INFLUENCE OF SECONDARY FLOW
ON MEANDERING OF RIVERS

K.W. Olesen

Laboratory of Fluid Mechanics
Department of Civil Engineering

Delft University of Technology

Report 1 — 82




Contents

List of table and figures
List of symbols

Summary

1. Introduction

I.1. General
1.2, Previous work
3

. The present investigation

2. Mathematical modelling

2.1, Steady flow model
2.2. Bed shear stress
2.3. Equation of continuity for the sediment

2.4. Sediment transport

" 3. Solution for a double harmonic perturbation

3.1. Solution of the flow model

3.2. The stability analysis

4. Discussion on basic assumption

4,1, Linearization of the flow model

4,2. Linearization of the sediment model

5. The complex celerity

5.1, Influence of constitutive relations

5.2, Influence of the flow parameters

6. Comparison with flume experiments
7. Conclusions and further research
References

Appendix

Table

Figures

12
14

17
17
21

23
24
24

26
28
29

33

36

39

42

46
47




List of table and figures

Table:

1.

Sand flume data

Figures:

[y —
. .

»

(e BN o R o « B N R L " v

UG —
N
. .

13.
14.
15.
16.
17.

—_—
oo
.

19.
20.
21.
22,

23,
24,

Decay of secondary flow intensity

Bed pattermns

Phase lag and amplitude for different e

Phase lag and amplitude for different F

Linear and non-linear flow computation

Amplification
Amplification
Amplification
Amplification
Amplification
Amplification
Amplification
Amplification

in flow model

factor.
factor.
factor.
factor.
factor.
factor.
factor.

factor.

Reference
Influence
Influence
Influence
Influence
Influence
Influence

Influence

example
of a
of b
of M]

of M2

of Nl

of N2

of transverse bed shear stress

Max. amplification factor. Influence of F

Max. amplification factor. Influence of £

Max. amplification factor. Influence of kw

Max. amplification factor. Influence of kw. No secondary flow
Max. amplification factor. Influence of kw' No secondary flow
inertia

Max. amplification factor. Influence of kw. No gravitational

force

Roughness coefficient, Flume data

Transport rate.

Amplification factor.

Amplification factor.

coefficients

Height of alternate bars as a function of kw.

Flume data

Flume experiments

Flume experiments.

Adapted secondary flow

Flume data

Height and length of alternate bars as a function of £ .

Flume data

46

45
47
48
49
50
51
52
52
53
53
54
54

55
56
57
58
59

60

61

62

63

64

65
67

67




List of symbols

a coefficient in model for secondary flow
b coefficient in model for secondary flow inertia
c coefficient in model for gravitational force on grains
i = %7 . Roughness coefficient
g acceleration due to gravity
h depth of flow
i = V-1, Imaginary unit
k wave number in longitudinal direction
k wave number in transverse direction
1 = k/kw. Relative wave number
1o = 1 for 8¢i/81 =0
m number of submerged bars in a cross-—-section
max[¢i] = ¢i for 8¢i/81 =0
t time coordinate
u longitudinal flow velocity
v transverse flow velocity
X longitudinal coordinate
vy transverse coordinate
vertical coordinate and dimensionless perturbation parameter of the bed
zy bed level
C Chézy roughness coefficient
D determinant. Eq. (3.13)
F Froude number
FS densimetric Froude number
Hbar height of bars
Hdun height of dunes
I equilibrium bed slope
Lbar length of bars
Ldunes length of dunes
Ml’ M2 coefficients in linearized bed shear stress model
Nl’ N, coefficients in linearized transport rate model
Q flow discharge
S sediment transport rate per unite width

width of channel

=




B = So/hou Dimensionless sediment transport rate

8 directiog of bed shear stress

€ = f/kw

8 dimensionless shear stress., Shield parameter

K N 0.4 . von Kdrman constant

0 mass density of fluid

TX,Ty bed shear stress in x and y direction, respectively
) complex celerity

Y direction of sediment transport

A relative density of sediment

® dynamic friction angle

X degree of development of the secondary flow
Subscripts

o (ho) refer to zero order solution

i (¢i) refer to the imaginary part of a complex number

T (¢r) refer to the real part of a complex number

' (h") perturbation parameter

* (hi) dimensionless parameter. The bulky star is omitted when that does

not lead to confusion




Summary

A linear stability analysis of the governing equations for the bed and flow
topography in straight alluvial channels is treated. The flow is described
by a horizontal two-dimensional model, but secondary flow due to curvature
of the streamlines is included. TFurther more knowledge about secondary flow

inertia achieved in recent¥ears is incorporated.

The analysis suggests that secondary flow plays an important role for the

development of meander bends in relatively narrow channels.

The results of the stability analysis are compared with some sandfluwe data.
The agreement is unsatisfactory, but the discrepancy can be explained by
insufficient knowledge about the secondary flow properties. However, the
sandflume data and the results of the stability analysis exhibit the same
trends with respect to dependence of width-depth ratio and alluvial roughness,
i.e. increasing width-depth ratio as well as increasing roughness coefficient

promotes the formation of alternate bars.



1. Introduction

1.1, General

The flow and bed topography in curved alluvial rivers play an important

part in several aspects of river engineering, such as navigability, bank
protection and river regulation. Engineering problems concerning this

topic are mostly so complicated that they must be investigated using physical
scale modelsvor numerical models, as the non-linear character of the governing
equations in most cases makes an analytical approach impossible. However,

the thorough linearization of the equations, in order to make an analytical
solution feasible, is justified for a small group of problems. The river
morphology problem concerning the formation of alternate bars in straight

aliuvial channels may belong to this group of problems.

Stability of straight channels can be of great importance: Unforeseen stability
problems in for instance a navigation channel can lead to large costs for
dredging. Alternate bars can develop into true bends which bring about
additional roughness which in turn can cause inundation of low situated

areas. Alternate bars in flume experiments may impede the interpretation

of the measured data., And many others.

The present linear stability analysis was initiated by instability occurring
in a numerical model for the flow and bed topography in curved alluvial
rivers. The original aim was to investigate whether these oscillations

had a physical cause or whether they were of pure numerical character. The
oscillation occurred in the straight reach before the entrance of a bend,
and it was therefore thought that a linear stability analysis for a straight

channel would serve as a good first approach.

The study is carried out at the Laboratory of Fluid Mechanics at the Delft
University of Technology within the framework of the river bend project
of the joint hydraulic research programme T.0.W. (Toegepast Onderzoek
Waterstaat) in which Rijkswaterstaat (Governmmental Water Control and
Public Works department) the Delft Hydraulics Laboratory and the Delft

University of Technology participate.




1.2. Previous work

The formation of meanders has been studied by many scientists and from
several point of views (see Callander, 1978). It is a widely accepted
assumption that deformation of the bed is the fundamental cause of
meandering and that erosion of the banks follows at a later stage.

The bed is considered to be deformed due to unstable response of a small per-
turbation of the bed. From this approach several scientists have

carried out linear stability analysis in order to find the origin and
initial wavelength of meandering and braiding in alluvial streams. In

the following a brief revue of some important publications within this

topic will be given.

The linear stability analysis are carried out by Engelund and Skovgaard,
1973; Parker, 1976 and Fredsde, 1978. A common basis for these three
analysis is that the considered channels are wide in order to be able

to neglect any wall effect, that the channels have a rectangular cross-—
sectional shape and that the banks are non—erodible. In all three
analysis the stability of a double periodic and harmonic perturbation

of the bed is investigated.

The analysis carried out by Engelund and Skovgaard is remarkable because

a three—-dimensional flow model is applied. A parabolic distribution of

the longitudinal flow velocity in combination with a finite bottom slip
velocity is assumed. This non—-uniform vertical distribution of velocity
provides for secondary current due to flow curvature, which is a significant
advantage of this analysis. The flow is considered to be quasi-steady,
which is justified with the classical assumption for a bed level model;

i.e. disturbances of the flow travel at much higher celerity than disturbances
of the bed. Engelund and Skovgaard are using a model for the direction

of the sediment transport, which is not only taking the direction of the
flow close to the bed into consideration, but also the gravitational

force acting on the grains along a sloping bed. The analysis explains

why some channels tend to braid, other tend to meander and why a third

group remairns straight.

Parker (1976) applied a two-dimensional flow model in his analysis, thus
secondary flow is not taken into consideration, Parker is using the
equations for unsteady flow, and he obtained a complex fourth degree
algebraric equation for the amplification factor. Applying assymtotic

expansion he found an approximation for the amplification factor; which




is identical to the expression which can be obtained if the derivatives with
respect to time in the flow equation are neglected. The analysis yields
that all streams are unstable because Parker neglected the gravitational
force acting on the grains, which indeed is a very important stabili®ing

effect.

In the analysis carried out by Fredsge (1978) the (steady) flow is
essentially described by the same two dimensional flow model as Parker used.
So also in this analysis secondary flow due to curvature of the streamlines
is neglected. The analysis differs from the previous ones by
accounting for the gravitational force from the transverse slope of the

bed and by dividing the sediment transport into bed load and suspended

load, which makes it possible to take account of the phase lag between the

bed shear stress and the transport in suspension.

Recently Ikeda, Parker and Sawai (1981) carried out a linear stability
analysis for a channel with erodible banks. The analysis yields wave
lengths of the same order of magnitude as the more traditional stability
analysis for alluvial streams. This supports the assumption that the
alternate bars evolute into true bends.

Finally, it should be mentioned that several authors have attempted to
explain the formation of alternate bars and meanders from other approaches.
For instance,Einstein and Shen (1964) qualitatively explained the formation
of alternate bars by secondary flow induced by different shear stress at

the side walls or induced by an asymmetrical cross—sectional shape.

1.3. The present investigation

This report concerns a linear stability analysis of the same type as the
ones carried out by among others Engelund and Skovgaard (1973), Parker
(1976) and Fredsge (1978), i.e. the stability of a double harmonic per-
turbation of the bed in a wide rectangular channel with non erodible
banks is investigated., As in the analysis by Parker and Fredsge a two
dimensional flow model is employed. The main difference from these two
analysis is that the bed shear stress is not parallel to the main flow
direction, but the deviation from the main flow direction due to curvature

of the streamlines is taken into account; i.e., secondary flow is




considered although a two dimensional flow model is employed. This is
a simpler approach than obtaining the secondary flow field directly
from the (linearized) three-dimensional equation (see Engelund and
Skovgaard). However, the employment of the present approach is more
transparant and it has the advantage that it is possible to identify
the influences of the flow and sediment transport which is important
for the development of alternate bars. Further on, in this analysis
knowledge achieved in recent years about the direction of the sediment

transport and about inertia of the secondary flow are incorporated.




2. Mathematical modelling

The basic assumption underlying the mathematical model for the flow and
bed topography in alluvial channels is that the flow can be considered
quasi-steady, i.e. the flow is assumed to adapt much faster to a change
in bed level than the bed level change itself. Therefore the computation
of the bed level development can be divided into small time steps, during
which the bed is kept fixed and the flow field is considered to be steady.
The bed level at the following time step can now be computed by means

of the equation of continuity for the sediment. This convenient division
between flow computation and bed level computation will be maintained

in the following.

Most natural alluvial streams have a large width—depth ratio which suggests
a two-dimensional description of the flow. This approach has proved to
describe the main flow field rather good when main flow inertia and bed
friction dominate, except in a narrow region close to the banks where the
wall friction has direct influence. However, when the secondary flow

has large influence on the main flow distribution, for instance in a
rectangular channel with curved alignment, the two-dimensional model

fails.

A mathematical model for time dependent change of the bed level in alluvial
channels consists in principle of momentum equation for each considered
direction for the flow and an equation of continuity for both the sediment
and the flow. In the present case of a depth averaged approach there

will be four equations, which consequently can relate only four variables.

relations (for bed shear stress and sediment transport) must be introduced

in order to close the system of equation.

In the following first the steady flow will be treated. The complete
depth averaged flow equations will be given, whereupon the unperturbed
(zero order) solution and the linearized (first order) equation will be
derived. Much attention will be paid to the description of the bed

shear stress. Final the linearized equation of continuity for the




sediment will be derived, and the direction and amount of sediment

transport will be considered.

2.1. Steady flow model

For the mathematical description of the flow a coordinate system is applied
which has the x~axis coinciding with the channel axis and positive in

the flow direction, the y—axis horizontal and perpendicular to the

x-axis and the z—axis vertical upwards. In this coordinate system the

depth averaged flow is described by

9z T

Ju Ju oh b :
vt Vey T 8Gx ) T = 0 (2.1)

v 9V oh . % Yy
wx t Vay TGy Ty o O (2:2)
d(hu) |, 3(hv) _

3% " ey 0 (2.3)
in which
g acceleration due to gravity
h depth of flow

u,v  depth averaged flow velocity in x and y direction, respectively
(given) bed level
D mass density of fluid

TX,Ty bed shear stress in x and y direction, respectively.

Equation (2.3) is exact, whereas the longitudinal and transverse momentum
equations, eq. (2.1) and eq. (2.2) respectively, hold good under the
assumption that vertical accelerations are negligible (hydrostatic
preésure), and that depth averaged product terms of the horizontal velocity
components equal the product of the depth averaged velocity. This implies
that the main flow is unaffected by the horizontal component of the
secondary flow. In case of a considerable curvature of the flow and/or

a long bend it is a rather rough approach to neglect the convective
influence from the secondary flow. However, no general applicable and

adequate way to account for this effect in a two dimensional model is




available. Only for the case of mildly sloping banks and bottom a model
which accounts for secondary flow convection, is developed (Kalkwijk

& De Vriend, 1980). Nevertheless, the redistribution of the main flow

5

due to the secondary flow is at least as pronounced in rectangular channels

as in channels with mildly sloping banks (De Vriend, 1981b).

In the first place knowledge about the unperturbed solution must be

obtained. The unpertutbed bed level is given by

in which z is a reference level (at x=0) and IO is the equilibrium
slope of the bed. Equation (2.4) inserted in eqs.(2.1), (2.2) and
(2.3) in combination with impermeable side wall, which provides the

boundary conditions, yields the following zero order solutiom

h = hO

Q
u = u, = =
0~ Wh,
v =0
T = To = P8 Ighy
T =0
y

where Q is the total discharge and W the width of the channel.

In order to make the stability analysis feasible the flow model, egs.
(2.1), (2.2) and (2.3), must be linearized. This is done by superimpose

a small perturbationto the zero order solution in the form:

jmp
]

h, + h' h' << h

0 0
u =, + u' u' << uy
=0 +v' '
v 0 v v u0
= _ : ' '
Zb zO on + z z! << hO
= + 1! 'o<x<
T, T T, T T
7. =0 + 1’ ' << 1
v v y 0

(2.4)

(2.5)

(2.6)




Inserting this perturbed solution into the flow equation (2.1), (2.2) and
(2.3) and neglecting second and higher order terms leads to the linearized

flow equations

ou' oh' 23z! 0 x h'
u, 2 p g2+ (= -2) =0 (2.7)
0 ox X X phO T h0
ov' oh' 9z! 0 Ty'_
Y0 % * g(ay " oy * ph. ;6'_ 0 (2.8)
UL ARl R R A (2.9)
0 9x 0 23z 0 3y )

For convenience dimensionless variables will be introduced. TFor this

transformation the depth of flow h, will be used as the characteristic

0
length scale and hO/uO as characteristic time scale. TFor instance
h = h'/ho, zx = z'/ho, VX = v'/uO etc., The asterisks indicate

dimensionless perturbationvariables, but will be omitted when that does

not give rise to confusion. The dimensionless set of equations now

becomes

ou , p"2.3h 9z - 1) =

% + F (ax + Bx) + f(rX h) 0 (2.10)
H "_2_8._]:-_1. E =

o + ¥ (ay + ay) + f Ty 0 (2.11)
32-+ g—-+ g— =0 (2.12)
9X oy 9%

in which F is the Froude number holding for the unperturbed

flow situation

- _ .8 (2.14)
2

in which C is the wellknown Chézy roughness coefficient.




2.2 Bed shear stress

For two reasons the bed shear stress deserves some extra attention.

First, the shear stress must be eliminated by a constitutive relation

in order to close the system of equations (2.1), (2.2) and (2.3).

Second, the direction of the bed shear stress, which generally will deviate
from the main flow direction due to secondary flow, has a large influence

on the direction of the sediment transport.

The traditional method to express the bed shear stress by means of the
flow parameter: is Chézy's law, which, for uniform flow, implies that the
shear stress is proportional to the square of the mean flow velocity.

In a horizontal two-dimensional flow the bed shear stress is often

expressed by

ST
T, =P fu Vu?2 + v2

(2.15)
Ty =p fv Yu? + v2

which holds good in case of no secondary flow. As a first approximation
eq. (2.15) is applied in the flow model, i.e. the secondary flow is

only taken into account in the model for the sediment movement.

As the roughness coefficient is not a constant, the variation of f must
be expressed in terms of the flow parameters. However no general applicable
and reliable model is available. Several scientists using different

approaches have dealt with roughness prediction, and general agreement.Seems

[

o exist about a functional relationship for the roughness coefficient

like

f= f(FS,I) (2.16)
o

in which F = ——— 1is the densimetric Froude number,
VgAd

A is the relative density of the sediment compared to the density of the
water and d is a characteristic diameter of the sediment. Thus the bed
shear stress actually is a function of the flow velocity and the slope.

The constitutive relation can then be linearized by means of a double

Taylor serie expansion into these two variables. The terms in egs.

(2.10) and (2.11), which contains the shear stress, can then be approximated

by (see also Parker, 1976)
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f (t_ - h) = f@ M,u - MZh) (2.17)

1
f1 =£fv (2.18)

in which M, and M, are given by

u of of
0 0 I 20
Moo= (24 =2 —) [ (-3 ==
1 fO auo fO oL
of
_ I 0
M2 =1/ (1 fo ET_)
In case of a constant roughness coefficient M] =2 and M, = 1.

1

In a curved flow there is a transverse circulation due to the non-uniform
vertical distribution of the main flow. For that reason the direction

of the flow close to the bottom will deviate from the direction of the
depth averaged flow. In case of fully developed flow in a wide curved
channel the horizontal component of this secondary flow is often found

by solving the momentum equation in transverse direction, disregarding
all lateral friction terms and all inertia terms except the centrifugal
ones. Applying this procedure the direction of the bed shear stress

can be expressed like

tan § = - ax (2.19)
in which & is the angle between the shear stress and the direction of

the channel axis, R is the radius of curvature of the channel and a is

a constant depending on the model for the longitudinal flow.

Rozowski (1957) found a = 10 ~ 12 for a logarithmic velocity profile.

Later De Vriend (1977) modified Rozowski's theory and found a = 2/K2

(1 - 1;) in which x ~ 0,4 is the von Karman constant., Engelund (1974)
obtained a N 7 for a parabolic distribution of the longitudinal flow
velocity. For a parabolic velocity distribution in the upper part

of the flow and a logarithmic in the lower part Knudsen (1981) found

a ¥ 10 v 11, Thus a = 10 is a representative theoretical value.

So far the model for the direction of the bed shear stress is based

on pure theoretical considerations for an idealized channel. Experiments
in curved flumes with smooth bed and finite width show that the theoretical
models tend to underestimate the magnitude of the shear stress angle

(Yen, 1965 and De Vriend, 1979). TFurther more according to the theory




the direction of the flow changes rapidly close to the bed. Therefore,
when the bed is covered with bedforms, the choice of a representative
level for calculation of the bed shear stress introduces a great deal

of uncertainty in the bed shear stress angle.

In a developing flow (e.g. entrance and exit of a bend) the streamline
curvature does not equal the channel curvature. However it is assumed
that eq. (2.19) also applies for the angle between the streamlines

and the bed shear stress in a developing flow. In this case the angle

between the bed shear stress and the channel axis becomes

_v__h .
tan § = T 23R (2.20)

in which R.S is the radius of curvature of the streamline. In a straight

channel the streamline curvature can be approximated by (De Vriend, 1978)

Lo__ 1y
R~ U ox (2.21)
8
Combining eq. (2.20) and (2.21) leads to a model for the direction
of the bed shear stress in terms of the dependent variables
v h 3v
tan § = 5 + a G 52 (2.22)

This model applies if the secondary flow is considered toyrespond
immediately to a change in flow curvature. As well as the main flow,

the secondary flow will need a certain length after the beginning of

a bend before it is fully developed, and a certain length to decay beyond
a bend. It is very important to have a description of this retarded
adaption to change in curvature, because the streamline curvature of the

flow over alternate bars rapidly changes sign.

De Vriend (1981) suggested to describe this secondary flow inertia by

means of a damped exponential function like

b oy 3%, , . .hov (2.23)
/f-\ X u 9x

in which x is a variable representing the degree of development of the
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secondary flow and b is a dimensionless constant., According to De Vriend

b M 1.3. The direction of the bed shear stress is now given by

tan § =-§ + ay (2.24)

In appendix A it is outlined how De Vriend obtained  this model.

The model for the secondary flow inertié is based on considerations
about the decay of the helical flow after a bend in a vertical plane
through a straight streamline. Further more derivatives in y—directibn
(except the pressure) are considered much smaller than derivatives in
z-direction and consequently they are neglected. This is of course

a very schematic approach, and it may not be justified to employ the
model to the development of the secondary flow in case of curved stream-
lines and/or in narrow channels. Further more so far only experimental

verification for smooth bed have been carried out (De Vriend, 1981).
The model for the direction of the shear stress and the secondary flow
inertia yields, when linearized and made dimensionless in the same way
as before

- without secondary flow inertia

tan § = v + a — (2.25)

- with secondary flow inertia

b 3% - v
/FBX + X % (2.26)

tan § = v + a ¥ (2.27)
in which v, & and x are dimensionless perturbation parameters.,

2.3. Equation of continuity for the sediment

The mass balance for the sediment yields

0z o8 98
X

b vy o_
T taa Tt 5 - 0 (2.28)

in which Sy and sy are sediment transports per unit width in x and y
direction, respectively. The direction of the sediment transport

is defined as
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S
tan y = S—y— (2.29)

w

By means of eq. (2.29) the transverse sediment transport in eq. (2.28)

can be eliminated. The equation of continuity then becomes

azb asx aSx dtany
50 -h——ax + tan ¥ ——-—ay + er 3y =0 (2.30)

The zero order solution of eq. (2.30) in combination with the unperturbed

flow yields

Zy = Zg Ix
S, = 8 (2.31)
tan ¢y = 0

Superimposing a slight parturbation to the zero order solution, inserting
in eq. (2.30) and neglecting second and higher order terms leads to the

linearized equation of continuity

3z 3s' dtany'’
oz L2 Loty o 2.32
5t T xS0 ay 0 (2.32)

Dimensionless variables will be introduced as follows:

zx = z'/h0
X = x/hO

%
yooo= y/hO
s* = s/s,,
tx = tuo/ho

In terms of these dimensionless perturbation variables the equation of

continuity becomes

1 3z + 9s + otany _

B3t T ox T oy 0 (2.33)
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in which the asterisks ' have been omitted. B is the ratio between

the specific discharges of the flow of the sediment evaluated in the

s
unpertubed situation, i.e. B =-GQE .
070

2.4, Sediment transport

The magnitude and direction of the sediment transport must be expressed
in terms of the dependent parameters in order to close the system of
equations.In principle the stability analysis is based on eq. (2.33),
so a proper description of the sediment tramsport properties is very

important. Therefore this point demands some attention.

A large number of formulae which relate the amount of sediment transport
and the flow parameters are available. A good deal of the tramsport
formulae yields that the transport rate is a function of the dimensionless
shear stress (Shield parameter) 6 = hI/Ad and possibly more parameters,

i.e.
8 = 5(B, cove.) (2.34)

By means of a double Taylor serie expansion the perturbed dimensionless

sediment transport can be approximated by

s = Nu -~ Nzh (2.35)

1

in which 1, and N2 are given by (Parker, 1976)

u, 9s I. 9s
Npo= _Q_Q+_0310M]
SO Buo SO 0
W - 2%,
2 50 BIO 2

M1 and M2 are defined at p.10.Both N

in the unpertubed situation.

and NZ and M] and M, are evaluated

1 2

Models for the direction of the sediment transport are scarce. Three
theoretical models will be considered here. The models are based on the
assumption that a gravitational force acting along the inclined bed
causes a deviation of the direction of transport from the direction of

the bed shear stress. The models are




- Engelund (1974) -

| 9z
tan ¢ = tan § fand oy (2.36)
- Koch (1980) -
siné - %-%E
tan § = ——————7r—§§ (2.37)
coss - 0 ox
- Engelund (1981) -
tan Y = tan § - 0.6 2z (2.38)
e
in which ¢ is the dynamic friction angle (¢ = 30° - 400), U is a factor
of the order of magnitude of unity, 6 is the Shields parameter and 9' is
the effective Shields parameter, i.e. the shear stress related to the skin
friction. According to Einstein (1950) 8' can be obtained from
I hy ¢
——=n =6 + 2,5 1n m (2.39)

[¢]
£

Engelund (1974) used eq. (2.36) to calculate the bed topography in a meandering
channel. At first sight the good agreement between theory and experiments
supports eq. (2.36). However, if the relevant parameter for the experiments
are inserted in eq. (2.37) and eq. (2.38), then the three models are almost
identical. Eq. (2.37) is used to calculate the bed profile for a few fully
developed bends (Koch, 1980). The agreement between theory and experimental
data was satisfactory, but it was necessary to tune the model with the

factor u. Eq. (2.38) is a theoretical model in which a constant (0.6)

is determined empirically. The model is tested with a large number of
experimental data obtained from three almost 360° bends (data: Zimmermann

& Kennedy, 1978). The data confirm the theoretical model but there is

a rather large scatter in the data, especially for low Shield parameters.
Further more all bends in these experiments had a rather steep transverse slope, and
therefore it cannot be taken for granted that the model and/or the empirical
constant do apply in case of a weak transverse slope. Consequently the

model may not apply in case of a small perturbation . Nevertheless from the

three models eq. (2.38) seems most reliable.
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With a linearization according to the rules outlined in chapter 2.1 all
three models get the form
9z

tan ¥ = tan ¢ - ¢ 5;

in which ¢, & and z again are dimensionless perturbation parameters.
Equation (2.40) will be applied in the following with ¢ calculated
according to eqs. (2.38) and (2.39).

(2.40)
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3. Solution for a double harmonic perturbation

The stability analysis is in fact an analysis of the development in time
of a two—dimensional small amplitude wave superimposed on the equilibrium

bed. This perturbation can mathematically be expressed as

sin(k v)
2 =7 W exp i(kx - ¢t) (3.1)

cos(kwy)

h
. . N . . 0, . .
in which z is the amplitude of the perturbation, kw =Imrﬁpls the dimensionless

wavenumber in transverse direction, m is two times the number of waves in a
cross-section, k = 27 hO/L the dimensionless wavenumber in longitudinal

direction, L the wave length, ¢ the complex celerity and /is=-1.

The variables m determine the bed pattern. TFor m = 1 there is one sub-
merged bar in a cross - section, which corresponds to the early stage of
meandering. For m = 2,3 etc. the perturbation of the bed consists of an
increasing number of surbmerged bars, which gharacterizers the incipient

braiding river (figure 1).

The solution for the double harmonic perturbation will take place in two
steps. First the solution of the flow model will be derived. Next this
solution will be used to obtain an expression for the complex celerity;

actually being the solution of the equation of continuity.

3.1. Solution of the flow model
The linearized flow model arises from combining the eqs. (2.10),(2.11),

(2.12), (2.17) and (2.18)

du -2 ,9h 3z

—_— —_ _ A — =

P + F (BX + aX) + f (H u Mzh) 0 (3.2)
ov -2 .3h oz - _

§+F <_3—§+8_y_ + £fv=20 (3.3)

du . 3h . v _
ox ax ¢ 3y 0 (3.4)




As there is no time dependence in this set of equations,i.e. steady flow,
the complex celerity in eq. (3.1) will for the time being be taken equal

zero, It is easily seen that the solution has the form

z =7 Sln(kwy) exp 1 k x
cos (k vy)
. w -
u=u 31n(kwy) exp i k x
_cos(kwy)~
(3.5)
h = h Sln(kwy) exp 1 k x
cos(k v)
W
v=v C?S(kwy) exp i k x
-gin(k y)
W
. . WY oy . .
im which u, h and v are complex amplitudes. The influence of a complex
amplitude can be displayed by representing for instance u in polar firm
- . [sin(k_y) .
u=r expi wu _Cos(kzy)} exp 1 k x
- sin(k_y] -
Ty {;os(kzy)_EXp 1 (kx + wu) (3.6)
R, u
. . Z i
in which r = /d. + u2 and tan = -
u T i u ﬁr
So the complex amplitude determines the phase and the amplitude of the wave.
Impermeable side walls provide the boundary conditions for the flow model,
i.e.
LW
v=0 fory=+1}— (3.7)

Inserting eq. (3.7) in the solution for v in combination with the definition of

kw yields
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v cos (% ) exp 1 kx=0 =>m= 1,3,5

- ¥V sin (% 7) exp 1 k x =0 =>m = 2,4,6

(3.8)

Consequently the upper solution in eq. (3.6) applies for m codd and the lower

one for m even.

The complex amplitude can now be found by solution of a set of simple

algebraic equations. Inserting eq. (3.6) into the linearized flow model,

eqs. (3.2), (3.3) and (3.4), yields after reduction of the harmonic part.

e

ik +F‘2(ikﬁ+ik%)+fM1ﬁ—fmzﬁ=o

— : av]
ikv+TF z(k h+k 3) + fv=20
w W

ce

v N
+1kh-%k v=20
w

After reamramging and divisioen by kw the three linear equations

expressed in matrix-form as

e M+ 1 —e My+i P2 0 2 -i1
72 0 P2 e+i 1 Ml ¥ -1
il i1 B, v 0

in which 1 = k/k_ and e = f/k .
W W
The determinant of this complex matrix can be elaborated to
D = E[MI + 12(1 - F2(1 + M, MZ))]
4 ‘12 2
+ i [1(1 +é&F 01, +1,)) + 13(1 - F2)]

The solution of the three complex variables finally are

can be

(3.9)
(3.10)

(3.11)

(3.12)

(3.135
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Y

6=2ea? -y + i 19 (3.14)
Y]

H=Zfe? +u) - i (1+1%)] (3.15)
N

Y Z ., .

vegp il [re @ M) - i1 (3.16)

In figure 2 the phase and the amplitude of 8, N and v are depicted as a
function of the relative wavenumber 1 for two different values of e. In
figure 3 the influence of the Froude number is depicted. 1In both cases
the roughness coefficient is considered to be independent of the flow
parameters, so M]= 2, and M1 =1,

The phase lag of the water depth is almost constant 7w and the amplitude
is close to unity,at least for moderate Froude number and for long waves
in longitudinal direction. In this case the rigid-1lid approximation

applies, i.e,
h=-2=z (3.17)

This is a very attractive approximation because a perturbation of the depth of
flow can be considered instead of a perturbation of the bed level.

. e . v
Consequently one dependent variable can be eliminated. Reducing z/D from

eqs. (3.14), (3.15) and (3.16) yields

e(,~1%) - i 13
=2 . (3.18)
e(Ml+12) + 1(1+13) :

=¥

e(M,+M,) + 1 1
~Fi1—1 2 (3.19)
e(Ml+'12) + 1(1+13)

<e

The result is now independent of the Froude number. WNote that eqs. (3.18)

[a %

and (3.19) always apply independent of the rigid-1id approximation.

Figure 2 provides the possibility of making some reflections about the cause
of the instability. For a given wave length the phase lag between u and z
will be equal to-g » which corresponds to maximum positive gradient of u at
the same location where z is minimal. A simple one dimensional equation of
continuity for the sediment, in which the sediment transport is considered

to be proportional to the flow velocity, reads
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08
9z 0, oJu _
5t t ang) Pl 0 (3.20)

oz
ot
perturbation will grow. In the present analysis the occurrence of maximum

In the case considered will be negative and the amplitude of the
instability is more complicated than outlined here because features like
transverse transport, secondary flow e.t.c. are taken into consideration.
However, the phase lag between u and z of about == is still one of the

2
dominant factors.

3.2. The stability amalysis

To carry out the stability analysis eq. (3.1) and similar perturbations for u,
v and h are introduced into the linearized equations of continuity for the
sediment, The real part of the celerity o in eq. (3.1) isrelated to the
migration velocity of the perturbation, whereas the imaginery part ¢i is the

exponential growth rate as

zZ =

v [sin(kwy)

exp i(kx - ¢t) =
cos(kwy)}

(3.21)

1 exp ¢, t [i;?gizzg} exp i(kx - ¢rt)

For ¢i < 0 the amplitude of the perturbation will decrease, whereas instability

occurs for ¢i > 0.

The linearized equation of continuity for the sediment can be expressed in
terms of the dependent variables by combining eqs. (2.26), (2.27), (2.33)
and (2.40)

13z Bu _ o Bh v X _ . d%z _

pat " Miax Mo taytagy T o, 70 (3.22)
9y

with x from

b 9X _ v

Ao x =2 (3.23)
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Inserting eq. (3.1) and the similar one for the remaining dependent variables

and reducing the harmonic part leads to the dispersion equation, which reads

L Y =N ik9-W ikB-k v-—aik o ¥,o2% (3.24)
B 1 2 W ;gD W W
1 k— + 1
Vi
- (i1 P -1 3v
as x = ({k + 1) 9%

VE

Substituting eqs. (3.14), (3.15) and (3.16) into the dispersion equation

gives, after a few manipulations, an expression for the complex celerity

k1

- =3 2 w 2 - ]
= 1ckW+—5—[e(l (N #N,) + WMy = N M, + My o+ M

21 172 1 2

™ |e-

+ 1 (L3N +N,) + 1(N,+1)] (3.25)
k2

w o, -1 .
ta— 1=k +1) [-13+1i¢e 12(M +1)]
D /fw 1 72

In which D is given by eq. (3.13)

The three main terms in eq.(3.25)can be attributed to different effects. The

term "

- 1ic ké " is due to the gravitational force on the grains along the
transverse slope of the bed. The term "kw 1/D [...] " describes the influence
of the main flow on the complex celerity. This term is identical with the
expression Parker (1976) based his stability analysis on. The remaining

term is new in this type of analysis. It accounts for the influence of the

secondary flow on the stability of the bed.

The expression for the complex celerity is not very transparant. A short
sensitivity analysis will be carried out in order to illustrate the influence
of the different variables and parameters. However, first a discussion of

the basic assumptions, which underlies this analysis, will be presented.
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4, Discussion on basic assumption

Always when dealing with sediment transport in alluvial channels a great
deal of uncertainty in the prediction of the transport rate and the alluvial
roughness is present. Of course this also applies to this analysis of the
linearized equations. However, in the present case of a two-dimensional
approach, the major source of uncertainty originates from the model for the
direction of the bed shear stress (secondary flow) and from the model for the
direction of the sediment transport. In chapter 2 the reliability of the
models for the secondary flow and for the transport direction were briefly
treated. A thorough discussion of the roughness and transport rate
prediction is out of the scope of this report. In the following a brief
discussion of the problems which are specific for the present approach will

be given.

A condition for the validity of the approach is that the considered submerged
bars differ significantly from the bed forms. For instance if the length

of the alternate bars and the dunes are of the same order of magnitude, then
the amplitude of the alternate bars must be much larger than the dune height
in order to avoid any appreciable influence on the flow(phase lag etc.).

The other way around, if the amplitude of the alternate bars is of the same
order of magnitude as the dune height, then their length must be much larger
than the length of the dunes in order to enable an averaging procedure over

the large scale bedform.

The height of the dumes is typical 10% - 20% of the depth of flow, so the
height of the alternate bars will always be of the same order of magnitude,
for instance never a factor 10 larger. Therefore this analysis applies to

the cases where the alternate bars are much longer than the dunes. Several
investigators have related the dune length to the depth of flow. Yalin (1964)
suggested the dune length - depth of flow ratio to equal five, This analysis
indicates a length of the alternate bars which is of the order of magnitude
of three times the width. An expression for the dune length - alternate bar

length ratio then becomes

B

5
Liunes / Lpars = 39 (4.1

Consequently this analysis only applies to channels with small depth-width

ratios.,
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Another questionable point in this analysis is the linearization of the model.
Below, first a discussion on the linearization of the flow model will be given,

next the linearization of the bed level model will be treated

4,1, Linearization of the flow model

The flow model is known to be only weakly non-linear. A suitable way to
demonstrate this is to compare the solution of the linearized flow model with
the solution obtained by a computational model, which also takes the non-linear

terms into consideration.

In figure 4 the result of such a comparison is depicted. The non-linear
result is obtained with a computational flow model which disregards the trans-
verse friction (Olesen, 1982). The linear solution, according to eqs. (3.18)

and (3.19), are corrected for this omission.

It is expected that a short wave in longitudinal direction will course the
largest difference between the two models. In figure 4 the wave length in
longitudinal direction is two times the width (1=1) and the amplitude h=0.10
which corresponds to the order of magnitude of the dune height. Even in this
case the linearization does not give rise to any appreciable discrepancy.

Thus the linearization of the flow model does not contest the validity of this

stability analysis.

4,2, Linearization of the sediment model

The sediment transport model has a strongly non-linear character, which first
of all originates from the non-linear dependence of the transport rate on the
flow velocity. The non-linear character causes a deformation of an initial
sinuscoidal wave and finally a shock will be formed. The deformed wave can
very well be described by a Fourier serie. Unfortunately the application

of a Fourier serie would impede the analysis considerable. The analysis would
lead to a complex celerity which would depend on the longitudinal coordinate
X, i.e. the wave would deform and the initial Fourier serie would no longer

apply.

However, in case of a small amplitude of the perturbation non-linear effect
is negligible. The linear approach may therefore at least give a satisfactory
initial growth or damping rate. Thus the linearization does not so much

effect the ability of this analysis to distinguish between stable and unstable
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rivers, whereas the propagation and damping/amplification of a perturbation

with a certain amplitude may be treated somewhat incorrectly due to non-
effect.

linear
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5, The complex celerity

As mentioned before the real part of the complex celerity gives information
about the migration velocity of the perturbations and the imaginary part
shows the rate of growth. The imaginary part of the celerity can therefore
be used to distinguish between stable and unstable rivers as a positive ¢i
corresponds to increasing amplitude of the disturbance and a negative one

corresponds to a decreasing amplitude.

The analysis also yields the prevailing wave length. In figure 5 the
amplification factor (the imaginary part of the complex celerity) is depicted as
a function of 1. The usual assumption is that alternate bars, with the wave
length for which ¢i has its maximum, will develop in the stream. This is an
obvious assumption, but it can be doubted whether this is the only criterion
for the final wave length of the alternate bars. A possibility is that non-
linear effect may shift the maximum amplification from one wave length to
another, when the amplitude of the perturbation increases. The initial
disturbance, which may be related to the bed forms, may have influence on the
developing alternate bar pattern. However, as no model exists which accounts
for these effects, the present analysis will be based on the assumption that

the maximum of ¢i determines the wave length of the developing submerged bars.

The complex propagation factor eq. (3.25) is an intricate function of a large
number of variables. Therefore it is difficult to recognize, which effect

the different variables and terms have on the behaviour of eq.(3.,25). Never-
theless the expression for the complex celerity gives already rise to an
important observation. The term accounting for the gravitational force is
always complex and negative (independend of 1), thus it is stabilizing. The
magnitude is proportional to the square of kw’ whereas the term accounting

for the main flow is proportional to kw. The secondary flow term increases
linearly with kw for large 1 and quadraticly for small 1. All effects
considered there is a large stabilizing effect for large kw. This corresponds

with the observation that narrow channels remain stable.

Regarding the intricacy of the expression for the celerity a sensitivity

analysis seems adequate to gain further insight into the behaviour of eq. (3.25).
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For this aim it is convenient to divide the variables into three groups.

1. Variables from linearized constitutive relations -

Ml’ MZ’ N], N a, b and ¢

2’
2. Variables describing the undisturbed flow situation -
h

F, £, B and W (kw =mT ﬁ)
3. Wave number of disturbances -
_ 0
k and m(kW =moT e )

The sensitivity analysis will have one example as a point of reference. The

undisturbed equilibrium situation for this reference example is given by

F =0.25
f =0.01
kw = 0.10 (W= IO'ﬂ-hO in case of incipient meandering).

The variables from the constitutive gelations are assumed to be given by

a = 10 (Rozowski, 1957; M., Knudsen, 1981; and many others)
b = 1.3 (De Vriend, 1981a)

¢ = 1.76(Engelund, 1981)

M, = 2,06 (According to Engelung-Hansen, 1967.

M2 = 1.29 For the elaboration of M] and M2
N, = 5.09 * see Parker, 1976)
0.43

=
1l

%b = 0.001 is used for the elaboration of c, Moo Nyo In figure 5 the

amplification factor for the reference example is depicted as a function
of 1. Here the contribution from the three main terms in eq. (3.25) is

also indicated.

In the sensitivity analysis below the influence of one variable at the time
will be displayed, so no test for mutual interaction between the variables
will be carried out. First the influence of the variables from the consti-
tutive relations and second the variables describing the equilibrium situation

will be treated.
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5.1. TInfluence of constitutive relations

The constitutive relations are probably the main source of uncertainty in
this analysis. It therefore seems appropriate to gain some insight into

this point, before a discussion of the influence of the

physical parameters on the development of submerged bars takes place. To

this end a short semsitivity analysis is carried out,

The influence of the secondary flow, i.e. the parameters a and b, is illustrated
in figure 6 and 7. The magnitude of the secondary current in case of fully
developed flow (the parameter a) seems to have only little influence on the

wave length, for which the maximum ¢i occurs, whereas the influence on the
maximum itself seems considerable. The effect of the secondary flow inertia

(b) is very significant, and it extends to both the magnitude of the ampli-

fication factor and to the wave length lmax’ for which max [@i} occurs,

Equation (3.25) shows that the term accounting for the gravitational force
is independend of 1, and that it equals the amplification factor for 1 = O.
Therefore a change of ¢ exclusively effects the magnitude of ¢, as it only

causes a vertical displacement of the graph (see figure 5).

The parameters originate from the linearization of the shear stress model
(M1 and MZ) hardly influence the magnitude of the term accounting for
secondary flow, but the effect on the main flow term is rather significant.
M1 (figure 8) has first of all a considerable influence on the 'maximum'
wave number 1max’ whereas the effect on the amplification factor itself is

relatively modest. As suggested by figure 9 the contrary applies to MZ'

In

]
=

igure 10 and 11 the effect of the variables from the linearized

model for the sediment transport rate are illustrated. The term in eq.
(3.25) which accounts for secondary flow is completely independend of the

parameters N. and N,» therefore only the total amplification factors are

1
depicted. The magnitude of max Lbi} is strongly effected by change in N; where -

as lmaX is almost indifferent. TFigure 11 displays that ¢i is almost

uneffected by a change in N,. Eq. (3.24) in combination with the fact that
the rigid-1id approximation does apply offers an explanation of this. Inserting

N, .
i=-2in eq. (3.24) shows that N, only has influence on the real part of

2
the celerity.
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So far there is an inconsistency in the analysis. As mentioned in chapter
2.1., there is not accounted for secondary flow or secondary flow inertia

in the flow model but only in the bed level model. In figure 12 the influence
of this inconsistency is investigated. The amplification factor is depicte&
for the bed shear stress parallel to the main flow and parallel to the channel
axis. Further on ¢i is depicted in case of fully developed secondary flow

and in case of secondary flow inertia. The figure shows that a relatively
large error is made if the transverse friction is neglected, but it also

shows that it is permissible to neglect secondary flow in the flow model

(but not in the bed level model), i.e. the inconsistency in this analysis has

no appreciable effect.

The sensitivity analysis has not been profound, as there was no test for
possible mutual interaction and because only one set of physical parameters
was employed. However, it is assumed, that this semsitivity analysis has

revealed some general trends. Summarized the conclusions are -

The amplification factor is rather sensitive to the model for secondary flow

and especially for the model for secondary flow inertia. The variable c,

which accounts for the gravitational force on the grains, has a significant
.influence on the magnitude of ¢i. Further on the linearized model for the
alluvial roughness has a noticeable influence on the main flow term., However,
the main flow term is most sensitive to the variable Nl,whichuoriginates

from the linearization of the sediment transport rate with respect to the
longitudinal flow velocity. Finally for moderate Froude number the amplification
factor is independent of N

9

2 T £
5.2, Influence of the flow parameters

An engineer, who for instance has to design a navigation channel, will be

very interested in ways to decrease the amplification factor. The engineer
“hardly has means to influence the parameters discussed above, but he may have

the possibility to draw up a design, which insures stability. For this aim

the dnfluence of the parameters which describe the undisturbed flow situation

and the geometry of the river will be investigated.

The parameters dealt with here are the Froude number (F), the roughness

coefficient (£), the ratio between the sediment and water discharge (B) and
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the wave number in transverse direction (kw). The amplification factor is
proportional to the parameter B, i.e. B is only related to the rate of growth/
decrease of a perturbation. In this analysis B is used as a normalization

factor for the complex celerity.

In figure 13 the Froude number is depicted against the maximum value of the
imaginary part of the complex celerity max [¢i] and against the corresponding
wave number 1max' If the rigid-lid approximation eq. (3.17) is accepted, the
complex celerity is independent of the Froude number (see eqs. (3.18) and
(3.19)). The figure confirms that this approximation only applies in case

of gmall Froude number. The influence of moderate Froude numbers on 1m

ax
is rather significant, whereas the effect on max [¢i] is negligible.

The maximum amplification factor as well as 1max are increasing approximately
linear with the roughness coefficient (figure 14). Although it does not
appear very clearly on the graph for max [¢i],the variation of 1maX shows
that the influence of the roughness coefficient extends to both the main flow

term and to the secondary flow term in eq. (3.25). The trend outlined in
m
2
between the bed level and the longitudinal flow velocity is one of the dominant

figure 14 is in agreement with the assumption that a phase lag on about

causes of the instability (anyway concerning the main flow). An increased

roughness coefficient causes a larger amplitude of the disturbance in the
T

flow velocity and it causes the phase lag of 5

to occur for a larger wave

number (see figure 2 and recall ¢ = f/kw)'

The ipfluence from the width of the channel is very significant. In figure 15
the maximum amplification factor is depicted against the transverse wave
number. This figure offers an explanation of the fact that some channels

tend to braid, other will form meander bends and other remain straight. The
wave number k: , for which the ordinate has the same ordinate as the abscissa
2 kj , distinguishes between braiding and meandering channels. If = hO/W

(= kW for m = 1) is smaller than k: then the amplification is larger for

2 @ hO/W (= kw for m = 2) thus the channel tends to braid. For still wider
channels the maximum amplification will occur for still larger m (Engelund

& Skovgaard, 1973). It is evident that when the maximum amplification factor

is negative the channel will remain straight.
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Also the wave number in longitudinal direction for which maximum amplification
occun;kmax is depicted in figure 15. The dashed line indicates waves which
will be damped or will not occur. The full drawn line is almost straight, which

implies that the relative wave length lmax is independent of kw.

In figure 16 a curve similar to figure 15 is depicted, but here the secondary
flow is neglected. Comparing the two figures it is noticed, that secondary
flow does not play an important role for small wave numbers, whereas the
influence is very significant for large kw. This implies that the secondary
flow has a very dominant influence on the stability criterion, whereas the

braiding criterion is rather uneffected by the secondary flow.

The secondary flow inertia is essential for this analysis. In figure 17 the
secondary flow inertia is neglected (b = 0). WNote that the vertical scale is
different from the ones in figure 15 and 16. For kw larger than a particular
value there is no longer any maximum but ¢i has a horizontal tangent for 1
infinitely great. The absence of a maximum at the curve for max [¢i] implies
that the river will braid into an infinite number of submerged bars. In
figure 18 the gravitational force on the grain is omitted (c = 0).

Also in this case the stream will develop an infinite number of submerged

bars.

From the point of view of an engineer the stability criterion is of most
interest in this analysis. This criterion is very sensitive to the secondary
flow and especially to the secondary flow inertia. Unfortunately that is the
most unreliable element in this analysis. The shortcomings of the analysis

can be emphasized. In case of a wide channel the secondary flow properties

are probably relatively good determined, but the main flow term in eq. (3.25)
will be predominant. Further more in that case the ¢i will be so obvious
positive, because also the term accounting for the gravitational force will

be rather small, as this term is proportional to ké . The opposite argumentation
applies in case of narrow channels. Almost only the gravitational term
(stabilizing) and the secondary flow term (destabilizing) contribute to ¢i.
Further more the magnitude of the two terms is often of the same order of
magnitude. 1In this case it is therefore very important to have an accurate
estimate of the secondary flow properties, but in a narrow channel the estimate

is encumbered with a large uncertainty.
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The analysis cannot be used directly for design purpose before much more
knowledge is obtained about the magnitude, the growth and the decay of
secondary flow, However for design of stable channels a few trends can

be extracted from the analysis so far. First of all it is important to make
the channel as narrow as possible. Secondly a small roughness coefficient
must be aimed. This can be donme for instance by designing for a high bed
shear stress so that the bed will not be covered by dunes. A low shear
stress (ripple covered bed) will also lead to a small roughness coefficient
but in that case the sediment will be close to the point of incipient motion,

80 N1 will be large, which increases the amplification factor.
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6., Comparison with flume experiments

Regarding the large sensitivity to the secondary flow it is desirable to
have measurements of the secondary flow properties for a verification of
the model. However measurement of the secondary flow properties in a
channel with alternate bars is hardly feasible. Therefore the result of
the analysis will be compared to some flume experiments, in which only the

main flow properties and the dimension of the alternate bars are measured.

The flume experiments were carried out at the Delft Hydraulics Laboratory
De Voorst branche where also the processing of the measured data took place.
All data are reported in Wang & Klaassen, 1981. 1In table | the necessary
data for the comparison are summarized. The data concerning the bar
dimensions depend slightly on the applied filtre technique (strictly
speaking the cut-off wave length, see Wang, 1981 and Wang & Klaassen, 1981).
The experiments were carried out with a rather uniform sand with a mean
diameter of 0,75 mm. The experiment T 34 did not exhibit any instability
and for T 26 it is doubtful whether any bars were developed, whereas the

remaining experiments exhibited significant alternate bar patterns.

Based on the given data it is in principle possible to design a model for
the sediment transport rate and for the bed shear stress for the particular
sand, although 9 experiments are rather few to set up these models. In
figure 19 the square of the densimetric Froude number (FS = u/V/ghd) is
depicted against the Shield parameter (6 = hI/Ad) for the experiments,
According to Chézy's law the line through a particular point and origion
will have f_1 as slope. A group of experiments is situated at the same
line and therefore they have the same roughness coefficient. Two of the
tests which are not on this line (T 31 and T 34) are carried out in a flume
with another width. The experiment T 19 has an extreme high Froude number
and T 14 a very low shear stress, thus other bed form types can be expected
in these two experiments. This implies that the roughness coefficient in
the flume with the width of 1.50 m is independent of the flow parameter

for flows with not too large Froude numbers and not too low bed shear stress.
This is very convenient for the calculation of the coefficients from the

linearized bed shear stress model, as simply M1 = 2 and M2 = 1.
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The sediment transport in kilo per hour per unite width is depicted on double
logarithmic paper against the Shield parameter in figure 20, All the experi-
ments, except T 19 which has a very low Froude number, are situated close
to a line with a slope of 1.40. As the roughness coefficient is constant

this implies that N, = 2,80 (2 x 1.,40) and N2 = 0 for the experiments T 04,

1
T 12, T 23, T 24 and T 26.

As a first approach it is again assumed that

a =10

b=1.3
0.6

¢ =7

in which 6' is obtained from the boundary layer equation (2.40).

The amplification factors for the five experiments are depicted against the
relatively wave number in figure 21. It appears that the analysis yields

that all five flume experiments are stable, whereas the measurements showed
that T 04, T 12, T 23 and T 24 were clearly unstable and T 26 may be unstable.
This discrepancy may be caused by a wrong choice of a, b and/or ¢, or this
analysis must be rejected as the adequate explanation of the formation of

alternate bars.,

As mentioned in chapter 2, measurements in curved rectangular flumes show
that the theoretical model (a = 10) tends to underestimate the magnitude

of the secondary flow. The underestimation can easily amount to a factor
two. Further mdre the model for the secondary flow inertia is based on
rather schematized theoretical considerations and it is hardly verified.
Consequently a large scatter in the coefficient b cannot be rejected. Last
but not least the model for the gravitational force is only verified in case
of a substantial transverse slope and not in case of a weak slope and the
verification of the model showed that a large scatter can be expected.
However there is no evidence that this should lead to a systematical under-

estimation of ¢ and therefore ¢ will be kept unchanged in the following.

A combination of a and b, which cannot be rejected as unrealistic, can be
chosen so that the amplification factor becomes positive and maximum for

wave numbers which correspond to the experimental findings. In figure 22

a = 25 for all experiments and b = 1,30 for T 04, b = 1.25 (T 12), b = 0.65
(T 23) and b = 0.45 (T 24). The analysis now yields instability and maximum
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amplification for the correct wave number, and the choice of a and b is not

unrealistic. Consequently the analysis cannot be rejected.

A direct verification of the model is thus not feasible before much more
information about the secondary flow properties is obtained. Fortunately
it is possible to recognize some trendsin the measured data, which correspond

well with theoretical findings.

The most important parameter is the transverse wave number, which in the
experiments is proportional to the depth width ratio as m = 1. According

to figure 15 the maximum amplification factor increases for decreasing kw’
except in a narrow region between the maximum and the wave number k: s which
distinguishes between braiding and meandering streams. The same trend is
found in the measured data, if it is assumed that increasing dimensionless
height of the bars correspond to increasing magnitude of the maximum amplifi-

cation factor (figure 23).

Also the influence of the roughness coefficient can be investigated. The
experiments T 04, T 12, T 14 and T 19 as well as T 23 and T 31 are suitable
for this purpose because they have approximately the same depth width ratio
(kw A 0.2 and kw ¥ 0.4, respectively)., In figure 24 the measured height

and length of the bars are depicted against the roughness coefficient.

This figure displays the same trend as suggested by figure 14, i.e. the
maximum aﬁplification factor as well as the corresponding wave number 1max

increase for increasing roughness coefficient.

The Froude number of the experiments is, except T 19, located in a narrow

range. Unfortunately there is no
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regarding roughness coefficient and depth width ratio.

The experiments do not confirm the validity of the approach, but on the
other hand it is not possible to reject the model as an adequate explanation
for the information of alternate bars. Similar trends are found in

experiment and theory, which supports the validity of the approach.
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7. Conclusions and Further research

This report concerns a linear stability analysis of the governing equations
for the bed and flow topography in a straight alluvial channel with non-
erodible banks. The aim of the analysis was to find the cause and characte-
ristic length scale of incipient meander and braid in rivers. An investigation
of the sensitivity to the assumed models for the sediment transport rate,

for the bed shear stress and for the secondary flow as well as the sensitivity
to the width of the channel, the roughness coefficient and to the Froude

number 1s carried out.

The investigation is an extension of previous work carried out by among others
Fredsde (1978) and Parker (1976), as secondary flow due to flow curvature

is taken into consideration. TFurthermore a model which accounts for the
secondary flow's retarded adaption to change in curvature (secondary flow

inertia) is included in the analysis.

The analysis confirms the concept that stability is closely related to the
depth width ratio of a stream, i.e. wide channels tend to braid, narrow
channels remain straight and in between the channels will form meanders.
The analysis also suggests that a high roughness promotes the formation of
alternate bars, whereas a high Froude number tends to counteract this,
Further more the analysis shows that the sensitivity to various parameters

may be of decisive importance for the result of the analaysis.

The trends, which are summarized above, are not different from the results,
which would be obtained by an analysis, which did not account for secondary

PO U Y -£ P
he main influe

flow. T nce of the term accounting for secondary flow is that
it provides additionmal instability for first of all short waves in transverse
direction. Therefore the secondary flow has not much influence on the
formation of braids, whereas the secondary flow may be decisive for whether

a channel will remain stable or develop alternate bars.

The performance of the model was compared to some experimental results.
The measured data exhibited the same trends as the analysis with respect

to depth width r-tio and alluvial roughness, which of course supports the
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theory. However, an attempt to verify the theory by means of five flume
experiments had as a result, that the analysis classified all five experiments
as stable, although significant alternate bars were observed in four of the
experiments. This discrepancy can be explained by an inaccurate description
of the secondary flow, but at the same time it can not be excluded that a
dominant additional effect exists. Tor instance all kind of wall effects
have been neglected in this analysis, The effect may extend to a considerable
part of the cross—section as the depth width ratio was relatively large.
Secondary flow convection, which has proved to have a large influence in
rectangular channel bends (De Vriend, 1981b), may also have some influence

on the flow over alternate bars, although the curved flow is rather short

and the curvature small. Furthermore a necessary condition for the neglect

of the effect from the bed form is that the height of the dunes must be

much smaller than the height of the alternate bars orj if this condition

is not satisfied the wave length of the bars must be much larger than the

dune length (Chapter 4). For instance for one of the experiments (T 23)
bar/Hdun) and 4.4 (Lbar/Ldun) (Wang &

Klaassen, 1981), thus none of the conditions are satisfied.

the two relevant ratios are 1.2 (H

For design purpose of e,g. a navigation channel the stability criterion is
very important. Unfortunately this criterion is very sensitive to the model
for the magnitude of the secondary flow and especially sensitive to the

model for the secondary flow inertia, which are the two most unreliable models
in this analysis. In case of a rather marrow channel the secondary flow
properties are very poorly determined, but the influence of the term is
dominant, In a wide channel the secondary flow is better determined but the

influence is negligible, Consequently the analysis is not yet suitable for

Non-linear effects will probably have some influence on the propagation
and growth of the alternate bars when the amplitude becomes finite. To
which extend the linearization of the equations contest the validity of
the result can be tested, as (on-linear) computational models for the
development of the bed and flow topography in alluvial channels already

exist (see Koch & Flokstra, 1981).
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The performance of the theory can only be improved considerably by improving
the description of the secondary flow in relatively narrow channels. That will
probably require an accurate description of the flow close to the walls, i.e.
also vertical velocity components must be considered. A three-dimensional
description of the flow is therefore necessary, With a good model for the

eddy viscosity this approach has many advantages compared to the two-
dimensional description of the flow. However the computational effort will
increase considerably and electronic computers will be necessary even to

obtain the zero order solution.

It would also be of great value to extend the analysis to account also for
the influence of the bed forms, as the dimensions of the dunes often will
be of the same order of magnitude as the dimensions of the submerged bars.
The flow over a dune is often computed with a boundary layer model, thus

the extension will prohibit a depth averaged description of the flow.

Consequently, a change, which would thoroughly improve the ability to predict
whether a channel will remain stable or not, will demand an enormeous compu-
tational effort. A time dependent three-dimensional model must be solved,

which for the time being is out of the range of most electronic computers.
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Appendix A

Secondary flow inertia (De Vriend, 1981a)

The model for secondary flow inertia is based on numerical computations

of the decaying flow beyond a bend. The governing equations for the flow
can be considerably simplified and still not cease to describe the essential
problem. The shallow water approximation (i.e. neglect lateral diffusion)
and considering straight depth averaged streamlines only make it possible

to disregard all y-derivatives except the transverse pressure gradient.

If furthermore the pressure is assumed hydrostatically distributed, then the

transverse momentum equation can be reduced to

__1l3p 3 v
e R T (A1)
in which At is the eddy viscosity and u and v are here dimensional local

velocities, i.e. u(x,y,z) and v(x,y,z).

In stead of solving the longitudinal momentum equation a similarity

approximation is assumed to apply to the longitudinal flow velocity, namely

u=u £, (A2)

in which the bar denotes a depth averaged quantity. The function fﬁ

is given by

VE

f=1+?f‘—(l+1n§:) (43)

Uu

The distribution of the eddy viscosity (A4) is the well known parabolic

distribution, which is consistend with the logarithmic velocity profile,

_ S 2z _Z
AL =k fuh (1 h) (A4)

Inserting eqs. (A2) and (A4) into eq. (Al) the transverse momentum

equation can be written as




R
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v' _ 3p' 3 , ov'

1 e = By g (At 5;.) (A5)
in which
v' = v/u

' = SV (1t
At z'(1-2")
z! = z/h
y' =y/h
x! =k vVf x/h

p' = p/(pu k VE)

The dimensionless pressure gradient can be determined with the auxiliary

condition of zero net flow in transverse direction (straight depth averaged

streamlines)

1

f v'dz' =0 (A6)
0

A known vertical distribution of v' (fully developed secondary flow)

at the upstream end is applied as a boundary condition for eq. (A5)

v't n =V, (A7)

in which VO' is the solution of
ov !

2 v _ 0y L3 L p2 1
5z (At Bz') * oy fﬁ KV (48)

=0 (A9)

- and at the bottom the wall function approximation is applied

<

v! =E-t-{§_—f+ 1 +1n z'} (A10)

The set of equations (A5 - A7 and A9-A10) is solved numerical (details,

see de Vriend, 198la). 1In fig. Al the secondary flow intensity
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Ioe = él Jv'/dz! (A11)

- is plotted versus the dimensionless longitudinal coordinate x' on

semi-logarithmic paper. The figure shows that the secondary flow intensity

decrease approximately exponential with x'. T.e.
1 x'
Tioe &) = ITiee O eXp(-.X-) (A12)

in which the relaxation length A appeared to be almost independend of
the roughness coefficient f. 1In terms of dimensional variables the
secondary flow intensity beyond a bend can therefore very well be

approximated by

f x
Tsec () = 16 (0) exp (- ) (a13)
In case of a varying source term it is analogous assumed that the
secondary flow inertia can be found from
1.3 BIsec
—h ——— + I_ = SOURCE(x) (A14)
Vi

If in addition a similarity hypothesis is applied to the secondary flow;
then the relaxation length (1.3 h//f) applies to the transverse bed shear
stress as well, because in this case the shear stress is assumed proportional

to the secondary flow intensity.
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Figure Al. Decay of secondary flow intensity beyond a bend.

1
C = 50 m*/s (After De Vriend, 1981a).
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| Q W h s F o £ gl .

5{ TEST (m7s) (m) (m) (kg/h) (- ) (1072 ) - (=

; TO4 0.075 1.50 0.111 63.7 0.432 0.214 1.28 0.55 0.57 0.23

I T12 0.090 1.50 0.115 127.1 0.491 0.307 1.37 0.58 0.53 0.24

{ T14 0.063 1.50 0.105 13.7 0.394 0.0925 0.70 0.41 0.45 0.22

5 T19 0.100 1.50 0.087 577.8 0.830 0.485 1.00 0.54 0.51 0.18

i T23 0.146 1.50 0.200 65.0 0.346 0.259 1.32 0.67 0.35 0.42

f T24 0.266 1.50 0.301 125.3 0.341 0.379 1.33 0.69 0.25 0.63

E T26 0.401 1.50 0.405 179.1 0.331 0.501 1.39 (0.66) (0.21) (0.85)

[ T31 0.131 1.125 0.208 48.6 0.392 0.266 1.03 0.60 0.26 0.44
T34 0.048 0.50 0.211 23.6 0.316 0.281 1.65

rn H=Hbar/h s Hbar is the mean height of the alternate bars.

Table 1. Sand flume data (Wang & Klaassen, 1981).
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Figure 1. Bed patterns associated with different values of m.

Submerged bars (shaded) and typical streamline patterns.




48

1.0

[Sx]

0.2

01

0.05

0.02

0.0%

3T
2

F=0.2

1/10TC
/2T

_—— ¢
£

1.0

05

0.2

0.1

0.05

\

0.02

l
I
|
L

1.5
0.5

- &

Figure 2. Phase lag (above) and amplitude (below) of depth (h),

-
|-
\

0.01

L

L

longitudinal and transverse velocity (u and v, respectively)

for different values of e.




49

1.0

0.2 0.5
hd

01

0.05

002

0.01

37U

1/2TC

F=0.4

£-

0.2

1.0

L

0.2

01

0.05

0.02

0.01

1.5

- @
Figure 3.

o ‘ n o
- o

Phase lag (above) and amplitude (below) of depth (h),
longitudinal and transverse velocity (u and v, respectively)

for different values of the Froude number (F).




50

4 =10

= € ={10-7)

(S h =010

£

I 0.5F 7
0.0
~0.5[ .

~

——— u/h (r.b.)

———» v/h (axis)

-0.2

non-linear computation
———~ linear computation

1 ] ] | |

0 0.2 0.4 06 0.8 10 1 X
T 2w

Figure 4. Linear and non-linear computation of the flow over

submerged bars,




51

0.08
9 0.06f
B
I 0.04

0.02

gravita-

tional
force
I B
-0.02 |-
i I ! I
0.0 0.2 0.4 0.6 0.8 1.0

Figure 5. Amplification factor.

Reference example.




e |6

C.08

a=20

0.06~

Q.04 -

a=0 (main flow)

002

—-0.02}-
| I | i
0.0 0.2 0.4 0.6 0.8 1.0
‘_——-—————l
Figure 6. Amplification factor. Influence of

magnitude of secondary flow.

0.08
. 006F
B
[ 004 -
002
0
-0.0Zf-
1 | | I
0 0.2 0.4 0.6 0.8 1.0
—————D-[
Figire 7. Amplification factor. Influence of

secondary flow inertia.

S




53

.ANSV JUaT0TJF200 ssouydnox a2yl 103

Tepow Jo 32USNTIUI *I10308F uOTIBOTFTTdwy

| ———

0l 80 S50 70

‘6 @andtTg

1 { I {

MO1} "28S ou

P10}

0Z='I

¢00-

00

700 h
4

300

g

800

.Amzv JUSTOTFF200 ssauydnox ayl i0jJ

Tepow JO 20UdNTIUT

]

0l 80 90 70

*1030ey uworleOTIITdUy

*g 2aIn81g

MO} "23S ou
1210}

1¢00—

<00

700 w
R

8GO0

=4

800



54

.ANZV 310dsuei] juswWIpas 9yl I0OJ [opouw .Aﬁzv 1xodsuei] JUSWIPIS 9yl I0J [9pow

Jo @dUsniyul *I030®F UOTIBOIFITduwy [ @an31g Jo 9duenijul x030®3 wotrledIFITdwy Q] °2In3Tg
| —— j—
! 80 90 70 20 0 01 80 90 70 Z0 0
I | i ] T | T T v
—¢00- —200-
0 0

>l
4700 g'Z='N 1200
71700 ~7070 _
Gg=IN
¥
g | Mw
%00 ° 500
GL=IN
mu _‘Z OHNZ

800 800




55

0.08
@Ty/tx =0
@Ty/ TX:-EI/-—
®Ty/Tx——\é—+10—hu—g—VX— .
__V . b - 3
. 0.06 L @1yl Ty =% +10 (i k\7_f—+1) hoay
B
/4’/’-——‘\7\\
1 \
0.04 -
2
3
4
0.02-
0
—002
1 | | |
0 02 0.4 0.6 08 10
e e l

Figure 12, Amplification factor.

account for the trans

Influence of different ways to

verse bed shear stress in the flow model.




56

total

~—— no sec. flow
0.05 —

0.04 —

——— max [_—kp‘]

0.03

0.02

0.01

0.7

lmcx

0.6

0.3 |
0 0.25 0.50

0.75 1.00 1.25

e N

Figure 13. Maximum amplification factor

Influence of the
Froude number (F).




57

total

- — —— N0 Sec. flow

0.05—

——— max [g)i]

0.04 -
0.03 s
002+ 7

0.01 |~ 7/

0.7

———— mox

0.3 ] | |
0.005 0.010 0.015

Figure 14, Maximum amplification factor. Influence of the

roughness coefficient (f = %z-).




0.04

0.02

——— max [9;]

0.01

- 0.01

=0.02

~0.03 L

0.10
k

t

, 0.05

Figure 15,

width of the channel (kw =m

58

|
!
|
|
l
l
|
|
|
|
|
!
"
|

braiding meandering be stable N
| \
Ky 2ky,

Maximum amplification factor.

i
W

Influence of the

//
//
| ] | I
0.05 0.0 0.15 0.20 0.25




0.04

%]

o
(]
w

0.02

—_——% maXx

0.01

—0.01

—0.02

0.10

| 0.05

59

brai- _
ding &L | meandering stable
I
I i
* *¥
kW sz
I I | |
g
/
| l | !
0.05 0.10 015 0.20

Figure 16. Maximum amplification factor. Influence of the width

of the channel (kW = m% ). No secondary flow (a

0).




60

0.5
/
/
/
04 |- /
1
= /
» /
£ /
/
0.3 - /
/
/
/
//
.2 |~
° /
/
/
/
/
0.1 |— /
0 [ | | !
| 040 [~
xfs’
020 |-
0 [ | l |
0 0.05 0.10 0.15 0.20 0.25
— b ky
Figure 17,

Maximum amplification factor.

of the channel (kW
(b = 0),

Influence of the width

m % ). Secondary flow inertia neglected




61

007

]
I
o
on
!

0.05

— & max [kp

0.04 |~

0.03 -

0.02

0.01

010 |—

—
0.05 -

— Kmax
\
\
\
\

015 0.20 0.25

Figure 18. Maximum amplification factor.
channel (kW =m L ).

Influence of the width of the
T Gravitational force neglected (c = Q).




60

2
Fs

50

40

30

20

10

Figure 19.

62

T19
+
e
yd
T26
/+
T2
T3
+
T+12
T237
TOL T34
+ +
T
+
2_1.. -
Frm- =+ 0, f=0.0130
] I | 1 |
0.1 0.2 0.3 0.4 05
— 6)

0.6

Bed shear stress (Shield parameter) as a function of

the densimetric Froude number. Sand flume data.




63

500
T19
+
E
200
jo) }
=
< T26
/+
100 — T12 T24
o+
T34
50 |-
TOL 4. F
+ /1
A
1.40
- S=480 6'
10 |- T4
+
| | !
0.05 01 0.2 0.5
—_— e
Figure 20.

Sand flume data.

10

Transport rate as a function of the Shield parameter.




gl

64

0.2

total

no sec. flow

-0.8

=10

Figure 21,

Amplification factor for the flume experiments.




65

. . . .
01 80 90 qw ﬂo 0
| U
\
———— \\
// — O
— 20
§z'1=q '5z=p ——— = '
€l=9'0L=D
L
= 70

0l 80 90 70 4y 0
| | l 1
\
/ \H\\\.\\\\\
//l’ —— e — O
— Z0
£1=9°'gf=0 —-———
€1=9q'QL=0o
70 L :
70

Amplification factor for the flume experiments,

Figure 22a.

Adapted secondary flow coefficients (a and b).



66

" /
- /
\
- \
M 3 N\
- O
LT N
- AN
2 Qg NG
5 ~
| .
|
| ~
| I [ | I
~3 o~ o o~ ~t w 00
o o o o o o
- | |
o ¢ I I
m
o~ [
[
o 8 )
~ o \
gy \
S \
oy \
o o \\\\
| \
|
l
!
| I l l l
~ o~ o ~ ~ v [« ]
o o o o (=) o
[ I [ |
S«
Figure 22b. Amplification factor for the flume experiments.

Adapted secondary flow coefficients (a and b).

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

l




67

T 06 ng.
Tlg +T12
Ti4
+
0.4 1= 723
+
* + T26
02} (+)
0 | 1 ] 1
0 0.2 04 0.6 0.8 10

Figure 23. Measured height of alternate bars as a function of the

transverse wave-~number.

0.6 - TO4
N T19 /”+\\T12
—-+ s
//*
0.4 T%}/’
,/;}l.
/J’_ - A%
0.2 - -
ol 1 ' '
0.7 -
i o
£ -
137 K§OL
T 06 I~ /./"' T1.2’
P /i“
‘ Tg_ ___19%
/, k0.2
. /
0.5 ,
/
’
T4 7
0.4 - 4
1 ] |
0.005 0010 0.015
—f

Figure 24, Measured height and length of alternate bars as a

function of the roughness coefficient.




