavioral modeling of the compo-
nents involved, however it provides the same for the observations. A generic
component model can be assumed to use model-based reasoning [7], here
each entity of the program is considered as a component cj . Component cj
is modeled in terms of the logic proposition

hj =⇒ (okinpj =⇒ okoutj)

In the proposition, hj models the health of the component cj , just like MBD
models. Variables okoutj and okinj do not represent output and input val-
ues, rather they show the output and input correctness. The model specifies
that if the component is healthy and the input is correct, then the output
must be correct. The input value of a test vector is assumed to be correct
and if we find an error at the primary output of the system, it means one or
more components in the path from principal input to the principal output
will be responsible for the error. Conflict row of the spectrum gives infor-
mation about the involved components for observed error. To understand
this principle, consider the spectrum (A, e) matrix shown in Table 2.4

We can logically infer the component health information from every conflict
row of the spectrum (A, e). For this spectrum, we obtain the following
propositions:

¬h1 ∨ ¬h3 (c1 and/or c3 faulty)
¬h2 ∨ ¬h3 (c2 and/or c3 faulty)

¬h1 (c1 faulty)
¬h2 (c2 faulty)

The above propositions are directly derived from the failing runs of the
spectrum matrix. These propositions can be interpreted as a dependency
list (DL) shown in Section 2.2.1.

STACCATO MHS algorithm presented in Section 2.2.2 is applied on the
conflict sets above to generate minimal diagnosis candidates dk. To obtain
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the candidate ranking list Bayesian approach explained in Section 2.2.3 is
used.

We can conclude that MBD principles can be combined with the spectrum
based diagnosis to localize a fault in software. It should be noted that MBD
on SFL technique does not require any detailed modeling of the components.
The interesting question here is whether can SFL be used to diagnose a
fault in the hardware to get rid of the hectic modeling of each component.
This question is addressed by Wilson in [20] wherein he proposes Bayesian
Circuit Analysis by Topology (BACINOL). The next section presents the
methodology involved in BACINOL.

2.5 BACINOL

BACINOL solves the diagnosis problem for hardware by executing all the
steps as described for SFL. In software, each statement is considered as a
component whereas the components are already defined for hardware (Sec-
tion 2.1). The fundamental advantage that BACINOL offers is that each
component here can be treated as a black box in contrast to MBD where a
detailed model of every component was required. The generic model that
can be used for BACINOL has been presented in Section 2.4.

2.5.1 Obtaining Spectra

Generally in software, instrumentation is used to generate spectrum infor-
mation, but this method is not valid for hardware. Topological information
provided by the manufacturer of hardware is used obtain a spectrum. This
topological information provides structural model of the system.

Structural model is constructed from a set of nodes V = I ∪ G, where I
represents the inputs and G represents the components (gates), and a set
of interconnection (α, β) ∈ E with α, β ∈ V . In this approach, behav-
ioral model of the components is not considered, hence each component
is assumed to be a black box. Before going into the details of spectrum
generation for hardware, we consider the following definition

Definition 2. Define the set IN(v) as all nεV for which there exists nodes
v1 = n, v2, ..., vn = v such that (vi−1, vi)εA for 1 < i ≤ n. Similarly, define
the set OUT(v) as all nεV for which there exists nodes v1 = v, v2, ...., vn = n
such that (vi−1, vi)εA for 1 < i ≤ n.

Each row is determined by IN set of corresponding principle output. If
component cjεIN(Oi), then aij = 1 else aij = 0. Observation for each
output is considered separately and error vector combined with spectrum
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matrix. Again consider the 3 inverter circuit presented in section 2.2.1 as an
example. The circuit has two principle outputs y1 and y2. IN(y1) = {c1, c2},
this generates the first row of the spectrum (1, 1, 0). IN(y2) = {c3, c1}
gives the second row (1, 0 , 1) of the spectrum. The observation we have is
(x, y1, y2) = (1, 0, 1), which means we have conflict at output y1 (first row)
whereas the output y2 shows no inconsistency. Therefore we have following
spectrum matrix (for a single observation):

c1 c2 c3 e
1 1 0 -
1 0 1 +

Table 2.5: Spectrum matrix for three inverter circuit

There is only one conflict in the matrix, this conflict will generate two min-
imal candidates c1 and c2. After applying Bayes rule on these candidates
SFL produces the following ranking list:

Candidate (cj) Probability (Pr(cj))
c2 0.68
c1 0.37
c3 0.05

Table 2.6: 1-dimensional ranking generated by BACINOL

Comparing the SFL spectrum matrix (Table 2.5) with that of MBD (Ta-
ble 2.1). We observe that the MBD spectrum has two conflict rows because
it uses modeling information. SFL however suffers from the absence of mod-
eling information, which results in only one conflict in the spectrum matrix.
MBD derives a single-fault (c3) and double-fault (c1, c2) as the diagnosis,
both of these diagnoses can correctly explain the inconsistency. Whereas
SFL infers a single-fault c2 and another single-fault c1, the single-fault c1
can not explain the observed behavior. Hence, we can conclude that SFL
suffers from false positive as compared to MBD and this reduces diagnosis
quality of SFL on hardware.

The generic model used by BACINOL is the primary reason for such false
positive cases. The model is also responsible for the appearance of ambiguity
sets in the final ranking list. Which we introduce in the next chapter. In
addition, we also show the impact of size of ambiguity sets on the diagnosis
quality.
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Chapter 3

Ambiguity Set Problem

The last chapter summarized the different aspects of fault diagnosis. We
saw that all the diagnosis techniques give a list in which components are
ranked according to their fault probability Pr(cj). Faulty components can be
found by traversing this list from top to bottom. Diagnosis quality of each
technique is determined by how well components are ranked in the ranking
list. In the first section, we present the concept of ambiguity sets. In the
second section, we derive analytical models to measure diagnosis quality and
we also show how the large size of ambiguity set lowers the diagnosis quality.
In the last section, tie breaker for the ambiguity set is proposed.

3.1 Ambiguity Set

The ordered rank produced by BARINEL can have multiple components
with the same rank in the ranking list. Components have same rank because
BARINEL estimates the same posterior probability (Pr(cj)) for all those
components. This set of components is defined as an ambiguity set. One
ranking list can have multiple ambiguity sets.

To understand the logic behind the same posterior probability, consider the
circuit shown in Figure 3.1, also assuming that c5 is at fault. Spectrum
matrix for the circuit is presented in Figure 3.2 for 4 observations. The
spectrum matrix leads to three minimal diagnosis candidate c2, c3 and c5.
BARINEL generates following ranking R for the candidates

c3 (0.45)
c5 (0.45)
c2 (0.1)
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Figure 3.1: Hardware circuit
Figure 3.2: Spectrum matrix for the
circuit

The ranking R has two components c3 and c5 with the same rank, both the
components have same posterior probability (0.45). Following explains the
reasons for this same ranking.

The ranking produced by the BARINEL is based on how components are
involved in the pass and fail runs (pattern of spectrum matrix). Sometimes
more than one component can have the same behavior in the spectrum. If
components have exactly the same patterns in the spectrum matrix, there
is no way BARINEL can discriminate among those components. Therefore,
it gives same probability to all of those components. This is the primary
reason for the appearance of the ambiguity sets in the ranking list.

Consider the spectrum matrix shown in Figure 3.2. Spectrum entries cor-
responding to c3 and c5 are exactly the same throughout the spectrum. In
the conflict rows A4∗ and A6∗, both the components are involved. In all
the odd numbered rows where c3 and c5 are not involved, no conflicts are
observed. In rows A2∗ and A8∗, both c3 and c5 are involved but there are no
conflicts observed. In these 2 rows, error generated by c5 is masked by other
components in the path. We can see that both c3 and c5 have exactly same
pattern throughout the spectrum matrix, therefore BARINEL gives same
posterior probability to c3 and c5. If we correlate this spectrum matrix with
the circuit topology, we find that c3 and c5 are only involved in the cone of
output O2.

On the other hand, c2 is involved in all the rows of spectrum. Involvement
of c2 in the passed row implies that the fault probability of c2 is lower as
compared to c3 and c5. Therefore, BARINEL computes the lower posterior
for c2 and assigns lowest rank to c2.

In the next section, we will describe the methodology to estimate the diag-
nosis quality and will also show the impact of size of ambiguity set on the
diagnosis quality.
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3.2 Diagnosis Quality

Diagnosis quality is an important selection criterion for a diagnosis tech-
nique. The main objective of this thesis is to assess the improvement in the
diagnosis quality of SFL on hardware (BACINOL) and compare it with the
diagnosis quality of MBD. Actually there are many ways to interpret the
diagnosis quality. It can be measured in terms of either time taken to diag-
nose the system or by complexity of the diagnosis algorithm. In this work
we will quantify diagnosis quality in terms of wasted effort, which quantifies
the time taken by a diagnostician while traversing the component ranking
list produced by the diagnosis algorithm. Wasted effort can be defined as
follows:

Definition 3. Relative wasted effort W is equal to the number of healthy
components (i.e. false positive) which must be inspected by a diagnostician
before finding all the faulty components, divided by the total number healthy
components in the system.

For example consider the system with 10 components (c1 . . . c10)and com-
ponent c5 is the faulty component. Suppose, that BARINEL produces the
following 1-D ranking list R:

c2 (0.25)
c7 (0.15)
c3 (0.13)
c5 (0.12)
c9 (0.1)
c6 (0.09)
c1 (0.07)
c4 (0.05)
c10 (0.03)
c8 (0.01) (3.1)

In the list, c5 is at 4th position in the list, which means that the diagnos-
tician must need to inspect component c2,c7 and c3, before finally reaching
to c5. Hence before arriving at actual faulty component, three non-faulty
components are inspected. There are total 9 non-faulty components in the
system. Therefore, W = 3/9 = 0.33 .

Now consider the same system with 2 faulty components, assume that com-
ponents c5 and c1 are faulty. In the ranking list, c5 ranks at 4th position and
component 1 ranks at 7th position. As mentioned above, before arriving on
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c5, three non-faulty components need to be inspected, but the diagnosis pro-
cess will get over only when both of the faulty components will be detected.
So, we continue inspecting the rest of the components. After checking com-
ponents c9 and c6, we will hit the second faulty component, c1. Hence, before
detecting components c1 and c5, five non-faulty components(c2, c7, c3, c9, c6)
are inspected and one faulty component (c5) is also detected. From this ex-
ample, we can conclude that in case of multiple-fault, the ranking list needs
to be traversed until faulty component with least probability (lowest rank)
is not inspected. Therefore, the rank of the faulty component with the least
probability determines W . This gives, W = 5/8 = 0.6 .

Note that in some cases the information that c2, c7, etc. are nominal can
lead to an improved version of R. In this thesis, we do not take such an
online rediagnosis model into account.

If we have a system with M components and the system has Mf faulty
components, then the following factors need to be considered:

Let components c1 . . . ck be the faulty components in system, rankck, the
rank of the corresponding component ck in the ranking list and ranklast, the
rank of the component with the least probability. We define ranklast as the

ranklast = max(rankc1, rankc2, ....rankck)

Total number of non-faulty components that need to be inspected before
detecting lowest ranked faulty component = ranklast −Mf

Total number of non-faulty components in the system = M −Mf

Hence, W can be calculated as

W =
ranklast −Mf

M −Mf
(3.2)

In the derivation of Equation 3.2, we have assumed that each of the com-
ponent has a different fault probability and no faulty component is a part
of an ambiguity set. Ambiguity set comes into the picture when the faulty
component with least probability lies in an ambiguity set; otherwise, W can
be computed with the Equation 3.2.

To understand how an ambiguity set changes the methodology to compute
W , consider the ranking list shown below. Assume that there are 3 faulty
components (c7, c4 and c1).
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c2 (0.19)
c7 (0.19)
c3 (0.19)
c5 (0.13)
c9 (0.1)
c6 (0.09)
c1 (0.03)
c4 (0.03)
c10 (0.03)
c8 (0.03) (3.3)

Ranking list has two ambiguity sets and both of the ambiguity sets contain
faulty components. But, we are concerned only with the lowest ranked faulty
components. c1 and c4 have the least rank value (4th rank). We define this
rank as rank of ambiguity set (Ras). In the ambiguity set, we randomly pick
the component to inspect. Hence statistically, all the faulty components are
uniformly distributed over the complete ambiguity set [2]. Thus, for this
case, the average number of non-faulty components, that will be inspected
before detecting all faulty components is 2

2+1 .4.

If the size of the lowest ranked ambiguity set is given by Sas and the am-
biguity set contains Cas number of faulty components, overall wasted effort
will be calculated as

W =
Ras + Cas

Cas+1 .Sas − C
M −Mf

(3.4)

3.3 Ambiguity Set Problem

Wasted effort equation shown in Equation 3.4 depends on two parameters.
First is the rank of ambiguity set (Ras) and second is the size of ambiguity
set (Sas). In [20] diagnosis quality of BACINOL (application of SFL on hard-
ware) is computed for 74XXX/ISCAS benchmark circuits and a lower diag-
nosis quality than MBD is observed. Application of SFL on 74XXX/ISCAS
benchmark circuits suffers from ambiguity sets problem. Table 3.1 sum-
marizes the average size of ambiguity sets for ISCAS benchmark circuits.
These observations imply that increasing the size of the ambiguity set in-
creases W . In BACINOL, we found that the size of ambiguity set is a major
factor behind the lower performance of BACINOL as compared to MBD.
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Circuit Components Possible Faults Inputs Outputs Amb sets Avg. Amb.
Set. Size

74182 70 19 9 5 6 4

74283 104 36 9 4 9 5

74L85 108 33 11 3 4 14

74181 223 72 14 8 13 5

c432 423 150 36 7 15 10

c499 499 202 41 32 43 38

c880 880 327 60 26 39 10

c1355 1355 514 41 32 43 12

c1908 1908 857 33 25 57 15

c2670 2670 1147 233 140 119 10

c3540 3540 1634 50 22 112 15

c5315 5315 2254 178 123 284 8

c6288 6288 2416 32 32 62 40

c7552 7552 3488 207 108 251 14

Table 3.1: Summary of ISCAS benchmark circuits

Performance of SFL on hardware can be enhanced by reducing the size of
ambiguity set. A tie breaker is needed to break the ambiguity set. In the
next section, we propose a tie breaker for the ambiguity set.

3.4 Tie Breaker for Ambiguity Set

Section 2.2.3 shows that the BARINEL generates a ranking list based on the
Bayesian update. The term Pr(obsi | dk) gives the probability of an obser-
vation (obsi) occurring, for a given diagnosis (dk). The posterior probability
is determined by an effective FNR parameter gc (Section 2.2.3).

BARINEL estimates gc by maximum likelihood estimation algorithm, which
is dependent on the spectrum matrix. g values calculated with this method
are an approximation of the actual g values. This algorithm gives the same
g value to all of the components which are part of the ambiguity set. Hence,
ambiguity cannot be broken with this g information.

The structural model of the hardware can be used for better estimation of
g values. For example, consider the circuit shown in Figure 3.1. c5 is closer
to the principal output as compares to c3. Therefore, probability that fault
at c5 can be seen at the output of circuit is higher as compared to c3. This
implies, that g3 > g5. Thus, if the structural model of the system is known,
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g values can be estimated more accurately.

Therefore, we need an analytical model that can compute the g value for each
of the components in the hardware by exploiting the topological information
of the hardware. The next chapter develops three different probabilistic
models to estimate the g value by computing error propagation probability
of the component.
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Chapter 4

Error Propagation Modeling

As the number of components in the hardware increases, the size of the
ambiguity sets increase. Wasted effort equations clearly show that increasing
the size of ambiguity sets lowers the diagnosis quality. The ambiguity sets
can be broken by better estimation of FNR parameter (g). In the last chapter,
we have shown that the g value calculated by BARINEL is not good enough to
break the ambiguity sets. Therefore, we need a better methodology to compute
the g values. In this chapter, we present three different probabilistic models
to estimate the g values for every component. While developing the models,
we assume that the structural model of the system is known. The g values
calculated using probabilistic models are compared with the g values obtained
from Monte Carlo simulations.

4.1 False Negative Rate

If a component is faulty in a system, it is not necessary that the fault in the
component will always be observed at the output of the system. For some of
the input vectors, the fault will be visible at the output and for some inputs
the system will behave correctly. The error caused by the faulty component
can either be suppressed by other faulty components or can be masked by
other components in the system. As mentioned in Section 2.2.3, the fraction
of test cases where the output stays nominal, despite the presence of a fault
is called False Negative Rate (FNR).

For example, consider a simple logic circuit comprising of an INV gate (c1)
connected to an AND gate (c2), as shown in Figure 4.1. Suppose, the INV
gate has a fault (stuck at 0 ). For input x = (X, 0) (X = don’t care) an error
at the output of c1 will be masked by the fact that c2 will always produce
y = 0. However, for input x = (X, 1) the inverter error will be propagated
to y. Hence, we can conclude that for input vector (X, 0), the system is
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Figure 4.1: Example logic circuit

behaving correctly and for input vector (X, 1) an error is observed at the
system output. Thus the system’s FNR is greater than zero.

FNR is similar to the concept of intermittency which is known in hardware
rather than software. Most of the diagnosis techniques assume that the
system is working non-intermittently. However, DeKleer addresses inter-
mittent behavior of a component [9]. He defines conditional probability ic
as the probability that the component c is behaving correctly, given that c
is faulty. ic can be used to quantify the intermittent behavior of the compo-
nent. [9] describes a simple approach to estimate the ic. In this approach, a
component is tested N times and the following factors are computed:

• G(c) is the number of times c works correctly.

• B(c) is the number of time c works incorrectly.

ic is calculated as

ic =
G(c)

G(c) +B(c)
(4.1)

The above expression only computes the FNR of a single component in the
system. BARINEL observes a principal output of the system to diagnose
the fault. Therefore, the required g information to break the ambiguity set
is determined by the FNR of the system. Hence, the objective of our work
is to formulate the FNR of the complete system S, which is composed of
components ci. Just like DeKleer’s approach, we can derive an expression
that quantifies the FNR of a system. If we test the whole system N times
and if it is known that components c1, . . . , ck are faulty, then the following
factors will be considered:

• G(S) is the number of times S is working properly, although one or
more components are faulty.

• B(S) is the number of times S is working incorrectly, given that one
or more components are faulty.
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If g(S|c1, . . . , cn) is the conditional probability that S behaves correctly,
given that components c1, . . . , cn are faulty, the probability can be calculated
as

g(S) =
G(S)

G(S) +B(S)
(4.2)

In this work, the probability g(S) is represented by the probability gc1,c2,...,ck
.

If we have information about the topology of the system, then our goal is
to estimate the probability that the fault generated by a component c will
be observed at the principal output of the system.

A faulty component c generates an error at the output of the component with
the probability of 1 − ic and this error will be propagated to the principal
output of the system with the probability of 1 − gc. FNR evolves in the
system because of error masking.

Let epp(c) be defined as the Error Propagation Probability (EPP) of compo-
nent c, which estimates the probability that an incorrect value is observed at
the output of the faulty component. EPP of a component can be formulated
as following

epp(c) = 1− ic (4.3)

Let epp(S) be defined as the EPP of a system S, which estimates the prob-
ability that an error generated by a faulty component will be observed at
the principal output of the system. EPP of the system can be formulated
as follows:

epp(S) = 1− gc (4.4)

Therefore, epp(S) is the probability that the system will produce an incorrect
output when a component c is faulty.

In this chapter, we present analytical models to estimate the EPP of the
system. We apply the following two steps to develop a system level EPP
model:

1. First we derive the EPP model for a single component (epp(c)).

2. Subsequently, we derive the EPP model for a system (epp(S)) by com-
posing EPP models of the components

The structural model of the system is utilized while deriving the EPP model
for the system.

The following three kinds of probabilistic models have been developed:
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1. Based on a deterministic component model

2. Based on an unknown component, but with known PDF information
model

3. Based on black-box component model (no behavioral knowledge of the
component is provided).

All models are simulated and validated by Monte Carlo (MC) simulations.

4.2 Deterministic Component Error Model

In this section, we derive a component error model based on the behavioral
model of the component. If the behavioral model of components is known,
it’s easier to estimate the probability that a faulty component will produce
an incorrect system output. The following variable are defined to formulate
the EPP of a component

1. The value truth probability of a signal xi is defined as the probability
that the signal value will be 1, which is denoted by vi.

2. The error probability of a signal xi is defined as the probability that the
signal will have an error, whose probability is denoted by ei. The signal
having error means that the correct value of the signal is flipped(xi →
¬xi).

3. The health state of a gate which denotes the probability of a gate being
healthy is denoted by h. For sake of simplicity, only stuck-at-0 (SA0)
and stuck-at-1 (SA1) fault models are considered for a faulty gate.

To derive the EPP model, first we need to think of the scenarios when an
error will be observed at the output of the faulty component. Following are
the two possible cases when an error will be observed at the output of the
component

1. If the component is healthy but an input signal error propagates to the
output of the component. An error will be detected, if the observed
output value is different from the expected output value.

For example, consider an AND gate with in1 and in2 as inputs and
out as output. Suppose, in1 = 1 and in2 = 1 and one or both signals
have error (e1 = 1 and/or e2 = 1). Because of the signal errors, one
or both the input values will be flipped to 0 and hence the output
would be 0, in this case the error will be detected because the correct

30



output is 1. However, an error at the output will not be observed, if
the actual output is equal to the correct output.

If ef is the probability that the input error will be propagated to the
output of the component and h is the probability that the component
will be healthy, then the EPP of the component is given by

epp = efh (4.5)

2. An error will be observed, if the gate is faulty (non-healthy) and the
correct output is the opposite of the stuck-at-fault value. For a faulty
gate, the output only depends on the fault model; therefore the output
value does not take into account the fact that the input signal has an
error. For example, consider the same AND gate with SA1 fault. If
in1 = 1 and in2 = 0, the correct output is 0, but because of SA1
fault, the output value will be observed as 1. For the AND gate, the
error will be observed at the output of gate for all input combinations,
except when both the input values are 1. When both input values are
1, then the correct output is equal to the stuck-at-value.

Let px be the probability that the expected output is opposite of the
value expected from stuck-at-fault and 1 − h is the probability that
the gate is faulty. The probability that the error will be observed at
the output is given by

epp = (1− h)px (4.6)

Combining Equations 4.5 and 4.6 gives

epp = efh+ (1− h)px (4.7)

In [16] the following EPP model for a single gate is derived by Nasir

epp = efh+ (1− h)(1− ef ) (4.8)

The second term of Equation 4.8 is different from the second term of Equa-
tion 4.7. The second term in both the equations represents the EPP of the
faulty gate. For the faulty gate, Nasir calculated that the error generated
by a faulty component is propagated when the input signal has no error.
The reason is that Nasir considers reliability issues of the component and so
assumes bit flips as a fault. However, we consider the specific fault models
of the gate, therefore we derive the EPP model specifically for SA0 and SA1
faults. The example presented in Section 4.1 shows that sometimes the error
is masked by the output of the faulty gate, even though the input has no
error. Therefore, we use the term px.
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In1 In2 e1 e2 Expected Output Actual Output ef
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 1 1 0 1 1
0 1 0 0 0 0 0
0 1 0 1 0 0 0
0 1 1 0 0 1 1
0 1 1 1 0 0 0
1 0 0 0 0 0 0
1 0 0 1 0 1 1
1 0 1 0 0 0 0
1 0 1 1 0 0 0
1 1 0 0 1 1 0
1 1 0 1 1 0 1
1 1 1 0 1 0 1
1 1 1 1 1 0 1

Table 4.1: Truth table of AND gate with input signal errors

To determine the EPP, first the ef value of the gate should be calculated.
The simplest method to derive the expression for ef is to use the truth table
for the gate combined with error signal values at the input.

Consider an AND gate, Table 4.1 represents the truth table with error values
at the input signals. First two columns represent the input single values.
3rd and 4th columns represent errors at the input signal, ei = 1 means ini
has an error. In this table, we can easily observe the combinations of input
signal values and the error values where the error can be observed (ef = 1).

For example, consider the 10th row, where in1 = 1 and in2 = 0, and suppose
the input error probabilities are e1 = 0 and e2 = 1. In this case, in2 flips and
the gate sees the wrong inputs as in1 = 1 and in2 = 1. The gate produces 1
as the output but the expected output is 0, therefore the input signal error
is observed at the output (ef = 1).

Consider a different signal error combination for the same input values (11th

row), where e1 = 1 and e2 = 0, because of the signal error, the gate has
inputs in1 = 0 and in2 = 0 and produces a 0 as the output, which is the
same as the expected output. In this case, the input signal error does not
propagate to the output (ef = 0).

For the AND gate, we observe that if one of the inputs (in1) has an error,
then in order to propagate that error to the output, the other input (in2)
value should be 1. To determine the probability that error will be prop-
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Figure 4.2: AND gate with EPP variable

agated to the output, it is important know the value of the other signal.
For the binary case, only two values for a signal are possible, 0 and 1. vi
represents the probability that signal ini has value 1, and 1− vi represents
the probability that the signal has value 0. Therefore, the concept of value
truth probability is introduced in the EPP model.

To determine the general expression of the probability that the input error
will be propagated to the output (ef ) of an AND gate, the following cases
should be considered:

• in1 at error and in2 not : Probability that in1 is at error is e1,
probability that in2 is not at error is 1 − e2 and probability that in2

will be at 1 is v2. So the probability that the error will be propagated
to the output of gate is given by

ef = e1(1− e2)v2

• in2 at error and in1 not : Probability that in2 is at error is e2, the
probability that ini will not be at error is 1 − e1 and the probability
that in1 will be at 1 is v1. So the probability that the error will be
propagated to the output of gate is given by

ef = e2(1− e1)v1

• in2 and in2 are at error : Probability that both the inputs are at
error is e1e2. Error will be propagated when inputs are 1 which has
probability v1v2 or both inputs are 0 which has probability (1−v1)(1−
v2). So the probability that the error will be propagated to the output
of the gate is given by

ef = e1e2((1− v1)(1− v2) + v1v2)

Combining the equations derived in the above cases

ef = e1(1− e2)v2 + e2(1− e1)v1 + e1e2((1− v1)(1− v2) + v1v2)) (4.9)
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For primary inputs of a binary gate, v1 = v2 = 1
2 .

Consequently,

ef =
1
2

(e1 + e2 − e1e2) (4.10)

According to Equation 4.7, for a faulty component we need to estimate px,
which is the probability that the output value of the component is different
from its stuck-at-value. The following explains the derivation of px for an
AND gate. Suppose, the AND gate is SA1, for in1 = 1 and in2 = 1, the
fault will go undetected. However, for the rest of the input combination, an
error will be detected. Hence, for 3 out of 4 input value combination, an
error will be observed in case of an SA1 fault, hence px = 3

4 . Consequently,
from Equation 4.7 it follows that:

The EPP model for AND gate which is SA1

epp =
h

2
(e1 + e2 − e1e2) +

3
4

(1− h) (4.11)

For SA0 fault, for 1 out of 4 cases, an error will be observed at the output
which implies px = 1

4 .

epp =
h

2
(e1 + e2 − e1e2) +

1
4

(1− h) (4.12)

If the fault type is unknown, it can be either SA0 or SA1. In this case,
we can assume that the fault type is random. To obtain the EPP of the
gate which is stuck at a random value, we just need to take the average of
Equations 4.11 and 4.12, which results in the following expression:

epp =
h

2
(e1 + e2 − e1e2) +

1
2

(1− h) (4.13)

In other words, we can say that for random fault types, px = 1
2 .

We also compute the EPP for other logic gates. Following are the EPP
equations for other logic gates:

• OR Gate:

epp = h(e1(1− v2) + e2(1− v1) + e1e2(2v1v2 − 1)) +
1
2

(1− h) (4.14)

• XOR Gate:
epp = h(e1 + e2 − 2e1e2) +

1
2

(1− h) (4.15)

• XNOR Gate:

epp = h(e1 + e2 − 2e1e2) +
1
2

(1− h) (4.16)
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Figure 4.3: Circuit consisting of AND gates

• BF1 Gate:

epp = he1 +
1
2

(1− h) (4.17)

• BF2 Gate:

epp = he2 +
1
2

(1− h) (4.18)

BF1 and BF2 are gates with bridging fault.

An important observation that we can make out of the above the equations
is that only AND and OR gates include the value truth probabilities (v1 and
v2) in their EPP models. For the rest of the gates, the EPP models do not
require value truth probabilities. For AND and OR gates, it is important
to know the value of the other input signals in order to propagate the error,
because the error can be masked by the other input signals of the gate. For
the remaining gates, EPP does not depend on the value of other signals.

This model gives the EPP a single component whose behavioral model is
known. In the next section we develop the EPP model for a complete circuit
(system).

4.2.1 Circuit Error Model

In this section, the single component error model is used to calculate the
probability that the primary input signal error will propagate to the pri-
mary output of the circuit. If a multilevel logic circuit is given, we start
from the primary input and move towards the primary output. For each
gate, we calculate the output error probability (EPP) using the value truth
probabilities (vi), the input error probabilities (ei) and the gate fault proba-
bility (h). For the next level, the input error probability corresponds to the
output error probability of the previous level. The value truth probability
for the next level depends on the type of the gate and it is determined by
the value truth probability of the previous level.
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For example, consider the circuit shown Figure 4.3, first we calculate the
output EPP for the first level (epp12) and (epp34)

epp12 =
h1

2
· (e1v2 + e2v1− e1e2(1− 2(v1 + v2) + 2v1v2)) +

1
2

(1− h1) (4.19)

epp34 =
h2

2
· (e3v4 + e4v3− e3e4(1− 2(v3 + v4) + 2v3v4)) +

1
2

(1− h2) (4.20)

We also need to calculate the value truth probability for the next level. For
the AND gate, the output is 1 when both the inputs are 1, hence the value
truth probability for the second level (v12 and v34) of the circuit can be
derived as

v12 = v1v2 (4.21)

v34 = v3v4 (4.22)

The final output error probability is

epp =
h3

2
· (e12v34 + e34v12 − e12e34(1− 2(v12 + v34) + 2v12v34)) +

1
2

(1− h3)

(4.23)

In the expansion of Equation 4.23, the higher order(greater than 1) exponent
terms of v1, v2, v3 and v4 appear, when e12 is multiplied with v12 and e34

is multiplied with v34. However, these higher order exponent terms need to
be suppressed to the first order exponent, to get the correct EPP expression
(v2
i → vi). This is called high order exponent suppression and it is essential

in order to avoid duplicate counting of the terms in the final expression [17].

To understand the phenomena of the suppression, consider an AND gate,
whose both inputs are short and the input signal has value truth probability
v1. The probability that the output of the AND will be 1 is v1 rather than v2

1.
To get an accurate analytical expression for EPP, the higher-order exponent
terms of v1, . . . , vn should be suppressed to first order.

Equations 4.13 to 4.18 conclude that except AND and OR gates, the EPP
model for other gates is independent of the value truth probabilities. Sup-
pression is not required in order to derive the correct EPP model for the
multilevel circuit consisting of gates apart from AND and OR gates. Sup-
pression has an exponential space complexity. Therefore, in the rest of the
thesis, we will not apply suppression for any kind of gate while composing
the EPP expression for the multilevel circuit. Hence, the final expressions
derived for all the circuits are approximate. In the last section, we will
present the errors in EPP calculation caused by this approximation.
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We use Monte Carlo (MC) simulations to validate the correctness of EPP
models developed in the section. The correct EPP value is computed by
MC simulations and is compared with value obtained by EPP. Error in
EPP estimation is computed with the accuracy till 3 decimal with 95% of
confidence interval. MC simulations confirm the correctness of EPP model
for single gate and composition of EPP models for a circuit.

EPP models derived in the previous section had complete behavioral knowl-
edge of the components. In the next section, we present the EPP model for a
system where we do not have the exact behavioral model of the components.

4.3 Error Model of a Component with known PDF

In this section, we propose an approach where we abstract from the specific
gate models, such that the individual vis are no longer required. The only
information that we have is the Probability Density Function (PDF) of value
1 as the outcomes of the component. In simple words, we know how many
entries in the component truth table have 1 as the output value, however
we do not have the exact truth table.

In case of binary gates, a PDF reduces to one parameter a which is defined
as the truth probability of the component (i.e. the fraction of 1s in the truth
table output). Consider the truth table of the 2 input AND gate, 1 appears
only once and the truth table has 4 entries, thus a = 1

4 . Note, that in this
approach we do not distinguish between any gates that have a = 1

4 (i.e. 4
binary gates, of which AND is only one example).

Practically, the a information for a component can be obtained during sys-
tem testing, by observing the output values of a component. Hence, there
is no need to develop the exact behavioral model of the component to de-
termine the a value. This is the primary motivation behind development of
this EPP model.

Section 4.2 illustrates the methodologies to detect an error for the deter-
ministic component. An error will be detected only when the actual output
will be different from the correct output. To determine the EPP of the
non-deterministic component, we need to compute the two following proba-
bilities

1. The probability that the actual output will be 1 or 0, this probability
will be given by Pr(1)(a) or Pr(0)(1− a) respectively.

2. The probability that the actual output is different from the correct
output, this conditional probability is given by Pr(1|0) or Pr(0|1).
Here Pr(1|0) expresses the probability that error at input signals will
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Figure 4.4: Unknown gate with EPP variables

change output value from 0 to 1 and Pr(0|1) expresses the opposite
change in output value (1 to 0)

Consider a component with two inputs in1 and in2, the PDF parameter of
the component is a and component has a output out. Following approach is
then used to derive the EPP for the binary gates, based on the a information

1. Suppose, that the correct input values will produce out = 1 (probabil-
ity a)

2. Any error at either input (probability e1 +e2−e1e2) will lead to 1→ 0
transition of out (probability Pr(0|1))

From the above prepositions, ef (probability that error at input will be
propagated to the output) can be calculated, if out = 1 corresponds to the
correct input values.

ef = (e1 + e2 − e1e2) · a · Pr(0|1) (4.24)

Similarly, we can derive the ef , if out = 0 corresponds to the correct input
values

ef = (e1 + e2 − e1e2) · (1− a) · Pr(1|0) (4.25)

Combining Equation 4.24 and 4.25, gives the following overall ef expression

ef = (e1 + e2 − e1e2) · (a · Pr(0|1) + (1− a) · Pr(1|0)) (4.26)

Complete EPP model can be derived by combining Equation 4.7 and 4.26
as follows

epp = h · (e1 +e2−e1e2) · (a ·Pr(0|1)+(1−a) ·Pr(1|0))+(1−h) ·px (4.27)
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As discussed in Section 4.2, if we assume that the fault type is random, then
px = 1

2 . Hence EPP model can be written as

epp = h · (e1 + e2 − e1e2) · (a · Pr(0|1) + (1− a) · Pr(1|0)) +
(1− h)

2
(4.28)

The above expression can be easily generalized in terms of a, if Pr(0|1) and
Pr(1|0) can be expressed in terms of a. The following approach derives the
EPP expression in terms of a:

Suppose, for an n input truth table, the possible number of 1s that can come
as output are x1. So, a can be computed as

a =
x1

2n

In the truth table, 2n − x1 entries correspond to 0. If we know that one
entry in the truth table is 1, then 2n − 1 unknown entries remain in the
truth table. The probability (Pr(0|1)) that error at input signals leads to
a truth table entry corresponds to value 0, out of remaining 2n − 1, can be
represented as

Pr(0|1) =
2n − x1

2n − 1

Above expression can be simplified in terms of a, as

Pr(0|1) =
1− a
1− 1

2n

(4.29)

For our case, n = 2 and that corresponds to

Pr(0|1) = (1− a) · 4
3

(4.30)

Similarly, we can derive an Equation for Pr(1|0), according to the following
relation

Pr(1|0) =
a

1− 1
2n

(4.31)

For our case, n = 2 and that corresponds to

Pr(1|0) = a · 4
3

(4.32)

Combining the Equations 4.28, 4.30 and 4.32 gives the following expression
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epp =
8
3
· h · (e1 + e2 − e1e2) · a · (1− a) +

1− h
2

(4.33)

We can substitute different values of a, to get their EPP expression.

For example, we consider a = 1
4 .

Using Equation 4.33 we can easily calculate the ef

ef = (e1 + e2 − e1e2)(
1
4
· 1 +

3
4
· 1

3
)

ef =
1
2
· (e1 + e2 − e1e2) (4.34)

We can validate the correctness of above model by using the deterministic
EPP model for all the truth tables corresponding to a = 1

4 . Possible truth
tables (for binary gates) outcomes for a = 1

4 is:

T1 = {0, 0, 0, 1}
T2 = {0, 0, 1, 0}
T3 = {0, 1, 0, 0}
T4 = {1, 0, 0, 0}

(4.35)

If a component behaves according to any of these tables, ef of the component
can be given as

ef =
ef (T1) + ef (T2) + ef (T3) + ef (T4)

4
(4.36)

ef value for each of the truth tables can be computed as

ef (T1) = ef (T2) = ef (T3) = ef (T4) =
1
2
· (e1 + e2 − e1e2) (4.37)

Combining Equations 4.36 and 4.37 gives

ef =
1
2
· (e1 + e2 − e1e2) (4.38)

Equations 4.34 and 4.38 are same, this proves the correctness of the model
presented in Equation 4.33.

Similarly, we have derived and validated the EPP models for various values
of a.
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Figure 4.5: Circuit consisting of unknown components

4.3.1 Circuit Error Model

To calculate the EPP model for the complete circuit, we can apply the com-
position on the EPP model of a component (Equation 4.33). The model
of a component does not involve the value truth probability (vi) in their
expression. Therefore, there is no need to use suppression in the composi-
tion. This is the advantage of the model, because the automation of EPP
calculation can be performed without having exponential space complexity.

For example, consider the circuit shown in Figure 4.5,. Each of the compo-
nents in the circuit has the following a value

a =
1
2

EPP at the first level of circuit is denoted by epp12 and epp34, which can be
computed as

e12 =
2
3
· h1 · (e1 + e2 − e1e2) +

1
2
· (1− h1)

e34 =
2
3
· h2 · (e3 + e4 − e3e4) +

1
2
· (1− h2)

The EPP at the output of the circuit is given by

epp =
2
3
· h3 · (e12 + e34 − e12e34) +

1
2
· (1− h3) (4.39)

We use MC simulations to validate the correctness of EPP models developed
in the section. The correct EPP value is computed by MC simulations
and is compared with value obtained by EPP. Error in EPP estimation is
computed with the accuracy till 3 decimal with 95% of confidence interval.
MC simulations confirm the correctness of EPP model for single gate and
composition of EPP models for a circuit.
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4.4 Black Box Component Error Model

In the context of our work where we need to estimate g value to enhance
the performance of SFL, no modeling information can be assumed. Neither
do we have the behavioral model of the component, nor do we have the
output PDF information. Thus, every components can be assumed to be a
black-box. In that case we need to abstract even further, and simply assume
that the outcome of a component is randomly distributed over all possible
outcomes.

This means that all the possible outcomes are assumed to have equal prob-
ability i.e. a = 1

N to appear at the output of a component, where N is the
number of possible outcomes of the component. For binary gates, N = 2,
hence both 0 and 1 can appear at the output with equal probability of 1

2 .

The EPP model of the component can be derived with the methodology
described in Section 4.3. The EPP expression would be

epp = h.(e1 + e2 − e1e2) · (a · Pr(0|1) + (1− a) · Pr(1|0)) +
(1− h)

2
(4.40)

There is no information available about the truth table and the number
of entries with output 1 are unknown. Since outcomes are randomly dis-
tributed, half of the output entries can assumed to be 1, therefore a = 1

2 .
Because of the unknowns truth table, however we cannot compute Pr(0|1)
or Pr(0|1), as the number of 0’s and 1’s are unknown. Rather, it holds
Pr(0|1) = Pr(0) = (1a) = 1

2 and, similarly, Pr(1|0) = a = 1
2 . Substituting

values of a and conditional probabilities give the following:

epp = h · (e1 + e2 − e1e2) · (1
2
· 1

2
+

1
2
· 1

2
) +

(1− h)
2

epp =
h · (e1 + e2 − e1e2)

2
+

(1− h)
2

(4.41)

4.4.1 Circuit Error Model

Reconsider the circuit shown in Figure 4.5. Assume each component as a
black-box and that we do not have any behavior model of each. Therefore,
a = 1

2 for every component and EPP of the component is the same as we
derived in Equation 4.41. EPP of the circuit can be derived by composing
EPP model of the components. The methodology discussed in Section 4.3.1
can be used to compose the EPP model.
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Single component EPP model does not involve value truth probabilities (vi).
Therefore, suppression is not required during the composition of the black-
box EPP models.

We use MC simulations to validate the correctness of EPP models developed
in the section. The correct EPP value is computed by MC simulations
and is compared with value obtained by EPP. Error in EPP estimation is
computed with the accuracy till 3 decimal with 95% of confidence interval.
MC simulations confirm the correctness of EPP model for single gate and
composition of EPP models for a circuit.

4.5 FNR Calculation

To obtain the value of g1, for a component c1, we can use models derived
in the previous sections. We already know the following relation between g
value and the EPP.

g1 = 1− epp(S)

We need to calculate the EPP for a system S, given that component c1
is faulty. An error in the system S is generated by the faulty component
c1. The generated error then propagates from output of c1 to the principal
output of the system. To compute the probability that the generated error
will be observed at the output of the system (epp(S). First we need to
compute the probability that the generated error will be observed at the
output of the faulty component (epp(c1)). The following section describes
the EPP calculation of a faulty component.

4.5.1 EPP of Faulty Component

An error at the output of a component will be observed, if the actual output
is different from the stuck-at-value. Suppose, the component c1 is SA1,
an error at the output of c1 will be observed when the expected output is
different from the correct output.

If Pr(SA1) is the probability that the component will be SA1 and Pr(0)
is the probability that the output of the component will be . An error will
be observed when the component is SA1 and the actual output value is 0.
epp(c1) can be computed as

epp(c1) = Pr(SA1) · Pr(0) (4.42)

Similarly, we can compute the epp(c1), when component is SA0

epp(c1) = Pr(SA0) · Pr(1) (4.43)
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Combining Equations 4.42 and 4.43 results in the following

epp(c1) = Pr(SA1) · Pr(0) + Pr(SA0) · Pr(1) (4.44)

In this thesis, we are considering only two kinds of faults, SA1 and SA0.
Both these faults are equally probable. So

Pr(SA1) = Pr(SA0) =
1
2

We do not have any information about the behavioral model of the compo-
nent, so it can be assumed to be a black-box. Therefore, the output of a
component can be 1 or 0 with an equal probability. Hence,

Pr(0) = Pr(1) =
1
2

Substitution of Pr(0) and Pr(1) in Equation 4.44 gives

epp(c1) =
1
4

+
1
4

epp(c1) =
1
2

(4.45)

Hence, we can conclude that a faulty component generates EPP of value 1
2 ,

which is effectively averaged over all possible behaviors of the component.

After computing the EPP of the faulty component (epp(c1)), the next step
is to estimate the EPP of the system (epp(S)). To compute epp(S), we
compose the EPP model of every component involved in the path from c1
to the principal output. The composition is described in the next section.

4.5.2 EPP of a System

We have three models to calculate the EPP of a system. In this section,
composition of the deterministic EPP model and the black-box EPP model
is used to compute the EPP of the system. We do not discuss the known
PDF EPP model because it has the same methodology as that of the black-
box EPP model.
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Figure 4.6: General logic circuit

Deterministic Model

The first model is the deterministic model. Composition of deterministic
models suffers from the suppression problem. If we assume that the circuit
has no reconvergent subcircuit, single-fault g can be computed without sup-
pression because higher-order terms of vi do not appear when composing the
EPP model for a system with single faults (discussed later). However, com-
puting the g factor for the multiple-fault candidates is not performed due to
exponential number of possible multiple-fault combinations, that need to be
taken into account. Rather, we compute the single-fault g, and estimate g
for multiple-fault candidates based on a mode that computes multiple-fault
g values using the single-fault g values (e.g., OR-model, Section 2.2.3).

The use of the OR model implies that we only need to compute the EPP
for a circuit with one faulted gate. This has interesting consequences for the
EPP calculation as shown by the following.

Consider the circuit shown in Figure 4.6.

As there is only one faulty gate, all inputs outside the path from c1 to the
output have all inputs have ei = 0. Consequently, all deterministic gate
models (Equations 4.13 - 4.18) reduce to

• AND gate

e1v2 (4.46)

• OR gate

e1(1− v2) (4.47)
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• X[N]OR gate

e1 (4.48)

Here we have chosen e1 as the gate input that is within the error propagation
path from the faulty gate to the primary output (i.e., e2 = 0). It can be easily
seen that the composition of the above reduced EPP models do not suffer
from the suppression problem (unless there are reconvergent subcircuits).

Typically, the estimation of gj is static, i.e., the actual signal values vi are not
known. Consequently, in the above EPP models we will assume v2 = 1/2.
This implies that for AND and OR gates, the EPP is attenuated by a factor
2 while X[N]OR gates pass on the EPP. In the example circuit in Figure 4.6
it follows that e = 1/8, and, consequently, g1 = 7/8.

Note that the deterministic model applies only if the circuit does not in-
clude reconvergent subcircuits, because it introduces the suppression prob-
lem. However, the deterministic model can be applied at minimal loss of
accuracy as long as reconvergence is small. This can be shown in experi-
mental results.

Black Box Model

The goal of this thesis is to improve the quality of a diagnosis technique
(SFL on hardware) that does not require the modeling of components to
compute the diagnosis. Hence, the black-box component EPP model is our
only option, as it does not require any kind of information regarding the
behavior of the component. Assume that except component c1, each of
the involved components is healthy (h = 1). Hence each component will
propagate error according to following (substitute h = 1 in Equation 4.41) :

epp =
e1 + e2 − e1e2

2

As there is only one faulty gate (c1), all inputs outside the path from c1
to the output have ei = 0. If we assume that there is no re-convergent
sub-circuit in the system, then there is only one path through which error
propagates to the principal output. There we have chosen e1 as the gate
input error probability that is within the error propagation path from the
faulted gate to the primary output (i.e. e2 = 0). Therefore, the above
equation reduces to

epp =
e1
2

(4.49)
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Figure 4.7: General circuit, consisting of black-box components

From the above equation we can infer that from the faulted gate to principal
output, EPP reduces with half at each stage. As we can seen in Figure 4.7,
faulted gate c1 is located at the kth stage from the principal output (k = 0
for principal output). If EPP at the output of c1 is given by e1, EPP of the
system can be expressed as:

epp(S) =
e1
2k

(4.50)

In Equation 4.45, we derived the value of EPP at the output of faulty com-
ponent c1. Therefore,

e1 =
1
2

Substituting value of e1 is Equation 4.50 gives

epp(S) =
1

2k+1

Consequently, g1 can be computed by the following equation

g1 = 1− 1
2k+1

(4.51)

Equation 4.51 implies that if the structural model of the system (value of
k) is known, g value for every component can be calculated very easily.
Reconsider the circuit shown in Figure4.6, assume that all the gates are
black boxes and we do not know the behavior of the component. Let the
value of k for component c1 be 3, which makes g1 = 1− 1

16 . Similarly, we can
compute the g value for all the components that are a part of the system.
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4.6 EPP Accuracy Results

In this section, we present accuracy results for all the three EPP models
for a number of circuits from the 74XXX/ISCAS85 benchmark [8, 11]. The
benchmark circuits have been already mentioned in Table 3.1.

The predictions of the deterministic model (Equation 4.13 - 4.18) and the
known PDF model model( Equation 4.33) and the black box model ( Equa-
tion 4.41 ), are compared to the results of Monte-Carlo simulation (random
inputs and fault injections), yielding prediction errors ε1, ε2, and ε3, respec-
tively, according to

εi = |ei − eMC

ei
|

Each circuit output is considered as a separate (sub) circuit (cone).

Table 4.2 shows the mean (E), variance (V), lower bound (L), and upper
bound (U) of the relative errors ε1 through ε3, respectively, for single-fault
injections (rounded to 3 decimals). We show the accuracy results per princi-
pal output (PO) for the smaller 74XXX circuits, while for the ISCAS circuits
we summarize the error statistics for all principal outputs (PO) combined.

Not all ISCAS circuits have been tested. Some of the circuits include gates
with a fanin greater than 5 for which we haven’t derived the EPP models.
Furthermore, the two largest circuits took too long for the Monte Carlo sim-
ulations to finish in time. As expected, the deterministic model performs
very well. The average prediction error, due to reconvergence, is quite small.
Outliers are within 10%, with the exception of c880. The probabilistic mod-
els perform less accurately, but still with an average error well below 10%,
with outliers up to 60%.

Table 4.3 and 4.4 show similar data for double and triple faults, respectively.
For multiple-fault it was expected that average error will higher for deter-
ministic EPP model because we ignored the suppression while composing
the EPP model. But average error is still in the order of percents (less than
10%), although the upper bound increases (up to 36%). However, the error
increases with fault cardinality as the need for suppression increases. The
average error of the probabilistic models is much higher (up to 19%) with
outliers up to 62%, and tends to increases with cardinality. For all cardi-
nalities the difference between both probabilistic models is relatively small.
The significance of the latter result is that knowledge of the average truth
probability of a gate (2nd model) does not significantly improve prediction
performance compared to no information at all (3rd model).
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4.7 Discussion

In this chapter, we have derived three different EPP models for better es-
timation of FNR parameter g. This section summarizes all the important
findings of this chapter:

• A deterministic EPP model exploits the structural model of the system
and the behavioral model of all the components to estimate the g value.

• Because of the fact that dealing with suppression entails an exponential
space complexity; deterministic models have been approximated by
ignoring the suppression while composing the EPP model. Accuracy
results clearly show that, despite the approximation, the deterministic
model is the most accurate model as compared to the other last EPP
two models.

• BARINEL computes the multiple-fault g values using OR model, there-
fore only the single-fault g value is needed. single-fault g value com-
putation does not suffer from the suppression problem, if a circuit has
no reconvergence subcircuits.

• EPP models clearly show that the g value of a component increases, if
the number of stages between the faulty component and the principal
output increases. This proposition can be understood analytically, if
a faulty component is away from the principal output, the probability
that the error generated by the faulty component will be masked by
other component, is higher. Therefore, the probability that the faulty
behavior of the component will not be observed at the principal output
increases.

• For AND, OR, NAND, NOR and INV gates the known PDF EPP
model and the black-box EPP model are same, on the other hand,
for XOR, NXOR, BF1 and BF2 gate the models are different. Since,
ISCAS/74XXX circuits have a huge number of AND, OR, NAND,
NOR and INV gates, therefore the accuracy results obtained for these
probabilistic models are very close to each other.

• As expected, error in EPP computation increases with the fault car-
dinality, except for deterministic EPP. Deterministic EPP model is
always pretty close to the accurate and can be assumed as the most
accurate. As the fault cardinality increases difference between deter-
ministic model and other two EPP increases.
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Circuit PO E[ε1] V[ε1] L[ε1] U[ε1] E[ε2] V[ε2] L[ε2] U[ε2] E[ε3] V[ε3] L[ε3] U[ε3]
74182 00 .000 .000 .000 .001 .000 .000 .000 .001 .000 .000 .000 .001
74182 01 .005 .000 .000 .030 .062 .015 .000 .349 .062 .015 .000 .349
74182 02 .007 .000 .000 .031 .062 .015 .000 .352 .062 .015 .000 .352
74182 03 .006 .000 .000 .050 .038 .007 .000 .281 .038 .008 .000 .281
74182 04 .003 .000 .000 .061 .013 .001 .000 .126 .013 .001 .000 .126
74L85 00 .004 .000 .000 .015 .004 .000 .000 .008 .004 .000 .000 .008
74L85 01 .013 .000 .000 .064 .084 .009 .000 .344 .084 .009 .000 .344
74L85 02 .013 .000 .000 .062 .084 .009 .000 .343 .084 .009 .000 .344
74181 00 .006 .000 .000 .034 .034 .005 .000 .198 .034 .005 .000 .198
74181 01 .013 .000 .000 .070 .040 .005 .000 .286 .040 .005 .000 .286
74181 02 .016 .000 .000 .087 .047 .004 .000 .265 .047 .004 .000 .265
74181 03 .015 .000 .000 .063 .067 .011 .000 .360 .076 .015 .000 .376
74181 04 .010 .000 .000 .067 .057 .009 .000 .331 .066 .013 .000 .376
74181 05 .004 .000 .000 .045 .045 .008 .000 .326 .056 .012 .000 .375
74181 06 .000 .000 .000 .033 .032 .006 .000 .327 .040 .010 .000 .377
74181 07 .027 .000 .000 .055 .045 .000 .000 .112 .049 .001 .000 .122
74283 00 .013 .000 .000 .054 .049 .007 .000 .282 .050 .007 .000 .282
74283 01 .008 .000 .000 .056 .068 .008 .000 .270 .078 .011 .000 .280
74283 02 .004 .000 .000 .048 .056 .007 .000 .232 .067 .010 .000 .253
74283 03 .001 .000 .000 .032 .044 .006 .000 .210 .056 .010 .000 .253
74283 04 .000 .000 .000 .002 .031 .004 .000 .209 .042 .009 .000 .250
c17 all .003 .000 .000 .033 .043 .002 .000 .127 .043 .002 .000 .127
c499 all .002 .000 .000 .011 .006 .000 .000 .171 .005 .000 .000 .254
c880 all .002 .000 .000 .288 .007 .010 .000 .450 .007 .012 .000 .450
c1355 all .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
c1908 all .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
c2670 all .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
c3540 all .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
c5315 all .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
c6288 all .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
c7552 all .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Table 4.2: Accuracy results of probabilistic model (single faults)
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Circuit PO E[ε1] V[ε1] L[ε1] U[ε1] E[ε2] V[ε2] L[ε2] U[ε2] E[ε3] V[ε3] L[ε3] U[ε3]
74182 00 .000 .000 .000 .001 .000 .000 .000 .001 .000 .000 .000 .001
74182 01 .017 .000 .000 .126 .144 .024 .000 .417 .144 .024 .000 .417
74182 02 .009 .000 .000 .031 .094 .019 .000 .352 .094 .019 .000 .352
74182 03 .019 .001 .000 .160 .057 .013 .000 .362 .057 .013 .000 .362
74182 04 .013 .001 .000 .122 .007 .000 .000 .128 .007 .000 .000 .128
74L85 00 .012 .000 .000 .039 .005 .000 .000 .013 .004 .000 .000 .013
74L85 01 .023 .000 .000 .161 .160 .014 .000 .353 .160 .014 .000 .353
74L85 02 .024 .000 .000 .174 .140 .011 .000 .367 .140 .011 .000 .367
74181 00 .009 .000 .000 .054 .052 .005 .000 .283 .052 .005 .000 .283
74181 01 .020 .000 .000 .072 .064 .008 .000 .336 .064 .007 .000 .336
74181 02 .024 .000 .000 .119 .083 .007 .000 .301 .083 .008 .000 .301
74181 03 .018 .000 .000 .082 .113 .018 .000 .379 .132 .007 .000 .396
74181 04 .016 .000 .000 .162 .074 .012 .000 .477 .087 .017 .000 .508
74181 05 .005 .000 .000 .084 .067 .010 .000 .326 .086 .012 .000 .377
74181 06 .000 .000 .000 .030 .032 .006 .000 .325 .043 .006 .000 .375
74181 07 .032 .000 .000 .055 .056 .001 .000 .120 .046 .001 .000 .128
74283 00 .026 .000 .000 .130 .073 .009 .000 .301 .073 .009 .000 .301
74283 01 .017 .000 .000 .142 .117 .008 .000 .240 .142 .011 .000 .278
74283 02 .013 .000 .000 .126 .119 .010 .000 .318 .140 .015 .000 .346
74283 03 .009 .001 .000 .250 .100 .010 .000 .250 .126 .015 .000 .312
74283 04 .000 .000 .000 .003 .057 .007 .000 .210 .077 .013 .000 .253
c17 all .030 .004 .000 .218 .047 .002 .000 .125 .046 .002 .000 .125
c499 all .004 .000 .000 .017 .011 .000 .000 .170 .008 .000 .000 .254
c880 all .003 .000 .000 .288 .014 .002 .000 .450 .014 .002 .000 .450

Table 4.3: Accuracy results of probabilistic model (double faults)

51



Circuit PO E[ε1] V[ε1] L[ε1] U[ε1] E[ε2] V[ε2] L[ε2] U[ε2] E[ε3] V[ε3] L[ε3] U[ε3]
74182 00 .000 .000 .000 .004 .000 .000 .000 .004 .000 .000 .000 .004
74182 01 .017 .001 .000 .150 .074 .022 .000 .448 .074 .022 .000 .448
74182 02 .022 .001 .000 .126 .132 .025 .000 .417 .132 .025 .000 .417
74182 03 .019 .000 .000 .051 .090 .014 .000 .283 .090 .014 .000 .283
74182 04 .023 .002 .000 .187 .036 .004 .000 .188 .036 .004 .000 .188
74L85 00 .018 .000 .000 .072 .005 .000 .000 .015 .005 .000 .000 .015
74L85 01 .040 .001 .000 .204 .188 .009 .000 .394 .188 .009 .000 .394
74L85 02 .058 .004 .000 .246 .190 .016 .000 .414 .190 .016 .000 .414
74181 00 .018 .000 .000 .075 .098 .009 .000 .271 .098 .009 .000 .271
74181 01 .032 .001 .000 .145 .117 .012 .000 .403 .117 .012 .000 .403
74181 02 .036 .001 .000 .152 .116 .008 .000 .384 .116 .008 .000 .384
74181 03 .037 .002 .000 .195 .130 .016 .000 .520 .154 .021 .000 .535
74181 04 .020 .000 .000 .112 .123 .014 .000 .477 .153 .020 .000 .382
74181 05 .005 .000 .000 .057 .124 .015 .000 .357 .160 .023 .000 .382
74181 06 .000 .000 .000 .005 .051 .007 .000 .327 .070 .014 .000 .377
74181 07 .035 .000 .000 .052 .077 .006 .000 .125 .088 .000 .000 .135
74283 00 .039 .001 .000 .352 .133 .015 .000 .351 .133 .015 .000 .351
74283 01 .016 .000 .000 .358 .140 .010 .000 .342 .170 .015 .000 .358
74283 02 .015 .000 .000 .340 .118 .007 .000 .309 .145 .014 .000 .340
74283 03 .004 .000 .000 .264 .104 .007 .000 .210 .137 .013 .000 .264
74283 04 .007 .001 .000 .313 .052 .007 .000 .250 .071 .013 .000 .313
c17 all .050 .007 .000 .221 .054 .001 .000 .125 .054 .001 .000 .125
c499 all .006 .000 .000 .030 .017 .001 .000 .171 .012 .001 .000 .255
c880 all .005 .000 .000 .290 .019 .003 .000 .453 .019 .003 .000 .453

Table 4.4: Accuracy results of probabilistic model (triple faults)
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Chapter 5

ANTARES

Chapter 2 introduced the idea of an SFL based diagnosis technique (BACI-
NOL) which is used for fault diagnosis in hardware without requiring any
detailed modeling of the components involved. But BACINOL suffers from
lower diagnosis quality because of large ambiguity sets. In this chapter, we
present ANTARES, an SFL based diagnosis technique, that improves the
performance of BACINOL by supplying better estimated g values to break
the ambiguity sets efficiently. In the last chapter, we formulated the FNR of
the faulty components and developed three different probabilistic models to
estimate g value for each of the component in the hardware. This chapter de-
scribes the methodology to combine the estimated g values with BARINEL.
In addition, this chapter also discusses the different policies to estimate
multiple-fault g information.

5.1 ANTARES

Inspired by the application of SFL on hardware and problem of ambiguity
sets in the technique, we present a new approach to diagnose the hard-
ware: Automatic diagNosis of sofTware/hardwARE Systems (ANTARES).
ANTARES breaks the ambiguity sets by supplying better estimated FNR
parameter (g) to the SFL. ANTARES uses the EPP models developed in the
last chapter to estimate the g values. ANTARES also avoids two complex
problems of traditional hardware diagnosis technique (MBD): the complex-
ity of model construction and the computational complexity.

In the next section, we explore the methodology by which g information is
provided to ANTARES.
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Figure 5.1: Circuit with two principal outputs

5.2 Obtaining g Matrix

In previous chapters, we considered various systems with only one principal
output. But a larger system can, in general, have more than one principal
output. For each of the faulty components in the system, the probability
that the fault can be observed at any of the principal outputs is different,
depending upon the topology of the system. Parameter gc is the probability
that the fault at a component c will not be observed at the principal output
of the system. For each of the principal outputs, there is a different path
from the faulty component to the principal output. An error can be observed
with a higher probability at the principal output which is nearer to the faulty
component in the system topology. In this case, for each component c, there
will be N values of gc, one for each of the N principal outputs.

Reconsidering the circuit shown in Figure 5.1, the circuit has 2 principal
outputs, O1 and O2. Suppose, we are interested in finding g information for
component c1. Using the Equation 4.51, we obtain, g1 = 0.75 for output O1

and g1 = 0 for output O2.

Therefore, the g value for every component is defined as g(i, j), where i is
the principal output index and j is the component index. If the output
O1 has index value 1 and the output O2 has index value 2, this implies,
g(1, 1) = 0.75 and g(2, 1) = 1. c1 is not in the subcircuit (cone) of O2,
therefore fault at will never be observed at the O2.

Using the structural model of the system, g value for each of the components
can be precomputed using EPP models. Because of the fact that the g has
the different value for each of the principal outputs, the structure of the
g information is a 2-dimensional matrix; we define this matrix as the G
matrix. If a system has M components and N principal outputs, then G
is an N ×M matrix. An element g(ij) from the matrix G corresponds to
the g value of the jth component whose behavior will be observed at the ith
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principal output of the system.

Considering again the circuit shown in the Figure 5.1, it has five components
and two principal outputs. g information is estimated for each component
corresponding to every output and will be stored in 2 × 5 matrix (shown
below).

G =
(

0.75 0.75 1 0.5 1
1 0.75 0.75 1 0.5

)

5.3 Multiple Fault g Model

Pr(dk|(A, obs)) is computed for each minimal diagnosis candidate dkεD. If
there is only one component in the diagnosis candidate, g value can be
directly obtained from G matrix. But cardinality of diagnosis candidate can
be more than one. For example, if dk = {c1, c2}, the g value for this dk
will be a composition of g1 and g2, represented as g12. The task here is to
calculate this composite g value for multiple-fault candidates.

The most straightforward way to estimate the g value for multiple-fault
candidate is to use EPP models. However, precomputing the g value for
multiple-fault candidates is typically not performed in view of the (theoret-
ical) exponential number of possible multiple-fault combinations, that have
to be taken into account. Imagine the number of possible combinations of
faulty components required for a system with 500 components and diagnosis
candidate cardinality equal to 5. Therefore, the precomputation of g values
with this approach is not a good choice.

g(dk) can be computed using the methodology developed in Section 4.5.2.
This section computes the g value of a component in two steps. In the
first step, it injects a fault in the component followed by applying system
level EPP model. To compute g(dk), we can use the same steps but this
time, faults will be injected in all the components that are a member of dk.
Then system level EPP model will be used to obtain the g(dk). With this
approach, we can compute g(dk) on the fly and therefore precomputation of
g value is not required.

BARINEL computes multiple-fault g values using the single-fault g values.
Abreu uses this methodology with the OR model [5] to estimate multiple-
fault g values. In this thesis, we also study a MIN model and Level based
model for multiple-fault g calculation. All these models are described in the
further sections
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5.3.1 OR Model

According to OR model, the probability that a test that involves Mf faulted
components will still pass it, when each component would yield a pass, i.e.,
the product of the individual gj . OR model can be defined as follows

g(dk) =
∏
cεdk

gc (5.1)

But theoretically, the proposition behind OR is not completely correct, it
might be possible that some components, that are a part of Mf faulted com-
ponents, do not pass the test. Error generated by one faulty component ci
can be masked by another faulty component cj , although both the compo-
nents ci and cj are behaving incorrectly, but no error will be observed at the
output of the system.

OR model is basically developed for software, wherein there is no notion
of the topology of the system. The g information can be inferred from the
topological information of the system. We discussed in the last section that
if a faulty component ci is closer to the principal output as compared to the
component cj , this implies that gj > gi. Therefore, the topology can give a
better estimation of the g values. In the next section, we present the MIN
Model to estimate the g value for multiple-faults candidates.

5.3.2 MIN Model

MIN model takes the advantage of available structural model of the system
to estimate multiple-fault g information. MIN model can be defined as
follows

g(dk) = min
cεdk

(gc) (5.2)

To understand the logic behind MIN model, consider a system S with two
faulty components cl and cm. All the components here can be treated as
a black-box and the structural model of the system is known. To calculate
the g value corresponding to both the faulty component (glm), location of
cl and cm in the system is considered. This section presents three different
configurations of both the faulty components in the system. For each of
the configuration, we compute the glm analytically and compare it with glm
obtained from MIN model.

1. Figure 5.2 shows the first configuration, where component cl is in the
IN set (Section 2.5.1)of output O1 and therefore the error generated
by cl will be observed at the output O1. On the other hand, the
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Figure 5.2: First configuration of circuit

component cm is not in the IN set of O1 and hence the fault at cm
will not cause any incorrect behavior at O1. Therefore, glm will be
determined by only g value of component cl. Hence,

glm(O1) = gl

g values for cl and cm can be calculated using the methodology, de-
scribed in Section 4.5.2.

gl(O1) = 1− 1
4

gm(O1) = 1

Since gl < gm:

min(gl, gm) = gl

As we can see, that glm calculated with MIN model is equal to the glm
calculated analytically.

We can also use the OR model as shown below:

glm(O1) = gl ∗ gm
gm(O1) = 1
glm(O1) = gl

For this configuration, OR model also produces correct g value.

2. Configuration presented in Figure 5.3 shows that both the components
cl and cm are in the IN set of output O1. An important thing to note
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Figure 5.3: Second configuration of circuit

here is that both cl and cm are in the same path from the primary
input to the principal output.

In the last chapter, we illustrated that a faulty component generates
epp = 1

2 at the output of the component. Faulty component cm gener-
ates an error with epp = 1

2 and this error propagates to the principal
output of the system (O1). This error propagates till the other faulty
component cl. A faulty component ignores the incoming error signal
probabilities (ei) and generates epp = 1

2 at it’s output 1. Hence, the
error generated by component cm will not arrive at O1. Therefore,
the incorrect behavior observed at the O1 will be only because of the
fault at cl. It can hence be concluded that the glm is equal to gl and
it independent of gm.

glm at the output O1 can be determined as:

glm = gl

The glm is calculated using the analytical approach. Now, we will cal-
culate the same using MIN model. For example, from Equation 4.51,
gl and gm can be computed as follows

gl = 1− 1
4

gm = 1− 1
16

Clearly gl < gm and therefore using the MIN model, glm can be cal-
culated as follows

glm = min(gl, gm) = gl (5.3)
1Note that our fault models are SA0 and SA1 only
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Figure 5.4: Third configuration of circuit

As can be seen that glm calculated using both the approaches is exactly
the same, this shows the correctness of MIN model.

If we have the same configuration as shown in Figure 5.3, the composite
g value will be equal to the g value of the component closest to the
principal output. In simple words, faulty component closest to the
principal output is only the one responsible for the observed incorrect
behavior of the system.

If we apply OR model in this configuration, glm = gl ∗gm, but gm 6= 1,
hence gl ∗ gm 6= gl. This proposition shows that OR model does not
produce the correct g information for this configuration.

3. The most interesting configuration is shown in the Figure 5.4. Both
the faulty components are in the IN set of output O1, but they are not
in the same path from the primary input to the principal output of the
system. Therefore, this configuration does not converge to single-fault
g calculation problem directly.

For component cp, input error probabilities are el and em. EPP at the
output O1 of cp can be given by

epp(S) =
el + em − elem

2

=
el(1− em) + em

2
(5.4)

Since em ≥ 0 and el ≥ 0, this leads to the following propositions:
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epp(S) ≥ el
2

≥ em
2

(5.5)

We now consider the following g equations in terms of error signal
probabilities

gl = 1− el
2

(5.6)

gm = 1− em
2

(5.7)

glm = 1− epp(S) (5.8)

Equations 5.5 to 5.8 deduce that glm ≤ gl and glm ≤ gm. These
propositions give the following expression

glm ≤ min(gl, ge) (5.9)

Equation 5.9 proves the correctness of the MIN model.

MIN model takes advantage of structural behavior of the system. But Equa-
tion 5.9 shows that MIN model still involves some approximation. Therefore,
we develop more accurate model that uses the single-fault g values and also
exploits the structural model of the system.

5.3.3 Level Based Model

Consider the configuration shown in Figure 5.5. cl and cm are two faulty
components and they are l and m stages away from the principle output.
Assume that cl generates an epp(cl) = el, at the output of the components.
Paths from the faulty components to the principal output meet at a com-
ponent cp which is p stages away from the principal output. Assume that
circuit does not include reconvergent subcircuit.

For this system, we derive the equation for glm using system level EPP
model. Then we express this equation in terms of gl and gm. The equation
is derived in the following manner,

As we can see in the configuration, cl is l level away from the O1 . gl is given
by (see Equation 4.51)

gl = 1− el
2l−1

(5.10)

Similarly, we can derive gm
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Figure 5.5: General configuration of components

gm = 1− em
2m−1

(5.11)

The equations derived above are the single-fault g values. Now we consider
that both faulty components cl and cm are present in the system. Flow of
error from these two components meet at the component cp. Input error
probabilities for the cp can be given as

elp =
el

2lp−1
(5.12)

emp =
em

2mp−1
(5.13)

EPP at the output of cp is given by

ep =
elp + emp − elpemp

2
(5.14)

ep can propagate till O1 like a single-fault error propagation. EPP at the
O1 is given by

epp(S) =
ep

2p−1
(5.15)
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glm can be calculated using

glm = 1− epp(S) (5.16)

Combining Equations 5.12 - 5.16 results into following expression

glm = 1− (
el

2lp+p−1
+

em
2mp+p−1

− elem
2lp+mp+p−2

) (5.17)

As can be seen in Figure 5.5, following equations can be derived

l = lp + p (5.18)
m = mp + p (5.19)

Substituting values of gl ,gm, l and m from Equations 5.10 , 5.11 5.18
and 5.19 in Equation 5.17 results into the following expression

glm = gl + gm + 2p(1− gl)(1− gm)− 1 (5.20)

In the previous sections, methodology used by ANTARES to utilize g in-
formation has been explained. ANTARES combines the G matrix with
spectrum matrix (A, e) to generate a final ranking list. Next section shows
an example, where circuit is diagnosed with ANTARES and performance is
compared with previous SFL on hardware approach (BACINOL).

5.4 ANTARES Example

Consider the circuit shown in Figure 5.1, assume that c5 is the faulty com-
ponent. Spectrum shown in Figure 3.2 can be obtained by giving 4 input
vectors to the circuit. G matrix derived in Section 5.2 will be used by
ANTARES to break the ambiguity set. ANTARES gives following ranking
list:

c5 (0.5)
c3 (0.4)
c2 (0.1)

We saw in the Section 3.1 that ranking list generated by BACINOL for the
same circuit had an ambiguity set. This ambiguity set has been broken
by the G matrix very efficiently. Faulty component (c5) has the first rank
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without any ambiguity set. This example shows that ANTARES improves
the diagnosis quality using external g information.

However, as compared to MBD diagnosis, it is still not a good enough tech-
nique because ANTARES does not include double-fault minimal candidate
c3, c2 in the ranking list. The MBD has more conflicts, therefore it includes
double-candidate c3, c2 in the final diagnosis.

Therefore, we can conclude that theoretically ANTARES has a better perfor-
mance than BACINOL but it has lower performance than MBD. To compare
the diagnosis quality of ANTARES with BACINOL and MBD, we have to
perform a number of experiments. Next chapter summarizes the experimen-
tal setup and the results obtained.
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Chapter 6

Experimental Results

In this chapter, the experiments and results will be presented which were
performed using the methodologies described in the earlier chapters. First,
the setup for the experiments is presented. This is followed by a summary
of the results and a brief analysis of the obtained results. Results have been
presented in terms of impact of following factors on the diagnosis quality:
the number of observation, the accuracy in g calculation, the fault-cardinality
and the multiple-fault g computation model.

6.1 Objective

There are two main objectives of the experiments that have been performed:

1. To assess the diagnosis quality of ANTARES as compared to BACI-
NOL for various systems.

2. To compare the diagnosis quality of ANTARES with the MBD method.
For the experimental purpose, GDE is used as an MBD reference
method. GDE generates the conflict matrix (A, e) by using detailed
modeling information of the components in the system.

Wasted effort is used as the diagnosis quality metric for the system. Wasted
effort is estimated with the equations derived in Chapter 3. The method-
ology used by Wilson [20] to estimate the diagnosis quality of BACINOL is
different from the one used in this thesis. Therefore, we do not use the re-
sults produced by Wilson for the comparison. We recalculate the diagnosis
quality of BACINOL using our statistical approach.
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6.2 Circuit, Faults and Observations

The test circuits used in this paper are the well-known ISCAS85 benchmark
circuits, such as described by Brglez and Fujiwara (1985) and Hansen et
al.(1999) in [8] and [11] .We have also used 4 circuits from the 74-series
of integrated circuits (also described in Hansen et al.,1999). These circuits
have been chosen because of their availability and usage in other similar
experiments. A summary of the main topological properties of these circuits
has been presented in the Table 2.2.3.

For these circuits, it was chosen to inject the faults randomly to approximate
a real-world scenario. The experiments have been carried out for single as
well as multiple faults.

The observation vectors have also been generated randomly after completion
of fault injection. Because of the random input vectors, passed and failed
spectrum rows are obtained and this spectrum matrix is then used for the
computation of the diagnosis. The main advantage of the random input
vector is that it does not require the behavioral model of the System-Under-
Test (SUT).

6.3 Implementation

To implement ANTARES, BARINEL code has been used to compute the
diagnosis of hardware. However, instead of instrumenting a program to
create a spectrum, a module has been written in C to calculate the spectra
from the ISCAS85 circuits. The module is driven by the input parameters for
one or more experiments. The module generates the spectra of the circuit;
the input parameters required to produce the same are: the name of the
circuit to use, the number of faults to be injected (Mf ) and the number of
observations (nobs). The module works by emulating the circuit as a tree
of interconnect nodes. Spectrum matrix is generated by the following two
steps

1. IN set is computed for each of the principal outputs of the system by
traversing the circuit from the principal output to the primary input
recursively. The IN set for each principal output gives the rows of the
matrix A.

2. Faults are injected in the nodes and the random input vector is applied
to the input nodes. Each node calculates both its nominal value and
the actual value (i.e., taking the fault into account). The output values
are then compared with the nominal values to check if the system ex-
hibits a failure for the current input vector. If it does, a spectrum line
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is written for each output. If the actual output value differs from the
nominal output value, the spectrum is marked as failed (−), otherwise,
it is marked as successful (+).

The above steps are executed nobs times. The final matrix corresponding to
all the observations is recorded into the file A.txt.

To estimate the g information for each of the component, another module is
written in C. The input parameters for this module are the name of circuit
and the number of observations (nobs). The module computes g value for
each of the component using all EPP models developed in the Chapter 4.
In addition, Monte Carlo (MC) simulations have been done to compute the
most accurate g values. The g information is stored in the form of a 2-
dimensional matrix. This matrix is replicated nobs times and it results in
N × nobs rows in the g matrix and M columns. Here, N is the number of
principal outputs and M is the number components in the system. This
final g matrix is written in a file named g.txt.

Spectrum matrix file A.txt is processed with STACCATO to generate the
minimal diagnosis candidates. Diagnosis candidates are stored in a file,
named hs. Finally, BARINEL reads A.txt, g.txt and hs to compute the
posterior probability for each of the candidates. This posterior probability is
then used to compute the diagnosis (D). The diagnosis D is further mapped
to the 1-D ranking (R) by using −d option of BARINEL. R is recorded in
a file called rank.txt. A program has been written in C which traverses
the raking-list stored in the file rank.txt and computes W to diagnose the
faults.

6.4 Experimental Setup

To assess the performance of the ANTARES, experiments have been per-
formed to analyze the relationship between the number of observations nobs
and the diagnosis quality (W ). For every fault setup, 50 observation vectors
are generated, which are used incrementally to compute the diagnosis. To
reduce the variance in W and to get more accurate results, experiments are
repeated over 200 fault sets. The experiments are performed for Mf = 1, 2
and 3 injected faults, so that the influence of the number of faults in the
system can be determined as well.

ANTARES uses the black-box EPP models to compute the g values. The
accuracy results presented in Section 4.6 show that the black-box EPP is
the least accurate model as compared to the other two EPP models. To
investigate the effect of the accuracy in the g value calculation on W , other
two EPP models are also used to compute the g information. The g value has
also been calculated using Monte Carlo simulations and this g information
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can be considered as the best possible g estimation. Therefore, it is expected
that the ANTARES will give the best diagnosis quality by using the g values
computed using the Monte Carlo simulations.

Multiple-fault g values are calculated by applying OR model on single-fault g
value. MIN model and Level-based model proposed in Section 5.3.2 and 5.3.3
are also used to compute the multiple-fault g values. Hence, all these three
models are compared experimentally. We also calculate the multiple-fault
g values directly with EPP model as well as with Monte Carlo simulations.
This experiment aims to validate the correctness of MIN, OR and Level-
based model.

To analyze the effect of the g information on the diagnosis quality, we cal-
culate W without supplying any g information to ANTARES. ANTARES
without g is same as BACINOL. Diagnosis quality of MBD is computed
using GDE generated conflict matrix. Since we do not have any information
about the number of observations used to derive those conflict matrices, we
cannot directly compare the diagnosis quality of GDE with the diagnosis
quality of ANTARES in terms of number of observations.

6.5 Influence of The Number of Observations

In Figures 6.1 - 6.3, W is plotted against nobs for 74XXX circuits. Average
W are computed for ANTARES (for all EPP models) and for BACINOL.
As expected, both the curves show a decreasing trend with the increase in
number of observations. The curves become asymptotic after a sufficient
number of observations (more than 20 for our experiments).

It can be clearly seen that ANTARES with the deterministic EPP model
has a better diagnosis quality as compared to the other methods. Another
observation that can also be made from the plots is that known PDF EPP
model and black-box EPP model give a similar kind of performance boost
to the ANTARES, with exception of circuit 74283. The reason for this is
the presence of a majority of AND, OR, NAND, NOR and inverter gates
for most of the 74XXX circuits. Since we know that both the known
PDF EPP model and the black-box EPP model are same for these gates,
the performance of ANTARES is same with these two models. Therefore,
both of these models improve the diagnosis quality of the ANTARES by
the same amount. In circuit 74283, XOR gate is also present and for XOR
gate the known PDF EPP model is different from the black-box EPP model.
For XOR gate, black-box EPP model is less accurate than the other EPP
models; therefore it gives the least performance improvement to ANTARES.

Hence, we can conclude from the plots that inclusion of external g informa-
tion enhances the performance of ANTARES. ANTARES has much better
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Figure 6.1: Plot of W vs. Number of Observations for 74182 circuit. W is
computed for single-fault.
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Figure 6.2: Plot of W vs. Number of Observations for 74283 circuit. W is
computed for single-fault.
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Figure 6.3: Plot of W vs. Number of Observations for 74L85 circuit. W is
computed for single-fault.

diagnosis quality than BACINOL, if g is estimated using the deterministic
model. This observation implies that the accurate estimation of g is an im-
portant factor to ANTARES. In the next section, we analyze the diagnosis
quality of ANTARES by analyzing the accuracy in the g estimation.

6.6 Influence of Accuracy in g calculation

Figure 6.4 compares the diagnosis quality of the ANTARES for various g
values; each of the g value is computed using a different EPP model. For all
the W computation nobs = 50, therefore W is calculated at the asymptotes
of the previous plots. Diagnosis quality of the BACINOL is also compared
with the ANTARES. Results clearly show that for all the circuits except
74283 and 74181, ANTARES has better diagnosis quality. However, for
74283, ANTARES has a better diagnosis quality, if g value is computed
using the deterministic EPP model. These results conclude that the better
g estimation provides a better diagnosis quality to ANTARES.

To understand the effect of the accuracy of g estimation on the diagnosis
quality, reconsider Equation 3.4 derived in the Section 3.2 to estimate W :

W =
Ras + Cas

Cas+1 .Sas − C
M −Mf
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Figure 6.4: Diagnosis quality of ANTARES (with all EPP model) and BA-
CINOL for different circuit with single-fault. Average over 200 fault sets,
50 observations

W is directly proportional to the rank of the ambiguity set Ras and the size
of the ambiguity set Sas. The term Sas is multiplied with a term which
is less than one, therefore as compared to Ras, Sas has less impact on the
value of W . It is expected that the size of the ambiguity set reduces if a
better estimated g values are provided. However, the impact of external g
values on Ras is not known. Table 6.1 summarizes Ras and Sas values for
ANTARES and BACINOL.

It can be clearly seen that ANTARES breaks the ambiguity sets successfully
with all the EPP models. However, known PDF EPP model and black-box
EPP model increase the Ras whereas with the deterministic EPP model,
Ras either improves or stays the same. Therefore, ANTARES with the
deterministic EPP model gives the best diagnosis quality as compared to
the other two probabilistic models.

By observing Table 6.1 closely, 2 questions can be raised:

1. Why does the Ras increase when Sas goes down?

2. Normally, Ras increases for all the circuits with the reduction of Sas for
the known PDF and the black-box EPP models. But then why does
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EPP Model

Circuit

74283 74L85 74182 74181 c499

Ras Sas Ras Sas Ras Sas Ras Sas Ras Sas

BACINOL 1.5 5 3.1 15 0.1 4 10.5 4.3 15 38
ANTARES (deterministic model) 0.84 1.6 3.2 1.3 0.1 1.5 0.7 1.6 15 10.1
ANTARES (known PDF model) 4 1.8 7.2 2.44 0.66 2.6 13.4 2 23 7
ANTARES (black-box model) 5 1.8 7.2 2.6 0.63 2.6 17 2.1 23 6.8

Table 6.1: Average rank and size of ambiguity set for single faults. Averages
over 200 fault sets and 50 observations are used.

Circuit ANTARES (deterministic
EPP model)

ANTARES (Monte Carlo sim-
ulations)

74283 0.034 0.035
74L85 0.105 0.100
74182 0.061 0.060
74181 0.014 0.016

Table 6.2: Wasted effort values for ANTARES with g value derived from
deterministic model and MC simulations to detect single-fault. Averages
over 200 fault sets, 50 observations are used.

the ANTARES has a slightly better diagnosis quality as compared
with the BACINOL, except for 74283 and 74181?

To answer the first question, let’s consider a circuit of 50 components with
only one faulty component. If 15 out of these 50 components, including the
faulty one have the same rank (first rank) in the ranking list, then these
15 components form an ambiguity set. After giving g information for these
components, this ambiguity set eventually breaks and each component of the
set gets an individual ranking. It is very unlikely that the faulty component
will get the first rank instead, the faulty component will get a rank lower
than 1. This explains that as the size of ambiguity set goes down, the rank
of the ambiguity set increases.

Circuit 74L85, c499 and c880 have large ambiguity sets, relative to the
number of components in the circuit. The g information calculated with the
two probabilistic models reduces the size of the ambiguity sets significantly.
Therefore, despite of the higher rank of the ambiguity set, the diagnosis
quality increases as compared to the BACINOL. But circuits 74283 and
74181 have small size of ambiguity sets and therefore reduction in the size
of ambiguity set does not have enough impact on the diagnosis quality.

This observation motivates us to study ANTARES with the best possible g
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Circuit BACINOL ANTARES
(determin-
istic EPP
model)

ANTARES
(known
PDF EPP
model)

ANTARES
(black-
box EPP
model)

GDE

74283 0.096 0.034 0.134 0.155 0.050
74L85 0.320 0.105 0.250 0.250 0.060
74182 0.090 0.061 0.0.080 0.080 0.025
74181 0.176 0.014 0.187 0.247 0.03
c17 0.8 0.6 0.6 0.6 NA
c499 0.164 0.092 0.124 0.129 0.0037
c880 0.065 0.021 0.042 0.052 0.006

Table 6.3: Wasted effort values for single-fault. Averages over 200 fault sets
and 50 observations are used.

estimation. Now, we calculate g value using the MC simulations. Since MC
simulations take very long time for the bigger circuits, so we use only 74XXX
for these experiments. Results shown in Table 6.2 imply that ANTARES
with g value calculated using MC simulations has the same diagnosis quality
as ANTARES with deterministic model g value. This clearly shows that the
error in g value calculation (Table 4.2) makes no difference in the diagnosis
quality of the ANTARES. Hence, the g value calculated by the deterministic
model can be assumed as the best possible estimation.

6.7 Influence of Fault Cardinality

If the number of faults in a system increase, W also increases. Multiple-
fault diagnosis can be understood in terms of the single-fault diagnosis. If a
system has multiple faulty components, we inspect the system and detect the
first fault. After finding the faulty component, we fix that component and
search the next faulty one. Hence, the diagnosis effort required to detect all
the faulty components in the system is proportional to the diagnosis effort
required to find a single-fault. Therefore, the diagnosis effort increase as the
fault-cardinality increases. Results for multiple-fault components presented
in Tables 6.3 - 6.5 also support this theory.

From the tables it can be observed that the diagnosis quality of the GDE
is far better than ANTARES and BACINOL. However, if most accurate g
values are given to ANTARES, it is comparable to GDE. As we mentioned
earlier, we do not have any information about the number of observations
used to derive the GDE conflicts, therefore we cannot further comment
about GDE and ANTARES comparison.
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Circuit BACINOL ANTARES
(determin-
istic EPP
model)

ANTARES
(known
PDF EPP
model)

ANTARES
(black-
box EPP
model)

GDE

74283 0.303 0.210 0.343 0.355 0.210
74L85 0.550 0.483 0.545 0.545 0.144
74182 0.275 0.201 0.245 0.250 0.140
74181 0.314 0.230 0.389 0.502 0.110
c17 0.8 0.575 0.642 0.6 NA
c499 0.182 0.123 0.153 0.164 0.01

Table 6.4: Wasted effort values for double fault. Averages over 200 fault
sets, 50 observations are used.

Circuit BACINOL ANTARES
(determin-
istic EPP
model)

ANTARES
(known
PDF EPP
model)

ANTARES
(black-
box EPP
model)

GDE

74283 0.447 0.375 0.515 0.516 0.410
74L85 0.671 0.610 0.675 0.675 0.195
74182 0.365 0.303 0.350 0.350 0.203
74181 0.48 0.46 0.572 0.608 0.287
c17 0.8 0.575 0.735 0.735 NA
c499 0.203 0.158 0.174 0.182 0.02

Table 6.5: Wasted effort values for triple fault. Averages over 200 fault sets,
50 observations are used.
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6.8 Influence of Multiple Fault g Calculation Model

By default ANTARES uses the OR model to compute the multiple-fault g
values using the single-fault g values. In Section 5.3.1 we discussed that
theoretically OR model is not a very accurate model. In Section 5.3.2
we developed a MIN model that uses topological information to compute
multiple-fault g values. Later, in Section 5.3.3 we developed Level-based
model which is theoretically the most accurate model as compared to the
other two models. To evaluate the impact of these models on the diagnosis
quality we run ANTARES with the MIN model and the Level-based model
for all 74XXX circuits and some ISCAS circuits (c17 and 499). Results for
all the circuits show that the diagnosis quality is same for all the models.
Further, we use the MC simulation to compute the multiple-fault g values,
but again the diagnosis quality is same as it is with OR model. These ob-
servations imply that although theoretically OR model is not completely
accurate, experimentally it is accurate enough to diagnose the system effi-
ciently.

Recalling the Bayes’ rule used in the BARINEL to compute the posterior
probability (Section 2.2.3), a prior probability p is allocated to all the di-
agnosis candidates in the beginning of the diagnosis process. Value of the
prior probability depends on the cardinality of the diagnosis candidates. For
a single-fault candidates p ≈ 0.1 and for a double-fault candidates p ≈ 0.01.
Hence, the prior probability reduces exponentially as the fault-cardinality
increases. Therefore, most of the time, the single-fault candidates have
higher posterior probability as compared to the multiple-fault candidates,
because of which single-fault candidates get higher rank in the ranking-list.
Since multiple-fault candidates start with a very low prior probability, it
is potentially unlikely that multiple-fault g information can increase their
posterior probability. Therefore, the role of the multiple-fault g information
does not seem to be very critical to the BARINEL. So, from diagnosis point
of view, it does not make a big difference, if we use OR model or MIN model
or Level-based model or even MC simulations to compute multiple-fault g
information. This reasoning explains the observation we made earlier that
why the multiple-fault g models, better than the OR model (theoretically),
cannot improve the diagnosis quality.

As far as the single-fault diagnosis is concerned, it is independent of multiple-
fault g computation model. During the experiments, we observed that if we
remove the function that computes the multiple-fault g values, it does not
affect the diagnosis quality of ANTARES.
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Chapter 7

Conclusions

A spectrum-based hardware diagnosis technique named ANTARES has been
proposed in the thesis,. To enhance the performance of ANTARES, FNR
parameter g is used to estimate the posterior probability more accurately.
Three different EPP models are derived for the better estimation of g values.
GDE generated conflict matrices are used to compute diagnosis quality of
MBD. Statistical models have been developed and utilized to compute the
diagnosis quality and obtain the performance metrics for all the diagnosis
methods.

This chapter presents the conclusion that can be drawn from the results
of the experiments performed for various diagnosis methods. Subsequently,
some suggestions are made for future research opportunities in this area.

7.1 Conclusions

As mentioned in the introduction chapter, the goal of this thesis is to study
the feasibility of spectrum-based hardware diagnosis techniques and enhance
the performance of the technique by providing better FNR parameter value
g. Here, we give an overview of the conclusions drawn while achieving the
goal.

• By comparing the performance of ANTARES with the existing spectrum-
based hardware diagnosis method BACINOL, it can be concluded that
the external g information used by ANTARES significantly improves
diagnosis quality by eliminating the ambiguity sets from the diagnosis.

• It is observed that the performance of ANTARES is significantly better
as compared to BACINOL while slightly lower than MBD when the g
value is computed with the deterministic EPP model. This observation
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implies that the diagnosis quality of ANTARES is proportional to
accuracy in g value estimation.

• We approximated the deterministic EPP model by ignoring the sup-
pression in the composition of EPP model. However, results show that
the g values calculated with the Monte Carlo simulations give the same
amount of improvement to ANTARES, as does the deterministic EPP
model. Therefore, we can conclude that the approximation that was
made earlier does not affect the diagnosis quality of ANTARES and
the deterministic EPP model can be considered as the most accurate
EPP model possible for ANTARES.

• The black-box EPP model is considered to be the appropriate choice
for our purpose because this EPP model does not exploit any kind of
behavioral model of the components in the hardware. However, diag-
nosis quality of ANTARES with black-box EPP model is much lower
than the GDE. At the same time, however ANTARES is better than
the BACINOL. Lower diagnosis quality of black-box EPP model is
due to the non-uniform distribution of logic gates in benchmark circuit
(number of AND and OR gates are greater than number of XOR and
NXOR gates). The black-box EPP model assumes a real-world system
where the components (logic gates) are uniformly distributed over the
hardware. Therefore, we expect that the black-box EPP model will
have much better diagnosis quality for such real-world systems.

• For most of the ISCAS/74XXX benchmark circuits, known PDF EPP
models and black-box EPP models give the same amount of improve-
ment to the diagnosis quality of ANTARES because of the presence
of large number of AND, OR, NOR, NAND and INV gates in these
benchmark circuits. For these gates both probabilistic models behave
exactly the same.

• Results clearly show that the multiple-fault g calculation models de-
veloped in this thesis produce the same diagnosis quality as the OR
model. Low posterior probability for multiple-fault candidates as com-
pared to high posterior probability for single-fault candidate is the pri-
mary reason behind this observation. Therefore, OR model is sufficient
to compute multiple-fault g information. 1

Since we do not have any information about the number of observations
used by GDE to generate the conflict matrices, we cannot draw any conclu-
sion about the GDE results obtained. But still, we can say that GDE of-
fers better performance than ANTARES, at least for ISCAS/74XXX bench-
mark circuits. However, ANTARES with deterministic EPP model has very

1Assuming the random observations. If we supply MFMC observations this may not
hold true.
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good diagnosis quality, but the EPP model uses the behavioral model of
the components and this contradicts our goal of avoiding the modeling of
components. Due to the lack of gate randomness in benchmark circuits, the
black-box EPP model does not give a high diagnosis quality as expected.
Therefore, we expect that for real world systems where components may be
more randomly distributed over the system, black-box EPP model will have
significantly better diagnosis quality, without any modeling of the compo-
nents.

7.2 Future Work

Given the limited time for this MSc thesis work, a number of topics remain
for future work. The future work includes the following directions:

• During this work, we found that the accuracy of the EPP model to be
a very critical parameter for ANTARES. We have the deterministic
model as the most accurate model, but this model exploits component
modeling. On the other hand, the black-box EPP model that does not
require such modeling is not sufficiently accurate for the system with
lower randomness in terms of components. If we have more informa-
tion about the number of the components that have specific behavior
in the system, then a more accurate EPP model can be derived. For
example, if we know how many ANDs, ORs any other logic gates are
in the circuit, accuracy of EPP model will increase. The impact of this
new EPP model on diagnosis quality of ANTARES can be investigated
experimentally.

• More information related to generation of GDE matrices (number of
observations, which outputs are used to observe the system behavior),
g values can also be given to GDE. It will be very interesting to observe
the performance of GDE with external g information.

• In this thesis, we performed experiments with fault-cardinality of three.
Experiments can be done with higher fault-cardinality.

• More experimental results can be obtained for the rest of the ISCAS
benchmark circuits. Since larger circuits have high execution time,
program level optimizations can be done to reduce the execution time.
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