The catalyst of Almelo central

Redesigning Almelo's Train Station Area to Bridge Physical and Social Gaps

Bunyamin Durdabak - City of the Future Graduation Studio - P5 Faculty of Architecture - TU Delft

Problem statement

Train stations often act as both essential transport hubs and physical or psychological **barriers** within cities, creating a disconnect between their "front" and "back" sides. At Almelo Central Station, this duality splits the urban fabric, hindering cohesion and accessibility. As **public transport use** is projected to **grow** significantly by 2040, there is an urgent need to redesign station areas to support **urban development, social integration, and sustainability goals**.

Image of an aeral view of the station in 1960

Research question

To what levels can architectural and urban design interventions in the Almelo train station area **reduce the physical and social disconnection** between neighborhoods, and thereby enhance opportunities for local development and community integration on both sides of the railway tracks?

Image of an aeral view of the station in 2025

Research diagram

This diagram illustrates the research methodology used to reach the final conclusions. It maps out how different methods—field observations, interviews, mapping, and case studies—were linked to theoretical frameworks like social capital, spatial perception, TOD, and Spoorbeeld. By analyzing ownership, disconnection, and urban strategies, the diagram shows how each layer of research contributed to understanding and defining "The Station That Connects" as both a physical and social connector.

Research outcomes

Make space socially visible

Give the station a face

Design the station as city space.

Build the city around mobility

Design goals

Connection zone

Accesisble station area

Sustainable public spaces

Easy and save interneigborhood connection

Local identity

Location

Site

Top-down view of the site

Almelo's first train station was built in 1865 after the 1860 Railway Act. It was initiated by **industrialist Charles Stork**, who aimed to **connect Twente's textile industry to German coal supplies.** The Almelo–Salzbergen line was vital for regional growth, linking Almelo to the national and international railway network and marking the city's industrial rise.

Trainstation 1860

Image of the catalog trainstation building of Almelo

Around 1900, Almelo station expanded with an island platform and a **cast-iron pedestrian bridge**. Increased traffic from new railway lines, including the Mariënberg connection, required better infrastructure. **The bridge connected the station building to the platform**, although inconveniently placed at one end. This improvement was led by the railway companies to handle growing passenger flow efficiently.

Image of trainstation extention

Trainstation 1900 extension

In 1962, a modern station replaced the 1882 building, designed by architect **Koen van der Gaast**. The new structure introduced a pedestrian tunnel, improved passenger flow, and a larger square for buses and cars. It reflected **post-war modernization goals**, accommodating rising commuter numbers and showcasing the Dutch Railways' contemporary, forward-looking identity in architecture and infrastructure.

Image of trainstation in 1965

Trainstation 1960 new design

By 2005, the station area was redesigned to integrate better with Almelo's urban core. The **bus terminal moved to the north** side, creating a more walkable square. New developments, including the tax office and Javatoren, replaced former textile factories. These changes, led by the municipality and NS, aimed to revitalize the area and **improve city-station connectivity**.

Trainstation 2005 last changes

Current station

Image of main entrance

Top-down view of the site

Image of busstation entrance

Image of Kerkelanden entrance

Perrontunnel met restant van de oorspronkelijke scheidingsconstructie, 2016

(1

(2

(3

4

Image of the monument and protected elements

Urban vision

Image of the spoorzone visie created by the municipality of Almelo

Urban strategies

Oblique aerial view of the current trainstation area

Users

The stakeholders using the trainstation

Users

The stakeholders using the trainstation

Creating space

Image of removed buildings to create space for the station

Image of the two one - way road traffic loops connecting the station

New bicycle connection

The new bicycle route connecting the two sides

Relocation public transport

Transition of the busstation and K&R zone

Interneigbourhood conection

Location interneigborhood connection

There are three key spots that attract people, all located within the sight lines and close to key functions.

By connecting these points, the spatial contours of the construction area start to emerge.

After several design iterations, a building form has emerged that, as it were, winds like a ribbon across the tracks.

Transforming the monument

New masterplan

The catalyst

The new station connecting both sides of the tracks

Kerkelanden

Areal view of the kerkelanden side

New face of the Kerkelanden

Tribune stairs connecting the schools with the new station

Areal view of the centrum side

New entrance for the centrum side

Exploded axometry of the new passage through the monument

Visual of the monument

Visual of the passage

Functional program

Public & Social Functions

Commercial & Daily Amenities

Functional & Support Spaces

Second floor

First floor

Ground floor

Basement

Flows

Scenic stairs and elevator

Escalator

Tribune stairs

Second floor

First floor

Ground floor

Basement

Visual interior entrance Kerkelanden side

Visual interior centrum side

First floor 3D plan

Kerkelanden side first floor

Centrum side first floor

Visual interior entrance centrum side

Visual interior passarel

Facades

North facade 1:200 scaled

Facades

Longditunal sections

Section AA 1:200 scaled

Section BB 1:200 scaled

Longditunal sections

Section CC 1:200 scaled

Section DD 1:200 scaled

Cross section

Section EE 1:50 scaled

Detail A foundation and column

Section EE 1:50 scaled

Detail B Steel construction and floor

Section EE 1:50 scaled

Section EE 1:50 scaled

Detail C roof and framer

Facade fragment

Fragment 1:20 scaled

Fragment realistic

Detail D horizontal framework

Fragment 1:50 scaled

Bearing steel construction

The passerelle consists of a fully self-supporting **steel structure with a composite steel deck floor** (steel sheeting with concrete topping). This structure is connected to the main column framework, which in turn transfers loads to a moment-resisting foundation.

V-shaped columns are placed on top of the passerelle floor and are structurally linked both to the underlying steel frame and to the steel structure supporting the roof. The roof itself is also a composite steel deck floor, providing additional rigidity and contributing to the overall stiffness and stability of the structure.

Image of the connection between de beams and the floor

Construction axonometrie

Steelplate floor used on a roof

Concrete floor steel column connection

hase B

Steelplate floor section

Steel HEA beams connected

Y shaped columns in Rotterdam central

Ventilation types

Ventilation type A

Ventilation type C

Ventilation type D

Section BB 1:200 scaled

Section DD 1:200 scaled

Climate schedule summer

The catalyst of Almelo central Redesigning Almelo's Train Station Area to Bridge Physical and Social Gaps

Bunyamin Durdabak - City of the Future Graduation Studio - P5