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Abstract

An essential component of railway infrastructures is track ballast. As railway track is used
frequently by passing rolling stocks, its performance degrades over time. At certain degrada-
tion levels, maintenance interventions must be carried out to improve the track performance
so to meet technical and safety regulations. In this way, the risk of accident or derailment
can be minimized and the railway interoperability is ensured. Furthermore, the responsibility
of designing maintenance plan belongs to infrastructure managers. To help them, predictive
strategies based on optimization can suggest the optimal schedule to maintain the track over
a certain time period. In this way, track performance and maintenance costs can be explicitly
optimized over the whole life cycle of the track.

However, a railway network typically consists of multiple track sections, each of them with
different degradation level and parameters. Hence, the optimization of track maintenance
can be considered as a large-scale problem which has a large number of decision variables.
For such kind of problem, the conventional centralized optimization is very difficult or even
not tractable to solve due to limitations on the computational time and resources. One
way to overcome this issue is by applying the so-called distributed optimization scheme.
In such approach, the original optimization problem is partitioned into multiple smaller,
tractable subproblems. Therefore, the optimization is tractable and more preferred for real-
life implementations.

This thesis develops distributed optimization approaches for track maintenance operations
planning problem. Three different schemes are compared: Parallel Augmented Lagrangian
Relaxation (PALR), Alternating Direction Method of Multipliers (ADMM), and Distributed
Robust Safe But Knowledgeable (DRSBK). As these distributed approaches basically de-
signed for convex problems, extension techniques to handle non-convex nature of the pro-
posed optimization problem are implemented. Furthermore, some case studies are defined to
evaluate the algorithms from both performance and numerical perspectives.

In simulations of small, medium, and large-scale instances, it is shown that in most cases,
DRSBK can outperform the other distributed approaches, by providing the closest-to-optimum
solution to the centralized optimization problem while having the shortest computation time.
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Chapter 1

Introduction

1-1 Background

Nowadays, railway transportation across the world experiences a significant increase in the
number of passengers and goods. Since operated first in the sixteenth century, trains have
already played an important role in public transportation systems. Compared to the other
means of transportation, trains or rolling stocks offer a series of advantages: high reliability,
capability, and safety [1]. Nevertheless, the rising use of railway transportation comes along
with various problems. On the one hand, the users demand for less expensive fares, which can
lead to a lower revenue [2]. On the other hand, due to the increased usage of the infrastructure,
maintenance costs increase accordingly [3]. These circumstances create challenges for the
railway traffic operations, and also for the management of railway assets, including both
development and maintenance.

Railway infrastructure consists of different assets, comprising railway tracks, electrical sys-
tems, signaling devices, switches, stations, and so forth. All assets are interconnected and
work together, forming the entire railway system. Among those components, ballast is a vital
component as it is used to support the track level and alignment at the designated positions
[1]. In the ideal condition, ballast can properly bear the loads when trains are rolling over as
such the rail can stay still. Due to regular usage of tracks, ballast nonetheless suffers qual-
ity degradation over time. The degradation further causes track misalignment, and so the
so-called track performance deteriorates. If the degradation level exceeds certain thresholds,
the railway operations safety could not be guaranteed anymore. In order to avoid such unex-
pected conditions, ballast must be maintained so that its performance could meet technical
and safety criterion. Accordingly, there are a number of maintenance options for ballast:
tamping, ballast cleaning, stoneblowing, partial and full renewal operations.

Current practice in maintenance operations is carried out with two different policies. When-
ever there is an emergency, reactive maintenance policy is undertaken to immediately fix it.
Due to its uncertain nature, this maintenance operation disrupts the railway operations. The
other policy is called preventive strategy, where the maintenance interventions are scheduled
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2 Introduction

Figure 1-1: Railway maintenance (image by: strukton.com)

within certain interval periodically. One drawback of both strategies is that they have no
prediction capability for estimating track condition [4]. Consequently, data of asset condition
could not be fully exploited and so there is no guarantee that their operations will be efficient.

Apart from maintenance interventions, inspection and measurement activities are frequently
conducted to collect asset data. Measurements are useful to design Key Performance In-
dicator (KPI) and asset degradation model. By utilizing KPI and degradation model, the
evolution of degradation process can be estimated and this also leads to the concept of a
third type of policy: condition-based predictive maintenance [5]. This strategy can suggest
timely maintenance operations depending on the track condition. In this way, unnecessary
intervention can be avoided. Recent developments in information technology also introduce a
new strategy called cloud-based maintenance. Various measurements collected by either fre-
quent measurement or deployed sensors can be stored and analyzed by artificial intelligence
algorithms. This gives rise to big data and internet of things (IoT) frameworks to improve
the role of decision support systems in railway maintenance, as studied in [6, 7]. Nowadays,
big data will be an interesting topic to develop in railway industry.

There are several challenges in track maintenance operations planning nowadays. A railway
track maintenance operation is expensive, from thirty thousands up to a hundred thousands
euro per track kilometer per year in Europe [8]. Moreover, maintenance work typically involves
some personnel along with maintenance machines as depicted in Figure 1-1. This kind of
resources along with the allocated budget and closure times to maintain the railway assets are
limited [3]. In order to tackle these challenges, railway infrastructure managers can consider
solutions from a decision support system. Such a system basically can be developed by
implementing optimization techniques into the predictive maintenance strategy. It is notable
that the solutions must have an optimal balance between acceptable track performance and
limited maintenance costs. Correspondingly, a number of researches in the maintenance
optimization field have been studied in this thesis [4, 2, 9, 10, 11].

However, one problem that might arise from the nature of track maintenance is computa-
tional complexity. It is known that a typical railway network is very long, which can be up
to hundred kilometers [3]. Furthermore, it consists of multiple track sections in which each of
them can have different degradation level and dynamics. Therefore, the optimization of track
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1-2 Problem statement 3

maintenance operations planning is a large-scale problem. Unfortunately, most of the related
studies in the past made use of centralized optimization structure, that theoretically is not
tractable if the problem size goes up [12]. This can be an issue if, for instance, infrastructure
managers require a quick solution in the decision-making process. Thus, the notion of deploy-
ing distributed optimization approaches for dealing with the large-scale track maintenance
planning arises.

In this thesis, distributed optimization is developed and applied for the scheduling of mainte-
nance operations, of a large-scale railway network. Three distributed optimization approaches
are compared: Parallel Augmented Lagrangian Relaxation (PALR), Alternating Direction
Method of Multipliers (ADMM), and Distributed Robust Safe But Knowledgeable (DRSBK).
These approaches are analyzed, from both railway performance and numerical perspectives.

1-2 Problem statement

In this thesis, the following main research question is raised:

Is it possible to improve the computational performance while maintaining a good quality of
the solutions for large-scale railway track maintenance operations planning problem solved by
a distributed optimization approach?

In the literature, most of the optimization methods in railway maintenance operations plan-
ning used centralized optimization schemes, which are not tractable for large-scale problems.
Thus, this thesis investigates the distributed optimization framework in order to improve the
scalability, while reaching an acceptable solution for the optimization of track maintenance
operations planning for large-scale railway network. Based on the main question, several
sub-questions can be derived as follows:

1. Which optimization problem can capture characteristics like degradation of track perfor-
mance, maintenance interventions and closure time for large-scale maintenance opera-
tions in railway tracks?
The proposed problem should include only the most relevant characteristics of the main-
tenance operation planning. Chapter 3 discusses the problem formulation to answer this
question.

2. Which distributed optimization approaches can deal with the proposed optimization prob-
lem and reach feasible global solutions?
Techniques that can deal with the proposed optimization problem will be taken into
account and analyzed. Furthermore, different distributed approaches will be tested.
This question is addressed in Chapter 4.

3. How is the performance of distributed approach in comparison with the centralized ap-
proaches in terms of the solution quality and computation time?
Benchmarks with a different number of track sections and degradation regimes will be
defined. The comparison will be conducted for the distributed approaches and small-
medium scale problem with the centralized approach. Moreover, Chapter 5 provides
the analysis of study cases to answer this question.
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4 Introduction

1-3 Structure of the thesis

The remaining chapters of this report are explained as follows. Chapter 2 contains literature
survey from related studies including maintenance optimization and distributed optimiza-
tion. In Chapter 3, the optimization problem is formulated and explained. This includes
the definition of the proposed objective function along with the degradation model and con-
straints. Next, Chapter 4 covers the theory and development of distributed approaches for
the proposed optimization problems. Next, Chapter 5 discusses case studies to evaluate the
optimization problem, along with a comparison between distributed approaches. Finally,
Chapter 6 includes conclusions, remarks, and further research.
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Chapter 2

Literature review

2-1 Overview

In this chapter, related literature including optimization in railway maintenance and dis-
tributed optimization, are studied and reviewed. This chapter consists of the following parts:
Section 2-2 first discusses optimization approaches in the field of railway maintenance. Next,
distributed optimization approaches for particularly MILP problems are explained in Section
2-3. Finally, this chapter is closed with conclusions in Section 2-4.

2-2 Optimization in railway maintenance

Railway infrastructure managers nowadays face a number of challenges when designing a
maintenance schedule. To obtain an efficient and cost-effective plan, the use of decision sup-
port systems are necessary. Such support system usually relies on optimization methods. The
goals and limitations in track maintenance can be mathematically modeled into an objective
function along with a set of constraints. Moreover, it is common to have discrete decisions
when deciding, for instance, whether maintenance needs to be performed or not and which
type of maintenance to perform. Due to this nature, it is not surprising that scheduling
tasks contain binary or integer decision variables. In such cases, the optimization problems
can be formulated into either Mixed-Integer Linear Programming (MILP) or Mixed-Integer
Quadratic Programming (MIQP).

One important intervention to correct the track alignment is tamping. There are a number of
researches on the optimization of tamping operations. As a consequence, there are different
objective functions developed for tamping. Vale et al. [9] proposed an objective function
consisting of the total number of performed tamping over a planning horizon on the whole
track. Each intervention is carried out at a time step k and at a track section i. The
corresponding objective function is written as follows:
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6 Literature review

J1(Ū) =
N∑
i=1

T∑
k=1

ui(k) ui(k) ∈ {0, 1} (2-1)

where
Ū =

[
u1(1) ... u1(T ) ... uN (1) ... uN (T )

]T
Variable ui(k) is a binary variable to perform tamping ui(k) = 1 or not ui(k) = 0 in track
section i at a time step k. N and T are number of track sections and planning or prediction
horizon, respectively. Based on J1, in [11] an objective function by multiplying the mainte-
nance indicator variable with the defined cost for each work is proposed. In this way, the
total costs can be straightforwardly seen. Moreover, the preparation cost for performing the
tamping operation in the whole track is added to the objective function.

Other form of the binary optimization problem of tamping is suggested in [13, 8]. A decision
support system is proposed to minimize the tamping total cost instead of the number of
tamping operations. The cost function is the total tamping cost over the planning horizon
or known as total tamping closure time, consisting of the following sub-costs: intervention
ti,1(k), machine driving t3(k), and preparation / ramp down cost ti,2(k). Moreover, the weights
c1, c2, c3 are described as maintenance closure time cost for each phase. The expression of
objective function is shown below:

J2(T̄1, T̄2, T̄3) =
T∑
k=1

(
N∑
i=1

c1t1,i(k) +
N∑
i=1

c2t2,i(k) + c3t3(k))r(k) t1,i(k), t2,i(k), t3(k) ∈ {0, 1}
(2-2)

where
T̄1 =

[
t1,1(1) ... t1,1(T ) ... t1,N (1) ... t1,N (T )

]T
T̄2 =

[
t2,1(1) ... t2,1(T ) ... t2,N (1) ... t2,N (T )

]T
T̄3 =

[
t3(1) ... t3(k) ... t3(T )

]T
Variable r(k) is discount rate. The objective function on the basis of a number of actions (J1)
is considered to be less effective to reduce the total tamping work, as it did not count the
loss due to closure time of maintenance works. That is correct but only in reactive cases. In
preventive and predictive strategies, the plan is designed long before the maintenance oper-
ations are carried out, such that the closure times would not disturb the railway operations.
Furthermore, Famurewa et al. [10] utilized both types of cost function above (the total num-
ber of actions and total tamping closure time) and summed them up in the end to get the
total maintenance costs. Nonetheless, this kind of time-based formulation is only suitable for
reactive or short-term planning cases, where disruptions should be minimized. If the closure
time for tamping is minimized in the preventive maintenance, the maintenance team could
not maximize the handled track section given the maintenance slot time. Thus, in [14], the
typical objective function J2 is expressed as maximization instead of minimization problem.
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2-2 Optimization in railway maintenance 7

Additionally, it is difficult to find the exact representation of closure times into money loss
such that they can be added to the maintenance action cost.

In representations above, the asset performance is not yet included in the optimization. The
study by Arasteh-khouy et al. [3] considers the performance variable, along with tamping
intervention indicator cost, in their objective function. This variable describes the train
capacity lost and reduced reliability due to the degradation of track performance. However,
the variable representation in binary condition (switched by means of a limit) might not be
optimal as the track performance can be affected differently by different types of maintenance
actions. If the performance variable is continuous, as used in [14], the optimizer will have
more freedom to decide the timing of maintenance. Another type of maintenance actions,
such as renewal can also be included, so more options are available. In addition, the relation
between both component performance and maintenance costs are not explained. This can be
included by, for instance, adding a weighting term in the objective function.

Aside from single control action-based optimization, other studies take into account different
maintenance actions for one certain asset Su et al. [4]. This research deals with the case of
integer optimization above by employing the Model Predictive Control (MPC) methodology.
One advantage of this method is that the flexibility offered during the maintenance opera-
tion to adapt to several different conditions, based on measurement data. Furthermore, the
objective function of track performance and maintenance cost is explicitly included in the
optimization problem. The objective function is calculated in each time step for all track
sections as shown in the following expression:

J3(k) =
N∑
i=1

k+T∑
t=k

x̄Ti (t)Pxi(t) + λQV̄i(t) (2-3)

where x̄Ti (k) and V̄i(k) stands for the track performance and aggregated integer-binary input
for track section i at time step k. P and Q are positive definite weighting matrices. However,
the closure time owing to maintenance actions is not considered yet. The final problem is
formulated into Mixed-Integer Quadratic Programming (MIQP). If the variable is defined
with positive-definite constraints, the problem can be formulated as a less complex MILP
instead of MIQP problem. Likewise, the study did not evaluate the proposed model with
the other previous optimization models. Thus the improvement in terms of solution quality
cannot be ensured.

Beside tamping, optimization of renewal operations in railway is studied in [15, 16]. The
objects are different types of components. Therefore, the integer decision variables can be the
combination of various maintenance actions, depending on such factors: location, possibility
of joint operation in the same maintenance time slot. In this way, the total closure time
due to multiple renewal operations within planning horizons can be minimized. The final
problem is also expressed in MILP and solved via heuristics. Furthermore, in [17], the use of
degradation models enable to account for corrective maintenance. Event though conducting
joint maintenance operation is promising, the application is not trivial, as each component
has different degradation models. Moreover, various equipment is required to carry out mul-
tiple interventions at the same time, which is complex and might take more resources than
individual maintenance.
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8 Literature review

A number of studies in the past have optimized large-scale maintenance scheduling. In [18],
the rolling-horizon optimization is performed to minimize the maintenance time of large-scale
drainage networks, through scheduling of preventive and corrective maintenance on a daily
basis. Meanwhile, the research in [19] deals with the optimization of large-scale construction
projects in railway tracks. The objective is to minimize the construction costs by, particularly
clustering working time based on some scenarios. Even though these studies mentioned the
large-scale nature of their problems, they still utilize the so-called centralized optimization
approach. From the computational perspective, the centralized approach is unattractive. In
large-scale problems, the number of decision variables in centralized approach is increased
linearly, but the computational time to solve the problem can be increased exponentially [12,
20]. This implies that the maintenance plan for large-scale problem cannot be generated by
the centralized optimization in acceptable time. At a certain point, the centralized approach
is no longer tractable. In [19], the study considers an optimization result to be not optimal if
it takes more than two hours to solve. Therefore, particular approaches in optimization are
required when dealing with large-scale problem size.
Research carried out by Ferrario et al. [21] introduces the concept of distributed strategy,
that is specifically designed to solve maintenance problems in large-scale areas. The approach
exploits a software that enables the multiple registered users to give reviews about a mainte-
nance case. In other words, a maintenance case can be distributed separately to be analyzed
locally by each user. The main coordinator in the server then only needs to check the sub-
mitted reviews and conclude the main solution which is aggregated from the user’s review.
Nevertheless, the proposed method lack of optimization processes, meaning that the result
cannot be ensured to be optimal with respect to a set of constraints.
The other approach to be evaluated is the hierarchical scheme. In [14, 22] a multi-level or hi-
erarchical MPC is proposed to optimize squat defect maintenance scheduling. The proposed
approach is divided into the high-level controller and low-level optimizer. The high-level
MPC controller works to optimize the railway track quality condition while minimizing main-
tenance efforts cost, whereas the low-level optimizer uses clustering technique to generate an
optimal grinding and replacement schedule, based on MPC suggestions, which also reduces
track possession time. One prominent advantage offered by this approach is that a lower com-
putational effort for larger systems compared to centralized scheme due to the separation of
optimization problems. However, note that the hierarchical computational burden reduction
in handling very large-scale system is not as effective as decentralized or distributed schemes
[23]. Based on the nature of the problem, decentralized or distributed approaches can decom-
pose the main objective function into multiple (dozens or even hundreds) subproblems, while
hierarchical typically only has two or three stages. Meanwhile, the hierarchical approach is
effective when the whole problem consists of different heterogeneous subsystems, for example
having different time scales, type of actions or objectives. They can be divided into different
modules accordingly.
One of the state-of-the-art approaches in maintenance optimization which merges the hierar-
chical and decentralized optimization schemes is presented by Verbert et al. [24]. The research
particularly addresses a multi-component system which has to be tackled by different types
of maintenance works and timing. This motivates the utilization of a two-stage hierarchical
scheme with different objective functions. The lower component-level maximizes the balance
between accuracy and timeliness, while upper system-level considers the economic and struc-
tural costs to explicitly show the trade-off between component quality and maintenance cost.
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2-3 Distributed optimization methodology 9

The main advantage of exploiting decentralized and hierarchical approach is computational
tractability when optimizing large-scale maintenance problems. The approach can also de-
couple any degradation model. Consequently, minor and medium maintenance interventions,
which are prominent in cost reduction, cannot be accounted. Only renewal operation for
different components is accounted in this research. Additionally, this study did not explore
on computational efforts and comparison with respect to the centralized optimization scheme.
Besides, the couplings among components, which usually exist in interconnected components
as in railway infrastructure, are not addressed explicitly.

2-3 Distributed optimization methodology

The main goal of this thesis is to deal with the computational issue from the maintenance
operations for large-scale railway track networks. To achieve that goal, various distributed
optimization methods developed since last decades can be evaluated. Techniques, such as
decomposition and communication will also be discussed.

Lagrangian-based decomposition methods are one of the basic techniques for applying dis-
tributed optimization [25]. The two basic techniques are called primal and dual methods.
In general, they are used to decompose the centralized optimization problem into multiple
subproblems. Basically, an optimization problem that contains multiple subproblems, can
be categorized as either problem with Decoupled Cost but Coupled Constraint (DCCC) or
Coupled Cost but Decoupled Constraint (CCDC). The study in [26] shows via study cases,
that it is possible to convert from one type to the other one, i.e., from DCCC to CCDC
or the other way around. The primal method is basically more fitted to CCDC, while the
dual method can conveniently handle the DCCC. Both decomposition methods are proven
to handle convex optimization problems in various engineering fields. From [14, 10], it can be
indicated that the coupling constraint can be either the closure time or a maximum number
of treated track section, which fits the dual-based method. However, the dual technique has a
major drawback, that is premature termination when dealing with non-convex problems [27].
This phenomenon can lead to suboptimal solutions or known as dual gap.

Thus, a decomposition methodology known as augmented-Lagrangian relaxation or method of
multipliers rises to solve the premature termination. Augmented Lagrangian employs penalty
terms of the couplings in its Lagrangian equation such that the premature termination of
iteration process can be prevented [25]. However, the existence of quadratic penalty terms
also implies that the Lagrange equation cannot be decomposed directly. Thus, to solve this
problem, the research in [28] uses Alternating Direction Method of Multipliers (ADMM).
Through alternating technique, such algorithm enables the decomposition of the augmented
Lagrangian equation, while keeping strong convergence property of the method of multipliers.
The concept behind this is the alternating update between its primal variables, followed by
the dual update.

To facilitate the update of decision variables and avoid conflicting objectives from the subprob-
lems, communication links are established between subproblems [26]. The communication is
typically conducted in parallel way. Therefore, In [29, 30] serial communication scheme is
introduced and compare it with the existing parallel scheme and ADMM. Both communica-
tion techniques are tested with augmented Lagrangian on a convex problem. The comparison
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10 Literature review

of both, with ADMM as well, shows that they have their own strength and weakness, i.e.,
ADMM has the shortest computation time and serial augmented Lagrange has the least
iterations.

It is notable that in the first place, Lagrangian-based decomposition methods are intended
only for a convex problem. An issue arises when dealing with non-convex integer program-
ming. As mentioned in [25], the dual function must be differentiable in order for primal iter-
ates to converge toward the optimal solution. In other words, the function must be smooth,
otherwise, the optimal point cannot be guaranteed. Unfortunately, mixed-integer problems
are non-smooth in nature. In addition, the drawback of this Lagrangian-based method is
that the feasibility of each iteration result cannot be guaranteed, hence this might be an
additional issue when implementing dual decomposition, augmented Lagrangian or ADMM
in non-convex problems.

Fortunately, previous studies have developed various extension methods for the Lagrangian-
based approaches to deal with integer problems. They made use of different decomposition
methods. First, the dual decomposition method is used in [31, 32, 33]. Due to the non-
convex nature of binary or integer variables, those variables are relaxed in continuous way
and afterward, the resulting optimal objective can be set as the lower bound of the integer
problem. The resulting decision variables can also be used to warm start the next MILP
optimization. Moreover, different modification to dual decomposition by adding quadratic
terms of the respective decision variables to regularize the objective function is applied in
[34, 25]. This leads to the concepts of augmented Lagrangian and ADMM.

The extension of ADMM algorithm to handle mixed-integer problem are also available [35, 36,
37, 38, 39, 40]. In this regard, ADMM can be seen as a heuristic method [28]. In other words,
there is no guarantee that the standard ADMM algorithm can converge to a feasible optimal
solution. Binary variables can make the couplings become non-smooth, which lead to a non-
convex problem. Such binary variables hence require particular handling. In [37], a continuous
relaxation technique of binary variables is used. The resulting solution is used as a bound and
to warm start the optimization of binary variables in the next original binary optimization.
Study in [35] adds auxiliary variables to substitute the coupling primal variables. It turns out
that the coupling constraints did not contain binary variables, thus ADMM can converge with
ease. In addition, all of the mentioned literature of dual-based and ADMM decomposition
uses subgradient or its projected version as dual variables update technique. A heuristic
extension to ADMM is developed in [36], called Tailored ADMM, basically has the same
concept of continuous relaxation pre-process as in [37]. This method is also applied in integer
programming to overcome non-convexity [41]. The continuous relaxation is again used in this
paper as a mean to reduce the search space for the next integer programming. Moreover,
any inequality constraint must be transformed into equality, in ADMM. However, this paper
did not explicitly explore the feasibility of the solution with respect to the couplings among
subproblems.

Apart from Lagrangian-based methods, a distributed algorithm called Distributed Robust
Safe But Knowledgeable (DRSBK) [42] also has been applied to MILP problems with hard
non-convex coupling constraints. This algorithm is utilized by applying coupling constraint
tightening approach when solving one subproblem. In other words, the decisions from other
variables are fixed so that the coupling constraints can be individually solved. Hence, the
subproblems are solved sequentially and they can be coordinated according to the couplings.
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2-4 Conclusions 11

In this way, the feasibility of the solutions can be guaranteed. The drawback, however, is
that the solution might only be suboptimal. Moreover, it appears that the order of sequence
might affect the optimal solution, even feasibility of the solution. To solve those issues, the
cooperative version of DRSBK is also available [43]. The idea is that one subproblem involves
other subproblems decisions in its individual objective function, treated as perturbations. In
this way, it is expected to get closer to optimal or even global solution. However, cluster-
ing methods are required to avoid the exploding number of perturbation variables due to
increasing number of subproblems. For instance, in the case of multi-vehicle coordination,
only nearby vehicles are considered, which might lead to into suboptimal solutions. Apart
from that, it is interesting to note that compared to the Lagrangian-based, these methods are
not much used in distributed MILP or MIQP domains.

Other known decomposition methods that have been applied for MILP or MIQP as well
are Benders decomposition [44], and Dantzig-Wolfe decomposition [38, 45]. Similar to the
relation between primal and dual decompositions, Benders decomposition is preferred for
coupled variables, while the Dantzig-Wolfe decomposition can handle constraint coupling. In
[46], it is mentioned that this method guarantee feasibility in each of its iteration, unlike the
Lagrangian-based methods. Even though in general Dantzig-Wolfe decomposition also has
better convergence than Lagrangian-based methods, it can take longer processing time [38].

2-4 Conclusions

From the literature survey, it can be concluded that there are a number of studies that explic-
itly have handled large-scale railway maintenance. They also mentioned about the long com-
putation time needed to solve their respective problems. Furthermore, various schemes such
as decentralized and hierarchical optimization approaches for railway infrastructure mainte-
nance have been developed. However, the distributed optimization for track maintenance
operations planning has never been explicitly implemented and addressed, to the best of au-
thors knowledge. Furthermore, computation issue arising from a large number of decision
variables in maintenance optimization has not been thoroughly identified and analyzed yet.

Moreover, there are distributed optimization approaches that work based on Lagrangian
theory and constraint tightening concept, which can be applied to either MILP or MIQP
problems. In this thesis, PALR, ADMM and DRSBK approaches are used for distributed
optimization and will be explained in Chapter 4.
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Chapter 3

Optimization problem of track
maintenance operations planning

In this chapter, the optimization problem for the planning of large-scale track maintenance
operations is discussed. The proposed formulation is developed based on [4, 14], which are
designated for the case of large-scale track maintenance operations. The formulations of the
optimization problems, mixed-integer linear or quadratic problems (MILP/MIQP), have been
only solved via centralized and hierarchical schemes.

This chapter begins with a brief discussion of the operations of the track maintenance and
its characteristics in Section 3-1. Next, Section 3-2 explains the system description, which
includes the definition of the dynamics, constraints, and objective function. It is followed by
the formulation of the optimization problem in Section 3-3. Finally, Section 3-4 presents the
conclusions of the works in this chapter.

3-1 Track maintenance operations

When it is installed for the first time, ballast has sharp-edged stones which form a foundation
for rail. The form can be seen in Figure 3-1. As the tracks are regularly used by rolling stocks,
the ballast condition deteriorates over time and the track alignment is affected. Ballast stones
reach the end of the useful life when their shape is rounded. In such state, it would not be
able to hold the track properly. Maintenance operations are therefore required to solve this
issue and keep the track fully operational [8].

Before the degradation level reaches the safety limits, maintenance operations are normally
undertaken. The responsibility of maintenance operations planning belongs to infrastructure
managers. Except for the emergency cases, preventive and predictive maintenance in principle
are carefully scheduled by the managers long before the operations are carried out. This is
because they consider prominent knowledge, such as the inspection results, assessment of
collected measurements, as well as economical matters [1]. The decisions or known as the
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14 Optimization problem of track maintenance operations planning

Figure 3-1: Ballasted track (image by: scienceabc.com)

maintenance schedule include the maintenance timing, location (track section), and type of
interventions to be performed. This sort of decision-making process can be aided by an
optimization technique, which takes into account necessary characteristics and limitation
in track maintenance, e.g., maintenance costs, closure times, maximum degradation level
thresholds and so forth [14]. In this way, inefficient and costly decisions can be avoided. The
major factors in track maintenance can be mathematically formulated as an optimization
problem, which includes an objective function, a set of constraints, and dynamics of track
degradation. It is expected that the optimization problem could reflect and obtain the optimal
balance between maintenance costs and acceptable component performance [4].

In addition, two major different ballast maintenance options are considered in this thesis as
integer inputs to the system: tamping and renewal. Tamping is performed by inserting a pair
of claws into the ballast and use vibration technique to squeeze the stones, which is illustrated
in Figure 3-2. In this way, it can reset the track degradation level to some extent. Due to the
effect of track degradation memory (such as roundness of the stones) and the accumulated
offset from the previous maintenance actions, tamping would reach some point where it will
not be effective anymore. This point in practice can be indicated by either high degradation
level or the short time gap between two consecutive tamping operations. In such condition,
renewal operation is the only remaining option to reset the degradation level and memory
to be as-good-as-new. Additionally, the machine employed for renewal is depicted in Figure
3-3, where old ballast is replaced by new ballast. Note that, this activity is very expensive
and requires a longer time of track closure. The minor maintenance options, such as ballast
cleaning and stoneblowing are not studied in this thesis [1]. For the future research, additional
track maintenance interventions can be easily incorporated into the dynamic model.

Practically, a single railway track consists of multiple track sections since it is typically very
long. For instance in [14], the track studied from Eindhoven to Weert in The Netherlands is 25
km. Even in [10], their study case has 130 km, which is the track from Kiruna to Riksgransen
in Sweden. If a single track section is defined as 200 m and each of it has different dynamics,
such study cases are obviously having a large number of decision variables, designated for each
track section. Therefore, the optimization process of track maintenance operations planning
can be considered as a large-scale problem. The next section will explain the optimization
problem used in this research.
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Figure 3-2: Heavy tamping machine (image by: powertransmissionworld.com)

Figure 3-3: Heavy renewal machine (image by: plasseramerican.com)

3-2 Problem description

There are a number of characteristics and limitation in track maintenance operations that can
be incorporated into the optimization problem. Some of them are explained below accordingly.

3-2-1 Degradation dynamics

The dynamic of ballast degradation represents the track performance level and it can be
mathematically modeled in a state-space model. By using this model, the evolution of track
degradation level and offset memory can be incorporated. Moreover, the use of discrete dy-
namics or exponential degradation model has more practical advantage over linear degrada-
tion model [11]. The deterministic linear discrete-time dynamic (or also called as exponential
degradation model) with integer inputs for each track section is expressed as follows:

x1,i(k + 1) = a1,ix1,i(k) + f1,i(xi(k), ui(k))
x2,i(k + 1) = a2,ix2,i(k) + f2,i(xi,2(k), ui(k))

(3-1)

where the state variables x1,i and x2,i are track degradation level which is represented by
standard deviation of longitudinal level and track recorder of ballast degradation. Compactly,
the state vector can be defined as xi(k) =

[
x1,i(k) x2,i(k)

]
. Moreover, the state transition

matrix is time-invariant that contains the degradation rates a1,i and a2,i for the degradation
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level and offset recorder. Index i ∈ N is the number of track sections, k is the intervention
time step. It is worthy to point out that this dynamic equation is slightly different from that
in [4], in the sense that, the degradation memory variable is set to have a multiplier constant
a2,i. This parameter enables the deterioration exponentially rather than linearly, according
to [47]. Moreover, every time tamping is undertaken, it brings back the degradation level to
x2,i(k + 1), instead of x2,i(k). In this way, in the time step (k + 1), both variables will start
from an exactly similar value.

The integer input u has three different options to be decided in each maintenance time step,
as can be seen in Table 3-1. Each option also has different characteristic and cost. Likewise,
the discontinuous functions have the following representation:

Table 3-1: Maintenance option as system input

Input ui(k) Decision
1 Doing nothing
2 Tamping
3 Renewal

f1
i (xi(k), ui(k)) =


0, if ui(k) = 1
−a1,ix

1
i (k) + a2,ix

2
i (k) + α, if ui(k) = 2

−a1,ix
1
i (k) + hmin, if ui(k) = 3

and

f2
i (xi(k), ui(k)) =


0, if ui(k) = 1
α, if ui(k) = 2
−a2,ix

2
i (k) + hmin, if ui(k) = 3

where α and hmin stand for offset constant and minimum track performance limit, respectively.
The offset constant, which bears small constant value, comes from the tamping operation side
effect. This means that the effectivity of the current operation is reduced compared to the
previous operation, by the offset and its memory degradation.

Such piece-wise affine model (3-1) is basically non-linear. Therefore, it must be transformed
into the so-called Mixed-Logical Dynamical (MLD) [48], which can describe a linear dynamics
with mixed-ineteger variables. According to [4], three options of maintenance input above
can be represented by two binary variables δ1 and δ2. The conversion table is given in Table
3-2.

Table 3-2: Conversion of system input and binary variables

ui(k) δ1,i(k) δ2,i(k)
1 0 0
2 0 1
3 1 0
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Additionally, the option to perform both tamping and renewal at the same time step is not
logical, so it is eliminated by using the following constraint:

δ1,i(k) + δ2,i(k) ≤ 1 (3-2)

Furthermore, by taking into account the binary variables above, the non-linear model is then
reformulated as follows:

x1,i(k + 1) = a1,ix1,i(k) + δ1,i(k)(−a1,ix
1
i (k) + hmin) + δ2,i(k)(−a1,ix1,i(k) + a2,ix2,i(k) + α)

= a1,ix1,i(k)− δ1,i(k)a1,ix
1
i (k)− δ2,i(k)a1,ix1,i(k) + δ2,i(k)a2,ix2,i(k) + δ1,i(k)hmin

+ δ2,i(k)α

x2,i(k + 1) = a2,ix2,i(k) + αδ2,i(k) + δ1,i(k)(−a2,ix2,i(k) + hmin)
= a2,ix2,i(k)− δ1,i(k)a2,ix2,i(k) + δ1,i(k)hmin + δ2,i(k)α

Since the model is non-linear, the auxiliary variables are introduced to linearize the system,
in the sense of MLD system. It can be written in the following matrix form:

[
x1,i(k + 1)
x2,i(k + 1)

]
=

[
a1,i 0
0 a2,i

] [
x1,i(k)
x2,i(k)

]
+

[
hmin α
hmin α

] [
δ1,i(k)
δ2,i(k)

]
+

[
−a1,i −a1,i a2,i 0

0 0 0 −a2,i

] 
z1,i(k)
z2,i(k)
z3,i(k)
z4,i(k)


(3-3)

where the auxiliary variables are defined as:

z1,i(k) = δ1,i(k)x1,i(k) z2,i(k) = δ2,i(k)x1,i(k)
z3,i(k) = δ2,i(k)x2,i(k) z4,i(k) = δ1,i(k)x2,i(k)

(3-4)

and the auxiliary vector can be defined as zi(k) =
[
z1,i(k) z2,i(k) z3,i(k) z4,i(k)

]T
. Addi-

tionally, the degradation dynamics can be included within a set of constraints.

3-2-2 System constraints

Alongside the degradation dynamics, a set of constraints are defined in the following subsec-
tions.

Initialization

The initial condition and degradation rate for each track section are defined according to var-
ious case studies. In simulations, they are taken from look-up tables. The degradation rate is
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18 Optimization problem of track maintenance operations planning

assumed to be constant within the prediction horizon in every simulation. The corresponding
constraint is:

x1,i(0) = x1
i,0

x2,i(0) = x2
i,0

ajiλ ≥ 0
‘ (3-5)

where x1
i,0 and x2

i,0 are the initial values from look-up tables for state variable degradation
level and offset memory,respectively. Moreover, j ∈ 1, 2 indicates the state variable. λ is the
trade-off parameter for the objective function.

Auxiliary constraints

Each auxiliary zp,i variables introduce the following four constraints [48]:

zp,i(k) ≤ hmaxδl,i(k)
zp,i(k) ≥ hminδl,i(k)

zp,i(k) ≤ xj,i(k)− hmin(1− δl,i(k))
zp,i(k) ≥ xj,i(k)− hmax(1− δl,i(k))

(3-6)

where hmax is the maximum degradation level constraint. p ∈ {1, 2, 3, 4} and l ∈ {1, 2}
indicate the auxiliary and binary decision variables, respectively. In this way, there will be
sixteen equations for each track section.

Early renewal prevention

Renewal operation in practice is allowed once the offset memory has been considered high. In
long-term planning, it is much more costly to perform renewal when tamping operation is still
effective. To prevent performing renewal at the early stage of degradation, this constraint is
added:

x2,i(k)− hr ≥ (ri − 1)hmax (3-7)
ri − δ1,i(k) ≥ 0 (3-8)

where ri is the binary indicator for the if-then condition. Both equations basically say that if
the track memory degradation level is below the renewal threshold hr, the renewal could not
be carried on. When the level passes the threshold, the renewal decision variable δ1,i(k) is no
longer restricted to any value.
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Degradation level thresholds

In any condition, the decision support system must be able to prevent the degradation curve
exceeds the safety limit. Therefore, to keep the track degradation level in acceptable condi-
tions, the constraints on degradation level limits are defined as follows:

hmin ≤ xi(k) < hmax (3-9)

this constraint is also applied to the offset memory state.

Maximum number of maintenance interventions

From railway perspective, the maintenance budget is limited [2]. Therefore, the following
constraints make sure that the number of interventions, both tamping, and renewal, over the
prediction horizon is restricted by thresholds:

T
Σ
k=1

δ2,i(k) ≤ gt (3-10)
T
Σ
k=1

δ1,i(k) ≤ gr (3-11)

where gt and gr are maximum numbers of allowed tamping and renewal operations over
the prediction horizon, respectively. Likewise, this constraint applies to each track section
individually, hence it is an individual or non-coupled constraint.

Maximum closure time each time step

The maintenance time slot is less than six or seven hours. The preventive or predictive
maintenance operation is only allowed during night time, at weekends [1]. This applies for
both tamping and renewal, respectively. Based on [14, 10], this constraint can be written as
follows:

Nt(k)
Σ
i=1

tt1δ2,i(k) +
N−Nt(k)

Σ
j=1

tt2δ2,j(k) < tmax (3-12)

Nr(k)
Σ
i=1

tr1δ1,i(k) +
N−Nr(k)

Σ
j=1

tr2δ1,j(k) < tmax (3-13)

where tt1 and tt2 are maintenance operation and traveling times for tamping, respectively.
The same representations also hold for tr1 and tr2 for renewal. Nt(k) and Nr(k) is the total
number of track sections that receive tamping and renewal, respectively, at time step k. The
maintenance time already includes the intervention and machine switching time. The renewal
closure time constraint is also expressed in the same way, with different time value. Moreover,
it is assumed that the machines move in one direction in each time step, from a starting point
toward an endpoint at the other end of the track. Hence, the position of the maintained
track section does not matter in the operation time. In addition, tamping and renewal are
performed at different time slots.
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20 Optimization problem of track maintenance operations planning

3-2-3 Objective function

The objective function used in this thesis is defined based on [4], but with linear expression.
This model is inherently different from the models given in [13, 2, 10, 11, 9], in the sense
that the track performance term is included in this thesis. This theoretically enables the
optimizer to look for the optimal balance between track performance and maintenance costs.
Furthermore, the optimal state variables and decision variables for all track sections over the
prediction horizon, X̄ and V̄ can be obtained by solving the following open-loop objective
function:

J(X̄, V̄ ) =
N
Σ
i=1

k+T
Σ
t=k

Qxi(t) + λRVi(t) (3-14)

where

X̄ =
[
x1(k) ... x1(k + T ) ... xN (k) ... xN (k + T )

]T
V̄ =

[
V1(k) ... V1(k + T ) ... VN (k) ... VN (k + T )

]T
The control action for track section i at time step k is Vi(k) =

[
δi(k) zi(k)

]T
.Q and R are

matrices with only positive entries and appropriate dimension. This equation holds for all
sections. Note that, due to the fact that renewal is more costly, it has a higher value in matrix
R than tamping operation.

Likewise, the objective function must be converted in more compact form to be implemented
[4]. Based on [49], the state variables xi(k) can be represented by the following data equation:

xi(k) = Aki x0 +
k−1
Σ
n=1

Ak−n−1BVi(n)

and if the equations are expressed for the state variables of the entire prediction horizon, this
would end up in the following augmented matrix form:

X̃i = Mixi(0) +OiṼi

where X̃i and Ṽi stand for state and decision variables for track section i over the prediction
horizon or

X̃i =
[
xi(k) ... xi(k + t) ... xi(k + T )

]T
Ṽi =

[
Vi(k) ... Vi(k + t) ... Vi(k + T )

]T
Moreover, Mi and Oi are parameter matrices for initial values and decision variables for track
section i, respectively. By substituting X̃i, the objective function can be reformulated as
follows:
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J(V̄ ) =
N
Σ
i=1

(QOi(k) + λR)Ṽi +Mixi(0) =
N∑
i=1

CiṼi (3-15)

Moreover, it is notable that linear objective function is chosen in this research since the state
variables xi(k) and Vi(k) are vectors with only positive entries.

3-3 Problem formulation

Having expressed the system dynamics, constraints, and objective function, the optimization
problem can be written in the following compact form:

minimize
V̄

J(V̄ ) =
N∑
i=1

Jind(Ṽi) (3-16)

subject to EV̄ ≤ gind
N∑
i=1

FiṼi ≤ gcoup
(3-17)

where on one hand, E and gind are the parameter matrix and right-hand-side vector associated
with all individual or non-coupled constraints, respectively. On the other hand, Fi and
gcoup are parameter matrix and right-hand side vector associated with coupling constraints.
This separation aims at preparing for the development of distributed approaches in the next
chapter. However, in the centralized optimization, both constraints can be aggregated.

The existence of the binary variables in the degradation dynamics causes the proposed prob-
lem to be formulated into Mixed-Integer Linear Programming (MILP). In general, such
problem can also be categorized as an NP-hard problem [50], which will increase the compu-
tational complexity exponentially with the higher number of decision variables. Hence, it is
difficult to solve and requires longer computation time.

3-4 Conclusions

In this chapter, an optimization problem for track maintenance operations planning is formu-
lated. It can be formulated as a Mixed-Integer Linear Programming (MILP) problem. The
degradation dynamic is defined for each track section, thus each of them can have different
initial conditions and degradation rates. As the problem is NP-hard, it might influence the
complexity of the problem if the number of track sections increases. Such a problem having
a large number of decision problem can be categorized as a large-scale problem.

Furthermore, the problem also includes some constraints that can be grouped into individual/non-
coupling and coupling constraint. Individual constraints are those related to each track sec-
tion, such as degradation dynamic, early renewal prevention, degradation limits, and maxi-
mum number of interventions. Coupling constraints are, on the other hand, those who affect
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22 Optimization problem of track maintenance operations planning

multiple track sections. In this thesis, they correspond to tamping and renewal closure times.
Moreover, it can be observed that the objective function is decoupled. Besides, a set of cou-
pling and individual constraints are included in the problem. Hence, the problem can be
defined as a Decoupled Cost but Coupled Constraint (DCCC) problem [26].
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Chapter 4

Distributed optimization

4-1 Overview

The main contribution of this thesis is solving the optimization problem of track maintenance
operations planning using distributed approaches. A number of advantages are offered: low
computational cost and problem scalability for large-scale instances [26]. This chapter hence
discusses the development of distributed optimization approaches.

Three distributed optimization approaches are discussed: Parallel Augmented Lagrangian
Relaxation (PALR), Alternating Direction Method of Multipliers (ADMM), and Distributed
Robust Safe But Knowledgeable (DRSBK). The first two are iterative methods based on
Lagrangian duality theory, which are usually used to solve convex smooth problems [25, 28].
It is worthy to mention that the proposed optimization problem is a MILP. The basic form
of those decomposition methods could not guarantee the zero duality gap for such problem
and the global feasibility. Thus, extension methods to solve this issue will also be discussed.
Moreover, DRSBK is a non-iterative method which is originally designed to deal with MILP
problems by exploiting constraint tightening techniques [43].

The remaining of this chapter is organized as follows: Section 4-2 will firstly address coupling
constraints in the proposed optimization problem. Next, the Lagrangian-based (PALR and
ADMM) and constraint tightening approach DRSBK algorithm will be extensively discussed
in Section 4-3 and 4-4, respectively. Finally, Section 4-5 provides the conclusions from this
chapter.

4-2 Identification of problem couplings

A distributed optimization approach is particularly required to handle the couplings between
subproblems. Therefore, coupling constraints in the proposed optimization problem are first
identified. In general, the coupling can exist either in the form of a variable in the objective
function or in the constraint [26]. Thus, a smaller-size subproblem which is partitioned from
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the large original main problem would inherit the couplings. A coupled subproblem usually
has uncoupled constraints and vice versa. In this research, a subproblem is defined to be
an optimization problem of one single track section, which has its own individual objective
function and a set of individual constraints.

In the proposed optimization problem from Chapter 3, the centralized objective function
comprises the sum of the objective functions of all subproblems. In the equation, there is no
common variable that is shared between subproblems. In other words, there is no explicit
coupling variable and thus the main objective function can be conveniently split into N sub-
objective functions. Furthermore, the track degradation dynamic, maximum and minimum
degradation level thresholds, the level threshold for renewal, auxiliary variables constraints,
and a maximum number of efforts in the set of constraints are already designated for every
track section. Since those constraints have no direct effect on the other subproblems, they
can be grouped into individual constraints.

Moreover, the other constraints, namely maximum closure time for tamping and renewal
operations (3-13), can be considered as coupling constraints, since they affect across multiple
subproblems. Thus, such constraints basically can be reformulated as follows:

N∑
i=1

F ti Ṽi < tmax

where F ti is the parameter matrix of tamping coupling constraint for each subproblem. Along-
side this, the renewal parameter matrix is F ri defined in the same way. Coupling constraints
typically establish dependencies between subproblems, which can complicate the partition of
the original centralized problem. Therefore, distributed optimization techniques are required
to decouple them. Having identified the couplings, the main goal is to find and implement
distributed approaches that do not only split the centralized problem but also enable the co-
ordinator to communicate the coupling constraints among subproblems such that the global
optimal point can be reached or at least find a suboptimal solution close to it.

Before coming to the main discussions, some assumptions are made in this thesis. First,
due to the slow nature of the track degradation dynamics as well as the scheduling of rail-
way maintenance operations, simulations are conducted offline. Moreover, it is noteworthy
that since in practice the optimization is processed in a single computer, it is clear that the
full communication between subproblems is guaranteed. This implies that decisions from all
subproblems are completely shared. In such setting, a coordinator is typically required to ag-
gregate the decisions from all suproblems and use it to update the price or dual variable. This
leads to the development of a coordinator-based distributed optimization. The corresponding
scheme of the algorithm is depicted in Figure 4-1.

4-3 Lagrangian-based decomposition methods

This section addresses the implementation of two different Lagrangian-based decomposition
methods applied to handle the proposed optimization problem, namely Parallel Augmented
Lagrangian Relaxation (PALR) and Alternating Direction Method of Multipliers (ADMM).
As the problem has coupling constraints, it is more suitable to use methods that work based
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Coordinator

Subproblem 

1

Subproblem 

2

Subproblem 

N. . . .

V1(k) � V2(k) � VN(k) �

Links between subproblems

Figure 4-1: Schematic of distributed optimization with a central coordinator

on dual decomposition. These methods exploit pricing strategy to modify the augmented
Lagrangian of subproblems so that coupling constraints can be incorporated in the individual
computation. In other words, the corresponding dual function is decomposed instead of the
original problem.

4-3-1 Parallel augmented lagrangian relaxation

This method hails from the dual decomposition and is called augmented Lagrangian. This
method basically adds a quadratic term consisting of coupling constraints into the augmented
Lagrangian. This term allows for solving the convergence issue in dual decomposition [27].
Thus, a combination of auxiliary problem principle and block coordinate descent are used in
this method. The combination of both methods approximates the non-separable quadratic
terms by linearizing the quadratic term and adding an individual separable term [51]. Doing
so enables the solving of subproblems in parallel, which then leads to the concept of Parallel
Augmented Lagrangian Relaxation (PALR) [30]. In this way, all subproblems can practically
be solved at the same time.

In order to cope with the requirement for implementing this approach, the centralized problem
in equation (3-16) has to be rewritten according to the Lagrangian dual theory [25]. This can
be done by removing the couplings from the constraint set and putting them into the objective
function in such a way that the augmented Lagrangian form is constructed. Moreover, another
requirement in order to use augmented Lagrangian-like method is that any inequality coupling
constraint in the proposed problem must be converted into equality form [41]. Thus, a slack
variable is added to each row of coupling constraint, the number of which in total equals to the
number of time step over the prediction horizon. Thus, st(k) and sr(k) are defined as slack
variables for tamping and renewal works for each decision time step, respectively. Variables
S̄t and S̄r are also defined as tamping and renewal slack variables over the prediction horizon.
Next, the augmented Lagrangian formulation of the centralized objective function (3-15) can
be written as follows:
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LPALR(V̄ , S̄t, S̄r, γt, γr) =
N∑
i=1

Jind(Ṽi) +
T∑
k=1

Jt(st(k)) +
T∑
k=1

Jr(sr(k))+

γt(
N∑
i=1

F ti Ṽi +
T∑
k=1

Fstst(k)− tmax) + γr(
N∑
i=1

F ri Ṽi +
T∑
k=1

Fsrsr(k)− tmax)+

ρ

2 ||
N∑
i=1

F ti Ṽi +
T∑
k=1

Fstst(k)− tmax||22 + ρ

2 ||
N∑
i=1

F ri Ṽi +
T∑
k=1

Fsrsr(k)− tmax||22

(4-1)

subject to EV̄ ≤ gind (4-2)

where γt and γr are Lagrange multiplier or dual variables defined for each row of tamping
and renewal closure time couplings, respectively. Beside, Fst and Fsr are the parameter
matrices associated with slack variables. These matrices theoretically contain resources to
cover the unused allocation from the original inequality condition. Furthermore, the objective
functions of the slack variables Jt(st(k)) and Jr(sr(k)) are defined to be linear problem with
the multiplier of 1. Adding such slack variables theoretically will not change the original
centralized objective function of V̄ . Note that, the constraint expression in equation (4-2)
serves as the remaining non-coupling constraints, which can be solved individually by each
respective subproblem. The Lagrangian equation for the dual problem or known as the dual
function can hence be written as:

q(γt, γr) =

inf
V̄ ,S̄

LPALR(V̄ , S̄t, S̄r, γt, γr)|
N∑
i=1

F ti Ṽi +
T∑
k=1

Fstst(k)− tmax, F
r
i Ṽi +

T∑
k=1

Fsrsr(k)− tmax


(4-3)

To make equations (4-1) and (4-3) more compact, the tamping and renewal coupling con-
straints can be combined into one single parameter matrix Fi since their expression of cou-
plings are similar. Thus, let γ = [γt γr] and Fi = [F ti F ri ]T . The objective functions and
the parameter matrices of slack variables associated with tamping and renewal constraints
are combined into one single problem Jt(S̃) and Fs = [Fst Fsr]T as well. This implies that
s(k) = [st(k) sr(k)]T and S̄ is slack vector over the prediction horizon. Since the value of
tmax are similar for all rows of coupling constraints, it can be icluded within the column vector
of gcoup. Meanwhile, as denoted by Negenborn et al. [23], the dual problem can be interpreted
as a maximization problem of dual variables:

maximize
γ

q(γ)

subject to γ ≥ 0

.

In each iteration, each subproblem runs in parallel, meaning that this problem uses the results
from the last iterations. Once all subproblems have been solved, the results are collected by a
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coordinator to be included in the update of the dual variable. The existence of the coordinator
also implies that one dual variable is used to determine the common price for all subproblems.
Each iteration consists of the following steps:

1. Calculating the optimal value of subproblem, along with primal decision variables Vi

Ṽi(j + 1) = arg min LPALR(Ṽi(j),
N−1∑
n6=i

Ṽn(j), S̄(j), γ(j))

2. Calculating the optimal value of each slack variable

s(k)(j + 1) = arg min LPALR(V̄ (j), s(k)(j),
T−1∑
m6=i

s(m)(j), γ(j))

3. Updating the residual vector Pres

Pres =
N∑
i=1

FiṼi(j + 1) +
T∑
k=1

Fss(k)(j + 1)− gcoup

4. Updating dual variables γ

γ(j + 1) = γ(j) + αPres

where j is the iteration and the parameter matrix for tamping and renewal closure times
constraint Fi = [F ti F ti ]T . The iteration stops whenever the feasible condition is fulfilled
or the maximum number of iteration is reached, as explained later on how to handle the
proposed MILP problem.

4-3-2 Alternating direction method of multipliers

Basically, ADMM shares the similar augmented Lagrangian equation than PALR. The differ-
ence lies in the way of dealing with the quadratic term. Instead of linearizing it, ADMM uses
the so-called alternating technique. This technique enables the separation of the quadratic
terms to be determined individually by fixing the decisions coming from the other subprob-
lems. This also implies that the algorithm runs in sequence instead of parallel. In this way,
ADMM can exploit the latest decisions from the other subproblems. Moreover, it is shown in
[30] that ADMM can outperform PALR in terms of number of iterations. The corresponding
Lagrangian and constraint expressions are basically similar with PALR, written as follows:

LADMM(V̄ , S̄, γ) =
N∑
i=1

Jind(Ṽi) +
T∑
k=1

J(S̃) + γ(
N∑
i=1

FiṼi +
T∑
k=1

Fss(k)− gcoup)+

ρ

2 ||
N∑
i=1

FiṼi +
T∑
k=1

Fss(k)− gcoup||22

(4-4)
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subject to equation (4− 2) (4-5)

where Fs stands for the parameter matrix for the slack variables. The remaining parts,
including the iteration, have the same structure than its PALR counterpart. Practically,
in ADMM the inner terms of decision variables will have no place in the linear equation
of objective function, unlike the PALR. The unscaled form of ADMM, as provided in [28]
is chosen to be implemented. Furthermore, the ADMM algorithm comprises the following
iterations:

1. Calculating the optimal value of subproblem, along with primal decision variables Vi

Ṽi(j + 1) = arg min LADMM(Ṽi(j),
N−1∑
n6=i

Ṽn(j + 1), S̄(j), γ(j))

2. Calculating the optimal value of each slack variable

s(k)(j + 1) = arg min LADMM(V̄ (j + 1), s(k)(j),
T−1∑
m6=i

s(m)(j + 1), γ(j))

3. Updating the residual vector Pres

Pres =
N∑
i=1

FiṼi(j + 1) +
T∑
k=1

Fss(k)(j + 1)− gcoup

4. Updating dual variables γ

γ(j + 1) = γ(j) + αPres

4-3-3 Extension for the lagrangian-based methods

To deal with the proposed MILP problem, some modifications to the original PALR and
ADMM are required. Since the problem has non-convex non-smooth coupling constraint, this
causes the subgradient dual update might be unable to converge. One way to solve this prob-
lem is by applying continuous relaxation of the binary decision variables, such that the MILP
becomes a less complex linear programming problem [41, 37]. The main goal is to preserve
the convergence properties of the dual variables. On top of that, the generated objective func-
tion from solving LP can be used as a lower bound for the next MILP optimization and the
decision variables could be the warm start vector as well. In other words, each decomposition
runs two times, for linear programming relaxation and original MILP.

Muhammad Faris Master of Science Thesis



4-4 Constraint tightening approaches 29

4-3-4 Stopping criterion

As the optimization problem is MILP, the convergence of primal residuals cannot be guaran-
teed [28]. In [1], it is shown that practically the maintenance intervention for one single track
section is not always performed in each month. Thus, there is no way the residuals can go to
zero in this regard. Therefore, rather than observing the convergence, the residuals are only
checked whether they have been reaching all negative values. Negative values for all rows of
residuals vector means that the problem is already feasible from input perspective. In other
words, an input feasibility checker is added in within the iteration [41].

Additionally, the best objective value in each iteration is also checked as well, after it is
guaranteed that it is feasible. A simple terminating technique is implemented. The complete
algorithm containing the extension technique and stopping criterion is shown in Flowchart
4-2.

4-3-5 Input feasibility compensator

In this thesis, the maximum number of performed tamping and renewal is adapted such
that one can see how the distributed approaches comply with the couplings. However, if the
limitation is very strict, these Lagrangian-based approaches will very likely fail to follow the
coupling, resulting in an infeasible result from the input perspective. In practice, this can
happen when there is not enough machine or personnel to treat the severed track sections at
one time step. In this regard, they only handle the most severe track sections and leave the
rest as it is. As a result, the degradation level of untreated track sections can go above the
limit and enters the high-risk region. However this condition practically can be fixed by e.g.,
manual spot tamping machine or renewal in the next control horizon.

In order to accommodate such condition, a heuristic compensator is designed. It is included
right after decisions V̄ coming from the optimizer, before entering the system. When the block
detects any input is violating the time limit at one time step, it limits the allowed number
of interventions according to the threshold. On one hand, the violation of the coupling
is prevented. On the other hand, one or more track sections can have degradation level
above the limit. For the next optimization cycle, the initialization of degradation level taken
from current cycle must below the limit, otherwise, the optimization is not feasible. Thus,
additional tamping or renewal is undertaken to improve the track degradation level and/or
offset memory. The resulting state variables thus can be used for the optimization.

4-4 Constraint tightening approaches

4-4-1 Distributed robust safe but knowledgeable

The last algorithm implemented in this thesis is Distributed Robust Safe But Knowledgeable
(DRSBK) approach that was originally used in [42, 43] to handle the distributed optimization
with hard non-convex coupling constraints. Unlike its Lagrangian-based counterparts, this
algorithm is originally devoted to the MILP problem. The idea is as follows: instead of putting
the coupling constraints into the Lagrangian form objective function, this algorithm applies
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tightening resource allocation in the coupling constraints for each subproblem computation.
This can be illustrated by the following objective function for each subproblem:

minimize
Ṽi

Jind(Ṽi) (4-6)

subject to equation (4− 2)

FiṼi < gcoup −
N−1∑
j=1

Fj Ṽj ∀j 6= i
(4-7)

the second set of constraints in equation (4-7) is the coupling in which the total resources or
gcoup have been reduced by the other previous subproblems interventions. This can be done by
freezing the decisions from the others. In this way, this coupling can be reformulated into the
non-coupled ones. The computation can then be solved individually by each subproblem in
the sequential and non-iterative way. One advantage of assigning the couplings into individual
constraints is that the solution is guaranteed to be feasible from the input perspective.
DRSBK is developed based on receding horizon control or MPC with coupling constraints [42].
The decisions for all subproblems are calculated for the entire prediction horizon. Therefore,
the original approach can be directly applied to the optimization problem of maintenance plan-
ning over the entire prediction horizon. Likewise, unlike the coordinator in Lagrangian-based
methods, the job of coordinator in DRSBK is only checking the feasibility of the generated
solution. The decision from one subproblem is communicated to the other remaining sub-
problems. This enables the calculation of the remaining allocation individually, and thus the
coordinator does not have to aggregate them.

4-4-2 Random sequence generator and stopping criterion

It is mentioned in Chapter 2 that the basic version of DRSBK might be stuck within subopti-
mal or even not feasible solutions from output perspective. Hence, the algorithm is modified
such that the sequence of subproblems to be processed in each iteration is generated ran-
domly. If the output from the solver indicates that the result from an iteration is not feasible,
the sequence is generated randomly, which is very likely to be different from the previous se-
quence. The feasibility checking technique is different from the Lagrangian-based algorithms,
in the sense that it sums up the total feasible solutions given by all subproblems. The result
is feasible if the total solved subproblems are the same with N . Meanwhile, the stopping
criterion is designed such that if in two consecutive cycles the difference of objective value
is below some optimality threshold and the result from the previous iteration is feasible, the
iterations are stopped. In addition, the typical feasibility compensator block similar to the
one applied in Lagrangian-based methods is also used. The complete algorithm can be seen
in Algorithm 4-3.

4-5 Conclusions

This chapter describes the implemented distributed optimization methods for the proposed
problem. First, the coupling constraints are identified as maximum maintenance closure
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Figure 4-2: Flowchart of Lagrangian-based approaches(PALR and ADMM)
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times due to tamping and renewal respectively. Since the maintenance options are integer,
the coupling constraints are inherently non-smooth. This issue complicates the approaches
when trying to retrieve feasible results.

The coordinated distributed optimization schemes are explained in this chapter. PALR and
ADMM are decomposition methods which are based on Lagrangian dual theory. In such
approaches, the augmented Lagrangian of the objective function is modified, such that it can
accommodate the coupling constraints. Hence, it is also known as pricing strategy. The third
algorithm, DRSBK, works based on constraint tightening, which modifies the resources of the
coupling constraints and solves subproblems sequentially. A coordinator is also employed to
update the dual variables (PALR and ADMM) or update the sequence (DRSBK).

In general, all algorithms require extension techniques to retrieve feasible and solutions close
to the global optimal. In Lagrangian-based algorithms, the extension technique basically con-
sists of two step methods where the first uses the continuous relaxation of binary variables
to provide the warm start variables and objective function bounds for the second MILP step.
The input-feasibility checking module examines whether the generated decisions over the pre-
diction horizon violate the coupling constraints. Furthermore, a stopping criterion is designed,
so that input-feasible and suboptimal solutions can be retrieved during the iterations, within
reasonable computation time.

The extension technique in DRSBK is applied to check whether the solution is feasible from the
output perspective. This is done by summing up the feasibility indicator from all subproblems.
The error between the current and the previous iteration is used as one stopping criteria.
As a result, output-feasible and optimal solutions can be retrieved. In the next chapter,
performance of the implemented distributed optimization methods will be presented and
analyzed.
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Chapter 5

Case study and comparison

In this chapter, the centralized and distributed optimization approaches (PALR, ADMM,
and DRSBK) are compared. Case studies, consisting of different numerical experiments, are
considered. Results then will be analyzed from both performance and numerical point of
views.

This chapter comprises the following sections: First, Section 5-1 explains the performance cri-
terion that is used to analyze in case studies. Second, the setup and assumption are described
in Section 5-2. Next, evaluation of the centralized optimization approach is presented in Sec-
tion 5-3. Section 5-4 presents numerical simulations results along with the analysis between
centralized and distributed optimization approaches. Finally, findings from this chapter are
concluded in Section 5-5.

5-1 Performance criterion

In order to analyze the performance from the numerical perspective, different optimization
approaches will be compared on the basis of the defined criteria. This enables us to review
the results from the performance and computational perspectives.

Objective function

All simulations in case studies are carried out in closed-loop. The total objective function
value over the simulation horizon is compared for each algorithm, which is calculated as:

Jcl =
Tsim∑
t=1

N∑
i=1

CiṼi (5-1)

where Tsim are the simulation horizon. Ci and Ṽi are previously defined in Chapter 3. The
performance of distributed approaches will also be calculated based on the same objective
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functions. In this case, the decisions from all subproblems are aggregated such that the
centralized objective function is computed. To compare the solution given by centralized op-
timization with the solutions from other distributed schemes, the following objective function
is evaluated:

Jnorm = Jmeth − Jcent
Jcent

(5-2)

the Jmeth is the objective function from the distributed optimization approach.

Computational time

To see the effectiveness of the distributed optimization approaches, the computational costs
of centralized and distributed optimization are compared. This is done by calculating the
required computation time to finish the entire simulation, from initialization until a solution
is generated. The time is expressed in seconds.

Number of performed tamping and renewal

The number of performed tamping and renewal over the simulation horizon will be summed
up, respectively. In general, the lower the number of interventions, the more cost-effective
the algorithm. This criterion belongs to the railway performance perspective.

Total track performance

The total track performance or degradation level over the prediction horizon is to be evaluated
as well. This criterion also belongs to the railway performance perspective.

5-2 Setup

All simulations in this research are conducted on Lenovo Thinkpad X260 with an Intel core-i5
processor and 8GB of RAM. All the LP and MILP problems are solved by Gurobi optimizer
7.5, called from MATLAB R2017a. Moreover, the following assumptions and general settings
underpin the simulation of case studies:

• The control horizon is six months, which is inspired by the measurement from Dutch
railway case [1]. This means that optimization is only conducted once for every six
months. The time step of maintenance intervention is one month, which leads to six
consecutive decisions for six months. The default prediction horizon is set to be nine.
But, it can also vary, either with similar or higher period than the control horizon.

• Initial condition and degradation rate for each track section can be different, depending
on the case studies. Different degradation rates for each track section are randomly
generated as a Gaussian distribution. This distribution is adapted from the practical
study of [3]. Also, the degradation rate is assumed to be known and constant within
the simulation horizon, or in other words, the system is time invariant.
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• The cost of renewal operation is set to be 30 times that of than tamping. This is to
indicate that renewal is a very expensive operation. Other parameter values can be
checked in Table 5-1.

Table 5-1: Fixed parameter data

Parameter value
Offset (α) 0.001
Maximum level [mm] (hmax) 1.8
Minimum level [mm] (hmin) 0.01
Machine (tamping and renewal) travelling time/ track section [min.] (tt2/tr2 ) 0.5
Tamping intervention time/ track section [min.] (tt1) 33
Renewal intervention time/ track section [min.] (tr1) 60
Renewal/tamping cost 30
Maximum number of tamping/ track section over T (gt) 4
Maximum number of tamping/ renewal over T (gr) 1
Renewal allowance threshold (hr) 1.53

• The system is deterministic, meaning that no stochasticity or any perturbation involved.
This also implies that reactive maintenance is not considered.

• Several case studies with different settings and conditions are designed. Four differ-
ent experiments in Section 5-3 are used to evaluate the centralized optimization. The
other three experiments in Section 5-4 are used to compare and analyze distributed
optimization approaches.

• Practical considerations, such as maintenance machine and personnel, are assumed to
be always available, but their capability to maintain the track is adjusted according
to case studies. Moreover, the asset of study case is a single railway track, consisting
of multiple track sections. Each track section is 200 m. The total length of the track
is adjusted according to the case studies. Two stations are situated at the start and
end points of the track. When performing any maintenance on the track, the tamping
or renewal machine goes from one station to the other. The illustration is depicted in
Figure 5-1.

AAA A A

ballast

rail

sleepers

. . . . . . . . . . . . . . . . 

x1 xi+1xi xN

Figure 5-1: Illustration of track sections
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5-3 Evaluation of centralized optimization

This section discusses case studies for the centralized optimization. The goal is to analyze
the behavior of the proposed optimization problem in the centralized scheme, mainly from
railway perspective. This includes the effect of maintenance operations on track performance
and interventions costs. Furthermore, numerical performance can also be examined through
the computational time of each case.

5-3-1 Experiment 1: similar initial condition with random degradation rates

First of all, a case study with similar initial degradation level and Gaussian random degra-
dation rates are discussed. The Gaussian-random function represents natural distribution of
slow, medium, and fast degradation rates. The detail can be seen in Appendix A. The track
consists of eight track sections. The simulation horizon is five years. It is chosen since it allows
the behavior of track degradation and maintenance operations to be completely shown.

Figures 5-2 and 5-3 depicts simulation results of the first experiment. In these figures, it can
be observed that the track has various degradation curves. In general, different degradation
rates leads to different number and timing of maintenance intervention. First, a pattern
in the maintenance operations for the whole track can be observed in Figure 5-4. In the
beginning, from the month 19 to 40, the optimizer suggests that the machine and personnel
should treat more than one track section often, afterward they do nothing for a few months.
This is because the offset memory is still moderate, thus it is more efficient to tamp multiple
track sections at one time step if the closure time allows. This pattern is changed when the
degradation level is approaching the limit. Thus, tamping is performed more frequently, with
no more than two track sections at once. The time gap with the previous tamping is also
reduced. At some point where tamping is not efficient anymore, it is necessary to perform
renewal operation. Once the renewal is carried out, the track performance improves to the
best condition. This might also imply that no interventions are required until the end of the
simulations, as can be seen in Figure 5-2.

Apart from intervention timing, the number of required interventions for various degradation
rates might also be different. For instance, in track section 2, it only requires three tamping
works, while in track section 4, five tamping is required. This is because track section 2
degrades faster, so the renewal is performed earlier, rather than performing another tamping.
On the other hand, track section 1 degrades slower, thus the algorithm waits until tamping is
no longer effective. Additionally, the closure time constraint works perfectly in simulations.
The maximum possible number of treated track sections are set to four. None of the suggested
interventions exceeds four track sections. Furthermore, the maintenance map to see in which
track section, maintenance actions are carried out at one time step, is presented in Figure 5-
5. This kind of map can facilitate infrastructure managers to precisely schedule maintenance
operations over the control horizon.

5-3-2 Experiment 2: different initial condition and degradation rates

Next, the second experiment provides a simulation with different degradation rates (slow and
fast) and different initial values (low and high). Hence, this experiment results in four different
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Table 5-2: Combination of parameters for the Experiment 2

Degradation rate
Slow Fast

Initial value High Section 3 - 4 Section 7 - 8
Slow Section 1 - 2 Section 5 - 6

combinations. Each combination has two track sections. Table 5-2 shows the corresponding
track sections and their combinations. Meanwhile, simulation results can be seen in Figure
5-6 and 5-7. First, from the initial condition perspective, when the degradation level is
started from a low degradation level, tamping is conducted just one time until the end of
the simulation. This is shown in track sections 1 and 2. On the contrary, the high initial
condition can lead to higher number of tamping, as shown in track sections 3 and 4. Thus, it
will have a lower number of total interventions compared to the low initial degradation level,
within the simulation horizon. But this is not the case for the track sections 7 and 8, where
they perform less tamping than track sections 5 and 6. Track sections 5 and 6 have faster
degradation rate, thus tamping is more required. Meanwhile, all track sections started from
low degradation level do not require renewal since their offset memory states are below the
limit. Conversely, renewal is needed in track sections 3, 4, 7, and 8. Track sections 3 and
4 perform it later than track sections 7 and 8. With low degradation rates, optimizer tries
to delay renewal since it is very expensive. However, if it is seen from the entire simulation
horizon, track sections 7 and 8 will spend fewer maintenance costs. In general, these decisions
and responses have a similar pattern to the first experiment and they are expected from such
a decision support tool.

Another potential problem coming from this kind of experiment relates to the closure time
constraint. As the parameters are exactly the same, the occurrence of infeasible result can
be high if the closure time is stricter. A high degree of parameter similarity increases the
number of track sections that must be treated in a time step, while in the other time step,
none of them are treated. This pattern can be observed in Figure 5-8 and 5-9, where every
time a maintenance operation is undertaken, exactly two track sections are intervened. This
is because there are two track sections that have exactly the same parameters in this test.

5-3-3 Experiment 3: different trade-off in the objective function

In the third experiment, the effect of different weights λ in the objective function are ad-
dressed. The weight is increased with the difference of the power of ten. Also, the other
parameters are fixed. Table 5-3 depicts the numerical performance results. From the ta-
ble, several remarks can be made. First, from the mathematical perspective, higher weights
correspond to higher optimal objective function values. It is obvious since λ basically acts
as a multiplier to the maintenance intervention costs. This condition also implies that the
term which contains the input is treated more costly compared to the track performance
term. Hence, the optimizer will theoretically prioritize the saving of interventions over the
track degradation level [52]. Moreover, higher λ also means that in general, the optimizer
is able to quickly generate the solution. On the contrary, lower values of λ mean that the
track performance and interventions are on the same level of importance. Thus, the optimizer
might require a longer time to look for an optimal solution. However, it can be seen that
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Table 5-3: Numerical performance of various weights

Parameter / value 0.01 0.1 1 10 100 1000
Optimum J(V) 104.46 111.97 133.82 455.59 3695.60 36096.00
Time (sec.) 0.617 0.518 0.590 0.533 0.415 0.363
Number of tamping 23 15 7 6 6 6
Number of renewal 1 1 1 1 1 1

Table 5-4: Numerical performance of various prediction horizon

Parameter / value 6 9 12 15 18
Optimum J(V) 1692.2 1671.1 1604 1519.4 1462.5
Time (sec.) 0.8415 3.2213 5.1850 12.226 18.853
Number of tamping 16 16 13 8 5
Number of renewal 4 4 4 4 4
Total track degradation 332.248 311.122 273.995 239.401 212.528

the computational times from all settings are hardly different. Only the computational time
of the instance highest weight has around half value of that of the instance with the lowest
weight.

Furthermore, Figure 5-10 shows multiple degradation curves associated with different weights.
As discussed before, lower value of λ means that the interventions are not expensive, thus the
curve of the lowest weight has the highest number of tamping among others. As the weight
is increased, maintenance interventions become more costly, thus the number of suggested
tamping is reduced. However, as shown in Figure 5-11, the last three instances with the high-
est weights have a similar total number of tamping. This means that the effect of increasing
weight is already saturated in this case. Moreover, all of them perform renewal as indicated
by Figure 5-12. It can be that the first two lowest weights perform renewal earlier. This is
likely due to the similar reason as discussed in Experiment 1 and 2.

5-3-4 Experiment 4: different prediction horizon

Theoretically, longer prediction horizon in a MPC-based approach leads to a solution closer
to the global optimal [53]. The fourth experiment is defined to examine the effect of different
prediction horizon. The result can be seen in Table 5-4. First, from the table, it can be
observed that longer horizon is associated with longer computation time. It is expected since
the optimizer must look further into the future, thus more decision variables are added to
facilitate this. The computation time increases exponentially, as expected from NP-hard
problem. In the large-scale instance, long prediction horizon might not be feasible to apply.
Second, this also means that the optimal objective function value over the control horizon is
reduced. Since the longer the prediction, the more knowledge needs to be considered by the
optimizer. This also comes with the lower number of tamping and total track degradation.

Muhammad Faris Master of Science Thesis



5-3 Evaluation of centralized optimization 41

0 10 20 30 40 50 60

Time step

(months)

0

0.5

1

1.5

2

T
ra

c
k

 d
e
g
ra

d
a
ti
o
n
 l
e
v
e
l

 (
m

m
)

Section 1

X
1
(k)

X
2
(k)

Safety threshold

0 10 20 30 40 50 60

Time step

(months)

0

0.5

1

1.5

2

T
ra

c
k

 d
e
g
ra

d
a
ti
o
n
 l
e
v
e
l

(m
m

)

Section 2

X
1
(k)

X
2
(k)

Safety threshold

0 10 20 30 40 50 60

Time step

(months)

0

0.5

1

1.5

2

T
ra

c
k

 d
e
g
ra

d
a
ti
o
n
 l
e
v
e
l

 (
m

m
)

Section 3

X
1
(k)

X
2
(k)

Safety threshold

0 10 20 30 40 50 60

Time step

(months)

0

0.5

1

1.5

2

T
ra

c
k

 d
e
g
ra

d
a
ti
o
n
 l
e
v
e
l

(m
m

)

Section 4

X
1
(k)

X
2
(k)

Safety threshold

Figure 5-2: Track degradation curve for track section 1-4 in the Experiment 1
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Figure 5-3: Track degradation curve for track section 5-8 in the Experiment 1
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Figure 5-4: Total intervention (tamping and renewal) in the first Experiment 1

0 10 20 30 40 50 60

Time step (months)

0

2

4

6

8

S
e
c
ti
o
n

Tamping map

0 10 20 30 40 50 60

Time step (months)

0

2

4

6

8

S
e
c
ti
o
n

Renewal map

Figure 5-5: Mapping of intervention in the Experiment 1
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Figure 5-6: Track degradation curve for track section 1-4 in the Experiment 2
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Figure 5-7: Track degradation curve for track section 5-8 in the Experiment 2
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Figure 5-8: Total intervention (tamping and renewal) in the Experiment 2
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Figure 5-9: Mapping of intervention in the Experiment 2
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Figure 5-10: Comparison of degradation curves with different weight λ
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Figure 5-11: Comparison of tamping operations with different weight λ

Master of Science Thesis Muhammad Faris



46 Case study and comparison

0

6
5.5

0.5

5
60

1

4.5

M
a
in

te
n
a
n
c
e
 a

c
ti
o
n

504

Lambda

1.5

3.5 40

Time step (months)

3 30

2

2.5
202

101.5
1 0

Lambda = 0.01

Lambda = 0.1

Lambda = 1

Lambda = 10

Lambda = 100

Lambda = 1000

Figure 5-12: Comparison of renewal operations with different weight λ

5-4 Evaluation of distributed optimization

Next, the limitation of the centralized optimization and the advantages offered by distributed
approaches are analyzed. In this section, distributed optimization approaches are evaluated
from both the performance and numerical point of views.

Different case studies are considered. In general, the evaluation tests are categorized into two
types. First, three different problem scales are established: small, medium and large. Each of
them consists of 4, 50, and 150 track sections, respectively. To further thoroughly observe the
behavior of distributed approaches, ten different simulations are carried out for each problem
scale. The mean and standard deviation of the retrieved output is then calculated. Second,
the distributed approaches are compared by increasing number of track sections gradually.
A threshold is established based on the limitation of the centralized approach. In this way,
each distributed approach can be pushed to their respective limit defined by the threshold.
Likewise, it is notable that all simulations are conducted in the closed-loop. To further see
how the algorithms comply with the coupling constraint, the following expression can be used
to calculate the maximum treated track sections at one time step:

tmax = tt1 ∗ (N − cmax ∗N/10) (5-3)

where tt1 and cmax is a tamping intervention time and constant factor, respectively. N is the
number of track sections. The limit is then decided right after observing the result of the loose
coupling constraint or unconstrained instances, thus the cmax can be adjusted accordingly.

Apart from the settings, the parameter, which consists of the initial condition and degradation
rates, is generated randomly using Gaussian distribution, as had been done in the previous
section. It is particularly designated for medium and large-scale settings. The parameter data
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Table 5-5: Performance comparison in small-scale problem

Parameter / algorithm Centralized PALR ADMM DRSBK
mean stdev mean stdev mean stdev mean stdev

Total J(V) 1286.31 630.21 1354.96 596.87 1362 596.78 1292.35 636.27
Comp. time (sec.) 1.70 0.68 22.29 12.51 6.92 2.08 3.40 0.74
Number of tamping 15.90 6.35 22.30 6.93 25 8.25 16.30 6.75
Number of renewal 2.40 2.07 2.50 1.96 2.50 1.96 2.40 2.07
Total track performance 407.31 108.01 381.96 110.01 362.14 121.12 409.35 109.48
Normalized J(V) - - -8.58% 0.13 -9.43% 0.14 -0.33% 0.01

Table 5-6: Performance comparison in medium-scale problem

Parameter / algorithm Centralized PALR ADMM DRSBK
mean stdev mean stdev mean stdev mean stdev

Total J(V) 11365.43 5897.54 18542.59 1634.98 13816 5798.2 11975.95 6169.34
Comp. time (sec.) 107.94 92.1 145.48 56.29 54.69 25.20 34.78 5.60
Number of tamping 172.60 82.47 300.50 88.25 293.5 84.05 172.90 82.69
Number of renewal 16.30 16.96 30.50 4.50 20.10 18.66 16.30 16.96
Total track performance 5357.03 1021.20 6387.58 187.49 4851.30 1050.08 5356.96 1041.11
Normalized J(V) - - -112.89% 1.37 -22.15% 0.16 -0.02% 0



Table 5-7: performance comparison in large-scale problem

Parameter / algorithm Centralized PALR ADMM DRSBK
mean stdev mean stdev mean stdev mean stdev

Total J(V) 36200.18 12619.83 54137.37 5856.02 45174 10102.62 36205.13 12619.1
Comp. time (sec.) 871.84 512.43 453.74 117.02 160.12 21.48 104.67 15.15
Number of tamping 493.00 105.77 688.00 213.42 946.00 35.35 493.5 105.58
Number of renewal 43.5 43.17 94.78 22.06 58.30 41.05 43.5 43.17
Total track performance 18220.18 2361.42 18824.03 1106.48 15300.91 3977.68 18220.13 2361.36
Normalized J(V) - - -52.00% 0.63 -31.00% 0.15 -0.02% 0
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distribution and allocation over the entire track sections used in case studies are presented in
Appendix A.
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Figure 5-13: Comparison of computation time and objective function value
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Figure 5-14: Comparison of normalized objective function value
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Figure 5-15: Comparison of total degradation level, number of tamping and renewal over the
simulation horizon

5-4-1 Experiment 1: multiple tests on small, medium, and large-scale settings

The comparison for small, medium, and large-scale are presented in tables 5-5, 5-6, 5-7,
respectively. Each table presents the average and standard deviation values from overall ten
different tests for every problem scale. First of all, in the small-scale tests, it can be seen
that the centralized optimization approach has the fastest computation time among all of the
approaches. This is expected since in small-scale, the number of variables is relatively small.
Hence, the centralized optimization approach is still tractable and distributed approaches are
not urgently required yet.

Next, among distributed approaches, DRSBK is the fastest algorithm. This is expected
from such simple method that modifies the couplings allocation instead of the augmented
Lagrangian of the objective function. On top of that, it generates the closest objective function
value to the centralized problem. This also implies that the average number of suggested
tamping can be exactly the same as the one suggested by the centralized approach. Likewise,
the difference in the number of renewal is only one. It can even have exactly the same
solution with the centralized approach in some tests, as can be seen in Appendix B. Apart
from DRSBK, the solutions given from Lagrangian-based algorithms are not close to the
centralized solution. Since no convergence guarantee to the proposed MILP problem, they
have to a spend longer time in their iterations, looking for feasible results. The two-step
computation also implies longer processing time. Besides, they suggest a higher number of
tamping and renewal than the centralized approach. ADMM has a better average solution
yet shorter processing time than PALR. This is because ADMM uses the latest decisions to
take into account, thus it is easier to get into feasible regions than PALR. However, it does
not mean that the result is global optimal or close to it. Actually, it might be possible to
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improve both Lagrangian-based algorithms to find a solution closer to the global optimal,
but this requires more iterations, sacrificing the computation time. Furthermore, since they
suggest more interventions, the track degradation level can be lower than the centralized
problem and DRSBK. In some conditions where the track is busy, these results are preferred.
However, of course, it is not cost-effective. Compared to Lagrangian-based methods, DRSBK
is much simpler to develop yet it could perform remarkably well in this research. Additionally,
all algorithms are able to give a feasible solution without violating any coupling constraints.
This is due to the extension methods in Lagrangian-based algorithms that drive the iterations
into feasible results. The original DRSBK is by default designed to follow couplings. Thus,
all of the distributed optimization approaches are comparable. Additionally, the examples of
simulation results from all approaches in the first test are given in Appendix A. All of them
show typical responses and no couplings were violated.

The advantage of distributed approach in computation time is started to rise in medium-scale
comparison, especially DRSBK and ADMM. The table shows a significant improvement of
computation time offered by both approaches, which surpasses the centralized optimization.
However, the solutions given by other two Lagrangian-based algorithms PALR and ADMM
are far from global optimal. Since the problem size is bigger, it might be more difficult to find
the feasible regions, in the sense that more iterations are required. More number of iterations
means increasing computation time. Furthermore, DRSBK again has the closest value to the
centralized approach. The objective function values of PALR and ADMM now have greater
difference with the centralized approach compared to their solutions in small-scale instances.
ADMM is better than PALR in all criterion, even the track performance is the most minimal
among all algorithms. From both performance and numerical perspectives, PALR has the
worst overall performance among the three.

Finally, in the large-scale instance, it is shown that all distributed schemes have significantly
faster processing time than the centralized. In such large-scale problem, the number of vari-
ables is really big, leading to the exponential computation time and centralized optimization
might no longer be tractable. Thus, distributed optimization approaches can start to play
a role. PALR can halve the centralized processing time. Likewise, the same pattern for
both Lagrangian-based algorithms is again noticed. Again, ADMM is better at all criterion
than PALR. Also, DRSBK stands out as the best distributed algorithm from the numerical
perspective. Among ten tests in each problem scale, there is an issue of some distributed
algorithms having a lower objective function value than the centralized optimization in a few
tests. For instance in the third test in small-scale, ADMM outperforms the centralized ap-
proach. From the observation, it is shown that ADMM decides to conduct renewal operation
earlier than its centralized counterpart. At that moment, ADMM spends more maintenance
cost than the centralized approach but afterward, ADMM does not have to conduct tamping
anymore until the end of the simulation. The centralized approach still suggests some tamp-
ing and it performs renewal when the degradation level already high. This also implies the
total degradation level of the ADMM can be far lower than the centralized approach. This
issue is always started by the centralized having lower objective function value at one cycle,
which makes sense because theoretically, the solutions of distributed approaches are the same
or worse than the centralized problem. The constraint 3-8 is defined to prevent this issue to
arise, but the threshold can only be set up to 85%. If the threshold is higher than that, the
computation process is untractable. Additionally, the responses can be observed in Appendix
A
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5-4-2 Experiment 2: gradual increment tests

The second experiment presents a comparison of performance criterion with gradual increment
in the number of track section. With the higher number of variables taken into account, the
problem sizes will be bigger and so typically the computation process will take much longer
time [44]. For the NP-hard problems, this can be worse, since the problem complexity might
increase exponentially [50].

The simulation settings are as follows. The initial degradation level and rates are Gaussian-
randomized for all track sections. This is done in the same way as before, but the mean and
standard deviation remain the same for all tests. Likewise, the number of track sections is
increased with the difference of 10 in the beginning and after N = 150, the gap is set to
be 100. The rule for all algorithms are once the threshold for centralized is reached (in this
experiment, it is 1100 seconds), the test of the corresponding approach is stopped. In this way,
each algorithm will have different data length due to their different capabilities in handling
large-scale problem. The limitation of each algorithm can be compared as well. Moreover,
other parameters are fixed.

Next, an illustration which shows the simulation results of the first criteria (computation
time) against a number of track sections from the proposed optimization problem is depicted
in the first plot of Figure 5-13. From the figure, it can be observed that the computation
cost increases with the higher number of track sections. This issue is suffered not only by
centralized optimization but also the distributed approaches as well. However, the curve of
the centralized approach is exponential, which can be expected from such centralized NP-hard
problem.

It stops the experiment earlier than the other algorithms, at N = 150. PALR can continue to
perform computationally reasonable until it reaches 400 track sections. ADMM can prolong
its experiment until N = 900. ADMM can outperform PALR possibly due to the use of
current iteration data rather than the previous iterations. In this way, the algorithm can
quickly find feasible solutions, in early iterations. On top of that, DRSBK can treat up
to 1300 track sections, which proves itself to be the most tractable among all algorithms.
Moreover, it is notable that during simulations in large-scale instances (with N > 150) the
simulations of centralized optimization is sometimes not possible to be carried out due to lack
of available memory in the computer. This issue never happens during the simulations of
distributed optimization algorithms. Furthermore, the second plot in Figure 5-13 shows that
in general, the curve of objective function values for all algorithms are linear. From start to
the end of the centralized approach computation, all of them look coinciding with each other.
After N > 150, PALR and ADMM have diverted curve due to their higher objective function
values. They are very likely trapped in local optimal points. On the other hand, the curve of
DRSBK is linear which means that its solution is close to the global optimal. In Figure 5-14,
the distance between centralized and distributed approaches are shown. PALR and ADMM
could only retrieve local solutions, which are far from the benchmark. On the other hand,
DRSBK solution can manage to stay close to the global optimal.

From the railway performance perspective, the total track degradation level and the number
of tamping and renewal operations are also discussed. In the first plot, all algorithms have
linear curves. A small gap can be noticed where PALR and ADMM have smaller values than
DRSBK. This is due to the fact that they suggest more number of interventions. This can
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be confirmed in the second and third plots, where both Lagrangian-based algorithms have
higher curves. Theoretically, lower value of track degradation level is good to reduce the risk
of unavailability, especially in highly occupied tracks, but doing so requires a higher number
of interventions, which is not preferable from the economical point of view. On top of that, it
can be inferred that the number of track sections does not change the working characteristics
of all approaches.

5-4-3 Experiment 3: feasibility compensator

In the practice of track maintenance, the machines and personnel required to maintain the
ballast is limited or not always available [1]. Besides, the track possession time for maintenance
can also be reduced due to the fact of, for instance, busy network. In this case, the target
track sections cannot be fully handled at one time slot. On the other hand, this leads to
unfeasible results from the output perspective despite the coupling constraints are fulfilled.
Hence, the untreated tracks will be fixed later with spot tamping or renewal.

To deal with such conditions, this experiment will test the heuristic compensator algorithms
applied in distributed approaches. The data from test 3 of the small-scale instance is used.
The resource of couplings is reduced so that only one tamping is allowed and renewal could
not be conducted at all. The simulation results for PALR, ADMM, DRSBK are depicted
in Figures 5-16, 5-17, 5-18, respectively. First, it can be observed that all of them suffers
unfeasible results which can be indicated by the degradation level violating the maximum
limit. This condition can be handled by spot tamping and renewal operations, which are
suggested by the compensator. As can be seen in the figures, the passing degradation level
can be brought back to the safe region by spot interventions. With the imposed limitation,
DRSBK can properly assign tamping operation thus, it only requires spot renewal, as shown in
Table 5-8. PALR and ADMM on the other hand could not get feasible solutions for tamping.
In addition to spot renewal, they consequently need to perform spot tamping. With stricter
coupling, the feasible region might be more difficult for Lagrangian-based algorithms to reach
it. Moreover, In this experiment, it is assumed that the spot interventions only available by
the end of control horizon. Therefore, the dangerous condition might last for a couple of
months. For instance, it is shown in the curve of the track section 1 in PALR result where it
lasts for four months. In the end, spot tamping is performed accordingly.

Table 5-8: Comparison of required spot intervention

Parameter / Algorithm PALR ADMM DRSBK
Spot tamping 3 2 0
Spot renewal 4 4 4

5-5 Conclusions

In this chapter, various experiments with different settings and conditions are designed. In
general, the experiments can be grouped into two categories. The first one is used to evaluate
the behaviour of centralized optimization. This consists of four different experiments. The
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Figure 5-16: Compensator output in PALR
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Figure 5-17: Compensator output in ADMM
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Figure 5-18: Compensator output in DRSBK

second category aims at comparing and analyzing the performance of distributed optimization
approaches. Two different experiments are carried out under this category.

In the first category, it is shown that the proposed optimization problem formulation works
properly. The centralized optimization can suggest timely maintenance interventions. Gen-
erally, tamping is suggested when the degradation level is high but the offset memory is low.
When offset memory is approaching the limit, renewal is performed. The trade-off variable λ
and prediction horizon can also be tuned to find a good balance between quality of the solu-
tions and maintenance or computational costs. In the second category, it is shown that the
centralized optimization approach encounters an enormous computation time for large-scale
settings and is often not feasible in practice due to the other issues, such as computer mem-
ory limitation. It was shown that given a limitation in computational time, the centralized
optimization is not scalable.

Furthermore, two Lagrangian-based approaches (PALR and ADMM) and a constraint-tightening
approach (DRSBK) can solve the formulated problem with more flexibility. The extension
methods enable the Lagrangian-based algorithms to get feasible solutions. In general ADMM,
can generate solutions slightly closer to the global optimal yet quicker than PALR. However,
both algorithms performance are still below DRSBK, which outperforms them in term of
computational time and the normalized objective function value. However, such random
sequence-based algorithm is not guaranteed to convergence to the same solution in each run.
This is because neither the objective functions from the other subproblems taken into account
nor common price (like dual variables in Lagrangian-based approaches) are used by DRSBK.
Additionally, when the coupling constraint is stricter, the comparison algorithm is able to
handle unfeasible track performance by suggesting spot interventions by the end of control
horizon.
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Finally, the experiment results and analysis show that the Lagrangian-based approaches do
not perfectly suited to handle distributed optimization of MILP problems with integer inputs,
like the optimization problem in this thesis. Instead, a simple constraint tightening approach
as used by DRSBK could work better by reducing computation time while maintaining good
solutions in the distributed optimization of such NP-hard problem.
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Chapter 6

Concluding Remarks

This chapter provides the conclusions obtained from conducting this research and direction
for future research of the current methods. The implementation of distributed optimization
in railway maintenance operations planning field is novel, thus there are some open issues and
challenges yet to be explored. This chapter begins with the explanation of the conclusions in
Section 6-1. Afterwards, the research questions are answered in Section 6-2. This is followed
by the discussion of future works in Section 6-3.

6-1 Conclusions

In this research, three different distributed optimization approaches have been developed for
large-scale railway track maintenance operations planning. The main objective is to reduce
computation costs imposed by the optimization of large-scale maintenance problem while
maintaining the solution close to the global optimal. To that end, several procedures are
defined and carried out in this thesis.

First of all, the formulation of an optimization problem is done. The objective function ap-
plied contains the track performance and maintenance costs terms. The merit of exploiting
such objective function is that the balance between the two terms can be optimized. More-
over, the formulation includes prominent characteristics of track maintenance operations such
as degradation dynamic, early renewal prevention, degradation limits, maximum number of
interventions, and maintenance closure times. In general, the constraints can be categorized
into individual and coupling constraints. The formulated optimization problem can be cate-
gorized as Mixed-Integer Linear Programming (MILP), which is also a non-convex NP-hard
problem.

Three distributed approaches are designed for the proposed optimization problem. The cou-
plings constraints, which are tamping and renewal closure times, are firstly identified and
reformulated to cope with the distributed approaches. The first two distributed optimization
approaches work based on Lagrangian duality theory: Parallel Augmented Lagrangian Relax-
ation (PALR) and Alternating Direction Method of Multipliers (ADMM). These approaches
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are modified with extension techniques such that they can handle the non-convex mixed-
integer problem. The extension technique basically consists of a two-step method where the
first uses the continuous relaxation to provide the warm start variables and bounds for the
next MILP step. Furthermore, a stopping criterion is designed, such that input-feasible and
suboptimal solutions can be retrieved within a reasonable time.

Alongside the Lagrangian-based approaches, Distributed Robust Safe But Knowledgeable
(DRSBK) is implemented. Instead of modifying the objective equation through dual func-
tion, this approach exploits constraint tightening concept. In this way, the couplings can be
reformulated as an individual constraint with diminishing allocations. The subproblems are
hence solved sequentially. To avoid infeasible solutions, A random sequence process algorithm
is also added. This makes the algorithm become iterative. Likewise, a stopping criterion is
used such that the solution is feasible from the output perspective. Furthermore, a coordina-
tor is also employed for each approach to update the dual variables (PALR and ADMM) or
update the sequence (DRSBK).

In the case studies, it is shown that the distributed optimization approaches are able to solve
the proposed problem quicker than centralized optimization in large-scale instances. DRSBK
rises as the fastest yet still able to generate the closest solution to the centralized problem.
ADMM is quicker than PALR. However, solutions from both Lagrangian-based methods are
suboptimum. Therefore, a Lagrangian dual-based approach might not be a suitable option
to be developed for the future research of the proposed optimization problem.

6-2 Research questions

In this thesis, the following main research question is defined:

Is it possible to improve the computational performance while maintaining a good quality of
the solutions for large-scale railway track maintenance operations planning problem solved by
a distributed optimization approach?

To deal with this research question, complete explanations regarding the proposed optimiza-
tion problem, distributed optimization, and case studies are given in previous chapters. More-
over, brief answers to each subquestion are discussed below:

1. Which optimization problem can capture characteristics like degradation of track perfor-
mance, maintenance interventions and closure time for large-scale maintenance opera-
tions in railway tracks?
The proposed optimization problem includes the objective function that can show the
trade-off between track performance and maintenance costs. The track degradation
dynamics with integer inputs are also accounted to estimate the track condition, based
on measurement. Moreover, the constraints are in general grouped into two, individ-
ual and coupling constraints. The individual constraints include degradation dynamic,
early renewal prevention, degradation limits, and maximum number of interventions.
The coupling constraints are tamping and renewal closure times or down times. The
problem is deterministic. Hence, the proposed optimization problem already considers
the prominent characteristics of the track maintenance operation planning.
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2. Which distributed optimization approaches can deal with the proposed optimization prob-
lem and reach feasible global solutions?
The proposed optimization problem contains non-smooth couplings problem which
might not be able to converge. Based on literature survey, three distributed approaches
which can deal with such issue, are chosen. The Lagrangian-based algorithms, PALR
and ADMM, are modified with two-steps extension techniques to handle the non-smooth
coupling constraints such that feasible solutions can be obtained and none of the cou-
plings are violated. The third approach, DRSBK, equipped with an extension technique,
is also able to get feasible solutions.

3. How is the performance of distributed approach in comparison with the centralized ap-
proaches in terms of the quality of global solutions and computation time?
In the study cases, it is shown that the distributed optimization approaches are able to
outperform the centralized optimization in large-scale instances in computation time.
DRSBK rises as the fastest approaches among the others. This is followed by ADMM
and the worst is PALR. From performance perspective, DRSBK is able to generate
closest solutions to the centralized problem. On the other hand, solutions from PALR
and ADMM are suboptimum, which is far from the global solution.

Having the answers from all subquestions, the answer to the main research questions can be
written as follows:

Three distributed optimization approaches, (PALR, ADMM, and DRSBK) can
be implemented to the track maintenance operations planning problem to reduce
computation time when dealing with the large-scale problem. However, only
DRSBK can maintain a good quality of the solutions.

6-3 Future work

Several challenges can be found in conducting further research and development in the field
of distributed optimization of railway maintenance operations, among others:

Adjacent track scenario

At the current research, the number of maximum maintained track sections are assumed to
be constant. However, in practice, they can vary according to the position of the treated
track sections. If the switching times between adjacent tracks are eliminated, this enables
the machine to treat more track sections. Nevertheless, this makes the feasibility checking of
solutions become more complicated.

Real-life measurement for case studies and system identification

The use of real data is important to evaluate the effectiveness of the distributed optimization
approaches to handle track maintenance planning in practice. Moreover, new challenges can
also come into play. First, this enables the use of practical constraints, such as track curve
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limitations. Moreover, the other maintenance options for ballast can also be added to the
options. More options might give rise to more practical constraints. In practice, there is also
the possibility that some assumed parameters are no longer fixed, such as degradation rates
and offset from tamping. Thus, system identification can also be deployed to accurately model
the practical parameters. The degradation dynamics can also be improved to be time-varying
instead of time-invariant.

Maximum number of maintenance interventions as coupling constraint

The constraint for maximum number of maintenance can also be assigned to the couplings
as well. In this way, the problem will be a bit more complicated since the optimizer must
allocate the allowed number of interventions for each track sections properly, with respect to
the total budget. It can also be multiplied with some constant to reflect the maintenance cost
for each type of intervention.

Stochastic model and perturbation

The current deterministic model can be developed into a stochastic model, which can take
into account uncertainty coming from the practical knowledge in track maintenance, such
as degradation dynamics, measurement error, ineffective tamping, and so forth. Moreover,
perturbation due to the updated track degradation level after reactive intervention or machine
unavailability can also be considered as well. This model further encourages the development
of robust distributed optimization approaches.

Column generation-based distributed approach

The improvement of current model and addition of more constraints in the future research can
increase the complexity of the problem and so it will be more difficult to obtain the global
solutions. At some point, the current methods might not be able to handle the problem
anymore. Thus, improvements from methodology perspective are required. A distributed
approach based on column generation technique under the framework of Dantzig-Wolfe de-
composition can be applied. Unlike the Lagrangian-based methods, this method guarantees
feasibility. Moreover, this algorithm is also suited for coupling constrained problem.

Hierarchical distributed optimization approach

The other potential approach to be implemented is distributed hierarchical structure. This
scheme facilitates different time-scales of maintenance planning and scenarios that exist in
the railway industry. Moreover, the development of maintenance scheduling for different
types of assets is also challenging to develop with this scheme. The clustering technique can
also be added to the lower level system to categorize the track sections into multiple smaller
groups. In this regard, subproblems will not only handle single track section but can also be
multiple track sections at once and the size of each might be different. In this kind of scheme,
the so-called cooperative DRSBK, which includes perturbations from other subproblems in
the individual objective functions, can be applied to improve the performance of current
distributed optimization approaches.
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Appendix A

Appendix A

Table A-1, A-2 and Figure A-1 presented below contain initial track degradation level and
degradation rates data used in case studies. For the sake of simplicity, the parameters for
medium and large-scale experiments along with gradual experiment are not presented. More-
over, Figures A-2 - A-17 depict the simulations from test 1 and test 3 in small-scale experi-
ments.

Table A-1: Parameter for the second experiment in centralized evaluation

Parameter Low High / fast
Initial condition X0 0.7 1.4
Degradation rate a1 1.018 1.036
Memory rate a2 1.009 1.014
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Figure A-1: Distribution of a1 and a2 for the first experiment in centralized evaluation
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Table A-2: Parameters for small scale tests

Test
1 2 3 4 5 6 7 8 9 10

Section 1
x0 1.3 0.2938 1.0419 1.3722 0.6655 0.887 1.366 1 0.9 0.9
a1 1.04 1.0224 1.0287 1.0244 1.035 1.0388 1.0305 1.04 1.06 1.03
a2 1.012 1.0151 1.0092 1.0124 1.0124 1.0101 1.0141 1.014 1.012 1.012

Section 2
x0 1.3 0.635 0.9292 1.5585 0.5308 0.9184 1.2932 1.1 1.1 1
a1 1.02 1.0302 1.0362 1.0349 1.0495 1.0455 1.0432 1.02 1.05 1.04
a2 1.01 1.0122 1.013 1.0097 1.0113 1.0137 1.0151 1.012 1.01 1.01

Section 3
x0 1.3 0.3384 0.9198 1.2333 0.3743 0.8524 1.2805 1.2 1.3 1.1
a1 1.03 1.0339 1.0246 1.0358 1.0384 1.0307 1.0341 1.03 1.04 1.05
a2 1.009 1.009 1.0116 1.0097 1.0108 1.0138 1.0108 1.01 1.009 1.009

Section 4
x0 1.3 0.4748 1.0588 1.3187 0.4135 0.9862 1.2782 1.3 1.5 1.2
a1 1.035 1.0377 1.0202 1.0283 1.0359 1.0237 1.0377 1.02 1.03 1.06
a2 1.011 1.0105 1.0116 1.0122 1.0181 1.0139 1.0155 1.008 1.011 1.011
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Figure A-2: Track degradation curves of the centralized in test 1

0 10 20 30 40 50 60

Time step

(months)

0

1

2

3

4

N
u
m

b
e
r

o
f

ta
m

p
in

g

Total tamping

Max Tamping

0 10 20 30 40 50 60

Time step

(months)

0

1

2

3

4

N
u
m

b
e
r

o
f

re
n
e
w

a
l

Total renewal

Max renewal

Figure A-3: Total intervention (tamping and renewal) of the centralized in test 1
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Figure A-4: Track degradation curves of the PALR in test 1
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Figure A-5: Total intervention (tamping and renewal) of the PALR in test 1
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Figure A-6: Track degradation curves of the ADMM in test 1
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Figure A-7: Total intervention (tamping and renewal) of the ADMM in test 1
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Figure A-8: Track degradation curves of the DRSBK in test 1
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Figure A-9: Total intervention (tamping and renewal) of the DRSBK in test 1
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Figure A-10: Track degradation curves of the centralized in test 3
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Figure A-11: Total intervention (tamping and renewal) of the centralized in test 3
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Figure A-12: Track degradation curves of the PALR in test 3
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Figure A-13: Total intervention (tamping and renewal) of the PALR in test 3
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Figure A-14: Track degradation curves of the ADMM in test 3
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Figure A-15: Total intervention (tamping and renewal) of the ADMM in test 3
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Figure A-16: Track degradation curves of the DRSBK in test 3
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Figure A-17: Total intervention (tamping and renewal) of the DRSBK in test 3
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Appendix B

The performance data from the ten tests for small, medium, and large-scale experiments are
presented in Table B-1, B-2, and B-3, respectively.
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Table B-1: Performance comparison for small-scale tests

Approach Criterion Test
1 2 3 4 5 6 7 8 9 10

Centralized

Total J(V) 1671.12 413.21 1950.84 1550.05 593.79 747.31 1687.57 535.26 1801.01 1913.06
Comp. time (sec.) 2.71 0.81 2.00 1.39 0.98 1.56 1.80 0.97 2.05 2.69
Number of tamping 16 5 21 11 10 19 19 11 23 24
Number of renewal 4 0 4 4 0 0 4 0 4 4
Total track performance 311.12 363.21 540.84 240.05 493.76 557.31 297.53 425.27 371.01 473.06

PALR

Total J(V) 1694.47 420.86 1970.34 1636.33 707.30 1061.23 1736.44 596.41 1769.62 1956.59
Comp. time (sec.) 24.27 9.10 25.18 13.29 45.27 24.81 15.18 40.99 14.67 10.14
Number of tamping 22 5 26 22 24 22 25 19 27 31
Number of renewal 4 0 4 4 0 1 4 0 4 4
Total track performance 274.47 370.86 510.34 216.33 467.30 541.23 286.44 406.41 299.63 446.59
Normalized J(V) -1.40% -1.85% -1.00% -5.57% -19.12% -42.01% -2.90% -11.42% 1.74% -2.28%

ADMM

Total J(V) 1788.78 452.06 1876.37 1628.64 651.58 1092.99 1757.86 609.75 1782.53 1980.87
Comp. time (sec.) 5.47 12.44 7.17 7.07 5.88 7.40 6.24 5.12 6.00 6.39
Number of tamping 36 10 23 26 16 25 30 20 28 36
Number of renewal 4 0 4 4 0 1 4 0 4 4
Total track performance 228.78 352.06 446.37 168.64 491.58 542.99 257.86 409.75 302.53 420.87
Normalized J(V) -7.04% -9.40% 3.82% -5.07% -9.74% -46.26% -4.17% -13.92% 1.03% -3.54%

DRSBK

Total J(V) 1671.12 413.21 1950.84 1560.27 593.79 747.42 1687.57 535.66 1801.01 1962.64
Comp. time (sec.) 3.24 2.51 3.32 3.74 2.80 3.27 3.99 2.36 4.04 4.71
Number of tamping 16 5 21 12 10 19 19 11 23 27
Number of renewal 4 0 4 4 0 0 4 0 4 4
Total track performance 311.12 363.21 540.84 240.27 493.76 557.42 297.57 425.66 371.01 492.64
Normalized J(V) 0.00% 0.00% 0.00% -0.66% 0.00% -0.01% 0.00% -0.07% 0.00% -2.59%



Table B-2: Performance comparison for medium-scale tests

Approach Criterion Test
1 2 3 4 5 6 7 8 9 10

Centralized

Total J(V) 4798.86 15000.9 20372.51 11164.69 20723.48 8539.25 13890.93 15738.79 4570.44 4930.44
Comp. time (sec.) 33.27 151.28 145.35 52.88 284.90 38.41 234.03 72.89 34.05 32.32
Number of tamping 52 221 180 196 285 163 265 217 94 53
Number of renewal 0 21 47 11 40 3 17 24 0 0
Total track perfor-
mance

4278.86 6490.90 4472.51 5904.69 5873.48 6009.25 6140.93 6368.79 3630.44 4400.44

PALR

Total J(V) 16907.37 16254.85 17535.27 19150.68 19170.92 19783.79 19585.68 17673.33 21730.27 17633.75
Comp. time (sec.) 298.88 149.57 120.03 144.28 99.35 130.73 119.85 116.08 151.11 124.97
Number of tamping 377 196 266 295 237 324 417 226 448 219
Number of renewal 22 26 28 33 35 34 31 30 37 29
Total track perfor-
mance

6537.35 6494.85 6475.26 6300.67 6300.91 6343.78 6115.68 6413.32 6150.26 6743.73

Normalized J(V) -252.32% -8.36% 13.93% -71.53% 7.49% -131.68% -41.00% -12.29% -375.45% -257.65%

ADMM

Total J(V) 6050.95 18432.76 19485.36 13074.2 21851.25 11405.99 16062.27 17975.32 6570.71 7254.24
Comp. time (sec.) 125.70 49.02 52.04 44.10 46.95 44.43 52.58 46.82 43.02 42.28
Number of tamping 201 327 86 335 321 336 340 313 341 335
Number of renewal 0 31 50 14 45 8 23 30 0 0
Total track perfor-
mance

4040.95 5862.76 3625.36 5524.20 5141.25 5645.99 5762.27 5845.32 3160.71 3904.24

Normalized J(V) -26.09% -22.88% 4.35% -17.10% -5.44% -33.57% -15.63% -14.21% -43.77% -47.13%

DRSBK

Total J(V) 4798.86 15010.74 20372.68 11174.39 20723.52 8538.84 13900.85 15738.78 4570.44 4930.44
Comp. time (sec.) 29.33 36.13 40.19 32.79 46.77 29.56 36.99 34.90 32.21 28.88
Number of tamping 52 222 180 197 285 163 266 217 94 53
Number of renewal 0 21 47 11 40 3 17 24 0 0
Total track perfor-
mance

4278.86 6490.74 4472.68 5904.39 5873.52 6008.84 6140.85 6368.78 3630.44 4400.44

Normalized J(V) 0.00% -0.07% 0.00% -0.09% 0.00% 0.00% -0.07% 0.00% 0.00% 0.00%



Table B-3: Performance comparison for large-scale tests

Approach Criterion Test
1 2 3 4 5 6 7 8 9 10

Centralized

Total J(V) 18405.94 49237.36 62972.27 25855.37 42935.24 34365.01 32995.82 31585.9 33307.13 30341.79
Comp. time (sec.) 341.42 1523.59 1871.33 651.47 1105.33 941.34 501.43 415.76 942.20 424.50
Number of tamping 242 641 527 448 597 507 487 4.62E+02 514 5.05E+02
Number of renewal 2 77 150 12 57 33 30 26 29 19
Total track perfor-
mance

15385.94 19727.36 12702.27 17775.37 19865.24 19395.01 19125.82 19165.9 19467.13 19591.79

PALR

Total J(V) 55458.73 46622.42 62650.87 58006.38 48856.31 48998.48 52609.6 50343.33 59941.88 59207.04
Comp. time (sec.) 410.4266 607.2614 527.9807 659.9002 412.59 318.7711 393.1536 410.5224 358.6506 394.8306
Number of tamping 974 450 423 693 889 480 758 652 1059 788
Number of renewal 89 78 138 114 67 83 85 81 100 107
Total track perfor-
mance

19018.72 18722.41 17020.86 16876.37 19866.3 19298.48 19529.6 19523.31 19351.86 19227.04

Normalized J(V) -201.31% 5.31% 0.51% -124.35% -13.79% -42.58% -59.44% -59.39% -79.97% -95.13%

ADMM

Total J(V) 25750.05 60292.71 58975.83 39154.84 52667.13 44103.7 41689.69 42147.38 44389.7 42571.84
Comp. time (sec.) 140.646 186.3321 180.8575 193.6696 146.82 145.798 134.5131 144.8122 143.06 151.1301
Number of tamping 985 891 866 944 937 959 951 958 955 957
Number of renewal 6 118 150 47 84 55 48 49 56 49
Total track perfor-
mance

14100.05 15982.72 5315.841 15614.84 18097.13 18013.7 17779.7 17867.38 18039.7 18301.85

Normalized J(V) -39.90% -22.45% 6.35% -51.44% -22.67% -28.34% -26.35% -33.44% -33.27% -40.31%

DRSBK

Total J(V) 18415.79 49237.35 62982.29 25856.03 42935.3 34364.93 32995.8 31585.9 33307.1 30370.79
Comp. time (sec.) 86.70398 126.9894 130.8357 110.5493 110.61 95.30206 87.28103 98.8019 102.7722 96.84716
Number of tamping 243 641 528 448 597 507 487 462 514 508
Number of renewal 2 77 150 12 57 33 30 26 29 19
Total track perfor-
mance

15385.79 19727.35 12702.29 17776.03 19865.3 19394.93 19125.8 19165.9 19467.1 19590.79

Normalized J(V) -0.05% 0.00% -0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.10%



Appendix C

Appendix C

The draft of the paper written from this thesis is presented in this Appendix. The paper
template used is IEEE journal.
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Distributed Optimization for Railway Track
Maintenance Operations Planning

Author 1, Member, IEEE, Author 2, Fellow, OSA, and Author 3, Life Fellow, IEEE

Abstract—In this paper, distributed optimization approaches
are developed for maintenance operations planning of large-scale
railway track network. A Mixed Integer Linear programming
(MILP) problem of the maintenance planning is formulated and
solved with three different distributed optimization schemes:
Parallel Augmented Lagrangian Relaxation (PALR), Alternating
Direction Method of Multipliers (ADMM), and Distributed Ro-
bust Safe But Knowledgeable (DRSBK). Extension techniques to
handle the non-convex nature of the optimization problem and
improve the solution quality are implemented. In the computa-
tional experiments of large-scale test instances, it is shown that
DRSBK can outperform the other distributed approaches, by
providing the closest-to-optimum solution while having the least
computation time.

Keywords—track maintenance planning, railway engineering,
mixed-integer programming, distributed optimization.

I. INTRODUCTION

Railway infrastructure consists of different assets, com-
prising railway tracks, electrical systems, signaling devices,
switches, stations, and so forth. All assets are interconnected
and work together. Among those components, ballast is a
vital component as it is used to support the track level and
alignment at the designated positions [3]. Due to regular usage
of tracks, ballast suffers quality degradation over time. In
order to avoid unexpected dangerous situations, ballast must
be maintained so that its performance could meet the technical
and safety criterion. Maintenance plan is usually formulated
by infrastructure managers to decide the maintenance timing,
location, and type of intervention.

Since there are various aspects to consider, railway infras-
tructure managers nowadays face a number of challenges when
designing a maintenance schedule. To obtain a cost-effective
and safe schedule, the use of decision support system is
necessary. Such support system usually relies on optimization
methods. There are a number of studies that apply optimization
methods to track maintenance planning [20]. A railway track
is typically very long, consisting of a long number of track
sections. A single track section is defined as 200 m and each
of it has independent dynamics, such studies case hence have
a large number of decision variables. Indeed, the optimization
problem of track maintenance operations planning can be
considered as a large-scale problem. Aside from different
optimization problems that they consider, all of them use

A. 1 is with the Delft Center for Systems and Control, Delft University of
Technology, Delft, the Netherlands. e-mail:-

A. 2 and A. 3 are with Section of Railway Engineering, Delft University
of Technology, Delft, the Netherlands.

Manuscript received April 19, 2005; revised January 11, 2007.

a centralized optimization approach, where all information
processing and computation of all decision variables are con-
ducted in a single centralized node. From the computational
perspective, the centralized structure is unattractive as the
number of variables is increased linearly, but the computation
burden might be heavier exponentially [8, 15].

A number of studies states that they were interested to
handle large-scale maintenance scheduling problem [2, 14].
Even though these studies mentioned the large-scale nature of
their case studies, they still utilize the traditional centralized
scheme. Fortunately, a couple of studies have attempted to use
non-centralized schemes in maintenance optimization. Su et al.
[18] proposed a multi-level optimization for rail maintenance,
which is motivated by different time sampling in maintenance
planning. The proposed approach is divided into the high,
middle and low level optimizer, each with different tasks.
This kind of hierarchical approach might be able to reduce
computation cost. However, hierarchical scheme is limited by
the problem structures. In [21], they deal with the optimization
of multiple assets renewal. The combination of decentralized
and hierarchical scheme is applied. However, this research
lacks investigation on computational efforts. Thus the main
goal of this paper is to deal with the computational issue
from the maintenance operations for large-scale railway track
networks. To achieve that goal, various distributed optimization
methods developed since last decades are evaluated.

It is common to have discrete decisions when deciding, for
instance, whether or not to perform maintenance and which
type of intervention to perform. Due to this nature, it is not
surprising that scheduling tasks contain to integer decision
variables. In such cases, the optimization problems can be
formulated in the resulting problem as Mixed-Integer Pro-
gramming (MIP). Lagrangian-based decomposition methods
are one of the basic techniques for applying distributed opti-
mization [23]. However their standard algorithms are intended
only for dealing with convex problems. Previous studies have
developed various extension methods for the Lagrangian-based
approaches to deal with MIP problems. They made use of
different decomposition methods. First, the dual decomposition
method is used in [7, 22, 17]. Moreover, different modification
to dual decomposition is used by [5, 23] by adding quadratic
terms of the respective decision variables to regularize the
objective function, which leads to the notion of augmented
Lagrangian or Alternating Direction Method of Multipliers
(ADMM).

The extension of ADMM algorithm to handle mixed-integer
problem are also available. In this regard, ADMM can be
seen as a heuristic method [1]. In [6, 16], a continuous
relaxation technique of binary variables is used. The resulting
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solution is used as a bound to the objective function and
to warm start the optimization of the MIP problem. Apart
from Lagrangian-based methods, a distributed algorithm called
Distributed Robust Safe But Knowledgeable (DRSBK) [10]
also has been applied to an MIP problem with hard non-
convex coupling constraints. This algorithm applies coupling
constraint tightening approach when solving one subproblem.
Hence, all subproblems are solved sequentially. In this way,
the global feasibility of the solution can be guaranteed. The
drawback, however, is that the solution might be suboptimal.
To the best of the authors knowledge, it is interesting to note
that compared to the Lagrangian-based, this approach is not
much used in the distributed MIP domains.

To address the large problem size in track maintenance prob-
lem, this paper develops distributed optimization approaches.
The focus lies in reducing computation time and increase
the scalability of the optimization method to handle large-
scale instances, while maintaining good solutions. To that
end, two Lagrangian-based decomposition approaches along
with a constraint tightening distributed optimization approach
are implemented to solve the large-scale track maintenance
operations planning.

This paper is organized as follows: the optimization prob-
lem is firstly described in Section II. Afterward, Section III
addresses the development of distributed optimization ap-
proaches. Case studies are discussed in Section IV. Finally,
Section V provides the conclusions and future work of this
research.

II. PROBLEM DEFINITION

First, the optimization problem of the track maintenance
problem is explained. The proposed formulation is based
on [19], which is adapted for the case of large-scale track
maintenance operations planning.

There are a number of characteristics and limitation in
track maintenance operations planning that can be incorporated
into the optimization problem. First, the dynamics of ballast
degradation representing the track performance level x1

i and
offset recorder x2

i , can be mathematically modeled as follows,

x1,i(k + 1) = a1,ix1,i(k) + f1,i(xi(k), ui(k))

x2,i(k + 1) = a2,ix2,i(k) + f2,i(xi(k), ui(k))
(1)

with a1,i is the track degradation rate and a2,i is the
offset memory rate. Functions f1,i and f2,i are discontinuous
functions. This model is slightly different than in [19], in the
sense that, the degradation memory variable is set to have a
multiplier constant a2,i, which enables exponential degradation
of the second state. Furthermore, this system has three types
of inputs, as depicted in Table I.

TABLE I: System input

Input ui(k) Decision
1 Doing nothing
2 Tamping
3 Renewal

Due to the multiplications by discrete variables, this system
is basically non-linear. Therefore, one way to linearize the
system is by using the so called Mixed Logical Dynamical
(MLD) framework. The representation of the discontinuous
functions along with transformation of this system into the
MLD form are provided in [19]. The resulting state-space
model is of the form:

xi(k + 1) = Aixi(k) +BiVi(k) (2)

where Vi(k) contains the binary and auxiliary variables.
Meanwhile, the bounding constraints for the auxiliary variables
can be found in [19].

Renewal operation in practice is allowed once the degrada-
tion level has been considered high. In a long-term planning,
it is much more costly to perform renewal when tamping
operation is still effective. To prevent unnecessary renewal at
early stage, this constraint is added:

x2,i(k)− hr ≥ (ri − 1)hmax (3)
ri − δ1(k) ≥ 0 (4)

where ri is the binary indicator for the switching between
stages. This constraint is applied for every track section.

In any condition, the decision support system must be able to
prevent the degradation curve exceeds the safety limit. There-
fore, the following constraint ensures the track degradation
level always in an acceptable condition:

hmin ≤ xi(k) < hmax (5)

this constraint is also applied to the offset memory state. The
other limitation is that the maintenance budget for such com-
plex railway system is limited [12]. The following constraints
make sure that the number of interventions, both tamping
and renewal, over the prediction horizon is restricted by the
thresholds:

T

Σ
k=1

δ2,i(k) ≤ gt (6)

T

Σ
k=1

δ1,i(k) ≤ gr (7)

where gt and gr are maximum numbers of allowed tamping
and renewal operations over the prediction horizon, respec-
tively.

The previous defined constraints can be categorized as
individual constraints. Alongside them, coupling constraints
which affect multiple track sections, exist in maintenance
planning. One of them is track closure time due to maintenance
operations. Typically, the time slot is less than 7 hours. The
operation is only allowed during night time, at weekends
[3]. This constraints applies for both tamping and renewal,
respectively. Based on [18], [4], this constraint can be written
as follows:
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Nt(k)

Σ
i=1

tt1δ2,i(k) +
N−Nt(k)

Σ
j=1

tt2δ2,j(k) < tmax (8)

Nr(k)

Σ
i=1

tr1δ1,i(k) +
N−Nr(k)

Σ
j=1

tr2δ1,i(k) < tmax (9)

where tt1 and tt2 are maintenance operation and traveling
times for tamping, respectively. The same representations also
hold for tr1 and tr2 for renewal. Nt(k) and Nr(k) is the total
number of track sections that receive tamping and renewal,
respectively, at time step k. The maintenance time already
includes the intervention and machine switching time. The
renewal closure time constraint is also expressed in the same
way, with different time value. Moreover, it is assumed that
the machines move in one direction at each time step, from
a starting point toward an endpoint at the other end of the
track. Hence, the position of the maintained track section
does not matter in the operation time. Tamping and renewal
are performed at different time slots. In addition, since such
constraints affect the maintenance schedule across multiple
track sections, they can be considered as coupling constraints.

The objective function used in this paper is defined based
on [19], but with linear rather than quadratic expression. The
optimal state variables and decision variables for all track
sections over the prediction horizon, X̄ and V̄ , can be obtained
through solving the following equation:

J(X̄, V̄ ) =
N

Σ
i=1

T

Σ
k=1

Qxi(k) + λRVi(k) (10)

where the decision variable for one section at a time step
Vi(k) =

[
δi(k) zi(k)

]T
along with Q and R with only

positive entries matrices with appropriate dimension. The state
variables can be substituted in the same way as in [19],
leaving the input Vi(k) as the decision variables. Finally, The
optimization problem can be compactly written in following
forms:

minimize
V̄

J(V̄ ) =

N∑
i=1

Jind(Ṽi) (11)

subject to EV̄ ≤ gind
N∑
i=1

FiṼi ≤ gcoup
(12)

where on one hand, E and Gind are the paremeter matrix
and right-hand side vector associated with all individual con-
straints, respectively. On the other hand, Fi and Gcoup are
parameter matrix and right-hand side vector associated with
coupling constraints. This separation aims at preparing for the
development of distributed approaches.

III. DISTRIBUTED OPTIMIZATION

Three distributed optimization approaches are discussed in
this work: Parallel Augmented Lagrangian Relaxation (PALR),
Alternating Direction Method of Multipliers (ADMM), and
Distributed Robust Safe But Knowledgeable (DRSBK). The

first two are iterative methods based on Lagrangian dual-
ity theory, which are usually used to solve convex smooth
problems [23] [1]. It is worthy to mention that the proposed
optimization problem is non-convex. Since the basic form of
those decomposition methods could not guarantee the zero
duality gap for such problem or the global solution feasibility.
Thus, extension methods to solve this issue will also be
discussed. Moreover, DRSBK is a non-iterative method which
is originally designed to deal with MILP problem by exploiting
constraint tightening techniques [10].

A. Parallel augmented lagrangian relaxation
In order to cope with the requirement for implementing

the Parallel Augmented Lagrangian relaxation (PALR), the
centralized problem in equation (11) has to be transformed
into augmented Lagrangian form [23]. Prior to that, the other
requirement in order to use augmented Lagrangian-like method
is that any inequality coupling constraint in the proposed
problem must be converted into the equality form [16]. variable
S̄ is defined as slack variables for the couplings, for both tamp-
ing and renewal, over the prediction horizon. The augmented
Lagrangian can be written as follows:

LPALR(V̄ , S̄, γ) =

N∑
i=1

Jind(Ṽi) +

T∑
k=1

J(S̃)+

γ(

N∑
i=1

FiṼi +

T∑
k=1

Fss(k)− gcoup)+

ρ

2
||

N∑
i=1

FiṼi +

T∑
k=1

Fss(k)− gcoup||22

(13)

subject to EV̄ ≤ gind (14)

where Fi and Fs are the parameter matrices of coupling
constraints for the input and slack variables. Moreover, s(k) is
slack variable for time step k. For simplicity, the dual variables
γ is devoted to both tamping and renewal closure times over
the prediction horizon. Furthermore, the Lagrangian equation
for the dual problem can be written as:

q(γ) =

inf
V̄ ,S̄

L(V̄ , S̄, γ)|
N∑
i=1

FiṼi +

T∑
k=1

Fss(k)− tmax

 (15)

which an be interpreted as a maximization problem of dual
variables [13]:

maximize
γ

q(γ)

subject to γ ≥ 0

In each iteration, each subproblem runs in parallel, meaning
that this problem uses the results from the last iterations. Once
all subproblems have been solved, the results are collected
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by a coordinator to be included in the update of the dual
variable. The existence of the coordinator also implies that
one dual variable γ is used to determine the common price for
all subproblems.

B. Alternating direction method of multipliers

Basically, Alternating Direction Method of Multipliers
(ADMM) shares the similar augmented Lagrangian equation
than PALR. The difference lies in the way of decomposing
the quadratic term. Instead of linearizing it, ADMM uses
the so-called alternating technique. This technique enables the
separation of the quadratic terms to be determined individually
by fixing the decisions coming from the other subproblems
[11]. This also implies that the approach runs in sequence.
In this way, ADMM can exploit the latest decisions from the
other subproblems. The unscaled form of ADMM, as provided
in [1], is chosen to be implemented.

C. Extension for the lagrangian-based methods

To deal with the proposed MILP problem, some modifi-
cations of the original PALR and ADMM approaches are
required. Since the problem has non-convex non-smooth cou-
pling constraints, the subgradient dual update might be unable
to converge or even drive to feasible regions. One way to
solve this problem is by applying continuous relaxation of
the binary decision variables, such that the MILP becomes
a less complex linear programming [16, 6]. On top of that, the
generated objective function from solving LP can be used as
a lower bound for the MILP optimization in the next step and
the decision variables can be used as a warm start vector.

D. Stopping criterion

In the non-convex optimization problem, the convergence of
primal residual cannot be guaranteed. Therefore, rather than
observing the primal residuals until it convergences [1], the
primal residuals are only checked whether they have reached
the feasibility condition. In this sense, an input feasibility
checker is added in the iteration [16]. Additionally, the best
objective value in each iteration is also checked, after it is
guaranteed that it is feasible. Simple terminating technique is
implemented. The complete algorithm containing the extension
technique and stopping criterion is shown in Algorithm 1.

E. Distributed robust safe but knowledgeable

The last algorithm implemented in this research is Dis-
tributed Robust Safe But Knowledgeable (DRSBK) approach
that is originally used in [10] to implement optimization for
multi-vehicle or agent coordination. This algorithm is origi-
nally devoted to the non-convex MILP problem. The concept
is as follows: instead of putting the coupling constraints into
the Lagrangian form objective function, this algorithm applies
tightening resource allocation in the coupling constraints for
each subproblem computation. This can be illustrated by the
following expressions:

minimize Jind(Ṽi) (16)

subject to equation (14)

FiṼi < gcoup −
N−1∑
j=1

Fj Ṽj ∀j 6= i
(17)

where Ṽi is decision variables for track section i over the
prediction horizon. The second set of constraints in equation
(17) is the coupling in which the total resources or gcoup have
been reduced by the other previous subproblems interven-
tions. This can be done by fixing the decisions from other
subproblems. In this way, the coupling constraints can be
decoupled. The computation can then be solved individually
by each subproblem in a sequential and non-iterative way. One
advantage of assigning the couplings into individual constraints
is that the solution is guaranteed to be feasible from the input
perspective.

DRSBK is developed based on receding horizon control with
coupling constraints [10]. The decisions for all subproblems
are calculated for the entire prediction horizon. Therefore, the
original approach can be directly applied to the optimization
problem of maintenance planning over the entire prediction
horizon. Likewise, unlike the coordinator in Lagrangian-based
methods, the job of coordinator in DRSBK is only checking
the feasibility of the generated solution. The decision from
one subproblem are communicated to the other remaining
subproblems. This enables the calculation of the remaining
allocation individually.

F. Random sequence generator and stopping criterion
It is mentioned previously that the basic version of DRSBK

might be stuck in local optimum or even not feasible. Hence,
the algorithm is modified such that the sequence of subprob-
lems to be processed in each iteration is generated randomly.
If the output from the solver indicates that the result from
an iteration is not feasible, the sequence is generated again
randomly, which is in general different from the previous
sequence. The feasibility checking technique is different from
the Lagrangian-based algorithms, in the sense that it sum up
the total feasible solutions given by all subproblems. The result
is feasible if the total solved subproblems is the same with N .
Meanwhile, the stopping criterion is designed so that if in two
consecutive cycles the difference of objective value is below
some optimality tolerance and the result from the last iterations
is feasible, the iterations are stopped. In addition, the complete
algorithm can be seen in Algorithm 2.

IV. CASE STUDIES

In this section, distributed optimization approaches (PALR,
ADMM, and DRSBK) are compared and analyzed. Case
studies consisting of different numerical experiments, are per-
formed. Results will then be analyzed from both performance
and numerical point of views. All simulations in this research
are conducted on Lenovo Thinkpad X260 with an Intel core-i5
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Fig. 1: Flowchart of Lagrangian-based approaches(PALR and
ADMM)

processor and 8GB of RAM. All the LP and MILP problems
are solved by Gurobi optimizer 7.5, called from MATLAB
R2017a. Moreover, the following assumptions and general
settings underpin the simulation of case studies in this section:

• The time step of maintenance intervention is one month.
The control horizon is six months [3], which leads to
six consecutive decisions for six months. The default
prediction horizon is set to be nine.

• Initial condition and degradation rate for each track
section can be different, according to the case studies.
Different degradation rates for each track section are
randomly generated as a Gaussian distribution [9]. Also,
the degradation rate is assumed to be known and constant
within the simulation horizon.

• The system is deterministic, meaning that no stochasticity
or any perturbation from reactive maintenance involved.

• Practical considerations, such as maintenance machine
and personnel, are assumed to be always available. More-
over, the object of study case is a single railway track,
consisting of a number of track sections. Each track
section is 200 m. Two stations are situated in the start
and end points of the track. When performing any mainte-

Update best obj

Start

Obj(j) < best?

End

N

Max itera�on or 

stopping criteria?

DRSBK

Y

Y

N

Ini�aliza�on

Y

Sequence 

generator

Feasible?

Y

N

Fig. 2: Flowchart of DRSBK

nance on the track, the tamping or renewal machine goes
from one station to the other. The illustration is depicted
in Figure 3.

A. Experiment 1: multiple tests on large-scale settings
The comparison for large-scale are presented in tables II,

respectively. Each table presents the average and standard
deviation values from overall ten different tests for every
problem scale. First, among distributed approaches, DRSBK
is the fastest algorithm. This is expected from such simple
method that modifies the couplings allocation instead of the
augmented Lagrangian of cost function. On top of that, it
generates the closest objective function value to the central-
ized problem. This also implies that the average number of
suggested tamping can be exactly the same as the centralized
problem and the difference in the number of renewal is only
one. Apart from DRSBK, the solutions given from Lagrangian-
based algorithms are not close to the centralized solution.
Since no convergence guarantee to the non-convex problem,
they have to spend longer time in their iterations, looking
for feasible solutions. The two-step computation also implies
longer processing time. Besides, they suggest a higher number
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of tamping and renewal than the centralized approach. ADMM
has a better average solution yet shorter processing time than
PALR. This is because ADMM uses the latest decisions, thus
it is easier to get into feasible regions than PALR. However,
ADMM solutions is not necessarily global optimal or close
to it. It might be possible to improve both Lagrangian-based
algorithms to find a solution closer to the global optimum,
but this requires more iterations, sacrificing the computation
time. Furthermore, since they suggest more interventions, the
track degradation level can be lower than the centralized
optimization and DRSBK. In some conditions where the track
is busy, these results are preferred. However, it is not cost-
effective.

It is shown that all distributed schemes have significant
faster processing time than the centralized approach. In such
large-scale problem, the number of variables is really big,
leading to the exponential computation cost and centralized
approach might no longer be tractable. PALR can halve almost
the centralized processing time. Likewise, the same pattern
for both Lagrangian-based algorithms is again noticed. Again,
ADMM is better at all criterion than PALR. Also, DRSBK
stands out as the best distributed algorithm from the compu-
tational perspective.

B. Experiment 2: gradual increment tests
The second experiment presents comparison of performance

criterion with gradual increment in the number of track section.
The simulation settings are as follows. The initial degradation
level and rates are Gaussian-randomized for all track sections.
Likewise, the number of track sections is increased with the
difference of 10 in the beginning until N = 150, the gap is set
to be 100. The rule for all algorithms are once the threshold
for centralized approach is reached (in this experiment, it is
1100 seconds), the test of corresponding approach is stopped.

Next, an illustration which shows the simulation results of
the first criteria (computation time) against a number of track
sections from the proposed optimization problem is depicted
in the first plot of Figure 4. From the figure, it can be
observed that the computation cost increases with the number
of track sections. This issue is suffered not only by centralized
approach, but also the distributed approaches as well. However,
the curve of centralized optimization is exponential, which can
be expected from such NP-hard problem. The centralized ap-
proach stops the experiment earlier than the other algorithms,
at N = 150. PALR can continue to perform computationally

reasonable until it reaches 400 track sections. ADMM can
prolong its experiment until N = 900. ADMM can outperform
PALR possibly due to the use of current iteration data rather
than the previous iterations. In this way, the algorithm can
quickly find feasible solutions in early iterations. On top of
that, DRSBK can treat up to 1300 track sections, which proves
itself to be the fastest among all algorithms. Moreover, it is
notable that during simulations in large-scale instances (with
N > 150) the simulations of centralized optimization approach
is sometimes not possible to be carried out due to lack of
available memory in the computer. This issue never happens
during the simulations of distributed optimization algorithms.
Furthermore, the second plot in Figure 4 shows that in general,
the curve of objective function values for all algorithms are
linear. From start to the end of the centralized approach
computation, all of them look coinciding with each other. After
N > 150, PALR and ADMM have diverted curve due to their
higher objective function values. They are very likely trapped
in local optimum. On the other hand, the curve of DRSBK
coincides with the curve of the centralized. This means that
DRSBK solutions close to the global optimum.

V. CONCLUSIONS

In this research, three different distributed optimization
approaches have been developed for large-scale railway track
maintenance operations planning. First of all, the formulation
of an optimization problem is done. The formulation includes
an objective functions and a series of prominent characteristics
of track maintenance operations. Afterwards, three distributed
approaches are designed for the optimization problem. The
first two distributed optimization approaches work based on
Lagrangian duality theory: Parallel Augmented Lagrangian
Relaxation (PALR) and Alternating Direction Method of Mul-
tipliers (ADMM). These approaches are modified with ex-
tension techniques such that they can handle the non-convex
mixed-integer problem. Furthermore, a stopping criterion is
designed, such that input-feasible and suboptimal solutions can
be retrieved within reasonable time. Alongside the Lagrangian-
based approaches, DRSBK is implemented. To avoid infeasible
solutions, A random sequence process algorithm is also added.
This makes the algorithm become iterative. Likewise, a stop-
ping criteria is used such that the solution is feasible from the
output perspective.

In case studies, it is shown that the distributed optimization
approaches are able to solve the proposed problem quicker than
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Fig. 4: Comparison of computation time and objective function value

TABLE II: performance comparison in large-scale problem

Parameter / algorithm Centralized PALR ADMM DRSBK
mean stdev mean stdev mean stdev mean stdev

Total J(V) 36200.18 12619.83 54137.37 5856.02 45174 10102.62 36205.13 12619.1
Comp. time (sec.) 871.84 512.43 453.74 117.02 160.12 21.48 104.67 15.15
Number of tamping 493.00 105.77 688.00 213.42 946.00 35.35 493.5 105.58
Number of renewal 43.5 43.17 94.78 22.06 58.30 41.05 43.5 43.17
Total track performance 18220.18 2361.42 18824.03 1106.48 15300.91 3977.68 18220.13 2361.36
Normalized J(V) - - -52.00% 0.63 -31.00% 0.15 -0.02% 0

centralized approach in large-scale instances. DRSBK rises
as the fastest yet being able to generate the closest solution
to the centralized problem. Furthermore, ADMM is quicker
than PALR. However, solutions from both Lagrangian-based
methods are only suboptimals. Therefore, a Lagrangian dual-
based approach might not be a suitable option to be developed
for the future research of the proposed optimization problem.

Various future works are available for improving the current
methods and results. The use of real-life data is useful to
evaluate the effectiveness of the distributed approaches. Model
identification can also be carried out. Furthermore, the stochas-
tic degradation model can also be utilized to consider uncer-
tainty and perturbation in railway maintenance. Finally, the
current scheme can be extended into distributed hierarchical
to facilitate different time-scales of planning.
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Glossary

List of Acronyms

KPI Key Performance Indicator

MPC Model Predictive Control

MLD Mixed-Logical Dynamical

MILP Mixed-Integer Linear Programming

MIQP Mixed-Integer Quadratic Programming

DCCC Decoupled Cost but Coupled Constraint

CCDC Coupled Cost but Decoupled Constraint

PALR Parallel Augmented Lagrangian Relaxation

ADMM Alternating Direction Method of Multipliers

DRSBK Distributed Robust Safe But Knowledgeable

List of Symbols

x1,i(k) Track degradation level represented by standard deviation of longitudinal level
[mm]

x2,i(k) Track offset memory
a1,i Track degradation rate [mm/MGT]
a2,i Offset memory rate
ui(k) Maintenance action (input)
δ1,i(k) Renewal binary indicator input
δ2,i(k) Tamping binary indicator input
zp,i(k) Auxiliary variables

Master of Science Thesis Muhammad Faris



86 Glossary

λ Trade-off variable
hmin Minimum level threshold
hmax Maximum level threshold
tmax Maximum closure time for tamping or renewal work
T Prediction horizon
N Number of track sections
Vi(k) Decision variables for track section i at time step k
Ṽ Decision variables for track section i over the prediction horizon
V̄ Decision variables for all track sections over the prediction horizon
s(k) Aggregated slack vector at time step k
S̄ Aggregated slack vector over the prediction horizon
γt Dual variables for tamping closure time coupling over the prediction horizon
γr Dual variables for renewal closure time coupling over the prediction horizon
γ Aggregated dual variables
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