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Abstract

The formal verification of multi-agent systems in safety-critical domains is challenged by the
need to certify population-level behaviours, such as formation control, under environmental
uncertainty. Traditional state-based verification techniques are often inadequate for express-
ing these system-wide objectives and face scalability limitations. This thesis addresses this gap
by developing a distributional reachability framework that models the evolution of the system
directly over the space of probability distributions, using Interval Markov Decision Processes
(IMDPs) to capture model uncertainty. We introduce two complementary analysis algorithms
to compute guaranteed bounds on the set of all reachable distributions: a forward method us-
ing occupation measures and McCormick relaxations, and a robust backward algorithm based
on value iteration over a discretised distribution space. Case studies in swarm deployment
demonstrate the efficacy of the framework in computing robust, set-based approximations of
reachable distributions. Furthermore, results for the robust backward reachability algorithm
are presented for a running example. This capability allows for the formal verification of
complex distributional specifications and the synthesis of control policies with certified safety
guarantees, establishing a computational foundation for designing certifiably safe, large-scale
autonomous systems.
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Chapter 1

Introduction

Chapter Summary
This chapter introduces the problem of verifying reachability specifications in multi-
agent systems operating under stochastic dynamics and model uncertainty. Safety and
reachability are dual notions: verifying that a system avoids unsafe states (safety) can
be reformulated as checking that it never reaches those states (reachability). Traditional
state-based approaches are limited in multi-agent settings, where distribution-level ob-
jectives or specifications could be more relevant. To address this, we adopt Interval
Markov Decision Processes (IMDPs), which use bounded transition probabilities to
model uncertainty in transition probabilities. This allows us to reason about the evolu-
tion of agent distributions and forms the foundation for the distributional reachability
analysis developed in this thesis.

1-1 Motivation

Autonomous systems are being increasingly deployed in safety-critical environments, under
both stochastic dynamics and uncertain system environments. These include domains such
as autonomous vehicles, multi-agent systems, air traffic management, and swarm robotics
(Brambilla et al., 2013; Schranz et al., 2020). Such systems must operate safely, ensuring a
minimum chance of an accident. An accident refers to a situation where a system behaves
unexpectedly, resulting in undesirable or harmful outcomes instead of operating as intended
or specified (Amodei et al., 2016). A common theme across domains is the need to guarantee
that the system satisfies certain reach-avoid specifications, that it eventually reaches a target
objective while avoiding unsafe states or situations along the way, despite model uncertainty
and environmental disturbances.

Verification methods for stochastic systems can be classified into abstraction-free and abstraction-
based approaches (Lavaei et al., 2022). Abstraction-free methods reason directly over the sys-
tem dynamics, typically by constructing stochastic barrier functions, Lyapunov-like functions
whose existence certifies safety (Santoyo et al., 2021), or by solving functional inequalities
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2 Introduction

(Prajna et al., 2007). These approaches often rely on restricted function classes (e.g., poly-
nomials, piecewise linear, or sum-of-squares) to ensure computational tractability (Santoyo
et al., 2021; Mazouz et al., 2024). Such structural limitations can lead to conservative results
and hinder scalability, especially for high-dimensional or non-polynomial systems (Lavaei
et al., 2022). In contrast, abstraction-based methods approximate the continuous system
with a finite-state model, enabling the use of formal synthesis and model-checking tools for
verification (Alur et al., 2000). Conceptually, both approaches can be unified under a dynamic
programming framework, where abstraction-free methods yield conservative approximations
of value functions computed over finite abstractions (Laurenti and Lahijanian, 2023). This
perspective motivates the use of abstraction-based methods in this thesis.

A framework for reasoning about sequential decision making under uncertainty is the Markov
Decision Process (MDP), which models the evolution of the system as a controlled stochastic
process with a Markov property, which means that the future state of a system depends on
the current state and the action taken and not the past states (Baier and Katoen, 2008).
In classical MDP verification (Baier and Katoen, 2008; Forejt et al., 2011), one typically
analyses properties such as reachability, which deals with determining whether the system
can reach a desirable target set of states. This has been extensively studied through state-
based formulations that focus on the behaviour of individual state-based trajectories (Baier
and Katoen, 2008; Forejt et al., 2011). These verification methods have found considerable
success in domains where the state space is small or where individual state-based outcomes
are directly relevant (Kwiatkowska et al., 2011; Soudjani et al., 2015; Wooding and Lavaei,
2024).

However, many modern applications, particularly in multi-agent or swarm systems, are no
longer best described solely by individual state trajectories (Akshay et al., 2023). Instead, the
relevant properties often pertain to the collective behaviour of populations of agents, where
global system safety depends not on the state of any single agent but on how the distribution
of agents evolves. This motivates a shift in viewpoint from reasoning over states to reasoning
over state distributions, leading to the distributional perspective of reachability.

1-2 Motivating Example

Modern autonomous systems, such as drone swarms or robotic fleets, require decision-making
at multiple levels of abstraction. While low-level controllers govern actuation and trajectory
tracking, higher-level planners reason about global safety, coordination, and specification sat-
isfaction across large agent populations. In this thesis, we focus on this upper layer of abstrac-
tion, commonly referred to as fleet-level planning or distributional coordination (Schwarting
et al., 2018), where the objective is not to track individual paths, but to reason about how
aggregate distributions of agents evolve and whether they satisfy system-level safety and
reachability constraints.

Consider a swarm of 100 drones operating on a discrete 10×10 grid, where each cell represents
either a physical location or an abstract state. The drones aim to navigate from initial regions,
such as warehouse launch pads, to designated delivery zones while avoiding restricted or
hazardous areas, including no-fly zones, buildings, or sensitive airspace sectors. At each time
step, a drone selects an action; however, environmental factors such as wind, sensor noise,
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1-2 Motivating Example 3

or actuator imprecision introduce stochasticity into the executed transitions. For instance,
a drone intending to move north may instead drift northeast or remain stationary due to
disturbances.

(a) Case 1: Most agents successfully
reach target, few near unsafe regions.

(b) Case 2: More agents dispersed near
unsafe regions.

Figure 1-1: Motivating example illustrating the difference between safe and unsafe distributions
under identical marginal probabilities. The grey region indicates the launch pads, green denotes
the target region, red indicates no-fly (unsafe) zones, and orange dots represent agents located
near unsafe regions. Green dots represent agents that have reached the target.

Classical state-based analysis typically monitors the marginal probability of occupancy for
each grid cell, i.e., the probability that an arbitrary agent resides in a particular state at a
given time. For example, suppose that under a given policy, the marginal probability of a
drone being in the target region (cells (0, 8) to (0, 9) in Figure 1-1) is 0.6, while the total
marginal probability assigned to restricted regions is 0.02. Although these values quantify
state-wise occupancy, they fail to capture the global structure of the agent distribution across
the state space.

In fact, different population-level configurations can produce identical marginals but differ
significantly in terms of safety. As illustrated in Figure 1-1:

• Case 1: The distribution is concentrated in the target region, with minimal presence
near unsafe zones.

• Case 2: Although the marginal statistics are identical, the distribution is more dis-
persed, with agents clustered near several restricted zones. This can lead to localised
safety violations and reduced mission effectiveness at the system level.

These scenarios highlight a fundamental limitation of marginal-based reasoning: many multi-
agent safety specifications—such as bounding the number of agents near unsafe areas—are
inherently distributional, and cannot be verified by state-wise probabilities alone. Such spec-
ifications depend on the joint occupancy pattern of agents across the state space.

Moreover, modelling each agent explicitly would require tracking the full joint state space
of dimension |S|N , which becomes intractable for large swarms (e.g., 100100 for 100 agents
on a 100-cell grid). To address both expressiveness and scalability, we adopt a distributional
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framework (Korthikanti et al., 2010), where the state of the system is represented as a proba-
bility distribution over the grid. This approach enables direct reasoning about the evolution
of the population over the probability simplex ∆|S|, providing a compact and computationally
feasible abstraction for verifying population-level reachability and safety under uncertainty.
Although less expressive than full joint-state modelling, this perspective is well-suited to
scenarios where aggregate behaviour governs system-level correctness.

This leads to the formal study of distributional reachability, characterising how probability
distributions over state space evolve under both stochastic dynamics and policy choices (Ko-
rthikanti et al., 2010; Chadha et al., 2011; Akshay et al., 2018). In the distributional view,
the system is no longer treated merely as a generator of individual random paths but rather
as a transformer of distributions, mapping the current distribution of agents across the state
space to future distributions through its probabilistic transition structure under the influence
of a policy.

While the distributional perspective offers a natural modelling framework, practical verifica-
tion is further complicated by the presence of model uncertainty. In real-world applications,
exact transition probabilities are rarely known (Lavaei et al., 2023). They may instead be es-
timated from empirical data, subject to noise, or specified only approximately due to limited
modelling capabilities called the epistemic uncertainty (Badings et al., 2023a). This uncer-
tainty in the model parameters gives rise to the need for robust verification, where safety
guarantees must hold across all plausible models consistent with the available information.

The interval Markov Decision Processes (IMDPs) framework provides a method to capture
such transition uncertainty, where each transition probability is specified within a bounded
interval rather than as a single deterministic value (Givan et al., 2000). In our motivating
gridworld example, these intervals could represent uncertainty in wind estimation, variability
in drone battery power that affects thrust, or unmodelled environmental disturbances. De-
signing controllers for such systems requires accounting for the worst-case behaviour across
all transition realisations allowed by these intervals.

This motivates the central problem studied in this thesis: how to characterise the set of
all state distributions that can be reached in finite time, starting from an uncertain initial
distribution and evolving under both stochastic policies and adversarial transition uncertainty
modelled via IMDPs. The focus is on developing verification and synthesis procedures that
reason directly over reachable sets of distributions, accounting for both control decisions and
worst-case realisations of transition uncertainties.

1-3 Contribution

The contributions of this thesis are centred on the development of a computational frame-
work for verifying the distributional reachability of IMDPs with applications to multi-agent
systems. We formally define the problem of forward distributional reachability, focusing on
computing the set of all possible state distributions that arise from uncertain transitions and
stochastic policies. A key contribution is the characterisation of reachable sets as convex sets
that evolve through affine transformations, which are induced by both the policy and adver-
sarial transition choices. We propose a recursive algorithm to compute these k-step reachable
sets by propagating the convex sets under these uncertain transformations. We also provide
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a value iteration-based backward reachability method to characterise the largest initial dis-
tribution set from which we are guaranteed to reach the target set of distribution in a given
horizon. The practical application of this framework is demonstrated through a case study
in multi-agent reachability problem and a demonstration of the robust backward reachability
algorithm, illustrating how the developed methods can verify reachability properties under
uncertainty.

1-4 Report Outline

The remainder of this report is structured to systematically develop the proposed framework.
Chapter 2 provides a review of the relevant literature on probabilistic verification, robust
control, and distributional analysis, situating this thesis within the current state-of-the-art.
Chapter 3 establishes the necessary mathematical background, formally introducing Robust
MDPs (RMDPs) and IMDPs and the distribution transformer perspective. The core con-
tributions are presented in the subsequent chapters. Chapter 4 formulates and addresses
the forward reachability problem, detailing a method for policy synthesis using occupation
measures and convex relaxations. Complementing this, Chapter 5 develops the backward
reachability problem, introducing a robust value iteration-based algorithm to compute the
largest initial set of distributions that are guaranteed to reach a target set of distributions.
Chapter 6 validates these methods through two distinct case studies: a multi-agent swarm
deployment and a detailed analysis of the robust backward reachability algorithm. Finally,
Chapter 7 concludes the thesis by summarising the contributions, discussing the limitations
of the work, and proposing directions for future research.
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Chapter 2

Related Work

Chapter Summary
This chapter reviews safety verification methods for stochastic systems, with an em-
phasis on abstraction-based techniques using MDPs and IMDPs. Existing approaches
predominantly focus on verifying properties at the state level, assuming either exact
or bounded transition probabilities. Since safety and reachability are dual concepts,
many of these methods can also be adapted for reachability analysis. However, they
generally reason about individual state trajectories and do not address the evolution of
distributions over state space, particularly in the context of multi-agent systems under
uncertainty. This review highlights this gap and motivates the need for distribution-
level verification, which is the focus of this thesis.

In safety-critical domains such as autonomous driving and drone swarms, it is important to
prevent unsafe states and quantify how likely the systems are to reach or avoid critical regions
(so-called unsafe regions) under uncertainty (Abate et al., 2008). Safety (”nothing bad hap-
pens”) and reachability (”will the system end up in some state(s)?”) are dual concepts (Baier
and Katoen, 2008). Classical MDPs provide a probabilistic framework for safety and reacha-
bility analysis using policy iteration, value iteration, maximal end component decomposition
(Haddad and Monmege, 2018) and set invariance (Blanchini and Miani, 2007) to certify that
’unsafe’ states are avoided with a specified confidence level. However, these methods typi-
cally assume that the transition kernels are either precisely known or are parametric with
unknown but fixed parameters. This assumption limits their applicability to real-world sys-
tems (Jafarpour and Coogan, 2023), where the transition probabilities are often uncertain
due to limited observational data or incomplete knowledge about the system environment or
dynamics. RMDPs address this by treating transition probabilities as adversially perturbed
within confidence sets, yielding worst-case guarantees via minmax optimization (Nilim and
Ghaoui, 2003; Wiesemann et al., 2013). IMDPs, a special case of RMDPs, assume the tran-
sition probabilities to be bounded within an interval of values while solving the minmax
optimisation problem for a given objective (Givan et al., 2000). These approaches evaluate
safety by considering the state trajectories of the system. However, applying these methods to
multi-agent systems is often computationally challenging. This is due to the need to evaluate

Master of Science Thesis Vilohit Sarma Kaza



8 Related Work

the joint state space of all the agents over time, which grows rapidly with the increase in the
number of agents in the system. In contrast, distributional reachability of MDPs seeks to
bound the probability of the distributions over the state space reaching a given distribution,
which also ensures the safety of the system (Akshay et al., 2024; Gao et al., 2023). In this
chapter, we present a survey of foundational methods for safety verification based on MDPs
and IMDPs, and discuss their relation to probabilistic reachability. We then identify a gap
in the existing literature about the lack of distribution-level reachability guarantees under
uncertainty, thereby motivating the framework introduced in chapter 4.

2-1 Probabilistic Safety and Reachability

MDPs provide a framework for modelling probabilistic systems with non-determinism and
for synthesizing control policies that optimise a given objective (Puterman, 1994; Baier and
Katoen, 2008). In a reachability problem, e.g., guiding a robot through a 2-D grid world
to a target set and some unsafe set of states, the objective is to maximise the probability
of eventually reaching that set. In contrast, the safety problem would be to maximise the
probability of never reaching unsafe sets or minimise the probability of leaving a set of safe
states. By the duality of safety and reachability, solving the reachability problem also yields
almost-sure safety guarantees, meaning that the system satisfies the safety specification with
probability one (Abate et al., 2008).

A classical solution technique to solve the reachability problem is value iteration, which applies
successive Bellman updates to converge to the unique reachability probabilities (Forejt et al.,
2011). However, value iteration converges only in the limit and lacks a concrete stopping
criterion: it provides upper and lower bounds that tighten over time, but one cannot guarantee
in finite steps that the exact value has been reached (Haddad and Monmege, 2018). Although
Chatterjee and Henzinger (2008) derive an upper bound on the number of iterations needed
for convergence, this bound is overly pessimistic and impractical for exact value computation
in large MDPs (Brázdil et al., 2025).

To overcome these limitations, more recent work has leveraged the underlying graph structure
of MDPs to obtain finite-time guarantees. In particular, the decomposition of MDP graphs
into maximal end components (MECs), subsets of states from which the system cannot escape,
allows the isolation of recurrent behaviour and the reduction of the effective state space
(Henzinger and Chatterjee, 2011; Wijs et al., 2014). These decomposition techniques improve
convergence properties and algorithmic efficiency, but require full knowledge of the MDP
graph in advance and are less suited for dynamically constructed or partially specified models.

Building on these insights, Haddad and Monmege (2018) propose an interval iteration algo-
rithm that maintains explicit upper and lower bounds on reachability probabilities and refines
two coupled sequences of value vectors. They prove convergence-rate bounds and propose an
explicit stopping criterion that guarantees optimal policies, while still respecting the original
MEC structure. This was extended by Brázdil et al. (2025) to support dynamic graphs with
on-the-fly addition or deletion of transitions, while maintaining convergence guarantees.

Although much of the work presented until now focused on safety verification, reachability
poses its dual: ensuring that the system can reach a target set with high probability. This
perspective naturally leads to reach-avoid formulations, which have become central in recent
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2-1 Probabilistic Safety and Reachability 9

approaches to probabilistic reachability, particularly in systems where ensuring progress to-
ward desired outcomes is as important as avoiding failure (Baier and Katoen, 2008; Forejt
et al., 2011; Chatterjee and Henzinger, 2008; Haddad and Monmege, 2018). With increas-
ing demands to verify and control high-dimensional stochastic systems, such as multi-agent
networks or population-level models, classical state-based formulations of MDPs become com-
putationally infeasible due to exponential state space growth. To address this, recent work
has adopted a distribution transformer perspective (Gao et al., 2023; Akshay et al., 2024,
2023, 2018), modelling MDPs as transformers of probability distributions over states rather
than as transition systems over individual states. This abstraction enables reasoning directly
over population-level behaviours and synthesising policies to drive the system to a desired
distribution with a certain confidence level. It also provides a more natural framework (Ak-
shay et al., 2024) for verifying specifications of systems, especially in scenarios where safety
and performance are defined over distributions rather than specific paths or configurations.
Korthikanti et al. (2010) propose analyzing MDPs by studying how the entire distribution over
system states evolves over time under a policy, instead of focusing on individual trajectories.
They develop a logic for expressing distribution-based properties and show that verification
is undecidable in general, but becomes decidable under restrictions such as finite-memory
or stateless policies. Chadha et al. (2011) build on this by identifying conditions under
which, regardless of the policy used, the evolving distributions eventually enter and remain
within a fixed, compact set. This behavior allows properties to be checked using fixed-
point computations over this invariant set. Akshay et al. (2018) further extend this line of
work by introducing distribution-based specifications for safety and reachability, and analyze
the complexity of verifying whether such objectives can be achieved from a given initial
distribution
Building on this, Akshay et al. (2023) developed a symbolic approach for safety verification
using affine-invariant constraints over reachable distributions. By constructing inductive in-
variants and reducing verification to solving affine inequalities, the method achieves relative
completeness within a fixed template. However, its connection to the Skolem problem renders
the synthesis step undecidable in general, posing computational challenges.
In contrast, Gao et al. (2023) introduced set-valued maps to characterise forward and back-
ward distributional reachability in finite Markov Decision Processes (MDPs), providing in-
sights into invariant sets and domains of attraction.
The shift to reasoning over distributions in MDPs aligns with developments in control theory,
where the focus has moved from analyzing individual trajectories to guiding the evolution
of state distributions. While previous works addressed verification and synthesis in discrete
models, similar ideas have been applied to systems with uncertainty, continuous dynamics,
and limited data. The following approaches extend distributional reachability to such settings,
particularly in control and multi-agent systems.
Chen et al. (2016a,b) study how to steer the state distribution of stochastic linear systems
toward a desired target. Yang et al. (2022) addressed scalability in backward reachability
analysis by developing algorithms that under-approximate backward reachable sets using
constrained zonotopes. Their approach efficiently handles discrete-time uncertain linear and
nonlinear systems, facilitating controller synthesis that ensures system correctness.
In the context of multi-agent systems with unknown dynamics, Meshkat Alsadat et al.
(2024) developed the ODMU method, which uses limited data and side information to over-
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approximate reachable sets and achieve near-optimal control. This approach is particularly
relevant for real-time scenarios where system dynamics may change abruptly. Lastly, Lei
et al. (2023) proposed a finite-time adaptive distributed optimisation framework for uncer-
tain nonlinear multi-agent systems. Their two-stage approach combines an optimal estimator
with an adaptive tracking controller, ensuring convergence to optimal solutions despite system
uncertainties.
Together, these works illustrate a paradigm shift in formal methods, from exact, state-based
analysis to scalable, distribution-based reasoning. It also lays the groundwork for incorporat-
ing robustness into the analysis, which is addressed next through robust and interval MDP
frameworks.

Robust MDPs (RMDPs) and Interval MDPs (IMDPs) In real-world applications, safety-
critical systems often operate under uncertain or partially known dynamics, where exact
transition probabilities are difficult to obtain or inherently variable. To account for such
uncertainty, the framework of Robust Markov Decision Processes (RMDPs) augments classical
MDPs bounded by uncertainty sets, called ambiguity sets, over transitions. These models
are useful in analysing and synthesising policies that optimise performance under worst-case
realisations, providing formal guarantees for safety and reachability objectives.
Foundational work by (Iyengar, 2005) and (Nilim and El Ghaoui, 2005) formulated the RMDP
problem as a minimax optimisation over uncertain transition kernels, offering tractable so-
lutions under rectangular uncertainty sets. Building upon these formulations, (Wiesemann
et al., 2013) unified various robustness models within a single framework, characterising exact
and conservative conditions under which robust policies can be efficiently computed. More
recent advances extend these formulations to settings with epistemic uncertainty, distribu-
tional robustness, and ambiguity sets based on Wasserstein distances (Mazumdar et al., 2024;
Badings et al., 2023a), supporting both model-based verification and learning-based synthesis.
A subclass of RMDPs, known as Interval MDPs (IMDPs), specifies ambiguity sets via closed
intervals. Introduced by (Givan et al., 2000), IMDPs abstract probabilistic systems with
bounded noise or estimation error, enabling conservative guarantees for reachability. They
introduce algorithms for IMDPs to maximise the upper and lower bounds of a value function
for a state ordering, and also present methods to support policy evaluation and synthesis.
However, these methods suffer from convergence issues due to the inherent nonlinearity in-
troduced by interval uncertainty. To address this, (Haddad and Monmege, 2018) proposed
the interval-iteration algorithm, providing finite convergence guarantees and explicit error
bounds on safety probabilities.
Traditional IMDPs assume discrete action spaces and static uncertainty, limiting their ap-
plicability in continuous control settings. To overcome this, (Delimpaltadakis et al., 2023)
introduced continuous-action IMDPs (caIMDPs), wherein transition probabilities are mod-
elled as functions over continuous control variables. Their approach yields tighter safety
bounds in structured domains but remains computationally expensive in high-dimensional
settings. A complementary line of work by Jafarpour and Coogan (2023) studies continuous-
action IMDPs from a dynamical systems perspective, proposing iterative refinement methods
using contraction theory.
Further extensions to multi-objective settings and policy refinement are explored in works
like (Hahn et al., 2017), which develop robust Pareto-optimal policy synthesis for multiple
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reachability goals under interval uncertainty. Entropy-regularised techniques for IMDPs have
also been proposed to strike a balance between conservatism and policy exploration (van Zut-
phen et al., 2024), particularly relevant in learning-driven control. Recent surveys consolidate
the landscape of robust and interval-based decision models, emphasising their applicability
to formal verification and AI systems under uncertainty (Suilen et al., 2024).

Collectively, these frameworks offer methods for modelling and verifying probabilistic sys-
tems under uncertainty. Although they provide strong guarantees for reachability and safety,
computational scalability and policy expressiveness remain open challenges (Lavaei et al.,
2022).

The methods described until now rely on probabilistic model checking tools to verify the
specifications of stochastic systems. Tools such as PRISM (Kwiatkowska et al., 2011) and
Storm (Hensel et al., 2022) support discrete and continuous-time Markov models using value
iteration. For IMDP-specific tasks, tools like bmdp-tool, IMPaCT (Wooding and Lavaei, 2024),
and IntervalMDP.jl (Mathiesen et al., 2024) exist. IMPaCT supports parallel controller
synthesis and abstraction for stochastic systems, while IntervalMDP.jl focuses on GPU-
accelerated reachability and reward optimisation for a given IMDP.

2-2 Abstraction Methods

The finite‐state IMDP reachability algorithms presented above require a discrete model with
finitely many states and explicit interval uncertainty. However, many safety‐critical systems,
such as swarm robots, stochastic hybrid processes, or neural network controllers, evolve over
continuous or uncountable state spaces (Zamani et al., 2016). Abstraction techniques for
probabilistic safety and reachability reduce systems with continuous or uncountable state
spaces to finite‐state models, such as MCs, MDPs, IMDPs, or IMCs, over-approximate dy-
namics and uncertainty up to quantifiable error. Early methods partitioned the state space
uniformly and computed interval‐valued transitions via Lipschitz‐based estimates, thereby
obtaining finite MCs whose error between the MC and the underlying system vanishes as
the grid is refined (Abate et al., 2010). Such uniform abstractions, however, suffer from
exponential growth in the number of regions as the dimension increases.

To mitigate this curse of dimensionality, subsequent work exploited structural properties of
the system dynamics. Lahijanian et al. (2012) introduced an MC–based abstraction method
for discrete-time linear stochastic systems with bounded noise, offering tighter abstraction
error bounds than the approach proposed by Abate et al. (2010), under a specified threshold
on the error bound. Lahijanian et al. (2015) extend this by developing abstractions based
on IMCs and IMDPs for switched stochastic systems. Their approach involves partitioning
the state space into polytopic regions and computing exact transition probability bounds
through min-max operations that explicitly capture system uncertainty. Furthermore, they
also support the verification of PCTL formulae. Their proposed refinement method to reduce
the uncertainty in system modelling faces scalability challenges due to the exponential growth
of partitioned regions, a consequence of the curse of dimensionality.

To reduce conservatism in abstraction error bounds,(Cauchi et al., 2019) proposed incorpo-
rating exact abstraction errors into the abstraction model through a convex optimisation
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framework. Unlike earlier approaches, this method explicitly embeds error terms into the ab-
straction itself, thereby limiting the propagation of uncertainty in the transition probabilities
and bounding error accumulation over time. Robust optimisation techniques are employed to
synthesise control policies capable of handling specification uncertainty, and the verification
of both csLTL and BLTL properties is formulated as an adversarial game between the con-
troller and a worst-case environment (Cauchi et al., 2019; Lahijanian et al., 2015). However,
the approach is currently limited to stochastic hybrid systems (SHS) with linear dynamics.

Extensions to continuous‐time stochastic differential equations (SDEs) have proposed dis-
cretisations that depend on the system dynamics. Laurenti et al. (2020) discretised both time
and space for switched diffusions with linear SDEs, constructing IMDPs whose discretisation
errors are captured in closed form. Robust synthesis over these abstractions yields switching
strategies that guarantee continuous‐time safety while highlighting the trade-off between step
size for time and the resolution of the discretised state space grid.

Finally, to further reduce the curse of dimensionality, Mathiesen et al. (2025) introduced
orthogonally decoupled IMDPs (odIMDPs), in which transition bounds factor into marginal
intervals along each coordinate. By exploiting decomposability in the original stochastic dy-
namics, odIMDPs store only per‐coordinate marginals and perform robust value iteration.
Empirical results demonstrate tighter probabilistic guarantees than standard IMDP abstrac-
tions on benchmarks of up to seven dimensions.

These abstraction techniques produce finite IMDP models, enabling reachability analysis over
the IMDPs. However, they assume known noise models and static partitions, and they often
suffer from the curse of dimensionality.

2-3 Data-driven Approaches

The abstraction methods reviewed in Section 2-2 typically assume that the distribution of sys-
tem disturbances—modelled as process noise—is known and follows a Gaussian profile. While
this simplifies the analysis, it limits the applicability of such approaches to real-world sys-
tems, where the noise distribution may be unknown, non-Gaussian, or derived from sparse and
noisy measurements. Moreover, constructing finite abstractions using system identification
techniques can be computationally demanding and challenging to scale in high-dimensional
settings (Badings et al., 2022; Lavaei et al., 2023). Data-driven approaches address these
gaps by constructing finite MDPs or IMDPs from observed trajectories, computing upper
and lower transition bounds that hold with prescribed confidence levels.

For MDPs, Lavaei et al. (2023) propose a scenario-based approach to construct finite MDP
abstractions for discrete-time stochastic systems with unknown dynamics. They collect state–
action–next-state samples, then solve scenario convex programs to bound the probability that
the learned MDP deviates from the true system by more than a user-specified confidence level.
This yields a finite MDP with probabilistic guarantees on each transition probability.

Similarly, for IMDPs, Badings et al. (2022) partition the continuous state space into convex
cells, draw disturbance samples, and solve a scenario program to compute interval transitions
for an IMDP. Control actions at each abstract state are synthesised via backward reachability
on a nominal dynamics model. However, this method accounts only for aleatoric uncertainty
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(randomness) and does not account for epistemic uncertainty in system parameters. In con-
trast to previous approaches, such as the single-target abstraction procedure, where an action
from an abstract state is allowed only if the backward reachable set of the nominal system
lies entirely within a single target partition cell, Coppola et al. (2024) propose a multi-target
abstraction method. In this approach, transitions are permitted to sets of neighbouring re-
gions, rather than to a single cell. By allowing transitions to cover sets of nearby partition
regions, the abstraction retains more feasible actions and better approximates the true system
dynamics. While this improves abstraction tightness, all these approaches rely on probably
approximately correct (PAC) guarantees, which may still lead to overly conservative bounds,
especially in under-sampled regions. Furthermore, these methods have been demonstrated
mainly for systems with linear dynamics.

As a nonparametric alternative, Skovbekk et al. (2024) extend the GP-based safety framework
of Jackson et al. (Jackson et al., 2020). They fit Gaussian processes to transition data, derive
RKHS-based error bounds on both regression and discretisation, and compute interval transi-
tions for the resulting IMDP. While this accommodates complex, sub-Gaussian disturbances
and unknown dynamics, it incurs cubic complexity in the number of samples and suffers from
exponential growth in the finite model as dimensionality increases.

For non-linear stochastic systems with non-affine noise structure, Skovbekk et al. (2023) pro-
pose a disturbance partitioning scheme for non-linear systems with component-wise noise. By
optimally binning the disturbance space guided by system monotonicity and clustering states
with similar behaviour, they build a refinement-free IMC abstraction that tightens transition
bounds and also addresses the state-space explosion problem. However, this method relies
on monotonicity and independent-noise assumptions, and the optimality of the clustering
strategy remains an open problem.

More recently, Reed et al. (2023) employed deep kernel learning (DKL) to obtain both a
learned mean and rigorous variance estimates, then computed tight linear relaxations of
these estimates over each region. The abstraction method presented requires only finitely
many function value evaluations rather than full convex programs, improving scalability and
preserving correctness on benchmarks of up to five dimensions.

In our motivating example from section 1-2, wind disturbances cannot be specified a priori,
and only flight data are available. Data‐driven abstraction methods, therefore, learn finite
IMDP (or IMC) models directly from these samples, computing upper and lower transition
bounds that hold with high confidence. Unlike classical abstraction methods, which assume
Gaussian noise and manual partitions, these techniques infer both the disturbance model and
the state grouping automatically, resulting in IMDPs on which the reachability algorithms
from (2-1) can be applied to compute rigorous probability guarantees.

2-4 Discussion

The literature shows a recent shift of MDPs toward a ”distribution transformer” view for
verifying multi-agent systems, as it better captures population-level objectives than tradi-
tional state-based methods (Akshay et al., 2024). In parallel, IMDPs and IMCs have been
established as a standard framework for modelling the transition uncertainty inherent in these
systems(Badings et al., 2023b; Lahijanian et al., 2015; Laurenti et al., 2020). However, a gap
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exists at this intersection: prior distributional analysis has largely assumed precisely known
dynamics, while work on IMDPs has focused on state-level reachability probabilities, not the
geometry of reachable distribution sets. This thesis aims to bridge this divide by developing
a computational framework specifically for the distributional reachability analysis of IMDPs,
which has applications in multi-agent systems.
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Chapter 3

Background

Chapter Summary
This chapter introduces the mathematical foundations for distributional reachability
analysis. We motivate the need for a distribution-based view in settings like multi-
agent navigation, where reasoning about populations is more relevant than individual
trajectories. Core tools from set theory, probability, and convex analysis are presented,
followed by a review of MDPs and their extensions, Robust and Interval MDPs, to
model uncertainty in transitions. A running example is introduced and used in the
rest of this report. We conclude with a geometric interpretation of system dynamics as
transformations over probability distributions. These foundations support the reacha-
bility problem addressed in the next chapter.

3-1 Motivation for Distributional Reachability

This section motivates the central problem of this thesis and sets the stage for the modelling
and theoretical tools introduced throughout this chapter. The next chapter formalises the
problem and develops algorithms for distributional reachability verification.

Although safety verification has often been the primary objective in probabilistic systems,
our focus here is on reachability, its dual. While safety requires that undesirable states be
avoided at all times, reachability requires that a desired target set be reached at least once
within the horizon. This distinction aligns with the classical formulation, where safety is
an infinite-horizon property, whereas reachability is inherently finite-horizon (Summers and
Lygeros, 2010; Baier and Katoen, 2008). This existential nature makes reachability a suitable
model in many control and planning tasks (Yang et al., 2022), where the goal is not to avoid
failure indefinitely, but to achieve success within a defined time horizon.

Moreover, focusing on reachability could allow us to pose richer and more flexible questions.
In population-level systems, we often do not seek guarantees that every agent will succeed but
that enough of them will, e.g., ”at least 90% of agents reach the target zone within 10 steps.”
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Such questions are hard to pose or answer using only safety formulations. Reachability, in
contrast, provides a direct framework for reasoning about such guarantees. To illustrate this,
consider a swarm of autonomous agents deployed in a grid environment. Due to stochastic
disturbances or partial observability, their movements are not deterministic; say, each agent
begins in a known region and attempts to reach a goal zone, navigating uncertain terrain
or weather conditions. The precise behaviour of each agent may vary, but we care about
the overall distribution: what proportion of agents reach the goal, and what fraction might
be lost to unsafe regions? These are questions of distributional reachability, where the goal
is to compute or over-approximate the set of all state distributions that can arise under all
admissible system evolutions.

In this setting, the key object of interest is the reachable set of distributions: all possible
state distributions that can arise under all admissible transitions and policies within the time
horizon. Understanding the structure of this set is essential for both verifying probabilistic
specifications and synthesizing robust control strategies.

The central object of study in this chapter is the reachable set of distributions—the set of
all probability distributions that the system can attain in a fixed number of steps, starting
from a given initial distribution and under all valid policies and uncertainties. Rather than
analyzing the system state by state, we take a geometric view of how distributions evolve
under uncertain affine dynamics. Our goal is to understand the structure of this reachable
set, identify when it is convex, and determine how it can be computed or bounded in practice.

This formulation allows us to ask and answer several key questions:

• How does one define and compute the one-step image of a distribution under uncertain
transitions?

• How do such sets evolve over multiple steps, and what governs their shape?

• What role does policy selection play in shaping the boundary of the reachable set?

• Can these reachable sets be used to provide distribution-level guarantees for verification?

In the remainder of this chapter, we give precise definitions for these objects, develop the ge-
ometric tools needed to study them, and lay the foundation for the computational framework
that follows.

3-2 Background

To characterise the distributional reachability of uncertain multi-agent systems, we rely on
geometric tools from convex analysis, set theory, and reachability theory. These tools allow
us to describe how sets of states evolve under stochastic dynamics under control policies. In
this section, we summarise key concepts such as Minkowski sums, support functions, and
reachable sets, all of which are foundational to the modelling and analysis presented in this
chapter.
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3-2-1 Computational Geometry

In analysing distributional reachability for multi-agent systems under uncertainty, it is essen-
tial to reason about how sets of possible state distributions evolve. Because exact computa-
tion of these reachable distributions is often infeasible in practice, especially in the presence
of stochasticity and model uncertainty, we adopt a set-based approach that enables tractable
approximations and formal verification.
We begin with the foundational notion of a set.

Definition 3.1 (Set (Boyd and Vandenberghe, 2004)). A set S is a collection of elements
that share a common property or belong to a common space.

In our setting, these elements typically correspond to vectors in Rn, such as state values,
control inputs, or probability distributions. To support computational tractability and ensure
desirable mathematical properties, we focus on sets that are (Boyd and Vandenberghe, 2004):

• Compact: bounded and closed, ensuring well-defined optimisation over the set.

• Convex: any convex combination of points in the set remains within the set, enabling
efficient representation and computation.

• Closed: includes all its boundary points, ensuring robustness under limits and conti-
nuity.

Set Operations. To track how uncertainty evolves, we use basic geometric operations over
sets. We define a couple of useful operations for our context below. The reader is referred to
(Boyd and Vandenberghe, 2004, Chapter 2) for a detailed overview of these operations and
other set properties.

Definition 3.2 (Scaled Set (Blanchini and Miani, 2007)). For λ ≥ 0 and set A ⊆ Rn, the
scaled set is:

λA = {λa | a ∈ A}.

Definition 3.3 (Minkowski Sum (Berg et al., 2008)). The Minkowski sum of two sets A, B ⊆
Rn is defined as:

A⊕B = {a + b | a ∈ A, b ∈ B}.

This operation is used to represent how disturbances expand the reachable set under a given
policy. Similarly, scaling a set helps model the effect of scalar multiplication of vector elements.
These operations form the basis for computing reachable sets under uncertain transitions,
which are central to our analysis.

Over-approximations. In the context of verification, it is often sufficient (and computa-
tionally preferable) to over-approximate the reachable set (Althoff and Frehse, 2016). That
is, we seek a superset that conservatively contains all possible outcomes. If such an over-
approximation avoids unsafe regions, we can guarantee the safety (or, in our case, reachability)
of the true system.
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Definition 3.4 (Convex Hull(Boyd and Vandenberghe, 2004)). The convex hull (conv) of a
set C, denoted conv(C), is the set of all convex combinations of points in C:

conv C =
{

k∑
i=1

θixi

∣∣∣∣∣xi ∈ C, θi ≥ 0, i = 1, . . . , k,
k∑

i=1
θi = 1

}
.

For any set C, conv(C) can be seen as the smallest convex set containing C (Blanchini and
Miani, 2007). Furthermore, we define a polytope P with vertices (v1, . . . , vn) as (Cauchi et al.,
2019):

P = conv(v1, . . . , vn)

We use conv(·) to form convex over-approximations of reachable distribution sets. This makes
some of the computationally

Connection to System Dynamics. In our setup, each agent evolves under uncertain dy-
namics that include both deterministic and stochastic components. To formalise this, we first
define the nominal (noise-free) part of the dynamics.

Definition 3.5 (Nominal Dynamics (Badings et al., 2023a)). Let the system evolve as:

x[k + 1] = g(x[k], u[k]) + ξ[k],

where x[k] ∈ X ⊂ Rn, u[k] ∈ U ⊂ Rp, and ξ[k] is a disturbance term. The nominal dynamics
(i.e., with no disturbance) are:

x[k + 1] = g(x[k], u[k]).

Understanding the nominal dynamics allows us to compute which states could have led to a
given future state, a concept known as backward reachability.

Definition 3.6 (Backward Reachable Set (Badings et al., 2023a)). For a point x′ ∈ X , the
backward reachable set under nominal dynamics is:

Back(x′) = {x ∈ X | ∃u ∈ U such that x′ = g(x, u)}.

Backward reachable sets are especially useful in abstraction and policy synthesis, as they help
identify feasible transitions from prior states and assist in constructing the transition bounds
used in our IMDP model, as will be discussed in chapter 5.

3-2-2 Temporal Logic Specifications

To express the temporal goals of multi-agent systems, we adopt the standard syntax for
bounded-horizon properties (see Chapter 5 Baier and Katoen, 2008). These properties de-
scribe how state trajectories interact with target and safe sets given a time horizon. For a
discrete-time stochastic hybrid system in a state space S, with some measurable sets P, Q ∈ S
termed respectively ’safe’ and ’target’ sets, we define □≤TsP as the bounded-horizon safety
property for all trajectories that start from safe set P and remain in it over a finite-time
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horizon k ∈ [0, Ts]. Similarly, we define the bounded-horizon reachability, ♢≤TdQ, if there is
a k ∈ [0, Td] such that the state trajectory reaches Q in k steps. Finally, we define the reach-
avoid specification as PUQ for the state trajectories to stay in a safe set P until the target
set Q is reached (Lavaei et al., 2022). These logical forms enable formal reasoning about
whether a given policy ensures distribution-level objectives, such as a minimum probability
of reaching a target without violating safety.

3-2-3 Probability Theory

A probability distribution γ over a finite set S is a function γ : S → [0, 1], such that∑
s∈S γ(s) = 1. Here, D(S) is the set of all probability distributions.

We define an ambiguity set as a subset of all distributionsD(S). Further, an interval ambiguity
set Γ is an ambiguity set where the distributions are lower and upper bounded by γ̌ : S →
[0, 1], and γ̂ : S → [0, 1], respectively, such that γ̌(s) ≤ γ̂(s) for all s ∈ S and ∑s∈S γ̌(s) ≤
1 ≤

∑
s∈S γ̂(s). More specifically, an interval ambiguity set, Γ ⊂ D(S), is defined as:

Γ = {γ ∈ D(S) : γ̌(s) ≤ γ(s) ≤ γ̂(s) ∀s ∈ S}. (3-1)

We denote the set of all interval ambiguity sets over S by Γ(S).

3-2-4 Markov Decision Processes

To model systems, transition systems are widely used (Baier and Katoen, 2008). These
systems are represented as directed graphs, where the nodes are the states of the system, and
the edges represent the transitions. Transitions specify how the system evolves.

Definition 3.7. (Transition System (Baier and Katoen, 2008)) A transition system can be
defined as a tuple (S, A,→, I, AP, L), where S is a set of the states of the system, A is the
set of actions, →⊆ S ×A× S is a transition relation, I ⊆ S is a set of initial states, AP is a
set of atomic propositions and L : S → 2AP is a labelling function that maps states to a set
of atomic propositions AP .

A transition s
a−−→ s′ describes the evolution of the system according to a transition → from

a current state s to s′ under an action a ∈ A. If there are multiple outgoing states from s,
the next state of the system is chosen non-deterministically.

A transition system that has probabilistic transitions, instead of non-deterministic transitions,
from one state to another is called a Markov Chain (MC).

Definition 3.8. (Markov Chain (Haddad and Monmege, 2018)) A Markov chain is a tuple
M = (S, γ, s0) where S is a set of countable states γ : S × S → [0, 1] is a probability tran-
sition function, where γs(s′) denotes the probability of a transition from state s → s′ with∑

s′∈S γs(s′) = 1 for all s ∈ S, and s0 ∈ S is the initial state of the system.

MCs are limited in their ability to model systems interacting with uncertain or dynamic
environments because they rely on fixed transition probabilities that represent a specific,
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known environment. However, MCs cannot adapt to variations in the environment, rendering
them ineffective when there is a non-determinism of choices involved.
A natural extension is to include non-determinism in the model. This results in a Markov
Decision Process (MDP). Since there are different notations of MDPs like (Baier and Katoen,
2008; Puterman, 1994; Bellman, 1958) in the literature, here we present the one that is
convenient for the rest of the report, which is based on (Haddad and Monmege, 2018).

Definition 3.9. (Markov Decision Process (Haddad and Monmege, 2018)) A Markov Deci-
sion Process (MDP) is a tuple M = (S, A, γ) where,

• S is a finite set of states,

• A = ⋃
s∈S A(s) where A(s) is a non-empty finite set of actions for every state s ∈ S

with A(s) ∩A(s′) = ∅ ∀s ̸= s′,

• and γ : S × A → D(S) is a partial probabilistic function defined for (s, a) iff a ∈ A(s),
where D(S) is the set of distributions over a finite set S such that for a distribution
γs,a ∈ D(S), every mapping γs,a(s′) : S ×A× S → [0, 1] from S to the set [0, 1] is such
that ∑s′∈S γs,a(s′) = 1.

Remark. The notation of MDP in (Cauchi et al., 2019) is M = (S, A, P, AP, L) where S is a
finite set of states, A is a finite set of actions, P : S×A×S → [0, 1] is a transition probability
function, such that AP is a set of atomic propositions, and L : S → 2AP is a labelling function
that maps each state to possibly several labels of AP . The additional information of L, AP is
useful in model checking or formal verification of systems of more complex properties, where
the properties are usually defined using temporal logic specifications. For example, to verify
whether a command is successfully sent over a communication channel, it is useful to have
labels like ”waiting for acknowledgement” or ”data sent” (Baier and Katoen, 2008). Since
these labels are not relevant in the context of this thesis, we omit L and AP ; however, it is
important to note that both notations represent the same concept in MDPs.

We define support of a distribution δ, Supp(δ) = {s ∈ S | δ(s) > 0}, where S is a finite set.
An MDP M evolves as follows: from a current state s, an action a ∈ A(s) is chosen non-
deterministically and the next state s′ is chosen using the distribution γs,a and the probability
that s′ is reached is given by γs,a(s′). We now define an infinite path of an MDP as a sequence
ρ = s0

a0−→ s1
a1−→ . . . where si ∈ S, ai ∈ A(si) and si+1 ∈ Supp(γsi,ai(·)) (Haddad and

Monmege, 2018). Further, we use ρ(i) to represent si. Similarly, a finite path of length n + 1
is a sequence ρfin = s0

a0−→ s1
a1−→ . . .

an−1−−−→ sn ending in state last(ρfin) = sn, a prefix of an
infinite path ending in sn. The sets of all finite and infinite paths are denoted by Pathsfin,
Paths.

Definition 3.10. (Policy (Haddad and Monmege, 2018)) A policy of an MDPM = (S, A, γ)
is a function π : Pathsfin → D(A) such that π(ρfin)(a) is denoted as π(a | ρfin) > 0 only if
a ∈ A(last(ρfin)).

A policy (also known as strategy) π is deterministic if π(ρfin) is such that only one action has
a probability of 1, a so-called Dirac distribution, for all ρfin ∈ Pathsfin. Further, a policy is
stationary or memoryless if the distribution π(ρfin) depends only on last(ρfin).
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Given a policy π and an initial state s0 ∈ S, an MDP is equivalent to an MC with the states
as finite paths of Pathsfin (Forejt et al., 2011). The probability measure over the paths of the
MC starting in s will give us the probability measure over the set of all paths, Paths, of the
MDPM capturing the behaviour ofM from state s under policy π (Haddad and Monmege,
2018). These probabilistic semantics of MDPs form the foundation for verifying temporal
logic properties such as reachability and safety, where one is interested in quantifying the
probability of paths satisfying a given specification under a policy”.
Given the dynamics of an uncertain system, one can abstract to reduce the complexity of a
system by grouping certain behaviours or states into a simplified model that preserves essential
properties for analysis. One such abstracted Once we have an MDP model for a system, we
need to quantitatively ensure that the MDP satisfies the system properties such as ’reach
a target region T while always being in safe states P within k steps’. This is particularly
important in safety-critical applications, where system failures can incur significant costs,
such as performance degradation or violations of operational constraints. To obtain such
quantitative guarantees, probabilistic model checkers such as PRISM (Kwiatkowska et al., 2011)
can be employed. Various quantitative properties, like the probability of reaching a target
region, of the system, can be verified against the abstracted system. Two of the common
methods to solve this problem are linear programming and value iteration. Value iteration
performs better than linear programming, especially for systems with a larger number of
states, and is, therefore, the generally preferred method (Brázdil et al., 2025).

Distribution Transformers View Until now, we have defined MDPs as evolving over states,
thereby generating random paths. Alternatively, an MDP can be interpreted as a distribution
transformer (Korthikanti et al., 2010), where the system evolves over the space of probability
distributions rather than over individual states as illustrated in Figure 3-1. In contrast to the
state-based perspective, where we consider the trajectory of states, in the distribution trans-
former view, we look at the sequence of distributions generated by an MDP. This perspective
could be useful for reasoning about the evolution of uncertainty over time and enables the
analysis of population-level behaviours, policy synthesis over distributional goals, and compo-
sitional verification. This distributional perspective is particularly useful for reasoning about
population-level behaviour, as it enables not only the analysis of how uncertainty evolves over
time but also the synthesis of policies that shape the distribution of agents to achieve desired
global objectives.
Formally, let M = (S, A, γ) be an MDP, where S is a finite set of states, A is a finite set of
actions, and γ : S ×A→ D(S) is the transition kernel, with γs,a(s′) denoting the probability
of transitioning to state s′ ∈ S from state s ∈ S under action a ∈ A(s). Let Π denote the set
of admissible policies π : S → D(A), and let δ0 ∈ D(S) be the initial state distribution.
For any policy π ∈ Π, we denote by δπ

k ∈ D(S) the state distribution at time step k, where
δπ

k (s) represents the probability of being in state s ∈ S at time k under policy π. The
distribution evolves according to the following update rule:

δπ
k+1(s′) =

∑
s∈S

δπ
k (s)

∑
a∈A(s)

γs,a(s′)π(a | s), ∀s′ ∈ S. (3-2)

Equation 3-2 describes the evolution of the state distribution under a fixed policy π, with the
dynamics at each step governed by the transition kernel γ and the chosen action. By iteratively
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s0 s1 s2 sn…

(a) State-based view.

s0 s1

s2

δ0

δ1

δ2

D(S)

(b) Distribution transformer view.

Figure 3-1: Two perspectives on MDPs. Figure 3-1a shows the state based view. Figure 3-1b
illustrates the distributional transformer view of an MDP. The system starts from an initial state
distribution δ0 and evolves under policy and uncertainty, producing reachable distributions δ1, δ2.
The simplex D(S) represents all probability distributions over the state space S = {s0, s1, s2}.

applying this rule, one obtains a sequence of distributions δπ
0 , δπ

1 , . . . , δπ
k , each capturing the

distribution of system states at time step k under policy π.
We now define the set of all distributions reachable at time step k from the initial distribution
δ0, under any admissible policy π:

Rk(δ0) = {δ ∈ D(S) | ∃π ∈ Π such that δ = δπ
k } . (3-3)

Connection between Switched Linear Systems and Distribution Transformers View Inter-
preting an MDP as a distribution transformer naturally connects to the theory of discrete-time
switched stochastic systems. Consider a finite state space S = {1, . . . , n} and let the system
state be represented by a probability distribution δk ∈ ∆n, the n-dimensional probability
simplex. At each step k, choosing an action a ∈ A selects a corresponding stochastic tran-
sition matrix Pa ∈ Rn×n, where each row of Pa is a probability distribution over successor
states. To make the switched system analogy precise, we consider here that the action set
A is a ”product action set,” meaning the same set of actions is available in every state. The
evolution of the system under deterministic action ak is then given by the linear update:

δk+1 = δkPak
. (3-4)

This representation shows that an MDP can be seen as a switched linear system on the
simplex, where each action determines which linear operator governs the evolution at that
time step. The “switching signal” is the sequence of actions {ak} chosen by the policy.
If the policy is deterministic and stationary, then the switching law is fixed and the dynam-
ics reduce to a time-invariant linear system on ∆n. If the policy is deterministic but non-
stationary, then the system corresponds to a time-varying linear system, where the switching
sequence varies over time. If the policy is stochastic, then at each step the applied operator
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is itself a convex combination of the Pa, weighted by the distribution of actions. In this case,
the dynamics can be written as

δk+1 = δk

(∑
a∈A

πk(a | δk)Pa

)
, (3-5)

which highlights the bilinear nature of the system: the distribution update depends both on
the current state δk and on the action probabilities prescribed by the policy.

Thus, the distribution transformer view reveals MDPs as special instances of switched (or
bilinear, under stochastic or history-dependent policies) linear systems, where the ‘transform-
ers’ are the stochastic matrices {Pa} and the policy governs how the system switches between
them. This perspective provides a natural bridge between control-theoretic tools for switched
linear systems and distributional analyses of MDPs.

3-2-5 Robust Markov Decision Processes

In practical applications, the transition dynamics of an MDP are often not precisely known
(Badings et al., 2023b). Uncertainty in the system model can arise from limited data, model
approximation, or changing environments. To account for this, Robust Markov Decision
Process (RMDP) extend the classical MDP model by introducing ambiguity sets that encode
possible variations in transition probabilities. The goal is to synthesise policies that perform
optimally under the worst-case realisations of these transitions.

Definition 3.11. (Robust Markov Decision Process) Formally, a Robust MDP is defined as
a tuple R = (S, A, Γ), where:

• S is a finite set of states,

• A =
⋃

s∈S A(s), where A(s) is a finite, non-empty set of actions available at state s, and
A(s) ∩A(s′) = ∅ for s ̸= s′,

• Γ = {Γs,a}s∈S,a∈A(s), where each Γs,a ∈ Γ(S) ⊆ D(S) is a convex, compact set of
admissible transition distributions.

The set Γs,a is called the ambiguity set for the pair (s, a) and encodes structured uncertainty
about the transition distribution γs,a. Common choices for these sets include:

• Interval-based sets (Givan et al., 2000): each component of the transition distribution
is bounded by known intervals.

• Polytopic sets (Chatterjee et al., 2024): where Γs,a is a polytope in the probability
simplex D(S).

• Wasserstein balls (Yang, 2017): neighbourhoods of empirical distributions under opti-
mal transport distance metrics, useful in data-driven scenarios.
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In our work, we adopt the standard (state-action) rectangularity assumption for the ambigu-
ity sets Γ = {Γs,a}(s,a)∈S×A, where the transition uncertainty is decoupled across state-action
pairs. That is, the adversary selects each transition distribution γs,a ∈ Γs,a independently
for each (s, a) ∈ S × A. This structural assumption ensures the tractability of robust dy-
namic programming and enables a well-defined Bellman recursion in finite-horizon settings.
A detailed discussion on rectangularity and its implications can be found in Suilen et al.
(2024).

In RMDPs, we define policies and state trajectories analogously to those in standard MDPs.
In robust reachability analysis, the objective is to compute the maximum (or minimum)
probability of reaching a designated set of goal states T ⊆ S, starting from an initial state
s0, under all transition distributions γ ∈ Γ and all policies π (Mazumdar et al., 2024). That
is, we compute:

sup
π∈Π

inf
γ∈Γ

Pπ,γ
s0 (∃k ∈ N : sk ∈ T ) ,

where Π is the set of policies, and Pπ,γ
s0 denotes the probability measure over trajectories

induced by policy π (see Chapter 10, Baier and Katoen, 2008) and transition kernel γ, starting
from state s0. We seek to apply a similar approach for the reachability analysis of RMDPs.

To formalize the inner minimization over uncertain transitions, we introduce an adversarial
model of the environment (Suilen et al., 2024). The adversary selects, at each time step, a
transition distribution from the allowed ambiguity set Γs,a for each state-action pair (s, a) ∈
S×A, with the objective of minimizing the controller’s probability of success. This setup yields
a two-player stochastic game between the controller and an adversary, where the controller
chooses actions to maximize reachability and the adversary selects transitions to impede it.
The following definition characterizes this adversarial selection mechanism.

Definition 3.12 (Adversary). An adversary is a map γadv : S × A → D(S) such that for
every (s, a) ∈ S × A, γadv,(s,a) ∈ Γs,a. At each time step, after the policy π selects an action
a ∈ A(s), the adversary selects a feasible transition distribution γadv,(s,a), determining how
the probability mass evolves under the transition uncertainty.

Adversarial Semantics: Universal and Existential Variants The behaviour of the adversary
in an RMDP can be interpreted through two distinct semantic models: universal and existen-
tial (Akshay et al., 2024). These models differ in how the transition uncertainty, represented
by the selection of γadv, is quantified with respect to the specification being verified.

Under universal semantics, the adversary is assumed to select a transition distribution γadv ∈
Γ in a worst-case manner at each step, independent of the policy. A specification φ is said
to be satisfied if, for all admissible adversarial choices, there exists a policy π such that φ
holds; formally, this corresponds to the quantification ∀γadv ∃π φ. This is the standard setting
in robust verification, where correctness must be guaranteed regardless of how uncertainty
is resolved. Techniques based on over-approximating the reachable sets of distributions and
synthesising distributional invariants are commonly used in this context (Akshay et al., 2018).

In contrast, under existential semantics, the adversary is treated as part of the environment,
and it is sufficient that there exists at least one admissible realisation γadv for which some
policy π satisfies the specification; i.e., ∃γadv ∃π φ. This interpretation is prevalent in policy
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synthesis and feasibility analysis, where the goal is to demonstrate that a favourable combi-
nation of transitions and policy exists. It allows for under-approximation techniques, such as
sampling-based verification or template-based synthesis (Akshay et al., 2024).
The choice of semantics directly influences the conservativeness and computational complexity
of verification procedures and will be reflected in the distributional reachability formulations
considered in this thesis.
Classical solution techniques for robust reachability include game-theoretic formulations where
an adversary selects transitions within the ambiguity sets (Iyengar, 2005; Nilim and El Ghaoui,
2005), robust policy iteration, and interval value iteration (Haddad and Monmege, 2018). We
focus on robust reachability forms the foundational framework for addressing uncertainty
in distributional forward analysis of multi-agent systems. Rather than computing expected
outcomes, our objective is to identify the set of all reachable distributions under worst-case
transitions and admissible policies.
This worst-case analysis guarantees that the synthesised policy achieves at least the com-
puted reachability probability for any realisation of the transition dynamics in the ambiguity
model. Such guarantees are particularly important in safety-critical settings where violating
a constraint can lead to catastrophic outcomes.

State Dynamics under Distribution Transformer View Extending the distribution trans-
former perspective from section 3-2-4 to RMDPs, the evolution of the state distribution in-
corporates both the control policy and the adversarial transition selection. Following similar
semantics as before, given a policy π : S → D(A), an adversary γadv : S × A→ D(S), and a
state distribution δπ

k ∈ D(S) at time step k, the next state distribution δπ
k+1 ∈ D(S) is given

by:
δπ

k+1(s′) =
∑
s∈S

δπ
k (s)

∑
a∈A(s)

γadv,(s,a)(s′)π(a | s), ∀s′ ∈ S. (3-6)

This equation describes the population-level dynamics under a fixed policy, where the adver-
sary selects transitions from the uncertainty sets to influence the evolution of the distribution
over states. Like in subsection 3-2-4, we consider the distribution transformer view of RMDPs
to approach the reachability problem as illustrated in Figure 3-2.

3-2-6 Interval Markov Decision Processes

RMDPs generalise the idea of an Interval Markov Decision Process (IMDP), where the am-
biguity sets are interval-based. They provide a nice and tractable way to develop efficient
algorithms to analyse systems with bounded uncertainty (Suilen et al., 2024) and are hence
a useful way to model system uncertainty.

Definition 3.13 (Interval Markov Decision Processes). We define an IMDP as a tuple I =
(S, A, Γ) where,

• S is a finite set of states,

• A = ⋃
s∈S A(s) where every A(s) is a non-empty finite set of actions available in state

s with A(s) ∩A(s′) = ∅ ∀ s ≠ s′,
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s0 s1

s2

∆π
0

∆π
1

∆π
2

D(S)

Figure 3-2: Distributional reachability of RMDPs. The system starts from an initial set of
distributions ∆π

0 , and evolves into reachable sets ∆π
1 and ∆π

2 .

• Γ = {Γs,a}s∈S,a∈A(s) is the set containing sets of all transition probability distributions
satisfying (3-1), with Γs,a ∈ Γ(S).

For an IMDP I and a state transition s
a−→ s′ for s′, s ∈ S and a ∈ A(s), let γ̂s,a(s′) and γ̌s,a(s′)

denote the upper and lower bounds, respectively, on the state distribution. For such a tran-
sition, Γs,a is defined as:

Γs,a = {γs,a ∈ D(S) : γ̌s,a(s′) ≤ γs,a(s′) ≤ γ̂s,a(s′) ∀s′ ∈ S}. (3-7)

To illustrate how these concepts are applied in practice, we now introduce a running example
that will serve as a reference throughout this work. While the distributional framework applies
to general state spaces, we focus on a 3-state IMDP to allow for clear visualisations of both
the evolving reachable sets and the propagation of uncertainty. This illustrative example
captures the key structural properties of IMDPs under interval uncertainty and provides a
concrete foundation for the subsequent theoretical developments.

Example 3.1 (Running Example). We consider the following IMDP with S = {s0, s1, s2}
and two available actions, A = {a0, a1}, in each state as shown in Figure 3-3.

For example, for state s0 in Figure 3-3a, the transition probability intervals are: γs0,a0(s1) ∈
[0.2, 0.5], γs0,a0(s2) ∈ [0.7, 0.8].

Note. In some scenarios, based on the objective function for the problem statement, an or-
dering of the states becomes relevant wherein one can use the order- maximisation algorithm
to obtain the feasible transition probability distributions. The reader is referred to the work
by (Givan et al., 2000) for further information. Since we do not care about the order for our
demonstrations, we need to consider the whole distribution polytope set as it is and propose
methods to obtain the reachable sets.
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s0

s1

s2

[0.2, 0.5]
[0, 0.1]

[0.1, 0.15]

[0.89, 1]

[0.7, 0.8]

[0.7, 1]

(a) Under action 0.

s0

s1

s2

[0.6, 0.7]

[0.2, 0.4]
[0.35, 0.5]

[0.55, 0.85]

[0.1, 0.2]

[0.6, 0.9]

[0.4, 0.5]

(b) Under action 1.

Figure 3-3: Running example of a 3-state IMDP under 2 possible actions.

Induced Interval Markov Chain

Building on the background of IMDPs, we now consider how the model behaves under a fixed
policy. While IMDPs define uncertainty at the level of individual state-action pairs, a fixed
policy induces probabilistic action selection in each state, requiring aggregation of transition
uncertainties. This gives rise to an induced Interval Markov Chain (IMC), which captures the
set of possible transition probabilities under the given policy. We formally define this induced
model and describe how the corresponding bounds are computed.

Definition 3.14 (Induced IMC). Let I = (S, A, Γ) be an IMDP and π : S → D(A) a
stationary policy on S. The induced interval Markov chain is

Iπ = (S, Γπ), Γπ = {Γπ
s }s∈S , where,

Γπ
s =

{
γπ

s ∈ D(S)
∣∣∣ ∑

a∈A(s)
γ̌s,a(s′) π(a |s) ≤ γπ

s (s′) ≤
∑

a∈A(s)
γ̂s,a(s′) π(a |s), ∀s′ ∈ S

}
.

(3-8)

Interpretation and Proof of Inclusion The intuition behind this definition is as follows.
Under a fixed policy π, the system behaves as a Markov chain with uncertainty only in the
transition probabilities. At each state s ∈ S, the randomness in transitions arises due to both
action selection via π(a | s) and the uncertainty in the corresponding transition distributions
Γs,a.
To derive the effective (induced) transition distribution γπ

s , consider choosing arbitrary dis-
tributions γs,a ∈ Γs,a for each a ∈ A(s), and define the convex combination

γπ
s :=

∑
a∈A(s)

π(a | s) γs,a. (3-9)

We now prove that this γπ
s lies in the set Γπ

s as defined in (3-8).
Since each γs,a ∈ Γs,a, we have for all s′ ∈ S:

γ̌s,a(s′) ≤ γs,a(s′) ≤ γ̂s,a(s′).
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Multiplying these inequalities by π(a | s) ≥ 0 preserves the inequality:

π(a | s)γ̌s,a(s′) ≤ π(a | s)γs,a(s′) ≤ π(a | s)γ̂s,a(s′).

Summing over all a ∈ A(s), we obtain:∑
a∈A(s)

π(a | s)γ̌s,a(s′) ≤ γπ
s (s′) ≤

∑
a∈A(s)

π(a | s)γ̂s,a(s′), ∀s′ ∈ S,

which proves γπ
s ∈ Γπ

s . Additionally, since γπ
s is a convex combination of probability distri-

butions, it is itself a valid distribution: γπ
s ∈ D(S).

Collecting the vectors γπ
s across all s ∈ S, the full set of transition matrices induced by policy

π is:
Γπ =

{[
γπ

s1 , . . . , γπ
sn

]⊤ ∣∣∣ γπ
s ∈ Γπ

s , ∀s ∈ S
}

.

Hence, Iπ = (S, Γπ) characterises an IMC whose rows belong to convex combinations of the
original ambiguity sets under the policy π.

We have now introduced IMDPs and shown how, under a fixed policy π, its transition un-
certainty “collapses” to an IMC with row‐sets Γπ

s . In the next section, we will use these
definitions to build the reachable sets over one or more steps. Concretely, starting from an
initial convex set of state distributions, we form the one‐step reachable set by applying every
feasible transition matrix in Γπ; algebraically, this is taking Minkowski sums of the interval
rows we defined, which exactly captures how the lower‐ and upper‐bounds on each transition
combine. We then repeat this process to get the k-step reachable sets.

Example 3.2. (Running Example Continued) For the system described by Figure 3-3, we
consider the following stationary randomized policy π : S → D(A), assigning probabilities to
the two actions at each state:

π =

π(a0 | s0) π(a1 | s0)
π(a0 | s1) π(a1 | s1)
π(a0 | s2) π(a1 | s2)

 =

0.3 0.7
0.5 0.5
0.8 0.2

 .

The modelling and theoretical foundations presented in this chapter now allow us to define the
reachability verification problem under transition uncertainty formally. In the next chapter,
we develop the problem formulation, introduce key algorithms for policy verification and
synthesis, along with an analysis of the methods presented.
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Chapter 4

The Forward Reachability Problem

Chapter Summary
We formalise the core problem: how to compute and verify the set of all forward
reachable state distributions in the presence of transition uncertainty. Building on
the geometric and probabilistic models introduced earlier, we define the forward dis-
tributional reachability maps for IMDPs, and formulate the corresponding reach-avoid
verification problem. The chapter presents a sampling-based algorithm for computing
reachable sets and provides conditions under which convexity and approximation guar-
antees hold.

The motivating example in Chapter 1 established the need for distribution-level reasoning
in fleet-level verification. Building upon the formalisms developed in Chapter 3, particularly
the distribution transformer view of IMDPs, this chapter addresses the problem of forward
distributional reachability as a verification task. The central objective is to characterise the
set of state distributions that can arise from a given initial set, under a fixed policy and all ad-
missible transition probabilities. Such an analysis is essential for verifying modern fleet-level
specifications, including bounds on agent concentration or dispersion, which are predicates
on the entire distribution and cannot be captured by state-wise marginals or individual tra-
jectories.

The exact analysis of this problem is, however, computationally intractable. To this end,
in this chapter, we introduce tractable approximation methods. We begin by formulating
the forward reachable sets for IMCs and the approach to compute them. The formulation
is then lifted to IMDPs where we provide a way to synthesise a policy. Finally, to mitigate
computational growth and enhance scalability, a sampling-projection scheme is introduced.

4-1 Problem Formulation

Recall that our overarching goal is to understand and efficiently compute, for a given control
policy, all the state‐distribution trajectories that can arise when transitions are only known
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within interval bounds. To that end, we turn to the central question of reachability by first
formally stating the problem.

Let ∆0 ⊆ D(S) denote a convex polytope representing the initial uncertainty in the state
distribution of the system, where D(S) is the set of all probability distributions over the finite
state space S.

Definition 4.1 (One-step Reachable Set for an IMC). Given an IMC Iπ = (S, Γπ) char-
acterised by a transition uncertainty set as in (3-8), the one-step forward reachable set ∆π

1
under policy π from the initial set ∆0 is defined as

∆π
1 := {δ1 ∈ D(S) | δ1 = γδ0, δ0 ∈ ∆0, γ ∈ Γπ} . (4-1)

This set captures all possible state distributions for Iπ after one step, starting from the initial
distribution set ∆0 and the transition probabilities, γ ∈ Γπ.

Definition 4.2 (Recursive k-step Reachable Set for an IMC). The k-step reachable set ∆π,k

for an IMC Iπ = (S, Γπ) given by (3-8), is recursively defined as

∆π
k+1 := {δk+1 ∈ D(S) | δk+1 = γδk, δk ∈ ∆π

k , γ ∈ Γπ} , (4-2)

with base case ∆π
0 := ∆0.

Definition 4.3 (Forward Reachable Set). The forward reachable set for an IMC Iπ = (S, Γπ)
given by (3-8), from the initial distribution set ∆0 under a policy π is defined as

FR(∆0) :=
∞⋃

k=0
∆π

k , (4-3)

representing all state distributions that can be reached at any time step under the given
uncertainty and policy.

Problem 4.1 (Forward Reachability for an IMC). Given an IMDP I = (S, A, Γ) as defined
in Definition 3.13, the initial convex set of state distributions ∆0 and a fixed policy π that
induces the IMC Iπ = (S, Γπ), compute or characterise the k-step reachable sets ∆π

k and
the forward reachable set FR(∆0). This involves accounting for the uncertainty captured in
the interval transition probabilities Γπ and propagating the set of possible distributions over
time.

Challenges In our running example, the forward reachability problem concerns computing
the set of all state distributions to which the system can evolve after k steps, starting from an
initial distribution set. We assume that the system dynamics are known. When the system is
deterministic and the initial distribution set is a polytope, the reachable sets remain polytopic
at every time step. This is because linear transformations of polytopes yield polytopes, and
the deterministic transition dynamics act as an affine map on the distribution space (Ziegler,
1995).

However, when there is uncertainty in the dynamics, such as interval-valued or polytopic
transition kernels, the reachable sets may no longer be convex. Intuitively, under uncertain
transitions, the system can evolve along multiple trajectories governed by different realisations
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of the dynamics. The union of such images across time steps does not necessarily preserve
convexity unless further assumptions (e.g., convexity of uncertainty sets and linearity of dy-
namics) are made (Blanchini and Miani, 2007). For instance, if the transition probabilities
lie within known intervals but are selected adversarially at each step, the resulting reachable
distributions can form non-convex sets due to this combinatorial branching. Nevertheless, in
systems modelled using IMDPs and IMCs, where the uncertainty is bounded but not precisely
known, it is common to compute outer convex approximations of the reachable set.

4-1-1 Approach

A typical approach is to propagate the convex hull of the reachable distributions at each step,
effectively tracking the evolution of all possible states the system could occupy under the
uncertainty model. This method, rooted in set-theoretic control (Blanchini and Miani, 2007),
provides a computationally tractable way to reason about worst-case behaviour.

Definition 4.4 (Over-approximation of the Reachable Set). Let Iπ = (S, Γπ) be the induced
Interval Markov Chain (IMC) under a fixed policy π, where Γπ = {Γπ

s }s∈S is the set of
row-wise transition ambiguity sets. Let the initial distribution set ∆π

0 ⊆ D(S) be a convex
polytope.

Then, for any k ∈ N, the k-step reachable set ∆π
k ⊆ D(S), we recursively over-approximate

the one-step reachable set as:

∆̂π
k+1 := conv

{
γδ
∣∣ δ ∈ ∆π

k , γ ∈ Γπ} , (4-4)

is a convex polytope for all k, where conv(·) denotes the convex hull operator. 1 shows the
steps involved in obtaining the over-approximation of the reachable set.

Algorithm 1 Convex Hull Propagation of Reachable Sets
1: Input: Initial set ∆0 ⊆ D(S), policy π, interval transition sets Γs,a

2: for k = 0 to K − 1 do
3: Compute one-step reachable distributions:

∆π
k+1 =

∑
s∈S

δ(s)
∑

a∈A(s)
γs,aπ(a | s)

∣∣∣∣∣∣ δ ∈ ∆k, γs,a ∈ Γs,a


4: Compute convex hull: ∆̂π

k+1 = conv(∆π
k+1)

5: Extract vertices of ∆̂π
k+1 for next iteration

6: end for
7: Output: Approximated reachable set sequence {∆̂π

k}Kk=1

While the convexity of the reachable sets holds at each step under fixed transitions and initial
convex sets, this property does not automatically generalise to the IMDP setting where the
policy and transition uncertainties interact simultaneously. In particular, when optimising
over both the action-selection and the admissible transition distributions, the reachable set
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at each step may no longer remain convex in general. To address this, and to retain compu-
tational tractability, we adopt a convex hull propagation approach that explicitly considers
convexifications of the reachable sets at each stage. This enables us to work with outer ap-
proximations that remain polytopic, while still capturing the key aspects of the uncertainty
propagation under IMDP dynamics. We now proceed to extend the reachability formulation
to IMDPs by introducing occupation measures and corresponding convex relaxations.

4-2 Policy Synthesis for IMDPs

Until this section, we have looked at the distributional reachability properties of IMCs; how-
ever, these methods are not sufficient for IMDPs. In this section, we introduce the extension
of the above methods to IMDPs. This problem is formulated as follows:

Problem 4.2 (Forward Reachability for an IMDP). Given an IMDP I = (S, A, Γ) as defined
in Definition 3.13, the initial convex set of state distributions ∆0, compute or characterise the
k-step reachable sets ∆k and the forward reachable set FR(∆0). Furthermore, synthesise a
policy π : S → D(A) for the obtained FR(∆0) set.

4-2-1 Use of Occupation Measures

Definition 4.5. (Occupation Measure (Gao et al., 2023)) Given an MDP, M (or an IMDP,
I), with n states and m actions, we define the occupation measure as a matrix Q ∈ Rn×m,
if Q ≥ 0 with (Q1)T ∈ D(S). In addition, Q(s, a) = δ(s)π(a | s). Denote by O the set of all
occupation measures.

Intuition Occupation measures provide a compact way to describe the long-term behaviour
of a controlled stochastic process (Altman, 1995). They serve as a bridge between policies
and distributions. Instead of tracking the full trajectory or computing policies explicitly,
they encapsulate the expected frequency of visiting state-action pairs under a given policy
and initial distribution. Formally, the entry Q(s, a) of the occupation measure represents the
expected number of times the system occupies state s and takes action a over the planning
horizon.

Extracting the policy Occupation measures couple policies and state distributions, thereby
enabling one to extract either of them as follows (Gao et al., 2023):

π(a|s) =


Q(s,a)∑

a′∈A(s) Q(s,a′) if ∑a′∈A(s) Q(s, a′) > 0,

1
|A(s)| if ∑a′∈A(s) Q(s, a′) = 0 & a ∈ A(s).

(4-5)

Since occupation measures only quantify the number of times a state-action pair is chosen,
the definition of occupation measure holds for IMDPs. Now we formulate the problem of
forward distributional reachability of an IMDP I = (S, A, Γ) defined in Definition 3.13 as
follows:
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Definition 4.6. (Forward Distributional Reachability for IMDPs) Define the map FR :
2D(S) → 2D(S) as

FR(∆) =

δ ∈ D(S)

∣∣∣∣∣∣∣
Q ∈ O, (Q1)T ∈ ∆,
∀s′ ∈ S, δ(s′) =

∑
s∈S

∑
a∈A(s) γs,a(s′)Q(s, a)

with ∑
s′∈S γs,a(s′) = 1, γ̌s,a(s′) ≤ γs,a(s′) ≤ γ̂s,a(s′)

 , (4-6)

to obtain the set of one-step reachable distributions starting from a set ∆.

Challenges In the case of MDPs with fixed transitions, the formulation in (4-6) is a linear
program in the occupation measure Q. However, for IMDPs, the transition probabilities γs,a

are uncertain and vary within given intervals, making them additional decision variables.
This introduces bilinear terms involving Q(s, a)γs,a(s′), rendering the problem non-convex.
To enable tractable computation of FR(∆) set, we apply linear relaxations to approximate
these bilinear constraints using convex formulations.

4-2-2 Approach

McCormick Envelopes McCormick relaxations (McCormick, 1976) provide a convex ap-
proximation of bilinear terms, by introducing auxiliary variables and bounding constraints,
the McCormick envelopes allow one to replace each bilinear term with a set of linear inequal-
ities that tightly enclose the original non-convex term. This transformation enables the use
of convex programming to over-approximate the set of reachable distributions.

In the context of distributional reachability, this method allows tractable computation of
reachable sets, which are needed to verify whether a system can reach a desired distribu-
tional target under uncertainty. Related convex relaxations have also been used in stochastic
control and verification, where efficient outer approximations are critical for scalable analysis
(Bujarbaruah et al., 2021; Yang and Summers, 2022).

We now define an auxiliary variable called transition occupation measure to relax the non-
convex program (4-6) using McCormick relaxations.

Definition 4.7. (Transition Occupation Measure) Given an IMDP I = (S, A, Γ), we define
a transition occupation measure as a matrix W ∈ Rn×m×n such that W ∈ [0, 1] and

W (s, a, s′) = γs,a(s′)Q(s, a). (4-7)

Using McCormick relaxations of a given function (Mitsos et al., 2009), we relax the bilinear
term Q(s, a)γs,a(s′) in (4-6) to obtain the following relaxed convex forward reachable set
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F̂R(∆), where vec(·) denotes a vectorised form of a matrix:

F̂R(∆) =



δ ∈ D(S)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Q ∈ O, (Q1)T ∈ ∆, vec(
∑
s,a

W (s, a, s′))s′∈S ∈ ∆,

∑
s′∈S

W (s, a, s′) = Q(s, a), ∀s ∈ S, a ∈ A(s),

δ(s′) =
∑
s∈S

∑
a∈A(s)

W (s, a, s′), ∀s′ ∈ S,

W (s, a, s′) ≥ γ̌s,a(s′)Q(s, a),
W (s, a, s′) ≥ γ̌s,a(s′)− (1−Q(s, a))γ̂s,a(s′),
W (s, a, s′) ≤ γ̂s,a(s′)Q(s, a),
W (s, a, s′) ≤ γ̂s,a(s′)− (1−Q(s, a))γ̌s,a(s′),

∀s′ ∈ S
∑
s′∈S

γs,a(s′) = 1, γ̌s,a(s′) ≤ γs,a(s′) ≤ γ̂s,a(s′).



, (4-8)

Extending the argument from (Proposition 3.1 Gao et al., 2023), we say that the k−step
reachable set starting from an initial ambiguity set ∆0 can be recursively written as:

F̂R(∆0, k + 1) = F̂R(FR(∆0, k)). (4-9)

4-2-3 Sampling-based Algorithm for Reachable Sets

Solving the linear program (4-8) for k−steps explodes quickly due to the exponential increase
in the number of vertices of the polytopes at each step. Therefore, we use a sampling-
based method to approximate the one-step polytope and repeat the process for k steps. We
approximate one-step reachable sets via a sampling–projection scheme instantiated on the
IMDP relaxation in (4-8). Given a convex set Π ⊂ D(S) and a sampling box Γ ⊃ D(S), draw
Ns samples {πs

i }
Ns
i=1 ⊂ Γ and solve, for each i,

min
δ,Q,W,γ

∥δ − πs
i ∥22 s.t. (Q, W, γ, δ) satisfy (4-8). (4-10)

The convex hull of the projected points, FRNs(Π) = conv{δi}Ns
i=1, is a polytopic inner ap-

proximation with respect to the relaxed IMDP image, and multi-step sets follow from the
recursion FR(∆0, k+1) = F̂R(FR(∆0, k)) with FR(∆0, 0) = ∆0 (4-9).

This procedure follows from Algorithm 1 of (Gao et al., 2023): uniform sampling in Γ, Eu-
clidean projection onto FR(·), and convex hull aggregation. It provides inner approximations
that become asymptotically tight in probability as Ns increases, and its complexity is linear
in Ns with per-projection QP polynomial in n and m. Under McCormick relaxations of the
bilinear terms Q(s, a)γs,a(s′), inner-ness is understood with respect to the relaxed feasible set
(4-8).

Practical note. Choosing Γ slightly larger than D(S) and favouring samples whose projec-
tions land on the boundary of FR(Π) improves hull sharpness while avoiding vertex enumer-
ation.
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Example 4.1. (Running Example Continued) We use the sampling-based algorithm for our
running example to obtain the forward reachable set. We required 100 samples to compute
the approximate forward reachable set instead of 500 points for the exact reachable set com-
putation. It can be seen from Figure 4-1 that the convex hull obtained by considering the
projected distributions provide a good approximation for the true convex hull.
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Figure 4-1: Sampling-based vs exact computation of the forward reachable set.

4-2-4 Effect of using Sampling-based algorithm with McCormick Envelopes

As discussed above, McCormick envelopes turn the non-convex FR(.) map from (4-6) into
a convex outer-approximation F̂R(.). Hence, FR(Π) ⊆ F̂R(Π) for any convex Π ⊂ D(S).
Upon using the sampling-projection algorithm from subsection 4-2-3, random points from a
bigger ’box’ Γ onto the chosen one-step map and returns the convex hull of the projections.
The output FRNs(Π) ⊆ F̂R(Π) with asymptotic tightness in probability relative to F̂R(Π)
(extending the argumentation of Theorem 3.1 Gao et al., 2023 to the relaxed set F̂R(Π)).
This yields an inner-of-outer approximation. As a result, forward-reachability claims based
solely on FRNs can be optimistic, thereby addressing the existential variant of the problem
to be solved. This difference between the sets can be expressed as:

dH(FRNs , FRtrue) ≤ dH(FRNs , F̂R)︸ ︷︷ ︸
sampling error→0 in probability

+ dH(F̂R, FR)︸ ︷︷ ︸
relaxation gap (McCormick)

, (4-11)
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where dH is the Hausdorff distance (Blanchini and Miani, 2007).

This means that the relaxation gap can propagate across steps, thereby leading to approx-
imations that are not tight. To use these methods for universal variants of the problem
would require tighter guarantees on the approximation, which is not directly possible using
the set-based methods presented above due to the non-linear nature of the true FR(.) map.

4-3 Computational Analysis

Let n := |S|, m := maxs |A(s)|, d := n− 1. Denote by Vk the number of vertices of the k-step
outer set ∆̂π

k , by E := | ext(Γπ)| the number of extreme transition matrices, and by CH(N, d)
the cost of a convex hull of N points in Rd.

1. IMC convex hull propagation: Step 4 in algorithm 1 ∆̂π
k+1 using extreme maps

yields at most EVk candidate points. The per–step arithmetic cost is O(EVk n2) +
CH(EVk, d), with Vk+1 potentially exponential in k.

2. IMDP one–step relaxation: The relaxed one–step program has Θ(n2m) decision
variables (from Q, W , and δ) and a comparable number of linear constraints. The
linear programs solve it in polynomial time. A rough bound is O((n2m)3) per solve.
Single steps are tractable for moderate n, m; repeating the solve across many steps
becomes limited by the increasing complexity of the input sets.

3. Sampling–based projection: With Ns samples, the method solves Ns independent
projections (each of the same order as in (ii)) and then takes one convex hull of Ns points
in Rn−1. The total cost is approximatelyO

(
Ns×cost of (ii)

)
+ cost of one convex hull on Ns

points.

4-4 Discussion

This chapter established a tractable framework for forward distributional reachability under
interval transition uncertainty. For fixed-policy IMCs, we propagated convex hulls to compute
sound polytopic outer approximations of reachable sets. For the more general case of IMDPs,
we lifted the problem using occupation measures and employed McCormick relaxations to
define a computable one-step outer map and also synthesise a policy, which we complemented
with a sampling-projection routine to generate efficient inner approximations.

These dual constructions directly support two modes of formal verification. The outer ap-
proximations can be used to prove universal safety: if the conservative outer set avoids an
unsafe region, the true system is guaranteed to be safe. Conversely, the inner approximations
provide existential reachability witnesses: if the inner set intersects a target, it confirms that
the target is verifiably reachable.

From a computational perspective, the scalability of the IMC method is limited by vertex
growth in the convex hulls, while the complexity of the IMDP relaxation is driven by the size
of the underlying convex program. The sampling-based approach offers a scalable alternative
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for exploration and finding existential evidence for a distribution to reach a target set of
distributions.

It is important to note that this framework provides a forward analysis for answering ”what
if” questions for a given IMDP. It does not provide ”must” guarantees that hold across all
policies. Those challenges require backward reachability analysis, which serves as a natural
complement to the analysis developed here and is discussed in the next chapter.
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Chapter 5

The Backward Reachability Problem

Chapter Summary
We develop a set-based backward distributional reachability framework for IMDPs
based on the framework from the previous chapter. Furthermore, we develop a robust
backward reachability algorithm for IMCs to provide universal reachability guarantees
and extend the formulation to IMDPs. The probability simplex is discretised, and a ro-
bust backward iteration to obtain the largest initial distribution set can be steered to a
target distribution set within a finite horizon. The method highlights the accuracy–cost
trade-off via mesh resolution and pre-computation. These methods complement the for-
ward distributional analysis previously presented by delivering conservative guarantees
that hold under transition uncertainty.

In the previous chapter, we formalised the distributional viewpoint via IMDPs, equipping us
with uncertainty sets over transition kernels and a transformer on the probability simplex
using forward distributional reachability. What is still missing is a method to characterise,
under worst-case transition uncertainty, the largest set of initial distributions that are guar-
anteed to reach a target within a finite horizon. Forward images of distributions are ill-suited
to this goal: outer approximations certify safety but are conservative for target attainment,
while inner approximations are generally used for existential semantics. In this chapter, we
address this gap through backward reachability on distribution sets, using monotone prede-
cessor operators and fixed-point iteration to produce sound “must-reach” initial distribution
sets. We present two complementary constructions:

1. a set-based relaxation using McCormick envelopes, an extension of the framework de-
scribed in section 4-2,

2. a mesh-based method to perform robust value-iteration on the probability simplex.

Together, they provide rigorous, distribution-level guarantees aligned with the motivating
example from section 1-2.
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5-1 Problem Formulation

Due to the uncertainty present in the system, the number of feasible transition matrices could
be infinite due to the continuous interval of state transition probability matrices. This means
that the vertices of the convex hull of the 1-step reachable sets increases exponentially, making
the problem computationally very expensive. Hence, we look to compute backward reachable
sets under uncertainty, which can preserve the convexity of the computed sets (Blanchini and
Miani, 2007). The problem is defined in terms of the computation of the backward reachable
sets with the overarching idea of obtaining the largest set of initial distributions that are
guaranteed to reach a target set of distributions.

Problem 5.1. (Backward Reachability Problem) Define the map BR : 2D(S) → 2D(S) for an
IMDP I = (S, A, Γ), as

BR(∆) =

(Q1)T ∈ D(S)

∣∣∣∣∣∣∣
Q ∈ O, δ ∈ ∆,
∀s′ ∈ S, δ(s′) =

∑
s∈S

∑
a∈A(s) γs,a(s′)Q(s, a)

with ∑
s′∈S γs,a(s′) = 1, γ̌s,a(s′) ≤ γs,a(s′) ≤ γ̂s,a(s′)

 ,

(5-1)
which collects the set of distributions that can reach a target distribution set ∆ in one step.
Analogous to the definition of FR(∆0), we define the k−step backward reachable set, starting
from a target distribution set ∆f , to obtain the set of initial distributions δ0 to reach a target
distribution δf ∈ ∆f in k− steps as follows:

BR(∆f ) =
⋃

k∈N
BR(∆f , k), (5-2)

where BR(∆f , k) = ∆π,k
f , which is recursively defined as:

∆π
f,1 = {δf−1 ∈ D(S) : δf = γπf δf−1, δf ∈ ∆f , γπf ∈ Iπf },

∆π
f,k = {δk ∈ D(S) : δk+1 = γπk+1δk, δk+1 ∈ ∆π

f,k+1, γπk+1 ∈ Iπk+1},
(5-3)

To perform the set-based computation to obtain the set of distributions per step, we use
the McCormick relaxations using Equation 4-7 to obtain a relaxed backward reachability
map B̂R(∆), the resulting set is similar to (4-8). Furthermore, to obtain a tighter over-
approximation, we use the sampling-based method introduced in section 4-2-3.

5-2 Robust Backward Reachability

Due to the issues described in section 4-2-4 in terms of the tightness of the reachability guar-
antees, these methods are better suited for problems where we need optimistic reachability
guarantees. To obtain robust distributional reachability guarantees using IMDPs, we intro-
duce a value iteration based method (Bertsekas, 1995). We start by explaining the method
for IMCs, using ideas from Algorithm 1, and later show its formulation for IMDPs. This
approach transforms the infinite-state problem over the continuous simplex into a finite-state
problem, allowing for the application of dynamic programming to find the ”winning set” of
initial distributions that can guarantee reachability of a target set T within a finite horizon
K. Furthermore, we illustrate the proposed method using our running example 3.1 and some
variants of it.
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5-2-1 Proposed Method

The core idea is to partition the probability simplex D(S) into a finite collection of smaller,
non-overlapping simplices, forming a mesh. We then define a binary value function over this
mesh, where a value of 1 indicates that any distribution within a given mesh cell can be
robustly driven to the target set, and 0 otherwise. We describe the method as follows:

1. Discretisation of the Distribution Space Let the probability simplex D(S) ⊂ Rn

be discretised into a regular simplicial mesh (triangulation) M = {Si}
Nsimp
i=1 , where each

Si = conv(Vi) is a simplex (a cell) with n vertices Vi, and ⋃Nsimp
i=1 Si = D(S). This mesh

serves as our finite abstract state space.

2. Value Function We define a time-dependent value function Vk : {1, . . . , Nsimp} →
{0, 1} for each time step k ∈ {0, . . . , K}. A cell Si is considered part of the winning
set at step k, denoted Vk(i) = 1, if starting from any distribution δ ∈ Si, the system is
guaranteed to reach the target set T by time k (in reverse time).

3. One-Step Robust Predecessor For any set of winning cells W ⊆ M , we define the
robust one-step predecessor set, Pre∀(W ), as the set of all distributions δ from which
all possible next-step distributions land within W . Formally, for the IMC,

Pre∀(W ) = {δ ∈ D(S) | Img(δ) ⊆W}

where Img(δ) = {δγ | γ ∈ Γ} is the one-step image of δ. Our algorithm will operate on
the mesh, identifying cells Si that are entirely contained within this predecessor set.

4. Robust Bellman Update The value function is computed via a backward recursion.
We initialise the winning set at step h = 0 as all cells that intersect the target set:

V0(i) = 1 ⇐⇒ Si ∩ T ̸= ∅

For subsequent steps h = 0, . . . , K − 1, the value function is updated via a two-stage
robust Bellman update. First, we compute an intermediate value, Ṽk+1(i), which de-
termines if a cell Si can be robustly driven into the winning set of the previous step,
Wk = {j | Vk(j) = 1}:

Ṽk+1(i) = min
j∈Ji

Vk(j)

where Ji = {j | Img(Si) ∩ Sj ̸= ∅} is the precomputed set of successor cell indices for
cell Si. This intermediate value is 1 if and only if all successors of Si are in the winning
set Wk.
The final value for the next step, Vk+1(i), is then updated to ensure the winning set is
monotonically non-decreasing:

Vk+1(i) = max(Ṽk+1(i), Vk(i))

This ensures that once a cell is marked as winning, it remains winning for all subsequent
steps. The final winning set is the union of all cells that are winning at any step up to
the horizon K.
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5-2-2 Algorithm and Implementation

The practical implementation of this value iteration scheme involves two main phases: a one-
time precomputation of successor sets and an iterative loop to compute the value function as
outlined in Algorithm 2.

Algorithm 2 Robust Backward Reachability on a Mesh for an IMC
1: Input: IMC transition bounds Γ, target set T , horizon K, mesh M = {Si} specified by

a grid size L.
Precomputation Phase:

2: for each cell Si = conv(Vi) ∈M do
3: {ext(Pr)}nr=1 ▷ extreme points of the row transition polytopes
4: Pi ←

⋃
v∈Vi

vert(Img(v)) ▷ one-step image vertices for the cell
5: Ji ← ∅.
6: for each cell Sj = conv(Vj) ∈M do
7: if Pi ∩ Sj ̸= ∅ then
8: Ji ← Ji ∪ {j}.
9: end if

10: end for
11: end for

Value Iteration Phase:
12: V0 ← array of size Nsimp, where V0(i) = 1 if Si ∩ T ̸= ∅, else 0.
13: V ← V0.
14: Wtotal ← {i | V0(i) = 1}.
15: for h = 0 to K − 1 do
16: Vnext ← V .
17: for i = 1 to Nsimp do
18: if V (i) = 0 then
19: Ṽk+1(i)← minj∈Ji V (j).
20: Vnext(i)← max(Ṽk+1(i), V (i)).
21: end if
22: end for
23: V ← Vnext.
24: Wtotal ←Wtotal ∪ {i | V (i) = 1}.
25: end for
26: Output: The total winning set of indices Wtotal.

Algorithm 2 can be extended to IMDPs by just considering the best action, defined by choosing
the action which maximises the number winning cells in the next step or equivalently that
gives the best value function in line 22.

5-2-3 Complexity Analysis of the Algorithm

The computational complexity of the algorithm is heavily dominated by the one-time pre-
computation phase, which builds the successor graph.
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1. Mesh Generation: For a state space of size n, the probability simplex is an (n− 1)-
dimensional object. A regular simplicial mesh with L divisions along each edge results
in Nsimp = Ln−1 cells, and a total of Npts =

(L+n−1
n−1

)
grid points. The number of cells

grows polynomially with L but exponentially with the number of states n.

2. Successor Set (Ji) Computation: This is the most intensive step. For each of the
Nsimp cells, we must check for intersection with all other Nsimp cells. The intersection
check between two polytopes, conv(Pi) and conv(Vj), with vi and vj vertices respectively,
is formulated as a feasibility LP. This LP has vi + vj variables and n + 2 constraints (n
for the equality of points, 2 for the sum-to-one constraints on the convex combination
weights). The theoretical complexity of solving an LP is polynomial in the number of
variables and constraints. Therefore, the total complexity of this phase is O(N2

simp·CLP ),
where CLP is the cost of solving a single LP.

3. Value Iteration: The iterative part is computationally efficient. Each of the K steps
involves a single pass through the Nsimp cells. For each cell i, the check minj∈Ji V (j)
takes O(|Ji|) time. The total complexity of this phase is therefore O(K ·

∑Nsimp
i=1 |Ji|),

which is linear in the number of edges in the precomputed successor graph.

Note. For a higher number of states, even for a 3x3 slippery grid world modelled using
interval transition probabilities (see section A-2 for a complete description of the model),
the computational demand is massive. This is because the simplicial partitioning for higher
dimensions is computationally demanding. For example, in the 3x3 grid world, consisting of
9 states, for L = 2, Nsimp = 256 and Npts = 45. This leads to an increase in the computation
of the Ji set for all the points for even coarse grid levels. This is made worse due to the
computation of convex hull of the vertices in n − 1 dimensions. Furthermore, finer grid
partitions lead to better accuracy in identifying regions in the distribution space which reach
the target distribution set in the defined horizon. Hence, due to the significant increase in the
computation times to obtain better results, we need to look at better ways to obtain the convex
hull or the intersecting simplex indices thereof, possibly via parallelising the computation load
over the grid obtained.

5-3 Guarantees of reach-avoid specifications

The distributional reachability analysis introduced in the previous sections provides a char-
acterisation of how sets of state distributions evolve under fixed policies over a given number
of steps. However, many practical verification problems, particularly in safety-critical appli-
cations, require reasoning not just about reachable distributions, but about whether these
distributions satisfy specific temporal specifications such as reach-avoid objectives. In the
distributional setting, these specifications require that the system reaches a designated target
set of distributions while remaining within a safe set of distributions in all previous steps.
Consequently, system evolution depends both on the choice of policy, which selects actions,
and the choice of adversary, which selects feasible transition probabilities from the ambiguity
sets at each step.
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5-3-1 Satisfaction of a Reach-Avoid Specification

Let H ⊆ D(S) denote the safe set, and T ⊆ D(S) denote the target set in the distributional
space. Given an initial distribution δ0 ∈ D(S), a trajectory {δk}k∈N satisfies the reach-avoid
specification if there exists a finite time τ ∈ N such that:

∀k < τ, δk ∈ H and δτ ∈ T.

Two variants of the distributional reach-avoid problem can be formulated:

• Existential (optimistic) variant: Determine whether there exists a policy π ∈ Π and
an adversary γadv ∈ Γadv such that, for the given initial distribution δ0, the induced
trajectory satisfies the reach-avoid specification:

∃π ∈ Π, ∃γadv ∈ Γ, ∃τ ∈ N : ∀k < τ, δk ∈ H and δτ ∈ T.

This formulation checks whether there exists some combination of policy and favourable
transition realisations that can satisfy the specification.

• Robust (universal) variant: Determine whether there exists a policy π ∈ Π such that,
for all adversaries γadv ∈ Γadv, the reach-avoid specification is satisfied:

∃π ∈ Π, ∀γadv ∈ Γ, ∃τ ∈ N : ∀k < τ, δk ∈ H and δτ ∈ T.

This variant guarantees that the reach-avoid property holds regardless of how the ad-
versary resolves the transition uncertainty.

In the case of MDPs, both problems can be formulated over the forward and backward reach-
able sets previously introduced, as shown in (Gao et al., 2023). For the universal problem, one
seeks the existence of the largest initial distribution set that lie within the backward reach-
able set of the target, while remaining inside the safe set during all intermediate steps. For
the existential problem, one can check that forward reachable sets initiated from the initial
distribution never leave the safe set before entering the target set.

5-4 Discussion

In this chapter, we developed a distributional framework for reachability analysis of IMDPs.
Unlike classical state-based verification, this framework allows us to reason directly over the
evolution of probability distributions under uncertainty. The convexity properties of reachable
sets were established for the induced IMC case, and we extended the framework to IMDPs
using occupation measures and transition occupation measures, allowing tractable relaxations
via McCormick envelopes.
We further introduced backward reachable set computations, providing algorithms for both
reachability and verification tasks under distributional specifications. The distinction between
existential and universal problems was formalised, capturing both policy synthesis and robust
verification goals.
In the following chapter, we apply the developed methods to concrete case studies that illus-
trate these methods, demonstrate verification of distributional reach-avoid specifications, and
highlight the advantages and trade-offs of the proposed approaches.
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Chapter 6

Case Studies

The preceding chapter established the formalism of distributional reachability for IMDPs,
detailing the value-iteration–based backward operator, McCormick relaxations for bilinear
terms, and the specification of the running example. The present chapter operationalises
that framework through two case studies to examine algorithmic behaviour, approximation
tightness, and robustness to model uncertainty. All computational experiments reported here
were executed on a Dell G15 5520 equipped with an Intel Core i5-12500H processor and 16
GB RAM. The code for this is available on my GitHub repository1.

6-1 Structured Swarm Deployment via Distributional Reachability

Inspired by the Swarm Deployment case study by Gao et al. (2023), we demonstrate a similar
swarm deployment for IMDPs using the backward reachability set (5-1) using McCormick
envelopes as described in section 5-1.

6-1-1 Problem Setup

We study a structured deployment task where n = 100 agents move in the state space S
defined as 10 × 10 discrete grid. Each cell in the grid corresponds to a state s ∈ S, and the
swarm state at any time is described by a distribution δ ∈ D(S), representing the fraction
of agents in each cell. Agents take actions from the set A = {N, S, E, W, Stay}. Let Y ⊆ S
denote the fixed ”UP” outline in the grid (see Figure 6-1).
We consider transition uncertainty with:

• Intended transition probabilities in [0.75, 0.85],

• Slip transitions in [0.10, 0.20],

• No static obstacles or explicitly unsafe states.
1https://github.com/vkaza52/thesisdatabase/tree/main/code
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6-1-2 Reachability Specification

The objective is to steer the agent distribution into a UP-shaped region (i.e., the target set
Y ) within a finite horizon while satisfying two soft constraints:

• At least α = 0.9 total probability mass must lie within Y at the final time.

• Each target state in Y must contain at least 2% agents.

• Finally, we add the constraint that at most 6% agents are present in any cell at any
given point of time to ensure there is no congestion of space.

We express the above specifications as shown below:

∆f =
{

δ ∈ D(S)
∣∣∣ ∑

y∈Y

δ(y) ≥ α, δ(y) ≥ 2
|S| ∀ y ∈ Y, δ(s) ≤ 6

|S| ∀ s ∈ S
}

, (6-1)

For this specification, we want to synthesise a policy π : S → D(A) for an IMDP I = (S, A, Γ),
where Γ is as defined in Definition 3.13 and characterised by (3-7), based on the description
above for the interval transition probabilities, using (4-5), to control the agents with respect
to the distributions of the agents. In other words, we are looking at a high-level policy rather
than an individual agent-level policy to reach the target distribution set.

6-1-3 Methodology

We use encode the recursive backward reachable set defined by (5-1), which are relaxed
using McCormick envelopes as defined in (4-8) to provide convex relaxations on the bilinear
program. This is encoded in a linear program as described below:

max
∑
y∈Y

δN (y)

s.t. δ0 = 1
n1,

δk ∈ D(S) (k = 0, . . . , N),∑
a∈A

Qk(s, a) = δk(s) ∀s, k = 0, . . . , N−1,

Wk(s, a, s′) ≥ γ̌s,a(s′)Qk(s, a),
Wk(s, a, s′) ≥ γ̌s,a(s′)− (1−Qk(s, a))γ̂s,a(s′),
Wk(s, a, s′) ≤ γ̂s,a(s′)Qk(s, a),
Wk(s, a, s′) ≤ γ̂s,a(s′)− (1−Qk(s, a))γ̌s,a(s′),∀(s, a, s′), k = 0, . . . , N−1∑
s′

Wk(s, a, s′) = Qk(s, a) ∀(s, a), k = 0, . . . , N−1,

δk+1(s′) =
∑
s∈S

∑
a∈A

Wk(s, a, s′) ∀s′, k = 0, . . . , N−1,

δk(s) ≤ 6
n ∀s, k = 0, . . . , N,∑

y∈Y

δN (y) ≥ α, δN (y) ≥ 2
n ∀y ∈ Y.

(6-2)
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6-1 Structured Swarm Deployment via Distributional Reachability 47

Given the specifications of the required final distribution, agent congestion constraints, we
solve the problem using backward reachability computations over the given horizon. One can
then extract the policy obtained using (4-5).

6-1-4 Results

A feasible policy was found within a horizon of N = 6 steps. Figure 6-1 shows the evolution
of the distribution under this policy. The UP-shape becomes progressively clearer, with more
than 90% of the agent mass eventually reaching the designated region. To synthesise the
policy, on average over 5 runs, it takes about 44.37 seconds. Furthermore, upon increasing the
slip probability from [0.10, 0.20] → [0.10, 0.25] while keeping the other constraints the same,
the problem became infeasible. This shows the sensitivity of the method to uncertainties for
a fixed horizon.

Figure 6-1: Evolution of swarm distribution over 6 time steps, forming the target UP-shape.

6-1-5 Limitations

While the approach demonstrates promising results for structured swarm deployment, several
limitations remain:

1. Outer Approximation Guarantees: The backward reachable sets computed using
McCormick relaxations are outer approximations. As a result, the synthesised policy
may be overly conservative and not tight with respect to the true reachable set. Further-
more, due to the use of the sampling-based method, the inner approximations obtained
might not be the tightest bound of the true set.

2. Scalability: The use of convex programming with high-dimensional variables (e.g.,
occupation measures, McCormick auxiliary variables) leads to computational overhead.
For larger grids or longer horizons, solving the associated programs becomes increasingly
expensive.
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3. Existential Guarantees: The method described for this case study only provides
existential guarantees, in the sense that it is an optimistic scenario of the existence
of policy and corresponding transition probability matrix. This is also because of the
outer approximations that are used to compute the set, which makes it hard to provide
robust universal guarantees.

6-2 Value Iteration based Robust Backward Reachability

In this case study, we apply the value iteration-based algorithm described in Algorithm 2 to
our running example 3.1 under action a0 to obtain the largest initial set of distributions from
which we are guaranteed to reach the target set of distributions under adversarial conditions.
The primary objective of this analysis is to demonstrate the functionality of the algorithm
and to visually illustrate the step-by-step computation of the robust winning set. By fixing a
policy, in this instance, selecting action deterministically across all states, the IMDP from the
running example is reduced to an IMC. Figure 6-2 shows the target distribution set considered
for all the scenarios that follow for varying grid size L. Since we perform a backward iteration
the step 0 for all the simulations is the same and is hence only shown once. Going forward,
we only show the system evolution from step 1.

6-2-1 Running Example under Action a0

It can be observed from Figure 6-3 that the value iteration runs for the horizon H = 5 and
L = 60, highlighting the winning cells at the end of the time horizon in green and intermediate
winning regions are marked in orange. At each step, the algorithm recursively computes the
set of simplices from which the target region can be reached. The algorithm stops when no
new regions are found. To verify if the obtained largest initial distribution set holds, we use a
forward analysis by sampling random simplices from the partitioned space and observing their
trajectory over the time horizon. From the forward analysis shown in Figure 6-4, Figure 6-5, it
can be seen that, indeed, the largest initial distribution obtained holds. All the cells which are
part of the winning set obtained in the backward iteration reach the target set of distributions
within the given horizon. Furthermore, it was also observed that for higher values of L, the
defined winning sets were more accurate. Similar plots are provided for different grid sizes
and transition probability matrices in the section A-3.

6-2-2 Analysis of the Computation Times

For the running example under action a0, we provide the computation times of the pre-
computation, value iteration and the forward analysis below. Table 6-1 reports the compu-
tation times for the different components of the algorithm as the grid level increases from 10
to 60. The pre-computation stage dominates the runtime, growing from approximately 8.2 s
at grid level 10 to more than 760 s at L = 60. In contrast, the value iteration step remains
negligible. The forward analysis also increases significantly with resolution, reaching about
30 s at L = 60. This aligns with the complexity analysis presented in subsection 5-2-3. Fur-
thermore, this highlights the trade-off between accuracy and speed, since the winning cells
are more accurate at a higher grid size but also take longer computation time. This suggests
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(c) L = 40
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(d) L = 60

Figure 6-2: Target distribution for varying grid sizes.
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(c) k = 3
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Figure 6-3: Backward reachability for L = 60 for the running example under action a0.
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Figure 6-4: Forward analysis for L = 60 for the running example under action a0 until k = 3.

that for large-scale problems, optimising or parallelising the pre-computation phase would
yield the largest performance gains, which is left as future work.

6-3 Discussion

The smaller grid and reduced population for the swarm deployment case study are chosen to
keep computations tractable while still illustrating distributional reachability under interval
uncertainty. Compared to standard MDP formulations such as those in (Gao et al., 2023), this
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Figure 6-5: Forward analysis for L = 60 for the running example under action a0 at k = 4

Table 6-1: Computation times (in seconds) for different grid levels (H = 5).

Grid Level Precomputation Value Iteration Forward Analysis
10 8.18 0.0033 2.04
20 38.31 0.0099 4.09
40 221.16 0.0300 11.87
60 763.83 0.1025 30.69

IMDP setting introduces additional complexity due to the presence of interval uncertainty
sets Γs,a, requiring joint reasoning over both policy randomness and adversarial uncertainty.
This results in higher-dimensional convex feasibility problems involving auxiliary variables
and additional constraints, making the problem computationally harder even for relatively
small state spaces. Furthermore, in scenarios where data regarding the transition probabilities
is unavailable, data-driven methods need to be integrated into the existing approach for the
distributional reachability analysis.
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Chapter 7

Conclusion & Future Work

Chapter Summary
This chapter summarises the thesis contributions, acknowledges its limitations, and
proposes directions for future research. The thesis successfully addressed the problem
of distributional reachability in multi-agent systems by developing a framework that
models system evolution directly over probability distributions using IMDPs to capture
uncertainty. The primary contributions include the formalisation of the distributional
reachability problem, the analysis of the convex geometry of reachable sets, and the
development of a computational framework for their computation. The work is limited
by its focus on verification for fixed policies rather than synthesis, its finite-horizon for-
mulation, the assumption of known uncertainty intervals, and the potential for conser-
vatism in over-approximations. This research contributes to the shift from state-based
verification to providing population-level safety guarantees for complex stochastic sys-
tems, offering a powerful method for analysis in uncertain environments.

7-1 Conclusion

This thesis addressed the challenging problem of distributional reachability for multi-agent
systems operating under both stochastic dynamics and interval uncertainty. In many real-
world scenarios—such as swarm robotics, air traffic control, and autonomous vehicle coordination—
the safety and performance of the system are better described at the distributional level rather
than at the level of individual agents or trajectories. Existing probabilistic verification tech-
niques typically focus on state-based or path-based reachability, which often becomes com-
putationally intractable or insufficiently expressive when applied to high-dimensional multi-
agent systems.

To overcome these limitations, this thesis adopted a distribution transformer view of MDPs,
wherein the evolution of the system is modelled directly as transformations over probability
distributions on the state space. This perspective naturally accommodates population-level
safety specifications and allows for compact representation even in systems with large numbers
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of agents. However, real-world systems are rarely described by precisely known dynamics. To
address this, the thesis extended the distributional framework to accommodate model uncer-
tainty using IMDPs, where each transition probability is bounded within specified intervals
to capture epistemic and aleatoric uncertainty.
The primary contributions of this thesis can be summarised as follows:

1. Problem Formalisation : The central problem of forward and backward distribu-
tional reachability was formally defined, focusing on computing or characterising the
set of all possible state distributions that can arise under uncertain transitions and
stochastic policies.

2. Convex Geometry of Reachable Sets: The reachable sets were formulated as con-
vex sets evolving through affine transformations induced by both the policy and the
adversarial choices of transition probabilities within the specified intervals. The math-
ematical framework leveraged convex analysis tools, including Minkowski sums, sup-
port functions, and polytopic representations, to analyse the evolution and structure of
reachable sets.

3. Computational Framework: A recursive algorithm was proposed to compute k-step
reachable sets by iteratively propagating convex sets under uncertain affine transfor-
mations. The computational framework provides both exact and over-approximate
reachable sets, depending on the complexity of the underlying system and the degree of
conservatism required.

4. Case Studies: The proposed framework was applied to representative case studies,
including multi-agent reachability problem, a case study using the robust backward
reachability problem for the running example, demonstrating how the developed meth-
ods can be employed to provide reachability guarantees under uncertainty.

Through these contributions, the thesis demonstrated that robust, distribution-level verifica-
tion is both theoretically tractable and practically relevant for multi-agent systems, particu-
larly when system-level specifications depend on aggregate behaviours rather than individual
trajectories.

7-2 Limitations of the Current Work

Although the contributions presented in this thesis advance the state-of-the-art in distribu-
tional verification, several limitations remain that are important to acknowledge:

1. Finite-Horizon Formulation: The reachability problem was primarily treated in a
finite-time horizon setting. Extending the framework to infinite-horizon formulations
or probabilistic invariance problems would require additional theoretical developments.

2. Known Uncertainty Intervals: The interval uncertainty was assumed to be known.
In practice, uncertainty may be time-varying, dependent on system state, or partially
learned online. Incorporating such dynamic uncertainty models would increase realism
but also complexity.
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3. Conservativeness in Over-Approximation: The polytopic convex approximations
used for reachable sets can become increasingly conservative over longer horizons, par-
ticularly when uncertainty propagates through multiple steps.

4. Computational Scalability: Whilst the use of convex polytopes enables tractable
computation in small-to-moderate state spaces, scalability to very high-dimensional
systems remains challenging due to the exponential growth of constraints in the polytope
representation. Similar issues remain for the proposed value iteration method where
finding the intersecting simplices remains a bottleneck.

5. Limited Case Studies: While a practical case study for the existential variant is pro-
vided, similar case studies for the value iteration-based backward reachability method
were hard to compute due to the exponential increase in the computation time. How-
ever, improving the algorithm to obtain the intersecting simplices is expected to provide
reasonable improvement in performance, which is left for future work.

7-3 Computational Aspects

A key contribution of this thesis is the development of a computationally tractable framework
for distributional reachability under interval uncertainty, especially for the existential variant
of the problem. In contrast to classical state-based approaches (e.g. value iteration for MDPs
or interval iteration for IMDPs), which operate on scalar reachability probabilities, the pro-
posed framework tracks convex sets of reachable distributions over the probability simplex,
incorporating both policy stochasticity and adversarial interval uncertainty.

This formulation introduces additional computational complexity. Each one-step propagation
involves Minkowski sums and convex hull operations over polytopes in R|S|. The worst-case
complexity of convex hull computation grows exponentially with the number of vertices and
the state space dimension. Consequently, after k steps, the size of the polytope representation
may grow as O(V k), where V denotes the number of vertices generated per step. The overall
complexity is thus super-polynomial in both horizon length and state space size.

While symbolic IMDP tools (e.g. IMPaCT, IntervalMDP.jl) achieve faster runtimes by re-
stricting to state-wise intervals, they cannot capture the full distributional evolution ad-
dressed here. The increased computational burden reflects the richer problem structure and
the stronger guarantees provided at the distribution level.

In practice, the existential method remains feasible for problems with up to tens of states
and moderate horizons, as demonstrated in the case study. Scaling to larger systems would
require structural assumptions or approximate set representations that trade exactness for
tractability.

7-4 Future Work

While the methods developed in this thesis form the foundations for robust distributional
reachability analysis, they also open several promising directions for future research.
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7-4-1 Data-Driven Uncertainty Quantification

The IMDP model employed here assumes known interval bounds on transition probabilities.
In practice, such bounds are often estimated from empirical data. Data-driven abstraction
methods, such as scenario-based convex programs (Badings et al., 2022; Lavaei et al., 2023),
Gaussian Process regression (Skovbekk et al., 2024), or Bayesian non-parametric uncertainty
sets (Reed et al., 2023), could be integrated into the distributional framework to automatically
generate valid IMDP models with statistical guarantees.
Open questions remain regarding sample complexity and confidence bounds when estimating
uncertainty sets for distributional specifications. Techniques from PAC-learning for stochastic
systems (Lavaei et al., 2023) may serve as a foundation for addressing these challenges.

7-4-2 Scalability to High-Dimensional Systems

The proposed framework remains computationally feasible for moderate state spaces, but
scaling to high-dimensional systems remains a key challenge.
Recent work on orthogonally decoupled IMDPs (odIMDPs) offers one promising direction by
factorising uncertainty along state dimensions, thereby achieving linear complexity scaling
under decomposability assumptions (Mathiesen et al., 2025). Zonotope-based methods (Yang
et al., 2022) and set-based representations exploiting system structure could also serve to
reduce conservatism and improve scalability.
Distributed and decentralised abstraction methods (Meshkat Alsadat et al., 2024; Coppola
et al., 2024) that exploit local agent interaction structures may further enable tractable reach-
ability computations in multi-agent systems.

7-4-3 Richer Formal Specifications

The current formulation focuses on finite-horizon reach-avoid problems. Extending the frame-
work to handle richer formal specifications, such as those specified in temporal logics (e.g.,
PCTL, LTL) (Baier and Katoen, 2008), could enable verification of complex tasks.
Multi-objective policy synthesis under interval uncertainty has been studied for state-based
IMDPs (Hahn et al., 2017), and extending such methods to distributional objectives could
broaden the applicability of the framework.

7-4-4 Adversarial Learning and Game-Theoretic Extensions

Since IMDPs naturally encode worst-case adversarial models, there is potential for integrating
adversarial reinforcement learning and game-theoretic approaches. Recent developments in
distributionally robust reinforcement learning (Suilen et al., 2024) and Wasserstein-based
ambiguity models (Mazumdar et al., 2024) could be extended to explicitly handle interval-
based uncertainty models.
Game-theoretic models, such as Stackelberg formulations for robust hierarchical control (van
Zutphen et al., 2024), may further enhance robustness against intelligent or adaptive adver-
saries that exploit weaknesses in stochastic systems.
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7-4-5 Integration with Real-World Systems

Finally, applying these methods to real-world systems remains an important long-term goal.
Multi-agent scenarios such as UAV swarm navigation under uncertain disturbances, traffic
coordination in autonomous vehicle networks, warehouse robotics, and distributed sensing
systems present natural testbeds for distributional reachability verification.

Bridging the gap between theoretical guarantees and real-world deployment will require ad-
vances in system identification, safety certification, and scalable verification toolchains (Wood-
ing and Lavaei, 2024; Mathiesen et al., 2024).

7-5 Ethical Considerations

The framework for verifying multi-agent systems presented in this thesis has a significant
dual-use nature, posing both societal benefits and ethical risks. Positively, these methods can
enhance the safety and reliability of civilian autonomous systems. Applications include safer
management of autonomous vehicle fleets, coordinated air traffic control for drone swarms,
and effective deployment of robots for search and rescue operations. By providing formal
guarantees for population-level behaviour, this research contributes to the trustworthy inte-
gration of autonomous technology into society.

However, the same principles carry profound ethical risks if applied to military contexts.
The concepts could be used to optimise autonomous surveillance swarms or to guarantee
the success of coordinated attacks by autonomous weapons systems. The ability to formally
verify that a swarm can reach a target while avoiding defences could automate offensive
military actions to a dangerous degree. This underscores a need for the scientific community
to engage in a transparent discourse and for robust public oversight to prevent the misuse of
such powerful technologies.

7-6 Closing Remarks

The methods developed in this thesis contribute to the growing body of research that moves
beyond classical state-based verification toward distributional (population-level) safety guar-
antees for complex stochastic systems. The combination of interval transition probability
modelling, convex geometric methods, and multi-agent reachability offers a powerful combi-
nation for both analysis and synthesis in uncertain environments. With continued develop-
ment in the directions outlined above, distributional reachability has the potential to play a
key role in the safe and scalable deployment of autonomous multi-agent systems.
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Appendix

A-1 Statement on the use of AI tools

In this thesis, I used ChatGPT and Grammarly to enhance my language and better articulate
my ideas. I have also used ChatGPT to help me code some helper functions required by my
code.

A-2 Slippery Grid World for Stochastic Navigation

The primary goal in the stochastic navigation problem in a slippery grid world is to find the
initial set of distributions from which the agent can reach the target region while avoiding the
obstacle region with at least a given probability α. The actions available are {UP, DOWN,
LEFT, RIGHT, STAY}. An action whose transition leads toward the wall renders the agent
to stay in its cell with a probability of 1, while any other chosen action has an interval
transition probability [0.75, 0.85] along with a probability of slipping into cells perpendicular
to the chosen action with a probability interval [0.05, 0.20]. Furthermore, it is assumed that
the obstacle and target states are absorbing, i.e., once they hit those states, the only action
possible is STAY with a probability of 1.

A-3 Plots for the Value Iteration based Backward Reachability
from section 6-2

A-3-1 More results for running example under action a0

In this section, we provide some more results for the running example under action a0 for
L = 10, 40 as shown in Figure A-2, Figure A-3, Figure A-4 and Figure A-5. It can be seen
that as the grid size increases, the accuracy of the winning sets found also increases.

Master of Science Thesis Vilohit Sarma Kaza



60 Appendix

[0.75, 0.85]
[0.05, 0.20]

[0.05, 0.20]

Figure A-1: 3×3 slippery grid used in the experiments. The red cell is an obstacle, and the green
cell is the target state, both of which are considered to be absorbing states. Executing Right
from the middle-left cell succeeds with probability in [0.75, 0.85] (solid arrow) and slips to the
orthogonal neighbours with probabilities in [0.05, 0.20] each (dashed arrows).
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Figure A-2: Backward Iteration for running example under a0 for L = 10.

A-3-2 Testing the results using different transition probability matrices

To further validate the results, we perform a similar analysis considering the following IMC
in Figure A-6:
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Figure A-3: Forward Analysis of the running example under a0 for L = 10.
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Figure A-4: Backward Iteration for running example under a0 for L = 40.

s0

s1

s2

[0.15, 0.3]

[0.45, 0.6]

[1.0, 1.0]

[0.8, 1.0]

[0.04, 0.2]

[0.3, 0.5]

[0.12, 0.15]

Figure A-6: IMC considered for illustration.

Table A-1 summarises the computation times for the IMC from Figure A-6 experiments with
grid levels ranging from 10 to 60. As before, the pre-computation time is the dominant cost
and grows sharply with resolution, reaching over 3000 s at grid level 60. The forward anal-
ysis also increases significantly, while the value iteration remains negligible. The significant
increase in the pre-computation time compared to the previously reported one from the run-
ning example could be due to a larger number of extreme points for the defined transition
probability matrices and also possibly due to running multiple experiments at the same time
on the system, leading to a higher load on the processor. It can be seen that the distributions
starting in the winning set reach the target at some point before the horizon ends. Since the
IMC consists of an absorbing state s2, over time, if there is a feasible transition to s2 and
hence the distribution moves towards the s2 distribution corner on the plane, and this can
be observed in Figure A-8, Figure A-10.
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Figure A-5: Forward Analysis of the running example under a0 for L = 40.

Table A-1: Computation times (in seconds) for IMC in Figure A-6 (H = 5).

Grid Level Precomputation Value Iteration Forward Analysis
10 20.74 0.0078 5.03
20 151.29 0.0093 10.73
40 1054.62 0.0631 31.96
60 3088.69 0.1016 47.93
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Figure A-7: Backward iteration for the illustration for L = 10.
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Figure A-8: Forward Analysis for the illustration for L = 10.
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Figure A-9: Backward iteration for the illustration for L = 60.
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Figure A-10: Forward Analysis for the illustration for L = 60.
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List of Acronyms

conv convex hull
MC Markov Chain
MDP Markov Decision Process
RMDP Robust Markov Decision Process
IMDP Interval Markov Decision Process
IMC Interval Markov Chain
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