<]
TUDelft

Delft University of Technology

EDATA
Energy Debugging And Testing for Android

Blokland, Erik; Cruz, Luis; van Deursen, Arie

DOI
10.1109/MOBILESoft66462.2025.00017

Publication date
2025

Document Version
Final published version

Published in
Proceedings - 2025 IEEE/ACM 12th International Conference on Mobile Software Engineering and
Systems, MOBILESoft 2025

Citation (APA)

Blokland, E., Cruz, L., & van Deursen, A. (2025). EDATA: Energy Debugging And Testing for Android. In
Proceedings - 2025 IEEE/ACM 12th International Conference on Mobile Software Engineering and
Systems, MOBILESoft 2025 (pp. 94-104). IEEE. https://doi.org/10.1109/MOBILESoft66462.2025.00017

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/MOBILESoft66462.2025.00017
https://doi.org/10.1109/MOBILESoft66462.2025.00017

Green Open Access added to TU Delft Institutional Repository
as part of the Taverne amendment.

More information about this copyright law amendment
can be found at https://www.openaccess.nl.

Otherwise as indicated in the copyright section:
the publisher is the copyright holder of this work and the
author uses the Dutch legislation to make this work public.

https://repository.tudelft.nl/
https://www.openaccess.nl/en

2025 IEEE/ACM 12th International Conference on Mobile Software Engineering and Systems (MOBILESoft) | 979-8-3315-3869-9/25/$31.00 ©2025 IEEE | DOI: 10.1109/MOBILESo0{t66462.2025.00017

2025 IEEE/ACM 12th International Conference on Mobile Software Engineering and Systems (MOBILESoft)

EDATA: Energy Debugging And Testing for
Android

1t Erik Blokland

2" T uis Cruz

3" Arie van Deursen

TU Delft TU Delft TU Delft
Delft, The Netherlands Delft, The Netherlands Delft, The Netherlands
me @erikblok.land L.Cruz @tudelft.nl Arie.vanDeursen @tudelft.nl

Abstract—Energy consumption of software is becoming in-
creasingly important in today’s mobile-focused world, but knowl-
edge and techniques with which to measure energy consumption
have lagged behind. This paper introduces a methodology for
measuring the energy consumption of Android apps at the
method level, and a concrete implementation of this methodology:
EDATA. We evaluate EDATA by revisiting several Android code
smells found in prior work to increase energy consumption, and
by using a novel evaluation technique which allows us to generate
a ground-truth for energy consumption using run-time as a proxy.
Finally, we perform a case study on a real-world energy bug
found in Adyen’s Android point of sale (POS) software. Our
findings show that EDATA is able to accurately order methods
by their energy consumption, and distinguish between different
versions of a method. We also observed that debug mode has
inconsistent effects on energy consumption, and that energy
efficiency may not be consistent between devices. Finally, our
case study shows that while developers and stakeholders agree
that energy consumption is important, a lack of awareness and
easy-to-use profiling prevents it from becoming a first-class metric
in the development process.

Index Terms—Android, Green IT, Energy consumption

I. INTRODUCTION

With the rise in popularity of mobile devices, developers
must increasingly concern themselves with the energy use of
their software. In contrast to traditional desktop computing
devices, and even laptops, users have high expectations of
their smartphone’s battery, and insufficient battery life will
negatively affect their satisfaction [1]. While developers have
good intentions regarding improving their energy consump-
tion, information on how to do this has historically lagged
behind [2], [3].

Johnson et al. found that missing one or more of the “what,
why, and how to fix” is a significant barrier in the adoption
of analysis tools [4]. Nevertheless, mobile developers wishing
to measure the energy consumption of their app face barriers
such as a lack of actionable information and coarse granular-
ity. Use of instrumentation-based measurement approaches to
overcome this barrier, as explored in previous works [S]-[7],
comes with a significant drawback: instrumentation of method
calls incurs overhead, meaning that the performance and
energy consumption of the application under test (AUT) may
not be representative of normal behavior. ALEA, developed
by Mukhanov et al. [8], addresses these barriers by using

979-8-3315-3869-9/25/$31.00 ©2025 IEEE
DOI 10.1109/MOBILESoft66462.2025.00017

94

statistical sampling, which incurs low overhead while retaining
high accuracy and provides insight into run-time behavior.

Our cooperation with Adyen provided insight into how ex-
perienced developers approach energy testing and debugging.
Developers cited a lack of information on the energy impact
of their design choices as a barrier to writing energy-aware
code. We also performed a case study in cooperation with a
developer who was assigned to solve an energy bug in Adyen’s
point of sale (POS) app, after they were unable to identify its
cause using the Android Studio energy profiler.

Our goal is to overcome the limitations of currently avail-
able energy testing and debugging tools for Android by mea-
suring the energy consumption of apps running on consumer
hardware at a fine granularity, without high overhead or
complicated set-up processes. These properties both decrease
the barrier to adoption and give developers and stakeholders
alike the ability to make an informed decision between energy
consumption, functionality and effort. The importance of in-
forming stakeholders of the energy impact of their decisions
has been discussed by Jagroep et al. and Grosskop and Visser
(31, [9].

With these criteria in mind, we developed Energy Debug-
ging And Testing for Android (EDATA), an energy profiler
for Android that can be used on any modern Android device.
EDATA builds on ALEA [8] by modifying its approach to have
method-level granularity and use platform tools available on
standard Android devices. EDATA is designed to support both
energy testing — the identification of energy bugs — and energy
debugging — the process of fixing energy bugs.

Our evaluation of EDATA is focused on its practical use
cases of energy debugging and energy testing, rather than the
absolute precision of its estimations. In order to verify that
EDATA can be used in real-world software development, we
identified three research questions:

e RQ1: Can we use information collected from on-
device sensors on Android devices to identify energy bugs
through energy regression testing?

e RQ2: Can we rank methods within Android apps
by their energy consumption using a callstack-sampling
approach?

e RQ3: Does providing developers with an ordered list of
methods ranked by energy consumption aid in identifying
and fixing energy bugs?

Authorized licensed use limited to: TU Delft Library. Downloaded on November 26,2025 at 08:19:57 UTC from IEEE Xplore. Restrictions apply.

In a case study with the fintech organization Adyen, we
work with a non-energy-expert developer assigned to an en-
ergy bug causing unacceptable battery drain and evaluate the
effectiveness of EDATA’s output. This case study provides
insight into whether implementing the criteria we used as
the basis for EDATA has a positive effect on the ability of
developers to perform energy profiling, and how it influences
the decision-making process in a real-world environment.

Our evaluations show that EDATA is able to provide ac-
curate method-level energy consumption estimates, enabling
developers to profile their apps without difficult set-up or
high overhead. Additionally, our case study shows the critical
need for this information in the development process, and the
influence that EDATA has in solving energy bugs in real-world
software.

This paper makes the following contributions:

We describe a methodology to estimate energy consump-
tion of Android apps at the method level using on-device
sensors, Section III.

We concretely implement our methodology in EDATA,
Section IV.

We empirically evaluate the effectiveness of EDATA,
showing that it is able to detect differences in energy
consumption between versions of an experiment work-
load, and accurately order methods within an app based
on their energy consumption, Section V.

We describe a novel technique with which to generate
a ground truth for energy-consumption-based method
ranking, Section V-E.

We perform a case study at Adyen using EDATA in which
we assist in the energy debugging process to solve an
energy bug present in Adyen’s Android POS app, and
discuss the current awareness of energy efficiency in the
software development process, Section V-F

We revisit some of the code smells evaluated by Palomba
et al. [10] using release mode, and discuss implications
for future work, Section VI.

II. PRIOR WORK
A. Measuring Energy Consumption

There exist a number of techniques with which to measure
and estimate the energy consumption of software, and to
attribute energy consumption to units of source code. External
hardware is commonly used to provide accurate, high resolu-
tion energy consumption measurements of both mobile devices
[11], [12] and traditional desktop and laptop devices [13].

To avoid the difficulty of setting up dedicated monitoring
hardware, many prior works use power consumption metrics
reported by the hardware being measured. Commonly used
tools include Intel’s Running Average Power Limit (RAPL)
[8], [14], [15] or Qualcomm’s Trepn and related tools (now
discontinued) [7], [16]-[19]. In general, these tools provide
a relatively high level of accuracy, and can be used on any
supported device without additional setup.

95

Some approaches forego hardware measurements entirely,
instead using static/dynamic program analysis or machine
learning to estimate energy consumption. Chowdhury et al.
developed GreenOracle [20], which uses heuristics based
on dynamic program behavior as the basis for an energy
model, and later extended their work with GreenScaler [21],
which implemented automatic test generation as a way to
significantly speed the model training process. Other works
[22] also implement similar models using dynamic program
behavior. Alvi et al. [18] use source code metrics as their
model features, allowing energy consumption to be estimated
without any test cases or runtime environment. While this
technique makes energy testing very convenient, it does not
take into account the runtime behavior of the software under
test.

Instrumentation provides precise information on when par-
ticular code units are used and can be implemented in source
code, compiled/byte-code, or by using platform tracing tools .
Potential instrumentation strategies include method-level [5],
[7], path-based [6], and exclusively tracking API invocations
[23].

Statistical sampling, in contrast to instrumentation, is ex-
clusively performed at runtime, without modification to the
AUT. Statistical sampling has been used on both mobile and
desktop platforms [8], [13], [24], is integrated into the Android
profiler!, and provides a controllable measurement overhead
regardless of the behavior of the AUT.

B. Software Engineering for Energy Efficiency

Prior work has tested the energy impact of code smells
relevant to Android devices [10], [25] and explored the impact
of automated refactoring on code smells found to negatively
impact energy consumption [26]-[28]. Other work has inves-
tigated the effect of non-energy-aware refactoring on energy
consumption [15] and the effect of energy-related commits on
software maintainability [29].

Jagroep et al. [9] defined a methodology for comparing the
energy consumption of different revisions of a software system
at a system level. Hindle et al. [11] developed a concrete
methodology for testing revisions of Android apps on real
hardware.

Cruz and Abreu mined commits of open source apps to
find common patterns used by developers to improve energy
consumption [30], similarly to Moura et al. [31], who mined
“energy-aware” commits to gather data on how developers
approach energy issues.

C. ALEA

Mukhanov et al. developed ALEA, a tool used to measure
the energy consumption of software at a basic-block? level
[8]. ALEA uses a probabilistic sampling model, where the
AUT is systematically sampled during execution, with each
sample collects the value of the program counter and the

Uhttps://developer.android.com/studio/profile/record-traces#configurations
2 A basic block is a ‘block’ of code with no jump instructions - that is, it
will always execute sequentially from entry to exit.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 26,2025 at 08:19:57 UTC from IEEE Xplore. Restrictions apply.

instantaneous energy consumption of the system. Each basic
block is assumed to have a fixed probability of being sampled
at any point in execution, and an estimate of this probability is
generated based on the observed samples. The total execution
time of a basic block is estimated from this probability esti-
mate combined with the total execution time of the program.
The average power consumption of a basic block is calculated
by averaging its associated instantaneous measurements, using
the simplifying assumption that the power consumption is only
associated to the basic block executing at the time of sampling.
Multi-threaded programs are modeled similarly, but use a
combination of basic blocks across all sampled threads instead
of a single basic block. ALEA was tested on two platforms:
an Intel Sandy Bridge based server using two Xeon E5-2650
CPUs, and an ODROID-XU+E board with one Exynos 5 Octa
CPU. The authors found that ALEA was able to estimate
execution time and energy with an average error below 4%
in all cases, for both single- and multi-threaded benchmarks..
In a follow-up to their original work, the authors improved
ALEA with an additional measurement technique allowing
basic blocks with a runtime down to 10 us to be accurately
estimated [32].

While ALEA was initially designed for exclusive use on
traditional desktop systems, its approach offers key features
worth considering in the context of mobile software devel-
opment. The probabilistic sampling model allows overhead
to be limited, which is critical to obtaining accurate energy
consumption information when sampling must be performed
on-device. There is also no need to instrument methods, which
significantly alters the energy characteristics of the AUT.
ALEA has also been shown to accurately attribute energy
consumption to code based on built-in sensor measurements,
which lowers the barrier to performing energy tests.

III. EDATA METHODOLOGY

EDATA is designed to accomplish two primary goals: pro-
viding energy consumption estimates for individual methods
to facilitate energy debugging, and compare program traces to
identify meaningful differences to facilitate energy testing. In
this section, we describe the methodology we use to estimate
the energy consumption of Android apps at the method level.

A. Data Collection

The first step in our methodology is to collect run-time
energy consumption data, as well as stack samples, from a
physical Android device. This step will be performed during
execution of a workload, such as an automated test. The output
of this step consists of a timestamped log of sensor measure-
ments, where the measured data is sufficient to reconstruct
the instantaneous power draw at each given timestamp, and a
timestamped log of callchain samples.

1) Energy Consumption Data: Energy consumption
data is obtained from on-device sensors, through the
BatteryManager APIL These sensors often have a very
low update rate; we observed a rate of 10Hz or less for
current sensors and 1Hz or less for voltage sensors.

96

2) Callchain Samples: To attribute energy consumption to
methods, we need to use statistical sampling to collect call
stack® samples, and record the currently executing method
and its callchain. Android includes the simpleperf* utility,
a fork of the perf tool for Android which is capable of
performing stack unwinding on native code, as well as all
forms (interpreted, ahead of time (AOT) compiled, and just in
time (JIT) compiled) of JVM-based code.

B. Conversion to Intermediate Representation

To decouple the data collection methodology from the data
analysis, we create an intermediate representation to be used
with all following steps in our methodology. We define our
intermediate representation as a series of ‘app states’, each
of which contains the state of the AUT and device at the
time of a callchain sample. Each entry in the series contains
callchains of one actively executing thread from the AUT, the
instantaneous power draw of the whole device, the time until
the following sample (its ‘period’), and the entry’s timestamp.

This step contains three primary responsibilities. First, if
timestamps between different logs (e.g. instantaneous power
and callchain samples) are not based on the same clock,
these must be corrected. Second, if the instantaneous power
draw was not directly measured, it must be calculated based
on the input to the conversion. Finally, the instantaneous
power draw during each callchain sample must be determined,
if power draw samples were not performed in sync with
callchain samples. Since the sample rate of energy-related
sensors may be much lower than the callchain sample rate,
multiple callchain samples will likely occur during a single
power measurement.

C. Intermediate Representation Analysis

The data analysis component reads the output of the pre-
processor, and estimates the energy consumed by each method
observed during execution.

When attributing energy consumption to methods, we cat-
egorize it as either local and non-local. A method’s local
energy consumption is defined as the energy consumed by
code directly located within a method. Non-local energy
consumption is defined as energy consumed by callees (or
callees thereof) of a method. For example, if method foo ()
contains a call to method bar (), which itself contains no
method invocations, then code contained in bar () will be
attributed as “local” to bar (), and “non-local” to foo ().

Each step in our analysis is performed twice per method —
once each for local and non-local energy.

1) Determine Sample Count: First, the total number of ei-
ther local or non-local samples is found from the intermediate
trace representation.

3The call stack contains information about the currently executing method
and its callchain. https://en.wikipedia.org/wiki/Call_stack
“https://developer.android.com/ndk/guides/simpleperf

Authorized licensed use limited to: TU Delft Library. Downloaded on November 26,2025 at 08:19:57 UTC from IEEE Xplore. Restrictions apply.

2) Determine Average Power Draw: Next, the average
power draw for the method is calculated by averaging instan-
taneous power measurements associated with it, as shown in
Equation 1.

1 Mmethod)
péwmethod = : pow}nethod (1)
Nmethod i—1
3) Calculate Probability of Observation: We use the

method defined by Mukhanov et al. [8] to estimate the
probability of each method being sampled while actively
executing. We reproduce their methodology here, explaining
differences where appropriate. The primary change made is
that we replace basic blocks with methods, as our approach
only uses method-level granularity. We begin by defining the
random variable X, cthod:

1 method is the sampled method @)

Xmethod -
0 otherwise

In their probabilistic model, Mukhanov et al. define CPU
ticks as units of a finite population (U), and instantiate
Xmethoda Dy sampling during a particular clock cycle. We
instead use nanoseconds as our units, to avoid the difficulties
associated with variable clock speed, where CPU ticks do
not have a definite time period associated with them. The
probability that method is sampled is thus:

1

k J
Ej:l latencymetho

With Prnethod, We are able to estimate the method’s total
runtime, t,,ethod, in Equation 7.

Nmethod * tewec

n

tmethod = ﬁmethod “tegec =

(7

4) Estimate Energy Consumption: Finally, we estimate the
total energy consumed by a given method by multiplying the
maximum likelihood estimators of its average instantaneous
power draw and runtime.

IV. EDATA IMPLEMENTATION

In this section, we describe the concrete implementation
of EDATA, including our assumptions and implementation
choices that are not inherent to our methodology.

A. Data Collection

To perform the data collection described in Section III-A,
we periodically sample the call-stack of the AUT along with
the instantaneous power draw of the device. The data from
Android devices’ voltage and current sensors are often exclu-
sively available through Java/Kotlin APIs, whereas simpleperf
can only be used through the Android Debug Bridge (ADB)
shell.

Due to these restrictions, we implemented our data col-
lection with two sub-components: Power consumption data
is collected through a companion app using the Android
BatteryManager API, and app callchains are collected
using simpleperf. Combined, our data collection tools output

@ timestamped log of current and voltage samples and the

Pmethod = P(Xmethod e 1) — t’ﬂiethod _ .
texec exec

k ; (3)

Ej':]_ latencyinethod _ tmethod (4)

t(iIEC tezec

We define ¢,,ctn0q as the total CPU time of a given method.
To approximate t,,cthoq, We multiply the probability of the
method being observed, Pethod, DY the total CPU time of
the app, as in Equation 5.

In contrast to Mukhanov et al [8], we define t. q. as the sum
total of the periods of each sample. We do not sample using
wall-clock time or a global metric such as cpu-cycles, and
this change is necessary to ensure that t.,.. keeps the same
relationship to the callchain samples.

Equation 3 thus represents the probability of sampling a
method equaling the ratio of its CPU time to the total CPU
time of the app.

&)

Using the same process as Mukhanov et al. we find the
maximum likelihood estimator P,,ethoq for Xymethod = 1 in
Equation 6, where n is the total number of samples collected,
and Nyethoq 1S the number of samples where method was
sampled.

tmethod = Pmethod * tezec

Nmethod
n

(6)

ﬁmethod =

97

standard perf .data file output by simpleperf. By using the
monotonic_raw clock with simpleperf, we are able to use
the same system clock between both logs, removing the need
to synchronize these samples in a later stage.

B. Intermediate Representation

We implement the process described in Section III-B as
shown in Figure 1. As we obtain separate current and voltage
measurements from our sampler app, we implement step 2,
‘create log of calculated instantaneous power’, by creating a
time-series of instantaneous power draw updated each time
either the voltage or current reported by the device changes.
Step 5, ‘Determine instantaneous power consumption during
each sample’, is performed by finding the most recent entry
in the time-series prior to the sample.

3 4
E;::ggﬁ”zhzl:j‘ Combine thread
Ps, samples
sample periods from . N
simpleperf log (if applicable)
Determine
instantaneous power Output intermediate
consumption during trace representation
Extract Create log of each sample
current/voltage from 3 calculated
environment log instantaneous power 5 6
1 2

Fig. 1: Abstraction Process

Authorized licensed use limited to: TU Delft Library. Downloaded on November 26,2025 at 08:19:57 UTC from IEEE Xplore. Restrictions apply.

In our implementation, we have chosen to simplify the
attribution process by assuming that the AUT uses no more
than one thread at a time. This allows us to assume that each
sample reported by simpleperf was the only thread executing
on the device at sample time, and allows EDATA to skip step
4 in Figure 1, ‘Combine thread samples’. While our empirical
evaluation exclusively uses single-threaded workloads, our
case study does not impose any such restriction. Informal
observation of other Android apps indicated that most time
is spent either idling or executing a single thread, limiting the
impact of using a single-threaded model.

In addition, we have chosen to use the sample period
reported by simpleperf when using the task—-clock event
instead of computing the true wall-time between two sam-
ples. This sample period represents the amount of CPU time
between samples of the same thread. This entails that two
consecutive samples may have a different period than the total
wall or CPU time between them at an application level.

C. Data Analysis

Our implementation of the approach described in Section
III-C consists of two phases: method extraction, and post-
processing. The method extraction phase is responsible for col-
lecting information on each method observed in the list of app
states output by the process described in Section III-B. This
phase corresponds with ‘Determine Sample Count’, Section
III-C1, and ‘Determine Average Power Draw’, Section III-C2.
Once this phase is complete, we have sufficient information
for each method with which to perform the rest of the process.
In this section, we use the definition of ‘local’ and ‘non-local’
energy consumption defined in Section III-C.

1) Method Extraction: The first step of our implementation
is responsible for extracting information on each observed
method from the sampled callchains. Our implementation fol-
lows the process shown in Figure 2a, which is performed once
per sampled app state. During this process, we maintain two
global variables: a dictionary mapping Function objects,
which are our representation of methods, to their memory
address, as well as a sum of the periods of each app state.

In step 4, we analyze the callchain of the sampled app state.
For each unique entry in the callchain, we perform the process
shown in Figure 2b. We filter duplicate callchain entries to
ensure that methods that appear multiple times in the callchain
do not have non-local run-time attributed to them more than
once per sample.

2) Post-Processing: The second step of our implementation
is the ‘post-processing’ phase, which implements the steps
defined in Sections III-C3 and III-C4. To perform this phase,
we iterate over each method in the dictionary, and perform the
four steps shown in Figure 3 for local and non-local samples.

V. EVALUATION

The goal of our evaluation is to prove the effectiveness of
EDATA in real-world energy testing and debugging scenarios,
where a developer is using an off-the-shelf Android device in

98

3

Add sampled
instantaneous power
to local power

Increment local
sample count

Look up method by

symbol address

—>» Analyze callchain

(a) App State Analysis

2 3

Add sampled
instantaneous power
to non-local power

Increment non-local
sample count

Look up method by

symbol address

(b) Callchain Analysis
Fig. 2: Method Extraction Phase

1 2 3 4

Calculate estimated
runtime

Calculate energy
consumption

Calculate probability

Calculate probability intervals

>

Fig. 3: Post-Processing Phase

a relatively consistent environment. To this end, we defined
the following two research questions:

RQ1: Can we use information collected from on-device
sensors on Android devices to identify energy bugs
through energy regression testing?

RQ2: Can we rank methods within Android apps by
their energy consumption using a callstack-sampling ap-
proach?

Combined, these research questions show that EDATA is
capable of both identifying whether an energy bug has been
introduced into an Android app, and providing developers
with an indication of where this bug may lie in their code.
These two properties, combined with EDATA’s low overhead,
provide a significant advantage over current state of the art
energy tooling for Android.

Finally, we perform a real-world case study to evaluate the
effectiveness of EDATA on a real energy bug to determine
whether the results of our empirical evaluation transfer to the
real world, and pose the following research question:

RQ3: Does providing developers with an ordered list of
methods ranked by energy consumption aid in identifying
and fixing energy bugs?

A. Test Devices

We used two devices in our evaluation: a Google Pixel 6a
and an Adyen AMSI1. These devices significantly differ in both
hardware and software, which gives us some insight into how
energy consumption characteristics can differ based on the
device being used. Our case study was performed exclusively
on the AMSI, as it involved purpose-built Adyen software.
Though we originally targeted EDATA to the AMSI, we chose
to include the Pixel 6a as it is publicly available commodity
hardware and can be used by others to reproduce our results. It
also allows us to compare our results across different devices,
and gain insight into potential effects of hardware and software
on energy consumption.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 26,2025 at 08:19:57 UTC from IEEE Xplore. Restrictions apply.

1) Device Specific Information and Specifications: AMSI1
The AMS1 contains some background services which cannot
be disabled. It is possible, and likely, that these services affect
the energy consumption of the device, and therefore disturb
the measurements taken. As the AMSI1 specifications are not
public knowledge, we have intentionally not provided them
here.

Pixel 6a The Pixel 6a test device was factory reset prior to
testing, and was not signed into a Google account. Airplane
mode was enabled, and no SIM card or eSIM was present in
the device.

B. Empirical Methodology

We derive the following methodology from prior work,
and follow it for each of our empirical tests. We perform 20
iterations of each test on the AMSI, and 30 iterations on the
Pixel 6a. We performed fewer iterations on the AMS1 due to
time constraints, as the specifics of the platform caused the
testing process to take longer.

1) Pre-experiment setup: Previous work highlights the im-
portance of reducing the impact of environmental factors when
measuring energy consumption, and provide a number of
guidelines on how to do this [5], [9], [12], [33]-[35]. Our
approach, described below, is in line with prior work.

Following the examples laid out above, the test devices
used for evaluation are set up as follows: We remove all
third party apps to the extent possible, either through regular
un-installation or by performing a factory reset. The cellular
modem is disabled by use of airplane mode. Bluetooth is
disabled through the system toggle, with the exception of
test cases that make use of Bluetooth hardware. The device’s
display is off, except for tests involving Bluetooth scanning,
as the display must be switched on to scan for devices.’

2) Pre-test setup: To prepare for a test loop, we first install
the app under test using ADB. We then AOT compile® the full
package on the device under test, and run a shortened version
of our test case for one minute to allow the JIT compiler to
optimize the app.

3) Test Loop: EDATA is used to run the test for the
specified number of iterations, performing all necessary set-
up and tear-down steps such as activating simpleperf and our
sampler app, and copying their results to the host machine.

4) Post-Loop: This step is performed after a test loop
has been completed, and is the last step taken by the test
orchestrator. In this step, we remove the AUT from the
device, clearing its data and JIT cache. This ensures that
the environment will remain the same between different tests,
making our process more consistent.

Shttps://developer.android.com/reference/android/bluetooth/le/
BluetoothLeScanner#startScan(android.bluetooth.le.ScanCallback)
(Accessed on February 2024)

6AOT compilation is used to reduce the performance impact of testing
freshly installed apps, as most Android devices will partially or fully compile
the app during device downtime. For more information, see https://source.
android.com/docs/core/runtime/jit-compiler#architectural-overview (Accessed
on February 2024)

99

C. Case Study Methodology

Our case study focuses on a mobile developer from Adyen
who used our tool to identify energy “hot spots” in their
code. To perform this case study, we identified a use case
known to cause excessive battery drain in cooperation with
developers responsible for maintaining a particular app. Once
these use cases were identified, we manually performed test
scenarios while running our tool and provided the results to
the developers in CSV form. Due to restrictions regarding the
app build process, it was necessary to perform these tests with
the app compiled in debug mode.

D. RQI: Can we use information collected from on-device
sensors on Android devices to identify energy bugs through
energy regression testing?

We evaluated RQ1 by defining two sets of test cases, with
each test case having two or more variants with different
expected energy consumption.

1) Code Smells: The first set of test cases involve code
smells known to increase energy consumption [10]: slow for
loop (for), internal setter (IS), and member ignoring method
(MIM). The goal of these tests is twofold: as these code smells
have been previously observed to increase energy consumption
of Android devices, we expect to observe a similar increase
using EDATA. Secondly, we want to determine whether or not
the energy impact observed by Palomba et al. [10] still holds
on modern devices running in release mode, to gain insight
into the impact of debug mode on energy consumption. To
this end, we test “fixed” and “unfixed” versions of each code
smell using both release and debug mode.

2) Hardware Components: The second set of test cases
involve device hardware components — the accelerometer and
Bluetooth controller — that are expected to display different
energy characteristics depending on how they are used by
the AUT. To change the energy characteristics of these two
hardware components, we vary the update interval requested
from the accelerometer and perform Bluetooth LE scans of
varying length. In order to make these differences visible to
our tool, which requires actively running threads to measure
energy consumption, we will run a basic CPU-based workload
at regular intervals. Since this workload will be consistent
across all configurations of the test, we do not expect it
to influence our results. Though we do not believe that
prior work has validated that these differences will affect the
energy consumption of our test cases, Bluetooth LE scans are
known to consume significant energy’, and it is recommended
to minimize use of sensors, including the accelerometer, to
preserve battery life®.

3) Results: In our code smell tests, we found clear differ-
ences in energy consumption for fixed and unfixed versions
of the MIM and IS code smells in both release and debug
mode (p < 0.01 between fixed and unfixed in both release

7https://developer.android.com/guide/topics/connectivity/bluetooth/
find-ble-devices

8https://developer.android.com/guide/topics/sensors/sensors_overview

Authorized licensed use limited to: TU Delft Library. Downloaded on November 26,2025 at 08:19:57 UTC from IEEE Xplore. Restrictions apply.

and debug mode), with debug mode having a significant —
and inconsistent — impact. We additionally found that certain
optimizations appear to be entirely disabled when using debug
mode, as our IS test case using private visibility showed no
additional energy consumption in release mode, but significant
increase in debug mode.

In contrast to the other two code smells, we did not detect
a statistically significant difference between fixed and unfixed
versions of the for code smell on either device, but found a dif-
ference when using debug mode on both devices (p < 0.01).
However, on the Adyen AMSI1, we observed an increase in
energy consumption in the fixed version instead of a decrease.
These results indicate that the energy characteristics of the for
code smell may have changed since it was first analyzed by
Palomba et al. [10].

EDATA was able to detect statistically significant differ-
ences in energy consumption between each of the chosen
update rates in the accelerometer test on each device, with
p < 0.01 for all comparisons.

We were unable to obtain consistent results in our
Bluetooth-based test — when using 60% sleep, we did not
identify significant differences between scan lengths on either
device. To make the difference in energy consumption more
visible to EDATA, we re-ran our tests using 0% sleep on
both devices, and were able to identify an increase in energy
consumption on the Pixel 6a when using a longer active
scanning period (p = 0.001), and a decrease on the AMSI1
(p = 0.047). These inconsistencies may be caused by the
lack of direct control of scanning behavior provided by the
Android framework, as there is no guarantee that the actual
active period matches the intended period used by the test app.

Given the positive results of our test suite, we conclude
that the answer to RQ1 is yes: It is possible to use the
information collected from on-device sensors on Android
devices to identify energy bugs.

4) Impact of Debug Mode: In our experiments we observed
that not only does debug mode cause significant overhead
when compared to release mode, the overhead is inconsistent
between different workloads and devices. Figure 4 shows the
energy consumption overhead caused by the use of debug
mode for each code smell test case on the Pixel 6a. The
overhead is not only inconsistent between workloads on the
same device, but identical workloads executed on different
devices display different amounts of overhead. We observed
that the for smell incurred no overhead, or even negative
overhead, on the AMSI, in contrast to the Pixel 6a.

E. RQ2: Can we rank methods within Android apps by their
energy consumption using a callstack-sampling approach?

We evaluated RQ2 using a novel technique which uses
execution time as a proxy for energy consumption. This
approach allows us to build a ground truth with which to
compare our energy consumption estimates without the need
for high-accuracy hardware measurements. To generate this
ground truth, we use a random selection of six workload
classes with identical workloads.

100

3.5 A

3.0 4

2.5

2.04

151

Energy consumption relative to release mode

Fig. 4: Overhead Incurred by Debug Mode on Pixel 6a

At the beginning of the test, the random workload randomly
generates a probability for each of the six classes to be
chosen during each timestep. This ensures that there will be
measurable differences between the different classes. During
execution of the workload, in steps of the chosen time interval,
a selection is made between actively working or sleeping. If
active work is selected, then a function is called to randomly
select one of the classes using the generated probabilities. The
execution time of each workload class is recorded such that
the total execution time of each class’s workload is known
after the test is complete.

We perform this evaluation with the following parameter
values: with a two minute long test, we used 100Hz, 10Hz,
and 2Hz sample rates with 10ms and 100ms timesteps. with
a ten minute long test, we use 100Hz and 10Hz sample rates
with a 10ms timestep, and a 2Hz sample rate with 10ms and
100ms timesteps.

1) Execution Time as Proxy for Energy Consumption: Re-
lating execution time to energy consumption is controversial,
and prior work can be found which both agrees [36] and
disagrees [21], [37] with this relation. Corral et al. [36] used
a set of CPU and RAM intensive benchmarks on an Android
device, and concluded that for these cases, execution time
was directly correlated with energy consumption. Hao et al.
[37] investigate the energy consumption of real-world apps,
which have different execution characteristics than synthetic
benchmarks. For example, real-world apps generally make
network requests, which are a known cause of high energy
consumption [38]. They concluded that there is little to no
relation between execution time and energy consumption in
the context of mobile apps. Chowdhury et al. agree with this
[21], and further note that decreasing the execution time by
way of performance optimizations may cause the CPU to be
put into a higher frequency state, increasing its power draw
and raising (or failing to lower) energy consumption.

Of these works, our validation process most closely resem-
bles that of Corral et al. [36], ruling out the confounding

Authorized licensed use limited to: TU Delft Library. Downloaded on November 26,2025 at 08:19:57 UTC from IEEE Xplore. Restrictions apply.

B 2hz 10hz BN 100hz
0.201
0.179601
0.17316

.
g
w
o 0.151
=
F=]
©
K7}
-4
L
°
2
‘c 0.10 1
o
©
E 0.0751807
© 0687337
Q
=

0.051 038538

0315405
.0152
g ﬁBS 0.00977036 000405277
0.00- , —
100ms - 2m 10ms - 2m 10ms - 10m

Fig. 5: MMRE of method-level energy estimates on AMSI1

effects of network requests, display state, and processor power
states

We also note the difference between execution time —
commonly understood as the wall-clock time of a program
or thread’s execution — and CPU time — the time that a pro-
gram/thread is scheduled on the CPU. Our test uses execution
time as a baseline, as wall-clock timestamps are taken at the
beginning and end of each timestep. The configuration we use
with simpleperf, however, uses CPU-time-based timers, which
do not increment if a thread is scheduled off-CPU. Since we
are measuring energy consumption, not CPU-time, we do not
consider this to be a threat to the validity of our evaluation.

As we have aligned our validation process with prior work
[36] and ensured that execution time is not directly measured,
we consider execution time to be a reliable proxy for energy
consumption in the context of this evaluation.

2) Results: We obtained a mean magnitude of relative error
(MMRE) under 0.25 for all tests on both devices, with a
maximum MMRE of 0.213 on the Pixel 6a and 0.180 on the
AMSI1 (Figure 5). An MMRE of 0.25 is commonly considered
to be an adequate upper bound for estimation accuracy [5],
[39]. We observed that both increasing the run-time of the
test and increasing the sampling frequency were effective in
reducing the MMRE of the results, allowing greater flexibility
in testing cases where either sample frequency or runtime
are restricted. We were surprised to observe a lower MMRE
in all scenarios on the AMSI instead of the Pixel 6a, but
attribute this to the lower current sampling rate of the AMSI1
causing estimated power consumption to be more dependent
on measured runtime, instead of measured current. This could
lower the MMRE due to our use of execution time as a proxy
for energy consumption.

In light of these results, we answer yes to RQ2, and
conclude that we are able to rank methods within Android apps
by energy consumption using a callstack-sampling approach.
However, in light of our decision to use the run-time as a
proxy for energy consumption, and the differences we found

between the AMS1 and Pixel test devices, future work should
investigate whether our results transfer to more complex, real-
world apps in which run-time may not be directly associated
with energy consumption.

F. RQ3: Does providing developers with an ordered list of
methods ranked by energy consumption aid in identifying and
fixing energy bugs?

1) Case Study Progression: In addition to our empirical
evaluation, we performed a case study in cooperation with a
developer at Adyen, where we worked to identify and fix an
energy bug causing high battery drain during device idle. A
developer (Developer A) had previously attempted to solve the
issue, but was unable to identify the root cause.

We began our evaluation by defining a suitable test case:
since the energy bug caused excessive battery drain at idle, we
allowed the device to sit with its display off for a period of time
while EDATA recorded the Adyen app’s energy consumption.
With this test case, we performed an initial analysis of the app,
and presented our findings to Developer A. We identified one
of the highest-consuming methods in the app, and Developer
A created a build where the functionality implemented by this
method was disabled. After testing, we observed a downwards
shift in the energy consumption distribution with a reduction in
mean energy consumption from 147.7J to 116.0J as depicted in
Figure 6 by ‘Fix 1’. However, the median energy consumption
remained nearly identical, moving from 126.3J to 125.9]. In
spite of this improvement, we were still unable to explain the
excessive battery drain.

By comparing our total attributed energy consumption with
the approximate total energy consumption of the device (based
on the battery capacity and time to empty), we observed that
the energy consumption attributed to the Adyen app was less
than a third of the total energy being consumed by the device.
We therefore concluded that the energy bug is not caused by
code execution within the app, but by some other factor. We
used the Android Studio profiler to identify a wakelock being
held by the app and reported this information to Developer A,
who confirmed that this wakelock was the cause of the energy
bug. We performed another set of tests to confirm this, and a
comparison between each version of the app can be seen in
figure 6.

2) Conclusion: EDATA was able to identify the source of
the energy bug, an architectural decision that was already
identified as a candidate for refactoring unrelated to energy
consumption by another developer familiar with the software.
The high effort required to make these changes meant that they
were previously unable to find support, but the detailed energy
consumption information provided by EDATA convinced the
stakeholders of the POS app that these changes were necessary.

While Developer A had previously observed energy con-
sumption spikes in the Android Studio profiler, they lacked
sufficient context to determine whether these spikes were
related to the energy bug or if they were reasonable for
the work being performed. EDATA’s attribution of energy
consumption to individual methods allowed Developer A to

101

Authorized licensed use limited to: TU Delft Library. Downloaded on November 26,2025 at 08:19:57 UTC from IEEE Xplore. Restrictions apply.

2507

200 4

150 A

100 A

Joules Consumed

50 —

T T T
Unfixed Fix 1 Fix 2

Fig. 6: Energy Consumption of Adyen POS app - AMSI1

quickly identify energy hotspots and leverage their knowledge
of the Adyen POS app to judge whether the relative energy
consumption of a method was appropriate for its functionality.

Therefore, we conclude that we have affirmatively answered
RQ3, and confirm that adding energy ranked data at the
method-level can be an effective way to assist developers in
improving the energy efficiency of their apps.

VI. DISCUSSION
A. Implications

1) Build Mode and Code Smell Observations: The incon-
sistent overhead incurred by the use of debug mode, as dis-
cussed in Section V-D4, has significant implications for prior
works in which debug mode was used and for practitioners
measuring energy consumption of their Android apps. As the
overhead caused by debug mode is unpredictable, not only
are the absolute energy consumption values obtained from
debug mode builds unreliable, but the ordering of methods
with respect to their energy consumption cannot be assumed
correct. As many existing approaches to measuring energy
consumption on Android devices, such as the use of method
instrumentation, require the use of debug mode, its inherent
overhead poses significant challenges to energy testing and
debugging on the Android platform. In addition, much of
the existing literature on the energy consumption of code
smells on Android does not specify which mode was used,
and our observations imply that this information is necessary
to interpret the results.

2) Importance of Energy in the Development Process:
Our case study highlights the importance of providing spe-
cific, contextualized information about energy efficiency in
the development process, and how existing tools used by
Android developers fall short of this goal. As discussed in
Section V-F, EDATA is able to significantly ease the process of
finding and fixing an energy bug in the Adyen POS software.
We attribute this in large part to the detailed, prioritized
information provided, which allowed us and Developer A to

immediately see which parts of the app consumed the most
energy in the test scenario, providing a clear path forward in
the debugging process.

A common thread between our conversations with Devel-
oper A and other mobile developers at Adyen is that, while
energy efficiency is a concern, there is a lack of knowledge
available on how architectural decisions affect energy con-
sumption. Due to this lack of information, energy consumption
is thus not considered as a first-class citizen in the decision-
making process. This finding mirrors that of Grosskop and
Visser [3], who found that many stakeholders had a low
level of awareness of the importance of software to energy
consumption. This similarity, ten years after their study, shows
that while mobile devices have become significantly more
prominent in everyday life, awareness of energy consumption
in the development process lags behind. Software development
teams that are concerned with energy should consider appoint-
ing an energy advocate, who will make developers aware of the
energy consumption of their code and the effect it has on the
products they create. In addition, more incentives for teams
to prioritize energy efficiency in their development process
should be put in place.

B. Limitations

EDATA requires the use of a physical device and some form
of workload to test. Though the specifics of the workload
can be left to developers, there will always be non-trivial
time and expense involved in using EDATA. In cases where
this limitation is unacceptable, use of a static analysis based
approach may be appropriate, as such an approach typically
only requires access to source code.

EDATA also does not make any attempt to determine
whether or not a change in energy consumption is acceptable
for a given code change, leaving this determination up to the
user. In many cases, trade-offs must be made between code
quality, performance, and efficiency, and determining whether
or not a trade-off is acceptable is out of the scope of EDATA.
In Section II-B , we discuss existing work to catalog energy
patterns and tools created to automatically identify and fix
energy anti-patterns. The use of these tools, and knowledge
of energy patterns, can help developers determine whether
their energy consumption for some functionality is optimal,
or whether there is room for improvement.

One of the difficulties posed by mobile platforms in general
is the wide variation in operating conditions, with variations
in Wi-Fi and cellular signal strength, display brightness, and
other factors having a strong influence on energy consump-
tion. This makes comparison of data collected from end-
users extremely difficult. EDATA does not yet take these
differences into account, and developers using it must ensure
that comparisons are only made between similar conditions.

In our case study, one of the points of feedback we received
was that the energy consumption of hardware is also a target
for improvement, in addition to software. Prior work has
attributed energy consumption to hardware [40]. Further, since
the Pixel 6, Google’s Pixel devices ship with sensors that

102

Authorized licensed use limited to: TU Delft Library. Downloaded on November 26,2025 at 08:19:57 UTC from IEEE Xplore. Restrictions apply.

report the power draw of individual hardware components’,
removing the need for estimation. The ability to account for
energy spent on different hardware components would also
allow EDATA to normalize its output based on the status of
the hardware, improving the generality of results.

C. Threats

1) Internal Validity: As we do not have full control over
the Android image on our test devices, software other than
the AUT may run during our tests, introducing potential
confounding effects. We mitigate this effect by performing
each test at least 20 times to mitigate the impact of outliers.
In addition, we factory reset our Pixel 6a test device before
our evaluation.

The sampling method used with simpleperf requires a
minimum threshold of run-time before a thread’s activity is
sampled, meaning that threads with short lifespans or methods
only called at thread start may fall completely out of view.
In our case study, we mitigate this by greatly increasing the
sample rate used by simpleperf. We do not expect this to
influence our empirical evaluation, as we do not use short-
lived threads and the methods tested run for the full duration
of the test.

2) External Validity: Our empirical evaluation consists of
a set of isolated tests, where each test evaluates either a single
change which has been isolated in a test case, or in the case
of our method ordering test, a small known set of methods
that are each executed in a controlled manner. We consider
these tests to be an effective first step in validating EDATA,
particularly in combination with our real-world case study.
Nevertheless, due to the extensive potential combinations of
app behaviors and devices, we cannot conclusively show that
EDATA performs with the same level of accuracy in all
scenarios.

Our case study was performed in cooperation with a single
team, on one particular app (the Adyen POS app). We consider
this to be a good representation of a real-world development
environment — Adyen’s POS software is mature, and the
developers and stakeholders involved in our case study all
have industry experience. Nevertheless, there are limitations
to generalizing a single case study, and differing experience
levels in development teams and software use-cases could
influence their perception of EDATA, and what information
they find most useful.

D. Future Work

As discussed in Section VI-B, hardware energy consump-
tion is interesting to Android developers. Future work should
develop an approach to perform this attribution without the
high overhead costs of instrumentation inherent to prior ap-
proaches, and make use of the new ‘power rails’ available
on some devices. Hardware manufacturers should provide
individual power rails like those on Pixel devices, so that
developers can make use of these features regardless of the
device they choose to test on.

%https://developer.android.com/studio/profile/power-profiler#texamples

103

In our case study, we observed that it is helpful to contex-
tualize energy consumption in terms of the device’s battery
— something we did manually when discussing the results of
test runs. Future work should ensure that the output of tools
designed to measure energy consumption is easy to understand
for developers who are not familiar with the field.

Use of a “clustering” technique, where environmental char-
acteristics such as signal strength and display brightness are
taken into account, can assist in comparing data collected
from separate test runs. Such a technique could allow energy
profiling of end-user devices and improve reliability of energy
regression testing by detecting environmental changes.

Our observations in Section VI-A1 show that there are sig-
nificant, measurable differences between the effects of debug
mode on different code smells, and across different devices.
Additional research is needed to confirm our observations,
understand the origin of these differences, and determine
whether the current understanding of how software metrics
such as code smells relate to energy consumption transfers to
release mode builds.

VII. CONCLUSION

This work introduces a methodology to measure the energy
consumption of Android apps at the method level, as well
as a concrete implementation of this methodology: EDATA.
Our results show that, using statistical sampling of callchains
combined with on-device power sensors, our approach is
able to accurately identify differences in energy consumption
between versions of a test case, order methods by their energy
consumption, and has been used to find and fix a real-world
energy bug in Adyen’s POS software. This work is a first
step in the process of building a fully-featured method-level
energy profiler for Android, and we hope that future work will
continue to build upon EDATA to realize the goal of elevating
energy efficiency to be a first-class citizen in the development
process.

VIII. DATA AVAILABILITY

Data produced by the Adyen AMSI will not be made
available to comply with relevant non-disclosure agreements.

REFERENCES

[1] R. Mu, Y. Zheng, K. Zhang, and Y. Zhang, “Research on customer
satisfaction based on multidimensional analysis,” p. 605, 2021. [Online].
Available: http://dx.doi.org/10.2991/ijcis.d.210114.001

G. Pinto, F. Castor, and Y. D. Liu, “Mining questions about
software energy consumption,” May 2014. [Online]. Available:
http://dx.doi.org/10.1145/2597073.2597110

K. Grosskop and J. Visser, “Identification of application-level energy
optimizations,” Proceeding of ICT for Sustainability (ICT4S), vol. 4,
pp. 101-107, 2013.

B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” May 2013.
[Online]. Available: http://dx.doi.org/10.1109/ICSE.2013.6606613

D. Di Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and
A. De Lucia, “Software-based energy profiling of android apps: Simple,
efficient and reliable?” in 2017 IEEE 24th international conference on
software analysis, evolution and reengineering (SANER). 1EEE, 2017,
pp. 103-114.

[2]

[3]

[4]

[5]

Authorized licensed use limited to: TU Delft Library. Downloaded on November 26,2025 at 08:19:57 UTC from IEEE Xplore. Restrictions apply.

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

D. Li, S. Hao, W. G. J. Halfond, and R. Govindan, “Calculating
source line level energy information for android applications,” in
Proceedings of the 2013 International Symposium on Software
Testing and Analysis. ACM, Jul. 2013. [Online]. Available: https:
//doi.org/10.1145/2483760.2483780

M. U. Farooq, S. U. Rehman Khan, and M. O. Beg, “Melta: A method
level energy estimation technique for android development,” Nov 2019.
[Online]. Available: http://dx.doi.org/10.1109/ICIC48496.2019.8966712
L. Mukhanov, D. S. Nikolopoulos, and B. R. De Supinski, “Alea: Fine-
grain energy profiling with basic block sampling,” in 2015 International
Conference on Parallel Architecture and Compilation (PACT). 1EEE,
2015, pp. 87-98.

E. A. Jagroep, J. M. van der Werf, S. Brinkkemper, G. Procaccianti,
P. Lago, L. Blom, and R. van Vliet, “Software energy profiling,” May
2016. [Online]. Available: http://dx.doi.org/10.1145/2889160.2889216
F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia,
“On the impact of code smells on the energy consumption of
mobile applications,” p. 43-55, Jan 2019. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2018.08.004

A. Hindle, “Green mining: A methodology of relating software change to
power consumption,” in 2012 9th IEEE Working Conference on Mining
Software Repositories (MSR). 1EEE, 2012, pp. 78-87.

M. Linares-Vasquez, G. Bavota, C. Bernal-Cardenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Mining energy-greedy api usage
patterns in android apps: an empirical study,” in Proceedings of the 11th
working conference on mining software repositories, 2014, pp. 2-11.
J. Flinn and M. Satyanarayanan, “Powerscope: A tool for profiling
the energy usage of mobile applications,” in Proceedings WMCSA’99.
Second IEEE Workshop on Mobile Computing Systems and Applications.
IEEE, 1999, pp. 2-10.

R. Pereira, T. Car¢do, M. Couto, J. Cunha, J. P. Fernandes, and
J. Saraiva, “Spelling out energy leaks: Aiding developers locate
energy inefficient code,” p. 110463, Mar 2020. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2019.110463

Z. Ournani, R. Rouvoy, P. Rust, and J. Penhoat, “Tales from the
code# 2: A detailed assessment of code refactoring’s impact on energy
consumption,” in Software Technologies: 16th International Conference,
ICSOFT 2021, Virtual Event, July 68, 2021, Revised Selected Papers.
Springer, 2022, pp. 94-116.

R. Jabbarvand, A. Sadeghi, H. Bagheri, and S. Malek, “Energy-aware
test-suite minimization for android apps,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis, 2016, pp.
425-436.

B. Westfield and A. Gopalan, “Orka: A new technique to profile
the energy usage of android applications,” in 2016 5th International
Conference on Smart Cities and Green ICT Systems (SMARTGREENS).
IEEE, 2016, pp. 1-12.

H. M. Alvi, H. Majeed, H. Mujtaba, and M. O. Beg, “Mlee: Method
level energy estimation — a machine learning approach,” p. 100594,
Dec 2021. [Online]. Available: http://dx.doi.org/10.1016/j.suscom.2021.
100594

M. Couto, R. Pereira, F. Ribeiro, R. Rua, and J. Saraiva, “Towards
a green ranking for programming languages,” Sep 2017. [Online].
Available: http://dx.doi.org/10.1145/3125374.3125382

S. A. Chowdhury and A. Hindle, “Greenoracle,” May 2016. [Online].
Available: http://dx.doi.org/10.1145/2901739.2901763

S. Chowdhury, S. Borle, S. Romansky, and A. Hindle, “Greenscaler:
training software energy models with automatic test generation,” p.
1649-1692, Jul 2018. [Online]. Available: http://dx.doi.org/10.1007/
$10664-018-9640-7

S. Romansky, “Estimating fine-grained mobile application energy use
based on run-time software measured features,” 2020.

M. Linares-Vasquez, G. Bavota, C. Bernal-Cardenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Mining energy-greedy api usage
patterns in android apps: an empirical study,” May 2014. [Online].
Available: http://dx.doi.org/10.1145/2597073.2597085

N. R. Tallent, J. M. Mellor-Crummey, and M. W. Fagan, “Binary analysis
for measurement and attribution of program performance,” ACM Sigplan
Notices, vol. 44, no. 6, pp. 441-452, 2009.

L. Cruz and R. Abreu, “Performance-based guidelines for energy
efficient mobile applications,” May 2017. [Online]. Available: http:
//dx.doi.org/10.1109/MOBILESoft.2017.19

104

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

E. Iannone, F. Pecorelli, D. Di Nucci, F. Palomba, and A. De Lucia,
“Refactoring android-specific energy smells,” Jul 2020. [Online].
Available: http://dx.doi.org/10.1145/3387904.3389298

L. Cruz and R. Abreu, “Improving energy efficiency through
automatic refactoring,” p. 2, Aug 2019. [Online]. Available: http:
/ldx.doi.org/10.5753/jserd.2019.17

R. Morales, R. Saborido, F. Khomh, F. Chicano, and G. Antoniol,
“Earmo: An energy-aware refactoring approach for mobile apps,” p.
1176-1206, Dec 2018. [Online]. Available: http://dx.doi.org/10.1109/
TSE.2017.2757486

L. Cruz, R. Abreu, J. Grundy, L. Li, and X. Xia, “Do energy-oriented
changes hinder maintainability?” in 2019 IEEE International conference
on software maintenance and evolution (ICSME). 1EEE, 2019, pp. 29—
40.

L. Cruz and R. Abreu, “Catalog of energy patterns for mobile applica-
tions,” Empirical Software Engineering, vol. 24, pp. 2209-2235, 2019.
I. Moura, G. Pinto, F. Ebert, and F. Castor, “Mining energy-aware
commits,” in 2015 IEEE/ACM 12th Working Conference on Mining
Software Repositories. 1EEE, 2015, pp. 56-67.

L. Mukhanov, P. Petoumenos, Z. Wang, N. Parasyris, D. S.
Nikolopoulos, B. R. De Supinski, and H. Leather, “Alea,” p. 1-25, Mar
2017. [Online]. Available: http://dx.doi.org/10.1145/3050436

F. Bouaffar, O. L. Goaer, and A. Noureddine, “Powdroid: Energy
profiling of android applications,” Nov 2021. [Online]. Available:
http://dx.doi.org/10.1109/ASEW52652.2021.00055

L. Cruz, “Green software engineering done right: a scientific guide to
set up energy efficiency experiments,” http://luiscruz.github.io/2021/10/
10/scientific-guide.html, 2021, blog post.

L. Cruz and R. Abreu, “On the energy footprint of mobile testing
frameworks,” IEEE Transactions on Software Engineering, pp. 1-1,
2019.

L. Corral, A. B. Georgiev, A. Sillitti, and G. Succi, “Can execution
time describe accurately the energy consumption of mobile apps?
an experiment in android,” in Proceedings of the 3rd International
Workshop on Green and Sustainable Software, 2014, pp. 31-37.

S. Hao, D. Li, W. G. Halfond, and R. Govindan, “Estimating mobile
application energy consumption using program analysis,” in 2013 35th
international conference on software engineering (ICSE). 1EEE, 2013,
pp. 92-101.

S. Rosen, A. Nikravesh, Y. Guo, Z. M. Mao, F. Qian, and S. Sen,
“Revisiting network energy efficiency of mobile apps,” Oct 2015.
[Online]. Available: http://dx.doi.org/10.1145/2815675.2815713

L. C. Briand and 1. Wieczorek, “Resource estimation in software
engineering,” Jan 2002. [Online]. Available: http://dx.doi.org/10.1002/
0471028959.s0f282

A. Cornet and A. Gopalan, “A software-based approach for source-line
level energy estimates and hardware usage accounting on android,” in
The Eighth International Conference on Smart Grids, Green Communi-
cations and IT Energy-aware Technologies, Nice, France,(32-37), 2018.
A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent inside
my app? fine grained energy accounting on smartphones with eprof,” in
Proceedings of the 7th ACM european conference on Computer Systems,
2012, pp. 29-42.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 26,2025 at 08:19:57 UTC from IEEE Xplore. Restrictions apply.

