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Utilization of synthetic system intelligence
as a new industrial asset

Imre Horváth∗

Department of Sustainable Design Engineering, Delft University of Technology, Delft,
the Netherlands

Abstract. System knowledge and reasoning mechanisms are essential means for intellectualization of cyber-physical systems
(CPSs). As enablers of system intelligence, they make such systems able to solve application problems and to maintain their
efficient operation. Normally, system intelligence has a human-created initial part and a system-produced (extending) part,
called synthetic system intelligence (SSI). This position paper claims that SSI can be converted to a new industrial asset
and utilized as such. Unfortunately, no overall theory of SSI exists and its conceptual framework, management strategy,
and computational methodologies are still in a premature stage. This is the main reason why no significant progress has
been achieved in this field, contrary to the latent potentials. This paper intends to contribute to: (i) understanding the nature
and fundamentals of SSI, (ii) systematizing the elicitation and transfer of SSI, (iii) exploration of analogical approaches to
utilization of SSI, and (iv) road-mapping and scenario development for the exploitation of SSI as an industrial asset. First,
the state of the art is surveyed and the major findings are presented. Then, four families of analogical approaches to SSI
transfer are analyzed. These are: (i) knowledge transfer based on repositories, (ii) transfer among agents, (iii) transfer of
learning resources, and (iv) transfer by emerging approaches. A procedural framework is proposed that identifies the generic
functionalities needed for a quasi-autonomous handling of SSI as an industrial asset. The last section casts light on some
important open issues and necessary follow-up research and development activities.

Keywords: Intellectualized systems, synthetic system intelligence, problem solving knowledge, computational reasoning
mechanisms, asset exploitation, practice of transfer

1. Introduction

1.1. Intellectualization of engineered systems

Up until the emergence of the fourth industrial revolution, tool and system development happened
with the goal of extending the physical capabilities of humans. In this current time of transiting
from the fourth industrial revolution to the emerging fifth industrial revolution, the goal has been
to extend human mental (cognitive) capabilities with artificial intelligence-based tools and systems
(George & George, 2020). Representative examples of applying intellectualized tools and systems to
solving structurally decomposable application problems are such as autonomous parking of vehicles,
execution of surgical operations, or providing homecare assistance. In spite of the fact that artifi-
cial intelligence already surpasses human capabilities in numerous fields, the latter is still seen in
this position paper as a computationally reproduced problem-solving intellect applicable in specific
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contexts, rather than anything comparable with natural intelligence performed by human individu-
als, groups, or communities. Genuine human intelligence is differentiated from the various forms
of (narrow, generic or super) artificial intelligence by many physiognomic and cognitive indicators
(Braga & Logan, 2017). Notwithstanding, intellectualization of engineered systems has become a
strong trend and has been exemplified by second-generation cyber-physical systems (CPSs) (Pathak
et al., 2019). These intellectualized systems can produce new knowledge through solving the problem
or learning from the characteristics of their operation, well beyond what a chess playing software
does.

Considering the current state of progression, human-comparable artificial system intelligence can
only be regarded as a future objective of technology and application development (Warner, 2019). This
proposition is underpinned by the fact that computationally reproduced intelligence suffers from the
lack of natural will, consciousness, intuition, abstraction, creativity, sociality, and emotions. Therefore,
instead of using the term ‘intelligence’ to describe the problem-solving capabilities of this family
of intellectualized engineered systems, the use of the term ‘smart’ is deemed more appropriate. In
this position paper, the process of embedding, gaining, and operationalization of both constituents of
system intelligence is referred to as intellectualization. The use of the term ‘intellectualized engineering
systems’ allows us to differentiate systems that are developed for solving application problems from
those systems that are developed to mimic various manifestations of human intelligence, such as
artificial vision, speech recognition, machine learning, etc. Furthermore, this interpretation is also
helpful to emphasize the assumed primacy of humans in terms of (i) determining the demands, (ii)
defining the objectives, (iii) providing the first input, and (iv) exercising supervisory roles (Sternberg,
2012).

Two related issues must be mentioned. The first one is that the term ‘synthetic intelligence’ has
already been used differently in the literature. Namely, Lindley (2012) has used this term to describe
the synthetic intelligence provided by the integration of engineered biological and mechatronic (bio-
mechatronic) systems. In the work reported here, the term ‘synthetic system intelligence’ (SSI) is used
to refer to the self-synthesized knowledge and mechanisms of intellectualized systems. Regrettably,
no commonly accepted overall theory of SSI exists yet and this applies to intellectualized CPSs too.
The fact of the matter is that the issue of transferring elements of intelligence has emerged only in the
last decade and inter-systems management of system-acquired, -generated or -synthesized knowledge
is still in a premature stage (Horváth, 2022). Thus, we also miss generic methodologies for generation
and reuse of synthetic system knowledge and computational mechanisms. Though rapidly growing
and its latent potentials are recognized, the amount of system-independent synthetic knowledge is
still limited. These are the main reasons why no significant progress has been achieved in terms of
utilization of SSI as a new industrial asset. However, changes can be expected due to the intensification
of research (Sitti, 2021).

The second issue concerns the role of artificial intelligence research, and the position of the author.
The transdisciplinary science of artificial intelligence (AI) seeks to understand and reproduce the cog-
nitive capabilities of intelligent beings by constructing functionally and socially intelligent systems.
Molina (2020) proposed that instead of a rigid characterization of whether a system is intelligent or
not, a proper definition should outline the usual characteristics that might be present in an intelligent
system. For example, a system might be considered intelligent if it has perception and can control
action, even if it does not possess deliberative reasoning or a capacity to learn. In this paper, AI is
seen and treated as not more and not less than a branch of computer science that intends to reproduce
and extend human cognitive capabilities. AI can go as far as explicitly or implicitly preprogramming
cognitive functions, reasoning mechanisms, and agent behaviors, including the individual or collec-
tive fundamental mechanisms of self-learning, self-adaptation, and self-evolution, but almost nothing
happens beyond that.
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Fig. 1. Overall changes in the proportion of the human embedded and the self-produced knowledge of intellectualized
systems.

1.2. The addressed phenomenon and the goals of this study

In the context of systems, intelligence is a complex problem solving and state management power
that is based on representation of facts (knowledge) and goal/context-dependent computational rea-
soning. The initial (human created and inputted) part of system intelligence includes structured and
coded human knowledge and human-developed reasoning mechanisms. These are needed to make
intellectualized systems active, but they can acquire and develop synthetic knowledge and reasoning
mechanisms on their own, during their learning, planning or problem solving operations. For this
purpose, they need dedicated process monitoring, knowledge elicitation, and mechanism generation
capabilities. Under normal conditions, the initial intelligence of systems can be changed or supple-
mented incrementally by human knowledge engineers. Under changing circumstances or due to new
goals, the elements of the initial intelligence may become insignificant or even outdated.

More importantly, this initial part of system intelligence can be augmented, or partially or even
completely replaced by an evolving part that is self-acquired or self-generated by an intellectualized
system over its lifetime. Figure 1 illustrates the nature of the typical changes in the human embedded
part and the self-produced part of the system’s knowledge over time. On the one hand, the amount of
human embedded knowledge is changed at the times of system up-dates or up-grades (i.e., in a discrete
manner). On the other hand, the system-produced part usually grows perpetually. Though a linear
growth is shown in Fig. 1, it may change progressively. The white vertical arrows represent the total
amount of system knowledge, and show the proportions of the human embedded part and the parts
self-produced by the system using the original reasoning mechanisms and the additional reasoning
mechanisms, respectively.

The main claim of this position paper is that the intensively growing synthetic part of system
intelligence can be converted to a new industrial asset and utilized as such in an across-systems manner.
These two phenomena have been addressed in the exploratory research, the outcomes of which are
presented in this paper. Similar attempts were made some 50 years ago to exchange human knowledge
at enterprise level (O’Leary, 1998), and, in the last three decades, in the field of data and information
management (Collins & Smith, 2006). This position paper emphasizes that time has come for the needed
systematic studies and technology development in the context of aggregation, compilation, fusion,
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transfer, and reuse (ACFTR) of the constituents of SSI. At the same time, the general opportunities
and challenges of ACFTR of SSI among intellectualized engineered systems, such as next-generation
cyber-physical systems, are hardly investigated in the literature, apart from some specific cases. There
are two major issues related to: (i) understanding the essence and affordances of the current and near
future manifestations of SSI, and (ii) providing a strategic roadmap, a practical methodology, and
adaptable technologies for ACFTR beyond the boundaries of intellectualized systems.

1.3. Approach of the study and contents of the paper

As Pennock and Wade (2015) discussed, we engineer systems because we need some useful func-
tionalities and services. Typically, it happens in a systematic, rather than a trial and error manner,
and is facilitated by many significant advancements in hardware, software, cyberware, and brainware
technologies. As a consequence, we are moving into the age of massively intellectualized systems
which are deemed to be interconnected not only for data transfer, but also from the perspective of
integral use of SSI. Contrary to the technology development efforts, researchers face challenges due
to paradigmatic uncertainties (lack of distinguishing characterization of the multiple forms of system
intelligence) and unsettled notional specifications (lack of transdisciplinary perspectives on sophisti-
cated, smart, cognizant, or intelligent systems). This position paper also reflects the influence of these
discrepancies.

Due to the complexity, novelty, and challenging nature of the addressed phenomenon, the background
research could, and this paper can, focus only on the first mentioned issue, including a comprehensive
study of (i) the notional aspects of SSI (Horváth, 2020a), (ii) the historical development of computa-
tional intelligence, and (iii) the current and near-future system engineering developments. The reported
research was done with the intent of contributing to: (i) understanding the nature and fundamentals
of SSI, (ii) systematizing the elicitation of SSI, (iii) exploration of current and future approaches to
SSI transfer, and (iv) road-mapping and scenario development for exploitation of SSI as an industrial
asset. In this context, several theoretical, methodological, computational, and practical tasks have been
addressed which, nevertheless, need further research and development efforts in order to be able to
make SSI a powerful industrial asset (Horváth, 2020b).

The paper is structured as follows. Section 2 summarizes the major findings of the completed
investigation of the state of the art in the related domains of scholarly interest, with special attention
to understanding the nature and fundamentals of SSI and the roots of the system intelligence transfer
problem. Section 3 discusses various current approaches to transferring intellectual resources from and
to systems. Four specific approaches and technologies of transfer are included in the analysis: (i) transfer
based on repositories, (ii) transfer among agents, (iii) transfer of learning resources, and (iv) transfer by
emerging approaches. They are seen as starting points of the development of dedicated computational
technologies and management approaches. Section 4 elaborates on two issues of converting SSI into
a new industrial asset, namely (i) the manifestation of SSI as a commercial asset, and (ii) a procedural
framework for utilization of SSI as an asset. Section 5 recapitulates the open issues and the propositions
for future studies.

2. The state of the art in the related interest domains

2.1. Understanding the nature and fundamentals of synthetic system intelligence

Like human intelligence, system intelligence is a complex, multi-faceted, and yet not completely
understood phenomenon and concept. From outside, it stretches into two dimensions, as shown in
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Fig. 2. Dimensions of system intelligence.

Fig. 2. The vertical dimension includes the two enablers of SSI (reasoning mechanisms and applica-
tion knowledge). The horizontal dimension includes the two sources of SSI (human-provided part and
self-acquired part). Synthetic intelligence primarily comprises the self-acquired application-specific
knowledge and reasoning mechanisms, but it is not absolutely independent from the human-provided
part. Knowledge and mechanisms are functionally interconnected and make iCPSs capable of solving
application problems and maintaining the efficiency of their operation. The relative amount and signif-
icance of the human created initial (inputted) part usually decreases during the operation of systems.
On the other hand, the relative volume and significance of the system-produced part - the actual SSI -
grows throughout the useful life-cycle of systems. From a computational point of view, the reasoning
mechanisms and the problem-solving knowledge are interconnected and thus inseparable. Thannhuber
(2005) proposed to consider system knowledge both from a microscopic and a macroscopic perspec-
tive, which can be extended to the associated reasoning mechanisms too. Microscopically, knowledge
is given by implementation level procedures or actable coordination processes (microscopic actions
of a system). Macroscopically, knowledge is given by the constraints and control of the declarative
assembly mechanism that provides a meaningful system response to a given stimulus.

The work of artificial intelligence researchers includes (i) experimentation with manifestations of
human intelligence phenomena, (ii) embedding their foundational hypotheses on perceptive, cognitive
and/or motor operations in working artificial systems, and (iii) examining the reality and qualities of
the intelligent behaviors they produce (Damiano et al., 2011). For researchers who are engaged with
the development of intellectualized systems, the fore-running experimentation with human problem-
solving is not always or not at all possible. Therefore, they are forced to apply a ‘programmatic
inversion’ of the usual order between analysis of human behavior and construction of computational
models. Kugel (2002) disclosed his belief that today’s AI is like riding the right horse (the digital
computer), but taking it down to a wrong road (of numerical computation).

Human reasoning is the progenitor model of computationally implemented inferring and reason-
ing processes. It is an intricate mental process of making logical conclusions and predictions from
available knowledge in various application contexts (Stenning & Van Lambalgen, 2012). It can be
both intuitive (heuristic) and formal (systematic), but both forms are influenced by the actor, purpose,
problem-specific knowledge, and context information. The overall formal mechanisms of reasoning
are underpinned by computational thinking. It is characterized by a logical procedure that involves the
following steps: (i) specification (choosing and formulating a problem), (ii) decomposition (breaking
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a complex problem down to smaller and manageable sub-problems), (iii) patterning (identifying and
representing a structure or a trend within the problem), (iv) abstraction (identifying specific similarities
and differences among resembling problems), (v) algorithmizing (developing step-by-step instructions
for solving the problem at hand), and (vi) analysis (reflecting on the characteristics of finding a solution
for the problem). With regard to computational reasoning, three core features are to be considered,
namely, (i) moving from multiple inputs to a single output, which can be a conclusion or an action,
(ii) making multiple steps through a state space to achieve a final outcome (in numerous ways), and
(iii) processing the objectives, a mixture of previous knowledge, novel information, and the dynamic
contexts (Mohaghegh & McCauley, 2016). Usually, search space-based (retrieval) and additional con-
tent deriving (ampliative) computational reasoning mechanisms (CRM) are differentiated. Ampliative
CRMs are mechanisms that produce additional knowledge based on the knowledge externally embed-
ded in or internally acquired by the system. Systems engineering also distinguishes system-level and
constituent-level reasoning mechanisms.

Knowledge is never a fully baked bread. The classical concepts of human knowledge have been
revised and reinterpreted many times over the centuries, and various theoretical/conceptual frame-
works have been proposed for unproved and proved human knowledge. Scientifically-based human
knowledge revolves around the idea of truth, which is an unconsolidated concept with regard to system
knowledge. The term ‘truth’ is used to characterize correctly tested appropriate beliefs of humans. It
is hard even for the current most sophisticated machine learning mechanisms to discover true facts in
a partly simulated and partly real environment in which they exist. In the context of intellectualized
systems, the term ‘proper’ has been used as a proxy of the “truth” of system knowledge. Properness
is interpreted from the perspective of relevance and potential of problem solving. Though useful for
differentiation, the act of naming does not provide answers to two principal questions associated with
iCPSs, namely: (i) How can a system know what is meant by proper in general and/or in given applica-
tion contexts? and (ii) How can a system figure out or learn if a given body of synthetic knowledge is
proper or not? These questions extend well beyond the cause-effect relationships that machine learning
can synthesize for self-derived causal models. Actually, it belongs to the field of metaphysics. Con-
trary to this fact, De Luca (2021) concluded that, “as a consequence of the on-going developments
in the sector of AI, there is no sector of formalized knowledge and reasoning of humans about the
environment which is not replicable by machine systems”.

2.2. The roots of the system intelligence transfer problem

The origins of transferring various forms and resources of system intelligence can be traced back to
the 1970 s. This was the time when it was recognized that system intelligence can be a problem-solving
power. While the transfer of symbolic knowledge of knowledge-based systems was in the center in
the 1970 s, nowadays the transfer of learning resources and models of machine/deep learning systems
is of distinguished importance. Among the first efforts in the fields of knowledge-intensive systems
and artificial intelligence development was the paper of Chandrasekaran (1986) that addressed the
use of high-level structured knowledge blocks for expert systems. Attempting to move beyond the
capabilities of contemporary KBSs mandates knowledge bases that are substantially larger than those
we have today. McDermott (1990) described how artificial intelligence research could make software
development easier by writing programs “to act as frameworks for handling instances of problem
classes in software engineering”.

The need for and the possibility of knowledge exchange between engineered systems was also
addressed in the seminal work of Neches et al. (1991). They identified three possible forms of knowledge
sharing: (i) communication of the principles of knowledge bases to facilitate their reimplementation,
(ii) facilitation through the inclusion of source specifications into new knowledge components, and
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(iii) run-time invocation of external modules or services. On the other hand, they also identified four
impediments: (i) heterogeneous representations, (ii) dialects within language families, (iii) lack of
communication conventions, and (iv) model mismatches at the knowledge level. Smith and Poulter
(1993) recognized the need for open knowledge-based systems and proposed an open infrastructure
that permitted the integration and interoperability of different knowledge-based systems (KBS) and
ensured that each system could utilize whichever representation for knowledge is appropriate to its
tasks. As elements of an open KBS infrastructure, they defined: (i) standard knowledge representations,
(ii) knowledge interchange format, (iii) knowledge manipulation and query language, (iv) common
shared ontology, and (v) agent-based software engineering framework. The open KBS infrastructure
supported run-time sharing of complexly structured knowledge between knowledge bases and their
associated inference engines even if they used different knowledge representation formalisms and
different inference mechanisms.

There were parallel efforts that yielded the Initial Graphics Exchange Specification (IGES) and
the now international standard (ISO 10303) Standard for Exchange Product Data a decade later. The
latter has been under development since 1984 and in use since 1994 (Pratt, 2005). The initial parts of
the standard were orientated towards transferring voluminous artifact and process model data (CAD
CADE, CAPP, and CAXX data) between multiple design and engineering systems using neutral
representation formats. The latter parts, such as the ISO 10303-239 (application protocol for product
life cycle support - STEP PLCS), have covered the entire product development and use process from
conceptual design to recycling.

Like other productive resources, system intelligence resources can be (i) shared among similar
systems, (ii) adapted and combined on purpose, (iii) warehoused and archived, and (iv) retailed as
a cognitive product. Over the years, many technologies have emerged that can support the real-life
implementation of all of these general options. At the same time, exchange and reuse of system
intelligence of iCPSs has not obtained due attention in the literature yet, nor has it been addressed in
large-scale projects. In principle, it can happen: (i) in a human-assisted manner, (ii) in a systems-planned
autonomous manner, and (iii) in a hybrid manner. Since there is a high probability of autonomous
extension of the functional profile of iCPSs, SSI transfer may become a practical technological solution
for obtaining the needed intellectual resources. However, it should be seen as a partial solution because
the whole spectrum of resources (interoperating analogue and digital hardware, system-level and
application-oriented software, and signals, data and information) are to be availed (acquired in run-time)
too. Runtime resource management is the major issue for adaptive and, in particular, for evolving iCPSs.

2.3. Reflections on the findings

The exchange and reuse of knowledge among intellectualized systems has become both a functional
necessity and a technological opportunity. This emerging trend is already raising many questions, but
the studied literature has almost failed to give satisfying answers to the related questions. Contrary to
its growing volume and importance, the general theoretical underpinning and the practical utilization
of synthetic systems intelligence are still underdeveloped. Actually, the whole field of interests has not
received sufficient attention. The fact of the matter is that the SSI self-acquired or self-generated by
intellectualized engineered systems is becoming an important complement of human knowledge and
problem-solving intellect. In addition, if externalized and transferred, synthetic system knowledge can
be shared and can become an imported knowledge resource for other systems. Knowledge becomes
more if shared. This inter-systems knowledge sharing may open up a new direction for utilization of
SSI and may amplify the problem-solving potential of iCPSs as has happened with human knowledge
and companies. Some pioneering researchers believe that such cooperative systems, or systems of
systems, have the potential to be a game changer in multiple creative and productive domains.
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According to the traditional interpretation of the knowledge transfer problem, there is a need to
identify the highest common denominator among the knowledge representation and interchange mech-
anisms of the systems to be integrated. In contrast with this, the completed research pointed at the
opportunity of applying a different approach to utilizing system intelligence, which may be based on
the principle of ‘share it if you need it’. Recommender systems may collect information about the
exchangeable SSI as well as meta-information about the demands and supplies. Nevertheless, as the
first step towards using SSI as a system-independent asset, disconnecting it from the original pro-
ducer system warrants attention. It should be made transferable in the simplest way, without losing
its problem-solving power. Intelligence-oriented dynamic networking of systems, beyond their physi-
cal and communicative networking, is a new phenomenon. Re-operationalization or adaptation of the
knowledge and mechanism constituents of SSI in the recipient iCPSs also warrants research attention.
These together call for conceptual and procedural frameworks. Since there is a strong association
between the problem-solving knowledge and the processing mechanisms (e.g., production rules <—>
inference engine, analogy-based cases <—> case comparator, fuzzy rules <—> fuzzy reasoning engine,
chromosome constructs <—> genetic algorithms, training data sets <—> artificial neural network),
they have to be considered as duals of SSI transfer. Such a duals-oriented intelligence transfer needs
different packaging mechanisms than the neutral interchange format-based mechanisms, typically
applied in the case of traditional knowledge-based systems.

3. Exemplifying specific approaches to system intelligence transfer

For the purpose of this work, intelligence transfer is understood as all of the structured activities
related to separating application-specific knowledge and processing mechanisms from one system and
embedding them into several interoperating systems. Due to the obvious space limitations, the main
features of the particular approaches can be presented only from a birds-eye-view. However, this is
deemed sufficient to understand the logic of reasoning and the conceptual relationships.

3.1. Transfer based on repositories

The first examples of transferring intellect between systems are related to the symbolic and ana-
logical methods of artificial intelligence research and system development. During the 1980’s, it was
recognized that building new knowledge-based systems usually entailed constructing new knowledge
bases from scratch (Gonzalez & Dankel, 1993). Therefore, the scope of the built systems remained
restricted, their development needed a lot of time, and the costs and efforts ran high. As a solution,
proposals were made to assemble reusable knowledge components by system developers and to make
succeeding systems able to interoperate with existing systems and use them to perform some of their
reasoning tasks (Gruber, 1991). In this way, as it was argued, declarative knowledge, problem-solving
techniques, and reasoning services could all be shared among systems. However, both specific tech-
nologies and sophisticated infrastructures are needed to realize the repository concept on a large scale
(Yacci, 1999).

The idea of repository-based knowledge exchange has gone through a number of developmental
stages, such as (i) database sharing, (ii) semantic networks, (iii) symbolic rule-fact bases, (iv) ana-
logical example libraries, (v) relational knowledge-bases, (vi) resource description frameworks, (vii)
web ontology languages, and (viii) knowledge fusion frameworks. Common characteristics of these
milestone concepts are that they (i) formalize and structure human knowledge chunks, (ii) assume
various description or specification languages, (iii) provide opportunity for external queries, and (iv)
are not, or not directly, related to application cases (Kankanhalli et al., 2005). These approaches allow
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transferring knowledge content from the repository to one system, but do not support direct knowledge
sharing among application-oriented systems. Not only the knowledge engineering process, but also
the knowledge acquisition (retrieval or extraction) process is human dependent.

The pioneering knowledge transfer approaches rested on agreements concerning (i) a standard syntax
and semantics, (ii) a knowledge interchange format, (iii) a set of protocols to query a virtual knowledge
base, (iv) a common shared ontology content, (v) a vocabulary and constraints on the well-formed use
of contents, and (vi) an agent-based software engineering framework (Okabe et al., 2010). Typical
implementations concern (i) computational routine libraries, (ii) chunks of procedural knowledge,
(iii) rule interchange format, (iv) labelled case libraries, (v) annotated object repositories, and (vi)
product and service catalogues. The examples indicate that repository-based transfer may include both
content knowledge and processing mechanisms (Parnafes & Disessa, 2004). In practice, repository-
based SSI transfer may concern three purposes (i) transferring synthetic system knowledge only, (ii)
transferring reasoning mechanisms only, and (iii) transferring synthetic systems intelligence. Artificial
intelligence research comprehensively studies the various application-independent, but task-driven
forms of computational reasoning approaches (Griffiths et al., 2019).

3.2. Transfer among agents and of agents

The second example is taken from the field of multi-agent collaborative systems. Multi-agent systems
are decentralized structures formed by autonomous computational entities that communicate and share
data, information, and state-maintaining and problem-solving knowledge with each other (Leitão et al.,
2016). Agents represent real-world or virtual entities with varying levels of fidelity, intellectualization,
commitment, and socialization. They are implemented as intellectualized entities, which have sufficient
intellect and capacity for (i) building situational awareness, (ii) making logical decisions, and (iii)
performing functional agency. Therefore, many works consider them ‘intelligent’ entities (Rudowsky,
2004). Informally, their rational intelligence is seen as the ability to achieve goals in a complex
environment, whereas their social intelligence is the ability to successfully interact in an environment
full of other agents (Insa-Cabrera & Hernández-Orallo, 2013). Agents act, learn, negotiate, and adapt
autonomously and try to understand their environment in order to pursue their goal. With regard to
the autonomy of the agents, important issues are goal delegation and goal adoption, which are seen as
ingredients of organization, social commitment, and contract of the agents, and then of the knowledge
exchange process.

In multi-agent systems or system-of-systems, the issue of transferring intelligence, resources, and/or
knowledge from one actor agent to others has been known for a long time (Sycara et al., 1996). To com-
municate, the agents are supposed to comply with output guaranties and input assumptions, otherwise
their interoperability is not provided. While there are papers discussing in-process communication and
information exchange among agents, much less is published on transferring aggregated knowledge
from one agent to others (Allen et al., 2002). The inter-agent transfer of intelligence among hardware
and software agents concerns not only signals, data, and pieces of information, but also chunks of
knowledge and experiences that they have individually learnt according to their operation strategy
(Da Silva et al., 2020). Transfer can be initiated both by a receiver agent and by a sender agent when
the knowledge and logic required to perform an activity is unavailable, incomplete, or out of date.
The knowledge shared by the agents constitutes beliefs proven individually or collectively by the
collaborating agents. As a result of this, multiple collaborating agents build distributed intelligence.

The transfer of the necessary knowledge and processing logic may enable an agent to execute a
new task or to execute a given task better (Iglesias et al., 1998). The process includes three main
steps: (i) packing and decoupling the knowledge and algorithms from the sender agent, (ii) routing
and transferring, and (iii) unpacking and embedding in the receiving agents. Alternatively, when the
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knowledge is processed by local algorithms of the receiver systems, (iv) activation of the various
local algorithms should also be considered. As a whole, the multi-agent system may harmonize the
package sending and processing over all sender and receiver agents, or may leave it on their own
decision which depends on their programmed objectives, social character, and local context (Cardoso
& Ferrando, 2021). As explained by O’Neill and Soh (2022), the subsequent steps of the process
are: (i) triggering the messaging actions either by a pre-programmed timer poll or by an even-driven
framework, (ii) building local situational awareness according to data obtained from own sensors or
memory, or received by communicating with other agents, (iii) understanding the meaning of between-
agent communications (Williams, 2004), (iv) making a decision based on the logical image and the
built situational awareness, (v) execution of the decision locally or in cooperation with other concerned
agents, (vi) consulting as an action carried out locally or potentially by some other agent through a
cooperative or delegated process. The level of situation awareness depends on whether the agent only
aggregates data, or actuates its functional model by time-wise obtained data.

Smart agents can migrate from one system to another, taking their knowledge with them and, after
hospitalization in the target system, they can continue their operation from where they left off. The
principle of agent hopping as a transfer mechanism may contribute to finding a solution to the sys-
tem intelligence utilization problem where the system’s actors can be agentized. The pioneers, such
as Bharat and Cardelli (1995) developed the principles of how application migration could be imple-
mented at the programming language/environment level. They proposed to include two complementing
elements, namely suitcases and briefings. A suitcase is the long-term memory of the agent that con-
tains all pieces of knowledge that the agent can take with it. It may include own-knowledge to share
and own-tasks to execute. The briefings are chunks of knowledge that the migrating/migrated agent
receives from the target system. The contents of these containers are updated before every migration.
Thus, suitcases and briefings are the enablers of the interoperation of an agent with other hosting
agents (Xu & Qi, 2008). Smart software agents of iCPSs can diagnose the opportunities of migrat-
ing and can make decisions on the execution and timing of a migration autonomously, based on the
possessed data and obtained communications (hop instruction). Agents may duplicate themselves and
send their copies to multiple target systems. A recognized issue is that agents with diverse ontologies
may assign different meanings to the same concept, or consider different concepts and messages with
the same meaning (Athanasiadis, 2005). Coordination of nearly concurrent migrations of agents is
an additional computational issue, as well as the negotiation protocol development for autonomous
multi-agent systems.

3.3. Transfer of learning resources

A third evolving example of technological opportunities for knowledge transfer between intellec-
tualized systems is the transfer of learning resources (data, models, algorithms, mechanisms, rules)
(Zhuang et al., 2020). Actually, two complementary forms of computational learning deserve attention.
One approach, referred to as transfer learning, is associated with the recently developed sophisticated
computational mechanisms of machine and deep learning (Neyshabur et al., 2020). The most basic
form of transfer learning is fine tuning a pre-trained model. In addition to the mentioned transfer learn-
ing, federated learning deserves attention. It also aims at transferring learning resources, but differently
(AbdulRahman et al., 2020).

Transfer learning has been proposed to enable modification of the architecture of deep learning
networks by pre-trained layers and to solve the problem of insufficient training data (Pan & Yang,
2010). The architecture modification is typically a focused action, i.e., involves editing only the last
few layers of the target network, as opposed to modifying the layers in the command line. This way,
the output functionality of a network can be changed, for instance, from classification to clustering, as
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Fig. 3. The overall process of reusing pre-trained layer components of deep neural networks.

happens in the case of MatLab (Fig. 3). The overall process of reusing pre-trained layer components of
deep neural networks includes six phases: (i) loading a pre-trained network, (ii) replacing the final layers
of the network by layers able to learn new features, (iii) retraining the modified network by adjusting
training options, (iv) prediction of the accuracy of the network by repeated test cases, (v) prediction of
the accuracy of the network by statistical analysis, and (vi) further algorithmic improvements of the
performance of the network.

This form of computational learning also supports cases where training data are expensive or difficult
to collect, and makes it possible to provide labelled deep learning data or to change the algorithmic
elements of the learning mechanism (Torrey & Shavlik, 2010). In this way, data and algorithms can
be used more efficiently and aptly in other application cases, having a number of characteristics in
common and being not prone to negative transfer. As an example of the latter, Zhang et al. (2018)
posited that recommender systems often suffer from the data sparsity problem that is prevalent in newly-
launched systems having had not enough time yet to amass sufficient data. To solve this knowledge
insufficiency problem, these systems apply cross-domain knowledge transfer (i.e., transfer relevant
data and relationships from a rich source domain to assist recommendations in the target domain).

Like multi-task learning, transfer learning also exploits relations between different learning tasks
(Zamir et al., 2018). In contrast to multi-task learning, which simultaneously (jointly) solves many
related individual learning tasks, the methods of transfer learning operate in a sequential fashion and
solve the learning tasks consecutively. Transfer learning is enabled by constructing regularization
terms for a learning task by (re)using the results of a previous learning task (Weiss et al., 2016). A
popular implementation is deep transfer learning. Deep learning mechanisms attempt to learn high-level
features from mass data by automatically extracting data features by unsupervised or semi-supervised
feature learning and hierarchical feature extraction, and to use the learnt features to classify objects.
Deep transfer learning is often categorized based on the computational approaches used. Based on
these, the following categories are identified: (i) instances-based (utilizing instances in source domain
by appropriate weight), (ii) mapping-based (mapping instances from two domains into a new data
space with better similarity), (iii) network-based (reuse the partial of network pre-trained in the source
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domain), and (iv) adversarial-based (use adversarial technology to find transferable features that both
suitable for two domains). Deep learning has a very strong dependence on massive training data
compared to traditional machine learning methods.

The term ‘federated learning’ (FL) was first introduced in McMahan (2016) to name the approach
of collaboratively training a machine learning model based on distributed resources. Strictly speaking,
FL is an umbrella term for ML/DL methods that train models in a collaborative fashion. Opposing
the other centralized approaches, FL is a distributed machine learning approach, which keeps the raw
data decentralized without being moved to a single server or data center (Khan et al., 2021). That
is, the mechanism of FL brings the code to the data, instead of bringing the data to the code. On the
other hand, it coordinates the distributed trainers to efficiently carry out the training process of machine
learning (Sattler et al., 2020). There are three aspects in which FL differs from other centralized learning
approaches: (i) it allows transferring the learnt (intermediate) data among the distributed computing
resources, while avoiding the transfer of training (direct raw) data, (ii) it exploits the distributed
computing resources in multiple regions or organizations, (while the centralized approach generally
utilizes only a single server or a cluster in a single region, which belongs to a single organization), and
(iii) FL generally takes advantage of encryption or other defense techniques to ensure the data privacy
or security, while the centralized approach pays little attention to these security issues (Smith et al.,
2017).

FL is formally defined as a machine learning approach where multiple clients collaborate in solving
a machine learning problem, while the raw data is stored locally and is neither exchanged nor trans-
ferred (Shaheen et al., 2018). Federated learning does not allow communication (while the centralized
approaches have no restrictions), whereby it addresses the fundamental problems of privacy, owner-
ship, and locality of data. The concept of FL was extended to three data scenarios, i.e., horizontal,
vertical, and transfer (Zhang et al., 2021). The distributed machine learning implemented according
to the horizontal data scenario of FL addresses decentralized data of the same features, while the
identifications are different. Features are those properties (predictors) of a data construct that can be
measured or computed in an automated fashion. For example, colors are features of a pixel in a bitmap
image. The vertical data scenario handles decentralized data of the same identifiers with different fea-
tures. The hybrid data scenario deals with data of different identifiers and different features. Network
coding techniques have been applied to the design and analysis of FL methods (Sarcheshmehpour et
al, 2021). The various approaches of transfer and federated learning offer mechanisms that can be used
as analogical in the case of system intelligence and knowledge transfer.

3.4. Transfer by emerging approaches

As a fourth example of the current approaches of knowledge transfer between intellectualized sys-
tems, computational approaches of knowledge graphs (KGs) reuse (Hogan et al., 2021) and collective
intelligence have been taken into consideration. The term ’knowledge graph’ (like the term ‘semantic
network’) was introduced in the literature at the beginning of 1970’s (Schneider, 1973). It has been
revitalized by commercial companies at the beginning of 2010’s (Noy et al., 2019). The reason for this
revival is that graphs provide an intuitive and concise abstraction for a variety of knowledge domains,
where nodes, edges, and paths capture different, potentially complex relations between the chunks of
knowledge. Knowledge bases and knowledge graphs show some similarities. The relational records
of a knowledge base are replaced by single- or double-orientated entity-relation/predicate-entity con-
structs of knowledge graphs. Though versatile, KGs are also not always sufficient for problem-solving
by iCPSs (Abu-Salih, 2021). That is why they have many different forms of extension mechanisms.

Conceptually analogous to a non-hierarchical concept map, KGs are seen as more complex than
image or text data types, which are characterized by (i) lack of reference points, (ii) arbitrary size,
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and (iii) diverse network topology. In principle, knowledge graphs can be constructed without any
underpinning predefined ontology schema. Nevertheless, the literature does not report on computational
methods for automated graph construction, only on graph processing (e.g., on transformation of entities
and relations into a continuous vector space). In this arrangement, the knowledge graph is the knowledge
container and the machine learning mechanisms may avail its content for use by different systems.
Typical models of KGs are (i) directed edge-labelled graphs, (ii) heterogeneous information networks,
(iii) entity-property-value graphs, (iv) graph meta datasets, and (v) stratified hyper-graphs. Reasoning
can be (i) inductive symbolic (e.g., self-supervised rule-mining and axiom-mining) and (ii) inductive
numeric (e.g., unsupervised graph analytics, self-supervised embeddings, and supervised graph neural
networks).

Since the real-world knowledge graphs are large and highly incomplete, inferring new facts based on
them is challenging. Being a network of entities and their relations in their simplest form, KGs embed
discrete but linkable elements of knowledge and can be extended with various reasoning and learning
mechanisms (Tiwari et al., 2021). Direct processing of knowledge graphs includes (i) knowledge graph
embedding in vector spaces, (ii) knowledge representation learning, (iii) knowledge graph completion,
(iv) extraction of relation paths, and (v) knowledge graph completion (Ji et al., 2021). The knowledge
graphs stored on a cloud, a fog, or an edge are actually not shared, but directly accessed by multiple
systems even concurrently. Machine learning mechanisms can learn the interrelated knowledge hiding
in the relational structures within domain-specific or domain-independent heterogeneous KGs (Tian
et al., 2022). By embedding a graph in a vector space, its logical representation can be transferred to
(a dense) numerical representation. For instance, Liu et al. (2022) extended a given knowledge graph
representation with machine learning. The encoding of KGs can be executed by deep learning through
relational graph convolutional network (GCN). The entity and relationships constructs are embedded
by using translational models such as TransE, ConvE, ComplEx, RotatE, QuatE, and AutoSF. Many
researchers share the opinion that knowledge graphs can become a confluence of technologies from
different areas with the common objective of maximizing the knowledge that can be distilled from
diverse sources at large scale using a graph-based data abstraction (Hur et al., 2021).

As discussed by (Lykourentzou et al., 2011), the idea of collective intelligence (CI) and collective
intelligence systems (CISs) has emerged in the context of producing higher-order intelligence, solu-
tions, and innovation by large groups of cooperating individuals. However, the attention has twisted to
the implementation of synthetic collective intelligence in the last decade. In the formulation of Sulis
(1997), a CIS consists of a large number of quasi-independent, stochastic agents, interacting locally
both among themselves, as well as with an active environment, in the absence of hierarchical organiza-
tion but in the presence of adaptive behavior. The three principles (stochastic determinism, interactive
determinism, and nonrepresentational contextual determinism) and the two major behavioral control
processes (non-directed communication and stigmergy) he identified in a different context, have logical
links to swarms of systems and their swarm intelligence. Gunasekaran et al. (2015) proposed a theory
of collective intelligence that mimics the communication process typically occurring in the collabo-
ration of human entities in self-managing multi-actor systems. It attempts to explain the emergence
of intelligent collective behaviors, among others, in social systems. Musil et al., (2015) proposed a
multi-layer model that includes three constituents: (i) human actors as proactive components, (ii) a
single, homogeneous CI artifact network as a passive component, and (iii) reactive/adaptive component
for computational analysis, management and dissemination.

Passive and active CISs have been distinguished. Zhang and Mei (2020) presented a constructive
model for collective intelligence, which continuously executes exploration, integration, and feedback
in computational loops. The idea of CISs can be extrapolated to the transfer of synthetic system
intelligence based on adaptation of the previously proposed approaches and introducing new ones.
Artificial collective intelligence is seen as a new perspective of AI, which is enriching computa-
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tional intelligence techniques (Williams, 2021). The latest implementations of this technology seek to
merge human and machine intelligence with the aim of achieving results unattainable by either one
of these entities alone (Smirnov et al., 2019). From a practical point of view, it facilitates achieving
the goals of a multi-actor system at a collective (group or crowd) level. The elements of the overall
knowledge transfer process are (i) discussion, (ii) argumentation, (iii) negotiation, and (iv) decision
making.

Leitão et al. (2022) completed an extensive literature study concerning the concept and features
of collective intelligence in an agent-based CPS. According to them, the concept of collective intelli-
gence provides an alternative way to design complex systems with several benefits, such as modularity,
flexibility, robustness, and re-configurability to condition changes, but it also presents several chal-
lenges to be managed (e.g., non-linearity, self-organization, and myopia). What differentiates CISs
from multi-agent systems is that the shared knowledge is transformed, cross-fertilized, moderated,
and consolidated through a series of discursive interactions among the actors. Notwithstanding, each
included entity has its own personal intelligence. Chunks of crowdsourced information and collective
intelligence can be used as input to learning mechanisms. Zheng et al., (2018) proposed a computa-
tional platform to support the development of a multi-agent-based reinforcement learning for artificial
collective intelligence.

4. Synthetic system intelligence as a new industrial asset

Utilizing SSI has two important facets: (i) providing a comprehensive and robust solution, or solu-
tions, to cover the wide-range of technological implementations of iCPSs, and (ii) providing effective
approaches to utilization and business processes. As the findings of the above studies show, the research
and development efforts are in an early stage in both domains and there is no real catalyst to bring
together the divided efforts. Nevertheless, this position paper assumes not only the importance and
high potential of this overall phenomenon, but also the solvability of the related theoretical, method-
ological, organizational, etc. problems if they are clearly defined. This latter is exactly what is hindered
by the lack of what-is and how-to knowledge. The bottom line is: If intellectualized systems, such as
iCPSs, will be able to make decisions on the necessity, possibility, goal, and realization of the transfer
processes of SSI on their own, then many doors will open up towards even an autonomous utilization
as an ampliative industrial asset.

4.1. Technological framework for managing SSI as an asset

Section 3 presented seven already consolidated or currently developing computational technologies
that show affinity to a comprehensive and robust SSI transfer process as well as to each other. Shown
in the outer rim in Fig. 4, these are: (i) distributed (intelligence) repository management, (ii) collab-
orative multi-agent-based transfer, (iii) migrating multi-agent-based transfer, (iv) transfer of learning
resources, (v) decentralized federated learning, (vi) knowledge graphs-based transfer, and (vii) collec-
tive intelligence-based transfer. It is fair to mention that this set of probable technologies reflects the
subjective opinion of the author.

It is very probable that none of them alone will be sufficient for all SSI transfer problems of iCPSs.
Notwithstanding, these technologies warrant consideration for further development. They will probably
reach that level of maturity, which is required in the context of transferring SSI. As an intermittent
stage in research and development, a subset, the whole set, or an extended set of the above-discussed
technologies can be integrated into procedurally and computationally tailored and orchestrated transfer
technologies It should also be taken into account that there are several - yet in sprouting - technologies,
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Fig. 4. From discrete potential transfer technologies to a robust SSI management.

Fig. 5. Concepts underpinning the utilization of SSI as an industrial asset.

such as knowledge transfusion and knowledge distillation, but it is not clear how they can contribute
to solving the problem of transferring synthetic system intelligence.

The main concepts underpinning the utilization of SSI as an industrial asset are shown in Fig. 5.
From a technological point of view, the overall asset management process of SSI can be divided into
local processes and a global interoperation process. There are two types of local processes named
neutralization sub-process and naturalization sub-process. The neutralization sub-process is about
separation of transferable SSI from the generating system, while the naturalization sub-process is
about the integration of transferred SSI with the native SSI of a system. The outcome of the local
neutralization sub-process is the packets of SSI self-generated by a particular system (called export
SSI), whereas the outcome of the local naturalization sub-process is the SSI packets integrated with
the native SSI of a system (called import SSI). Both the export and import SSIs include task-oriented
problem solving knowledge and processing mechanism combinations.

Figure 6 is a birds-eye-view on the relationship of these processes and their activity elements.
The lower blocks include the local, system-specific activities of self-acquiring and self-construction
of problem-solving knowledge and ampliative processing mechanisms, respectively. The flows of
activities on the outmost left side and on the outmost right side, respectively, represent the sub-
process(es) of local utilization of synthetic system intelligence. The left side flow, represented by
the upward pointed arrow in the middle of the figure, includes the five major activities of neutralization
of synthetic system intelligence in the system that has produced it. On top of the figure, the dual
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Fig. 6. The technological processes of utilizing SSI as an industrial asset.

pointed arrow of the global interaction process includes the six activities that enable the exchange
of the neutralized SSI among multiple interoperating systems. The right side flow, represented by the
downward pointed arrow in the middle of the figure, includes the seven major activities of naturalization
of synthetic system intelligence for the system that is going to utilize it. The outcome of the global
process is the generic SSI distributed over all interoperating systems.

The neutralization sub-process is a (tail) extension of the local intelligence management pro-
cess. Thus, this extends: (i) self-acquiring problem solving knowledge, (ii) self-acquiring processing
mechanisms, (iii) self-construction of problem solving knowledge, (iv) self-construction process-
ing mechanisms, and (v) operationalizing SSI in application context with (vi) creating intelligence
exchange packets (IEPs), (vii) assigning applicability meta-information to IEPs, (viii) warehousing
exportable IEPs, (ix) brokering with exportable IEPs, and (x) dispatching exportable IEPs for external
use. The naturalization sub-process is a (front) extension of local intelligence management processes. It
appends (i) recognizing the need for importable IEPs, (ii) searching for importable IEPs in warehouses,
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(iii) qualifying IEPs for use in tasks, (iv) importing qualified IEPs, (v) pre-testing and adaptation of
imported IEPs, (vi) integrating the contents of imported IEPs with native SSI used for problem solving
activities and self-management activities by the host system. The activities of the global interoperation
process are: (i) registration of interoperating systems and their resources, (ii) monitoring the transfer
traffic of IEPs, (iii) offering small scale sampling opportunity, (iv) managing protocols and standards,
(v) extracting meta-information for improvements, and (vi) managing overall security.

Implementation of SSI transfer means extra overheads for intellectualized systems from four aspects:
(i) operationalization, including (a) pretesting, (b) integration, and (c) refinement, (ii) long-term wran-
gling, including (a) evaluation, (b) filtering, (c) chunking, (d) extension, and (e) structuring, (iii)
enrichment, including (a) annotating, (b) contextualization, and (c) tailoring, and (iv) packaging,
including (a) assembling, (b) labelling, and (c) standardization.

4.2. Provisioning as an industrial asset

The increase of industrial revenues and social benefits poses a continual need for novel innovations
and new assets. Traditionally, an asset is a resource owned and controlled by an individual, a production
or servicing company, or a government. It is a result of past or current activities, and the enabler of eco-
nomic benefits. In the past, multiple forms of human knowledge (scientific, technological, enterprise,
educational, etc.) have been used as industrial assets. What constitutes human knowledge assets are (i)
the outputs of the knowledge transformation processes, and (ii) the accumulated depository of skills,
knowledge and experience of human professionals. Knowledge produced by artificial intelligence has
also reached this status.

In comparison with the conventional assets, SSI has unique characteristics since it is: (i) intangible,
(ii) sharable, (iii) reproductive, (iv) evolutionary, and (v) context-valued. It can be possessed as a prop-
erty, and/or accessed as a service. Thus, SSI contrasts the traditional (narrow sense) interpretation of
industrial assets as means (equipment, tools, chemicals, vehicles, infrastructure, computers, materials,
etc.) deployed to convert inputs to industry outputs, which can then be marketed as products, services,
and experiences, with the expectation that they will generate future cash flows. Handling SSI may
become a part of the practice of asset management, because it has the potential to grow in volume and
value, and to increase total wealth over time. The reasoning regarding the logic of provisioning SSI
as an industrial asset may start out from the key properties of an asset. Typically, three properties are
identified: (i) ownership/access, (ii) economics, and (iii) supply. In addition to the technological and
business issues, these important issues also need further attention.

For instance, ownership seems to be a simple matter in view to the current status quo of engineered
systems and the concerned legal regulations, but in fact it is not. According to the latter, the responsible
owner of the SSI is the original developer and/or the actual owner of the system producing the asset, as
contracted. However, this is not so straightforward in the case of autonomous systems of the near future,
which produce their synthetic resources/assets largely independent of humans, or at least not under
the direct control of human stakeholders. The other side of the coin of the ownership of SSI is that (i)
proprietary, (ii) shared, and (iii) open forms of possession may take place. Proprietary SSI means that
the body of knowledge and the processing mechanisms belong inseparably to a system (or to the owner
of similar systems). This knowledge is primarily stored in the repositories of the system or on those of
the owner company (e.g., on edge computing devices or on a private cloud of the company or a third
party, with no or limited access to other enterprise and partner networks, and retaining a high degree
of control, privacy, and security). Shared SSI means that the body of knowledge is jointly aggregated
by cooperating systems and/or their owner companies over multiple systems. It is managed either on
shared edge networks or on a community cloud whose infrastructural elements and processing rights
are shared by several organizations or third parties which share concerns, common objectives, and
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optimization of benefits. Open synthetic system knowledge (SSK) means that a body of knowledge
is made openly accessible, processable, and usable for the systems, developers, and researchers of
a large industry group, academic organization, and eventually, the broad public. In other words, the
historically aggregated and maintained intelligence may reside on publicly accessible clouds or may
be availed by a cloud service provider, enabling standardized data and application portability.

As well, the economic value of the exchanged, sold, or obtained SSI assets is a complicated matter
(Amin et al., 2018). Assets are associated with ownership and can eventually be turned into cash and
cash equivalents for the owners. Ultimately, it means that the total amount of investments should be
less than the total amount of financial return (profit). The investments include all (primary) costs of (i)
the implementation of the system shell, (ii) the knowledge engineering in the set-up stage, including
the preparation of the reasoning and control mechanisms, (iii) the processing (extraction) of system
intelligence during operation of a source system, (iv) transferring system intelligence to a target system
or to a warehouse, and (v) reactivation of the transferred system intelligence in a target system. The
returns include the (primary) income based on (i) selling and maintaining the system shell, (ii) vending
knowledge engineering means and services, (iii) selling system intelligence, (iv) sharing the benefits
of reusing transferred system intelligence by the target system(s). Here, only the direct and indirect
costs and benefits are thought of, and the secondary costs and benefits are ignored. Both the investment
side and the return side involve complex activity flows, whose financial consequences are difficult to
capture in detail and, therefore, comprehensively forecast and quantify. The evaluation is even more
complicated if multiple (large number of) systems (or a dynamic system of systems) are considered
which have different commitments and involvement in asset generation and utilization, and may show
different levels of successful and unsuccessful operations.

The supply aspect of converting SSI into an industrial asset involves not only opportunities, but also
challenges. Traditionally, the concept of asset convertibility is used to classify assets according to how
easy or difficult they are to be supplied and to get converted into cash. The primary issue would be the
motivation of the owners of autonomous systems to make positive decisions on collaboration and to
equip their systems up-front, or augment them in use time, with facilities for SSI management. However,
utilization of SSI as a novel industrial asset is supposed to happen not only over the boundaries of
systems, but also over the borders of companies and enterprises. This novel form of asset exploitation
is deemed to be part of their information technological (IT) asset management. It must complement
the combined practices of technological, financial, inventory, and contractual functions within the
IT environment, and help strategic decision-making, optimization of spending, and support lifecycle
management.

5. Conclusive remarks

In a sense, history repeats itself: In the 1970’s–1980’s, the need for technological solutions for trans-
ferring product data and inference knowledge among dissimilar systems was a stimulant of information
systems research. In the 2010’s and 2020’s, the need for (and the opportunity of) technological solu-
tions to transfer synthetic knowledge among intellectualized systems gives orientation to the research
of CPS research. The overall assumption of the background research was that shared synthetic sys-
tem knowledge and reasoning/learning mechanisms can eventually become a valuable industrial asset.
As an intellectual capital, SSI can contribute to the net working capital of a company or even to
the problem-solving potential of the whole society. This position paper was intended to present the
thoughts of the author concerning a number of recognized issues and technological affordances – with
an obvious incompleteness.
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It is well-known to scientist that the process of learning and knowing a yet unknown research phe-
nomenon goes through such stages as discovery, description, explanation, prediction, and regulation.
Since the emerging phenomenon of managing synthetic system intelligence is novel even on a concep-
tual level, the research could focus only on the identification and the characterization of this complex,
multi-faceted phenomenon. Therefore, a larger part of the contents presented in this position paper
belongs to the stage of discovery and description, and only a smaller part to the stage of explanation and
prediction. Due to the newness of the phenomenon, the literature is rather scarce and unspecific. Thus,
the intention of the structured literature study was to get deeper insights in the state of science and prac-
tice. The completed survey informed us about the lack of generic theories, conceptual frameworks, and
methodological approaches. Many of my own concepts and ideas are only work-in-progress and they
still must be addressed extensively from the perspective of an industry-wide implementation. Thus, a
supplementary goal of the paper has been to stimulate and encourage research and development efforts
in this direction. As good research questions imply new questions, a novel prognostic research should
encourage many strands of follow-up research.

Like patents and copyrights, SSI is to be treated as a (i) partially-physical, (ii) intangible, (iii)
liquid, (iv) functional, and (v) net identifiable potential asset that needs a socio-technical process to get
converted into cash. The road to an industrial solution for utilization of SSI will most probably be long,
curvy, and bumpy. Nevertheless, it is wise to deal with it in the framework of digital transformation,
which has rapidly turned itself to a digital disruption in terms of intellectualization of engineered
systems (Vial, 2021). This position paper has made an attempt to provide procedural framing of
the process of transforming synthetic systems knowledge into a common industrial asset and capital.
Obviously, there are many fundamental unanswered questions concerning the vision of SSI and utilizing
it as a new industrial asset. For instance: What is the true future of system intelligence? Where does
SSK go? Where do the computational reasoning mechanisms go? But nothing can be an obstacle to
imagination, design, and planning.

Not surprisingly, this position paper also closes with a question, rather than with an answer. The
question is: Can the investigated transfer mechanisms and the proposed procedural framework be the
starting points of system intelligence transfer between iCPSs, or should they be reduced, integrated,
extended, or substituted by something else that serves better for the purpose? Is there any affinity or
complementarity among them? Research in this direction needs holistic (multi-, trans-, and supra-
disciplinary), rather than reductionist approaches. The fact that the specific principles of doing this
type of research are only partially known makes studying this complex problem difficult. And, then
the practical question is: Can the above be triggering research questions and the sources of hypotheses
for follow-up research? This position paper would not have been submitted to the journal if the author
believed the opposite.

As the analysis showed, there are at least seven ‘carriages’ needed to move ahead on the road: (i)
obtaining deep scientific insights into the overall phenomenon, (ii) elaboration of the fundamentals
(underpinning knowledge and specifications), (iii) creation of conceptual, procedural, and methodolog-
ical frameworks and models, (iv) working out the across-systems intellectual and computational mech-
anisms and resources of SSI transfer, (v) implementation of the technological, engineering, and orga-
nizational enablers, (vi) realization of demonstrative prototypes with the involvement of autonomous
iCPSs, and (vii) identification and propagation of the best practices among iCPSs developers.
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engineering. Prof. Horváth is also interested in systematic design research methodologies. He was the
promotor of more than 25 Ph.D. students. He was first author or co-author of more than 460 publica-
tions. His scientific work was recognized by five best paper awards. He has a wide range of society
memberships and contribution. He is past chair of the Executive Committee of the CIE Division of
ASME. Since 2011, he is a fellow of ASME. He is member of the Royal Dutch Institute of Engi-
neers. He received honorary doctor titles from two universities, and the Pahl-Beitz ICONNN award
for internationally outstanding contribution to design science and education. He was distinguished
with the Lifetime Achievement Award by the ASME’s CIE Division in 2019. He has served several
international journals as editor. He was the initiator of the series of International Tools and Methods of
Competitive Engineering (TMCE) Symposia. His current research interests are in various philosophi-
cal, methodological, and computational aspects of smart product, system, and service design, as well
as in synthetic knowledge science and development of self-adaptive systems.


